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ABSTRACT OF DISSERTATION 

 

 

CARBON QUANTUM DOTS: BRIDGING THE GAP BETWEEN CHEMICAL 

STRUCTURE AND MATERIAL PROPERTIES 

Carbon quantum dots (CQDs) are the latest generation of carbon nanomaterials in 

applications where fullerenes, carbon nanotubes, and graphene are abundantly used. With 

several attractive properties such as tunable optical property, edge-functionalization, and 

defect-rich chemical structure, CQDs have the potential to revolutionize optoelectronics, 

electro- and photocatalysis, and biomedical applications. Chemical modifications through 

the addition of heteroatoms, chemical reduction, and surface passivation are found to alter 

the band gap, spectral position, and emission pathways of CQDs. Despite extensive studies, 

fundamental understanding of structure-property relationship remains unclear due to the 

inhomogeneity in chemical structure and a complex emission mechanism for CQDs.  

This dissertation outlines a series of works that investigate the structure-property 

relationship of CQDs and its impact in a variety of applications.  First, this relationship 

was explored by modifying specific chemical functionalities of CQDs and relating them to 

differences observed in optical, catalytic, and pharmacological performance. While a 

number of scientific articles reported that top-down or bottom-up synthesized CQDs 

yielded similar properties, the results herein present dissimilar chemical structures as well 

as photoluminescent and metal sensing properties. Second, the role of nitrogen heteroatoms 

in top-down synthesized CQD was studied. The effect of nitrogen atoms on spectral 

position and fluorescence quantum yield was considerably studied in past reports; however, 

thorough investigation to differentiate various nitrogen related chemical states was rarely 

reported. By finely tuning both the quantity of nitrogen doping and the distribution of 

nitrogen-related chemical states, we found that primary amine and pyridine induce a red-

shift in emission while pyrrolic and graphitic nitrogen produced a blue-shift in emission. 

The investigation of nitrogen chemical states was extended to bottom-up synthesized 

CQDs with similar results. Finally, top-down, bottom-up, nitrogen-doped and chemically 



 

reduced CQDs were separately tested for their ability to act as photodynamic anti-cancer 

agents. This series of experiments uncovered the distribution of reactive oxygen species 

produced during light exposure which elucidated the photodynamic mechanisms of cancer 

cytotoxicity. The results presented in this dissertation provide key insight into engineering 

finely-tailored CQDs as the ideal nanomaterial for a broad range of applications. 

KEYWORDS: Materials Chemistry, Carbon Nanomaterials, Structure-Property 

Relationship, Optoelectronics, Electrocatalysis, Biophotonics 
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Chapter One: Carbon Nanomaterials, Carbon Quantum Dot Basics and Potential 

Applications 

Carbon nanomaterials have been found to have great potential in applications such 

as optoelectronics, bioimaging and catalysis due to their ease of functionalization and 

inexpensive synthesis. However, chemical modifications often induce undesirable 

effects such as poor aqueous solubility and hinder the same potential in various 

applications. A new kind of carbon nanomaterial, termed carbon quantum dots or 

CQDs, has shown even greater potential in these applications with inherently high 

aqueous solubility, photoluminescent quantum yield and size-dependent fluorescence. 

These properties are retained or even enhanced upon chemical modification which 

elevates CQDs above many carbon nanomaterials.  

As nanoscale material properties are largely driven by quantum mechanical effects, 

this chapter will first briefly summarize the differences between bulk and nanoscale 

properties such as electronic structure and the resulting photophysical properties. A 

summary of the most notable carbon nanomaterials will follow with specific detail on 

graphene and graphene oxide as initial observations of CQD properties were often 

compared to these systems. Additionally, the specific properties of CQDs will be 

detailed along with their advantages over other carbon nanomaterials. In the last section 

of this chapter, a detailed explanation of how CQDs can be used as viable alternatives 

to current materials in optoelectronics, bioimaging, photodynamic therapy and 

catalysis will be discussed. 

1.1 Summary of Carbon Nanomaterials 

1.1.1 Differences Between Bulk Materials and Nanoscale Materials 

Graphite and graphene are clear examples of how substantial differences between 

properties can arise as a material from the bulk phase approaches the nanoscale phase. 

Graphite is typically used in pencil lead and lubricants for its ability to easily slip along 

electrostatically bound planes. Graphene, on the other hand, has been shown to be an 

electrically superconducting solid that has sparked a meteoric rise in organic 

electronics. In the bulk phase, gold is a non-tarnishing, chemically inert, high melting 
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point metal. These properties allow for uses of gold that include currency, jewelry, 

electronics, and orthodontic bridges.  Nanoparticles of gold (less than 10 nm) however, 

are very reactive, have a much lower melting point and become magnetic. This 

enhanced reactivity allows for gold nanoparticles to be used as catalysts.1 Historically, 

colored glass has been made from gold nanoparticles as they appear red through the 

absorption of green light. 

Overall, there are two main features that influence these changes from the bulk to 

the nanoscale. The first of these is related to surface chemistry changes in the 

nanoparticle. For rounded solids like spherical particles, atomic locations can lie on the 

surface or in the particle (interior to the surface). For polyhedral geometries, atoms can 

lie on the face, along the edge, on the corners of the structure, or interior to the surface. 

In either case, each of these locations is connected to neighboring atoms with a different 

degree of coordination, also known as the coordination number. A higher coordination 

number is directly related to the stability of the atom in that location. For the example 

above, coordination number are ranked from highest to lowest as follows: interior, 

surface/face, edge, and corners. By correlating stabilization energies of these 

differently-coordinated atoms, it can be said that those atoms with low coordination 

numbers will be the most reactive towards adsorbates, giving rise to catalytic activity. 

However these edge and corner sites may irreversibly bind to adsorbates due to a lack 

of inherent stability.1-2 This irreversible binding inhibits catalytic activity and is 

commonly referred to catalytic poisoning. As the particle size decreases, more atoms 

take the role of edge and corner sites and thus are poisoned more quickly than larger 

particles.  

As the surface chemistry is inherent to the chemical nature of the nanoparticle, the 

energy bandgap is inherent to the electronic nature of the nanoparticle. The electronic 

structure of a nanoparticle is a purely quantum mechanical property, therefore it is 

imperative to describe the electronic structure of bulk materials, nanomaterials and 

molecules. Returning to the previous discussion, the second feature that gives 

nanomaterials unique properties compared to their bulk phases is related to the band 

gap between the valence band and the conduction band. The overall concept is that as 
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materials shrink in size from the bulk phase to the nanoscale to atomic and molecular 

dimensions, their density of states changes from a band structure to discreet energy 

levels as seen in Figure 1.1 below.3  

 

Figure 1.1: Electronic structure of bulk conductor, semiconductor, and insulator 

materials (top panel) and semiconductor nanoparticles (bottom panel). Reproduced 

from Ref. 21 with permission from The Royal Society of Chemistry.   

When this energy difference exceeds that of thermal energy, the material has 

electronic structure similar to a molecule as opposed to the band structure seen in solids. 

This phenomenon is better known as the quantum confinement effect (QCE), or the 

quantum size effect, and is attributed to how nanoscale materials exhibit different 

properties than in the bulk phase.  In bulk semiconducting materials, upon absorption 

of energy an electron in the valence band is promoted to the conduction band and a 

hole is left behind; this electron-hole pair is called an exciton. In bulk systems, both the 

electron and hole can freely move with little energy loss due to the periodicity of the 

material. Often the physical separation between the electron and hole is on the order of 

a few nanometers and is referred as the Bohr exciton radius, as it follows a hydrogen-

like (one electron) wavefunction. If the absorbed energy is low, the electron and hole 

are electrostatically bound to one another and can recombine easily with nearly no 

energy emitted. QCE is observed when the size of a material approaches the Bohr 

exciton radius. Some reports have shown that this effect can occur in particles with 
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diameters as large as 50 nm but in the case of most inorganic quantum dots, this size is 

often between 2 and 10 nm.4 As the size of the particle decreases to molecular or atomic 

sizes, the exciton is further confined and the energy band gap structure becomes 

identical to a molecular electronic structure. Figure 1.2 depicts the quantum 

confinement effect as a function of the size of a quantum dot. 

 

Figure 1.2: i) As the size of the nanoparticle decreases, the exciton (electron-hole pair) 

becomes spatially confined. ii) As a consequence of the quantum confinement effect, 

recombination energy becomes larger as the exciton is further confined. 

The carbon quantum dots discussed in this thesis are unlike inorganic nanoparticles 

in that they are large enough to exhibit QCE but there are also separate fluorophores 

that act as molecular states. In essence, the electronic structure is a kind of blend of the 

energy band gap theory in bulk semiconductors and the fine electronic structure of 

molecules. Despite this blending, we can describe the electronic structure of carbon 

quantum dots using a modified Jablonski diagram as shown below in Figure 1.3. 
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Figure 1.3: A modified Jablonski diagram to illustrate the electronic structure of 

carbon quantum dots (CQDs). 

This figure is divided into four parts corresponding to the events upon the 

absorption of a photon. Part i is a depiction of the quantum confinement effect (QCE). 

Smaller CQDs have a larger bandgap between the ground state, S0 and the excited state, 

S1, than larger CQDs. Upon excitation, non-radiative processes remove energy from 

the excited state and the emitted photon has less energy than the initial excitation 

energy. This is referred to as the Stokes shift and results in red-shifted emission 

compared to the excitation. Part ii illustrates the role of the defect state fluorophore 

which may be functional groups or heteroatom dopants. Upon excitation, non-radiative 

processes occur which transfer energy to the defect state fluorophore with some amount 

of energy loss. Once there, the emitted photon from the defect state fluorophore is 

substantially red-shifted compared to the excitation energy. Part iii shows the effect of 

defects that are themselves non-radiative. These often take the form of “dark states” 

which trap the excited state energy and dissipate it non-radiatively through solvent 

effects or vibrational relaxation. Part iv depicts vibrational relaxation in the excited 

state, a very common non-radiative process. As energy is quantized, excitation may 

bypass the lowest excited state, S1 and excite a higher vibrational state of the excited 

electronic state, such as S1, ν1. In the figure, it is shown that the excess excited state 

energy is shed to the lowest excited state through vibrational relaxation. Kasha’s rule 

states that efficient emission of photons must occur from the lowest excited state 

despite receiving excitation energy that exceeds that of the lowest excited state. In other 
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words, efficient photon emission from S1 is largely excitation-independent with greater 

energy than the S0-S1 band gap. 

By utilizing the chemical structure and electronic structure, there is great potential 

to use carbon quantum dots as optoelectronic, photovoltaic and photodynamic 

nanomaterials. The next sections of this chapter will discuss the development of carbon 

nanomaterials from the largest sizes to the smallest dimensions, finally with carbon 

quantum dots themselves. In these sections, it is discussed in detail the similarities and 

differences various carbon nanomaterials have with one another. In addition, 

information on structural and functional characteristics are described for each of these 

systems. After that, the relevant need for carbon nanomaterial research is discussed as 

well as how carbon quantum dots contribute to various applications and settings. 

1.1.2 Bulk Carbons 

Scientific interest in carbon nanomaterials has evolved from the desire to make 

alternatively sourced materials that compete with current technology made with rarer 

inorganic materials such as cadmium or platinum. These alternative sources can exist 

in many forms with a range of complexities but bulk carbons are often the starting 

material for producing carbon nanomaterials. Coal, for example, is carbonized plant 

matter that is found in underground deposits and widely used as fuel for energy 

production. As there is no repeating chemical structure, it is difficult to characterize 

coal as anything other than a bulk material. Nevertheless, there is a rich variety of 

elements which commonly include carbon, hydrogen, nitrogen, oxygen, and sulfur. 

Other rare elements can be found in coal but usually the quantity is low and depends 

on the geographic region. The main group elements form a myriad of functional groups 

such as thiols, azides, lactones, ethers, benzene rings, and other unique functionalities 

as identified by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform 

Infrared Spectroscopy (FTIR).5-8 A less complex form of bulk carbon is acetylene black 

(or carbon black) made from processes such as the thermal decomposition of acetylene 

gas. This kind of bulk carbon has less atomic impurities than coal. This reduces the 

overall variety of functional groups to fused benzene rings, cycloalkanes/cycloalkenes, 

and alkyl chains.9 It is important to note that there is no regular structure to acetylene 
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black and as such, it is also known as non-graphitic carbon. Heating non-graphitic 

carbon to very high temperatures (above 1500 °C) can convert some of this carbon to 

graphitic carbon, depending on local structure. However, some nongraphitic carbon 

cannot be converted even with temperatures above 3000 °C.10 

The bulk carbon material with the least complexity is graphite which consists of 

stacked sheets of one-atom thick crystalline carbon (later known as graphene). A simple 

structure for graphite is shown below in Figure 1.3.11 This figure illustrates the stacking 

effect between sheets which are weakly bound together by van der Waals forces and 

overlapping pz orbitals that form π-bonding orbitals perpendicular to the plane 

containing carbon atoms, also referred as the basal plane. The structure of graphite 

provides unique properties compared to other allotropes of carbon. For example, 

graphite is an excellent conductor of heat and electricity compared to diamond along 

the basal plane. The stacking axis however is much less electrically conductive due to 

the large distance between planes (0.335 nm)12 compared to the proximity of 

neighboring carbon atoms on each plane (0.142 nm).13 The stacked arrangement of 

sheets also allows them to “slide” along each other under applied mechanical force. 

This reduced friction makes graphite useful for pencils and lubricants as the 

crystallographic sheets are easily moved by slip forces. 

 

Figure 1.4: The crystal structure of graphite. The picture shows two planes of crystalline 

carbon in a stacked configuration. Reproduced with permission from ref. 13. 



8 

 

1.1.3 Graphene and Graphene Oxide 

In 2004, Andre Geim and Konstantin Novoselov mechanically exfoliated pyrolytic 

graphite until all that remained was a single-atom thick film of carbon, termed 

graphene, with some films containing up to three stacked graphenes. In terms of 

material quality, it was found that these single-layer films could be isolated to crystals 

about 10 µm in size with few defects. Multi-layer graphene films with thickness d  ≥ 3 

nm (more than 10 layers) could be as large as 100 µm in size. Both single- and multi-

layer films were analyzed for their electronic properties which found some 

unprecedented results. First, graphene films were measured using field-effect and 

magnetoresistance measurements to extract the carrier mobility, µ. This defined as a 

measurement of how quickly an electron (µe) or hole (µh) can move through a metal or 

semiconductor. Typically, room temperature organic semiconductor crystals have µe = 

0.1 – 20 cm2/V•s under the best conditions.14 Inorganic semiconductors, on the other 

hand, have µ values many orders of magnitude higher such as Si with µe = 1350 

cm2/V•s and µh = 480 cm2/V•s.15 Surprisingly, it was found that graphene boasts a µe 

between 3000 and 10000 cm2/V•s, depending on the quality of sample.16 Since then, 

graphene µe measurements have improved and the highest electron mobility recorded 

is over 200000 cm2/V•s.17 Since the discovery of graphene, the field of organic 

electronics has experienced a renaissance of new research in both theoretical and 

experimental sciences.  

As the focus of this thesis is about carbon quantum dots, it is important to 

understand the evolution of carbon-based nanomaterials both for their fundamental 

properties and useful applications. As graphene was making its mark in the scientific 

community, some researchers chose to explore systems of graphene that include 

oxygen heteroatoms in their structure. This oxidized form of graphene, termed 

graphene oxide, has provided new opportunities to use graphene-like materials in ways 

not previously allowable by the all-carbon chemical structure of graphene.  

Graphene oxide (GO) is synthesized by either the Brodie, Staudenmaier, or 

Hummers method; all of which begin with harshly oxidizing graphite with strong acids 

and intercalating agents. Of course, there are more methods to synthesize graphene 
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oxide, but most of these are variations of the above. Regardless of the synthetic method, 

the produced graphene oxide is essentially graphene with additional oxygen-containing 

functional groups such as hydroxyls, carbonyls, and carboxylic acids. Additionally, 

there may be “defects” such as oxygen atoms that bridge across neighboring aromatic 

regions like ethers or along the same aromatic ring as in an epoxide. In essence, GO 

can be seen as a defect-ridden version of graphene compared to the nearly defect-free 

graphene sheets produced by mechanical exfoliation. Though graphene oxide can be 

produced in sheets as large as micrometers in diameter; the ether and epoxide defects 

can be targets for oxidative cleavage which fragment the GO into smaller pieces on the 

order of tens to hundreds of nanometers.  

The added oxygen-containing functional groups also prevent the stacking behavior 

seen in multi-layer graphene and graphite. In aqueous media, the hydrogen bonding 

interaction is between the functional groups on GO and water, allowing for excellent 

aqueous dispersability and reduced aggregation. In non-polar solvents, a sort of 

clustering occurs as hydrogen bonding will be limited to the functional groups on other 

GO particles. Aqueous solubility allows for use in many more industrial applications 

than graphene as environmental and health hazards are eliminated by not using organic 

solvents for processing and purification. In addition, solubility in aqueous systems 

provides a means to use GO in biological and pharmacological applications.18-20 It is 

important to note that these oxygen-containing functional groups can be changed to 

finely tune specific properties such as solubility, fluorescence, and metal sensing.21 For 

example, when GO is reduced by either a chemical,22 thermal,23 or electrochemical 

method,24 the oxygen-containing defects are converted to less oxidized functional 

groups. Using longer reduction times or more potent reducing agents can cause full 

reduction of the functional group to hydrogen. In concert with the removal of functional 

groups, the photoluminescent properties (e.g.: absorbed or emitted light) of GO are 

shifted to shorter wavelengths. This can be done by shrinking the π-conjugation in 

accordance with the quantum confinement effect, or by removing so-called “dark 

states” which are non-radiative defects. Both of these concepts will be discussed in 

further detail later in this chapter. 
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1.1.4 Carbon Nanotubes: One-Dimensional Nanomaterials 

Another unique conformation of sp2-hybridized carbon is the carbon nanotube, 

abbreviated CNT, which is essentially rolled-up graphene sheets. The main 

classifications of CNT are single-walled carbon nanotubes (SWNTs) and multi-walled 

carbon nanotubes (MWNTs) which are concentrically layered carbon nanotubes. Since 

first observed by Iijima in 1991,25 CNTs have displayed several interesting properties 

that can be applied to a variety of potential uses. The cylindrical shape of carbon 

nanotubes whose atoms are covalently bound provides unusually high material strength 

— particularly against compression and tension. Interestingly, CNTs with very high 

ratios of the length of the CNT to its diameter, termed aspect ratio, are much softer and 

pliable along the main axis considering the rigidity of the tube towards compression 

and tension. As shown below in Figure 1.4,26 carbon nanotubes can have a few different 

atomic arrangements within the cylindrical structure: armchair, zigzag, and chiral.27-28 

All of these conformations of CNTs have excellent thermal conductivity along the 

length of the tube (transverse axis). In addition, chiral CNTs show unique electronic 

properties much like graphene.27 Overall, the thermal and electrical properties of CNTs 

have since been heavily researched for the purposes of electronics and microelectronics 

while the mechanical properties and functionalization of CNT edge have largely been 

exploited for use in membrane technology,29-30 pharmacological research,31-34 and for 

structural support of nanocomposites.35 Though CNTs have the potential to be used in 

these applications, the challenge is producing uniform CNTs of high yield and low cost.  
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 This challenge originates from the insufficient understanding of the growth 

mechanism of CNTs. In simple terms, CNT growth can be described by the vapor-

solid-solid method (VSS) which is similar to the vapor-liquid-solid method that models 

the growth mechanism for many other nanomaterials.36 Briefly, the VSS model 

illustrates that nanotube growth is initiated by a metal catalyst which absorbs carbon 

vapors, diffuses the carbon vapors into the surface of the metal catalyst (forming a solid 

solution) and finally deposits the carbon to the substrate as more vapors are absorbed. 

Interestingly, Hoffman et al.37 and Puretzky et al.38 observed with in situ high-

resolution TEM that the metal catalyst can grow carbon nanotubes in two different 

ways based on a series of parameters. In Figure 1.5 below,39 the CNTs are grown as 

deposited carbon pushes up the metal catalyst from the substrate or CNTs are grown 

on top of the metal catalyst as the metal-substrate interface is fixed. 

Figure 1.5: The 2D graphene sheet diagram showing a vector structure classification used 

to define CNT structure. Reproduced from ref. 36.  
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Figure 1.6: Popular models of carbon nanotube growth mechanism (sources: Hofmann et 

al. (left) and Puretzky et al. (right)). Reproduced with permission from ref. 49.  

Overall, the growth mechanism has been difficult to elucidate due to the varied 

nature of each synthetic method. In short, there are three approaches in which CNTs 

are grown. The first of which takes large bulk carbons and atomizes them in a vacuum 

chamber. The atoms are then recombined upon cooling to form CNTs downstream of 

the atomization source. This breakdown of large carbons will be frequently addressed 

as the “top-down” approach. Common methods for this approach are an arc-discharge 

between graphite electrodes40-41 and a laser ablation of graphite rods.42-43 These 

techniques can produce large quantities of either SWNTs or MWCNTs (depending on 

specific parameters) but with a large distribution of sizes and a low purity. The second 

of these approaches takes small organic precursors and builds them up into the desired 

product, also known as the “bottom-up approach”.  This approach usually follows a 

scheme in which a mixture of hydrocarbon gas and an inert carrier gas is first pumped 

into a chamber. From here, popular methods for this kind of synthesis deviate greatly 

such as thermal chemical vapor deposition (CVD) in which a tube furnace is used to 

initiate CNT growth;38 or microwave-assisted CVD in which microwave energy is used 

to generate a highly-reactive plasma.44-45 Many variations on the bottom-up approach 

can be employed such as using larger liquid-phase hydrocarbons46 through a bubbler 

system instead of gases, using a resistive material as the heat source to initiate reaction 

also known as the hot filament CVD method,47 or ultra-high vacuum (P < 10-6 Pa) to 

encourage rapid cooling from the heat source to the substrate for defect-free material 



13 

 

growth.48 Overall, the bottom-up approach gives low to average yields, medium to high 

purity, and a narrower distribution of sizes compared to the top-down approach.  

In the next chapter of this thesis, we explore the top-down versus bottom-up 

approach to synthesizing carbon quantum dots (CQDs). Surprisingly, CQDs are unlike 

carbon nanotubes in that different synthetic approaches do not yield similar materials. 

In fact, both of these synthetic approaches instead yield similarly-sized carbon quantum 

dots with greatly varied chemical structures. As such, the synthetic approach was found 

to be critically important to finely tune optical and catalytic properties. 

1.1.5 Carbon Quantum Dots and their Advantages 

In 2004, a new kind of zero-dimensional carbon nanomaterial was inadvertently 

discovered by Xu et al. by the electrophoretic analysis of single-walled CNTs.49 This 

fluorescent nano-sized carbon fragment, called the carbon quantum dot (CQD),50 has 

since made a significant impact on research pertaining to catalysis, optoelectronics, 

photovoltaics, biomass conversion, bioimaging, and photodynamic therapy. Like the 

previously discussed carbon-based materials, CQDs can have greatly varied synthetic 

methods, chemical structures and functional group distributions – all of which affect 

performance in specific applications.51-54 CQDs began their rise in optoelectronic 

research by applying oxidative cutting toward graphene oxide nanoflakes about 100 

nm in size. The products of this reaction, termed “graphene quantum dots” or “GQDs”, 

were found to be fluorescent with a low photoluminescent quantum yield (PLQY) of 1 

to 3%.55 In addition, these GQDs emitted blue or green light upon UV excitation. 

Currently, modifications to the synthesis such as changing the precursor or employing 

hydrothermal treatment yield GQDs with PLQY upwards of 25%.53-54, 56-78 

PLQY can be simply defined as the ratio of emitted photons to absorbed photons. 

However as shown in the equation below, PLQY relates all photophysical processes 

with both radiative and non-radiative rate constants. In this equation, ΦPL represents 

the photoluminescent (or fluorescent) quantum yield, kr is the radiative rate constant, 

kisc is the non-radiative rate constant for intersystem crossing, kic is the non-radiative 

rate constant for internal conversion, and knr is the sum of all non-radiative rate 

constants. 
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𝛷𝑃𝐿 =
𝑘𝑟

𝑘𝑟 +  𝑘𝑖𝑠𝑐 + 𝑘𝑖𝑐 + ⋯
=  

𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
 

The PLQY of a sample can be measured directly with an integrating sphere. This sphere 

has a highly reflective coating on its interior that allows light to be well dispersed across 

the volume of the sphere. In essence, the sphere allows the emitted light to maintain a 

uniform “glow” as opposed to the potentially directional emission of some samples. 

The sample is compared to the solvent (a blank in this case) in which it is dispersed and 

the differences in the excitation light intensity received by the detector from sample to 

blank as well as the fluorescence intensity emitted by the sample give rise to the PLQY. 

PLQY can also be measured indirectly by using the slope of fluorescence intensity 

vs absorbance of a standard fluorescent dye (such as Rhodamine 6G) with a known 

PLQY and comparing the slope of the same parameters of the sample as shown in the 

following equation. Despite this being a relative measurement, the instrumental error 

is minimized as all parameters are fixed during the experiment. The few errors that may 

arise are using standards that photobleach quickly, improper dilution technique, or 

using concentrations of fluorescent dyes whose absorbance falls out of the range of 

linearity (0.01 – 0.1). 

𝛷𝑃𝐿,𝑠𝑎𝑚𝑝𝑙𝑒 = ( 
𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑠𝑎𝑚𝑝𝑙𝑒
)(

𝐴𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝐼𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
)(

𝜂𝑠𝑎𝑚𝑝𝑙𝑒

𝜂𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) 

 Further analysis of the chemical structure determined that these top-down 

synthesized quantum dots were mainly comprised of large domains of fused aromatic 

rings with edge-terminating functional groups like hydroxyls, carbonyls, and 

carboxylic acids. This gives CQDs very unique features not found in other carbon 

nanomaterials such as hydrophilicity without post-synthesis modification, a tunable sp2 

to sp3 carbon ratio, and facile, inexpensive synthesis. CQDs are often divided in the 

literature by two synthetic approaches: known as the top-down or bottom-up method. 

Top-down methods, like the Hummers’ method, take bulk carbon materials and subject 

them to harsh oxidation with compounds such as sulfuric acid, nitric acid, or potassium 

permanganate.8, 79-81 Modifications to the top-down synthesis of CQDs make 

production cleaner by removing the harsh oxidants altogether as in electrochemical 

methods,52, 66, 73, 82 hydrothermal treatment,55, 83-86 or by chemically treating waste 
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products like lemon peels, urine, or even barbecued meat.72, 87-90 Presently, the greatest 

challenge in the top-down method is the extensive amount of work-up required to 

purify CQDs such as ultracentrifugation, dialysis, neutralization, and vacuum filtration 

among many others.  

Bottom-up methods, on the other hand, build up CQDs using a range of organic 

molecules as small as glucose or citric acid60, 91-93 to large polymers like polyethylene 

glycol.94-95 Bottom-up methods are more diverse compared to top-down methods due 

to their simplistic nature. The earliest example of producing CQDs by this method is 

the hotplate pyrolysis of citric acid by Dong et al.60 Since then, many studies have 

utilized solvothermal80, 96-97 and hydrothermal reactors67, 98-99 or microwave ovens63, 75, 

84, 93, 100-101 in effort to restrict the inhomogeneous nature of CQDs. The advantage (and 

disadvantage) of using the bottom-up method is the sheer number of parameters one 

can use to influence the reaction. In hydrothermal synthesis, for example, parameters 

such as pressure, temperature, fill factor and mixing ratios can greatly change the 

chemical functionality of the produced CQD.98, 102  Chapter 3 explores this further using 

a hydrothermal method to add nitrogen heteroatoms to CQDs as a function of treatment 

temperature. From this work, a large difference was observed not only in the quantity 

of nitrogen added, but also in the location (i.e.: edge-terminating or within the sp2 

nanodomain). Unique to CQDs, the approach of synthesis results in nearly identical 

products. Features such as graphene-like sp2-carbon domains a few nm in size and 

edge-terminating functional groups are common to both the top-down and bottom-up 

synthetic approaches. The largest difference between these two kinds of CQDs is the 

presence of a surface passivation layer resulting from an incomplete bottom-up 

synthesis. Preventing the formation of the surface passivation layer can only be done 

with longer reaction times, which ultimately result in large carbonaceous aggregates 

whose properties approach those of bulk carbon materials. Thus, the surface passivation 

layer has been closely studied due to its effects on optical and catalytic properties. 

Interestingly, research in this field has described CQDs as the combination of two 

very different nanomaterials. The chemical structure of CQDs closely matches that of 

graphene oxide (e.g. large sp2 nano-domains, functional group defects) but on a much 

smaller scale of about 2-20 nm. Optical properties of CQDs are best explained by 
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inorganic quantum dots made from CdSe, CdTe and ZnS. These quantum dots are 

nanoparticles with a crystal structure similar to the bulk phase but with sizes on the 

order of a few nanometers. As with all materials in the nanoscale, the exciton (electron-

hole pair) generated upon the absorption of light recombines and emits a photon upon 

relaxation from the excited state. The observed photoluminescence is defined by the 

size of the nanoparticle and is referred to as the quantum confinement effect (QCE). In 

QCE, the exciton can no longer move freely and is confined by the dimensions of the 

nano-sized particle. This forces recombination to occur at nearly the same energy as 

the excitation energy; thereby creating a size-dependent photoluminescence (EPL α 

1 𝑟2⁄ ) that is only observed with particles on the nanoscale. In other words, the smaller 

the particle, the more energy required to form the exciton, which induces a blue-shift 

in absorption and emission compared to larger particles. There are methods to tune 

exciton confinement other than size-dependence which covalently modify the outer 

edges of the quantum dot with other semiconductor molecules that physically separate 

the exciton from the outside environment. These “core/shell” structures were made 

famous with CdSe/ZnS quantum dots due to long excited state lifetimes (> 10 ns), high 

photoluminescence quantum yields with tunable emission based on size and 

composition, and a strong resistance to photobleaching effects.103-104   

Despite the comparison to previously studied nanomaterials like graphene oxide 

and inorganic quantum dots, there is still a large gap in understanding the structure-

function relationship in CQDs due to the myriad of parameters that can be changed. 

