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ABSTRACT OF THESIS 

EFFECTS OF LUMBAR SPINAL FUSION ON LUMBOPELVIC RHYTHM 
DURING ACTIVITIES OF DAILY LIVING 

Abnormalities in lumbopelvic rhythm (LPR) play a role in occurrence/recurrence of 
low back pain (LBP). The LPR before spinal fusion surgery and its changes following 
the surgery are not understood. A repeated measure study was designed to 
investigate timing and magnitude aspects of LPR in a group of patients (n = 5) with 
LBP before and after a spinal fusion surgery. Participants completed a forward 
bending and backward return task at their preferred pace in the sagittal plane. The 
ranges of thoracic and pelvic rotations and lumbar flexion (as the magnitude 
aspects of LPR) as well as the mean absolute relative phase (MARP) and deviation 
phase (DP) between thoracic and pelvic rotations (as the timing aspects) were 
calculated. Thoracic, pelvic, and lumbar rotations/flexion were respectively 2.19° 
smaller, 17.69° larger, and 19.85° smaller after the surgery. Also, MARP and DP 
were smaller during both bending (MARP: 0.0159; DP 0.009) and return (MARP: 
0.041; DP: 0.015) phases of the motion after surgery. The alterations in LPR after 
surgery can be the result of changes in lumbar spine structure due to vertebral 
fusion and/or new neuromuscular adaptations in response to the changes of 
lumbar spine structure. The effects of altered LPR on load sharing between passive 
and active components of lower back tissues and the resultant spinal loads should 
be further investigated in patients with spinal fusion surgery. 

KEYWORDS: low back pain, lumbopelvic rhythm, lumbo-pelvic coordination, 
lumbar spinal fusion, activities of daily living, lumbar fixation 
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Chapter 1: Introduction 

Roughly 80% of citizens in the United States suffer from low back pain (LBP) at 

one point in their life; furthermore, LBP is the leading cause of disability for those 

younger than 45 years of age and the third leading cause of impairment for those older 

than 45 years of age [26][11].  Fortunately, a good majority of people who suffer from 

LBP are able to respond to non-operative treatments ranging from simple stretching 

exercises to prescribed medications [20].  The natural process of spinal aging and disc 

degeneration within the body, however, can cause painful issues like spinal stenosis 

[20].  When the severity of degeneration becomes too painful to live with on a daily 

basis, operative intervention is often considered [3]. Surgical treatments such as spinal 

fusion procedure for treatment of LBP due to degenerative discs are increasing 

exponentially in regards to abundance as well as expense [26].  The increasing number 

of procedures, however, have not been met with improved outcomes in patient 

satisfaction as further complications have been reported post-surgery [26]. 

The disabling pain in patients with degenerative disc disease deals primarily with 

continued motion at one or more spinal motion segments.  Stabilization of the 

problematic motion segments usually provides pain relief [3].  Spinal fusion surgery, 

essentially, is designed to do just this. The surgery involves placing small morsels of 

bone either in the front or back of the problematic motion segments in hopes to have 

the bones grow together, in turn fusing the targeted section [19].  Surgical rod and 

screw devices are utilized to provide stabilization of the given section of the spine. It 

should be noted that the spine is not actually fused during surgery, as the process takes 

anywhere from 3-18 months depending on which procedural level is performed [19].  

While pain is usually relieved, the issues of spinal stiffness and altered mechanical 

loading become a major concern, especially when multilevel segments are fused.  The 

elevated stiffness of fused segments post-surgery will often inhibit and impair various 

activities of daily living (ADL) for patients.  Some of the common ADLs that are impaired 

due to increased stiffness of fused spinal motion segments include dressing 

independently, getting in or out of a chair, bending downwards, and bathing the lower 
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half of one’s body [31].  It should be noted that all of these tasks require some degree of 

trunk flexion and extension.  

Trunk flexion and extension is primarily achieved by contributions from lumbar 

and hip joints.  Contributions of the lumbar and hip joints to trunk motion have been 

primarily investigated in literature using measures of lumbopelvic rhythm (LPR).  LPR is a 

specific and organized pattern of coordination between the lumbar and hip regions in 

connection to the pelvis during trunk flexion and extension [17][23]. Abnormal LPR 

between trunk flexion and extension can lead to a greater spinal loading and ultimately 

an increased risk of low back pain or injury [42]. To elaborate, when pelvic posture 

deviates from the ideal posture, biomechanical compensation results in postural 

distortion patterns in the lumbar spine [23]. LPR has been reported to be different 

between patients with LBP and back healthy individuals. Specifically, the presence of 

LBP has been reported to cause a decrease in lumbar contribution (LC) during forward 

and backward return [39].  LBP is a complex and multifactorial problem, and as indicated 

before only a sub-group of patients with LBP will end up undergoing fusion surgery. 

Therefore, it remains unclear whether this sub-group of patients with LBP has a similar 

LPR to those reported in earlier studies. Further, the impact of structural changes in the 

lumbar spine due to fusion surgery on the LPR of patients is also unknown. 

The objectives of the study are: 1) to characterize differences in LPR between 

patients who are candidates for spinal fusion and those with non-specific LBP, 2) to 

determine the effect of lumbar spinal fusion on LPR, and 3) to compare LPR of patients 

who have undergone spinal fusion with gender and age matched back healthy 

individuals. We hypothesized that compared to patients with non-specific LBP, LPR of 

candidate patients for spinal fusion involves smaller lumbar contribution. Additionally, 

we hypothesized that changes in LPR following spinal fusion surgery will depend on the 

number and location of fused levels and will include an increase in pelvis and decrease 

in lumbar contribution to trunk.  Post-spinal fusion comparison of LPR with back healthy 

individuals was left as the exploratory objective of the project.  
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To enable testing our hypotheses, we extracted kinematics data collected from 

back healthy individuals and acute patients for fusion surgery from earlier studies of our 

lab [40]. 

