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1 Introduction

The entanglement entropy SEE
A of a subsystem A of a system is a useful non-local quan-

tity in quantum field theories [1–6]. This quantity often provides interesting probes of the

physics of phase transitions, most notably for quantum critical transitions where it typically

diverges [7]. Even for thermal transitions, the entanglement entropy provides additional

diagnostics of the nature of the phases, since it is sensitive to the number of available de-

grees of freedom. In recent years, the Ryu-Takayanagi prescription has become a key tool

to compute entanglement entropy of strongly coupled systems which have gravity duals [8–

10]. Indeed, starting with [11], there have been several studies of the change of behavior

of the entanglement entropy in holographic models of critical phase transitions. [11] ex-

amined a model of s-wave holographic superconducting transition, [12] considered a model

of an insulator-superfluid transition while [13] studies a model of holographic p-wave su-

perconductor phase transition based on [14, 15]. Recently, [16, 17] extended the study of

the holographic entanglement entropy near critical phase transitions. In all these mod-

els a suitable order parameter condenses in the superfluid phase, reducing the number of

degrees of freedom. Indeed these studies found that the magnitude of the entropy in the

condensed phase is always lower than what it would have been in the absence of conden-

sation. In all these studies, the entanglement entropy as a function of the temperature or

the chemical potential displayed a cusp at the location of the transition where the relevant

derivative becomes discontinuous. As one goes into the condensed phase the entanglement

entropy sometimes shows a non-monotonic behavior close to the transition, while far from

the transition it keeps decreasing.

In this paper, we perform a calculation of the holographic entanglement entropy (HEE)

in a toy model of a 1 + 1 dimensional p-wave superconductor at non-zero charge density

and temperature. The dual theory is a 2 + 1 theory of gravity and SU(2) Yang-Mills field

with a negative cosmological constant. The action is given by

IG =
1

2κ2

∫
d3x
√
−g
(
R+

2

L̃2
− Tr(F̃µνF̃

µν)

)
, (1.1)

– 1 –
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where Aµ is a SU(2) gauge field with the field strength F̃µν = ∂µÃν−∂νÃµ− igYM[Ãµ, Ãν ].

In this convention, Ãµ is dimensionless, while gYM and 1/κ2 have the dimension 1. This

model has been introduced in [18] following earlier work in higher dimensions [14]. An

important well known aspect of this 1 + 1 dimensional model is that the gauge field has

to be treated in alternative quantization [19]: the non-normalizable part of the field can

be interpreted as the expectation value of a dynamical gauge field living on the boundary,

which makes it morally closer to true superconductors, as opposed to superfluids.

In the normal phase the dual geometry is a AdS3 charged BTZ black hole, with the role

of the usual Maxwell field played by the time component of the diagonal gauge field A
(3)
t .

The boundary theory then has a nonzero temperature and charge density. As we increase

the charge density ρ for a given temperature, there is a critical value ρc beyond which

the black hole acquires a vector hair, e.g. a spatial component A
(1)
x becomes nonzero:1 its

boundary value then becomes the expectation value of a vector order parameter in the

dual field theory. In the probe approximation the corresponding bulk solutions have been

obtained in [18].

The dual field theory lives on a circle with circumference 2πL̃ (where L̃ is the AdS scale

as in equation (1.1), and we calculate the holographic entanglement entropy of an interval

of size l in this circle. In the normal phase the exact gravity solution is of course known.

In the condensed phase the solution is known only in the probe approximation. To obtain

the holographic entanglement entropy we first obtain the fully backreacted solution for the

hairy charged BTZ black hole by numerically integrating the bulk equations of motion.

Using this backreacted solution we compute the Bekenstein-Hawking entropy SBH = A
2κ2

(where A is the horizon area and κ is the gravitational constant) and the entanglement

entropy SEE using the Ryu-Takayanagi prescription

SEE =
2π

κ2
(γA), (1.2)

where γA is the length of the one-dimensional bulk geodesic whose end points coincide

with the two end points of the interval on the boundary. We focus on the behavior of

these quantities at some fixed temperature as a function of the charge density for various

values of l.

We find that the Bekenstein-hawking entropy SBH has a cusp at the critical charge

density q = qc where ∂SBH
∂q is discontinuous. For q > qc this monotonically decreases,

approaching a constant value. This decrease is essentially due to the reduction of degrees

of freedom due to condensation.