Since CQDs are carbon-based macromolecules there is a notable effect on 

photoluminescence from changes in pH, functional group modification, surface 

passivation, and solvent. Elucidating the structure-function relationship is crucial for 

using CQDs in real-world scenarios such as bioimaging or photodynamic therapy. For 

example, tuning the optical properties of CQDs toward infrared or near infrared 

wavelengths would make CQDs a highly effective anti-cancer drug that boasts low or 

no toxicity to healthy tissues and organs. Although applications that utilize carbon-

based nanomaterials are still being developed, they are still nonetheless important to 

study and understand such that we can use them to bring technology to regions of the 

world that do not currently receive these benefits due to high resource demand or low 
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resource supply. The next section of this chapter describes how CQDs could be used in 

various industries and what work needs to be done to make these effective cooperative 

materials or even replacements in these applications. 

1.2 Applications of Carbon Quantum Dots 

1.2.1 Optoelectronics and Displays 

The market on which carbon quantum dots have the most impact may be the 

electronics sector which includes optoelectronics like light emitting diodes and 

photovoltaics. The major hurdle semiconducting molecules face in this industry include 

a fairly low charge carrier mobility and poor uniformity compared to inorganic 

semiconductors. In recent years, much research has been devoted to developing organic 

semiconductors that are comparable to their inorganic equivalents. The benefits of 

organic semiconductors comes from the fact that they provide much more mechanical 

flexibility and are much easier to process into films with varying thicknesses. This 

allows for devices with unique shapes or curvatures to be developed such as flexible 

displays or electrodes that can be set onto human or animal tissues.  

Organic light emitting diodes (OLEDs) are becoming more commonly used in 

displays such as televisions and smartphone devices as there are several advantages 

over conventional LEDs displays. First, conventional LED technology works as a 

backlight which illuminates the whole display with white light. Using a backlight with 

downstream color filters to make a picture causes very dark colors and blacks to show 

as a deep grey, preventing a truly black pixel and causing unnecessary power 

consumption. OLEDs on the other hand, emit specific wavelength light with applied 

voltage, making them both the illumination source and color filter for each pixel. This 

allows for better picture quality and contrast as each pixel is formed from a “building-

up” of different wavelengths of light as opposed to color filtering. Blooming does not 

occur with OLED displays as dark pixels can be formed by simply removing the 

applied voltage.  

Beyond reducing electronic noise and power consumption, achieving realistic 

blacks, and building flexible displays for consumer electronics, OLED technology can 

be used to make better displays for medical applications. This can feed forward into 
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better spatial and color resolution of images and thus, more accurate diagnoses in 

patients. For example, current medical-grade LED displays suffer from artifacts 

produced by a backlit display which can be misinterpreted in diagnoses. Usually this 

occurs when the contrast between neighboring shades of gray are difficult to 

differentiate. This problem is exacerbated with increasing viewing distance, such as in 

multiple-monitor workstations or consultation displays used by medical professionals. 

There is also a problem concerning LED display lifetime: the screen is brightest at the 

beginning of its lifetime but can degrade upwards of 25% within the first year of use. 

This is due to the photobleaching of the material: an irreversible light-activated process 

that alters the chemical structure and the optical properties.  

Unfortunately, OLED displays are still more expensive than LED displays even 

after removing the cost of the LED backlight. This high cost originates from a difficult 

manufacturing process coupled with the high price of pure materials. Briefly, an OLED 

is constructed on a layer-by-layer process much like an LED and a schematic is shown 

below in Figure 1.7.105-107  
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Figure 1.7: The diagram above is a simple modern OLED. There are a many new ways 

to construct the OLED using a variety of layer configurations. Displays will have 

additional layers such as an active matrix TFT (thin film transistor) which control pixel 

regions. Reproduced with permission from ref. 130. 

First, a substrate is coated with an anode material which commonly is indium tin 

oxide (ITO) which is usually performed in a variety of methods such as sputtering or 

vacuum deposition. Both of these methods require very high purity ITO but have long 

been reliable manufacturing processes.106 Carbon-based alternatives have been 

developed for ITO but they often do not deliver the same performance or are difficult 

to scale up. Next, a conductive polymer is deposited on the ITO anode which allows 

efficient electron transfer from the anode to the cathode. These polymers are usually a 

blend of polyaniline and poly(styrenesulfonate) (PANI:PSS) or 

poly(ethylenedioxythiophene) and poly(styrenesulfonate) (PEDOT:PSS).106 After 

coating with conductive polymer, a layer of light-emitting molecules or polymers is 

added. These molecules are responsible for the light produced via radiative 

recombination of the electrons donated by the cathode with the holes transported from 

the anode. There are many light-emitting molecules that can serve as the emitting layer 
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as the electronic properties (i.e. wavelength of light emitted) are dependent on the 

chemical structure.  

Polyfluorenes, shown below in Figure 1.8, contain chemical motifs commonly 

found in current OLED molecules such as fused aromatic ring structures, electrostatic 

π-stacking regions, and tunable edge chemistry.108 The two key features - a π-

conjugated backbone and functionalized bridging groups - together give rise to the high 

performance of polyfluorenes in OLEDs. In addition, both of these motifs can be 

chemically modified and engineered for a specific purpose such as enhancing solubility 

in liquid crystals, allowing efficient packing in larger crystals, or tuning the 

absorption/emission wavelengths.109  

 

With a macromolecular structure and a diameter on the order of a few to tens of 

nanometers, CQDs could be used as a non-polymeric alternative to OLED technology. 

In addition to tunable edge chemistry, CQDs have a characteristic quality that allows 

their sp2-carbon nanodomains to be controllably grown into desired sizes by utilizing 

bottom-up synthesis. Manipulating the size of the nanodomain allows for tunable 

fluorescence according to the quantum confinement effect. Heteroatom dopants such 

as nitrogen and sulfur, which have been extensively researched in their effects on 

optical properties, can easily be inserted into either the edge or sp2-core. Both of these 

sites, as shown in Chapters 2 and 3, affect optical properties in different ways. CQDs 

also carry the added benefit of high solubility in polar solvents, especially in water. 

Figure 1.8: Chemical structure of a polyfluorene. Reproduced with permission from ref. 

131. 
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This allows for solution processing of OLED without the use of harsh organic solvents, 

reducing the health risks associated with manufacturing as well as the overhead costs 

of mitigating these same risks. Overall, knowledge in the structure-emission property 

relationship will allow for inexpensive, non-toxic materials that could be used in OLED 

displays. High-performance displays that are financially accessible and more 

environmentally-friendly would provide great support to the many applications 

discussed previously.  

1.2.2 Solar Technology: Photovoltaics 

Recently, many advances in solar cell and fuel cell research have elevated the 

technology to be competitive with the low-cost, high energy density of fossil fuels. 

However, the high cost of solar energy devices prevents large-scale production and the 

shift toward combustion-less electricity production. Solar cells, or photovoltaic (PV) 

cells, harness solar light which is then directly converted into usable electricity. Using 

solar energy as a means of generating electricity is an attractive option due to qualities 

such as high device stability with a small carbon footprint and high solar availability. 

The unique situation born out of the pursuit of alternative energy generation and 

combating climate change effects has initiated programs like the Sunshot Initiative put 

forward by the U.S Department of Energy (in collaboration with the National 

Renewable Energy Laboratory) which funds research toward low-cost photovoltaics.110-

118 At the start of this program in 2010, the cost per watt of electricity produced by 

utility-scale photovoltaics was $3.80. In five years, researchers have developed 

strategies and materials to drive down the cost per watt to $1.64, nearly 70% lower than 

in 2010 and well on track for the $1.00 per watt target of 2020.  

In the simplest sense, photovoltaics operate upon the basis of energy level 

differences that generate electrons and holes much like a diode. When a photon interacts 

with a semiconducting material, if the photon has energy greater than or equal to the 

HOMO-LUMO gap, an electron in the ground state is promoted to the excited state. In 

the excited state, the electron can be moved in a variety of ways which build the 

foundation of modern electronics. In the schematic below, a PV is designed with two 

active layers: an N-type, or electron rich, layer or a P-type, or electron-deficient (or 
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hole-rich) layer. These two are joined together to make a P-N junction in which the 

electrons from the N-type layer migrate to the hole-rich P-type layer and vice versa. 

After this migration is complete, there is a buildup of positive charges on the N-type 

side of the junction and negative charges on the P-type side of the junction called the 

depletion layer. This new layer is resistant to charge carrier mobility and thus requires 

a forward bias (positive applied voltage to the N-type layer and negative applied voltage 

to the P-type layer) to generate current.  

Current PV technology is divided into three groups: PV devices that only use 

organic molecules as the active photovoltaic material, those that only use inorganic 

materials, and hybrid organic-inorganic photovoltaic devices. Organic PV technology 

has been promising due to low-cost and more environmentally friendly materials but 

suffers from low power conversion efficiencies (PCE) of about 1-6%.119 All-inorganic 

solar cells have experienced a meteoric rise as the top of the line devices in the 

photovoltaics industry with high PCE of 15 to 25%.120 Unfortunately, these kinds of 

cells utilize expensive catalysts which neutralizes their commercial application. Hybrid 

organic-inorganic devices such as the organolead perovskite (CH3NH3PbX3 where X = 

halogen) have boasted incredible PCE of over 20% using inexpensive materials.121 

However, using lead-based materials poses a potential environmental issue in which 

regulations may increase device cost and would cripple their utility-scale 

commercialization. 

As before with optical electronics like LEDs, photovoltaics made using CQDs 

would be more beneficial compared to current materials. As the sp2-nanodomain size 

can be tuned through synthetic means, the wavelengths of light absorbed are also tuned. 

This allows for large-scale synthesis of CQDs that could potentially span the entire 

range of the solar spectrum (250 – 2500 nm). Previous reports have found a use for 

CQDs in photovoltaics but only in the UV-blue region with marginal PCE compared 

to the organolead perovskites.122  
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1.2.3 Fuel Cell Catalysts 

Fuel cells, on the other hand, aim to convert abundant resources like water or carbon 

dioxide into hydrogen or small hydrocarbons, respectively. These devices have many 

advantages over current combustion engine technology. First, the electricity produced 

is a less wasteful process than combustion engines that convert chemical to thermal to 

mechanical to electrical energy. In fuel cells, chemical energy is directly converted to 

electrical energy which can immediately be used. Applications where fuel cells can 

thrive lie are in portable and stationary systems such as personal or household power 

generators and transportation applications like light vehicles. Water and carbon dioxide 

can be effectively converted to fuel but have vastly different pathways each with their 

own challenges and advantages. 

Fuel cells that convert water into hydrogen gas are heavily sought after due to the 

massive abundance of water on Earth coupled with the high gravimetric energy density 

of hydrogen (142 MJ kg-1).123 The inherent problems with hydrogen fuel cells are two-

fold. First, though hydrogen contains a high gravimetric energy density with the only 

combustion product being water vapor. Considering the cost of compressing hydrogen 

gas into specially made containers that can be kept cool, the price of harvesting 

hydrogen as a fuel source is astronomical compared to current fossil fuel storage and 

extraction methods. In the meantime, research has shifted toward devices that do not 

produce fuel to be stored, but rather produce only enough for immediate use over longer 

periods of time. Aqueous solution electrochemical fuel cells have recently emerged as 

a strong force in alternative energy research due to high catalytic performance over 

many cycles. These kinds of fuel cells convert water into oxygen and hydrogen gas 

directly. Generally, there are a few chemical reactions in which this occurs as shown in 

Figure 1.10.124 
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The above reactions comprise the two- and four-electron Oxygen Reduction 

Reaction, or ORR, listed in acid, alkaline, and non-aqueous media, respectively. The 

current status of this technology is promising in that many researchers have made water 

splitting fuel cells that perform well and are long-lasting. However the catalysts that 

recombine hydrogen and oxygen gas into water are often made of platinum and make 

investing into these technologies too expensive for the average consumer. Pt catalysts 

for the ORR reaction require almost ten times that amount. In addition, these high-

performance Pt catalysts can participate in side reactions during ORR that yield 

intermediates and byproducts that poison the catalyst and lead to premature fouling.125 

In an effort to overcome these problems, researchers have shifted their focus to 

developing inexpensive, non-noble metal (or even non-metal) catalysts that are resistant 

to poisoning effects.  

1.2.4 Elemental Scarcity: Impact on Society 

Fossil fuels, which include resources like coal, petroleum, and natural gas, have long 

been the primary source for electricity production due to attractive qualities such as: 

high energy density, stability over time, transportability, and the ease of conversion to 

other fuels and products. These qualities allow for inexpensive transport and storage in 

Figure 1.9: Oxygen Reduction Reactions in various media. Adapted with permission 

from ref. 149. 
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domestic facilities as well as to global regions with little natural fossil fuel resources. 

As of 2015, the United States produced nearly 66% of all electricity that year from coal 

and natural gas sources and 30% of all CO2 emission.126  

As previously discussed, the state-of-the-art technology for photovoltaics and fuel 

cells requires precious rare metals such as platinum or indium for peak performance. If 

these technologies were more accessible to everyone by lowering costs, then the impact 

of the technology itself would be better experienced by all. For example, if photovoltaics 

were used as the primary source of electricity production then smog-ridden cities such 

as Beijing, Mumbai, Houston, and Los Angeles would begin to experience clearer air.127 

In some of these regions, air pollution levels are already above acceptable minimums 

for air quality guidelines set by the World Health Organization. By 2050, it has been 

predicted that air pollution and pollution-related complications will be a leading cause 

of death alongside heart disease and cancer.128 

The scarcity of certain metals also brings about the topic of climate change as 

biomes that contain rich mineral deposits such are often deforested or mountaintops 

removed. Briefly, as more carbon-, nitrogen- and sulfur-containing gases and 

particulates are expelled from the ground to the atmosphere, they trap a small portion 

of the total sunlight that reaches earth. As a consequence of basic photophysics, 

molecules that absorb light are excited with this extra energy and must release it in order 

to relax back to the lowest energy state. More often than not, this release is emitted as 

heat and over time, this builds up and warms the local environment. From here, there 

are many fates in which heat can be transferred but if we consider the earth and its 

atmosphere as a nearly closed system with sunlight irradiating the earth at all times, 

there is ultimately a faster building up of heat than it can be quenched, giving rise to the 

greenhouse effect. If the greenhouse effect remains unchecked, weather-related 

problems can arise such as polar ice caps melting, sea levels rising, and more intense 

weather events such as flooding, drought, hurricanes and blizzards.  

1.2.4.1 Non-noble and metal-free catalysts 

Alternative fuel cell catalysts to noble metals fall into two divisions: those that 

simply replace the metals with other non-precious metals and those that are completely 
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metal-free. Catalysts that aim to replace expensive metals like Pt or Pd with much 

cheaper metals like Fe are referred as “non-noble” catalysts. In biological settings, the 

most recognizable catalyst of this kind is the heme group found in hemoglobin. The 

structure shown below in Figure 1.11 consists of a sp2-conjugated framework of 

pyrroles linked to each other.  

 

In hemoglobin, the heme group (four in total in hemoglobin) acts as a binding site 

designed to reversibly bind diatomic oxygen end-on toward the iron (II) atom. 

Interestingly, the heme can be poisoned much like platinum if cyanide ions (CN-) or 

carbon monoxide molecules insert themselves in place of molecular oxygen. The 

binding with CN- and CO is competitive with oxygen due to the stronger binding affinity 

of these molecules to the iron (II) ion. CN- or CO at low concentrations can induce 

symptoms such as headaches and nausea. Higher concentrations may lead to 

unconsciousness and ultimately, permanent organ damage or death.129 

Due to the large presence heme and hemoglobin have in our natural world, it is 

unsurprising that many non-noble catalysts for reducing oxygen via the ORR 

incorporate some degree of heme-like structure. In a broad sense, some of the best non-

noble metal catalysts are made with a carbon- and nitrogen-containing precursor, 

Figure 1.10: Chemical structure of heme, a tetrapyrrolic macrocycle which provides 

four binding sites to Fe2+.  
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typically a nitrogenous polymer like poly(acrylonitrile), and an iron-130 or zinc- 

containing precursor that may either be in an ionic salt like ferrous chloride tetrahydrate 

or in a chelated environment like tris-1,10-phenanthroline iron (II) perchlorate.131 These 

precursors are then subjected to a pyrolytic method in which metal-, carbon-, and 

nitrogen-containing structures are formed. The unique performance of these catalysts 

arises from the abundance of active sites that molecular oxygen can access.  

The idea of moving further away from noble metal catalysts has been realized in the 

metal-free catalysts. One notable example in the literature is the nitrogen-doped carbon 

nanotube (NCNT). NCNTs, like many of the other previously mentioned catalysts, have 

nitrogen-containing active sites that are anchored by a carbonaceous backbone. Much 

work has been done on the NCNT to elucidate the preferred active site, for which there 

are many candidates: amine N, pyridinic N, pyrrolic N, quaternary N, and holes made 

from the intersection of these such as the triple pyridinic N site.  

CQDs could be used as an environmentally friendly, metal-free catalyst or co-

catalyst in fuel cell applications as they can be synthesized using waste products or from 

simple organic molecules without expensive reagents or complex methods. This 

addresses the difficult problem of elemental scarcity but does not consider that a CQD 

catalyst should work as well as or better than the current top-of-the-line catalysts that 

heavily rely on platinum. One advantage CQDs have over other non-metal catalysts is 

the ease in which heteroatoms can be incorporated into its chemical structure with 

moderate control. Chapter 4 discusses the role of nitrogen dopants in CQDs and 

provides insight toward future work in CQD catalysis by taking advantage of facile 

synthesis and inhomogeneity.  

1.2.5 Bioimaging and Photodynamic Therapy 

Another promising use of carbon-based nanomaterials is in medicinal applications 

such as bioimaging18, 95, 132-133 and photodynamic therapy.66, 134-137 Bioimaging and 

photodynamic therapy are, in their simplest explanations, very similar photophysical 

concepts. Briefly, bioimaging is the use of light as a probe to determine features ranging 

from the sub-cellular to large working systems like organs. Typically there are three 

processes that a bioimaging agent must endure before bioimaging can be realized. The 
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first is the absorption event in which specific wavelengths of light are absorbed by the 

material. The second is the non-radiative relaxation processes that can occur within the 

material to lose excess energy such as vibrational relaxation, solvent reorganization, or 

internal conversion. The third process is the emission event. Referring back to the 

Jablonski diagram in Section 1.1.1, the energy of the photon emitted from the relaxation 

of the excited state back to the ground state is less than the initial energy absorbed due 

to the non-radiative relaxations. The key to bioimaging lies in optimizing all three of 

these steps to produce light of a narrow range of wavelengths such that they can be 

easily detected. The most important obstacle to overcome in bioimaging is that the 

imaging target (i.e. tissue, cells, etc.) absorbs almost all visible wavelengths of light. In 

addition, higher energy electromagnetic radiation such as near and far ultraviolet light 

can harm the imaging target in several ways. Considering all of these obstacles together, 

that leaves researchers with a narrow range of wavelengths that can be used to study 

biological systems. This range of wavelengths lies between 650 – 900 nm and is called 

the optical therapeutic window. The depth of tissue penetration varies on the wavelength 

used. Blue light (450 nm) will penetrate to a depth of about 0.1 mm. Yellow light (600 

nm) penetrates a depth of about 2.0 mm and red light (680 nm) about 3.0 mm.138 

Photodynamic therapy is the use of light that excites a photosensitizer (PS) in order 

to initiate a chemical reaction within the cellular matrix. Primarily, photodynamic 

therapy has been used as a treatment modality for skin cancers and melanoma due to the 

low penetration depth of early drugs. This low penetration depth correlates to the 

extensive scattering of blue light coupled with high absorptivity of the cell membrane. 

As with bioimaging, light that is efficiently absorbed by the PS must fall into the optical 

therapeutic window since it is optically masked by the cell membrane. The key 

difference between bioimaging and photodynamic therapy is that upon excitation the 

excess energy of the PS ideally is used to generate reactive oxygen species (ROS) 

through charge transfer or energy transfer. Figure 1.12 below details the products 

obtained through the charge transfer mechanism, also known as Type I products, and 

the energy transfer mechanism, or Type II products.139 
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Figure 1.11: Mechanism of action in photodynamic therapy. Reproduced with 

permission from ref. 159. 

As seen above, there are many ROS that can be produced in the cell but with varying 

behaviors. The lifetime and oxidizing power of each ROS varies greatly. Unfortunately, 

these two are often mutually exclusive. For example, strong ROS like OH• are non-

selective and thus have short lifetimes. Weaker, more selective ROS like H2O2, O2
•- and 

1O2 have longer lifetimes. In other words, short lifetime species are the stronger oxidants 

and the longer lifetime species are generally weaker. This notion is well-tolerated in the 

scientific and medical communities as it allows much more control in therapeutic 

sessions. In other words, photosensitizers that generate singlet oxygen are preferred over 

those that generate the strongly oxidizing radical species. This prevents so-called “over-

treatment” which may damage healthy cells that are not the target of photodynamic 

therapy. 

In photodynamic therapy, inorganic quantum dots have been utilized for their broad 

absorption characteristics and narrow emission wavelengths by acting as the energy 

transfer system to a photosensitizer that generates singlet oxygen. Samia et al.140 used 

488 nm blue light to indirectly excite a silicon-based photosensitizer that produces 1O2 

(1O2 QY = 43% using CdSe quantum dots with PLQY = 65%) upon 580 nm excitation. 

This experiment was done to explore how FRET-based photosensitizer systems such as 

the [silicon PS]-[CdSe QD] pair would function in vivo and what chemical features are 

required for efficient 1O2 generation. For practical use, this system would need to be 
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modified such that optical absorption and emission wavelengths of the CdSe QD, as 

well as the absorption of the photosensitizer, would be toward the infrared, where light 

scattering and absorption is low in tissues. In general, without complex coatings that 

cover the inorganic quantum dot, the risk of damaging healthy tissues is too high for 

clinical trials. This is not only for the possible leaching of toxic ions but also for the lack 

of understanding in how the quantum dots are cleared from a human or animal system. 

It was found by Liu et al.141 in mouse studies that these kinds of quantum dots could 

remain in the liver, spleen, and bone marrow for months after the initial administration. 

Considering that photodynamic therapy may not eradicate a tumor over the course of 

one session, this accumulation may cause additional complications after photodynamic 

treatment.  

Carbon quantum dots have been strongly considered as viable alternatives to the 

inorganic quantum dots in bioimaging and medical treatment.50, 52, 57, 101, 137, 142-145 

Advantages that CQDs have compared to other QD like CdTe, PbS, or ZnS stem from 

the ease of manipulation. Additionally, CQDs have been shown to exhibit good 

photostability compared to organic dyes.50, 54, 146-147 Most important however, is the 

excellent compatibility that CQDs exhibit toward living systems. Bottom-up 

synthesized CQDs that are easily synthesized with naturally derived precursors such as 

waste biomass or simple molecules like citric acid or glucose provide an inexpensive, 

scalable route to manufacturing.  

All of the previous advantages make CQDs attractive as potential replacements to 

current bioimaging and photodynamic therapy applications. Some properties of 

semiconducting QDs like CdTe or ZnS can be applied to CQDs such as the quantum 

confinement effect on optical properties. Unfortunately, the large distribution of 

functional group defects, which can be edge-terminating or within fused aromatic 

regions, often cloud the clarity of a structure-function relationship due to the 

inhomogeneity of the carbon quantum dot. Chapters 2 and 3 in this dissertation will 

address some of the work made toward elucidating a better structure-function 

relationship for optical properties toward bioimaging applications. Chapter 4 

demonstrates the role that nitrogen heteroatoms in CQDs contribute toward catalyzing 

the oxygen reduction reaction which is critical for use in fuel cells. Chapter 5 is largely 
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devoted to the structure-function relationship between CQD and photodynamic 

therapy. 
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Chapter 2: Top-Down vs Bottom-Up Synthesis: Does Synthetic Approach Yield 

Different Carbon Quantum Dots? 

This chapter details the work done to differentiate the chemical structures and 

observable properties of both top-down and bottom-up synthesized carbon quantum 

dots (CQDs). Often these two approaches of synthesis are grouped together in literature 

despite vastly different formation mechanisms. The careful and thorough analysis of 

the chemical structure was carried out using a variety of techniques including FTIR and 

XPS. A titration as well as a reverse titration elucidated the presence of ether and ester 

functional groups which are challenging distinguish from other types of functional 

groups like hydroxyl and other carbonyl-containing moieties by spectroscopic 

methods. It was ultimately found that top-down synthesized graphene quantum dots 

were relatively more ordered sp2-bonded graphitic domains with a distinct two-

dimensional shape. The “discus-like” graphene quantum dots (GQDs) were found to 

contain a central sp2-hybridized carbon network which is terminated with functional 

groups such as hydroxyl, carbonyl and carboxyl groups. Bottom-up grown carbon 

nanodots (CNDs) are relatively more disordered with a three-dimensional structure. 

CNDs contain significant amounts of sp3-hybridized carbon intertwined with sp2-

carbon. Much of the sp3-carbon housed functional groups such as hydroxyl, carbonyl, 

carboxyl, ethers and esters.  

After determining the fine chemical structure, optical measurements such as UV-

Vis absorption, fluorescence, and metal-activated quenching were conducted. In 

agreement with our hypothesis, the GQDs and CNDs exhibited markedly different 

optical absorption and emission. In collaboration with Dr. Gary Blanchard of Michigan 

State University, time correlated single-photon counting (TCSPC) was used to 

determine fluorescence lifetimes. The GQD and CND samples show remarkable 

differences that are detailed later in this chapter. Additionally, chemical and 

hydrothermal reduction of GQDs show substantially different results, establishing a 

direct relationship between the chemical structure and fluorescence.  
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 2.1 Introduction and Motivation 

Carbon quantum dots (CQDs) are fluorescent nanoparticles that have been shown 

to exhibit excellent performance in various roles such as photo-1-4 and 

electrocatalysts,5-7 light emitting diodes,8-13 molecular sensors,14-16 metal ion sensors,17-

20 and anti-cancer agents.10, 21-22 These nanomaterials are generally inexpensive to 

produce and show comparable performance to current inorganic quantum dots like 

CdSe, but with the additional advantage of low cytotoxicity.23-25 Key features of CQDs 

include a nanocrystalline sp2-carbon domain of variable size which is passivated by 

sp3-carbon or other surface functional groups. CQDs are synthesized in two 

approaches: the top-down cutting of bulk carbons into graphene quantum dots (GQDs) 

and the bottom-up growth of small organic molecules such as sugars and carboxylic 

acids into carbon nanodots (CNDs). Despite the similar size of the two types of CQDs, 

relative atomic percent of C to O, and the presence of sp2-C nano-domains and the 

optical properties observed are quite different. Although there are fluctuations in 

detailed results, the overall trend in the literature is that GQDs generally exhibit red-

shifted emission than CNDs. On the other hand, CNDs show considerably higher 

photoluminescent quantum yield (PLQY) than GQDs.   

Previous works which relate optical properties of CQDs to their chemical structure 

have advanced the fundamental understanding of how CQDs fluoresce. As of now, two 

major emission pathways have been extensively studied. The intrinsic emission arises 

from the σ-π* or π-π* transitions inherent to the carbonaceous “core” of CQDs which 

are made up of aromatic nano-domains of varying size. Extrinsic emission, also known 

as the molecule-like state, originates from n-π* transitions on the defects of carbon dots 

such as surface functional groups or vacancies in the graphitic plane. As such, the 

surface modification of carbon dots would affect extrinsic emission rather than intrinsic 

emission. For example, it was reported that incorporation of heteroatoms such as 

nitrogen into CNDs or GQDs increased fluorescence QY and shift the emission. As 

GQDs carry a more defect-free sp2 nano-domain, N-doping modifies extrinsic emission 

by creating surface N groups such as amine and pyridine which can shift peak emission 

to the red and increase PLQY by eliminating non-radiative functional groups such as -
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COOH.26-27 The bottom-up approach to synthesize CNDs with a nitrogen source such 

as ethylenediamine (NH2CH2CH2NH2) tends to shift peak emission to the blue while 

greatly enhancing fluorescent quantum yield. 

Due to increased control of the extrinsic emission, the effect of functional groups 

present at the edge of graphene quantum dots on photoluminescence has been 

extensively studied with post-synthetic methods such as surface passivation, functional 

group exchange and chemical or thermal reduction. For example, Li et al.28 used 

computational methods to determine the effect of oxygen- and nitrogen-containing 

functional groups on the HOMO-LUMO gap of GQDs. A major significance of that 

work shows that carbon-oxygen double bonds found in aldehyde, carboxyl and amide 

functional groups are critical for tuning the HOMO-LUMO gap to lower energies. 

However, amines (R–NH2) have been extensively used as the functional group of 

choice to reduce the HOMO-LUMO gap14, 29-32 because of its simultaneous increase of 

PLQY. It has been shown both computationally27 and experimentally26 that the band 

gap decreases with increasing number of primary amines. Additionally, a study about 

the common origin of photoluminescence in carbon dots made through bottom-up and 

top-down methods was published by Wang et al. which primarily focused on the green 

luminescence found in both CNDs and GQDs.33 By utilizing femtosecond transient 

absorption spectroscopy, it was found that edge states consisting of a carbon backbone 

and carbonyl/carboxyl groups are responsible for the similar n-π* optical behavior in 

CND and GQD samples.  

In contrast to aforementioned contribution on qualitative understanding, significant 

progress has been made to understand the structure-function relationship. Huang et al. 

demonstrated this with a back potentiometric titration of GQDs made from carbon 

black to quantify carboxylic, lactonic and phenolic moieties.34 As before, carbonyl 

groups were found to be critical for photoluminescence in GQDs by utilizing 

phenylenediamine to target ortho- and para-quinones. Alves et al. later utilized 

potentiometric titrations with non-linear regression analysis to quantify carboxylic, 

lactonic and phenolic groups on GQDs made from cellulose fibers.35 Both of these 
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studies demonstrated that carboxylic acid groups were approximately twice as 

abundant as lactone or phenolic substituents.  