Organization of thesis: 

In the following chapters, a review of LBP significance and etiology as well as LPR 

characteristics for symptomatic and asymptomatic populations will be presented 

(Chapter 2).  This review includes specific root causes for spinal fusion candidates.  This 

chapter is succeeded by an in-depth explanation of study protocols and research 

methods (Chapter 3).  A detailed description of results can be seen in Chapter 4, while a 

discussion of these results are followed immediately after in Chapter 5.  Finally, Chapter 

6 completes the thesis with a discussion on limitations within the research and aims of 

future work that the study can take.   
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Chapter 2: Background 

2.1 Significance of Back Pain 

 Back pain is one of the most prevalent and costly problems seen in the medical 

field today.  Roughly 4 out of 5 people in the United States suffer from LBP, while costs 

upwards of $50 billion a year are estimated to be spent on LBP issues [26][7].  

Furthermore, it is the second leading cause of work absenteeism in the United States, 

ranking first in lost productivity among all medical conditions [5].  While LBP proves to 

be a major issue among people, the obstacles surrounding how to categorize and treat 

such issues become complicated.  For one, the underlying source of majority of LBP 

cases is unknown.  These cases are often referred to as non-specific cases.  Secondly, 

when the underlying source can indeed be identified (i.e. specific LBP), the 

complimenting treatments are not always being met with patient satisfaction or 

comfort [26][11].  This can partly be attributed to both the complexities of the 

anatomical structure of the spine as well as the properties and function.  

2.2 Low Back Pain Etiology 

 In principle, back pain can arise from any of the ligaments, muscles, joints or 

discs of the lumbar spine [11].  Further, strains, structural problems, and infections are 

among the common reasons for back pain, and some causes for pain are never found 

[11].  LBP is classified as pain which can be specified between the twelfth rib and inferior 

gluteal folds and can arise either with or without leg pain [11].   With this being said, it’s 

vital that a firm understanding of the lumbar spine anatomy and physiology is 

understood to help explain potential root causes of specific LBP cases.  

2.2.1 Anatomy of Lumbar Spine 

 The lumbar spine (Fig 2.1) is the third major region of the spine.  The lumbar 

spine revolves around 5 moveable vertebrae, L1-L5.  The segment L5 meets the sacrum 

vertebrae S1, which allows for rotation of the pelvis segment [23]. Any two neighboring 

vertebrae are stacked with an intervertebral disc (IVD) in between them.  The IVD 

consists of a gelatinous nucleus pulposus and a tough but pliable outer annulus fibrosus 
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[4].  These IVDs act as force absorbers between the vertebrae, absorbing the various 

hydrostatic and tensile forces put on the spine during even the simplest activities of 

daily living.  The vertebrae and discs are held together by ligaments and tendons which 

help stabilize and protect the spine from excessive movement in any one direction [6].  

The lumbar spine also has finger-like facet joints, which link vertebrae together and help 

give the spine flexibility.  These facet joints are located on the back side of the spinal 

column.  In the center of the spinal column is the spinal canal.  The spinal canal contains 

the spinal cord, which stems from the brain all the way to either the first or second 

lumbar vertebrae.  Directly below the spinal cord comes the cauda equina, or the 

horse’s tail, which goes through the spinal canal and branches off into various parts of 

the lower body.  Both the spinal cord and cauda equina are part of the central nervous 

system, and help one move, feel and experience various sensations [6].  

 

Figure 2.1: Anatomy of the Lumbar Spine 

Image Reproduced from [10]. 

2.2.2 Potential Root Causes of LBP 

 Noticing the intricacies of the discs and nerves found in the lumbar spine, it is 

somewhat intuitive that various issues can arise to cause short to long-lasting pain.  
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Furthermore, LBP can be categorized into three subtypes: acute, sub-acute and chronic 

low back pain.  These subtypes differentiate by length of the episode of LBP.  Acute 

quantifies an episode of less than 6 weeks, while sub-acute quantifies between 6 and 12 

weeks and chronic low back pain for 12 weeks and longer.  Low back pain can also be 

classified further as non-specific or specific cases [7]. 

Non-Specific: 

When discussing the root causes of LBP, it is important to reiterate that non-specific LBP 

has no recognizably known specific pathology and accompanies the majority of LBP 

cases at roughly 90% [24][5].  Non-specific LBP can be caused by traumatic injury, 

lumbar sprain or strain and/or postural strain.  While many of these non-specific low 

back pain cases are self-limiting and can see pain relieved without treatment, the re-

occurrence rate of LBP is at roughly 60% [24]. 

Specific: 

Roughly 10% of all LBP patients present with specific root causes.  Specific cases of LBP 

are diagnosed based on specific pathology [7].  Examples of these pathologies are 

scoliosis, spondylolisthesis, disc herniation and disc degeneration [4].    Disc 

degeneration is inevitable with age, but can also be seen as early as late teens as a 

result of trauma, surgery or poor genetics [2].  Furthermore, patients that present 

severe disc degeneration, categorized as degenerative disc disease (DDD) are often 

prime candidates for fusion surgery.  It should be noted again, however, that fusion is a 

last resort option even for severe DDD cases.   

