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ABSTRACT OF THESIS

Stability Analysis and Design of a Tracking Filter for Variable Frequency
Applications

The work presented in this thesis is a frequency adaptive tracking filter that can
be used in exact tracking of power frequencies and rejection of unwanted harmonics
introduced during power disturbances. The power synchronization process includes
power converters and other equipment that have many non-linear components that
introduce unwanted harmonics. This new design is motivated by the requirement of a
filter that can filter all the harmonics and exactly track a rapidly varying fundamental
frequency with little time delay and phase error. This thesis analyzes the proposed
filter mathematically based on Lyapunov theory and simulations are presented to
show the performance of the design in rapid frequency variations.
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Chapter 1 Introduction

The number of renewable power generation units being integrated into the grid is

increasing everyday, with the majority being wind and solar power [1]. This integra-

tion had given rise to the concept of Distributed Power Generation Systems (DPGS)

where the grid requirement is met by multiple power generation units. The increase

in the power generation by various types of sources is shown in the Figure 1.1 from

the US Energy Information Administration (EIA) website for 2018 [2]. Major areas

of concern in injection of power to the grid from various sources are power control

and reliability. These units should be controlled to generate power in a way that they

Figure 1.1: Power generation growth in the recent years

are all synchronized and meet the exact power requirements of the grid;the energy
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produced at any given time must be equal to the energy utilized at the particular

time.

Controllability of DPGSs is the ability to control the power production (active

and reactive), quality of power and the synchronization with the grid at the point of

interconnection. To provide a near sinusoidal power at the required frequency and

voltage to electrical equipment is power quality (PQ). Various levels of penetration of

multiple power generation units coupled with non-linear grid-side loads induce har-

monics resulting in significant loss of power quality like voltage unbalance, harmonics,

flickers, blackouts etc. Monitoring PQ attributes like rms voltage, harmonic levels,

active and reactive component values is now very important due to the increasing

grid complexity [3].

This thesis focuses on harmonics, one of the important sources of PQ disturbances.

It is imperative that harmful harmonics be identified and filtered to restore the quality

of power. A filter that accurately tracks the fundamental frequency and rejects fast

varying harmonics has been proposed in this thesis.

This chapter provides a brief a description of the problem, rationale for choosing

the point, review of literature pertaining to the topic, and the mathematical back-

ground for the proposed filter design. Organization of the thesis is outlined towards

the end of the chapter.
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1.1 Problem - Harmonics

Basic Definition

Harmonics are components of a signal that are integer multiples of the fundamental

frequency of a system. Harmonics are referred by their order which is the integer

multiple of the fundamental frequency so, an nth order harmonic has the frequency n

times fundamental frequency.

In general power systems around the world operate either at 50 Hz or 60 Hz. In

U.S.A it is 60 Hz where, the harmonics of this signal will be 120 Hz, 180 Hz, 240 Hz

and so on. Harmonics which are non integer multiples of the fundamental frequency

are called inter harmonics.
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Figure 1.2: Harmonics of a signal

So for the 60 Hz fundamental harmonics with frequency 140 Hz or 190 Hz are
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interharmonics. Another type of harmonics are triple-n harmonics which are odd

integer multiples of the 3rd harmonic. Harmonics like 9th, 15th, 27th and so on are

triple-n harmonics.

In the Figure 1.2 a fundamental waveform and some of its harmonics are shown. It

can be observed in this figure how the presence of harmonics distort the fundamental.

Harmonics in power systems is not a recent issue, it was researched by Steinmentz

in 1916 in three phase power systems and documented in his published text. This

research in harmonics helped in development of new designs for transformers and

machines which increased their life and efficiency.

Sources of Harmonics

In the past all the electrical loads were generally linear and due to this the harmonics

they generated were negligible. However due to the increase in the use of solid-state

devices in almost all the loads for better efficiency and low power consumption most

of the loads have become non-linear in nature. In a non-linear device the impedance

changes with the applied voltage. Due to this change in impedance the consumed

current is non-sinusoidal in nature even though the supplied voltage is sinusoidal

in nature. For example, a diode only allows half of the sinusoidal current to pass

through. So, non-linear loads produce considerable levels of harmonics that distort

the power signals.

On the power generation side, in addition to the generator the increasing use of

non-linear devices in power control systems lead to a high harmonic pollution [4]

1. Power converters and Interconnection devices : They produce current harmonics

due to the non-linear switching operation. This harmonic pollution has been

significantly reduced by replacing the SCR power inverters by IGBT inverter

designs.
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2. Synchronous Generators : Generators produce harmonics on the basis of their

coil design - its non-linearity, grounding and so on.

Impact of distributed generation (DG) penetration on power harmonics was stud-

ied in [5], with a particular reference to PV DG system. An overview of the various

control structures is provided in [6] for DPGS based on fuel cells, PV, and wind

turbines.

While on the load side most devices in the present are integrated with non-linear

devices. For example:

1. Personal computers

2. Air conditioners

3. Uninterrupted power supplies [7] inject harmonics into the grid.

Almost all of these devices use Solid State Power Switching Supplies to convert in-

coming AC to DC, which have non-linear operation characteristics. In the case of

variable frequency drives, AC to DC converters are either diode or SCR-type which

produce a great magnitude of harmonics. The research paper [8] shows the amount of

harmonic distortion produced by some of the day to day appliances when compared

to a linear load.

In general, the grid frequency varies randomly in a narrow range of less than ±0.5

Hz . As the behavior of harmonics is dependent on fundamental frequency; they may

vary in frequency, phase and magnitude along with the fundamental.

1. Variable Frequency Drives (VFDs): VFDs exhibit sudden breaking and start-

ing operations, which produce time varying current amplitudes, causing time

varying power harmonics.

2. Cycloconverters : They convert the input 60 Hz power to adjustable variable

frequency output is used with a VFD for applications like mining. These con-
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verters differ from general converters as they do not have a dc link in the

design and rely on switching the phase of the input to give the desired output

frequency.When the converter is used to ramp up the speed of the drive the

frequency of the harmonics and inter-harmonics vary. This is presented in the

research paper [9] where the analysis of the harmonic components including

inter-harmonics is done for various speed ramp up operations.

3. Electric Arc Furnace (EAF): Arc furnaces are used for melting in metallurgy

industry. They operate by producing high temperatures by electric arcs.During

the different stages of metal shaping and refinement the arc characteristics vary

drastically and cause harmonics. [10]

Effects of Harmonics

Harmonics if injected into the grid at the point of interconnection, will cause instabil-

ity in the power system. They will affect the equipment used in the power distribution

network and also the loads connected to it. Harmonics are not transient events which

occur for short duration, for example, few seconds or less. They are steady state or

quasi-steady state events which cause continuous distortion in voltage and current.