The similarity in structure, the difference in function, and the relationship between 

CNDs and GQDs needs to be better understood so that we can fundamentally 

understand how to optimize CQDs for specific applications. To our knowledge there 

has not yet been a comprehensive analysis of the structure-function relationship of both 

CNDs and GQDs in this manner.  The motivation of this work is two-fold: first, we aim 

to identify and differentiate the structure-function properties of CQDs produced by top-

down and bottom-up approach. Second, we intend to use the structure-function 

relationship to develop a strategy for tailoring carbon quantum dots for specific 

applications. Those applications include bioimaging (Chapter 3 and 4), electrocatalysis 

(Chapter 4) and photodynamic therapy (Chapter 5). 

2.2 Experimental Details and Methods 

GQDs were synthesized by a top-down method by first mixing 100 mg of acetylene 

carbon black (Strem Chemicals) with 75 mL of concentrated HNO3 (15.8 N, Fisher 

Scientific) and 25 mL of concentrated H2SO4 (95-98%, Sigma-Aldrich). This mixture 

was placed into a 250 mL three-neck round bottom flask with a condensing column 

attached. The flask was heated to 105 °C in an oil bath and kept under reflux for 4 

hours. The acid-acetylene black mixture changed from a powdery black solution to a 

dark brown with small amounts of particulates over the four hour period. After cooling 

to room temperature, the solution was placed in an ice bath and slowly neutralized with 

KOH (solid pellet, BDH VWR Analytical) until a large precipitation of salt was formed. 

The GQD-unreacted acetylene black and salt mixture was vacuum filtered through 2.5 

µm filter paper (Whatman) to remove most of the salt and large carbon particles. The 

neutralization and filtration processes were repeated until the stock GQD solution was 

pH = 6. Then, 25 mL of stock GQD solution was filtered through a 200 nm pore syringe 

filter (Supelco) to remove any remaining carbon microparticles. After the final 

filtration, a MWCO = 100-500 Da dialysis bag (Spectrum Laboratories, Inc.) was filled 

with the syringe-filtered solution and dialyzed against ultrapure water for one week to 
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remove dissolved salts. The resulting solution was used in this work as the GQD 

sample. 

CNDs were synthesized by a bottom-up method in which 1 g of solid citric acid 

(Sigma-Aldrich) was introduced into a 10 mL beaker and heated on a hotplate for 10 

minutes at 160 °C in a similar procedure to a previous work by Dong et al.36 After 

melting, the citric acid liquid begins to effervesce vigorously which is the evolution of 

carbon dioxide and water vapor. This is a direct sign of the condensation and 

dehydration reactions that ultimately form C-C bonds in CNDs. At 10 minutes, the 

liquid is red-orange in color and is quenched using 100 mL of approximately 0.01 M 

KOH. To remove salt impurities, the same 200 nm filtration and MWCO = 100-500 Da 

dialysis procedures were performed to produce the CND sample for this work. 

2.3 Results and Discussion 

In order to understand the structure-function relationship between CNDs and 

GQDs, we must first measure the physical and chemical structure using both qualitative 

and qualitative methods. A comprehensive study of these structural aspects can provide 

useful information to correlate fluorescence, metal sensing, and surfactant behaviors. 

Figure 2.1 shows the low-magnification (left column) and high-magnification (right 

column) TEM images of CNDs (top row) and GQDs (bottom row). The low-

magnification images were used to generate a histogram of particle diameter as seen in 

the insets of Figure 2.1.  CNDs are about 5 nm in diameter with a narrow size 

distribution (± 8%) whereas GQDs are about an order of magnitude larger with a much 

wider size distribution (± 31%). The lattice fringes (Fig 2.1, right column) which are 

about 0.24 nm apart in both carbon dots correspond to the (002) plane of graphene and 

signifies the presence of sp2-carbon. It can be seen from the high-magnification images 

that the graphene-like structures do not cover the entirety of the carbon dot but are 

rather localized into smaller aromatic regions. 
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Figure 2.1: Low-magnification (left column) and high-magnification (right column) 

TEM images of CNDs (top row) and GQDs (bottom row). Histograms of carbon dot 

diameters for CNDs (top left inset) and GQDs (bottom left inset) with mean diameter 

(blue line) and standard deviation (red line). 

X-ray photoelectron spectroscopy was utilized for the chemical analyses of carbon 

and oxygen in both CQD samples. CQDs generally have some amount of sp2/sp3 carbon 

structure, with a varied distribution of functional groups. As seen in Figure 2.2, the C1s 

spectrum shows CNDs have the largest peak as sp2 C-C with a smaller amount of sp3 

C-C. In an ideal scenario, the bottom-up method would utilize both dehydration and 

carbonization reactions to form all sp2 C-C bonds with some edge-terminating 

functional groups. However, since citric acid consists of three carboxylic acid groups 

each connected to a sp3-hybridized carbon atom it is not unreasonable for partially 

reacted citric acid to be the source of sp3-carbon. It is also possible that ether and ester 

functional groups may still be present in CNDs by incomplete carbonization reactions. 

The C1s binding energies for ether and ester functional groups are the same as hydroxyl 

(~286.5 eV) and carboxyl (~289.5 eV) and are included in the XPS assignments. The 

O1s spectrum is included in the right column of Figure 2 to show oxygen-containing 

functional groups. We observed the functional group distribution is quite similar to the 

C1s spectrum. 
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GQDs carry a similar chemical structure to CNDs but with varying quantities. As 

with CNDs, the dominant peak in the C1s spectra is sp2-C. A small amount of sp3-

carbon is present in the GQD sample is indicative of an incomplete breakdown and 

oxidation of acetylene black. GQDs also show less overall oxygen-containing 

functional groups with the most of these being in the form of carbonyl groups. Ideally, 

the top-down method would cut GQDs out of the bulk carbon material and harshly 

oxidize the edges of the produced quantum dots. We hypothesize that the content of 

sp3-carbon can be further reduced and oxygen functional group content can be 

increased with a longer duration of acid treatment. We do not expect ether or ester 

groups to be present in GQDs due to the harsh acidic treatment easily hydrolyzing the 

C-O bonds but the binding energies are similar to hydroxyl and carboxyl groups 

nonetheless.  

 

 

 

 

Figure 2.2: C1s (left column) and O1s (right column) XPS spectra of CNDs (top row) 

and GQDs (bottom row). Peaks were assigned using the NIST X-ray Photoelectron 

Spectroscopy Database. 
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FTIR can provide additional information about specific functional groups present 

in CQDs that XPS may not be able to obtain. For example, the differences in vibrational 

energy can separate a hydroxyl group from an ether group in FTIR spectra. Figure 2.3 

shows the ATR-FTIR spectra of CQDs for qualitative functional group comparison. 

Both CQD samples have one peak in common with aromatic C-C peaks at 1400 cm-1 

and 1560 cm-1. As expected, the large differences seen in FTIR lie in the oxygen-

containing functional groups. For GQDs there is a peak at 1240 cm-1 for the phenolic 

–OH stretch, a carboxylic acid C-O stretch at 1330 cm-1, a carbonyl peak at 1710 cm-1 

relating to both ketones and carboxyl C=O groups, a broad carboxylic acid shoulder 

starting at 2400 cm-1, and a very broad peak starting at 2700 cm-1 and reaching a 

maximum at 3370 cm-1. We speculate the large peak around 3200 cm-1 is attributed to 

hydrogen-bonding with adjacent oxygen-containing functional groups or even water as 

GQDs are very hygroscopic.  

CNDs were found to have a wider distribution of functional groups. The broad peak 

around 1200 cm-1 was treated as two peaks.  The left side of this broad peak at 1170 

cm-1 is assigned as an aliphatic ether (R-O-R). The second assignment is an aromatic 

ether (Ar-O-R) which is a combination of the small peak at 1040 cm-1 and the right 

shoulder of the large peak at 1250 cm-1 which is due to the symmetric stretch and 

asymmetric C-O-C stretch, respectively. The dominant peak at 1710 cm-1 is again 

assigned to ketone and carboxylic C=O and the right shoulder of that peak (1740-1750 

cm-1) is assigned to ester and lactone (cyclic ester) functional groups as a result of 

incomplete carbonization. At 2570 cm-1 the broad carboxylic acid peak can be clearly 

seen. The broad peak at 2900 cm-1 and extending to 3000 cm-1 is assigned to the sp3-

carbon and sp2-carbon C-H stretches. Lastly, the H-bonded -OH stretch at 3400 cm-1 

could again be from adjacent oxygen-containing functional groups. We do not speculate 

as much water is absorbed by the CND due to the interference provided by surface 

passivation due to a larger amount of sp3-carbon.  
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Figure 2.3: ATR-FTIR spectra of prepared CQD samples.  These qualitative spectra 

were normalized to each other by the maximum peak absorbance. 

Based on different sp2- and sp3-carbon ratios observed in the prepared carbon dots, 

we chose to perform an experiment where CNDs or GQDs would act as a surfactant 

toward MWCNTs. We hypothesized that both CQD samples would perform well as a 

surfactant and Figure 2.4 shows the time lapse over several months of three samples. 

In the center column of Figure 2.4, the control sample is 1 mg of MWCNTs dispersed 

in 10 mL of water. The samples in the left and right columns consist of the same 

proportions of reagents as the control sample but with 1 mg of dried GQD or CND 

sample added respectively. All three samples were placed in an ultrasonic bath for 30 

minutes and then placed in an undisturbed location to prevent agitation. The MWCNT 

solution began to precipitate in about two hours. A day later, the MWCNT control was 

mostly precipitated and the GQD-MWCNT solution had started to settle with full 

precipitation after 15 days. After 150 days, the CND-MWCNT solution continued to 

be well-dispersed with no sign of MWCNT precipitation.  

We speculate the chemical structure differences could be the reason behind the large 

discrepancy in surfactant performance. Surfactant activity for GQDs can be explained 

by the large sp2 nano-domain of GQDs acting as a surfactant to the π-conjugated surface 

of the MWCNT. Edge-terminating functional groups allow GQDs to act as the 
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intermediate between MWCNTs and water. GQDs, however, have a tendency to self-

stack (seen by the TEM images) causing large GQD aggregates to form that reduce 

surfactant activity. In the case of CNDs, the sp3-carbon is hypothesized to act as a 

surface passivation layer which would adhere to the MWCNT surface. This layer would 

also provide a physical barrier between oxygen-containing functional groups of 

neighboring CNDs which prevents them from aggregating due to hydrogen bonding. 

This hypothesis is also supported by the TEM images as CNDs show very little 

aggregation. Additionally, hydroxyl and carboxyl groups of the CNDs will also 

stabilize the CND-MWCNT complex in water. Considering the relative size of a water 

molecule to a CND, it is reasonable to expect the hydroxyl and carboxyl groups are 

adequately hydrated in water. 

 

Figure 2.4: Time-lapse photographs of surfactant experiment. 1 mg of MWCNT was 

ultrasonically dispersed in 10 mL of water as a control sample (center). 1 mg of dried 

GQD and CND powder was added to identical solutions of the control sample to make  

the GQD-MWCNT solution (left) and CND-MWCNT solution (right).  
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The optical properties of carbon dots can also be traced back to the chemical 

structure. The top row of Figure 2.5 shows the UV-Visible absorbance spectra of CQD 

samples. As seen in the 0.04 mg mL-1 samples, the GQD absorbance peak around 280 

nm is assigned to the π-π* transition of the sp2-C aromatic region. This broad 

absorbance band is attributed to the large size distribution of GQDs (50 ± 15 nm). 

Consequently, this allows the exciton to delocalize amongst the carbon nano-domain 

more freely, lowering the energy required for exciton recombination. CNDs have a 

much smaller size distribution than GQDs (5 ± 0.4 nm) and subsequently, have 

narrower absorption peaks that lie toward higher energy. The peaks for both samples at 

wavelengths longer than 340 nm are assigned to the n-π* transitions related to 

excitations of nonbonding orbital electrons belonging to edge-terminating functional 

groups. Absorption peaks for GQDs extend far into the red end of the visible spectrum 

where CNDs sharply lose absorbance intensity around 360 nm.  

 

Figure 2.5: (top) UV-Visible Absorbance Spectra of GQDs (red) and CNDs (blue). 

GQDs have a prominent red shift in absorbance wavelength whereas CNDs have 

strongly absorb in the UV region (200-260 nm). Functional group distribution and 

overall size were found to be the sources of red-shifted absorbance in GQDs and 

surface passivation was attributed as the source of blue-shifted absorbance. (bottom) 

Excitation-dependent emission spectra of GQDs (left) and CNDs (right).  

 



55 

 

Excitation-dependent emission spectra for GQDs (Figure 2.5: bottom left) is 

comprised of 2 major bands with the first having peak emission wavelength at 530 nm 

and the second at 670 nm. Figure 2.6 in the shows the excitation spectra of each of the 

above emission wavelengths. For 530 nm emission, three excitation peaks were 

observed at 350 nm, 420 nm, and 465 nm. Comparing this information with absorbance 

data, it can be speculated that the peak emission of GQDs originates from the n-π* 

transition of functional groups. We hypothesize that though short wavelength light is 

strongly absorbed by the GQD, it undergoes non-radiative energy transfer by 

vibrational relaxation, exciton recombination to the sp2-carbon nano-domain or energy 

transfer to defective functional groups which result in a lower-energy emission. The 

second major emission peak at 670 nm was found to be weakly excitation-dependent. 

According to the excitation spectra (Figure 2.6), this emission has a wide range of 

excitation wavelengths from 380 nm to 640 nm. Considering both the broadband 

excitation and the lack of excitation wavelength dependent emission, we hypothesize 

this peak as the direct emission of the sp2-carbon nanodomain as per the quantum 

confinement effect. Unfortunately, without harsh chemical reduction of the edge-

terminating groups (and thereby reducing the GQD solubility in water) we cannot 

verify this assignment. This emission peak at 670 nm with a maximum excitation 

wavelength of 530 nm is promising for developing GQDs for bioimaging and 

photodynamic therapy applications as the emission would be useful to treat skin tumors 

and melanomas. GQDs tailored with near-infrared (650 to 1350 nm) excitation and 

emission would be ideal as near-infrared light penetrates more effectively into deep 

tissues (i.e.: organs) than visible light. 



56 

 

 

Figure 2.6: Fluorescence spectra of GQD and CND (left column) and corresponding 

excitation spectra (right column) taken at each respective mark. For example, GQD 

excitation spectra were taken at an emission wavelength of 530 nm and 670 nm.  

CNDs have a very different emission profile (Figure 2.5: bottom right) than GQDs 

with a majority of the emission confined to wavelengths between 400 nm and 550 nm. 

As with absorbance, this 150 nm blue shift can be attributed to the size distribution of 

CNDs. The overall diameter of the CNDs is smaller than GQDs by an order of 

magnitude which would further confine the exciton to a smaller area. This would 

increase the energy of the HOMO-LUMO gap by reducing the number of discreet 

energy states.  The quantum confinement effect is analogous to the particle-in-a-box 

system and is also seen in inorganic quantum dots like CdSe.37 The role of surface 

passivation with sp3-carbon with surfactant behavior was discussed earlier in this 

section. However for optical properties this creates a “barrier” which directs non-

radiative energy transfer toward intramolecular functional groups and not trap states, 

other CNDs, or solvent molecules thereby increasing PLQY. Surface passivation has 

also been used to increase the QY of carbon dots that are functionalized with agents 

much like branched polyethylenimine (BPEI).38 We did not observe any emission lower 

than 300 nm excitation and the Stokes shift between the emission and excitation 

wavelengths were similar to GQDs implying that the optical behavior in this region is 

- like GQDs - tied to the n-π* transition of the functional groups.  
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In order to identify and quantify the functional groups for each carbon dot sample, 

we chose to perform metal sensing and titration experiments. Many researchers have 

explored the use of carbon dots as highly sensitive agents for determining metal ion 

concentrations in aqueous samples.39-46 Overall, the metal ion that has been found to 

strongly quench carbon dots is Fe3+ which is electrostatically bound to the CQD via 

hydroxyl functional groups.45, 46 The carboxylic acid group has not been studied as 

extensively as hydroxyl groups however Zeng et al.47 demonstrated a carboxyl-

modified polymer as a highly selective Cu2+ sensor. Therefore, we intended to probe 

the qualitative abundance of these two functional groups by performing a fluorescence 

quenching experiment with Cu2+ and Fe3+ salts. Figure 2.7 shows the concentration of 

metal ion plotted against the fluorescence intensity ratio. An I/I0 = 1 corresponds to no 

fluorescence quenching and a value of zero represents complete quenching. The 

emission intensity was measured using an excitation wavelength of 360 nm for CNDs 

and 480 nm for GQDs which gives the maximum peak emission intensity as seen in 

Figure 2.6. GQDs quenched with both metal ions follow a similar pattern with Fe3+ 

quenching fluorescence more completely at lower concentrations. This qualitatively 

suggests there are less hydroxyl than carboxyl groups in GQDs which is consistent with 

XPS peak areas of hydroxyl and carboxyl groups for both C1s and O1s spectra. CNDs, 

on the other hand, show a significant difference in metal sensing as the highest 

concentration of Cu2+ does not completely quench fluorescence. This would suggest 

that there is a larger amount of carboxyl groups in CNDs compared to hydroxyl groups 

and is also supported by XPS peak areas in Figure 2.2.  
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Figure 2.7: Metal sensing data for CNDs (blue) and GQDs (red) toward Cu2+ (solid 

line) and Fe3+ (dashed line). Plot represents concentration vs fluorescence intensity 

ratio. I/I0 = 1 represents no fluorescence quenching and I/I0 = 0 represents total 

fluorescence quenching. GQDs showed similar metal sensing behavior toward both 

copper (II) and iron (III) metal ions. CNDs responded to iron (III) ions in the same way 

as GQDs, but with a significant difference toward copper (II) ions. This was attributed 

to the increased amount of carboxyl groups on CNDs. 

Titration experiments provided us with detailed quantitative information on the 

chemical structure of GQDs and CNDs. It was hypothesized that by using the pKa 

values of hydroxyl and carboxyl functional groups we could quantify the number of a 

specific functional group in CQD samples. Recently, Konkena et al.48 published a work 

detailing the chemistry behind the dispersibility of graphene oxide in water which 

included titration data to identify and quantify specific functional groups. We chose to 

model our titration experiment with a similar approach. First, the control experiment 

(Figure 2.8 left – green symbol) was performed by titrating 15 mL of 0.01 M KOH with 

0.01 M HCl. Then, we titrated the same volume of 0.01 M KOH with 1 mg of GQDs 

(Fig. 2.8 – red symbol) and CNDs (Fig. 2.8 – blue symbol). We hypothesized that the 

excess concentration of KOH would deprotonate all of the –OH and –CO2H groups 

without significantly reducing the concentration of KOH. The volume difference 

between the equivalence point of the control sample and the first equivalence point for 

the CND/GQD sample is correlated with the total number of hydroxyl groups. The 
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volume difference between the first and second equivalence points relates to the total 

number of carboxyl groups.  The derivatives of these titration curves in Figure 2.9 were 

used to find the exact equivalence volumes for functional group calculations.  

We found for the CND sample that the carboxylic acid equivalence point was very 

broad. We attribute this broadening to acid-catalyzed hydrolysis of ether and ester 

groups at pH < 7 which would cleave the ether and ester groups into either two hydroxyl 

groups or one hydroxyl and one carboxyl groups, respectively. As a means to quantify 

the amount of ether and ester groups in the CND sample, we had taken the previous 

CND sample that had been titrated with HCl and back titrated it with 0.01 M KOH. It 

was hypothesized that the difference between the number of carboxyl groups found in 

the forward and reverse titration would be equal to the number of ester functional 

groups. Likewise, the difference of hydroxyl functional groups would represent the 

number of ester groups plus twice the number of ether groups. Table 2.1 shows the 

quantities of each functional group determined by the titration experiments. In the 

forward titration, we found that the OH:CO2H ratio of GQDs is 1.31:1 and 1.54:1 for 

CNDs. The back titration results of CNDs show a wider distribution of functional 

groups as acid hydrolysis of ethers and esters can produce more hydroxyl and carboxyl 

groups. Interestingly, we found a significant portion of ester groups and very little ether 

content. In total, of all the pH-sensitive functional groups on CNDs: 50% are hydroxyl, 

37% are carboxyl, 12% are esters, and 1% are ethers.  

 

Figure 2.8: Titration data (left panel) for control (green), GQD (red), and CND (blue). 

Titration and reverse titration data (right panel) to investigate the presence of ether and 

ester groups after acid hydrolysis. 
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Figure 2.9: First and second derivative curve of titration experiments. The volume of 

HCl where the first derivative reaches a maximum or the second derivative crosses zero 

as a result of a sharp increase or decrease corresponds to the exact equivalence point. 
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Table 2.1: (top) Forward titration of GQD and CND to determine the quantity of 

hydroxyl and carboxyl groups. Titrations were performed in triplicate and show 

excellent convergence despite the lack of uniformity found in CQD. (bottom) Forward 

and reverse titrations were used in conjunction to determine the amount of ether and 

ester groups in CNDs. At the end of the forward titration, the pH is basic enough to 

cleave ester and ethers into one carboxyl and one hydroxyl or two hydroxyl groups, 

respectively. 

 

We first hypothesized that these titration results would roughly resemble the 

previously mentioned XPS peak areas; however, those results show very different 

relative abundances of carboxyl to hydroxyl groups in both GQDs and CNDs. As 

before, XPS spectra show GQDs primarily contain carbonyl and carboxyl functional 

groups and little hydroxyl content. CNDs show nearly equal hydroxyl and carbonyl 

groups and a much higher amount of carboxyl content. We speculate that the difference 

in analytical methods could be the reason for this discrepancy. For example, the XPS 

measurement is conducted under vacuum with a solid sample and titrations were 

conducted in an excess of KOH solution. As a dried solid in vacuum, there is no source 

of proton addition or abstraction such as water to catalyze the conversion of carbonyls 

to hydroxyl groups. In basic aqueous media however, the carbonyl group can be 

hydrated to form a geminal diol via nucleophilic addition of hydroxyl ion (OH-). Since 

our titration experiments were conducted in excess KOH, we can say this difference in 

hydroxyl groups is attributed to the aldehydes that were converted to geminal diols. We 

believe that the majority of carbonyl groups in CNDs would exist as aldehydes based 

on the large peak in Figure 2.3 around 2900 cm-1 that is assigned the sp2 C-H stretch. 
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Since our titration experiments were conducted in excess KOH, we can say this 

difference in hydroxyl groups is attributed to the aldehydes that were converted to 

geminal diols. This conversion of the carbonyl group also occurs in acidic media by 

protonation of the carbonyl oxygen (and subsequent electrophilic attack by water) but 

we expect most, if not all, carbonyls have already been converted before the reverse 

titration. In either case, one carbonyl is converted to two pH-sensitive hydroxyl groups. 

This skews the hydroxyl group titration result to be roughly three times larger than 

observed for CNDs since the hydroxyl and carbonyl XPS peak areas are nearly the 

same. With that consideration in mind, this changes the OH:CO2H ratio from 1.54:1 to 

0.51:1 which matches better with the XPS peak areas. 

For GQDs, if we assume that all carbonyls were converted to two hydroxyls as we 

did for CNDs, the C=O:CO2H ratio would then be 0.65:1 which is still largely different 

than the XPS peak area ratios. We hypothesize that the carbonyl groups on GQDs are 

embedded into the carbon nano-domain system and are more like quinones than 

benzaldehydes. With GQD having a large π-conjugated system on the order of a few 

tens of nanometers, forming a diol with these carbonyl groups would disrupt the 

aromaticity of this system. Instead, we speculate that these carbonyls are more quinine-

like and are converted into one phenol group in order to maintain aromaticity. A 

previous work by Isaacs et al. explored the mechanism behind the reduction of 

quinones to hydroquinones using ascorbic acid as a catalyst.49 Based on the structure 

of GQDs, it is reasonable to expect some catalytic amount of vicinal –OH on a C-C 

double bond, which is the initiating functional group in that work. As such, we can treat 

the GQD’s carbonyl groups as being catalytically converted to a single phenol. 

Therefore, the -C=O:-CO2H ratio would be 1.31:1 as observed in the titration data 

which is similar to the XPS peak areas.  

By coupling these results with the sizes of CQDs found in TEM and the relative 

ratio of C1s peaks assigned in XPS, we can take the titration data further to fully 

quantify the average number of functional groups on a single carbon dot and ultimately 

build an accurate model of the carbon dots produced by top-down and bottom-up 

approaches. The representative images from the data collected in this work are shown 
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in Fig. 2.8 and 2.9. This work details the variety of methods to building model carbon 

dots for any synthesis. We feel this information is crucial to understanding the role that 

carbon quantum dots can serve for various applications including wastewater treatment 

or photodynamic therapy. In addition, these model compounds can provide 

computational chemists the structure needed to fully understand the mechanisms of 

fluorescence. Only with a great understanding of the structure-function relationship can 

researchers use CQD as inexpensive and high-performance materials in systems that 

require expensive catalysts.  

 

Figure 2.10: Representation of a bottom-up synthesized carbon nanodot using data 

from this work. For image clarity, methyl groups were added as a means to show the 

surface passivation instead of larger alkyl chains. 

 

Figure 2.11:  Representation of a top-down synthesized graphene quantum dot using 

data in this work. A 5 nm x 5 nm window is used to show the distribution of functional 

groups. 
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2.4 Lifetime Measurements of Carbon Quantum Dots in Collaboration with 

Michigan State University 

A recent collaboration with Dr. Gary Blanchard from Michigan State University 

yielded interesting results concerning the lifetimes of CQDs made from either a top-

down or bottom-up approach. Overall, five samples were submitted with two distinct 

sample sets. In the first sample set, CQDs were made using a top-down approach by 

chemically oxidizing carbon nano-onions (CNOs) with nitric and sulfuric acid. In this 

case, sulfuric acid acts as an intercalating agent which assists in “peeling off” layers of 

the carbon nano-onion. At the same time, nitric acid can strongly oxidize either the 

inherent defects of the CNO or the exposed edges of the carbon nano-onion layer. These 

two processes result in the formation of graphene quantum dots (GQDs). Generally, 

GQDs produced in this way are large, aromatic sp2-carbon planes about 5 to 10 nm in 

diameter with edges terminated with hydroxyl, carbonyl, and carboxyl functional 

groups. The number and proportion of these functional groups vary from particle to 

particle but can be quantitatively averaged using X-ray Photoelectron Spectroscopy. 

Previous results with Atomic Force Microscopy suggest that the ox-GQD are not 

monodisperse but instead tend to aggregate into stacks of three to five. 

In this study, we considered a recent report by Wang et al. in which ultrafast 

spectroscopy was used to identify emissive states in GQDs.50  Historically, only two 

states have been discussed and are known commonly as the intrinsic and extrinsic 

states. The intrinsic state is hypothesized to originate solely from the aromatic sp2-

carbon nano-domain in which delocalized π-electrons are promoted to π* orbitals. As 

the GQD relaxes from the excited state, non-radiative processes such as vibrational 

relaxation down to the lowest vibronic (vibrational-electronic) state compete with 

fluorescence. As the size of the aromatic nano-domain increases, more of this 

competition can occur which red-shifts the emission as per the quantum confinement 

effect. The extrinsic state (or surface state), on the other hand, arises from the edge-

terminating functional groups. It is still under debate whether the extrinsic state is the 

combination of all emissive functional groups or individual fluorophores. The Wang et 

al. report details three distinct emissive states from the results of time-correlated single-
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photon counting (TCSPC) as well as femtosecond transient absorption (TA) 

spectroscopy.50 The first state suggests green fluorescence from a bright-state 

functional group that is affected by a nearby second bright-state functional group. The 

second emissive state originates from a standalone bright-state functional group, such 

as a hydroxyl either on the edge or as a defect in the aromatic nano-domain. This 

functional group has no other functional group neighbors with high electron density, 

therefore there is no channel to remove energy from this bright fluorophore. The third 

emissive state is assigned to the intrinsic state whose bandgap is sensitive to the size of 

the aromatic nano-domain. Interestingly, this report suggests the intrinsic state is an 

optically dark state and is not a primary component of GQD fluorescence. The source 

of GQD fluorescence is assigned to the standalone functional group (typically with 

blue-shifted emission) and synergistically coupled functional groups (typically with 

red-shifted emission).  

As the theme of this dissertation is to uncover the structure-function relationship in 

carbon quantum dots we wanted to see if we could find a similar effect in fluorescent 

lifetime measurements. We prepared five samples belonging to two sample sets. The 

first sample set was synthesized by a top-down approach and some of these samples 

were reduced versions of GQD using either hydrothermal reduction or chemical 

reduction with NaBH4. The second sample set contains a sample of bottom-up 

synthesized CQD for comparison.  

The data we received from Dr. Blanchard originated from a parallel-polarized 

fluorescence detector and a perpendicularly-polarized fluorescence detector. This 

detector arrangement can provide fluorescence polarization and anisotropy data, which 

is discussed later in this section. The overall lifetime data is found by adding one 

parallel-polarized data set with two perpendicularly-polarized data sets. This accounts 

for all three dimensions in which the sample may emit a photon. The raw data was fit 

with OriginLab software using the following equation:  

𝑦 = 𝑦0 + 𝐴𝑒−𝐵𝑡1 + 𝐶𝑒−𝐷𝑡2  

This equation was used for fitting for two reasons: (i) it provides the best numerical 

fit for the data and (ii) we wanted to first assume a simple model relating to “core” 
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(aromatic nano-domain) and “defect” (functional groups) state emission. The variables 

in the equation are as follows. y0 relates to the y-intercept of the fitted data, but we 

usually found this to be nearly zero as the exponential fits were more prominent. Terms 

A and C are the pre-exponential factors which relate to the contribution of each 

exponential to the fit. Terms B and D are relate to the observable lifetime in each fitted 

exponential. If we assume y0 = 0 and integrate the equation, we can find the relative 

contribution of each time component as: 

𝐴 ∗ 𝐵

𝐴 ∗ 𝐵 + 𝐶 ∗ 𝐷
+

𝐶 ∗ 𝐷

𝐴 ∗ 𝐵 + 𝐶 ∗ 𝐷
= 1 

This allows us to observe which time component is more prevalent in any given 

excitation and emission wavelength in which we have fitted data. A simple way to 

interpret this data is to consider that the lifetime relates to an event and the relative 

contribution of that component relates to the frequency of those events. Understanding 

this provides us with information on if core state emission or defect state emission is 

dominant at a specific excitation wavelength and emission wavelength pair. 