2.3 Treatments for Disc Degeneration 

 A great majority of patients that present with degenerative disc disease (DDD) 

experience flare up periods of pain that come and leave in small periods of time.  This 

pain originates from a combination of instability at the motion segment and 

inflammation at the given disc.  These patients are generally able to combat the pain 

caused by DDD with non-operative solutions such as rehabilitation, stretching, weight 
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loss and prevention of stress using proper ergonomics [2].  With proper ergonomics and 

rehabilitation, the symptoms of DDD will sometimes subside.  When the listed non-

operative solutions cannot combat the pain successfully, pain medications such as 

acetaminophen, oral steroids or muscle relaxants may be used to complement the 

rehabilitation [6].  While these non-operative treatments are sometimes successful 

routes to solution, a small percentage of these specific LBP cases find that surgery is a 

right and necessary option after failed non-operative success and increased pain. The 

commonly used surgical treatment for DDD is spinal fusion surgery.  

Fusion surgery for degenerative conditions is increasing exponentially in the 

United States.  From 1990 to 2001, lumbar spinal fusion procedures had a 220% 

increase, rising from 32,701 operations to 122,316 operations [26].  Moreover, from 

2001 to 2011, the Dartmouth Institute for Health Policy and Clinical Practice reported 

that there was a 67% increase in surgery [11].  With this being said, fusion surgery is also 

one of the most expensive surgical procedures today, with $4.8 billion spent on the 

procedure in 2001 in the United States alone.  However, the increase in surgical rates 

and costs have not been met with improved outcomes and long-term disabilities, but 

have rather increased in regards to LBP disability associated with work loss, early 

retirement, and state benefits [26].  A study from 2011 found that patients who had no 

surgery to relieve pain were more likely to stop taking medication and return to work 

after two years [24].  In regards to why the commonly used surgical procedure for disc 

degeneration tends to still produce unsatisfactory results, a deeper understanding of 

how and why the procedure is performed should be understood. 

Surgical procedure such as fusion is done to stop the motion between two 

neighboring vertebrae in hopes to decrease the associated pain.  This motion is 

eliminated by utilizing bone graft substitute (Fig 2.2) to promote vertebral fusion [11].  

Fusion procedure can happen at various levels needed.  In other words, if there are 

more neighboring vertebrae that are causing pain and need to constrain their relative 

movements, multilevel fusion is performed.  A single level fusion (Fig 2.3) is often the 

most effective option, noting that patients will likely notice very minimal limitations in 
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motion or stiffness after full recovery.  Multilevel fusions (Fig 2.3), however, can become 

much more unlikely to provide complete relief in pain or stiffness as eliminating motion 

in three or more levels of the spine can often place too much stress on the remaining 

vertebrae [19].   

Figure 2.2: Bone graft substitute placement for intervertebral disc. Figure recreated by 
[12] 

Figure 2.3: Medical Imaging of Single level fusion (Left) and Multi-level fusion (Right) – 
Recreated by [18] 
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2.4 LPR as Indirect Measure of Lower Back Mechanical Environment 

 Understanding that even single level fusions can cause limitations in motion and 

therefore alter the spine biomechanics of a patient, both researchers and clinicians have 

found great value in analyzing the lower back mechanical environment.  It should be 

noted that direct in-vivo assessment of the lower back is currently not possible as there 

are both technical and ethical considerations associated with the current techniques 

available.  However, indirect in-vivo measurements of the lower back mechanical 

environment are used heavily within the field as the ethical and technical issues are not 

a concern [33].  In particular, the indirect in-vivo kinematic measurements can serve as 

an alternative to direct mechanical loading techniques of the lumbar spine [40].  To 

elaborate, the way in which the lumbar spine moves is determined mainly by the 

kinematics of individual motion segments [13].   The biomechanics of the spine are 

affected by a correlation of three subsystems: 1) the passive tissues subsystem, 2) the 

active tissues subsystem, and 3) the neural subsystem.  The passive tissues consist of 

vertebrae, discs, ligaments, and passive mechanical properties of muscles.  The active 

tissues consist of spinal muscles and tendons.  The neural subsystem consists of neural 

sensors and the control center. With this being noted, any change in the kinematics of 

motion is controlled by the nervous system, and results in an alteration of both the 

passive and active subsystems.  This therefore leads to a change in loading on the 

passive and active tissues, resulting in a completely different load distribution on the 

lumbar spine.  Moreover, any change in the kinematics of motion when performing a 

given task is directly related with a change in biomechanics of the lumbar spine 

[28][39][40].   

The two lowest spinal segments of the lumbar spine, L4-L5 and L5-S1, 

respectively, bear the most weight and are therefore prone to more degradation and 

injury [22].  This region of the spine and pelvis, known as the lumbopelvic region, has a 

relative pattern of lumbar flexion/extension and pelvic rotation in the sagittal plane that 

can be utilized to differentiate between healthy and LBP individuals [39]. Any change in 

this relative pattern will be referred to as lumbopelvic rhythm (LPR).  This LPR can often 
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be altered both while suffering from degenerative disc disease and after obtaining 

treatment, therefore changing biomechanics.  Changes in kinematics of motion affect 

the major LPR components of timing and magnitude. In regards to abnormal LPR, 

lumbar and pelvic contributions in both forward bending and backward return have 

been noted to be measures of magnitude of LPR, while timing of motion is noted as the 

measure of timing [35].  The mean absolute relative phase (MARP) and deviation phase 

(DP) can measure and characterize the timing aspect of LPR [35].  A small MARP value 

signifies a more in-phase LPR, while a small DP means a more stable LPR. 

2.5 LPR in Individuals with and Without LBP  

LPR in Asymptomatic Individuals with No History of LBP: 

In asymptomatic people with no history of LBP, the general observation is that 

lumbar contribution in forward bending is dominant in the early stage of trunk motion 

and then pelvic contribution becomes greater towards the end of the motion. 