Some of the major negative impacts of harmonics are listed below [11] [12] [13] [14]:

1. Electric Lines: Damage because of conductor overheating due to skin effect.

Insulator degradation caused due to dielectric breakdown. Transmission losses

due to corrona effect and losses transversal losses.

2. Capacitors: Decrease in life and efficiency due to dielectric failure and heating.

Failure from reactive power overload. Capacitors in transmission lines are used

to improve power factor, these enable resonant conditions for harmonics which

causes large current and voltages in the lines.

3. False operation of fuses and circuit breakers
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4. Transformers: Damage due to stray flux losses and copper losses. Power loss

due to short-circuit losses and hysteresis losses.

5. Voltage Regulators: Harmonics effect the timing due to increase of multiple

zero crossings in the current waveform in turn destabilizing the generator.

6. Electronic Equipment: Multiple zero crossing caused due to harmonic distortion

in the semiconductor elements will cause changes in the switching times of the

devices.The inter-harmonics effect devices with cathode ray tubes and cause

random variations in the image size.

7. Machinery: Non-sinusoidal currents cause over heating and in rotating parts

pulsating torques and noise.

8. Telecommunication: Harmonics in power lines produce varying electric and

magnetic fields which effect the communication systems due to proximity.

These negative effects of harmonics will be further increased due to resonance

where the harmonic frequency is close to the system’s natural frequency [15]. The

damage due to harmonics can be short term in cases like malfunctioning of relays and

breakers but in cases of over heating of lines, transformer damage etc they affect the

life span of equipment. In both the scenarios of short and long term damage due to

the demand for reliable power and complexity of the grid the economic losses to the

generator, distributer as well as the consumer is very high.

Estimation and Measurement

To avoid the negative effects and control the power quality it is imperative to estimate

and measure harmonic distortion so as to accurately eliminate their presence in the

power system.

Harmonic content in a system can be estimated by several methods and new

methods are continuously being developed and improved for this purpose.
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Literature review of recently published estimation techniques:

1. A paper that proposes Hilbert transform signal processing techniques coupled

with matrix calculations where characteristics of signals are obtained and ana-

lyzed to estimate real time accurate harmonic estimations was published in [16].

2. A frequency shifting and filtering algorithm is described in this publication [17]

where an iterative smoothing filter is used to eliminate the distortions after a

frequency shift of the original signal is done and the error between the original

and frequency shifted signal provides the harmonic estimation.

3. A frequency domain analysis of 3-phase system signal is done in the proposed

algorithm [18] where the Fourier coefficients are interpolated after using Clarke’s

transform to convert the signal to a harmonic exponential signal. This gives a

rapid analysis of frequency, phase and amplitude of the fundamental gives an

estimate of the harmonic distortion.

Mathematically the effect of harmonics in a network can be measured by the the

different indices defined in IEC 61000-4-7. This standard defines methods to measure

the overall harmonic/inter-harmonic voltages and currents in power systems. Several

relationships derived from Fourier series are defined here. The most important being

Total Harmonic Distortion (THD)

THD is defined as the ratio of sum of all the harmonic components to the value

of the fundamental frequency.

THD = Vharmonic
Vfundamental

∗ 100%

There are many existing standards for harmonic control like International Elec-

trotechnical Committee (IEC), IEEE & IET. There is ongoing effort to coordinate and

modify IEEE standards on harmonic control, published in 1992 with IEC [19, Page
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4]. According to these standards the maximum permissible harmonic distortion per-

centage varies with the voltage level. Allowed limits are [19, Sec 5.1]:

Table 1.1: Harmonic Distortion Limits According to IEEE STD 519-2014

Mitigation Techniques

Various hardware control structures and control strategies for restoring the quality

of power of DPGS are described in [6,20]. These references also provide an overview

of various grid synchronization algorithms, along with a discussion on their influence

and role in the control of DPGS on normal and faulty grid conditions.

Most of the traditional techniques for harmonic removal in power are designed

for steady state. However, due to the time varying conditions it is imperative to

analyze and remove harmonics in transient state in order to achieve better control of

the system [21].

Harmonic filtering techniques can be broadly classified into passive, active or a

combination of passive and active.

Passive filters use capacitors, reactors and resistors in combinations of RC, RL, LC

or RLC. They are generally tuned to remove certain specific frequencies. This requires

great amount of study to determine the quality of harmonics to exactly tune the filter.

Due to this limitation, they are not very effective in the cases of dynamic harmonic

frequencies and variable loads. Another disadvantage of passive filtering is that the
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attenuation efficiency is very low in the cases of higher order harmonic frequencies.

However they also induce more distortions by injecting additional harmonics due to

their nonlinearity.They are very economical due to which they are widely used in the

industry.

Active Harmonic Filters (AHFs) are used to mitigate the distortion by measuring

the harmonics and compensating for the distortion caused by them. In AHFs there

are two parts - one for measuring the parameters of harmonics the other for controlling

the distortion [22]. The control strategy in AHFs can be implemented either in time

or frequency domain. Frequency domain control is the most commonly used strategy.

In this method Fourier Transform and its variations like Fast Fourier Transform

(FFT), Discrete Fourier Transform (DFT) are implemented. The basic principle of

the frequency domain control method is to isolate the fundamental from harmonics

by performing an inverse Fourier Transform and then calculating the reference signal

in order to compensate for the distortion. This method is not practically viable

due to the time delay introduced by it for variable load applications. Advanced

Active Filtering techniques use signal processing methods to estimate and control

the distortion in nonlinear networks with variable signal parameters. Some of the

most commonly used techniques are Fuzzy Logic, Kalman Filter, PLL’s [23].

Tracking

In the active filtering method, the signal measurement component tracks the required

signal either fundamental or a particular harmonic. This is an effective way to get a

high efficiency compensation signal.

Tracking sinusoids in noise is a common procedure, it is widely used in communi-

cations, radar, power systems line synchronization and spectral analysis applications.

For example, Kalman filter and its variants are used in Radar to remove noise

from tracking measurements and to get a more accurate estimated position of the

10



target [24]. In communications, tracking filters are used in information transmission

to deal with uncertain measurements caused by quantization error [25]. In sound

engineering they are used for auditory scene analysis to extract the main or required

stream of audio from multiple sound streams [26]. Traditionally to track sinusoids

with varying parameters methods like FIR filters combined with Least Mean Square

(LMS) algorithm, Phase-Lock Loops (PLL) [27]- [28] and adaptive constrained Infi-

nite Impulse Response (IIR) structures [29] are used.