First, we will compare two identically-synthesized GQD, termed ox-GQD. All of 

the data for the top-down synthesized GQD experiments are shown in Table 2.2. Ox-

GQD have two major lifetime components when excited by 330 nm light: a short 

component at 700 ps and a longer lifetime component at 2600 ps. Generally, these 

lifetimes are unchanged (within < 5 % deviation) regardless of the emission wavelength 

which was 430 nm and 530 nm. However, looking at the relative contributions of each 

lifetime component, we see a substantial shift. At 430 nm emission, the short lifetime 

component is dominant with about 75 % of the total fit. At 530 nm emission, the long 

lifetime component becomes dominant at around 63 % of the total fit. As such, we 

hypothesize that the short lifetime component relates to the core state - experiencing 

less non-radiative decay and giving rise 430 nm emission. The fluorescence at 530 nm 

emission shows that non-radiative energy transfer from the core to the defect state has 

occurred and that the defect state is most responsible for the longer wavelength 

emission. 
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Chemical reduction is an effective means to alter the distribution of functional 

groups on ox-GQD. Using a mild reducing agent like NaBH4 allows for the change of 

carbonyls to hydroxyls without significantly disrupting the remainder of the GQD. 

Shown below in Figure 2.10 is a comparison of XPS C1s spectra that shows ox-GQD 

and chemically reduced GQD (CR-GQD). It is clearly shown that chemical reduction 

using NaBH4 converted carbonyls to hydroxyls. We suspect the increase of sp3-carbon 

originates from the chemical reduction of quinone-like carbonyls to a hydroxyl group 

attached to a sp3-carbon. Using an excitation wavelength of 330 nm and emission 

wavelength of about 450 nm, the ox-GQD show two components: one with a pre-

exponential factor of nearly 70% and a lifetime of about 700 ps, the other with a pre-

exponential factor of nearly 30% and a much longer lifetime of 2600 ps. Upon chemical 

reduction, the first time component shows 30% contribution with about 700 ps. The 

second time component makes up about 70% of the total spectrum with a lifetime again 

around 2600 ps. The lifetimes themselves are unaffected however the contributions of 

these lifetimes toward the total spectrum are greatly changed. With this data, we can 

affirm that the longer time component belongs to the functional groups. We hypothesize 

that the carbonyl groups extend the π-conjugation of the sp2-carbon nano-domain 

whereas the hydroxyl groups remove electron density from the nano-domain, isolating 

itself as an independent fluorophore. With an increased density of hydroxyl groups, we 

find the dominant component of observed fluorescence originates from these isolated 

fluorophores. 
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Table 2.2: Results from fitted data obtained through TCSPC lifetime measurements. 

The top-down synthesized graphene quantum dots show similar lifetimes and relative 

contributions of lifetimes despite differing synthesis conditions. Upon chemical or 

hydrothermal reduction, there are significant changes in lifetimes and relative 

contributions of lifetimes compared to the original sample. As these reduction methods 

are generally mild, there is a clear structure-function relationship between the 

functional groups of GQD and observed fluorescence lifetimes.  
 

A B (ps) C D (ps) A*B C*D % A*B % C*D 

OX-GQD1:                 

Ex 330, em 430 3253 694 235 2605 2257373 612175 78.6 % 21.4 % 

Ex 330, em 530 3427 724 1595 2575 2480930 4108525 37.7 % 62.3 % 

HT-GQD:                 

Ex 330, em 430 3676 935 3152 6074 3436593 19142818 15.2 % 84.8 % 

Ex 330, em 530 2407 1110 1460 5359 2672214 7825748 25.5 % 74.5 % 

OX-GQD2:                 

Ex 330, em 440 0.889 710 0.091 2568 631.2 233.7 73.0 % 27.0 % 

Ex 330, em 510 0.639 686 0.296 2504 438.4 741.2 37.2 % 62.8 % 

CR-GQD:                 

Ex 330, em 430 0.570 730 0.362 2592 416.1 938.3 30.7 % 69.3 % 

Ex 330, em 500 0.594 982.6 0.383 4466 583.7 1710.5 25.4 % 74.6 % 
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Figure 2.12: A comparison of C1s XPS Spectra for OX-GQD and CR-GQD. This shows 

the mild reduction of aromatic carbonyls to non-aromatic hydroxyls. Carboxylic acid 

groups were largely unaffected by chemical reduction with NaBH4. 

Interestingly, at longer emission wavelengths CR-GQD shows much longer 

lifetimes for both components (nearly 1000 ps and 4500 ps). Typically, chemical 

reduction increases the photoluminescent quantum yield (PLQY) by eliminating non-

radiative decay channels attributed to the functional groups. In this case, since 

carbonyls are being converted to hydroxyls, it can be said that carbonyls are a non-

radiative decay channel as an independent fluorophore. Usually for CR-GQD, the 

emission spectra (and the position where PLQY is measured) is shifted toward higher 

energy or is blue-shifted. As such, seeing the shift only in time component contribution 

and not in the lifetimes seems consistent with the altered chemical state of CR-GQD. 

At longer emission wavelengths however, interpretation is more difficult. We 

hypothesize that since the emission is enhanced toward the blue end of the visible 

spectrum, longer wavelength emission suffers as a result and PLQY is likewise 

suppressed. This reduction in PLQY would decrease the radiative rate constant and 

lengthen the lifetimes of all time components. A unique observation we found in these 

results is that both lifetime components are extended by about 150% which supports a 

global reduction in the radiative rate constant. Another interesting observation is that 

the pre-exponential factors of CR-GQD are relatively unchanged compared to the short 

wavelength results. We hypothesize that this means that during chemical reduction, the 

core is not significantly changed and the frequency of energy transfers from core to 

defect state is also relatively unchanged. 
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Hydrothermally reduced GQDs (HT-GQDs) show very different results than CR-

GQD. First, we see both an increase of the lifetimes as well as a shift in pre-exponential 

factor. This is also shown in the longer wavelength emission but to a greater extent. As 

with CR-GQD, hydrothermal reduction can increase the PLQY and is contradictory to 

the results. However at high temperatures, hydrothermal treatment can also cut 

typically stable bonds that would not be cleaved by chemical reduction. As there is a 

greater effect of reduction by means of high-temperature hydrothermal treatment, the 

cleavage of emissive defect states could be the origin of the global increase of lifetimes. 

The most significant change in HT-GQD occurs with 330 nm excitation and 430 nm 

emission. We observe in this wavelength set that the high-temperature hydrothermal 

treatment has enhanced the defect state relative contribution to nearly 85%. This high 

percentage of the defect state can be explained in the following ways: (i) upon 

hydrothermal cutting, more functional groups are generated due to supercritical water 

acting as a reactant, and (ii) in comparison to CR-GQD, the peak fluorescence may be 

further blue-shifted and thus non-radiative decay channels dominate in this low PLQY 

wavelength. Unfortunately, we do not have any characterization data or steady-state 

fluorescence data of this sample to support either of these claims. 

CND have a very different chemical structure than ox-GQD as seen in Fig. 2.11. 

First, there is a greater amount of sp3-carbon which can encapsulate and shield sp2-

carbon nano-domains from the environment. This kind of passivation can hinder 

exciton mobility and reduce non-radiative decay channels. This is seen clearly in the 

much greater PLQY (at short wavelengths) of CND compared to ox-GQD. In the 

lifetime data (Table 2.3), there are three lifetime components for CNDs as opposed to 

the two components in GQD. Accordingly, the equation below was used for a three-

component fit. 

𝑦 = 𝑦0 + 𝐴𝑒−𝐵𝑡1 + 𝐶𝑒−𝐷𝑡2 + 𝐺𝑒−𝐻𝑡3 

We speculate the very short lifetime of less than 100 ps relates to core state emission 

of fully or near-fully passivated sp2-carbon nano-domains. We hypothesize that these 

small, fully-passivated aromatic regions have no means to transport energy other 

functional groups. With a lack of non-radiative decay channels, this allows the exciton 
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to quickly relax back to the ground state and emit a photon with a small Stokes shift. 

As before, the t2 component relates to partially passivated sp2-carbon nano-domains as 

seen in GQDs. Interestingly, the t3 lifetime component for CND is about 3000 ps 

compared to 2600 ps for ox-GQD. According to our XPS spectra, there is a higher 

concentration of carbonyl and hydroxyl groups in CND than ox-GQD. As a result, the 

non-radiative decay channel related to carboxyl groups is suppressed, lengthening the 

lifetime of the defect state. These components and their relative contributions are also 

seen at longer emission wavelengths with little change overall. We suspect any changes, 

however small, may be in part to the inhomogeneity of the size of the sp2-carbon nano-

domain. Though CND are generally blue-shifted compared to ox-GQD, the excitation-

dependence encompasses a wider range of wavelengths than ox-GQD. This is likely 

due to the broad range of wavelengths that can excite a myriad of nano-domain sizes. 

Additionally, the contributions of each time component (particularly t2 and t3) in CND 

mimic those of HT-GQD and CR-GQD. This is likely due to the similar amounts of 

functional groups (primarily hydroxyl) in CND and reduced GQD. 

 

Figure 2.13: A comparison of C1s XPS Spectra between bottom-up synthesized carbon 

nanodots and top-down synthesized graphene quantum dots. The most significant 

difference lies in the elevated amount of sp3-carbon in CNDs compared to GQDs. These 

two carbon nanoparticle do however have a slight difference in functional group 

distribution. CNDs have more hydroxyl groups whereas GQDs have more carbonyl 

groups. 
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Table 2.3: Results from fitted data obtained through TCSPC lifetime measurements. 

The bottom-up synthesized carbon nanodots show a large difference compared to the 

top-down synthesized graphene quantum dots. We attribute the first, very short lifetime 

component to relate to fully passivated aromatic regions. Without a means to transfer 

energy through non-radiative processes, the exciton fluoresces quickly. The other two 

lifetime components relate to similar emissive features found in GQDs: the core and 

the defect states. 

 
A B (ps) C D (ps) G H (ps) % A*B %C*D %G*H 

CND:                 
 

Ex 330, em 430 0.347 63.5 0.418 513.8 0.266 2678.5 0.023212 0.226243 0.750546 

Ex 330, em 460 0.287 56.9 0.415 541.2 0.300 3087.9 0.01399 0.192408 0.793602 

Ex 360, em 430 0.260 60.1 0.392 579.8 0.350 2790.8 0.012811 0.186344 0.800844 

Ex 360, em 450 0.161 41.2 0.391 526.5 0.387 2806.8 0.005107 0.15851 0.836382 

Ex 385, em 430 0.205 77.3 0.382 641.8 0.417 2983.3 0.010529 0.162897 0.826574 

Ex 385, em 470 0.188 83.1 0.402 585.9 0.402 2823.2 0.011271 0.169926 0.818802 

Ex 385, em 560 0.171 37.0 0.499 575.3 0.336 2808.8 0.005114 0.232044 0.762842 

 

Overall, we found this collaboration promising in that we were able to determine 

another structure-function correlation with CQDs by observing the clear difference 

between the core and defect emissive states in GQDs and CNDs. There was also a 

distinct change in both the relative contributions and lifetimes of GQDs when 

chemically or hydrothermally reduced. This supports the importance of the “molecule-

like state” as first discussed by Wang et al. in the overall fluorescence of GQDs and 

CNDs.50 Finally, a third, very short-lived time component emerges upon studying the 

bottom-up synthesized CNDs. In this way, we were able to determine the effect that 

complete surface passivation has on observed fluorescence lifetimes. In the future, this 

author hopes to continue this collaboration and determine further the structure-function 

relationship in heteroatom-doped and other post-synthesis modified CQDs. 
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Chapter 3: Temperature-Dependent Nitrogen Doping and its effect on the Optical 

Properties of Graphene Quantum Dots 

Parts of this chapter including text and images are taken from the published work 

“Differentiating the Impact of Nitrogen Chemical States on Optical Properties of 

Nitrogen-Doped Graphene Quantum Dots” RSC Advances, 2017, 7, 48263 - 48267 

with permission from the Royal Society of Chemistry. The aim of this work is to 

fundamentally understand the optical properties of top-down synthesized oxidized 

graphene quantum dots (ox-GQDs) and nitrogen-incorporated graphene quantum dots 

(N-GQDs). Nitrogen dopants were introduced by controlling hydrothermal temperature 

during post-synthetic addition of aqueous ammonia. This was found to be an effective 

method to incorporate different chemical states of nitrogen atoms into GQDs: amine, 

pyridinic, pyrrolic, and quaternary N. Each of these chemical states were identified 

using various characterization techniques and related to optical properties. The results 

herein show that hydrothermal treatment temperatures below 150 °C produce primarily 

surface-terminated amines and amides.  Above 150 °C, nitrogen chemical states were 

dominated by pyridinic, pyrrolic and quaternary N. Additionally, pH-sensitive 

chemical states (amines and pyridines) were studied to investigate the pH-tunable 

chemical states and observed fluorescence. 

3.1 Introduction and Motivation for Study 

Graphene quantum dots (GQDs) are an emerging carbon-based nanomaterial with 

unique chemical structure and optical properties. Various methods have been utilized 

for the top-down synthesis of GQDs, including: chemical oxidation,1-3 electrochemical 

preparation,4 hydrothermal cutting,5 and electric arc method.6  The chemical structure 

of GQDs constitutes two components: a sp2-hybridized graphitic domain and abundant 

chemical functional groups surrounding it. The band gap of GQDs can be tuned by 

modifying these components. First, the physical dimension of GQDs such as size and 

thickness influences band gap. Second, the band gap can be tuned by introducing 

heteroatoms either by modifying surface functional groups of GQDs or substituting 

carbon atoms in nanographene sheets.7-10 These modifications enable the tuning of not 

only electronic property of GQDs but also their interfacial properties, thereby making 
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GQDs attractive for many applications such as bioimaging,11 photodynamic therapy, 12 

wound disinfection,13 heavy metal sensing,14 electrocatalysis,15 and photovoltaic 

devices.16 GQDs are more biocompatible than other types of carbon nanomaterials, for 

example, carbon nanotubes, graphene, and graphene oxide.17-18 GQDs have a potential 

to replace expensive and toxic inorganic quantum dots such as CdSe.  

Nitrogen is one of the most studied heteroatoms in the research of carbon materials. 

With five valence electrons, nitrogen has the role of electron donor in a carbonaceous 

system. Recent literature demonstrated the red-shifted photoluminescence (PL) of 

nitrogen-containing GQDs with enhanced quantum yield.7-8 The red-shifted PL was 

attributed to the reduction of band gap. The incorporation of nitrogen atoms into a sp2 

carbon framework in the bottom-up synthesis of CQDs has likewise shown increased 

QY but with blue shifting of PL due to the strong electron affinity of nitrogen atoms 

which invokes a partial positive charge on adjacent carbon atoms.19-20 In addition to 

optical properties, nitrogen doping on carbon nanomaterials have been shown to 

enhance the electrocatalytic activity toward oxygen reduction reaction (ORR).19  

Recently, Tetsuka et al. reported that absorption/emission properties of amino-

functionalized GQDs were finely tuned by controlling hydrothermal temperature from 

70 °C to 150 °C.7 In this report, the shift of spectral position and the enhancement of 

fluorescence intensity were mostly attributed to N-related surface functionalities such 

as primary amines and amides. However, the role of edge-terminating nitrogen sites, 

i.e.: pyridines and pyrroles, and core N sites such as quaternary N were largely 

neglected. The maximum content of nitrogen atoms was observed at the lowest 

hydrothermal temperature and the content of nitrogen became reduced as the 

temperature was raised.7 In support of these experimental observations, a recent 

computational work likewise shows the quantity of amine N is connected to the red-

shifted behavior of GQDs.8 In contrast to the Tetsuka study, a recent article brought 

about the importance of pyridinic, pyrrolic and quaternary N sites. This study employed 

much higher hydrothermal temperatures (>150 °C) and observed blue-shifted emission 

with higher quantum yield (Φ = 34.5%).9 Until now, there were very few studies 

differentiating the effect of different N chemical states (i.e., amines, pyridines, 
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pyrroles) on the optical properties of top-down-synthesized GQDs. However, a recent 

work by Qu et al. has shown a pronounced differentiation of pyrrolic and graphitic N 

states in the bottom-up synthesized carbon nanodots.21 This report utilizes the 

hydrothermal dehydration of urea and citric acid to show a direct correlation between 

the quantity of graphitic N and increase of PLQY. In addition, varying the nitrogen 

source from urea to ethylenediamine greatly enhanced the PLQY to 94%. Carbon 

nanodots made in this way have also been employed as fluorescent probes for in vitro 

and in vivo studies with excellent cellular uptake and biocompatibility in mice.22 

In this study, hydrothermal temperature was controlled as an effective method to 

incorporate different chemical states of nitrogen atoms into GQDs. Four different 

chemical states of nitrogen atoms (amine, pyridinic, pyrrolic, and quaternary) were 

identified and related to absorption/emission properties. Moreover, pH-dependent 

emission spectra was studied to probe chemical states of nitrogen atoms and to 

investigate the relation between nitrogen location and emission. 

3.2 Materials, Methods and Characterization 

Carbon nano-onions were prepared by the thermal annealing of commercially 

available nanodiamond powders (Nanostructured and Amorphous Materials, Inc., 

Houston, TX) at 1650 °C for 1h under the flow of helium in a graphitization furnace. 

H2SO4, HNO3, K2CO3 and NH4OH were purchased from Sigma-Aldrich. The 200 mL 

stainless steel hydrothermal reactor houses a PTFE sample chamber in which the ox-

GQDs were reacted with aqueous ammonia. All samples were dialyzed against 

deionized water in 1 kDa MWCO dialysis bags purchased from Spectrum Labs. 

The size of GQDs and N-GQDs were characterized by a JEOL JEM-2200FS, 200 

kV electron acceleration voltage TEM and the thickness was measured with a Park 

Systems XE-70 AFM operating in non-contact mode. TEM samples were prepared by 

dipping a TEM copper grid (Ted Pella, lacey carbon support film) into a dilute solution 

of GQD sample. AFM samples were prepared by dropping 5 µL GQD sample onto a 

mica substrate disc and spin casting to dry. FTIR spectra were taken with a Thermo 

Scientific Model Nicolet 6700 FTIR Spectrometer operating with a diamond ATR 

crystal. FTIR samples were prepared by dropping 5 µL GQD samples onto the ATR 
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crystal and drying in an oven until a thick film was observed. The XPS characterization 

was conducted with a Thermo Scientific Model K-Alpha XPS instrument. The XPS 

samples were prepared by dropping 5 µL of GQD sample onto a silicon wafer and 

drying between depositions until a thick film could be observed. Absorption spectra 

were collected with a Thermo Scientific Evolution 201 Spectrophotometer and 

emission spectra were recorded with a Jobin-Yvon Spectromax 4 Spectrofluorometer. 

Optical properties were measured using a quartz cuvette with 10 mm path length. 

Photoluminescent quantum yield measurements (PLQY) were taken using the 

Integrating Sphere Attachment on the Horiba Fluoromax-C-Plus. The excitation slit 

width is 0.2 nm and the emission slit width is 2 nm for all samples. 

The synthesis of oxidized GQDs (ox-GQDs) and the subsequent nitrogen 

incorporation (N-GQDs) are described as follows. ox-GQDs were prepared by reacting 

100 mg of carbon nanoonions with a 1 : 3 ratio of concentrated H2SO4 : HNO3 under 

95 °C reflux and vigorous stirring for 4 hours. The reaction was terminated when the 

reflux solution became clear and brownish in color. Afterwards, this solution was first 

centrifuged at 4000 rpm for 90 minutes to allow the precipitation of unreacted carbon 

nano-onions. Then, the supernatant was neutralized with K2CO3 and dialyzed for 6 days 

with a dialysis bag (1 kDa MWCO) to remove excess ions from the neutralization. 

After dialysis, the resulting solution contains the purified ox-GQD in water. N-GQDs 

were prepared by reacting ox-GQDs with NH4OH in a hydrothermal reactor, as similar 

to the report by Tetsuka et al.7 First, ox-GQDs were mixed with 5.0 M NH4OH (1:2 

v/v). The mixture was then placed into a 200 mL stainless steel autoclave reactor for 5 

hours. The hydrothermal temperature of the reaction was varied from 90–190 °C. N-

GQD-X prepared at a specific temperature such as 150 °C will now be referred as 

NGQD-150. A simplified scheme of this procedure is shown below in Scheme 3.1. 

 



82 

 

 

Scheme 3.1: Synthetic scheme of ox-GQD and N-GQD-X. Structures are 

representative and do not reflect the exact chemical structure of carbon nano-onions, 

ox-GQDs, and N-GQDs. 

Morphology and chemical structure are important factors to determine the optical 

behaviour of ox-GQDs and N-GQDs. The size and the thickness of ox-GQDs and N-

GQDs were characterized by TEM (JEOL JEM-2200FS, 200 kV) and atomic force 

microscopic (AFM) characterizations (Park Systems XE-70). The results of TEM and 

AFM characterizations are shown in Fig. 3.1b-g. The size of ox-GQDs varies from 20-

30 nm. As the functional groups are modified, electrostatic interactions and hydrogen 

bonding may induce some amount of aggregation which can be seen for N-GQDs. 

AFM characterization of ox-GQDs and N-GQDs revealed isolated particles. As shown 

in the histogram (Fig. 3.1f and 3.1g), both ox-GQD and N-GQD show an average 

thickness of 2.5 nm, indicating that both particles are made of multiple stacks of 

graphene nanosheets.5  

 

Figure 3.1: TEM images of ox-GQD (b) and N-GQD (c), AFM images of ox-GQD (d) 

and N-GQD (e), and the histogram of the thickness of ox-GQDs (f) and N-GQDs (g). 
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Hydrothermal temperature (90 – 190 °C) greatly influenced the chemical 

functionalities and the incorporated nitrogen atoms in N-GQDs prepared. The chemical 

structure of N-GQDs and chemical states of nitrogen incorporated were probed by FT-

IR and XPS analyses. FT-IR spectra were recorded with a Thermo Scientific Model 

Nicolet 6700 FT-IR Spectrometer and are displayed in Fig. 3.2. As shown in Fig. 3.2, 

FT-IR spectra of ox-GQD exhibited the presence of hydroxyl, carbonyl and carboxyl 

groups located at 1000 cm-1 (C-O), 1700 cm-1 (C=O), 2500 cm-1 (CO2H) and 3300 cm-

1 (-OH), respectively. Compared to ox-GQDs, a new peak appeared at 1070 cm-1 in N-

GQD-150, which is assigned to C-N bond. In addition, the peak at 1700 cm-1 became 

broadened due to the overlay of amide and carbonyl C=O. The carboxylic acid peak at 

2500 cm-1 was suppressed in N-GQD-150, supporting the conversion of carboxylic 

group into amine or amide. Most notably, the broad peak at 3300 cm-1 in ox-GQD due 

to hydrogen bonded O-H stretching became much narrower in N-GQD, indicating the 

substitution of hydroxyls to primary and secondary amines.  

XPS characterization was conducted with a Thermo Scientific Model K-Alpha XPS 

instrument. The high resolution spectra were deconvoluted using Avantage software 

by Thermo Scientific. Peak position for each chemical state is detailed in the main text 

as well as in Table 3.1. XPS analyses were conducted after drying of GQD solution 

mounted on a silicon wafer. Fig. 3.3a shows hypothetical structure of N-GQDs where 

nitrogen atoms are incorporated into various sites. The nitrogen-incorporated sites 

include pyridinic N (398.5 eV, N1), amine N (399.7 eV, N2), pyrrolic N (400.2 eV, 

N3), and quaternary N (401.3 eV, N4). N1s peaks were assigned according to the NIST 

Standard Reference Database.23 The assignments of XPS peaks to different chemical 

states by previous studies and this report are summarized in Table 3.1. 
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Figure 3.2: FTIR Spectra of N-GQD-150 (top) and ox-GQD (bottom). 

 

 

Table 3.1: XPS N1s peak assignments in recent literature and this work. 

Experimental 

Work 

Year    

Published 

~398.5 eV ~399.5 eV ~400 eV >401 eV 

Tetsuka et al.7 2012 --- Amine N 

(399.7 eV) 

--- --- 

Dai et al.9 2014 --- Pyrrolic N 

(399.7 eV) 

--- Graphitic N 

(401.6 eV) 

Li et al.10 2012 Pyridinic N 

(398.5 eV) 

--- --- Pyrrolic N 

(401 eV) 

NIST Database23 2012 Pyridinic N  

(398.6 eV) 

Amine N 

(399.4 eV) 

Pyrrolic N 

(399.9 eV) 

Graphitic N 

(401.3 eV) 

This work 2015 Pyridinic N 

(398.5 eV) 

Amine N 

(399.3 eV) 

Pyrrolic N 

(400.2 eV) 

Graphitic N 

(401.3 eV) 
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Fig. 3.3 shows the high resolution XPS N1s peaks of N-GQDs synthesized at N-

GQD-90, N-GQD-150, and N-GQD-190. The high resolution XPS N1s peaks of N-

GQDs were deconvoluted to resolve the relative fraction of N1, N2, N3 and N4. While 

N-GQD-90 and N-GQD-150 are mainly deconvoluted with N1, N2, and N3, the N-

GQD-190 showed the significant fraction of N4 (quaternary N). Fig. 3.3b shows the 

evolution of the relative fraction of N1 - N4 sites present in N-GQDs synthesized at 

different hydrothermal temperature. Clearly, the total N content of N-GQDs increased 

from 5% to 8% when hydrothermal temperature was raised up to 150 °C. Then the 

content of N went down at 170 °C and 190 °C. The reduction of nitrogen content for 

N-GQD-170 and N-GQD-190 is likely due to the hydrothermal cutting of ox-GQD, as 

consistent with the results reported by Luo et al.24 Overall, the content of amine groups 

(N2) tends to go down as temperature becomes higher. On the other hand, the content 

of other types of N edge sites such as pyridinic (N1) and pyrrolic (N3) rises until the 

temperature reaches 150 °C. At the temperature above 150 °C, the relative fraction of 

pyridinic N and pyrrolic N decrease. These N sites are converted to quaternary N in N-

GQD-190. 

  

Figure 3.3: (a) A simplified representation of nitrogen-incorporated GQDs. The four 

chemical states of nitrogen are listed as N1 (pyridinic), N2, (amine/amide), N3 

(pyrrolic) and N4 (quaternary or graphitic). (b) The percentage of N chemical states in 

N-GQDs determined by N1s high resolution XPS spectra. The average nitrogen content 

(5.3 ± 1.7 %) is denoted by the dashed line. (c) High resolution XPS N1s spectra of N-

GQD-90, N-GQD-150 and N-GQD-190. 
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3.3 Results, Discussion and Conclusions 

Absorption and emission spectra of GQDs and N-GQDs were investigated. 

Absorption spectra were recorded with a Thermo Scientific Evolution 201 

Spectrophotometer and Emission spectra were recorded with a Jobin-Yvon Spectromax 

4 Spectrofluorometer. The excitation-dependent PL spectra for ox-GQD, N-GQD-90, 

N-GQD-150, and N-GQD-190 are shown in Figure 3.5. Fig. 3.4a shows the photograph 

of GQDs and N-GQDs dispersed in water under UV lamp (λ = 365 nm). While N-

GQD-90 and N-GQD-150 show green to yellow emission, N-GQD-170 and N-GQD-

190 exhibited much stronger blue emission.  

Fig. 3.4b presents UV-VIS absorption spectra of ox-GQDs and N-GQDs. The UV-

Vis absorption spectra display three bands (300nm, 370nm, and 470nm). The 300 nm 

peak of ox-GQDs is assigned to the π-π* transition and it is shifted to 280 nm in N-

GQDs. This blue-shift is attributed to the strong electron affinity of nitrogen atoms, 

which were reported to enhance the delocalization of electrons in the graphene 

nanodomain.9-10 The peak at 370 nm is prominent for all N-GQDs and it is assigned to 

the n-π* transition. This 370 nm band is shifted to shorter wavelength (350 nm) upon 

the increase of hydrothermal treatment temperature. This particular band is attributed 

to the effect of non-bonding orbitals from pyridinic N and pyrrolic N as previously 

described by Li et al.10 Lastly, the absorbance band at 470 nm that relates to another 

surface state n-π* transition tends to become weaker as the hydrothermal temperature 

gets higher. The 470 nm band is likely due to the amine N and shows the maximum 

absorbance in N-GQD-90 as shown in a previous report.7 From these results, the 

different surface states associated with pyridinic N, pyrrolic N, and amine N show their 

individual impact on the absorption profile of the N-GQD. It should also be noted that 

hydrothermal temperature-dependent evolutions of UV-VIS spectra are consistent with 

nitrogen-related chemical states revealed in the XPS analysis discussed above.  
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Figure 3.4: (a) The photograph of ox-GQDs and N-GQDs under a UV lamp (364 nm). 

(from left: N-GQD-90, N-GQD-110, N-GQD-150, N-GQD-170, N-GQD-190, and ox-

GQD) (b) UV-visible absorbance, (c) emission spectra, and (d) normalized emission 

spectra of ox-GQDs and N-GQD-90, N-GQD-110, N-GQD-150, N-GQD-170, and N-

GQD-190. Emission spectra of GQDs were taken at λex = 360 nm. 

Fig. 3.4c shows the emission spectra of ox-GQD and N-GQDs. Emission spectra 

were taken at excitation wavelength of 360 nm. As can be seen, emission intensity 

gradually increases as the hydrothermal temperature was raised. There are two major 

bands observed in the emission spectra of N-GQDs: 470 nm and 525 nm. Compared to 

ox-GQD, N-GQD-90 and N-GQD-110 show the red-shift of emission from 500 nm to 

525 nm. The 525 nm emission is attributed to the surface state associated with amine 

N sites. N-GQD-150 shows the emergence of a prominent new band at 470 nm. This 

band is related to the maximal content of pyrrolic N.10 For N-GQD-170, the emission 

at 525 nm is suppressed; however, the emission at 470 nm is greatly enhanced. Based 

upon the results of XPS analysis, the 470 nm emission comes primarily from pyrrolic 

N, while the 525 nm emission is related to the amine N sites. N-GQD-190 shows the 

emission enhancement at 470 nm is even greater and is assigned to the addition of 

quaternary N. The measured PLQY for the samples is as follows: ox-GQD = 0.48 %, 

N-GQD-90 = 2.51 %, N-GQD-150 = 10.07 %, N-GQD-190 = 5.89 %. Similarly with 

Qu et al.,21 our results likewise show that the presence of pyrrolic N and quaternary N 

strongly contributes to the enhanced PLQY. Overall, the samples which were 

hydrothermally treated at low temperatures contain large concentrations of amine and 

pyridinic N and displayed red-shifted emission profiles. Conversely, high hydrothermal 

treatment temperatures drive nitrogen addition toward pyrrolic and quaternary N sites. 
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These absorption and emission results clearly demonstrate the resolved energetics of 

four different N-related chemical states in N-GQD.  