Moreover, it was found that the early stage of backward return was done mainly by 

pelvic motion with the late portion of the movement being accomplished by the lumbar 

spine. In regards to the timing aspect, participants demonstrate a simultaneous lumbar 

and pelvic motion both in forward bending and backward return [39]. 

LPR in Individuals with a History of LBP: 

 Asymptomatic people with a history of LBP are susceptible to a recurrence of 

LBP.  Previous studies show that participants with a history of LBP tend to have a smaller 

lumbar contribution than patients without a history of LBP in the middle stage of 

forward bending and a larger lumbar contribution in the early stage of backward return 

[39]. 

LPR in Patients with Current Episode of LBP:  

 In general, LBP patients tend to utilize less lumbar contribution in forward 

bending and backward return.  In regards to timing, patients tend to utilize the same 

sequence as asymptomatic participants [39]. 
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2.6: Research Gap 

 While there have been studies revolving around LPR of people with LBP and 

healthy controls, there are not many regarding LPR of patients who are candidates for 

spinal fusion or similarly related surgeries (Nguyen et al, 2015), (O’Shaughnessy et al, 

2013).  Furthermore, the information on the kinematic impact that fusion surgery has 

on LPR once a patient has recovered is unknown to the best of our knowledge.  The 

absence of this information coupled with the insight that indirect mechanical measures 

can bring gives great reasoning towards researching this area and analyzing the 

differences in LPR.  Furthermore, many clinical reports have been conducted on the 

long-term follow up of patients after spinal fusion with all reports showing evidence of 

accelerated deterioration of adjacent segments [8].  This complication known as 

adjacent segment disease (ASD) directly relates to the point made earlier regarding 

patient outcome not being satisfactorily satisfied, and moreover is just one of many 

complications that patients have been seen to deal with after surgery.  Furthermore, 

complications such as ASD not only create physical pain and disability, but also pose as 

further burden in expense.  Studying the changes in LPR before and after one has 

received spinal fusion may help give better understanding of the altered biomechanics 

and possibly help provide insight on why issues like accelerated deterioration of 

neighboring discs occur.  A conceptual model (Fig 2.4) was used to rationalize our 

motive for the study. 

 

Figure 2.4: Conceptual Model 

Disc 
Degeneration Spinal Fixation

Altered 
Mechanics 
(Timing and 
Magnitude)
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Chapter 3: Methods 

3.1: Study Design 

A pre versus post repeated measure study design was used to investigate the 

effects of lumbar spinal fusion on a patient’s LPR both pre and post-surgery using 

measures of magnitude and timing aspects of LPR. The study took place at the 

University of Kentucky Clinic, and University of Kentucky Good Samaritan Hospital.  All 

participants completed an initial data collection session right before their fusion surgery 

followed by a twelve week follow up data collection session.  During each data 

collection session, participants completed a trunk flexion/extension test.  Each data 

collection session lasted approximately 15 to 20 minutes.  Additionally, collected 

measures of fusion patient’s LPR were compared with kinematic data collected 

previously from both back healthy individuals as well as acute LBP patients.   

3.1.1: Participants and Participant Recruitment  

Five lumbar spinal fusion patients participated in this study after completing a 

consenting process approved by the University of Kentucky Institutional Review Board.  

All patients recruited were between the ages of 20-80 years of age, and needed to have 

no previous back surgeries to meet inclusion criteria requirements.  It is also worthy to 

note that in order to eliminate possible confounding factors, all patients included 

underwent either single level posterior lumbar interbody fusion (PLIF) or transforaminal 

lumbar interbody fusion (TLIF).  Both of these procedures are very similar in approach 

and comparable in technique, with the main difference being where the surgeon 

introduces the interbody cage.  During a PLIF, the cage placement is directly posterior, 

while during a TLIF placement of the cage is posterolateral.  Both approaches also have 

very similar construct of dual rods. Furthermore, all surgeons that performed fusion 

within the study used the same surgical instrumentation.  All surgical instrumentation 

was of the EXPEDIUM 5.5 system designed and manufactured by DePuy Synthes, (Depuy 

Synthes, Raynham, MA) consisting of either titanium or polyether ether ketone (PEEK) 
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materials.  A list of these materials from Depuy’s Surgical Techniques Guide can be seen 

in Appendix A. 

3.1.2: Acute LBP Patients Inclusion/Exclusion Criteria 

 The collected acute LBP patient’s kinematics data were extracted from a case-

control study design in which patients aged 40-70 years old with acute LBP (health care 

provider-diagnosed LBP ≤ 3 months) completed the trunk flexion/extension exercise 

that the fusion patients also completed.  In regards to exclusion criteria, any acute LBP 

patients that had significant cognitive impairment, intention to harm themselves or 

others, or substance abuse were excluded from the study [32].  

3.1.3: Back Healthy Individuals Inclusion/Exclusion Criteria 

 Kinematic data was extracted from a previous cross-sectional study in which 

asymptomatic individuals aged from 20-70 years old completed the trunk 

flexion/extension exercise.  In regards to exclusion criteria, subjects were excluded from 

the study if they had one of the following: 1) back pain within the last year, 2) spinal 

deformity, abnormality or surgery in the trunk, 3) a history of work in physically 

demanding occupations, 4) BME <20 or >30 [37].   

3.2: Coordination between Clinic and Study Personnel 

When spinal fusion was determined necessary for patients within the inclusion 

criteria, the approved medical staff went through the consenting process in a detailed 

manner to seek patients who were willing to participate.  Upon willingness, the 

approved medical staff then gave the patient ample time to ask any questions regarding 

the study.  Only after properly consenting and giving time for questions did the 

approved medical staff give opportunity for the patient to sign for informed consent.  