In a three phase system frequency is an important quality parameter. To maintain

stability it is important for fast and accurate estimation of its time varying frequency

when it is distorted by harmonics.Taking into consideration all the harmonics pro-

duced in a three phase system, the most distortion is caused by the 3rd harmonic of

the fundamental. The third harmonic unlike the other harmonic signals is identical

in all the three phases which makes its sum in the neutral not equal to zero. This

causes it to add up in the neutral and overload the system. This property is also

applicable to all the triple-n harmonics - all the odd multiples of the 3rd harmonic

(9th, 15th etc.) [30]. It is important to identify such harmonics generated in the system

and eliminate them to improve the power quality.

To meet these requirements a design for a filter to accurately track the funda-

mental and reject the fast varying harmonics in the power signal is proposed in this

thesis. Working on a method to detect line-to-ground faults in high resistance ground

networks, Rodriguez-Valdez and Kerkman [31] proposed a non-linear tracking filter

to ensure adequate tracking of the current and voltage signatures. This non-linear

tracking filter forms the basis for the thesis.

11



Organization of the thesis

The Thesis is organized as four chapters.

The first chapter gives a basic overview of the problem with the negative impacts

due to it and background information of the existing solutions. It also covers some

basic mathematical background required to understand the analysis and the proposal

of the design.

Chapter 2 presents the mathematical analysis of the tracking filter by first defining

its unperturbed trajectory then analyzing the trajectory’s stability and properties.

This analysis is then generalized for inputs with noise.The design’s trajectory is then

assessed for input-to-state stability. The parameters for control gain for the proposed

filter are selected based on the settling rate, phase error and THD values required.

The performance of the Filter is then shown in Chapter 3 where it is compared

with a standard low pass filter and the QSG-SOGI filter.

The conclusion and ideas for further development on the proposed design and

applications are discussed in Chapter 4.

Copyright© Pranav Aramane, 2018.
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1.2 Lyapunov Stability

Lyapunov stability theory is a standard tool which plays a very important role in

system analysis and control design of nonlinear systems. This theory is an effective

way to analyzes the stability of non-linear differential equations with solutions that

are difficult to obtain.

A general nonlinear system can be defined as

ẋ(t) = f(t, x(t)) (1.1)

where x : < → <n and f : < × <n → <n are functions and if x(t) = (x1(t), ..., xn(t))

where all the component functions a real-valued functions on < then

ẋ(t) = (ẋ1(t), ..., ẋn(t)).

In some cases we will be considering the autonomous case

ẋ(t) = f(x(t)) (1.2)

where f : <n → <n.

In this system when at a time t0 if x(t0) = x0 such that f(x0) = 0 that the point x0

is an equilibrium point of the system. Laypunov theory is used to define the stability

of these equilibrium points [32].

Definition 1.2.1 A solution x(t) is stable if for every ε > 0 there exists δ > 0 such

that if ‖x0− x̄0‖ < δ then ‖x(t)− x̄(t)‖ < ε for every t ≥ t0, where x̄(t) is the solution

to

˙̄x(t) = f(t, x̄(t))

with x̄(t0) = x̄0.

Lyapunov theory gives the flexibility to determine the stability without the so-

lution for the differential equations. It does not require a characterization of the

solutions to determine stability.

13



For this purpose we use a function that satisfies the condition of being zero at equi-

librium but positive definite everywhere else and as x→ equilibrium V (x) decreases,

basically V (x) is such that ∆V (x) < 0.

Let V : D → <n be a continuously differentiable function defined in a domain

D ⊂ <n that contains origin. The derivative of V along trajectories of (1.1), denoted

by V̇ (x), is given by

V̇ =
n∑
i=1

∂V

∂xi
fi(t, x) =

∂V

∂x
f(x)

If V̇ (x) is negative, V will decrease along the trajectory of (1.1) passing through x.

A function V (x) is positive definite if V (0) = 0 and V (x) ≥ 0 for x 6= 0. A function

V (x) is negative definite or negative semidefinite if −V (x) is positive definite or

positive semidefinite, respectively.

Lyapunov’s stability theorem states that the origin is stable if, in a domain D that

contains the origin, there is a continuously differentiable positive definite function

V (x) so that V̇ (x) is negative semidefinite, and it is asymptotically stable if V̇ (x) is

a negative definite. When the condition for stability is satisfied, the function V is

called a Lyapunov function [32, Theorem 4.1, Page 117]

In this thesis the stability of the proposed design is calculated considering the

following general form of the non linear system

ẋ(t) = A(t)x+ bu(t) (1.3)

For this system let us consider the Lyapunov function V (x) = xTPx as the Lya-

punov function where P is a real symmetric positive definite matrix. Calculating the
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derivative of V (x)

V̇ (x) = xTPẋ+ (ẋ)TPx

V̇ (x) = xTP [Ax+ bu(t)] + [xTAT + u(t)bT ]Px

V̇ (x) = xT [PA+ ATP ]x+ 2xTPbu(t)

Let [PA+ ATP ] = −Q

=⇒ V̇ (x) = −xTQx+ 2xTPbu(t)

Here the value of b is indefinite as it varies from one system to another. By the

Lyapunov theory if V̇ 6 0 then the system is asymptotically stable. So we calculate

the left hand terms value and determine if the V̇ of the proposed filter is negative.

Lyapunov’s theorem can be applied without solving the differential equation (1.1).

There is no method for finding Lyapunov functions. In some cases, there are natural

Lyapunov functions for systems of energy functions in electrical or mechanical sys-

tems. In all other cases, it is trial and error.

The Lyapunov function even if is proven to be continuous does not guarantee Global

Asymptotic Stability (GAS). So, to further prove the robustness of the proposed

design we analyze it for input-to-state stability [32, Page 174].