In order to further probe surface functionalities of GQDs and N-GQDs, the 

emission of ox-GQD and N-GQDs was explored as a function of pH. The effects of 

tuning the quantity of carboxylic acids and phenols have been studied by Mei et al.25 

and Luo et al.24 Both functional groups were found to promote non-radiative processes 

with red-shifted emission. Although pH-dependence of GQDs and polyethylene glycol 

(PEG)-modified GQDs were reported by Zhu et al.26 and Jin et al.,8 N-GQDs with 

primary amines/amides, pyridinic, etc. toward the change of pH has been rarely 

reported. In ox-GQDs, the pH-sensitive functional groups are carboxylic acids          

(pKa ~ 5) and phenols (pKa ~ 10). Fig. 3.6a shows the pH dependence of ox-GQDs 

shows a similar trend as previous reports.8, 26 Major pH-induced changes observed for 

ox-GQDs are the enhancement of emission intensity from pH = 5 to pH = 7 and the 

suppression of emission intensity from pH = 7 to pH = 9. While pH influences the 

emission intensity of ox-GQD, a slight shift of emission position was also observed. 

The spectral position change is clearly coupled with the protonation/de-protonation of 

carboxylic acids and phenols around their respective pKa values. The origin may be 

due to either the variation of absorption cross-section in the formed charged species or 

non-radiative interaction with environment. The normalized emission spectra in Fig. 

3.6b show slightly red-shifted emission maxima with increasing pH which can also be 

linked to additional non-radiative processes such as collisional quenching.  
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Figure 3.5: Emission spectra of ox-GQD (top left), N-GQD-90 (top right), N-GQD-150 

(bottom left), and N-GQD-190 (bottom right). 

 

Figure 3.6: Emission spectra of (a,b) ox-GQD, (c,d) N-GQD-150 and (e,f) N-GQD-190 

excited with 360 nm light plotted as a function of pH. 

Figure 3.6c and 3.6d show the pH dependent emission of N-GQD-150. The most 

pronounced change in PL intensity is the significant emission enhancement at 520 nm 

from pH 5 to pH 7. Little change is observed above pH 7. This change of emission 

intensity is attributed to protonation/deprotonation of either pyridine N or amine N sites 

which both have a pKa ~ 5. The contrast between ox-GQDs and N-GQD-150 clearly 

indicates the difference in surface chemistry of the two GQDs. As reported in the work 
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by Luo24, hydrothermal treatment removes hydroxyl groups, so little change in PL 

intensity above pH 7 is expected. The different behaviour of the emission peaks at 460 

nm and 520 nm indicates that the two peaks have different origins. The normalized PL 

spectra of N-GQD-150 (Fig. 3.6d) show the red-shift of emission as the pH changes 

from 5 to 7.   

The PL spectra of N-GQD-190 (Fig. 3.6e and f) shows the pH dependence similar 

to that of N-GQD-150, but to a lesser extent. This is likely due to the reduced total 

content of nitrogen in N-GQD-190, along with the smallest quantity of pH-sensitive 

functional groups (amine and pyridine) among all N-GQD samples. The origin of the 

emission around 470 nm in N-GQD-150 and N-GQD-190 is hypothesized as pyrrolic 

and quaternary nitrogen. These two functional groups have a negligible pH dependence 

in aqueous media, so the 470 nm emission would be unaffected by pH change. The 

enhanced emission intensity at pH > 7 is due to the contribution of 520 nm emission 

coming from amine and pyridinic N sites. As can be seen in Fig. 3.6e and 3.6f, N-GQD-

190 also shows the red-shifted emission maxima but to a lesser degree due to its smaller 

quantity of amine and pyridinic N sites. 

The results herein clearly demonstrate the relation between nitrogen-related surface 

states and emission property. Overall, with the increase of the hydrothermal 

temperature, the amount of pyridinic and pyrrolic nitrogens relative to amine nitrogen 

is enhanced. The total content of nitrogen atoms was found to be maximal at 150 °C. 

At lower temperatures, amine groups were predominant as a result of a kinetically-

favored addition of aqueous ammonia. At higher temperature, surface amines are 

converted to edge-sites (pyridinic or pyrrolic), core N sites (quaternary), or partially 

removed signifying a thermodynamically favourable process. These results clearly 

differentiate the impact of N chemical states on optical behaviour of GQDs. This 

understanding is critical for developing finely tuned, high-performance nanoparticles 

that are also more environmentally-friendly. Fundamentally understanding the effects 

that specific nitrogen chemical states have on carbon nanomaterials will bolster their 

potential use in optoelectronics, bioimaging, photo- and electrocatalytic applications.  

 



91 

 

3.4 Chapter 3 References 

1. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; 

Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. 

A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M., Graphene Quantum Dots Derived from 

Carbon Fibers. Nano Letters 2012, 12 (2), 844-849. 

2. Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C. 

M., One-step and high yield simultaneous preparation of single- and multi-layer 

graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry 

2012, 22 (18), 8764-8766. 

3. Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z., In Vivo NIR 

Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon 

Dots Produced from Carbon Nanotubes and Graphite. Small 2012, 8 (2), 281-290. 

4. Shinde, D. B.; Pillai, V. K., Electrochemical Preparation of Luminescent Graphene 

Quantum Dots from Multiwalled Carbon Nanotubes. Chemistry-a European Journal 

2012, 18 (39), 12522-12528. 

5. Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H., Hydrothermal Route for Cutting 

Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced 

Materials 2010, 22 (6), 734-+. 

6. Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; 

Mustelin, T., Isolation and Characterization of Fluorescent Nanoparticles from Pristine 

and Oxidized Electric Arc-Produced Single-Walled Carbon Nanotubes. The Journal of 

Physical Chemistry B 2006, 110 (2), 831-836. 

7. Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, 

A., Optically Tunable Amino-Functionalized Graphene Quantum Dots. Advanced 

Materials 2012, 24 (39), 5333-5338. 

8. Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S., Tuning the 

Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of 

Functional Groups. ACS Nano 2013, 7 (2), 1239-1245. 

9. Dai, Y.; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, 

T. H.; Sun, Y.; Zeng, J., Doping: Versatile Graphene Quantum Dots with Tunable 

Nitrogen Doping. Particle & Particle Systems Characterization 2014, 31 (5), 509-509. 

10. Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L., Nitrogen-Doped 

Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the 

American Chemical Society 2012, 134 (1), 15-18. 

11. Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; 

Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B., Strongly green-

photoluminescent graphene quantum dots for bioimaging applications. Chemical 

Communications 2011, 47 (24), 6858-6860. 



92 

 

12. Markovic, Z. M.; Ristic, B. Z.; Arsikin, K. M.; Klisic, D. G.; Harhaji-Trajkovic, L. 

M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Kravic-Stevovic, T. K.; Jovanovic, S. 

P.; Milenkovic, M. M.; Milivojevic, D. D.; Bumbasirevic, V. Z.; Dramicanin, M. D.; 

Trajkovic, V. S., Graphene quantum dots as autophagy-inducing photodynamic agents. 

Biomaterials 2012, 33 (29), 7084-7092. 

13. Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X., Graphene Quantum Dots-Band-Aids 

Used for Wound Disinfection. ACS Nano 2014, 8 (6), 6202-6210. 

14. Sun, H.; Gao, N.; Wu, L.; Ren, J.; Wei, W.; Qu, X., Highly Photoluminescent 

Amino-Functionalized Graphene Quantum Dots Used for Sensing Copper Ions. 

Chemistry-a European Journal 2013, 19 (40), 13362-13368. 

15. Li, Q.; Zhang, S.; Dai, L.; Li, L.-s., Nitrogen-Doped Colloidal Graphene Quantum 

Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction 

Reaction. Journal of the American Chemical Society 2012, 134 (46), 18932-18935. 

16. Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L., An Electrochemical 

Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-

Acceptors for Photovoltaics. Advanced Materials 2011, 23 (6), 776-780. 

17. Zhang, R.; Liu, Y. B.; Sun, S. Q., Preparation of highly luminescent and 

biocompatible carbon dots using a new extraction method. Journal of Nanoparticle 

Research 2013, 15 (10). 

18. Wu, C.; Wang, C.; Han, T.; Zhou, X.; Guo, S.; Zhang, J., Insight into the Cellular 

Internalization and Cytotoxicity of Graphene Quantum Dots. Advanced Healthcare 

Materials 2013, 2 (12), 1613-1619. 

19. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L., Nitrogen-Doped Carbon Nanotube 

Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323 

(5915), 760. 

20. Wang, S.; Yu, D.; Dai, L., Polyelectrolyte Functionalized Carbon Nanotubes as 

Efficient Metal-free Electrocatalysts for Oxygen Reduction. Journal of the American 

Chemical Society 2011, 133 (14), 5182-5185. 

21. Qu, D.; Zheng, M.; Zhang, L.; Zhao, H.; Xie, Z.; Jing, X.; Haddad, R. E.; Fan, H.; 

Sun, Z., Formation mechanism and optimization of highly luminescent N-doped 

graphene quantum dots. Scientific Reports 2014, 4, 5294. 

22. Zheng, M.; Liu, S.; Li, J.; Xie, Z.; Qu, D.; Miao, X.; Jing, X.; Sun, Z.; Fan, H., 

Preparation of highly luminescent and color tunable carbon nanodots under visible light 

excitation for in vitro and in vivo bio-imaging. Journal of Materials Research 2015, 30 

(22), 3386-3393. 

23. A. V. Naumkin, A. K.-V., S. W. Gaarenstroom, C. J. Powell NIST XPS Standard 

Reference Database. Version 4.1. 

24. Luo, P. H.; Qiu, Y.; Guan, X. F.; Jiang, L. Q., Regulation of photoluminescence 

properties of graphene quantum dots via hydrothermal treatment. Physical Chemistry 

Chemical Physics 2014, 16 (35), 19011-19016. 



93 

 

25. Mei, Q.; Zhang, K.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z., Highly efficient 

photoluminescent graphene oxide with tunable surface properties. Chemical 

Communications 2010, 46 (39), 7319-7321. 

26. Zhu, S. J.; Zhang, J. H.; Liu, X.; Li, B.; Wang, X. F.; Tang, S. J.; Meng, Q. N.; Li, 

Y. F.; Shi, C.; Hu, R.; Yang, B., Graphene quantum dots with controllable surface 

oxidation, tunable fluorescence and up-conversion emission. RSC Advances 2012, 2 

(7), 2717-2720. 

 



94 
 

Chapter 4: Photoluminescent and Electrochemical Properties of Nitrogen-doped 

Carbon Nanodots 

It was hypothesized that bottom-up synthesized carbon quantum dots, commonly 

named as carbon nanodots (CNDs), were capable of achieving a higher quantum yield 

and exhibit greater catalytic activity due to the ease of incorporating nitrogen 

heteroatoms into the nanocarbon host. Motivated by this, we report the bottom-up 

synthesis of CNDs and the impact of added nitrogen on photoluminescence and 

electrochemical activity. A time-dependent pyrolytic synthesis followed by nitrogen 

addition via hydrothermal treatment is employed to elucidate the effect of nitrogen 

chemical states (amine, pyrrolic, pyridinic and graphitic N) on CND fluorescence. 

CNDs formed with short pyrolysis times were observed to uptake much more nitrogen 

than those formed with longer pyrolysis times. As a result, the quantum yield of CNDs 

made with short pyrolysis time followed by hydrothermal nitrogen treatment is much 

greater. We sought to extend this work by determining if there was a structure-function 

relationship between the degree of pyrolysis and the uptake of nitrogen heteroatoms on 

the electrocatalytic oxygen reduction reaction (ORR). As with optical properties, short 

pyrolysis time greatly enhanced the desirable four-electron ORR which is critical for 

implementing metal-free catalysts in fuel cells. This work illustrates the advantages of 

the bottom-up method toward optimizing heteroatom incorporation and their effects on 

optical and catalytic properties.   

4.1 Introduction and Motivation 

CNDs are one category of CQDs, in particular, prepared be the bottom-up synthesis 

of small organic precursors such as citric acid,1 glucose,2 ascorbic acid,3 and folic acid.4 

CNDs are the counterpart of “top-down” synthesized graphene quantum dots (GQDs). 

Similar to GQDs, CNDs also have a myriad of synthetic methods such as 

thermopyrolysis,1-2 hydrothermal preparation,5-8 microwave-assisted pyrolysis,9-12 and 

silane coupling.13-14 The morphologies of CNDs are often spherical with2, 13-16 or 

without17-19 a clearly defined graphene nanodomain depending on their preparation.1-2 

One potentially important advantage of CNDs over GQDs is their capability to 

incorporate larger amounts of heteroatoms (B, N, and S) into their internal structure 
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with dopant concentrations as high as 20 wt %.20 This can be done by adding 

heteroatom-containing molecules during the bottom-up synthesis. For example, adding 

a nitrogen source such as ethylenediamine to bottom-up synthetic methods has been 

extensively shown to greatly enhance their photoluminescent quantum yields (PLQY) 

several-fold compared to undoped counterparts.15, 21-25 

Previously, Hu et al.26 demonstrated the synthesis of nitrogen-doped CNDs with 

citric acid as the carbon source. CNDs were effectively synthesized via dehydration 

and condensation reactions to form new sp2 C-C bonds. Furthermore, the CNDs 

produced with citric acid (22% nitrogen with ethylenediamine) give high PLQY with 

Φ = 0.55 which are comparable to inorganic quantum dots.27 Though this is an efficient 

method of synthesizing highly fluorescent CNDs with a high yield; the results often 

vary due to the inhomogeneity of nitrogen chemical states.18, 28-29 While nitrogen 

incorporation into bottom-up synthesized CNDs shows a clear promise to promote 

PQY, the role of nitrogen content and its chemical states are unclear. If the location of 

heteroatom dopants in CND synthesis were finely controlled, the potential of CNDs in 

real world applications such as bioimaging,2, 20, 30-32 sensing15, 19, 24 and photocatalysis33 

could be truly realized. 

Previous computational works reported controversial effects of specific chemical 

states of nitrogen in GQDs and CNDs.  have been studied in theoretical simulations 

with varying interpretations. Sk et al.34 reported that graphitic N lowers the band gap 

for GQDs by 0.97 eV when the nitrogen is edge-substituted and by 0.76 eV when 

nitrogen is center-substituted.18 On the other hand, pyridinic and pyrrolic N was found 

to widen the band gap and shift emission toward shorter wavelengths. Increasing the 

atom percent of nitrogen in these simulations resulted in a larger blue shift. A 

computational work by Margraf et al.35 for CNDs containing sp2 nanodomains 

suggested geometric considerations more so than hybridization and heteroatom content 

could manipulate the electronic structure. In this simulation, nitrogen atoms were 

incorporated as amine, imine and cyano groups. It was found that heteroatoms modify 

the electronic structure by being incorporated in the sp2-network, which is consistent 

with the aforementioned computational work on GQDs.34  
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In addition, Strauss et al.10 reports that pyridinic N shifts the emission wavelength 

toward higher energy and increases the rates of radiative decay in CNDs. These 

simulations considered molecules with large sp2-hybridized graphene planes much like 

GQDs. In the same report, CND luminescence was divided into two major mechanisms. 

First, emission at short wavelengths originates from the excitation of the intrinsic sp2 

nanodomain which is in agreement with previous reports.36-37 Second, longer 

wavelength emission does not originate from the graphene-like nanodomain but rather 

through a separate excited state deactivation pathway; similar to the so-called defect 

state in previous experimental work.36, 38 Xu et al.39 proposed that the defect state is 

central to processes such as photoreduction of metal ions into metal nanoparticles by 

localizing the exciton to the surface of a CND. By this feature of exciton localization, 

Strauss et al.10 found the ability for the CND to act as both an electron donor and an 

electron acceptor depending on the local environment. This result is promising as it 

expands the potential role of CNDs in optoelectronics40 as well as photochemical water 

splitting.41   

CNDs are particularly unique with characteristics such as: green chemistry 

synthesis with inexpensive reagents and a high yield, a uniform size distribution, and 

excellent photoluminescence performance. As previously mentioned, these attributes 

work in concert to create useful carbogenic nanoparticles for many applications. This 

work focuses on the incorporation of nitrogen into CNDs of varying degrees of 

carbonization. The two-step synthetic procedure is depicted in Figure 4.1. CNDs are 

formed from the pyrolysis of citric acid and followed by nitrogen addition via 

hydrothermal treatment. When the nitrogen addition is conducted in the early stages of 

pyrolysis, the hypothesis is that nitrogen atoms are both incorporated (graphitic N) and 

surface-terminated (pyridinic, pyrrolic and amine N). On the other hand, when the 

nitrogen addition was conducted after extended pyrolysis, nitrogen is hypothesized to 

be located preferentially in edge-defects. After synthesizing these two differently 

nitrogen-incorporated CNDs; their structure and optical properties were investigated. 

The presence of incorporated nitrogen is hypothesized to greatly enhance the 

fluorescent quantum yield over surface-terminated nitrogen functional groups. The 

hypothesis is supported by a recent work by Sun et al.42 which shows that dopant 
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concentrations of graphitic N greatly enhance fluorescent quantum yield in GQDs. This 

works aims to further elucidate the structure-function relationship between added 

nitrogen heteroatoms in CNDs and optical properties as the aforementioned reports do 

not come to a consensus on the role of specific nitrogen chemical states. Additionally, 

we chose to pursue this work to make a strong comparison with the N-doped GQDs 

from Chapter 3.  

As an extension of the chemical structure and optical properties relationship in 

CNDs, we hypothesized that the ease of nitrogenation found with the bottom-up 

approach would enable us to study the potential that carbon nanodots may have as 

electrocatalysts. N-doped carbon nanomaterials have been previously found to greatly 

enhance ORR activity.39, 43-44 Recent literature demonstrates the use of NCNDs in 

electrochemical reactions such as the oxygen reduction reaction (ORR). This report 

shows the promise of using inexpensive reagents to produce effective fuel cell 

catalysts.45 However, key details of the ORR catalytic process such as active sites, 

electron transfer number and product formation were generally unexplained and 

referred to previous works with analogous systems such as N-doped carbon nanotubes 

or graphene-based nanomaterials. 

Though comparing NCNDs and their catalytically active sites to other 

nanomaterials is a natural course of scientific logic, it is this author’s opinion that this 

explanation is not adequate for fundamental understanding. It is important to recall in 

Chapter 2 that bottom-up synthesized CQDs could have significant deviation from the 

carbon backbone of carbon nanotubes and graphene-like nanomaterials like graphene 

oxide or GQDs. Therefore, we began to explore the catalytic performance of NCNDs 

by utilizing them for ORR and critically analyzing the impact of specific nitrogen-

containing functional groups on catalytic performance and electron transfer number.  

4.2 Experimental Details and Methods 

CNDs were prepared by adapting the previous work by Dong et al.1 Two grams of 

citric acid (CA) powder were weighed into a 50 mL beaker and placed on a hotplate 

set to 160⁰C. At first, CA is melted and the point at which all the CA is melted is 

referred to as t0. At t0, the pyrolysis of CA seems to occur by the formation of bubbles. 
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The bubbles are generated by the vaporization of water as well as gaseous carbon 

dioxide formed during the pyrolysis and carbonization of CA. About 1 minute after t0, 

a uniformly pale yellow liquid is observed. The pyrolytic reaction was quenched by 

adding 100 mL of 0.1 M KOH solution. The obtained CNDs were labeled as “1 min 

CNDs”. These CNDs seem to be a loose polymer of carbonized citric acid with a 

mixture of sp2- and sp3-hybridized carbon. The proposed structure of 1 min CNDs can 

be seen in Scheme 1. When the reaction continues to pyrolyze without KOH quenching, 

the color of the liquid changes from pale yellow to bright yellow, to orange, and finally 

to orange-red. The observed color change is consistent with the previous work by Dong 

et al. and is indicative of newly formed C-C sp2-hybridized carbon.1 At 10 minutes 

after t0, the liquid becomes a deep red indicating more complete carbonization of 

CNDs. Any longer carbonization than 15 minutes using hotplate pyrolysis dries the 

product out and can burn the product. This can still create quantum dots, but their 

solubility in water is reduced and their photoluminescence was found to be negligible. 

The carbonization of CNDs is quenched by 100 mL of 0.1 M KOH solution and the 

resultant CNDs are labeled as “10 min CNDs”. In order to remove the excess ions K+ 

and OH-, dialysis was performed on 1 min and 10 min CNDs using 1 kDa MWCO 

dialysis membranes for about 3 days. Both 1 min CNDs and 10 min CNDs were treated 

with aqueous ammonia in a Teflon-lined stainless steel autoclave reactor. The nitrogen-

doped CNDs are referred to as “1 min NCNDs” and “10 min NCNDs”. The 

hydrothermal treatment was conducted for 5 hours at 180 °C. The NCNDs were 

subjected to the same dialysis procedure to remove excess ammonia. All of the 

hydrothermally treated CNDs have a control solution of 1 min CNDs and 10 min CNDs 

that were subjected to the same hydrothermal conditions but in the absence of aqueous 

ammonia. These are referred to as “1 min HT-CNDs” and “10 min HT-CNDs”, 

respectively. 
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Scheme 4.1: Synthesis of the as-prepared CNDs which were prepared by the thermal 

pyrolysis of solid citric acid at 155 °C. 

4.3 Results and Discussion 

AFM and TEM experiments were conducted to probe the morphology of CND 

samples. 1 min and 10 min CNDs for AFM analysis were prepared by spin-casting the 

sample on an atomically flat mica substrate. The AFM characterization was conducted 

by a Park Systems XE-70 Advanced Scanning Probe Microscope operating in a non-

contact mode and the AFM images were post-processed with the software package 

Gwyddion.46 The AFM topography images of 1 min CNDs and 10 min CNDs are 

displayed in Figure 4.1A and 4.1B showing all nanoparticles are well isolated. Line 

profiles (Fig. 4.1C, 1D) of 25 different particles in the AFM topographic images were 

used to measure the thickness of CNDs. The average CND thickness was found to be 

about 1.3 nm for 1 min CNDs and 1.0 nm for 10 min CNDs. This reduction in height 

for 10 min CNDs is likely due to the extended carbonization of carboxylic and ether 

functional groups to sp2-hybridized C-C bonds with longer pyrolysis time. TEM 

imaging was carried out on 1 min CNDs as shown in Figure 4.1E. The average diameter 

was found to be about 5 nm. 1 min NCNDs show a well formed sp2 nanodomain by the 

presence of graphene lattice fringes with a spacing of about 0.24 nm as shown in Fig. 

4.1E.47  
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Figure 4.1: AFM Images of A) 1 min CNDs and B) 10 min CNDs. Line profile of C) 1 

min CNDs and D) 10 min CNDs. E) HRTEM of 1 min NCNDs and F) Diameter 

Histogram of 1 min NCNDs. 

The chemical structure of each CND sample was determined by XPS analysis. The 

survey spectra for all samples are shown in Figure 4.2A. Figure 4.2B illustrates the 

relative percentage of C, N, and O atoms present in citric acid and 4 CNDs. It is clear 

that 1 min NCNDs has the highest nitrogen content among all CNDs. 10 min NCNDs 

show noticeably lower nitrogen content which is attributed from the reduction in defect 

sites as the sp2 nanodomain is more completely formed with longer pyrolysis time. For 

citric acid, the C1s high resolution spectrum shows peaks corresponding to sp3 C-C 

(284.9 eV), C-O (286.5 eV), and CO2H (290.0 eV) which is consistent with the 

molecular structure of citric acid. Upon the short pyrolysis of citric acid, the top panel 

of Figure 4 shows the 1 min CNDs XPS peaks related to sp2 C-C (284.4 eV), sp3 C-C 

(284.9 eV) C-O (286.5 eV), C=O (288.0 eV) and CO2H (290.5 eV). With even further 

pyrolysis time, the sp3 C-C peak (formed via carbonization of CA) in the C1s spectrum 

of 1 min CNDs evolves to sp2 C-C due to the further degree of carbonization as seen in 

the XPS spectra of 10 min CNDs (Figure 4.2D). The peaks relating to potassium, in 

which KOH is used to quench the CND pyrolysis, can be observed at about 293 eV for 

K2p3/2 and 295 eV for K2p1/2.
48 These two peaks are separated by ~2.7 eV, which was 

used to assign these peaks as potassium in the C1s spectra.  
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Figure 4.2: A) XPS Survey Spectra of CNDs, B) XPS relative atom percent of C, N, O 

and high resolution C1s spectra of C) 1 min CNDs and D) 10 min CNDs. 

When aqueous ammonia was added to produce 1 min NCNDs as seen in the top 

row of Figure 4.3, the sp3 C-C peak at 284.9 eV disappeared and the sp2 C-C peak 

increased in intensity suggesting the formation of aromatic C=C bonds. The C-O peak 

shifts to lower binding energy (285.8 eV), verifying that C-N bonds are formed. This 

is in concert with the broad N1s spectra that contains peaks relating to pyridinic (398.5 

eV), amine (399.3 eV) pyrrolic (400.5 eV), and graphitic (401.3 eV) nitrogen chemical 

states. Abundant and various nitrogen sites indicate the conversion of carboxyl and 

hydroxyl groups to amino and amido moieties as well as the uptake of nitrogen into the 

carbon network. 

In 10 min NCNDs (Figure 4.3: bottom row), the C1s spectra remains similar to 10 

min CNDs though the carboxylic functionality (290 eV) is partially converted to C-N 

(285.8 eV) and C=O (~288 eV). The attachment of nitrogen is similar to 1 min NCNDs 

though with less nitrogen content and without graphitic N. These results support the 

hypothesis that the location of added nitrogen atoms can be controlled using pyrolysis 

time as a parameter during the synthesis of carbon nanodots. During the early stages of 

pyrolysis, nitrogen can be incorporated into the graphene nanodomain in the form of 
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graphitic N; however with longer pyrolysis time the graphene nanodomain is more 

completely formed thus removing the ability to add graphitic nitrogen. By treating 

highly disordered CNDs, more nitrogen can be incorporated into the graphene 

framework which would potentially enhance the fluorescent quantum yield.  

 

Figure 4.3: High resolution XPS spectra of A, B) 1 min NCNDs and C, D) 10 min 

NCNDs. In addition to higher N content, 1 min NCNDs also contain more diverse 

nitrogen chemical states than 10 min NCNDs. 
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Table 4.1: Functional Group Distribution of 10 min CNDs before and after 

hydrothermal treatment with water. These XPS results show the conversion of 

carboxylic to carbonyl functional groups and with additional loss to hydroxyl groups. 

 10 min CND 10 min HT-CND 

sp2 C-C 71.0 % 67.0 % 

Hydroxyl 8.9 % 5.3 % 

Carbonyl 4.6 % 25.7 % 

Carboxyl 15.5 % 2.0 % 
 

In a control experiment, 10 min CNDs were subjected to the same hydrothermal 

treatment (5 hours, 180 °C) without aqueous ammonia to analyze the chemical effect 

of hydrothermal treatment. The distribution of functional groups was analyzed using 

the C1s high resolution XPS experiments. Table 4.1 illustrates that hydrothermal 

treatment reduces the fraction of hydroxyl (~286 eV) and carboxylic acid (~289 eV) 

functional groups. 

As shown in Figure 4.4, four different CNDs (1 min CNDs, 1 min NCNDs, 10 min 

CNDs, and 10 min NCNDs) were also studied by FTIR spectroscopy. The left panel of 

Fig. 4 shows the comparison between 1 min CNDs and 1 min NCNDs. The peak at 

1600 cm-1 reflects the formation of C=C bonds and the peak at 1250 cm-1 suggests the 

formation of C-O-C bonds. These two bonds are formed during the carbonization 

process with the formation of aromatic C=C bonds. After hydrothermal reaction with 

aqueous ammonia, 1 min NCNDs reveal the shift of the –OH band at 3400 cm-1 to 

lower energy at 3200 cm-1 which is indicative of the formation of N-H bond. In 

addition, the intensity of the peak at 2600 cm-1 is greatly suppressed, suggesting that 

carboxyl groups were replaced with amide groups. This is also supported by the shift 

of the peak at 1730 cm-1 (CO2H) to 1670 cm-1 (CONH2). In addition, a new peak arises 

at 1320 cm-1, which can be assigned to the C-N stretching mode of amines and amides. 

These results clearly indicate the addition of amine and amide nitrogen to CNDs after 

hydrothermal treatment with aqueous ammonia.  A significant increase of the peak at 

1600 cm-1 in NCNDs indicates the completion of aromatic rings by the carbonization 

of dangling bonds.  
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The right panel of Figure 4.4 shows the FTIR spectra of 10 min CNDs and 10 min 

NCNDs. The enhanced carbonization of 10 min CNDs is indicated by the presence of 

distinctive peaks at 1400 and 1600 cm-1 which are assigned to aromatic C=C stretching 

modes. In addition, the intensity of the peak at 2600 cm-1 relating to carboxyl groups is 

greatly suppressed in 10 min CNDs, compared to 1 min CNDs, which indicate more 

complete pyrolysis of 10 min CNDs. After hydrothermal reaction with aqueous 

ammonia, carboxylic groups are converted to amides and hydroxyl groups are 

converted to amines. This can be seen with the reduction of the peaks at 2600 cm-1 and 

at 3400 cm-1. In addition, 10 min NCNDs shows the pronounced peak at 1260 cm-1 

which is attributed to the C-N stretching mode. This band shows an elevated addition 

of nitrogen in 10 min NCNDs supporting the hypothesis that a complete CND is formed 

at later pyrolysis time and that primarily surface-terminated nitrogen is added to 10 min 

NCNDs. This is in stark contrast to 1 min NCNDs whose nitrogen attachment not only 

includes surface-termination nitrogen chemical states but also includes graphitic N.  