Once the patient was properly consented and given time to ask questions, the approved 

medical staff then contacted the human musculoskeletal biomechanics laboratory 

(HMBL) at the University of Kentucky to give approved study personnel the opportunity 

to see the patient and collect data accordingly. Upon arrival of HMBL approved 
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personnel, the researchers again made sure to ask the patient if they are still able and 

willing to complete the exercises.  Researchers made sure to let the respective patient 

know that if any discomfort arose, they should be notified to pause the data collection 

immediately. 

3.3: Instrumentation and Experimental Procedure 

A tri-axial Inertial Motion Sensor (Xsens Technologies, Enschede, Netherlands) 

system was used to measure the motion of participants’ thorax and pelvis [40][41].  

These motion sensors, otherwise known as accelerometers, were attached to the given 

body parts using straps with accelerometer clasps including: 1) on the participants back 

with the clasp at the T10 location of the spine and 2) on the participants pelvis with the 

clasp at the back side, centered and in line with the spine at location S1.  The three-

dimensional orientation of the accelerometers were collected at a sampling rate of 60Hz 

after a Kalman filter was utilized to minimize any possible effect of noise on the data 

[40].  The height from the ground to the top of all accelerometers were measured and 

recorded to ensure that similar placements were used in the post-surgery session.  After 

placing accelerometers on trunk, participants were then directed to complete several 

basic movements and ADLs including: trunk flexion/extension, sit-to-stand and stand-to-

sit, symmetric and asymmetric manual material handling, walking, and stair climbing.  

Upon completion of these tasks, the motion tracking accelerometers were taken off the 

participant in a careful manner to ensure no discomfort.  
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Figure 3.1: Accelerometers mounted correctly on participant at T10 and S1 levels of 
spine. Image recreated from [40] 

3.3.1: Flexion/Extension Test 

Given that all participants were not able to complete all ADLs, we only describe 

here the basic movement of forward bending and backward return that was successfully 

completed by all participants. Detailed description of all other tasks can be found in 

Appendix B. For the flexion/extension test, the participant was instructed to stand in an 

upright position for five seconds and then bend forward at the waist slowly until they 

reached their maximum but comfortable flexed posture.  The participant was instructed 

not to stretch past this position, but rather stay flexed in the position for five seconds 

and return slowly back to the upright position.  This sequence was repeated another 

two times during the test.   

3.4 Data Analysis 

In-house MATLAB scripts in addition to MT Manager, a processing program 

which exports stored accelerometer data were utilized to process the collected data for 

all tests. 
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3.4.1 Magnitude Aspect 

Using the standing posture as a reference, the MTs’ rotation matrices were utilized to 

calculate the thorax and pelvis rotations in the sagittal plane [40].  The range of motion 

values were calculated using the angles during bending movement of the thorax, lumbar 

and pelvis.  The thoracic rotation was found using the accelerometer positioned at the 

T10 level and the pelvic rotation from the accelerometer located at the S1 spinal level.  

The range of motion (ROM) during each test was calculated as the difference in 

recorded rotation between starting and ending time points during the bending phase 

[40].  These starting and ending points can be described of being when the rotation was 

5% and 95% of the maximum recorded rotation during each respective test [40].  

Lumbar rotation was calculated for each instant of the task as the difference between 

corresponding thoracic and pelvic rotations at the same time instant.  Lumbar range of 

flexion was subsequently calculated as the difference in thoracic and pelvic rotation 

between starting and ending time points during the bending phase.  Further, the lumbar 

contribution (LC), which can be defined as total lumbar flexion/extension to total 

thoracic rotation, was found.   

3.4.2 Timing Aspect 

The timing aspect of LPR characterized using measures of continuous relative 

phase (CRP) between the thorax and pelvis.  This data was calculated by first 

reformatting the thorax and pelvis rotations to set the median value as the new point of 

reference.  The next step in the process required taking the phase angle for each of the 

rotations to calculate the tangent inverse of the Hilbert transformation.  Once this was 

completed, the CRP was calculated by taking the difference of pelvic and thoracic phase 

angles at each instant of time per task.  The MARP and DP were calculated from the CRP 

to give properties of timing of LPR [35].  MARP values represent the phase of 

coordination.  Moreover, an MARP value that is closer to 0 represents a more in-phase 

LPR, whereas an MARP value closer to π represents a more out-of-phase LPR 
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coordination.  The terms in-phase and out-of-phase are used in reference to the 

synchronization of the pelvis and thorax during LPR.  In regards to DP, a value closer to 0 

shows an LPR with less trial-to-trial variability giving a motion pattern with greater 

stability [35]. 

Figure 3.2: Pelvis and Thorax Rotation – Display of MATLAB output for angles of thorax 
and pelvis rotation during flexion and extension range of motion test.  The maximum 

rotation during each bending movement is found as the average of each peak bending 
average. 