Definition 1.2.2 A system is said to be input-to-state stable if there exists a ΚL

function β and a class Κfunction γ such that for any initial state x(t0) and any

bounded input u(t), the solution x(t) exists for all t > t0 and satisfies

||x(t)|| 6 β(||x(t0)||, t− t0) + γ(sup(t0 6 r 6 t)||u(τ)||)

Here β and γ are Comparison Functions [32, Page 144]. These functions are calculated

[32, Theorem 4.10, Theorem 4.19] based on the differentiability of the Lyapunov

15



function V . If V (x) is continuously differentiable function such that

θ1||x||δ 6 V (t, x) 6 θ2||x||δ

and V̇ 6 −θ3||x||δ ∀ ||x|| > ρ||u|| > 0

then β =
(θ2
θ1

) 1
δ ||x(t0)||e−(θ3/θ2δ)(t−t0) and γ = θ−11 ∗ θ2 ∗ ρ

Copyright© Pranav Aramane, 2018.
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1.3 Second Order Generalized Integrator based Quadrature Signal Gen-

erator (SOGI-QSG)

A quadrature signal generator is a widely used tool in motion control and signal

processing. some of its important applications in power systems are single and three

phase grid synchronization and real time power measurement in single phase systems

[33]. In fig 1.3 a standard SOGI-QSG is shown as a signal flow graph.

k ~

~

++

-

-u v

Figure 1.3: Standard SOGI-QSG

A SOGI based QSG is most widely used because of its simplicity. This filter

is used in many applications like real time estimation of voltage components of an

unbalanced single phase grid [34], extraction of orthogonal fundamental power wave

forms [35] in combination with Kalman filters to analyze the PQ etc. SOGI-QSG has

the advantage over other QSG’s of providing a notch filter effect in the output.

It is used in combination of Phase Locked Loops (PLL) to filter harmonics during

grid frequency fluctuations due to its fast dynamic response. These papers study

different applications of the SOGI-QSG for various harmonic mitigation implemen-

tations involving PLLs [36] [37] [38].

Different Fourier transform techniques with SOGI-PLL are used in [36] to compen-
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sate harmonics in a three-phase PV inverter. The paper [37] analyses the advantages

and disadvantages of using a Frequency Fixed SOGI-PLL in combination of compen-

sation elements to filter harmonics. SOGI in [38] is used in a Differentiator Decouple

Filter to filter harmonic disturbances in the output of Synchronous Reference Frame-

PLL.

This makes the SOGI-QSG ideal to compare the proposed design in this thesis in

variable frequency conditions.

1.4 Proposed Filter Design

The tracking filter system proposed in [31] is improved and analyzed in this paper,

rather than focusing in varying parameters, it is assumed that the frequency is known;

and then, the focus shifts towards having an implementation (realization) that allows

for improved tracking in transient and in steady-state.

The main focus of the design is its use in variable frequency applications. Many

existing techniques like Short Time Fourier Transform, Least Mean Square approach,

Kalman filtering cannot rapidly track frequency/amplitude/phase time varying har-

monics.

The proposed filter is mathematically analyzed and proven to be stable, its track-

ing ability and settling rate are also established. Matlab and Simulink simulations

are then used to show the filter’s performance as opposed to a low pass filter. It is

also compared with the novel SOGI-QSG filter in terms of tracking and is proved

to perform better during rapid frequency fluctuations in the fundamental frequency

that can be generally observed in renewable energy integrated power grids.

The proposed tracking filter in this paper is designed to have higher frequency

dependency than the SOGI-QSG. The two mentioned filters behave similarly when

the fundamental frequency of the signal remains constant but the proposed filter gives

a significantly better tracking performance under variable frequency conditions.
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Mathematical Representation

The improved tracking filter design is mathematically represented in terms of differ-

ential equations below.

ẋ1 = −αω̂(t)x1 − ω̂(t)x2 + αω̂(t)u(t) (1.4)

ẋ2 = ω̂(t)x1 (1.5)

where u(·) is the input signal, α > 0 is control gain constant, ω̂(·) ∈ [ω̂min, ω̂max]

is the (externally) estimated frequency of the signal to be tracked, and x1 and x2

are the state variables associated with the filter. At some initial time t0, the state

variables have initial values x1(t0) = x10 and x2(t0) = x20. It is assumed throughout

that ω̂min > 0.

The filter can be expressed more compactly as

ẋ =

 −αω̂(t) −ω̂(t)

ω̂(t) 0


︸ ︷︷ ︸

A(t)

x +

 αω̂(t)

0


︸ ︷︷ ︸

b

u(t) (1.6)

where x = [x1 x2]
T and x(t0) = x0.

Copyright© Pranav Aramane, 2018.
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Chapter 2 Mathematical Analysis

The unperturbed input to the filter can be modeled as a sinusoidal signal with time-

varying amplitude and frequency:

u∗(t) = M(t) cos θ (2.1)

θ̇ = ω(t) (2.2)

where θ(t0) = θ0. The actual input to the filter may be perturbed by additive noise

v(t) such that

u(t) = u∗(t) + v(t). (2.3)

It is assumed throughout that ω̂(·), M(·), ω(·), and v(·) are piecewise continuous,

ensuring the existence and uniqueness of the solution of each initial value problem

described within.

2.1 Unperturbed Filter Trajectory

If the filter described above is not perturbed by noise (v(t) = 0 and u(t) = u∗(t)),

then its trajectory can be analyzed as follows. Let

x?1 = A1 cos θ +B1 sin θ (2.4)

x?2 = A2 cos θ +B2 sin θ (2.5)
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and x∗ = [x∗1 x
∗
2]

T. The coefficients A1, B1, A2, and B2 evolve according to

˙̃x =



−αω̂(t) −ω(t) −ω̂(t) 0

ω(t) −αω̂(t) 0 −ω̂(t)

ω̂(t) 0 0 −ω(t)

0 ω̂(t) ω(t) 0


︸ ︷︷ ︸

Ã(t)

x̃ +



αω̂(t)

0

0

0


︸ ︷︷ ︸

b̃

ũ(t)

(2.6)

where x̃ = [A1 B1 A2 B2]
T and ũ(t) = M(t). Also, let x̃(t0) = x̃0 be a solution to cos θ0 sin θ0 0 0

0 0 cos θ0 sin θ0

 x̃0 = x0. (2.7)

It can be seen that the x∗(t0) = x∗0 = x0. Furthermore,

ẋ∗1 = Ȧ1 cos θ − ω(t)A1 sin θ + Ḃ1 sin θ + ω(t)B1 cos θ

= (−αω̂(t)A1 − ω(t)B1 − ω̂(t)A2 + αω̂(t)M(t)) cos θ

− ω(t)A1 sin θ + (ω(t)A1 − αω̂(t)B1 − ω̂(t)B2) sin θ

+ ω(t)B1 cos θ

= −αω̂(t)x∗1 − ω̂(t)x∗2 + αω̂(t)u∗(t) (2.8)

ẋ∗2 = Ȧ2 cos θ − ω(t)A2 sin θ + Ḃ2 sin θ + ω(t)B2 cos θ

= (ω̂(t)A1 − ω(t)B2) cos θ − ω(t)A2 sin θ

+ (ω̂(t)B1 + ω(t)A2) sin θ + ω(t)B2 cos θ

= ω̂(t)x∗1. (2.9)