For a given temperature and q < qc the entanglement entropy monotonically increases

as a function of q and its derivative has a discontinuity at q = qc. This cusp-like behavior

has been observed earlier in higher dimensional models. However the behavior for q > qc
appears quite different from that in the higher dimensional examples. This depends on

the subsystem size l and there are two critical sizes lc1, lc2 where the behavior changes.

For small enough size, l < lc1 the entanglement entropy keeps increasing monotonically.

When lc2 < l < lc1 this quantity displays a non-monotonic behavior, decreasing at first to

1This is different from vector hair in addition to a scalar condensate which represents a current [20].

– 2 –
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a local minimum, and then increasing to a maximum value and finally decreasing again.

The local minimum moves closer to ρ = ρc as l approaches lc1. At l = lc2 the local minima

and maxima merge to a point of inflection, so that for l > lc2 the entanglement entropy

decreases monotonically with increasing charge density.

While we do not have a complete understanding, it appears that this complex behav-

ior arises from a competition between charge density and condensation. If there was no

condensation, the entanglement entropy would have kept increasing with charge density

for any subsystem size. Condensation reduces the number of effective degrees of freedom.

When the subsystem size is small enough, the effects of condensation are small, and the

tendency of the entanglement entropy to increase with charge density wins over. When the

subsystem size is large enough, the effect of condensation wins over. The non-monotonic

behavior seen for intermediate sizes reflects a competition between these two effects. This

results in an interesting “phase diagram” where the sign of (∂SEE/∂q)l distinguishes dif-

ferent “phases”.

In section (2) we describe the system and the associated critical transition, and cal-

culate the backreaction by numerically solving the equations of motion. The backreacted

solution is then used to calculate the Bekenstein-Hawking entropy. In section (3) we use the

solution above to calculate the minimal geodesics and hence the holographic entanglement

entropy. (4) contains a brief discussion.

2 The backreacted solution

The action of Einstein-Yang Mills system we consider in this paper is

IG =
1

2κ2

∫
d3x
√
−g
(
R+

2

L̃2
− Tr(F̃µνF̃

µν)

)
, (2.1)

where the field strength of the SU(2) Yang-Mills term is given by F̃µν = ∂µÃν − ∂νÃµ −
igYM[Ãµ, Ãν ]. One of the spatial directions (called y below) is compact, y ∼ y + 2πL̃.

In (2.1), Ãµ is dimensionless, while gYM and 1/κ2 have the mass dimension 1. A standard

field redefinition Ãµ → Aµ/gYM the field strength becomes Fµν = ∂µAν − ∂νAµ− i[Aµ, Aν ]

while the Yang-Mills kinetic term becomes proportional to 1/(κ2g2YM). In this section,

we analyze the backreaction (whose strength is controlled by 1/g2YM) of the SU(2) Yang-

Mills term into the metric of the 2+1 dimensional gravity to compute the holographic

entanglement entropy.

The equations of motion of the gauge field and the metric derived from the above

action become

µ(
√
−gFµν) = ∂µ(

√
−gFµν)− i

√
−g[Aµ, F

µν ] = 0, (2.2)

Rµν −
1

2
gµν

(
R+

2

L̃2

)
= κ2Tµν , (2.3)

where the energy momentum tensor is

Tµν =
2

κ2
tr

(
F̃µαF̃ν

α − 1

4
gµνF̃αβF̃

αβ

)
=

2

κ2g2YM

tr

(
FµαFν

α − 1

4
gµνFαβF

αβ

)
. (2.4)

– 3 –
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If we set the Yang-Mills field to zero, the solutions to Einstein equations are either pure

AdS3 or an uncharged BTZ black hole.

In the presence of a nontrivial gauge field which is assumed to depend only on the

radial AdS direction, the Einstein equations (2.2) and (2.3) can be solved with an ansatz:

ds2 =
L̃2

z2

(
− f2(z)dt2 + dy2 +

dz2

h2(z)f2(z)

)
, (2.5)

A =
1

2

(
φ(z)σ3dt+ w(z) · σ1dy

)
, Abz = 0,

where σa (a = 1, 2, 3) are the Pauli matrices. The function f2(z) vanishes at z = zh, the

location of the black hole horizon.