3.5: Statistical Analysis 

A repeated measures study design was conducted to investigate potential 

changes in LPR of patients following lumbar spinal fusion surgery.  A paired samples t-

test was conducted between pre-fusion and post-fusion patients.  However, it should be 

noted that the pre-fusion and post-fusion patients are not equal, as some patients were 

not able to complete post-operation evaluation due to various circumstances.  To 

further compare LPR of spinal fusion patients before and after surgery with other 

populations, analysis of variance (ANOVA) tests were conducted between pre-fusion, 

back-healthy individuals and acute LBP patients, as well as post-fusion, back-healthy 

individuals and acute LBP patients.  Statistical analysis was conducted using SPSS (IBM 

SPSS 
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Statistics 23, Armonk, NY, USA) and in all cases a p value smaller than 0.05 was 

considered to be statistically significant.  
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Chapter 4: Results  

4.1: Pre vs. Post Spinal Fusion Surgery 

The ranges of pelvic, thoracic and lumbar rotation/flexion obtained from forward 

bending and backward return for spinal fusion patients pre-surgery were respectively 

17.69° smaller, 2.19° larger and 19.85° larger than post-surgery.  The MARP and DP 

values were smaller throughout the entire movement for patients post-surgery. More 

detailed analysis of the timing and magnitude values are summarized in Tables 4.1, 4.2, 

4.3, 4.4 and 4.5. 

4.2: Pre-Spinal Fusion Surgery vs. Acute LBP Patients 

The ranges of pelvic, thoracic and lumbar rotation/flexion obtained from forward 

bending and backward return for age and gender matched acute LBP patients were 

respectively: 14.81° smaller, 7.89° smaller and 7.11° larger than spinal fusion patients 

pre-surgery. The MARP and DP values were smaller throughout the entire movement for 

patients pre-surgery. 

4.3: Post-Spinal Fusion Surgery vs. Back-Healthy Individuals 

The ranges of pelvic, thoracic and lumbar rotation/flexion obtained from forward 

bending and backward return for back-healthy individuals were respectively: 38.3° 

smaller, 11.8° smaller and 26.6° larger than spinal fusion patients post-surgery.  The 

MARP value was smaller during the lowering portion of the movement and higher 

during the lifting movement post-surgery.  The DP values were smaller throughout the 

entire movement for patients post-surgery.   

4.4: Statistical Analysis 

After conducting a paired samples t-test to analyze the changes in LPR 

magnitude and timing aspects, results show no statistical significance in differences pre 

vs. post-surgery at the 95% confidence level.  In regards to the ANOVA tests, no values 

of statistical significance were found in the results for range of motion or continuous 

relative phase.  It should be noted that based on the small sample size and 

insignificance, it is extremely difficult to generalize these findings.
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Table 4.1: Mean (SD) of thoracic, pelvic and lumbar range of motion/flexion for pre-

surgery patients, post-surgery patients, acute LBP patients, and back-healthy 

individuals 

Thoracic 

Rotation 

Lumbar 

Flexion 
Pelvic Rotation 

Pre-Surgery 95.2° 35.9° 59.3° 

Post-Surgery 93.1° 16° 76.9° 

Acute LBP Patients 87.4° 43° 44.4° 

Back-Healthy Individuals 81.3° 42.6° 38.6° 

Table 4.2: Percentage contributions of motion/flexion for pre-surgery patients, post-

surgery patients, acute LBP patients, and back-healthy individuals 

Lumbar 

Contribution 
Pelvic Contribution 

Pre-Surgery 38% 62% 

Post-Surgery 17.40% 82.60% 

Acute LBP Patients 49.20% 50.80% 

Back-Healthy Individuals 52.40% 47.60% 
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Table 4.3: Timing results of Flexion/Extension Exercise for pre-surgery patients, post-

surgery patients, acute LBP patients, and back-healthy individuals  

MARP Forward 

Bending 

DP Forward 

Bending 

MARP Backward 

Return 

DP Backward 

Return 

Pre-Surgery 0.0762 0.0747 0.1466 0.0432 

Post-Surgery 0.0602 0.0657 0.1056 0.0281 

Acute LBP Patients 0.1903 0.0786 0.1835 0.0549 

Back-Healthy 

Individuals 
0.2011 0.0628 0.1175 0.0475 

Table 4.4: Summary of Statistics Results for Range of Motion. ANOVA: analysis of 

variance.  

Magnitude of LPR 

ANOVA Results Pelvic Rotation Thoracic 

Rotation 

Lumbar Flexion 

F p F p F p 

Pre-Fusion (Group) 3.367 0.087 4.073 0.060 0.565 0.590 

Post-Fusion (Group) 2.129 0.235 1.481 0.330 2.168 0.230 

Table 4.5: Summary of Statistics Results for Timing. ANOVA: analysis of variance. 
MARP: mean absolute relative phase. DP: deviation phase.  

Timing of LPR 
ANOVA Results MARP 

Lowering 
DP Lowering MARP Lifting DP Lifting 

F p F p F p F p 
Pre-Fusion (Group) 1.679 0.246 0.44 0.657 1.07 0.388 0.40 0.683 
Post-Fusion (Group) 5.67 0.068 1.159 0.401 5.047 0.081 1.025 0..437 
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Chapter 5: Discussion 

5.1: Flexion/Extension Test: 

5.1.1: Pre vs. Post Spinal Fusion 

The main objective of this study was to investigate changes in magnitude and 

timing aspects of LPR between spinal fusion patients before and after surgery during 

forward bending and backward return.  Patients showed to utilize more pelvic rotation 

and less thoracic and lumbar rotation after surgery. LPR was more in-phase (i.e., shown 

by smaller MARP values) and less variable (i.e., shown by smaller DP values) post-

surgery as well.  Further, the total lumbar contribution (LC) (i.e., total lumbar 

rotation/extension ÷ total thoracic rotation) shown for patients pre-surgery (0.38) was 

greater than the LC for patients post-surgery (0.17).  These findings ultimately 

confirmed our initial hypothesis.  The alterations observed in LPR after surgery may be a 

result of changes in the lumbar spine structure as a result of fusing.  Another thought as 

to why such changes occurred is that new neuromuscular adaptations were utilized in 

response to changes in the lumbar spine structure.   