 

Figure 4.4: FTIR spectra of as-prepared CNDs. Noticeable changes in the spectra are 

seen with the addition of nitrogen such as the peak evolutions around 1700 cm-1 and 

3200-3400 cm-1. 

The UV-Vis absorption spectra of different CNDs (i.e., 1 min CNDs, 1 min 

NCNDs, 10 min CNDs, and 10 min NCNDs) are presented in Figure 4.5. The UV-Vis 

absorption spectra clearly show the effect of pyrolysis and incorporated nitrogen atoms. 

After pyrolyzing citric acid for 1 min and 10 min, the absorption is enhanced in the 

visible region. This is due to the formation of sp2-bonded carbon conjugation in the 

aromatic rings as the nanodomains in CNDs are formed. While 1 min CNDs show 
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slightly extended absorption extended to 300 nm, the 10 min CNDs show drastic 

enhancement of visible absorption at 340 nm. This band at 340 nm was assigned to the 

π-π* transition. This enhancement of this feature in 10 min CNDs at 350 nm show a 

more complete formation of sp2 nanodomains after 10 minutes of pyrolysis. 

After the hydrothermal treatment with aqueous ammonia, 1 min NCNDs show a 

drastic increase of absorption toward longer wavelength with significant absorbance 

between 300 nm and 450 nm. This band is assigned the n-π* transition relating to the 

defect states in the forms of pyridinic, amine, pyrrolic and graphitic N. Overall, the red 

shifted and absorption intensity effects are much greater for 1 min NCNDs than 10 min 

NCNDs, indicating that the nitrogen incorporation occurred more efficiently in 1 min 

CNDs. This is consistent with the results from XPS analysis. More efficient nitrogen 

addition can be explained by different structural features between 1 min CNDs and 10 

min CNDs. While nitrogen atoms can be freely added into a loose polymer dot (1 min 

CNDs) via both edge functionalization and doping, completely carbonized CNDs (10 

min CNDs) are restricted to the internal incorporation of nitrogen and thus only contain 

surface-terminating nitrogen groups. 

Overall, the red shifted band in the absorption spectra is much more pronounced 

for 1 min NCNDs than 10 min NCNDs, indicating that the nitrogen incorporation 

occurred more efficiently in 1 min CNDs. This is consistent with the results from XPS 

analysis. More efficient nitrogen addition can be explained by different structural 

features between 1 min CNDs and 10 min CNDs. While nitrogen atoms can be freely 

added into a loose polymer dot (1 min CNDs) via both edge functionalization and 

doping, completely carbonized CNDs (10 min CNDs) are restricted to the internal 

incorporation of nitrogen and thus only contain surface-terminating nitrogen groups. 

The fluorescence quantum yields of four CNDs were also measured and are shown the 

inset of Figure 4.5. The QY of 1 min CNDs were unable to be determined because of 

weak absorbance and fluorescence. Upon amination, the QY of 1 min NCNDs was 

found to be about 35%. 10 min CNDs show a QY of 3% whereas 10 min NCNDs was 

found to be 11%. 
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Figure 4.5: UV-Visible Absorption Spectra of CNDs. The addition of nitrogen to 1 min 

CNDs shows great absorption enhancement in the visible region. 10 min CNDs do not 

show as much enhancement in the visible region however increase the absorption of 

UV light at 340 nm. 

The emission spectra of the four CNDs were also compared, as shown in Figure 

4.6. While 1 min CNDs shows weak fluorescence centered at 420 nm, the 10 min CNDs 

show much stronger fluorescence centered at 450 nm. The stronger and red-shifted 

emission of 10 min CNDs, compared to 1 min CNDs, reflects that 10 min CNDs have 

more complete sp2-conjugated aromatic rings due to the extended pyrolysis. The 

comparison of emission spectra between 1 min NCNDs and 10 min NCNDs presents 

the effect of added nitrogen. After the treatment of 1 min CNDs, the excitation maxima 

shifts from 360 nm to 420 nm and the emission peak position shifts from 420 nm to 

450 nm. The shift of excitation wavelength from 360 nm to 420 nm is attributed to the 

new band formed by the added nitrogen. 10 min NCNDs show excitation peaks in the 

range of 330 nm to 390 nm. 1 min NCNDs show stronger and red-shifted fluorescence, 

compared to 10 min NCNDs, which is consistent with the larger amount of added 

nitrogen. 

Hydrothermally treated CNDs without added ammonia were also studied for their 

optical properties. Their excitation-dependent emission spectra can be found in Figure 

4.7. Hydrothermal treatment affected the fluorescence of 1 min CNDs significantly. A 
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notable increase in absorption at 340 nm was observed as well as a 40 times 

enhancement in PL intensity with 50 nm blue shift in peak emission wavelength. 10 

min CNDs had a very different result under hydrothermal treatment. An absorbance 

increase was observed with a blue shift from 350 to 330 nm and a two-fold increase in 

emission intensity. It is hypothesized that the removal of the oxygen-containing 

functional groups correlates with the increase of absorbance and emission intensity. 

Additionally, the peak emission wavelength undergoes a blue shift from 450 nm to 430 

nm. Luo et al. performed a similar hydrothermal treatment of GQDs to find that 

epoxide and hydroxyl functional groups were removed upon treatment.49 The results of 

that treatment likewise show an increase of emission intensity with a corresponding 

blue shift in peak emission. In that report, this is assigned to the removal of oxygen-

containing functional groups which are known to cause a red shift in emission. Such a 

removal would also promote emission from the higher energy C π* LUMO+2 to the C 

π HOMO instead of the lower energy defect state (O π* LUMO).37 This results in the 

removal of a non-radiative decay channel thereby increasing the fluorescent quantum 

yield as well as blue shifting the peak emission wavelength. 

 

Figure 4.6: Excitation-dependent emission spectra of A) 1 min CNDs, B) 10 min 

CNDs, C) 1 min NCNDs and D) 10 min NCNDs. An increase in emission intensity is 

observed with both longer pyrolysis time and nitrogenation. However, the largest 

increase is found in 1 min NCNDs due to the higher N content. 
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Figure 4.7: Comparison of PL Spectra of 1 and 10 min CNDs with hydrothermally 

treated 1 and 10 min CNDs. Upon hydrothermal reduction, the peak emission 

wavelengths of both 1 and 10 min HT-CNDs are blue-shifted by about 30 nm. 

Characterization suggests this originates from the collapse of the surface passivation 

layer to form small aromatic fluorophores. 

As found previously, 1 min NCNDs contain a larger nitrogen content as well as 

graphitic N compared to 10 min NCNDs. We hypothesized that 1 min NCNDs would 

outperform 10 min NCNDs in catalyzing ORR. The results of the linear sweep 

voltammetric (LSV) experiments can be seen in Figure 4.8 (bottom left). Both 1 min 

and 10 min NCNDs show an increase in disk current density and onset potential 

compared to bare MWCNTs. Interestingly, it seems from the disk current density that 

10 min NCNDs have a substantial increase of hydrogen peroxide formation compared 

to 1 min NCNDs. Coupling this data set with Koutecky-Levich (K-L) (Figure 4.8 

bottom right) analysis clearly shows the highest electron transfer number is obtained 

by 1 min NCNDs, indicating that more oxygen is reduced to water by a four electron 

process than the energetically unfavourable two electron process. 

A complication in any ORR analysis is determining at what potential a particular 

reaction occurs as there are many simultaneous reactions. Ideally, a direct four electron 

process would be favoured over the two electron reduction to the peroxide ion followed 

by another two electron reduction to water. In order to determine the preferred reaction 
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pathway in NCNDs, hydrogen peroxide was used as the analyte for ORR instead of O2. 

By performing cyclic voltammetry, it was found (Figure 4.9) that both 1 min and 10 

min NCNDs perform similarly in reducing H2O2 to H2O. When increasing the 

concentration of H2O2 ten-fold, the peak currents also increased by similar amounts. 

This suggests that both 1 min and 10 min NCNDs are equally effective at reducing 

H2O2 to H2O by a two electron process. 

Interestingly, when the ring electrode was set to a potential that oxidizes H2O2 to 

O2 in excess H2O2 as shown in Figure 4.10, there was a significant response at 

potentials below -0.2 V with 10 min NCNDs that shows strong reduction of both O2 

and H2O2 to H2O. These results, coupled with those in Figures 4.8 and 4.9 suggest that 

10 min NCNDs catalyze the energetically less favourable two electron pathway 

effectively with a higher onset potential.  When performing the same experiment with 

1 min NCNDs there was some change in current density with a slight enhancement of 

current density at -0.2 V and a decrease in current at potentials below -0.8 V. This 

signifies the four electron reduction is preferred over the two electron reduction process 

and that the conversion of O2 to H2O2 is not catalyzed by 1 min NCNDs. 
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Figure 4.8:  Determination of Electron Transfer Number of 1 min and 10 min NCNDs. 

A rotation ring-disk electrode (RRDE) is used in LSV measurements (top left) to build 

the Koutecky-Levich Plot (top right) by varying electrode rotation speed in the 

presence of O2. Current densities of the ring and disk electrode in RRDE LSV illustrate 

the electrochemical preference between a four electron and two electron process for 

each sample. (bottom left) Koutecky-Levich Plot shows the electron transfer number 

as a function of potential. (bottom right)  

 

 

Figure 4.9: Cyclic voltammetry experiments in which nitrogen is bubbled into a 

solution containing a known concentration of hydrogen peroxide. With H2O2 as the 

only source of oxygen, it is clear that both 1 min and 10 min NCNDs perform equally 

well in reducing hydrogen peroxide to water. However, the potential windows at which 

this reduction occurs varies due to the chemical structure of each type of NCNDs. 
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Figure 4.10: CV experiments which utilize turning the ring electrode on to oxidize 

excess H2O2 to O2. Since 1 min NCNDs favour reducing O2 to H2O by a four electron 

process, there will be no significant increase in current density. 10 min NCNDs favour 

the two electron reduction of O2 to H2O2 which will be re-oxidized by the ring 

electrode, showing a substantial increase in current density. 

There are two main conclusions to found with these results. First, pyrolysis time 

plays a significant role in preparing fluorescent CNDs. If the CNDs synthesized are left 

in a loose polymer-like state, there will be little to no absorbance or fluorescence to be 

observed. As a result, the QY will be negligibly small due to the lack of π-π* transitions 

from the sp2 nanodomains or n-π* transitions from optically active defect sites. Once a 

suitable pyrolysis time is reached, the CNDs are well formed which boost the quantum 

yield to measureable amounts. The control sample of hydrothermally treated 1 min 

CNDs and 10 min CNDs were found to show the same order of quantum yields (~10%) 

suggesting that hydrothermal treatment without heteroatom dopants simply complete 

the carbonization process. 

Second, the amount and the location of added nitrogen play a significant role in 

synthesizing highly fluorescent CNDs as well as tune the specific reaction pathway for 

the electrochemical oxygen reduction reaction. Nitrogen addition to 10 min CNDs 

results in the formation of pyridinic, amine, and pyrrolic N chemical states. The total 

nitrogen content was found to be 4.4% and the QY was enhanced fourfold from 3% to 

11%. However, when nitrogen is added to the weakly fluorescing loose polymer 1 min 

CNDs, fluorescent quantum yields of at least thirty percent are easily obtainable due to 

the increased availability of nitrogen attachment sites in 1 min CNDs.  This is seen by 

the total nitrogen content of 1 min NCNDs being much higher (11.7%) than 10 min 

NCNDs and the nitrogen chemical states, which in addition to the surface-terminating 
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groups, contain graphitic N. This graphitic N contributes delocalized electrons to the 

interior of the π-conjugated carbon nanodomain. From this, it can be concluded that 

nitrogen chemical states that are directly bonded to the sp2-hybridized carbons are 

responsible for the enhancement of quantum yield in carbon dots.  

We hypothesize that not only does graphitic N contribute to the delocalization of 

electrons throughout the carbon nanodomain but the charge distribution may also 

improve ORR catalysis from the electron-poor (positively charged) carbons that 

neighbor the graphitic N heteroatom (negatively charged). In this electrostatic situation, 

dissolved oxygen (being electron-rich) will migrate toward the electron-poor carbon 

active site and begin the oxygen reduction reaction. Without further experimentation, 

it is difficult to say if this particular electrostatic environment from graphitic N is 

responsible for the substantial enhancement of electron transfer number to the more 

favorable four electron process. We speculate this is the case as when performing cyclic 

voltammetry experiments in 10 mM H2O2, we find that 1 min NCNDs are greatly 

outperformed by 10 min NCNDs. In H2O2, the electron density is spread out across two 

additional O-H bonds and the O-O bond is lengthened. This would negatively influence 

electrostatic attraction toward the partially positively charged carbon, thus hindering 

the two electron ORR pathway. 

These results further confirm the potential of carbon nanodots as highly fluorescent 

organic nanoparticles for use in bioimaging, optoelectronics and electrocatalysis by 

optimizing the bottom-up approach to synthesis. However, this potential is met with 

great challenge as the chemical states of nitrogen addition are often mixed and with 

varying content. The previous chapters of this dissertation have shown the importance 

of understanding the chemical structure-function relationship. Future work would 

involve finely controlling the total nitrogen content and the specific chemical state as 

well. Proposed experiments are detailed in Chapter 6 that aim to accomplish this goal. 

Chapter 5 will show a new CQD function that can be implemented in light-activated 

functions in biological systems, also known as biophotonics. The CQD structure-

function relationship will be explored for one of these functions, photodynamic 

therapy, in which light is used to initiate cytotoxicity. 



113 
 

4.4 Chapter 4 References 

1. Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue 

luminescent graphene quantum dots and graphene oxide prepared by tuning the 

carbonization degree of citric acid. Carbon 2012, 50 (12), 4738-4743. 

2. Yang, Z.-C.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X.-H.; Tan, H.; Chang, 

A. Y.; Li, X.; Wang, J., Intrinsically fluorescent carbon dots with tunable emission 

derived from hydrothermal treatment of glucose in the presence of monopotassium 

phosphate. Chemical Communications 2011, 47 (42), 11615-11617. 

3. Jia, X.; Li, J.; Wang, E., One-pot green synthesis of optically pH-sensitive carbon 

dots with upconversion luminescence. Nanoscale 2012, 4 (18), 5572-5575. 

4. Zhang, R.; Chen, W., Nitrogen-doped carbon quantum dots: Facile synthesis and 

application as a "turn-off' fluorescent probe for detection of Hg2+ ions. Biosensors & 

Bioelectronics 2014, 55, 83-90. 

5. Kim, H.; Kwon, W.; Choi, M.; Rhee, S. W.; Yong, K., Photoelectrochemical 

Hydrogen Generation Using C-dot/ZnO Hierarchical Nanostructure as an Efficient 

Photoanode. Journal of the Electrochemical Society 2015, 162 (6), H366-H370. 

6. Liu, S. Y.; Zhao, N.; Cheng, Z.; Liu, H. G., Amino-functionalized green fluorescent 

carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 2015, 

7 (15), 6836-6842. 

7. Lopez, T. D. F.; Gonzalez, A. F.; Diaz-Garcia, M. E.; Badia-Laino, R., Highly 

efficient Forster resonance energy transfer between carbon nanoparticles and 

europium-tetracycline complex. Carbon 2015, 94, 142-151. 

8. Shi, W. J.; Fan, H.; Ai, S. Y.; Zhu, L. S., Preparation of fluorescent graphene 

quantum dots from humic acid for bioimaging application. New Journal of Chemistry 

2015, 39 (9), 7054-7059. 

9. Lu, W. J.; Gong, X. J.; Yang, Z. H.; Zhang, Y. X.; Hu, Q.; Shuang, S. M.; Dong, 

C.; Choi, M. M. F., High-quality water-soluble luminescent carbon dots for multicolor 

patterning, sensors, and bioimaging. RSC Advances 2015, 5 (22), 16972-16979. 

10. Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; 

Peukert, W.; Spiecker, E.; Clark, T.; Guldi, D. M., Carbon Nanodots: Toward a 

Comprehensive Understanding of Their Photoluminescence. Journal of the American 

Chemical Society 2014, 136 (49), 17308-17316. 

11. Xu, M. H.; Xu, S. S.; Yang, Z.; Shu, M. J.; He, G. L.; Huang, D.; Zhang, L. L.; Li, 

L.; Cui, D. X.; Zhang, Y. F., Hydrophilic and blue fluorescent N-doped carbon dots 

from tartaric acid and various alkylol amines under microwave irradiation. Nanoscale 

2015, 7 (38), 15915-15923. 

 



114 
 

12. Zheng, B. Z.; Liu, T.; Paau, M. C.; Wang, M. N.; Liu, Y.; Liu, L.; Wu, C. F.; Du, 

J.; Xiao, D.; Choi, M. M. F., One pot selective synthesis of water and organic soluble 

carbon dots with green fluorescence emission. RSC Advances 2015, 5 (15), 11667-

11675. 

13. Zhang, W.; Yu, S. F.; Fei, L.; Jin, L.; Pan, S.; Lin, P., Large-area color controllable 

remote carbon white-light light-emitting diodes. Carbon 2015, 85, 344-350. 

14. Zhang, W. F.; Jin, L. M.; Yu, S. F.; Zhu, H.; Pan, S. S.; Zhao, Y. H.; Yang, H. Y., 

Wide-bandwidth lasing from C-dot/epoxy nanocomposite Fabry-Perot cavities with 

ultralow threshold. Journal of Materials Chemistry C 2014, 2 (8), 1525-1531. 

15. Zhai, Y.; Zhu, Z.; Zhu, C.; Ren, J.; Wang, E.; Dong, S., Multifunctional water-

soluble luminescent carbon dots for imaging and Hg2+ sensing. Journal of Materials 

Chemistry B 2014, 2 (40), 6995-6999. 

16. Zhu, S. J.; Zhou, N.; Hao, Z. Y.; Maharjan, S.; Zhao, X. H.; Song, Y. B.; Sun, B.; 

Zhang, K.; Zhang, J. H.; Sun, H. C.; Lu, L. J.; Yang, B., Photoluminescent graphene 

quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC 

Advances 2015, 5 (49), 39399-39403. 

17. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; 

Giannelis, E. P., Surface functionalized carbogenic quantum dots. Small 2008, 4 (4), 

455-458. 

18. Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y., Nitrogen-

doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. 

Nanoscale 2014, 6 (3), 1890-1895. 

19. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; 

Wang, H.; Yang, B., Highly Photoluminescent Carbon Dots for Multicolor Patterning, 

Sensors, and Bioimaging. Angewandte Chemie-International Edition 2013, 52 (14), 

3953-3957. 

20. Jiang, Z.; Nolan, A.; Walton, J. G. A.; Lilienkampf, A.; Zhang, R.; Bradley, M., 

Photoluminescent Carbon Dots from 1,4-Addition Polymers. Chemistry-a European 

Journal 2014, 20 (35), 10926-10931. 

21. Do, S.; Kwon, W.; Rhee, S.-W., Soft-template synthesis of nitrogen-doped carbon 

nanodots: tunable visible-light photoluminescence and phosphor-based light-emitting 

diodes. Journal of Materials Chemistry C 2014, 2 (21), 4221-4226. 

22. Gong, X.; Lu, W.; Paau, M. C.; Hu, Q.; Wu, X.; Shuang, S.; Dong, C.; Choi, M. M. 

F., Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular 

imaging. Analytica Chimica Acta 2015, 861, 74-84. 

23. Li, Z.; Yu, H.; Bian, T.; Zhao, Y.; Zhou, C.; Shang, L.; Liu, Y.; Wu, L.-Z.; Tung, 

C.-H.; Zhang, T., Highly luminescent nitrogen-doped carbon quantum dots as effective 

fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C 

2015, 3 (9), 1922-1928. 



115 
 

24. Wang, W.; Lu, Y.-C.; Huang, H.; Wang, A.-J.; Chen, J.-R.; Feng, J.-J., Facile 

synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance 

energy transfer recognition of methotrexate with high sensitivity and selectivity. 

Biosensors & Bioelectronics 2015, 64, 517-522. 

25. Xu, Q.; Zhao, J.; Liu, Y.; Pu, P.; Wang, X.; Chen, Y.; Gao, C.; Chen, J.; Zhou, H., 

Enhancing the luminescence of carbon dots by doping nitrogen element and its 

application in the detection of Fe(III). Journal of Materials Science 2015, 50 (6), 2571-

2576. 

26. Hu, X.; Cheng, L.; Wang, N.; Sun, L.; Wang, W.; Liu, W., Surface passivated 

carbon nanodots prepared by microwave assisted pyrolysis: effect of carboxyl group in 

precursors on fluorescence properties. RSC Advances 2014, 4 (36), 18818-18826. 

27. Reiss, P.; Protiere, M.; Li, L., Core/Shell Semiconductor Nanocrystals. Small 2009, 

5 (2), 154-168. 

28. Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J., Highly Luminescent N-

Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing 

Platform. Chemistry-a European Journal 2014, 20 (11), 2983-2983. 

29. Han, X. G.; Zhong, S. H.; Pan, W.; Shen, W. Z., A simple strategy for synthesizing 

highly luminescent carbon nanodots and application as effective down-shifting layers. 

Nanotechnology 2015, 26 (6). 

30. Choi, Y.; Kim, S.; Choi, M. H.; Ryoo, S. R.; Park, J.; Min, D. H.; Kim, B. S., Highly 

Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted 

Photodynamic Therapy In Vitro and In Vivo. Advanced Functional Materials 2014, 24 

(37), 5781-5789. 

31. Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L., Carbon 

dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano 

Today 2014, 9 (5), 590-603. 

32. Song, Y. B.; Zhu, S. J.; Yang, B., Bioimaging based on fluorescent carbon dots. 

RSC Advances 2014, 4 (52), 27184-27200. 

33. Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z., One-step ultrasonic synthesis of 

fluorescent N-doped carbon dots from glucose and their visible-light sensitive 

photocatalytic ability. New Journal of Chemistry 2012, 36 (4), 861-864. 

34. Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P., Revealing the 

tunable photoluminescence properties of graphene quantum dots. Journal of Materials 

Chemistry C 2014, 2 (34), 6954-6960. 

35. Margraf, J. T.; Strauss, V.; Guldi, D. M.; Clark, T., The Electronic Structure of 

Amorphous Carbon Nanodots. Journal of Physical Chemistry B 2015, 119 (24), 7258-

7265. 

 



116 
 

36. Hu, X.; An, X.; Li, L., Easy synthesis of highly fluorescent carbon dots from 

albumin and their photoluminescent mechanism and biological imaging applications. 

Materials Science & Engineering C-Materials for Biological Applications 2016, 58, 

730-736. 

37. Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P., Energy-level structure of nitrogen-

doped graphene quantum dots. Journal of Materials Chemistry C 2013, 1 (32), 4908-

4915. 

38. Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; 

Yu, W.; Wang, X.; Sun, H.; Yang, B., Surface Chemistry Routes to Modulate the 

Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to 

Up-Conversion Bioimaging Applications. Advanced Functional Materials 2012, 22 

(22), 4732-4740. 

39. Xu, J.; Sahu, S.; Cao, L.; Bunker, C. E.; Peng, G.; Liu, Y.; Fernando, K. A. S.; 

Wang, P.; Guliants, E. A.; Meziani, M. J.; Qian, H.; Sun, Y.-P., Efficient Fluorescence 

Quenching in Carbon Dots by Surface-Doped Metals - Disruption of Excited State 

Redox Processes and Mechanistic Implications. Langmuir 2012, 28 (46), 16141-16147. 

40. Zhang, X.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y.; Wang, 

P.; Zhang, T.; Zhao, Y.; Zhang, H.; Cui, T.; Wang, Y.; Zhao, J.; Yu, W. W.; Rogach, 

A. L., Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes. 

ACS Nano 2013, 7 (12), 11234-11241. 

41. Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E., Solar Hydrogen 

Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. Journal of 

the American Chemical Society 2015, 137 (18), 6018-6025. 

42. Sun, J.; Yang, S.; Wang, Z.; Shen, H.; Xu, T.; Sun, L.; Li, H.; Chen, W.; Jiang, X.; 

Ding, G.; Kang, Z.; Xie, X.; Jiang, M., Ultra-High Quantum Yield of Graphene 

Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. 

Particle & Particle Systems Characterization 2015, 32 (4), 434-440. 

43. Tuci, G.; Zafferoni, C.; Rossin, A.; Luconi, L.; Milella, A.; Ceppatelli, M.; 

Innocenti, M.; Liu, Y.; Pham-Huu, C.; Giambastiani, G., Chemical functionalization of 

N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical 

role of specific N-functionalities in the oxygen reduction reaction. Catalysis Science & 

Technology 2016, 6 (16), 6226-6236. 

44. Sharma, P. P.; Wu, J.; Yadav, R. M.; Liu, M.; Wright, C. J.; Tiwary, C. S.; 

Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X.-D., Nitrogen-Doped Carbon 

Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the 

Understanding of Defects, Defect Density, and Selectivity. Angewandte Chemie 

International Edition 2015, 54 (46), 13701-13705. 

45. Lei, Z.; Xu, S.; Wan, J.; Wu, P., Facile synthesis of N-rich carbon quantum dots by 

spontaneous polymerization and incision of solvents as efficient bioimaging probes and 

advanced electrocatalysts for oxygen reduction reaction. Nanoscale 2016, 8 (4), 2219-

2226. 



117 
 

46. Necas, D.; Klapetek, P., Gwyddion: an open-source software for SPM data analysis. 

Central European Journal of Physics 2012, 10 (1), 181-188. 

47. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; 

Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. 

A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M., Graphene Quantum Dots Derived from 

Carbon Fibers. Nano Letters 2012, 12 (2), 844-849. 

48. A. V. Naumkin, A. K.-V., S. W. Gaarenstroom, C. J. Powell NIST XPS Standard 

Reference Database. Version 4.1. 

49. Luo, P. H.; Qiu, Y.; Guan, X. F.; Jiang, L. Q., Regulation of photoluminescence 

properties of graphene quantum dots via hydrothermal treatment. Physical Chemistry 

Chemical Physics 2014, 16 (35), 19011-19016. 

 



118 

 

Chapter 5: Structure-Function Relationship of Carbon Quantum Dots and Photo-

induced Cytotoxicity Effects  

Carbon quantum dots (CQDs) have been pursued for use in biophotonics due to 

their low cost, facile synthesis, and controllable optical properties. In this study, two 

types of CQDs were synthesized by different methods designated as top-down and 

bottom-up and their chemical structure and properties were compared. CQDs have been 

shown to display a unique balance of low dark cytotoxicity and strong photodynamic 

effect, but the mechanism for this photodynamic activity has not been determined. To 

the best of our knowledge, this is the first extensive study to investigate relations 

between chemical structure of CQDs and their photodynamic effect, and to track the 

mechanism of action in photodynamic therapy (PDT). Spectroscopic and chemical 

methods were employed to differentiate the chemical structure while cell viability, 

singlet oxygen (1O2), and DNA damage studies elucidated the photodynamic 

mechanism of action for each CQD sample. Graphene quantum dots (GQDs) 

synthesized by a top-down method exhibited superior light-activated cell cytotoxicity 

compared to carbon nanodots (CNDs) synthesized by a bottom-up method. The 

photodynamic index of GQDs was found to be 40 - 150 times larger than commerically 

available drugs. Singlet oxygen was quantitatively measured and found to be a primary 

cause for the observed photodynamic effect. Measurements with selective quenchers 

of 1O2 and radical species such as (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl 

(TEMPO), sodium iodide and sodium azide indicated that the photodynamic 

mechanism of CQDs is through strong Type I and Type II photodynamic effects. 

5.1 Introduction and Motivation 

Photodynamic therapy (PDT) is a non-invasive therapeutic approach that benefits 

from effective cellular penetration, low inherent cytotoxicity, and strong light-activated 

cytotoxicity. Originally used as a treatment only for skin conditions such as vitiligo1 it 

has recently been explored for actinic keratosis and basal cell carcinoma treatment.2 

The major challenge of PDT as a viable treatment is imposed by the tissue penetration 

depth of light. For example, UV and visible light is energetic enough to generate 

reactive oxygen species (ROS), however UV light (λ < 400 nm) risks damaging healthy 
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tissue as well. Visible light (400 – 760 nm) is safe for healthy tissues but has a short 

penetration depth ranging from sub-millimeter with blue light to a few millimeters with 

red light.3 In the case of visible light, photodynamic medical treatments are limited to 

cutaneous and subcutaneous applications. Wavelengths between 650 nm and 1350 nm, 

commonly referred to as the optical therapeutic window due to low light absorption by 

tissues coupled with forward-directed scattering,4 are ideal for optimal tissue 

penetration though many complications have emerged in efforts to develop near-IR 

absorbing compounds. 

The development of PDT agents has primarily focused on small molecule 

photosensitizers, but their absorption and emission ranges often lie outside of the 

optical therapeutic window. Carbon nanomaterials have been extensively studied due 

to their tunable optical properties. This tuning can be performed by manipulating the 

size of the nanomaterial, known as the quantum confinement effect. Similar to 

inorganic semiconducting systems,5 extending the size of the carbon nanomaterial 

narrows the optical bandgap due to the spatial confinement of excitons.6 However, 

previous studies have shown that carbon nanomaterials exhibiting near-IR absorption 

and emission suffer from poor solubility in aqueous media.7 Without the aid of 

surfactants, materials such as carbon nanotubes (CNTs) can aggregate into bundles 

which rupture the cell membrane and become inherently cytotoxic.8-9 Several articles 

have reported on the cytotoxicity of CNTs cytotoxicity in the dark where in some cases 

the CNTs are even more cytotoxic than metal oxide nanoparticles.10-14  However, there 

are also reports suggesting that inherent cytotoxicity can be controlled using sidewall 

functionalization.10, 12-13, 15 All of these previous reports cast some doubt on the use of 

CNTs, as effective and non-toxic PDT agents. 