The Einstein equations can be re-written as the following three equations:

f2 (zh2f
′
2 + zf2h

′
2 − 2f2h2 + 2)

z2
− z2(φ2w2 + f2h2(φ

′2 + f2w
′2))

g2YML̃
2

= 0,

2z2h2f
′′
2 +z2f ′2h

′
2−4zh2f

′
2−2zf2h

′
2+4f2h2 − 4

2z2
+
z2
(
φ2w2−f2h2

(
f2w

′2+φ′2
))

g2YML̃
2f2

= 0,

−zh2f
′
2 − 2f2h2 + 2

z2f2h2
−
z2
(
f2h2

(
f2w

′2 − φ′2
)

+ φ2w2
)

g2YML̃
2f22h2

= 0,

(2.6)

The last equation is a constraint. Using the ansatz the equations of motion for the Yang-

Mills fields become

−
√
h2f2(z

√
h2φ

′)′ + zw2φ = 0, (2.7)√
h2f2(z

√
h2f2w

′)′ + zφ2w = 0.

Note that the equations of motion depend only on the product of AdS radius L̃ and gYM.

This can be used to set the scale L̃ = 1.

In the uncondensed phase the y component of the gauge field w(z) vanishes. In this

case, nonlinear terms are absent in the field strength and the system reduces to an Einstein-

Maxwell system. The solution is then well known: it is a charged AdS3 black hole consid-

ered in [19, 21] and described in (2.6) with

f2(z) = 1−
(
z

z0

)2

+
q2

g2YM

z2 log

(
z

z0

)
, h2(z) = 1, φ(z) = q log

(
z

z0

)
. (2.8)

The black hole horizon is located at z = z0. The Hawking temperature is given by

TH =
1

4π

(
2

z0
− q2z0
g2YM

)
. (2.9)

Furthermore, we have chosen φ(z) to vanish at the horizon, as required by regularity of the

solution in the euclidean domain. The regularized mass of the black hole, M0 = (L̃/z0)
2,

is inversely proportional to the squared horizon position and satisfies the BPS-like bound

– 4 –
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M0 ≥ (q/
√

2gYM)2 [22] which is saturated at TH = 0. At the equality, the horizon position

zh is equal to the value of z where f(z) has its extremal value.

As explained in [19] the presence of a logarithmic term implies that the gauge field

has to be treated in alternative quantization, which requires us to fix boundary conditions

which specify the charge density q. The chemical potential is then given by the constant

part µ = −q log z0. The mass dimension of q and µ are both 1.

When the charge density is large enough there is another solution which has w(z) 6= 0,

with a free energy lower than a charged AdS3 black hole.

The behavior of this solution near the AdS boundary z = 0 is

φ(z) ∼ q log

(
z

zp

)
, (2.10)

w(z) ∼ wc + Jw log(z),

f2(z) ∼ 1− r20z2

h0
+

q2

g2YM

z2 log(z),

h2(z) ∼ h0,

where once again q is the charge density of the boundary field theory while the chemical

potential is given by µ ≡ −q log(zp).
2 The parameter wc is now interpreted as the expecta-

tion value of a vector order parameter in the boundary theory while Jw is the source for this

order parameter. Both these parameters have mass dimension 1. h0 and r0 are constants.

The black hole horizon is now located at z = zh as specified by the condition f2(zh) = 0.

Regularity at the horizon requires as usual φ(zh) = 0. The fields can be now expanded

near the horizon as follows:

φ(z) = a1(zh − z) + . . . , (2.11)

w(z) = b1 + b2(zh − z) + . . . ,

f2(z) = d2(zh − z) + . . . ,

h2(z) = c1 + c2(zh − z) + . . . .

The coefficients (a1, b1, b2, c1, c2, d2) are constants. In terms of these parameters the Hawk-

ing temperature is

TH =
1

4π
|f ′2(zh) |

√
h2(zh) =

|d2 |
√
c1

4π
. (2.12)

Substitution of (2.11) into equations of motion (2.6) and (2.7) yields four inde-

pendent parameters (a1, b1, c1, zh). Other parameters like b2, c2 and d2 are then rep-

resented by these 4 parameters and gYM: b2 = 0, d2 = 2/(c1zh) − a21z
3
h/g

2
YM, and

c2 = −2(a1b1c1)
2z5hg

2
YM/(a

2
1c1z

4
h − 2g2YM)2.

We now obtain a backreacted solution by numerically solving the equations of motion.

Recall that the last equation of (2.6) is a constraint equation. This can be solved by

choosing regularity conditions at the horizon. We then solve the first two Einstein equations

2zp inside log is normalized by L̃ to be dimensionless [23].

– 5 –
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of (2.6) and two equations (2.7) numerically, starting from the horizon and proceeding to

the AdS boundary.

To look for a superconducting phase we need to find solutions with a vanishing source in

the boundary theory. This implies that at the AdS boundary, Jw has to vanish. A nontrivial

solution for w(z) then signifies spontaneous symmetry breaking in the boundary theory.