To the best of our knowledge, few similar studies (Nguyen et al, 2015), 

(O’Shaughnessy et al, 2013) have been reported in relation to LPR alterations due to 

spinal fixation surgery.  However, the findings from these results were able to be 

compared with previous kinematic data that was extracted from 1) a study that looked 

into timing and magnitude of LPR in patients with acute LBP, and 2) a study that looked 

into age-related differences of timing and magnitude of LPR in our lab and reported in 

previous publications [40]. 

5.1.2: Pre-Spinal Fusion Surgery vs. Acute LBP Patients 

A secondary objective of the study was to investigate changes in magnitude and 

timing aspects of LPR between the spinal fusion patients before surgery and acute LBP 

patients.  Upon analyzing it was shown that spinal fusion patients pre-surgery utilize 

more pelvic and thoracic rotation and less lumbar rotation during forward bending and 

backward return than the acute LBP patients.  Further, the LPR was more in-phase and 
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less variable throughout for the spinal fusion patients.  The total LC for spinal fusion 

patients (0.38) was less than the LC for acute LBP patients (0.49).  This finding for total 

lumbar contribution confirmed our initial hypothesis. 

The clinical significance of the kinematic results of pre-fusion patients when 

compared to acute LBP patients is something to look into. A smaller lumbar 

flexion/rotation reduces the passive contribution of lower back tissues in order to offset 

the task demand on the lower back.  This LC alteration has been suggested to prevent 

painful deformation in the posterior elements of the spine [35].  Moreover, a more in-

phase and less variable LPR (i.e. phase-locked coordination) is suggested to be a 

protective motor control strategy that reduces the likelihood of pain during dynamic 

tasks caused by spinal tissues. The biomechanical consequence of using such phase-

locked coordination, however, is increased trunk muscle activation and co-activation 

which can cause increased spinal loads and muscle fatigue [35]. Patients who are going 

to receive spinal fusion procedure are often considered to have chronic LBP, whereas 

acute LBP patients can have pain that has lasted for a much shorter time span (i.e., 

acute LBP).  The longer time span that a chronic LBP patient lives with discomfort gives 

greater chance for alterations in biomechanics such as phase-locked coordination to try 

and alleviate pain.   

5.1.3: Post-Spinal Fusion Surgery vs. Back-Healthy Individuals 

The final objective of the study was to investigate changes in magnitude and 

timing aspects of LPR between spinal fusion patients after surgery and back-healthy 

individuals.  The spinal fusion patients post-surgery were shown to use more pelvic and 

thoracic rotation and less lumbar rotation than back-healthy individuals during forward 

bending and backward return.  The total lumbar contribution (LC) for the patients post-

surgery (0.17) was less than the LC for the back-healthy individuals (0.52).  This objective 

of the study was left exploratory, and furthermore, a note-worthy component of 

discussion was found in the timing component of LPR of fusion patients post-surgery 

when compared with back-healthy individuals.  The fusion patients were more in-phase 
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(MARP Lowering = 0.06019) during the lowering portion of the movement and then less 

in-phase (MARP Lifting = 0.1056) during the backward return portion of the movement 

than back-healthy individuals (MARP Lowering = 0.2010, MARP Lifting = 0.1174). 

Further, the patients post-surgery displayed a less variable LPR during the entire portion 

of the movement.   

Better understanding changes in LPR during flexion/extension in individuals with 

LBP and back-healthy individuals can help provide insight.  The differences in timing and 

magnitude when comparing post-fusion patients and back-healthy individuals are of 

clinical importance.  Noting that a fusion patient post-surgery is overcompensating with 

pelvic and thoracic rotation and actually utilizing minimal lumbar rotation, this 

biomechanical alteration due to vertebral fusion can very well result in both short and 

long-term consequences ranging from stiffness to adjacent segment disease if even 

simple ADLs are not restrained and/or at the very least re-introduced with careful 

practice of proper mechanics. 

5.2: Limitations 

Limitations presented throughout the study should be considered when 

examining results.  Firstly, the study utilized a small sample size (n = 5).  Furthermore, all 

patients within the sample size underwent single level fusion surgery. Also, due to 

constraints from patients before undergoing surgery, limitations in ADL exercises were 

found in many cases. While flexion/extension test was found to provide great 

information, other exercises (i.e., Appendix A) could have given insight to more frequent 

ADLs.  Finally, due to the feasibility of the study, we did not collect some important data 

such as pain level, potential musculoskeletal abnormalities, fear of movement due to 

LBP, and other various intrinsic patient factors. 

In conclusion, it is well understood that fixation of the spine causes structural 

changes and alters mechanical loading, however, it has been less known what effect this 

fixation has on LPR measures of magnitude and timing.  The large population of LBP 

patients who are affected by degenerative disc disease and seek spinal fusion procedure 
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to alleviate pain deal with both changes in magnitude and timing components of LPR 

that are likely to have adverse biomechanical consequences on spinal health. Adjacent 

segment disorder is a major negative outcome of spinal fusion surgery.  Quantitative 

data on how LPR is affected after vertebral fixation can provide insight into how altering 

one’s mechanics (i.e., rehabilitation techniques) may help prevent such future damage.   
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Chapter 6: Future Work 

6.1: Future Work 

Gaining base insight on the effect of spinal fixation on LPR magnitude and timing 

components is pivotal to the improvement of both patient’s biomechanics as well as 

outcome of LBP satisfaction after surgery.  The results provided within this pilot study 

can be used to potentially guide rehabilitation post-surgery to account for surgery 

related alterations in magnitude and timing components of LPR.  With this being said, 

future studies are vital in order to gain a more well-rounded understanding on how 

these LPR components are altered upon spinal fixation.  