Thus, the unperturbed trajectory of (1.6) is described by (2.4) and (2.5) where the

coefficients evolve according to (2.6).
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2.2 Stability of Trajectory System

The stability of the trajectory system in (2.6) can be understood by consideration of

the following Lyapunov function:

Ṽ (x̃) = x̃T



1 0 k̃ 0

0 1 0 k̃

k̃ 0 1 0

0 k̃ 0 1


︸ ︷︷ ︸

P̃

x̃ (2.10)

where

0 < k̃ <
4α

4 + α2
∈ (0, 1] (2.11)

for α > 0. The positive definiteness of symmetric P̃ can be assessed through its

eigenvalues, which are 1 ± k̃, each with multiplicity two. Each of these is positive

for |k̃| < 1. Therefore, the eigenvalues of symmetric P̃ are positive, P̃ is a positive-

definite matrix, and Ṽ (·) is a positive-definite function. Furthermore,

(1− k̃)||x̃||2 ≤ Ṽ (x̃) ≤ (1 + k̃)||x̃||2. (2.12)

Let

Q̃(t) = −(ÃT(t)P̃ + P̃Ã(t))

=



2(α− k̃)ω̂(t) 0 αk̃ω̂(t) 0

0 2(α− k̃)ω̂(t) 0 αk̃ω̂(t)

αk̃ω̂(t) 0 2k̃ω̂(t) 0

0 αk̃ω̂(t) 0 2k̃ω̂(t)


. (2.13)

The positive definiteness of symmetric Q̃(t) can be assessed through its eigenvalues,

which are (α ±
√
α2 + 4k̃2 + α2k̃2 − 4αk̃ )ω̂(t), each with multiplicity two. Each of

these is positive for 4k̃2 + α2k̃2 − 4αk̃ < 0. Suppose ∃ω̂ ∈ [ω̂min, ω̂max] such that
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4k̃2 + α2k̃2 − 4αk̃ ≥ 0. Then,

(4k̃ + α2k̃ − 4α)k̃ ≥ 0 (2.14)

4k̃ + α2k̃ − 4α ≥ 0 (2.15)

4k̃ + α2k̃ ≥ 4α (2.16)

(4 + α2)k̃ ≥ 4α (2.17)

k̃ ≥ 4α

4 + α2
(2.18)

which is impossible over [ω̂min, ω̂max] by (2.11). Therefore, the eigenvalues of sym-

metric Q̃(t) are positive, and Q̃(t) is a positive-definite matrix. Further, let

λ̃ = (α−
√
α2 + 4k̃2 + a2k̃2 − 4ak̃ )ω̂min. (2.19)

From above, λ̃ > 0 is a lower bound on the eigenvalues of Q̃(t) and

−x̃TQ̃(t)x̃ ≤ −λ̃||x̃||2. (2.20)

The time derivative of the Lyapunov function is

˙̃V = (x̃TÃT(t) + ũ(t)b̃T)P̃x̃ + x̃TP̃(Ã(t)x̃ + b̃ũ(t))

= −x̃TQ̃(t)x̃ + 2x̃TP̃b̃ũ(t)

≤ −λ̃||x̃||2 + 2αω̂max
√

1 + k̃2||x̃|||ũ(t)|

= −(1− χ̃)λ̃||x̃||2 − χ̃λ̃||x̃||2 + 2αω̂max
√

1 + k̃2||x̃|||ũ(t)|

≤ −(1− χ̃)λ̃||x̃||2 (2.21)

for χ̃ ∈ (0, 1) and

||x̃|| ≥ 2αω̂max
√

1 + k̃2

χ̃λ̃
|ũ(t)|. (2.22)
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Figure 2.1: Steady-state normalized magnitude and phase of x∗1 and x∗2. Normalized
frequency is ω/ω̂

Therefore, the input-to-state stability of the trajectory system can be demonstrated

(e.g., [32]) with

||x̃(t)|| ≤

√
1 + k̃

1− k̃
||x̃(t0)||e

−(1−χ̃)λ̃
2(1+k̃)

(t−t0)

+

√
1 + k̃

1− k̃
2αω̂max

√
1 + k̃2

χ̃λ̃
sup
τ∈[t0,t]

|ũ(τ)|. (2.23)

The input-to-state stability of the trajectory system ensures that the trajectory

of the trajectory system x̃(t) is bounded for bounded magnitude of the unperturbed

input ũ(t) = M(t), regardless of variations in ω(t) or ω̂(t) ∈ [ω̂min, ω̂max]. Also,

the trajectory of the trajectory system converges to zero if the magnitude of the

unperturbed input converges to zero.

Copyright© Pranav Aramane, 2018.
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2.3 Properties of Trajectory System

The steady-state behavior of the filter can be analyzed by consideration of the tra-

jectory system. In steady state, ũ(·) = M(·), ω(·), and ω̂(·) are constants. Thus,

the matrix Ã(·) is constant. Without loss of generality, ũ and ω are assumed to be

positive in this section. The steady-state value of x̃ is given by

x̃ = Ã−1b̃ũ. (2.24)

Substituting these values into (2.4) and (2.5) reveals that x∗1 and x∗2 are sinusoidal

in steady state. In particular, the magnitude of x∗i is |x∗i | =
√
A2
i +B2

i where i ∈

{1, 2}, this magnitude is proportional to ũ, and the normalized magnitude can be

expressed as |x∗i |/ũ. Likewise, the phase of x∗i with respect to the input u∗ is ∠x∗i =

− arctan(Bi, Ai). Both the magnitude and phase depend on the control parameter α

and the normalized frequency ω/ω̂. The normalized magnitude and phase of x∗1 and

x∗2 are shown in Figure 2.1. It can be seen that, when ω̂ = ω, x∗1 is equal to u∗ and

that x∗2 has the same magnitude as u∗ but lags it by 90°.

Solving for the frequencies at which |x∗1|/ũ = 1/
√

2 ≈ −3 dB yields the so called

3-dB bandwidth. It can be shown that the 3-dB bandwidth of the filter is equal to

αω̂, the control gain of the filter. The normalized bandwidth can be expressed as α.

A highly selective filter should have a small bandwidth. The settling time of the filter

can be determined by the eigenvalues of Ã. It can be shown that the negative of the

maximum real part of any eigenvalue of Ã, herein labeled the settling rate, is

r = − max
λ∈eig Ã

<λ =
αω̂

2
− 1

2

 0 α ≤ 2

ω̂
√
α2 − 4 α > 2.