Recently carbon quantum dots (CQDs), have emerged as a promising deep-tissue 

PDT agent with manipulated optical properties via chemical functionalization.16-19 This 

new type of carbon-based nanoparticle has gained significant interest due to their 

widely tunable optical properties,20-21 ease of synthesis22-24 and modification,25-27 

resistance to photobleaching28 as well as  excellent biocompatibility.18, 29 Briefly, a 

CQD can be described as a flat sheet of sp2-hybridized carbon a few nanometers in size 
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with abundant functional groups (e.g. hydroxyl, carbonyl, carboxyl) terminating the 

sheet in all directions. These nanoparticles can also be spherical or elliptical in shape 

due to the presence of sp3-hybridized carbon. In addition, CQDs can be synthesized 

with inexpensive starting materials such as citric acid in a bottom-up fashion30-31 or 

carbon black by a top-down method.32-33  

CQDs have shown efficacy as PDT agents in the areas of anti-bacterial and wound 

treatment.19, 34-36 The detailed study by Ge et al. reported that CQDs are able to populate 

their triplet states and the photodynamic activity was purely through the Type II 

pathway.19 This article also reported no detection of radical ROS in their EPR 

measurement. Other than the presence of heteroatom dopants (N, O, and S) as the result 

of the hydrothermal synthesis, there is little to no explanation of what chemical features 

in these CQDs provide such promising results. The same article also proposed a route 

to produce 1O2 from a ground state 3O2 by its energy transfer from excited singlet state 

of CQD despite its lifetime (on the order of nanoseconds) being simply too short to 

convert 3O2 to the highly reactive 1O2. However, it was expertly demonstrated using 

tetracene and pentacene that the effective photodynamic performance of CQDs requires 

efficient generation of triplet states for Type II photodynamic processes. Typically, 

these excited triplet states have lifetimes on the order of a few microseconds in CQDs 

as observed by Mueller et al.37  

Unfortunately compared with near-IR responsive CNTs, CQDs generally suffer 

from low optical absorption and emission in the IR and near-IR range. However, this 

can be circumvented by controlling the morphology of a CQD with bottom-up 

synthesis as shown by Kumawat et al. or by removing internal defects in CQDs 

resulting in the extension of conjugation length as reported by Fan et al.38-39 In light of 

the extensive studies on CQDs exhibiting photodynamic effects towards inducing 

cytotoxicity in cancer cells and tumors, a fundamental understanding of what structural 

parameters allow CQDs to be useful PDT agents remains unclear.   

In this work, we have taken advantage of the predictable and easily controlled 

modification of CQDs in order to correlate specific structural and chemical features 

with efficacy in PDT.  This project was a collaborative effort between our group and 
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Dr. Edith Glazer and Dr. David Heidary at the University of Kentucky. We explored 

the roles of sp2-carbon content, edge-terminating functional groups (i.e. hydroxyl or 

carbonyl) and heteroatoms dopants on the impact toward PDT efficacy. It was found 

that the aromatic core from a top-down synthesis along with a variety of oxygen-

containing functional groups yielded the highest performing PDT agents.  By 

incorporating nitrogen into top-down synthesized CQDs or chemically reducing these 

carbon nanomaterials, we observed inhibited PDT performance. The bottom-up 

synthesis approach yielded a poorly performing PDT agent, which was enhanced by 

nitrogen-doping. Overall, it was observed that both synthetic methods and post-

synthesis modifications can enhance the light/dark performance ratio, also known as 

the photodynamic index, over forty-fold larger than that of aminolevulinic acid (ALA) 

reported in the literature.40 DNA damage experiments demonstrated that reactive 

oxygen radical species are photodynamically produced by CQDs in addition to 1O2, 

signifying the Type I photodynamic mechanism. By employing ROS-selective 

quenching agents, we identified the correlation between specific chemical features of 

CQDs and the mechanism of action which, to our knowledge, had not been proven 

experimentally. Our results suggest that CQDs exhibit strong PDT activity in both the 

Type I (radical species production) and Type II (direct 1O2 production) processes. This 

activity was also found to be tunable by chemical modification of functional groups. 

Additionally, it was determined with a comparison of bottom-up synthesized CQDs 

that surface passivation layers may inhibit PDT activity. Understanding the interplay 

between chemical structure and mechanism of action for the PDT effect will be 

essential to develop CQDs as non-toxic, low-cost, and highly effective PDT agents.  

5.2 Experimental Details and Methods 

Synthesis of GQD. Carbon nano-onions (5 nm in diameter) in a concentrated 

HNO3/H2SO4 solution were refluxed at 105 °C for 5 h. The resulting solution was 

neutralized with KOH and filtered using a Buchner funnel (20 m pore size) to remove 

salts and large particulates. 50 mL of filtered solution was placed into a dialysis bag 

(MWCO: 1 kDa) for 1 week to remove any remaining salts and then concentrated to 

0.5 mg mL-1. 
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Synthesis of NGQD (nitrogen-doped GQD). 5 mL of 0.5 mg mL-1 GQDs were 

mixed with 5 mL of concentrated NH4OH (28 wt %) and placed in a hydrothermal (HT) 

reactor with no additional gas pressure applied. The HT reactor was placed in an oven 

at 180 ºC for 5 h and left to cool overnight. The resulting solution was gently heated to 

remove excess NH3 and then dialyzed for 1 week to remove excess ions. The final 

concentration was 0.5 mg mL-1. 

Synthesis of rGQD. 10 mg of GQD were mixed with 10 mL of DI water and placed 

in a 20 mL vial. Then, 200 mg of NaBH4 was added to the same vial and kept it stirring 

at room temperature for 1 hour. After that, the resulting solution was neutralized with 

dilute H2SO4. Next, above solution was dialyzed for 1 week using 1 kDa MWCO 

dialysis bag to remove any remaining salts and rGQD were obtained. Finally, the 

concentration of rGQD solution was adjusted to 0.5 mg mL-1. 

Synthesis of CND. 1 gram of solid citric acid in a 50 mL beaker was placed on a 

hotplate at 160 ºC for pyrolysis for 10 mins. At the end of this time, the liquid CNDs 

were quenched with 100mL of 0.1 M KOH solution to prevent aggregation and further 

reaction. The resulting solution was dialyzed for 1 week and concentrated to 0.5 mg 

mL-1. 

Synthesis of NCND (nitrogen doped CND). NCNDs were prepared in the same 

manner as NGQDs. 5 mL of 0.5 mg mL-1 CNDs were mixed with 5 mL of concentrated 

NH4OH (28 wt%) and placed in a hydrothermal (HT) reactor with no additional gas 

pressure applied. The HT reactor was placed in an oven at 180 ºC for 5 h and left to 

cool overnight. The resulting solution was gently heated to remove excess NH3 and 

then dialyzed for 1 week to remove excess ions. The final concentration was 0.5 mg 

mL-1. 

TEM Analysis. Samples were dropcast (20 µL) onto copper TEM grid with lacey 

carbon (400 mesh, Ted Pella) and left to dry in air overnight. High resolution TEM 

images of the samples were collected by a JEOL 2010F TEM. The acceleration voltage 

of 200 kV was used.   
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XPS Analysis. XPS analysis was conducted to probe elemental composition and 

the chemical states of elements. Samples were dropcast (5 µL drops) onto Si wafers 

several times and vacuum dried overnight at 40 °C to remove water and adventitious 

carbon. XPS experiments were conducted with a K-alpha X-ray Photoelectron 

Spectrometer (ThermoScientific). 

FTIR Analysis. To probe chemical functional groups and chemical structure of the 

samples, ATR-FTIR analysis was conducted. Samples were dried in a powder and then 

placed onto ATR-FTIR crystal (diamond, Thermo Nicolet iS50 FTIR). Background 

spectrum was obtained with the bare crystal in air. FTIR spectra were corrected for 

adsorbed water and CO2.  

UV-VIS absorption and fluorescence (FL) characterization. Samples were 

diluted 10x for UV-Vis absorption and FL studies. FL studies used a series of excitation 

wavelengths with the slits set to 5 nm spectral band-widths. UV-Vis spectra were 

collected with an absorption spectrometer (Thermo Scientific, Evolution 201) and FL 

spectra were collected with a fluorescence spectrometer (Horiba, Fluoromax-3). 

Cell viability in the presence and absence of light.  The effect of the compounds 

on cell viability was determined in the HL60 cell lines. HL60 cells were plated in 96-

well plates at a density of 30,000 cells per well in extracellular solution followed by 

the addition of compounds and incubated for 1 hr at 37 ºC with 5% CO2. The plates 

were then irradiated for 1 min with a 450 nm LED array or kept in the dark, followed 

by the addition of opti-MEM supplemented with 2% FBS such that the final solution 

contained 1% FBS. The plates were incubated in the dark for 72 hrs at 37 ºC with 5% 

CO2. Viability was determined upon the addition of 440 µM resazurin in PBS with the 

final concentration being 73 µM per well. The plates were incubated for three hours 

followed by measurement of fluorescence using a Tecan SPECTRAFluor Plus plate 

reader. The plates were read with the gain set to 60 and an excitation wavelength filter 

of 535 nm and emission of 595 nm. All data were collected in triplicate and normalized 

to wells incubated without compound and without cells. EC50 values were determined 

by plotting the concentration of compound vs the %viability and fit to the equation for 

a sigmoidal dose response using the software Prism. 
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Cell viability of nanodots attached to PDMS. Samples were covalently attached 

to poly(dimethylsiloxane) (PDMS) by first attaching 3-aminopropyl(triethoxysilane) 

(APTES) using standard methods and following up with EDC/NHS coupling using 

standard protocol at a diameter of 7.0 mm and placed at the bottom of the well in a 96-

well plate. HL60 cells were added at 30,000 cells per well in ECS and incubated with 

the PDMS nanodot- coated disks for 1 hr. The plate was then irradiated for 1 min with 

an indigo LED, followed by the addition of opti-MEM containing 2% FBS. Viability 

was measured after 72 hrs as described above.   

Measurement of reactive oxygen species via DNA damage: Samples were 

prepared in 10 mM sodium phosphate buffer with 40 µg/mL of pUC 19 plasmid. CQD 

samples were added at a final concentration of 0.25 mg mL-1 and all quenchers were 

diluted in water and added at a final concentration of 50 mM. Samples were irradiated 

for 5 min with an indigo LED array (145 J/cm2) or kept in the dark. The 100 µM Rose 

Bengal positive control sample was only irradiated for 1 min with the indigo LED array 

(29.1 J/cm2) to avoid complete damage to DNA. Samples were stained with 6x gel 

loading dye (NEB) and loaded onto a 1.0% agarose gel (Invitrogen). Gel 

electrophoresis was run in 1x Tris Acetate Buffer at 100 V with a current of 3.00 A for 

1 hour. Gels were stained with ethidium bromide in 1x TA buffer for an hour and de-

stained in 1x TA buffer for 45 min. Gels were imaged and quantified on a VersaDoc 

(Bio-Rad).  

Measurement of singlet oxygen with SOSG. Singlet oxygen sensor green 

(Invitrogen) was prepared as a 5 mM solution in methanol. The SOSG was diluted to 

5 µM in ECS and transferred to a 96-well plate. Compounds were added to a separate 

96-well plate, serially diluted in ECS, and then transferred to the 96-well plate 

containing SOSG. Fluorescence was measured on a SPECTRAFluor Plus (Tecan) plate 

reader with an excitation of 485 nm and emission of 530 nm. The plate was then 

irradiated for 1 min with the indigo LED (29.1 J/cm2) followed by fluorescence 

measurement. The change in emission signal before and after exposure to the indigo 

LED was plotted against the concentration of the compound.  
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5.3 Results, Discussion and Conclusions 

To determine if photodynamic efficacy could be altered by varying the distribution 

of sp2- and sp3-carbon moieties in CQDs, carbon dots were synthesized with both top-

down and bottom-up methods. For clarity, top-down produced carbon dots will be 

referred to as “graphene quantum dots” (GQDs) similar to reports that use synthetic 

techniques such as chemical oxidation32, 39, 41 and electrochemical exfoliation.42-44 The 

bottom-up approach produced carbon dots termed “carbon nanodots (CNDs)” as 

described in previous studies with microwave pyrolysis31, 45-46 and hydrothermal 

treatment.47-48 The overall synthetic schemes for GQD and CND are shown below in 

Scheme 1a and 1b, respectively. 

 

Scheme 5.1: Top-down synthesis of GQDs from carbon nano-onions. Post-synthesis 

modifications yield NGQDs by hydrothermally treating GQDs with aqueous ammonia 

or rGQDs by chemical reduction with NaBH4. 

 

Scheme 5.2: Bottom-up synthesis of CNDs from citric acid. Post-synthesis 

modification yields NCND by hydrothermally treating CNDs with aqueous ammonia. 
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TEM experiments (Figure 5.1) determined that the undoped CQDs have an average 

diameter of 4.8 nm for GQDs and 8.8 nm for CNDs, which were not affected by post-

synthesis modifications. In high-resolution TEM, lattice fringes of ~0.2 nm in size were 

observed for GQDs and CNDs, which corresponds to (1120) plane of a graphene sheet, 

which indicates that the carbon dots include sp2-hybridized carbon domains. This 

hybridization was confirmed by both Fourier Transform Infrared spectroscopy (FTIR) 

and X-ray photoelectron spectroscopy (XPS). 

 

Figure 5.1: TEM images of carbon quantum dots. (Left) graphene quantum dots 

(GQDs) produced by a top-down method were about 5 nm in diameter. (Right) a 

bottom-up synthetic method produced carbon nanodots (CNDs) which had a larger 

diameter of about 9 nm. High-resolution TEM (inset) images show lattice fringes 

(about 0.22 nm spacing) relating to graphene-like structures in both sets of quantum 

dots. 

The chemical states of carbon and nitrogen present in each CQD sample were 

determined by XPS (Figure 5.2 and 5.3, 5.10). The C1s spectra show that GQDs have 

a slightly larger sp2-carbon to sp3-carbon ratio compared to CNDs. This enhanced sp2-

carbon content originates from the high sp2 content of the precursor, carbon nano-

onions. Upon intercalation with sulfuric acid and oxidation by nitric acid, the fullerene-

like layers become separated to form graphene-like sheets that are edge-terminated with 

oxygen-containing chemical groups.   
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Figure 5.2: XPS C1s spectra of GQD (top left), NGQD (bottom left), CND (top right) 

and NCND (bottom right). All samples show significant sp2-carbon content with 

varying amounts of sp3-carbon. After nitrogen doping, this sp3-carbon is enhanced in 

the GQD series due to hydrothermal cutting effects. In the CND series, the sp3-carbon 

content is enhanced as the surface passivation layer collapses and condenses into more 

sp2-carbon content. 

Upon pyrolysis of citric acid above its melting temperature, two processes 

occurred, condensation and carbonization, which both form the CND framework. 

During condensation, two –OH form an ether or one –CO2H and one –OH group form 

an ester, with dehydration occurring in both processes. Under these pyrolysis 

temperatures (> 160°C), water is evaporated to atmosphere making this process 

irreversible. Carbonization is also an irreversible reaction in which CO2 is evolved in 

favor of forming the much stronger C=C bond and ultimately, the sp2 nano-domain. 

Additional sp3-carbon in CNDs is attributed to the incomplete carbonization of citric 

acid during the pyrolysis. This sp3-carbon disrupts and passivates the sp2 nano-domains 

and may contribute to the spherical structure of CNDs. 

Determining the structure-function relationship requires a detailed analysis of the 

chemical structure. We chose to characterize our samples with the combination of XPS 

and FTIR to probe the specific distribution of chemical states in each CQD. XPS 

experiments show that both CND and GQD have similar overall oxygen contents but 

with varying distributions of functional groups (i.e.: hydroxyl, carbonyl and carboxyl). 
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GQDs tend to possess more carbonyl and carboxylic acid moieties as the result of the 

harsh oxidation condition with nitric acid during synthesis. CNDs, in comparison, have 

more hydroxyl groups and less carboxylic acid groups. Carboxyl groups are often 

gasified as CO2 during pyrolysis. The peaks have been assigned with 286 eV for C-O, 

288 eV for carbonyl groups associated with aldehydes, ketones, and esters, and 289 eV 

is assigned to carboxylic acids due to the strong electron withdrawing effect of the 

oxygen which shift the binding energy of the C1s electron higher. 

Nitrogen-incorporated samples (NGQDs and NCNDs) have C1s spectra similar to 

their undoped counterparts but with notable changes in sp3-carbon content. These 

quantitative results can be found in Table 5.1. An additional set of peaks relating to 

amine, amide and imine N appears around 287 eV. The N1s spectra of NGQD and 

NCNDs (Fig. 5.3) show similar relative peak intensities where amine/amide N (~ 399.5 

eV) is the dominant species, followed closely by pyridinic (398.5 eV), pyrrolic (400.2 

eV), and N-oxide (403 eV). Interestingly, there is a substantial amount of quaternary N 

(401.6 eV) present in NGQD despite having more sp2-C before nitrogenation. We 

attribute this to the high temperature used for hydrothermal treatment (180 °C) which 

can replace defects in the sp2 nano-domain with nitrogen.  

 

Figure 5.3: XPS N1s spectra of NGQD (left) and NCND (right) produced by similar 

hydrothermal treatment conditions. Though the process to add nitrogen was the same 

for both samples, it was found that NGQDs carry more functional group diversity than 

the bottom-up synthesized NCNDs. Unique to each sample, NGQDs has a substantial 

amount of graphitic N whereas NCNDs contains more N-oxide functionality. 

FTIR spectra of GQDs confirmed the previous XPS interpretations, by revealing 

peaks assigned to hydroxyl (1200 and 3400 cm-1), carbonyl (1700 cm-1), carboxyl 

(1750 and 2500 cm-1), and aromatic carbon (1400 and 1550 cm-1) (Figure 5.4). After 
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hydrothermal reaction of GQDs with aqueous ammonia, NGQDs show new peaks 

characteristic of a successful reaction. The simultaneous shift from the 1200 and 3400 

cm-1 peaks to 1050 cm-1 and 3300 cm-1 is attributed to the replacement of hydroxyl 

groups (C-O and O-H stretches) with N-containing functional groups (C-N and N-H 

stretches), respectively. Carboxylic acid groups are converted to amide groups, 

signified by the shift of the peak from 1750 cm-1 to 1650 cm-1 and the loss of the well-

defined peak at 2500 cm-1. rGQD, shown in Figure 5.11, shows a suppression of peaks 

relating to carbonyl groups at 1750 cm-1 and 3300 cm-1. This is coupled with the 

increase of peak intensity at 1100 cm-1 corresponding to hydroxyl groups. There is also 

a minor suppression related to the loss of carboxylic acid groups, which is consistent 

with the XPS spectra in Figure 5.10. This result shows the conversion of carbonyl 

groups to hydroxyl groups by NaBH4 reduction. 

 

Figure 5.4: FTIR Spectra of GQD/NGQD (left) and CND/NCND (right) samples.  

The FTIR spectra of CNDs show similar oxygen-containing functional groups like 

GQDs but with intensities that correspond to the varied functional group distribution. 

Unique to CNDs, there is a significant sp3-carbon peak (C-H stretch) at 2950 cm-1 that 

is removed upon hydrothermal treatment. Like GQDs, the same shift of –OH to –NH2 

occurs when ammonia is added to CNDs. Additionally, the peaks at 1700 and 1750 cm-

1 are greatly suppressed upon nitrogenation, signifying the conversion of carboxyl 

groups to amides and reducing carbonyls to hydroxyls which then are converted to 

primary amines.  

Optical measurements (i.e.: absorption and photoluminescence) were used to 

identify the optimal wavelength for the cell viability and DNA damage studies 
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discussed later. In general, compared with GQDs, CNDs tend to absorb/emit at shorter 

wavelengths due to smaller sp2 nanodomains that are well passivated which block non-

radiative relaxation. This is also the case in Fig. 5.5 where CQD samples of the same 

concentration (0.05 mg mL-1) were analyzed by UV-Visible absorption spectroscopy. 

Upon nitrogenation, both CND and GQD samples globally increase their absorbance 

at all wavelengths. However, it is important to note that NGQDs absorb a wider range 

of visible light than all the other CQD samples.  

 

Figure 5.5: UV-Vis Absorbance spectra of each CQD sample. GQDs (red solid line) 

absorbs visible light more than CNDs (blue solid line) which absorbs primarily UV 

light. Upon nitrogenation (dashed lines), absorbance is enhanced for all samples 

universally across the measured wavelengths. 

Overall, the photoluminescence (PL) of CQDs in this report exhibit optical 

properties similar to the report by Wang et al. that detail intrinsic emission from the 

aromatic carbon core and extrinsic emission originating from molecule-like 

fluorophores.49 GQDs and NGQDs both have similar excitation-dependent emission 

profiles with 520 nm peak emission at 450 nm excitation which relates to extrinsic 

emission. However NGQDs show peak emission with 420 nm excitation (Figure 5.6). 

Chemical reduction of GQD resulted in peak emission wavelengths that were shifted 

to shorter wavelengths (Figure 5.12). In comparison with GQDs, CNDs display blue-
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shifted photoluminescence with 450 nm peak emission upon to excitation at 330 nm. 

We attribute the blue-shift of emission to surface-passivated aromatic domains formed 

during synthesis. Compared to CNDs, nitrogen-doped CNDs (NCNDs) were blue 

shifted by 30 nm with the same excitation wavelength. Based on previous XPS and 

FTIR characterization, the most common feature between these five CQD samples is 

the sp2-hybridized nano-domain. 

 

Figure 5.6: Photoluminescence spectra of GQD (top left), NGQD (bottom left), CND 

(top right), and NCND (bottom right). GQDs and their nitrogen-doped counterparts 

have similar emission profiles however CNDs and NCNDs vary greatly in both peak 

emission wavelength and intensity. 

As with optical absorption and emission profiles, the photoluminescent quantum 

yield (PLQY) is used to identify which CQDs show stronger radiative or non-radiative 

decay channels. This information allows for greater understanding of Type I processes 

which require charge transfer versus Type II processes which require energy transfer. 

If there is significant competition of the PDT agent with its own fluorescence, neither 

charge transfer nor energy transfer will be a dominant process, reducing PDT efficacy. 

Table 5.2 shows the absolute photoluminescent quantum yield (PLQY) of each CQD 

sample which was determined using an integrating sphere. Overall, nitrogenation and 

chemical reduction increase the PLQY of both CNDs and GQDs.  Enhancement by the 

addition of nitrogen has been extensively studied for its effect on optical properties.17, 

20 Reduction of existing carbonyl functional groups to hydroxyls which has also been 

shown to increase photoluminescent QY. NaBH4-reduced GQDs (rGQDs) 
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demonstrated similar PL increases (Figure 5.12) as those shown in other reports.50-51 

The PLQY enhancement is attributed to the reduction of dark state carbonyl to the 

bright state hydroxyl.52  

CNDs inherently have a higher PLQY than GQDs due to the effect of surface 

passivation. By restricting the mobility of the exciton, direct emission takes precedence 

over non-radiative decay channels such as vibrational relaxation and energy transfer. 

NCNDs show a significant increase of PLQY compared to CNDs which is again 

consistent with reports that dope nitrogen into carbon quantum dots. Based on XPS 

analysis from Figures 5.2 and 5.3, we assign the PLQY enhancement in NCNDs to the 

collapse of sp3-C passivation layer and the increase of dipole moments associated with 

nitrogen-related chemical states which are pyridinic, amine/amide, pyrrolic and N-

oxides. As with NGQDs, the hydrothermal treatment of CND at this temperature could 

cause cutting effects. However we hypothesize the sp3 surface passivation layer of 

CNDs may act as protection from hydrothermal cutting effects. GQDs, without a 

significant passivation layer, would not experience this same protection and be 

vulnerable to hydrothermal cutting or disruption of the contiguous sp2-carbon 

nanodomain with the electron-rich graphitic N. These modifications have been shown 

to have a significant effect on photoluminescent properties.53-54 

Efficacy of CQDs as PDT agents was evaluated in a leukemic cell line (HL60). The 

cells were dosed with CQDs and irradiated for 1 minute with 450 nm light or kept in 

the dark. Viability was measured after 72 hrs. As hypothesized, the efficacy of CNDs 

and GQDs as a PDT agent was dependent on chemical and structural changes. 

GQDs were the most effective PDT agent among all the CQD samples tested 

(Figure 5.7). In HL60 cells, GQD and NGQD concentrations up to 0.5 mg mL-1 were 

not cytotoxic (Figure 5.7c and d). When GQDs were exposed to 450 nm light, 

cytotoxicity occurred with an EC50 value of 10-3 mg mL-1. These results give a GQD 

photodynamic index of nearly 725, which is 40 times more potent than commercial 

PDT drugs such as aminolevulinic acid (ALA).40 Additionally, GQDs that were 

chemically reduced or hydrothermally N-doped show a decreased photodynamic index 

compared to unmodified GQDs. 
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Figure 5.7: Efficacy of compounds as PDT agents determined in HL60 cells.  Cell 

viability determined for a) CND, b) NCND, c) GQD, and d) NGQD. Compounds were 

dosed with the cells and either exposed to indigo light (blue line) or kept in the dark 

(black line). 

Unmodified CNDs had no PDT activity in HL60 cells. Cytotoxicity occurred at 

concentrations of over 0.1 mg mL-1 in the absence or presence of irradiation. 

Interestingly, N-doped CNDs “switch on” a much stronger photodynamic effect toward 

cancer cells. We speculate that the collapse of the sp3 surface passivation layer coupled 

with the new nitrogen-containing functional groups allow for facile electron transfer 

allowing the generation of ROS (OH· or OOH·). The lack of a surface passivation layer 

could allow for intimate contact between ROS precursors such that the newly formed 

nitrogenated functional groups can participate in redox processes. Likewise, the 

presence of a surface passivation layer may prevent this contact resulting in little or no 

PDT activity as seen in CNDs. 

After the cell viability experiments, we considered that a physical mechanism such 

as cell lysis (or contact-kill mechanism) could be partially responsible for those results. 

Figure 5.16 illustrates that covalently anchored CQDs show no cytotoxicity, implying 

that cytotoxicity most likely occurred due to uptake of the CQD into the cytosol, 

possible through endocytosis.  

In order to explore the structure-function relationship of CQDs, the amount of (1O2) 

singlet oxygen generated by different types of CQDs were tracked (Figure 5.8). CNDs 
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produced very little singlet oxygen and only with very high concentrations did the 

NCNDs show measurable production of singlet oxygen. These results correlate with 

cell cytotoxicity. Compared to CNDs, GQDs had nearly six times the 1O2 generation. 

Interestingly, any modification to the GQD suppressed the PDT efficacy which 

correlates with the cellular cytotoxicity. In contrast to CNDs, NGQDs show about a 

five-fold increase of generated 1O2 and rGQD show a nearly four-fold increase of 

generated 1O2. At very high concentrations of 0.1 mg mL-1, the 5 µM singlet oxygen 

sensor green dye (SOSG) becomes saturated with singlet oxygen. This results in a 

decrease of emission by SOSG dye. The 0.1 mg mL-1 data points fall into the range 

where dark cytotoxicity becomes a problem with CNDs and NCNDs and were not used 

for comparison with any of the CQD samples. These results could infer: (i) when the 

pristine aromatic core of GQD is disrupted by graphitic N, photodynamic activity is 

lost; and (ii) carbonyl functional groups may relate to photodynamic activity as upon 

chemical reduction with NaBH4, there is a severe decrease in singlet oxygen 

production. Overall, top-down synthesized GQDs, NGQDs, rGQDs outperform 

bottom-up synthesized CNDs and NCNDs, implying that structural defects in sp2-

carbon domains and oxygenated edge-terminating chemical groups are crucial for 

efficient production of singlet oxygen.  
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Figure 5.8: Relative measurement of singlet oxygen as a function of CQD 

concentration. The GQD series show significant production of singlet oxygen 

compared to the CND series. Upon any chemical modification of GQDs such as 

reduction or nitrogen-doping, the amount of produced singlet oxygen drops. In all 

studies the fluorescent SOSG dye was used as the measure of singlet oxygen. 

The PDT mechanism could be due to a Type I (radical species production) or a 

Type II (direct 1O2 production) mechanism. To further elucidate the mechanism of 

action, damage of DNA plasmid was used as a reporter. Compounds were incubated 

with plasmid and illuminated in the presence or absence of ROS selective quenchers. 

As ROS is generated, the supercoiled plasmid sustains either single or double strand 

breaks, resulting in relaxed circle or linear plasmid. The amount of these plasmid 

species was quantified for GQDs and NGQDs (Figure 5.9). The results for the other 

CQDs can be found in the Supporting Information (Figure 5.14 and 5.15).  
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Figure 5.9: Gel electrophoresis results of DNA damage experiment. It can be seen that 

there is a moderate amount of plasmid fragmentation when exposed to GQDs and light. 

Without either GQDs or light, there is no measurable fragmentation. Additionally, 

quenching agents such as TEMPO or ascorbic acid help determine the photodynamic 

mechanism of action by selectively blocking specific reactive oxygen species. NGQDs 

show similar behavior to GQDs but with less effect. 

As expected, GQD-plasmid solution without light irradiation clearly shows very 

little damage to the plasmid DNA. The irradiated GQD-plasmid and NGQD-plasmid 

sample shows significant damage – even more so than 100 µM Rose Bengal (RB). 

DNA damage was measured in the presence of several selective quenching molecules. 

Sodium azide (NaN3) was used to selectively quench singlet oxygen (1O2). TEMPO, a 

common radical scavenger, was used to trap radical ROS and sodium iodide (NaI) as a 

hydroxyl radical quenching agent. DNA damage was significantly reduced for both 

GQDs, NGQDs and rGQDs when the solutions were irradiated in the presence of 

NaN3, TEMPO, or NaI (Figure 5.9 and Figure 5.15). These results indicate that singlet 

oxygen is not the only ROS species produced by GQDs and their modified 

counterparts. In fact, there is little preference for one specific ROS and that the mixture 

of superoxide, hydrogen peroxide, hydroxyl radical, and other radical species produced 

play a substantial part in the photodynamic death of cancer cells. In the case of NCNDs 

(Figure S5), which showed strong light-activated cytotoxicity, the photodynamic 

mechanism of action is largely driven by radical ROS. We hypothesize that the 
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combination of added nitrogen heteroatoms and collapse of the surface passivation 

layer generate an active site in which electron transfer can more freely occur.  