Any future studies conducted revolving around this study should address the 

following: 1) sample size, 2) obtainment of more ADL movements 3) analyzation of the 

specific population to other LBP and healthy control groups 4) surveys that measure 

psychological factors that may come into play 5) similar studies dealing with other spine 

segments.  Firstly, while the sample size of 5 patients was suitable to test the feasibility 

of  this study, small alterations between participants can create very large alterations 

when a small sample size is utilized.  Secondly, while the flexion/extension exercise 

captures the LPR components of magnitude and timing in all regards, obtainment of 

other exercises such as but not limited to the ones listed in Appendix A could very well 

provide new insight and/or help lessen the alteration gap in participants discussed 

earlier.  Addressing this issue admittedly may be a challenge as spinal fusion patients 

can very often be limited in both duration and quantity of tasks that can be performed 

in a comfortable manner.  Thirdly, while this study went on to analyze both spinal fusion 

patients before surgery compared to acute LBP patients and fusion patients after 

surgery compared to back-healthy individuals, there are various other populations that 

can be looked into. The benefits of doing such analysis can provide both further clinical 

and biomechanical significance such as what has been suggested in the current study.  

Fourth, we did not control for the effects of level of pain, history or presence of other 

musculoskeletal disorders, and psychosocial factors. These factors can affect LPR and 

should be considered in future studies.  For example, it was discussed earlier that if a 
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patient understands that overcompensating with their pelvis while dealing with 

degenerative disc disease may help relieve pain, the repetitive movement may be 

remembered and utilized even after surgery when pain has been affectively relieved.  

This neuromuscular adaptation could potentially result in altered mechanical loading 

and create new damage of the lumbar spine.  Future studies in regards to 

introducing/re-training correct neuromuscular pattern could be a very important line of 

research.  Psychological surveys that focus and pin-point these types of concerns may be 

able to help assist when coupled with the results given in the study.  Finally, another 

area for future work can revolve around similar studies of LPR measures for spinal 

fixation of the thoracic or even cervical spine.  While the lumbar spine is well known to 

take majority of load baring and damage, insight on other segments of the spine could 

only provide a better overall understanding of spinal fixation to help guide 

rehabilitation. 
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Appendix A: Depuy Synthes EXPEDIUM 5.5 Surgical Techniques Catalogue 

Appendices 
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Appendix B: Summary of All ADL Exercises 

The following ADLs listed below have been listed in the Appendix of the study 

because not all patients were able to complete the exercises before surgery for various 

reasons such as potential discomfort and lack of time.  With this being said, all exercises 

can potentially provide important information clinically and kinematic data was 

retrieved from a portion of the patients.  

Sit-To-Stand and Stand-To-Sit Test 

An adjustable chair with no back and hand rest was used for the sit-to-stand and 

stand-to-sit test.  Before data collection began, the stool was adjusted so that the 

patient’s legs were roughly 90 degrees aligned with the seat and floor.  The patient was 

then instructed to stand in an upright position in sitting distance from the chair with 

hands on hips for five seconds.  The patient was then instructed to sit down on the chair 

while keeping hands on hips from the upright posture and hold the sitting position for 

five seconds before returning slowly back to the upright position with hands on hips.  

This sequence was repeated another two times during the test.   

Figure A.1: Sit-To-Stand and Stand-To-Sit ADL Exercise 
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Symmetric and Asymmetric Manual Material Handling Tests 

A designated 4.5 kg load and adjustable chair were used for the manual material 

handling tests. For the symmetric material handling test, the participant was asked to 

start standing in an upright position similar to the previous exercises, but also was 

within a specified distance of the adjustable chair which was adjusted to the 

participant’s knee height.  The person instructing the participant also held the 4.5 kg 

load at the start of the test.  Once instructed, the participant was to stand in the upright 

position for five seconds, then take the 4.5 kg load from the person instructing at 

shoulder level and carefully flex down to place the load on the chair, pick it back up and 

return to upwards posture.  This task was completed once per session. 

Figure A.2: Symmetric Manual Material Handling ADL Exercise 

For the asymmetric material handling test, the participant was asked to stand in 

the same beginning upright posture with the chair adjusted in the same position.  After 

five seconds, the participant was to carefully twist to their left to take the load from the 

person giving instructions at shoulder level, twist to the center to place the load on the 

chair, pick the load back up while carefully twisting to their right and handing the load 

back to the instructor at shoulder level. This task was completed once per session. 
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Figure A.3: Asymmetric Manual Material Handling ADL Exercise 

Stair Climbing 

For the stair climbing test, the participant was brought to the designated 

stairwell and asked to stand in a relaxed but upright position at the bottom of the 

stairwell until given the signal to start climbing.  The participant was instructed to climb 

until reaching the top of the stairwell and stop until given signal to relax.  Once 

completed, the participant was then to complete the exercise climbing down the stairs.  

Once again, the participant was instructed to stand in an upright but relaxed posture 

until given signal to start climbing down.  Once making it to the bottom of the stairwell, 

the participant was instructed to stop until given signal to relax.  This was done to 

ensure accuracy of the data.   
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Figure A.4: Stair Climbing ADL Exercise 

Walking 

For the walking test, the participant was brought to the designated hallway and 

asked to stand in a relaxed but upright position at the beginning of the hallway.  The 

participant was instructed to walk at a normal and comfortable pace until reaching the 

end of the hallway and stop until given the signal to relax.  

Upon completion of the ADL tests, the accelerometers and straps were removed 

from the participant.   
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Appendix C: Institutional Review Board Forms 
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