(2.25)

A filter that settles quickly should have a large settling rate. The settling rate

can be normalized by ω̂. In Figure 2.2, the normalized bandwidth and normalized

settling rate are plotted. It can be seen that there is a trade off between selectivity

(low bandwidth) and settling time (high settling rate). For values of α ≤ 2, increasing
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Figure 2.2: Trade off between bandwidth and settling rate.

the bandwidth results in a faster settling time. Increasing the bandwidth beyond 2

actually results in a slower settling rate.

Copyright© Pranav Aramane, 2018.
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2.4 Generalization to Multiple Frequency Inputs

In many applications, the input to the filter may not be composed of a sinusoid of

a single frequency ω. It is possible that harmonics or other spectral content may be

present. Although (1.6) is time-varying, it is a linear system. Therefore, superpo-

sition can be used to analyze its response when subjected to inputs with multiple

frequencies. Suppose

u(t) =
K∑
k=1

u∗k(t) + v(t) (2.26)

where

u∗k(t) = Mk(t) cos θk (2.27)

θ̇k = ωk (2.28)

and θk(t0) = θk0 for k ∈ {1, 2, ..., K}. The unperturbed trajectory of the tracking

filter can be described as

x∗1 =
K∑
k=1

x∗1k (2.29)

x∗2 =
K∑
k=1

x∗2k (2.30)

where

x∗1k = A1k cos θk +B1k sin θk (2.31)

x∗2k = A2k cos θk +B2k sin θk (2.32)

and where the coefficients of (2.31) and (2.32) evolve according to

˙̃xk =



−α −ωk(t) −ω̂(t) 0

ωk(t) −α 0 −ω̂(t)

ω̂(t) 0 0 −ωk(t)

0 ω̂(t) ωk(t) 0


︸ ︷︷ ︸

Ãk(t)

x̃ + b̃ũk(t) (2.33)
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where x̃k = [A1k B1k A2k B2k]
T and ũk(t) = Mk(t). Also, let x̃k(t0) = x̃k0 be chosen

such that
K∑
k=1

 cos θk0 sin θk0 0 0

0 0 cos θk0 sin θk0

 x̃k0 = x0. (2.34)

By generalizing the analysis to multiple frequency inputs, it is possible to under-

stand the response of the filter by individually considering the response of the filter

to each frequency independently. For example, the steady-state response of the filter

can be understood by examination of the magnitude and phase response shown in

Figure 2.1 for each frequency of input. This approach is used in Section 3.2.

2.5 Dynamics of Unperturbed Filter Trajectory

Having established the unperturbed trajectory of the tracking filter above, it is possi-

ble to examine the filter’s dynamics about the equilibrium trajectory. Let z = x−x?

where x? = [x?1 x
?
2]

T. Also, observe that v(t) = u(t)− u?(t). Then,

ż = ẋ− ẋ? = A(t)z + bv(t). (2.35)

This error system describes the evolution of the state variable errors with respect to

the unperturbed trajectory.

Stability of Error System

The stability of the error system can be understood by consideration of the following

Lyapunov function:

V (z) = zT

 k 1

1 k


︸ ︷︷ ︸

P

z (2.36)

where

k >

(
α̃

4
+

1

α̃

)
≥ 1 (2.37)
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for α̃ > 0. The positive definiteness of symmetric P can be assessed through its

eigenvalues, which are k ± 1. Each of these is positive for k > 1. Therefore, the

eigenvalues of symmetric P are positive, P is a positive-definite matrix, and V (·) is

a positive-definite function. Furthermore,

(k − 1)||z||2 ≤ V (z) ≤ (k + 1)||z||2. (2.38)

Let

Q(t) = −(AT(t)P + PA(t))

=

 (2αk − 2)ω̂ αω̂

αω̂ 2ω̂

 . (2.39)

The positive definiteness of symmetric Q(t) can be assessed through its eigenvalues,

which are (αk±
√
α2k2 + α2 − 4αk + 4)ω̂. Each of these is positive for α2−4αk+4 <

0. Suppose that α2 − 4αk + 4 ≥ 0. Then,

α2 − 4α

(
α

4
+

1

α

)
+ 4 ≥ 0 (2.40)

α2 − α2 − 4 + 4 < 0 (2.41)

0 < 0 (2.42)

which is impossible. Therefore, the eigenvalues of symmetric Q(t) are positive, and

Q(t) is a positive-definite matrix. Further, let

λ = max
ω̂∈[ω̂min, ω̂max]

(αk −
√
α2k2 + α2 − 4αk + 4)ω̂. (2.43)

The nature of the objective function in (2.43) is such that the maximum occurs at

one of the endpoints. From above, λ > 0 is a lower bound on the eigenvalues of Q(t)

and

−zTQ(t)z ≤ −λ||z||2. (2.44)
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The time derivative of the Lyapunov function is

V̇ = (zTAT(t) + v(t)bT)Pz + zTP(A(t)z + bv(t))

= −zTQ(t)z + 2zTPbv(t)

≤ −λ||z||2 + 2αω̂
√
k2 + 1||z|||v(t)|

= −(1− χ)λ||z||2 − χλ||z||2 + 2αω̂
√
k2 + 1||z|||v(t)|

≤ −(1− χ)λ||z||2 (2.45)

for χ ∈ (0, 1) and

||z|| ≥ 2αω̂
√
k2 + 1

χλ
|v(t)|. (2.46)

Therefore, the input-to-state stability of the perturbed error system can be demon-

strated with

||z(t)|| ≤
√
k + 1

k − 1
||z(t0)||e

−(1−χ)λ
2(k+1)

(t−t0)

+

√
k + 1

k − 1

2αω̂
√
k2 + 1

χλ
sup
τ∈[t0,t]

|v(τ)|. (2.47)

The input-to-state stability of the error system ensures that the error trajectory z(t)

(the deviation of the filter trajectory x(t) from the unperturbed trajectory x∗(t))

is bounded for bounded noise v(t), regardless of variations in ω̂(t) ∈ [ω̂min, ω̂max].

Also, the error trajectory converges to zero and the filter trajectory converges to the

unperturbed trajectory if the noise converges to zero.

Copyright© Pranav Aramane, 2018.
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Chapter 3 Proposed Design’s Simulation Analysis

In the previous chapter the proposed tracking filter non-linear design has been math-

ematically analyzed for its stability using Lyapunov’s theories. This chapter presents

the simulation of the proposed filter and it’s performance is evaluated.