The overall mechanism of action for CQDs involves both Type I and Type II 

processes. For GQDs and their derivatives, oxygenated functional groups and defects 

(vacancies) are crucial to generate singlet oxygen species and reactive radicals. We 

suspect that carbonyl functional groups of unmodified GQDs are responsible for 1O2 

production as chemical reduction with NaBH4 reduces singlet oxygen production 

significantly. From the DNA damage experiments, unmodified GQDs also show the 

greatest quenching with NaI, further suggesting that the carbonyl group is also 

responsible for hydroxyl radical production. Conversely, quenching with NaI shows 

that rGQD produce the smallest amount of hydroxyl radicals, enabling other ROS 

species to carry Type I PDT activity. NGQDs are particularly interesting as they 

produce intermediate results between GQDs and rGQDs in cell viability, 1O2 

production, and DNA damage experiments. We have observed through FT-IR and XPS 

characterization that the conversion of carbonyl functional groups diverges into both 

imines and hydroxyl groups. As such, we hypothesize that the imine functional group 

either is inactive or weakly active for the Type I process and the smaller amount of 

hydroxyl groups produced gives rise to the intermediate results. For nitrogen-doped 

CNDs, the mechanism of action is more towards a Type I process due to a very low 

singlet oxygen production and total suppression of DNA damage when TEMPO is the 

quenching agent. We cannot determine whether the PDT activity of these functional 

groups (molecule-like states) comes from direct energy transfer to molecular oxygen 

from their own excited triplet state, or via indirect energy transfer between the intrinsic 

state and the molecule-like state. Nonetheless, the trends found across GQDs, NGQDs, 

and rGQDs in this study suggest that specific functional groups (i.e.: carbonyls, 

hydroxyls and imines) may play an important role toward the Type I and Type II 

mechanisms of action. To the best of our knowledge, this is the first report in which the 

detailed structure-function relationships of CQDs are investigated in the context of 

photodynamic therapy.  
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GQDs and other chemically modified CQDs used for photodynamic anti-cancer 

therapy demonstrated excellent PDT activity toward HL60 cancer cell lines using 450 

nm light as the excitation source. Through a battery of experiments including singlet 

oxygen measurements and DNA damage experiments performed with gel 

electrophoresis, it was found that GQDs outperformed CNDs. Uniquely, nitrogenation 

of the bottom-up synthesized CNDs switched on the PDT activity whereas chemical 

modification of GQDs show an inhibitive effect. Ideally, IR-absorbing CQD would be 

a better PDT agent due to the potential for deep tissue penetration. However, this work 

provides a strong foundation about the structure-photodynamic effect relation and the 

mechanism of action. For the first time, both Type I and Type II photodynamic 

processes were observed based on the ROS produced by the photoactivation of GQDs, 

NGQDs, and rGQDs. Furthermore, we propose that carbonyl, hydroxyl and imine 

groups of CQDs play a critical role in determining the detailed mechanism of PDT 

activity through Type I and Type II pathways. With this information, there is now great 

promise to engineer IR-absorbing CQDs for non-toxic and cost-effective 

photodynamic agents with a diverse mechanism of action. 

5.4 Supporting Tables and Figures 
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Figure 5.10: rGQD XPS high resolution spectrum. Compared to the unmodified GQD, 

there is a substantial decrease of carbonyl functionality coupled with an increase in 

hydroxyl groups. 
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Figure 5.11: rGQD FT-IR Spectra. It can be seen that chemical reduction converts carbonyl 

groups (1750 cm-1) to hydroxyl groups (1100 cm-1, broadening of 3300-3400 cm-1). 

 

Figure 5.12: rGQD Emission Spectra. Compared to unmodified GQD, emission is shifted 

toward higher energy (lower wavelength) by the removal of carbonyl groups; reducing the 

π-conjugation of the quantum dot.   
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Figure 5.13: rGQD cell viability results in the dark (black line) and with exposure to light 

(blue line). Compared to both unmodified and nitrogen-doped GQD, photo-induced 

cytotoxicity can only occur with higher concentrations. 

 

 

 

Figure 5.14: CND and NCND results from DNA damage experiment. As seen in cell 

viability experiments, unmodified CND show no appreciable photodynamic therapy 

effects. NCND on the other hand primarily act as PDT agents through radical compounds. 

When treated with sodium azide (NaN3), TEMPO, or sodium iodide (NaI), the 

photodynamic performance is quenched by suppressing singlet oxygen, superoxide and 

hydroxyl radicals, respectively. Note: RB (+cntrl) refers to a control solution of 100 µM 

Rose Bengal which demonstrated roughly 40% DNA damage. 
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Figure 5.15: GQD, NGQD, and rGQD results from DNA damage experiment. As before, 

unmodified GQD exhibits the greatest photo-induced damage to the sample plasmid 

through a cocktail of singlet oxygen and radicalized species. Nitrogen-doping or chemical 

reduction suppress the PDT activity. Interestingly, rGQD experiences less singlet oxygen 

production and instead utilizes radical species (i.e. superoxide and hydroxyl radicals) as 

the dominant mechanism of photo-induced cytotoxicity. Note: RB (+cntrl) refers to a 

control solution of 100 µM Rose Bengal which demonstrated roughly 40% DNA damage. 

 

 

Figure 5.16: Cytotoxicity does not occur with CQD samples covalently mounted onto 

PDMS substrates. Results show that there is no significant amount of cell death by a 

contact-kill mechanism. 
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Figure 5.17: Photograph and quantitative results of DNA Damage with GQDs and NGQDs. 

NaN3 was used as a 1O2 quencher, TEMPO as a radical ROS quencher and NaI as a 

selective hydroxyl radical quencher. 

 

Table 5.1: Quantitative results of sp2 carbon, sp3 carbon, and related functional groups 

determined by the deconvolution of XPS C1s Spectra. 

 sp2 Carbon 

(%) 

sp3 Carbon 

(%) 

C-O 

(%) 

C-N 

(%) 

C=N 

(%) 

C=O 

(%) 

CO2H 

(%) 

GQD 56.51 12.56 6.92 --- --- 14.14 9.87 

NGQD 50.00 15.54 9.10 7.55 10.12 3.61 2.37 

rGQD 34.47 33.27 14.36 --- --- 8.95 8.94 

CND 54.18 21.38 10.64 --- --- 11.02 2.77 

NCND 58.47 10.42 7.96 3.70 3.29 2.79 3.06 

 

Table 5.2: Photoluminescence quantum yields of CQD samples measured with an 

integrating sphere. 

 PLQY (%) 

GQD 0.48 ± 0.067 

NGQD 10.07 ± 0.109 

rGQD 3.89 ± 0.084 

CND 3.03 ± 0.041 

NCND 11.12 ± 0.135 
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Table 5.3: Comparison of photodynamic index values of CQD samples and commercially 

available PDT drugs. Photodynamic index is defined as the dark cytotoxicity EC50 divided 

by the light cytotoxicity EC50.
40 

 
Dark Cytotoxicity 

EC50 (mg mL-1) 

Light Cytotoxicity 

EC50 (mg mL-1) 

Photodynamic Index 

GQD > 0.5 0.00069 724 

NGQD > 0.5 0.00098 510 

rGQD > 0.5 0.0025 200 

CND 0.067 0.106 0.6 

NCND 0.057 0.0016 36 

ALA40 0.039 0.0021 19 

Foscan®41 0.0020 0.00039 5 
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Chapter 6: Conclusions and Future Directions 

6.1 Synopsis 

This chapter serves as the foundation for future work that has not yet been 

performed. The first section of this chapter will address questions related to scarcely 

studied topics in CQD research. It is intended to serve as an inspiration for future 

students to critically think upon the challenges of this research such that better CQDs 

can be tailor-made for optoelectronic, catalytic and biomedical applications. Secondly, 

as there are many new reports in CQD research being published, the most recent trends 

and ideologies will be addressed. Unfortunately, there are many reports that aim only 

to make CQD out of some material without much thought to its future purpose nor the 

advantage of using one method or reagent to another. This author wishes that the results 

and their implications within this dissertation can assist future students in order to 

produce high quality work in this exciting field. Finally, the last section of this chapter 

will propose the use of CQD as opioid and nicotine cessation agents. After explaining 

the need for these kinds of agents, a brief explanation of the relevant biochemical 

mechanisms will provide hypotheses in which CQDs can be engineered toward this 

goal. 

6.2 Conclusions and Discussion 

The work presented in Chapters 2 through 5 provides new information on the often 

overlooked structure-function relationship. Chapter 2 demonstrates the structural 

differences in CQDs synthesized by top-down and bottom-up approaches. Though 

having similar structural motifs such as a fused aromatic ring region with some amount 

of edge-terminating functional groups; it was found through a series of rigorous 

characterization methods that bottom-up and top-down produced CQDs carry very 

different functional group distributions as well as sp2:sp3-carbon ratios.  

Chapter 3 highlights the use of a hydrothermal reactor to control over heteroatom 

dopants by varying oven temperature. It was hypothesized and shown that there would 

be a temperature limit at which hydrothermal treatment would negatively impact N-

doping efficiency. To that end, it was determined that temperatures above 150 °C would 
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cause hydrothermal cutting effects and ultimately cleave edge-terminating functional 

groups such as amines and amides from the GQD. It was found that various nitrogen-

related functional groups (pyridinic, pyrrolic, and graphitic N) can be formed by the 

reaction between existing GQD defects and nitrogen precursors.  

Chapter 4 investigated CNDs further by analyzing the effect of pyrolysis time on 

the chemical structure as well as optical and catalytic properties. The processes of H2O 

and CO2 elimination as well as C-C condensation are not new, but disordered systems 

like carbon quantum dots are worth investigating just how these processes influence 

chemical structure and thus, function over time. It was found that as time progresses 

during pyrolysis, the CND actually evolves into a more GQD-like structure. As first 

observed by Dong et al.1, there is a point in which the GQD-like structure grows into a 

graphene oxide-like structure. Therefore, the bottom-up synthesis is found to be useful 

at shorter periods of time to finely tune the inherent fluorescence and post-synthesis 

modifications such as hydrothermal treatment or EDC/NHS coupling to an amine-

containing compound. Longer periods of pyrolysis time prevent heteroatom doping due 

to the removal of defects and collapse of a three-dimensional sp3-carbon passivation 

layer into a planar sp2-carbon nanographene sheet. It was found that this change 

brought very serious changes to the catalytic activity toward the oxygen reduction 

reaction. This result provided an insight into all-carbon catalyst engineering in that 

heteroatom dopants must be able to easily insert themselves into the carbon backbone 

of CQDs. This allows for the development of catalysts that contain a high density of 

active sites per CQD. Compared to other popular nanomaterials that have heteroatom 

dopants introduced (such as CNTs, GO, etc.) the uptake of heteroatoms would be 

kinetically and thermodynamically more favorable in bottom-up synthesized CQDs. 

Chapter 5 sought to use the structure-function relationship of both unmodified 

CNDs and GQDs as well as modified CNDs and GQDs for the purposes of anti-cancer 

photodynamic therapy. Interestingly, unmodified GQDs performed the best of all 

samples with unmodified CNDs performing the worst. Adding nitrogen heteroatoms or 

chemically reducing GQDs suppressed the amount of singlet oxygen produced and 

enhanced the production of species like hydroxyl and superoxide radicals. To our 
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surprise, nitrogenation of CNDs switched on the photodynamic effect, producing an 

even mixture of singlet oxygen and radical species as seen from the DNA damage 

experiments. 

6.2.1 Heteroatom Doping Effects 

In carbon quantum dot research, one of the most promising ways to improve 

performance (i.e.: optical, catalytic) is through heteroatom doping. Adding in a more-

electron rich heteroatom than carbon such as nitrogen produced the results as seen in 

previous chapters such as shifting the photoluminescence toward each end of the visible 

spectrum or tuning the inherent brightness of the nanoparticles. In this regard, it would 

be insightful to explore atomic doping percentages of greater than 10 %. As before, the 

addition of a high percentage of graphitic and pyrrolic N dopants would greatly enhance 

the low PLQY of GQDs. Post-synthetic modification would allow for fine-tuning the 

spectral position while retaining the inherent brightness of the CQD.  

A recent report states that incorporating multiple heteroatom dopants – boron, 

nitrogen and sulfur in this case – all improve the quantum yield of CQDs.2 This report 

is intriguing as it states that any elements either with less electrons (boron) or more 

electrons (nitrogen, sulfur) improve photoluminescent quantum yield uniformly. As 

dopants influence changes in the dipole moment, absorption is increased which leads 

to enhanced PLQY. Much research into heteroatom doping has concluded that, like 

nitrogen, specific chemical states influence optical properties differently. For example, 

the removal of oxygen heteroatoms increases the photoluminescence and shifts 

emission toward the blue.3 Thus, the addition of sulfur atoms, which have the same 

valence electrons as oxygen, have produced similar results including a red-shifting of 

emission compared to undoped quantum dots.4 Boron is an interesting case as it is the 

only heteroatom in this report that is electron-deficient compared to carbon. Other 

studies have reported boron-doping of various carbon-based nanomaterials with 

opposing photoluminescence changes.5-7 These optical differences may originate from 

differing chemical states though none of the authors of these works mention a 

correlation between these two ideas. As shown in Chapter 3, hydrothermal treatment 

can be utilized to give extensive control over doping quantities as well as functional 
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group distribution. Combining a parameterized HT treatment (e.g.: temperature- or 

time-dependence) with varying concentrations of heteroatom precursor (i.e.: boric acid, 

sulfate, etc.) would allow for a critical analysis of the role of boron not unlike chapter 

3. The results gained from these experiments would greatly enhance current knowledge 

of tuning the carbon quantum dot fluorescence and properties as researchers could 

utilize a wider range of dopants.  

6.2.2 Isolation of Functional Groups 

In order to further elucidate the structure-property relationship including 

heteroatom dopants, the need arises to isolate the distribution of functional groups into 

one specific functional group. For example, could an N-doped CQD be made with only 

amines, pyridines, pyrrolic, or quaternary amines? Unfortunately, kinetic and 

thermodynamic barriers during synthesis prevent carbon quantum dots from only 

containing one functional group. This notion is the greatest challenge in CQD research 

with equally great promise upon completion. By synthesizing CQDs with only one 

functional group, experimentalists could compare their data with theoretical work. 

Fundamental understanding of the electronic interaction between heteroatoms and 

carbon could give rise to carbon-based nanomaterials whose properties are as 

monodisperse as inorganic quantum dots. Additionally, this knowledge could unlock 

the potential to produce tailor-made quantum dots for specific applications. Until then, 

chemists and material scientists must rely on theoretical studies to understand how 

singly disperse functional groups affect optoelectronic and catalytic performance.  

As a proposed work, it would be useful for computational chemists to model a 

hydrothermal reactor system and fundamentally understand the mechanism behind 

nitrogen doping. From the results of Chapter 3, it can be simply stated that a kinetic 

model of doping occurs below treatment temperatures of 150 °C and that the majority 

of functional groups exist as amines and pyridines. Above 150 °C, it becomes 

thermodynamically favorable for dopants to penetrate the sp2-nanodomain to form 

graphitic N. In the absence of literature on this exact topic, the common question can 

be drawn from our previous results: what is happening in the hydrothermal reactor at 

each of these temperatures? First, an assumption must be made that amine substitution 
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is a kinetically favorable process since carboxyl and hydroxyl functional groups are 

present at the edge of CQDs. This is coupled with the fact that from aqueous ammonia, 

three events must occur, the two bonds that break (N-H and C-O), and the newly formed 

C-N bond. Secondly, it can be hypothesized that oxygen defects such as the aromatic 

furan and the non-aromatic pyran – both of which would look like ethers in a CQD - 

are respectively converted into pyrrole and pyridine. Additionally, pyrroles and 

pyridines could be formed from the ring closure of a free amine as it is converted from 

a primary amine to a secondary amine. This kind of process would require a high 

amount of energy and would be classified as a thermodynamically driven process. In 

support of this idea, furans have been reacted with gaseous ammonia (at 400 °C) over 

an alumina bed to form pyrroles.8 Instead of a substitution, this reaction proceeds by 

ring opening then the step-wise addition of ammonia and simultaneous ring closure and 

conversion to a secondary amine. Since then, this reaction has been developed to lower 

the energy needed to drive the reaction to completion by using the furan as an 

intermediate which may suggest a simple nitrogen substitution is possible under the 

right conditions.9 In Figure 6.1, graphitic N is hypothesized to form under a completely 

thermodynamic process and can only form if there is a defect including one heteroatom 

(oxygen, in this case) and neighboring sp2 or sp3 carbon atoms.  
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Figure 6.1: Possibilities in which nitrogen can be inserted into the sp2 matrix of a CQD. 

Without an existing defect, the energy required to replace a carbon in the matrix with 

nitrogen would likely harm another part of the CQD. 

There has been some computational work on the optoelectronic relationship of 

nitrogen-doped GQD. Recently, Margraf et al. reports calculated band gap differences 

between undoped carbon quantum dots and up to 5 atom % N in the form of amines 

and cyano groups.10 It is further discussed that the addition of nitrogen only modifies 

the band gap slightly, stating little significance to the dopant effect. Referring back to 

our work with N-doped GQDs, this theoretical work agrees with our NGQDs that 

primarily consist of amine functionalities. However, the red-shifting nature from our 

work is greatly enhanced compared to Margraf’s report. This is likely due to the sheer 

number of functional groups added to each NGQD. As stated in previous chapters, 

theoretical simulations show that increasing the density of amine functional groups 

progressively red-shits the emission further.11 Interestingly, there are few papers that 

concern calculating optoelectronic properties of carbon quantum dots. Most theoretical 

studies on NCQDs aim to isolate a specific N-containing functional group for the ORR 

or CO2 reduction (CRR) pathways. Saidi et al. found that pyridinic and graphitic N are 

ideal for electrocatalyzing the ORR reaction, however with large overpotentials.12 

Unique to this study, the pyridinic and graphitic N sites catalyse ORR separately in 

Hydrothermal Treatment

High Temperature



154 

 

dissociative and associative pathways, respectively. Generally, dissociative pathways 

split oxygen molecules into atoms once reaching the N active site. Associative 

pathways, on the other hand, carry out the reduction on the whole oxygen molecule 

where bound O2 is reduced to bound OOH.  

Zou et al. reports a detailed analysis on the N active sites in N-doped CQDs.13 This 

work focuses specifically on the use of pyridinic N as the active site in a multi-step 

process to convert CO2 to CH4. This multi-step reaction is shown below in Figure 6.2. 

Briefly, this process starts with the binding of CO2 to the pyridinic N, proton addition 

to one of the carbon dioxide oxygen atoms to form bound formate, electrochemical 

removal of –OH to form bound CO, two proton additions to the carbon attached to the 

pyridinic N and one to the remaining carbonyl oxygen. Then, another electrochemical 

removal of hydroxide to form bound CH2 radical, hydration with water to form a bound 

primary alcohol and the addition of another proton to the bound carbon, one last 

removal of hydroxide to form CH3 radical, and the addition of one last proton to form 

the volatile CH4 molecule which is easily removed from solution. According to this 

report, a similar, more energetically favorable pathway occurs for much larger negative 

potentials. 
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Figure 6.2: Reprinted with permission from Ref. 13. Copyright 2017 American 

Chemical Society. 

It is hypothesized that synthesizing singly disperse functional groups within CQDs 

can be accomplished; however, low yields and difficult purification steps are likely to 

occur. Unsurprisingly, controlling the distribution of oxygen-containing functional 

groups has proven difficult with conventional methods such as chemical oxidation and 

reduction for fear of completely destroying the CQD. For external modification 

techniques, it may be more effective to use a top-down synthesized GQD to limit 

further condensation reactions that bottom-up synthesis would undergo. A GQD with 

carboxylic and carbonyl groups could be reduced down to only hydroxyl groups with 

LiAlH4 - an extremely potent and dangerous reducing agent. Fortunately, LiAlH4 does 

not reduce any aromatic or aliphatic C-C bonds so the risk of fragmenting the CQD is 

low with this process. Using this reagent could be effective if coupled with a GQD that 

has been mildly reduced with NaBH4 to enhance solubility in non-aqueous media. As 

such, a glove box would be required for the synthesis as LiAlH4 reacts violently with 

water (atmospheric moisture is a problem) and the pure material itself is pyrophoric. 

With all of the oxygen-containing functional groups converted to alcohols, a low 

temperature hydrothermal treatment with dilute aqueous ammonia would be performed 

to produce an amine-only CQD. From here, a reaction with methyl iodide would change 
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the primary amines (R-NH2) into the tertiary dimethyl amines (R-N(CH3)2) which make 

all nitrogen quaternary. A synthetic scheme for modifying GQDs in these ways is 

shown in Figure 6.3. Pyridinic- and pyrrolic-only CQDs could be made using a bottom-

up approach from the compounds 5-hydroxy-pyridine-2-carboxylic acid methyl ester, 

6-hydroxymethyl-pyridine-2-carboxylic acid and 5-formyl-1H-pyrrole-2-carboxylic 

acid shown below in Figure 6.4. Employing higher temperatures and longer pyrolysis 

time compared to citric acid, N-doped CQDs with only pyridinic or pyrrolic functional 

groups can be made. It is important that the bottom-up approach be used for pyridinic 

and pyrrolic N compared to the top-down approach for avoiding the broad distribution 

of N chemical states. 

 

Figure 6.3: Potential synthetic route to amine-only graphene quantum dots. An ice bath 

and a glove box should be used to control the NaBH4 and LiAlH4 reductions, 

respectively. Low-temperature hydrothermal treatment with aqueous ammonia can be 

used to convert hydroxyl moieties to primary amines. Quaternary nitrogen 

functionalities could be made from further methylation of the amines. 

 

NaBH4 Reduction 1. LiAlH4 Reduction

2. HT Treatment with 

NH4OH
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Figure 6.4: Possible compounds that could produce pyridine- or pyrrole-only carbon 

nanodots. The dehydration and condensation reactions aid in forming the carbon 

backbone of the CND while the very stable nitrogen-containing heterocycles remain 

intact during pyrolysis. 

6.3 Carbon Quantum Dots as Opioid and Nicotine Cessation Agents 

Carbon quantum dots have seen many uses in biomedical research as bioimaging, 

photodynamic anti-cancer and naturally anti-viral agents. This section proposes two 

new uses of CQDs as nicotine and opioid cessation agents by utilizing the similar 

chemical makeup of N-doped CQDs as a competitive mimic to nicotine and other 

opioids. Both of these drugs are highly addictive and are inevitably harmful to the body 

– potentially causing death from a variety of causes. Nicotine (3-[(2S)-1-methyl-2-

pyrrolidinyl]-pyridine) is a readily available substance from tobacco leaves (up to 3 

wt% in dry tobacco). When nicotine is taken up into the body and transported through 

the bloodstream, it ultimately reaches the brain. The high binding affinity of nicotine 

toward acetylcholine receptors (AChR) causes a chain reaction of signals that invoke 

feelings of stress reduction, pleasure, and enhanced mental focus. From here, two 

factors that contribute to the overarching behaviors associated with addiction are 

tolerance and dependence. 

Tolerance is the need to uptake more of a substance to achieve the same effects. 

Mechanistically, this is done by a number of factors. AChRs typically bind to 

acetylcholine, an important chemical that transmits and modulates signals in the 

5-hydroxy-pyridine-2-carboxylic acid methyl ester 6-hydroxymethyl-pyridine-2-carboxylic acid

5-formyl-1H-pyrrole-2-carboxylic acid
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brain.14 Conversely, this neurochemical is regularly broken down by the enzyme 

acetylcholinesterase (AChE). Thus, neurochemical balance is achieved through 

synaptic activation by AChR coupled with synaptic termination by AChE. The 

combination of the high local concentration of acetylcholine (about 1 mM), the short 

pulse of receptor activation (a couple of ms) and fast degradation of acetylcholne by 

AChE prevent desensitization of the receptor. However nicotine is not enzymatically 

removed AChE like acetylcholine and is present at concentrations of less than 0.1 µM. 

Both of these factors favor receptor desensitization which requires even higher 

concentrations to achieve the initial desired effect. 

Drug dependence occurs when uptake of a substance is required to avoid 

withdrawal symptoms.15 In nicotine, this is done by the increased release of dopamine 

upon uptake. Dopamine is the neurotransmitter responsible for much of the action in 

the brain’s reward and pleasure centers. Increased amounts of dopamine released upon 

uptake of a substance leads to a learned behavior associated with that uptake. In other 

words, the brain perceives the uptake of nicotine as a reward even though the act of 

smoking tobacco is harmful itself. If nicotine is not regularly delivered to the brain, 

neurological withdrawal symptoms from the lack of dopamine can start such as 

depressed mood, fatigue, irritability, and a lack of focus. With increased nicotinic 

abstinence, the onset of somatic withdrawal symptoms appear due to the body’s need 

for rewarding stimuli.  

Addiction is the mind’s response to the body’s biochemical changes made while 

under the effects of substance tolerance and dependence. Unsurprisingly, the mind and 

body are intimately connected and often, one influences the other. In other words, 

addiction is the behavior in which a user seeks a substance despite potential 

consequences. This is due to the need to reduce or eliminate withdrawal symptoms 

from the dependence as well as the high amount needed for a chronic user to overcome 

their tolerance. In the United States, nearly $300 billion dollars were spent on smoking-

related illness which includes nearly half of that in direct medical care.16 Additionally, 

nearly 480,000 people die from smoking-related illness a year and have life 

expectancies ten years less than those who don’t smoke. However, if smokers quit 
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smoking before age 40, their chances of dying from a smoking-related illness decreases 

by roughly 90%. There are many available methods for nicotine cessation. Most of 

these include prescription or over-the-counter patches or gum but these are simply 

nicotine replacement agents that aid the user in titrating down off of the addiction 

instead of suffering withdrawal symptoms. Some non-nicotine cessation agents have 

been developed, notably bupropion and varenicline tartrate which are both shown 

below.  

Opioid addiction could be another application for CQD use in the biomedical 

industry. Like nicotine, opioids (i.e.: heroin, morphine, fentanyl, prescription opioids) 

activate the same pleasure and reward centers of the brain.17-19 One key difference 

between nicotine and opioids is the degree of legality each is allowed as well as the 

setting in which each is used. Where nicotine is grown through tobacco in farms and 

sold as cigarette and cigar products, opioids are highly illegal substances as in heroin 

or used in the medical industry as pain relievers such as fentanyl, morphine and other 

prescription-strength painkillers. Interestingly, the production of prescription opioids 

which include hydrocodone, methadone, and oxycodone have skyrocketed since the 

turn of the century. These opioids, originally for the purpose of relieving chronic pain, 

have created an epidemic of opioid abuse. As patients heal from their injuries, their 

need for medication is reduced. However, extended doses of these medications cause 

both tolerance and dependence in a similar mechanism to nicotine. The opioid receptors 

in the brain are, as before, repeatedly activated and desensitized which require higher 

or more frequent uptake to produce the pleasurable feelings (e.g. increased dopamine 

release) associated with the drug. With this information in mind, the so-called “opioid 

epidemic” has emerged from the combination of the elevated sale and use of heroin, 

the addition of fentanyl (a highly potent synthetic opioid) into heroin, and the rush of 

former prescription opioid users engaging in drug-seeking behavior. Presently, nearly 

half of all opioid-related overdoses stem from prescription opioids and nearly a quarter 

of all prescription opioid users struggle with addiction. Current opioid cessation agents 

include methadone, buprenorphine, and naloxone. Methadone and buprenorphine are 

useful in titration therapies designed to wean addicts off of opioids over a period of 

time. Naloxone and naltrexone are overdose-prevention agents that bind to free opioids 
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stronger than the opioid receptors, essentially returning potentially deadly 

concentrations to normally tolerated levels. 

Nitrogen-doped carbon quantum dots could be a useful compound to combat the 

problems associated with nicotine and opioid addiction as shown in Figure 6.5. As an 

inexpensive high yield nanomaterial with a rich diversity of nitrogenous functional 

groups, a single N-doped CQD could act as a similar target for many of the AChR and 

opioid receptors. This would allow patients to receive treatment for a variety of 

substances while maintaining low costs and high accessibility. Additionally, dark 

cytotoxicity results from our photodynamic anti-cancer studies suggest that only high 

concentrations (mg/mL) induce negative effects. Shown below is a comparison of the 

chemical structure of an N-doped CQD to nicotine and other opioids. The secondary 

amines and aromatic nitrogen heterocycles present in these drugs act as targets that for 

AChR and mu opioid receptors which provide the brain with the rewarding release of 

dopamine without the need to intake and with easier to manage withdrawal symptoms 

after medication has been stopped. It is hypothesized that the nitrogen-containing 

functional groups (amines, pyridines, pyrroles and quaternary nitrogen) of CQDs can 

be engineered to act as a competitive agent with nicotine and opioids in smoking 

cessation. The mechanism of this inhibition (e.g.: competitive, non-competitive, etc.) 

could be studied by varying the amount of a specific functional group. Further work in 

this regard can be expanded toward other biological targets by exploiting the three 

greatest advantages to CQD: inexpensive, facile synthesis; a robust scaffold that can 

stand up to a variety of post-synthetic modifications, and easily tunable chemical 

functionalization. 

This thesis has provided deeper understanding toward the newest class of carbon 

nanomaterials, carbon quantum dots, by critically analyzing and correlating the 

chemical structure and the resulting observed functions in optical, catalytic, and 

biological studies. Future work on heteroatom doping CQD has been discussed in 

several facets from changing the heteroatom dopant to narrowing the distribution of 

functional groups to developing new and exciting ways to use carbon nanomaterials. 

From here, CQD could be used in a variety of biological targets with the right 
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combination of chemical design and synthetic work. By taking great care of controlling 

the chemical structure, future generations of researchers can begin to develop tailor-

made carbon quantum dots to replace current materials in optoelectronics, electro- and 

photo-catalysis, and biomedical applications. It is my hope that this work is continued 

and that deeper understanding can be reached such that CQD can be utilized as an easily 

accessible and effective material in many applications. 

 

 

Figure 6.5: Comparison of an a) N-doped CQD to b) nicotine, c) heroin d) morphine, and 

e) naloxone. Each of these structures contain graphitic N; making NCQD an ideal 

macromolecule for nicotine and opioid cessation agents. 
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