This also breaks residual bulk U(1) gauge symmetry generated by A3
µ spontaneously. The

parameters wc, Jw(= 0), h0 are then specified by using 4 parameters (a1, b1, c1, zh) of the

horizon expansion.

To go further, consider the scaling symmetry in the equations of motion as follows:

(t, y, z)→ λ−1s (t, y, z), φ→ λsφ, w → λsw, (2.13)

f2 → λ2sf2, h2 → λ−2s h2, φ→ λsφ. (2.14)

The first symmetry can be used to fix zh = 1. Using second symmetry, the leading coeffi-

cient of h2(z) in (2.10) can be fixed to set (h0 = 1): this yields the standard AdS3 metric

near the boundary.

Under scaling symmetry (2.13), the parameters of the solution transform as follows:

q → λsq, µ = −q log(zp)→ − λsq log(zp) + λsq log λs, β → λ−1s β,

Jw → λsJw, wc → λswc + λsJw log λs = λswc, (2.15)

where we have used Jw = 0 becomes zero in the last equality. Note that the scaling

transformation of log(z) in (2.10) produces the shift log λs in the chemical potential µ.

The scaling transformation is important to fix parameters like the temperature or the

charge. We can not fix these parameters without changing zh. When we fix the inverse

temperature to be β, we need the scaling transformation λs = β|zh=1/β and then the

horizon position zh is changed into zh = β/(β|zh=1) by using the above transformation.

To consider the system of the finite charge q0, instead, we need to perform the scaling

transformation λs = q0/q|zh=1. The horizon position is then changed into zh = q|zh=1/q0.

We find that with a vanishing Jw a solution with non-zero wc exists only when the

charge density q exceeds a critical value qc. This solution is a hairy black hole. As discussed

above wc is the expectation value of a vector order parameter in the boundary field theory:

the hairy black hole is then the gravity representation of a superconducting phase.

In figure 1 we plot the behavior of wc/q as a function of qc/q at a fixed temperature

TH = 0.15 with varying g2YM. The critical charge qc becomes 21.7TH , 33.5TH , and 45.1TH
for g2YM = 5× 105, 10, and 6, respectively. The condensate vanishes for q < qc. The point

q = qc is a critical phase transition. Near the critical charge qc, the condensate behaves as

wc ∼ 1.18q
√

1− qc/q so that we get a mean field critical exponent.

The probe approximation corresponds to large g2YM: this is the situation when the

gravity backreaction can be ignored. Our results clearly shows that backreaction decreases

wc/q at large charge q, while near the critical point the results approach those of the

probe approximation. This is expected since near the critical point, wc is small so that the

backreaction is small as well even for finite g2YM.

– 6 –
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gYM
2=10

gYM
2=5x105

0.4 0.6 0.8 1.0
qc/q

0.2

0.4

0.6

0.8
wc/q

Figure 1. wc normalized by q is plotted as a function of qc/q at the fixed temperature TH = 0.15

with varying g2YM. The dashed line shows the analytic curve 1.18
√

1− qc/q. The critical charge qc
is 21.7TH and 33.5TH for g2YM = 5× 10−5 and 10, respectively.

0 1 2 3 4
q/qc0

5

10

15

20

25
S

0.5 1.0 1.5 2.0 2.5
T /Tc

10

20

30

40
S

Figure 2. The normalized Bekenstein-Hawking entropy S = 2π/zh is plotted in units of 2π/κ2

(= c2d/6) when g2YM = 10. The dashed line gives the entropy in the AdS3 charged black hole. The

solid line gives the entropy in the condensed phase T > Tc or q < qc. Left: the normalized BH

entropy is plotted for fixed temperature as a function of q/qc = q/(33.5TH). Orange, green, and

purple curves denote the normalized entropy for TH = 3/10, 3/20, 1/100, respectively. Right: the

normalized entropy S = 2π/zh is plotted for fixed charges as a function of TH/Tc. Orange, green,

and purple curves denote the normalized entropy for q = 10, 4, and 1/2, respectively.

In figure 2, we plot the Bekenstein-Hawking entropy of the hairy black hole S =

(2π)2/(κ2zh) in units of 2π/κ2(= c2d/6), where c2d = 12π/κ2 in units of L̃ = 1 is the

central charge of the CFT. In the uncondensed phase, the entropy grows like q2 when

q/(gYMTH)� 1 (the left figure) and grows like a linear function of TH when q/(gYMTH)�
1 (the right figure). We find a cusp at the critical phase transition where q = qc(= 33.5TH).