MATLAB and Simulink software tools are used to model the tracking filter and

produce outputs for inputs with harmonic distortion. For this a model of a system

that produces harmonics is also designed and the filter’s control parameter is selected

to provide the most effective results.

The design of the harmonic source and the criteria for the control parameter selec-

tion are explained in the following section followed by the comparison of performances

of the proposed tracking filter, a basic low pass filter and the reference QSG-SOGI

filter.

3.1 Selected harmonic source

A three-phase full-wave diode bridge rectifier is considered in this thesis as a harmonic

source to evaluate the performance of the proposed tracking filter. This type of

rectifier is extensively used in industry to provide low (>5 kW) to moderately high

(<100 kW) dc input power to devices like motor drives or to convert the output of a

generator in a power plant for storage in a battery bank.

The disadvantage in using this rectifier is that it has nonlinear characteristics

and poor input power factor. The rectifier design used in Simulink to produce the

required harmonically distorted power signals is shown below in Figure 3.1.

The three-phase diode rectifier circuit has six diodes connected in a bridge net-

work. When provided with an undistorted three phase input of vas, vbs and vcs to the

rectifier, two diodes one each from top and bottom groups conduct at a time. This
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Figure 3.1: Full wave three phase rectifier simulink design

switching of these diodes draws non-sinusoidal current from the input, injecting sig-

nificant current harmonics [39] into the power network. The grid interface is assumed

to be an infinite bus with sinusoidal voltages in series with a reactance. The non-

sinusoidal currents drawn by the rectifier will produce non-sinusoidal voltage drops

in the series reactance.

Therefore, significant voltage harmonics will be present at the terminals of the

rectifier. Many devices like VFDs have rectifiers and the load keeps changing in these

devices causing a change in frequency thus creating time varying harmonics in the

system.

Thus making a rectifier produced harmonics an useful example to show the track-

ing capabilities of the proposed filter. In this application, it is required to track the

fundamental of the terminal voltages of the rectifier.
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3.2 Filter Parameter Selection

Thus far, the only constraint required for stability is that the control gain α is positive.

In this section we analyze the requirements of the application and determine the value

of α.

The proposed filter’s control gain has to be selected so that it provides an optimal

output without compromising either THD or settling rate. This can be analyzed

and selected by understanding the output characteristics of the filter for various α

values for a constant input fundamental frequency. For this purpose the harmonically

distorted voltage signals vab and vbc from the rectifier are used as inputs.To measure

the proposed design’s performance for its optimal control gain parameter a standard

low pass filter is also studied for its output’s characteristics for different values of its

time constant τ .

The THD, settling rate (rads/sec) and the rms phase error (rad) is calculated for

the outputs of the LPF and the tracking filter. The settling rate and the phase errors

are plotted against the corresponding THD values in Figure 3.2. This trade-off will

be used to select the control gain for the rectifier application.

The low pass filter’s output is processed after the simulation data is collected to

compensate for the standard phase error it introduces in its output. This trade off

is a multiple objective optimization where neither the THD should be too high for

better settling rate nor the settling rate too low for a lower THD. Let us consider a

settling rate(rads/s) = 60 for this application, the advantage of the proposed filter

design is its choice of two α value selections for the same settling rate and both of

those α values have their corresponding THD values lower than the standard of 3%.

These two points are:

1. α = 0.31831

2. α = 6.433
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Figure 3.2: Control parameter (α) value selection based on settling rate and Phase
error variation with THD variation.
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where the trade off for the tracking filter can be seen at the 1st α value with a

very low THD and settling rate = 60rads/s. It can also be observed that for the LPF

there are two points of interest which are :

1. τ = 0.0166s

2. τ = 3.981× 10−4s

These values are used in the following section to show the superiority of the

tracking filter’s performance for the required trade off.

Copyright© Pranav Aramane, 2018.
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3.3 Comparison with standard low pass filter

In this section the basic advantage of the proposed tracking filter system which is

compactly expressed in 1.6 over a general low pass filter is established.

The simulated harmonic distorted power from the rectifier shown in the Figure 3.3

is filtered using the proposed tracking filter and the low pass filter.

The output of the filters for the 2 sets of control parameters α and τ are plotted

for a single cycle. The output of the low pass filter is also amplified as the filtering

causes a loss in the magnitude.
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Figure 3.3: Harmonically distorted rectifier input voltages vab and vbc

First considering settling rate = 60rads/s the required output characteristic of

the filter for the rectifier application with the standard THD limit of 3% where α

= 6.433 and comparing with the LPF’s output with nearly the same THD at τ =

3.981× 10−4s.

In Figure 3.4 the undistorted fundamental and the Tracking filter’s output are

almost overlapping with a very little distortion while the LPF has some distortion as
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Figure 3.4: Comparison of tracking abilities of the proposed filter and a Low pass
filter

well as a visible phase error.

In the Figure 3.5 (a) the output waves frequencies are calculated and plotted along

with the undistorted fundamental frequency.

In Figure 3.5(b) the phase errors of both outputs are calculated with the undis-

torted fundamental as reference. This plot 3.5(b) shows that both the filters have

almost equal phase error.

For the of α = 6.433 the settling rate and THD obtained in the simulation process

are 60.0917rads/sec and 3.53% respectively while for τ = 3.981× 10−4s these values

are 2511.9rads/s and 3.56% respectively.

In this above measured values it can be observed that though the THD limit is

met by both the filters and the low pass filter having higher settling rate the phase

error for both is high which is not desirable in tracking power signals.

Moving to the lower phase error region of the Figure 3.2 there is an α = 0.31831

which satisfies the settling rate condition of 60rads/s and taking the point where the
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Figure 3.5: Phase change and phase error comparison for α & τ at THD = 3%
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LPF also satisfies the same requirement at τ = 0.0166s. These two parameters are

used and their outputs are plotted similar to the above case in Figure 3.6.
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Figure 3.6: Output comparison of TF & LPF for α & τ at Settling Rate = 60 rads/s

In Figure 3.7 we can observe that the proposed tracking filter output is overlapping

the fundamental signal while the LPF’s output is attenuated. Though from Figure 3.2

its can be observed that the phase error of both the filters are nearly the same the

phase change and phase error for these points they are plotted in Figure 3.7 for a

clearer understanding of the error.

Both filter’s output characteristics are calculated while the settling rate remains

a constant 60rads/s. The THD values for the tracking filter and LPF are 0.0025 and

0.0077 respectively. Though the errors are nearly equal the output of the tracking

filter is comparatively more accurate than that of LPF.

This simulation results show the proposed tracking filter’s has an advantage over

LPF due to its design which provides a better trade off in the multiple value opti-

mization issue of THD and settling rate.

39



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Time (s)

-4

-2

0

2

4

P
h
a
s
e
 (

ra
d
s
)

Phase Change

LP Filter

Tracking Filter

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Time (s)

-6

-4

-2

0

2

4

6

P
h
a
s
e
 e

rr
o
r 

(r
a
d
s
)

10-3 Phase error

LP Filter

Tracking Filter

Figure 3.7: Phase change and phase error comparison for α & τ at settling rate =
60rads/sec

This gives the tracking filter design a clear superiority over the basic methods of

harmonic filtering.
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3.4 Variable Frequency Harmonic Distortion Filtering Performance

The proposed Tracking Filter is proved to provide good results when the fundamental

frequency is not time varying in the last section. To show that it outperformed the

existing novel Second Order Generalized Integrator based Quadrature Signal Gener-

ator (SOGI-QSG) 3.1, they are both tested in a time varying fundamental frequency

simulation.

 ẋ1

ẋ2

 =

 −αω̂(t) −ω̂2(t)

1 0


 x1

x2

+

 αω̂(t)

0

u(t) (3.1)

Simulation Results

The results of the simulation explained above are discussed here.

To demonstrate this improvement in the design a ramp is applied to the fun-

damental which also affects its 3rd and 9th harmonics. This distorted fundamental

frequency is filtered simultaneously using the proposed and the QSG-SOGI filters.

In the Figure 3.8(a) the output of both the filters are plotted along with the

undistorted fundamental. It can be observed in this plot that the QSG-SOGI does

not lock on the changed fundamental frequency as well as the designed filter.

In Figure 3.8(b) the error of the outputs for each filter are calculated by subtract-

ing them from the fundamental and are plotted. This shows that the error of the

proposed tracking filter is lower than the QSG-SOGI. It can also be observed that the

QSG-SOGI’s error spikes during the transition where as the proposed filter’s stays

low. The proposed design’s error if analyzed, lowers quicker than the QSG-SOGI -

showing better settling rate.

To demonstrate better, zoomed in scope outputs are shown below:

The Figure 3.9 shows the transition phase where the frequency fluctuates rapidly

around time period of 1.5 s where the error standard deviation is 0.0155 for tracking
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Figure 3.9: Zoomed in plot during the rapid frequency change
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filter and 0.0196 for the QSG-SOGI.
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Figure 3.10: Zoomed in plot immediately after rapid frequency change

The Figure 3.10 shows the phase where the frequency fluctuation slows down and

the tracking filter output almost overlaps with the fundamental around time period

of 2.5 s. Here the tracking filter error standard deviation is 0.0108 while it is 0.0132

for the novel filter.
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Figure 3.11: Zoomed in plot with settled output of TF
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The Figure 3.11 shows where tracking filter output is settled with negligible error.

Even though SOGI-QSG’s error standard deviation is as low as that of the tracking

filter around 0.0084 it is still fluctuating more than the proposed filter’s error.

These results demonstrate the main advantage of the proposed tracking filter

over the QSG-SOGI as is its quick frequency tracking in rapid frequency varying

conditions.

Copyright© Pranav Aramane, 2018.
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Chapter 4 Conclusion

Tracking and filtering of harmful harmonics is crucial for maintaining good quality

of power. The increase of harmonic sources like non linear devices, transformers,

generators, arc flash equipment on both load and generation sides is making this a

critical problem. There are already many existing techniques like using line reactors

and passive and active filter designs like RC & Kalman filters to mitigate harmonics.

In addition to mitigating the known disturbances it is also important to estimate and

measure them to maintain the power quality. This will ensure that if the harmonics

are in the prescribed standard limits there will be no negative impacts like damage

to electrical equipment and false operation of essential devices thus reducing the

economic losses.

Summary of Contribution

1. This thesis has proposed a filter that can accurately track the fundamental and

reject fast varying harmonics.The proposed filter is an improved version of the

design recently proposed for detecting line-to- ground faults in high resistance

ground networks [31]. It is designed to be more dependent on frequency to

increase its tracking abilities.

2. The non linear filter design stability has been analyzed by using the Lyapunov

theory. Mathematical analysis determined its unperturbed filter trajectory and

its stability. It has sound input-to-state stability and the trade off between

settling rate and bandwidth is mathematically determined to select the control

parameter. The filter is also proved to have an error system with bounded

input-to-state stability and its trajectory converges to zero when generalized

for multiple inputs.
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3. MATLAB/Simulink tools were used to model the tracking filter and produce

filtered output signals from inputs with harmonic distortions. A three-phase

full-wave diode bridge rectifier was used as the harmonic source. The harmonics

induced input due to the switching of the diodes is ideally suited to evaluate

the tracking filter. To demonstrate the tracking filter’s performance a basic

low pass filter was also modeled and simulated with the same input. Its fast

tracking ability is displayed in comparison to a modeled novel SOGI-QSG filter

for a harmonically distorted rapid frequency varying input.

4. When compared with the Low pass filter for a fundamental with constant fre-

quency for a desired settling rate, the total harmonic distortion (THD) was

0.0025 for an alpha value of 0.31831. Though the corresponding THD value

for the low pass filter was only little more than double that of the proposed

tracking filter, there was a significant difference in the output signals generated

by the low pass and tracking filters. While there was high attenuation in the

output generated by the low pass filter, the output generated by the proposed

tracking filter was almost identical when compared to the fundamental.

5. The results are presented for the simulations of the proposed and novel SOGI-

QSG filters for fast varying frequency tracking. The clear advantage of the

tracking filter is shown in terms of its better settling rates. The tracking filter

was able to settle quicker after the transient period of frequency change as well

as the error during the change was less when compared with the SOGI-QSG

filter. This is due to its design with increased frequency dependency than the

filter it is based on.

This filter can be used to estimate fundamental or a particular harmonic to directly

compensate for it and reduce the distortion.
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Future Work

In this thesis an existing design was improved analyzed and simulated however, there

is still room for improvement.

1. There can be more design improvements to reduce the error in tracking and

have better trade off for the desired settling rate.

2. Simulink designed full wave rectifier signals were used to test the stability and

performance. The design should be tested with other simulated sources to

establish its performance before implementation.

3. Frequency variation testing can be further improved by filtering stored real time

data from grid or power supply distress conditions.

4. Actual implementation and real time testing of this proposed design can be

done for applications with rapid frequency variations to track the fundamental

accurately like in VFDs and UPS.
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