3 Holographic entanglement entropy and the phase transition

In this section we will calculate the entanglement entropy of an interval on the boundary

in the y direction of length l, using the Ryu-Takayanagi formula [8–10]. The arc on the

boundary is chosen to be −l/2 ≤ y ≤ l/2. We then need to calculate the length of a

geodesic with minimum length in the bulk metric on a constant time slice which joins the

– 7 –
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two endpoints of the interval.3

IEE =

∫
dyIEE =

∫
dy

1

z

√
1 +

z′2

h2(z)f2(z)
, z′ =

dz(y)

dy
. (3.1)

Here z(y) denotes a curve in the bulk 2+1 dimensional space-time on a constant time slice.

Since we are dealing with a static situation, the action is independent of the time slice. It

is useful to consider the action IEE as the integral of a Lagrangian with y being considered

as the time. Since translations of y is a symmetry, the corresponding Hamiltonian is

conserved. Thus, the equation of motion which follows from this action becomes a first

order differential equation for z(y):

z′ =

√
f2(z)h2(z)

(
z2∗
z2
− 1

)
, (3.2)

where z = z∗ is the turning point, i.e. the point where z′(y) vanishes. The curve z(y) is

assumed to be smooth everywhere.

The length l of the interval can be now easily calculated

lcurve = 2

∫ ∞
z∗

dz
1√

f2(z)h2(z)
(
z2∗
z2
− 1
) . (3.3)

We have assumed that the curve is symmetric under reflections about the turning point -

this gives the factor of 2 in front of lcurve A solution to the equation (3.2) with specified end

points is a minimal length geodesic joining those points. According to the Ryu-Takayanagi

formula the holographic entanglement entropy is the on-shell action of IEE divided by the

gravitational constant

SEE
A =

2π

κ2
IEE|on-shell =

4π

κ2

∫ ε

z∗

dz
1

z

√
f2(z)h2(z)

(
1− z2

z2∗

) . (3.4)

One can check that l→ λ−1s l under the rescaling (z, zh, z∗, ε)→ λ−1s (z, zh, z∗, ε). It is then

convenient to introduce the scale invariant quantities lq or lT . Note that the holographic

entanglement entropy is invariant under the scaling transformation varying (z, zh, z∗, ε). In

equation (3.4) the boundary z = 0 has been replaced by a cutoff boundary z = ε (which is

essentially a UV cutoff of the boundary field theory). This regulates the UV divergence of

the entanglement entropy, as discussed below.

We are interested in calculating SEE
A as a function of the charge q for a given temper-

ature. As discussed above, for q < qc the relevant bulk geometry is a charged black hole,

while for q > qc the background is given by a hairy black hole with a nonzero condensate

wc, with the metric (2.5) in section 2. In both cases, the UV divergent (area law) term

of IEE behaves like IEE ∼ −2 log(ε). This motivates the definition of the finite part of the

minimal length,

Im,fin ≡ IEE + 2 log(ε) (3.5)

3For time dependent situations, one needs to consider an extremal geodesic [24].
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lTH = 0.019

qc /TH = 33.5

0 1 2 3 4 5
q/qc

-4.1

-3.9

-3.8

Im,fin

Figure 3. Im,fin as a function of q/qc at lTH = 0.019 with TH = 0.15 and g2YM = 10. The dashed

curve is for a AdS3 charged black hole corresponding to the uncondensed phase, q < qc. The solid

curve is for the condensed phase described by a hairy black hole.

Im,fin is independent of the cutoff. Under the scaling transformation discussed above,

Im,fin changes only by the additive constant −2 log(λs), which will not affect our analysis

qualitatively.

We now use the metric obtained in the previous section for both the condensed and

uncondensed phase to calculate Im,fin. This involves evaluation of the integral (3.4), which

we perform numerically.

In the uncondensed phase T > Tc or q < qc, we find that the holographic entanglement

entropy is proportional to the subsystem size l (a volume law) when the length l is large

(lTH � 1) exactly as in higher dimensions [25, 26]. In the opposite limit TH l� 1 and ql�
1, Im,fin approaches the value in pure AdS3, namely, SEE

A ∼ 4π/κ2 ·log(l/a) = c/3·log(l/a).

These behaviors in the extreme limits are of course what is expected. Interesting non-trivial

behavior is expected for T or q in the intermediate range [27], particularly when they are

close to their values at the critical superconducting transition.

Figure (3) shows the finite part of the entanglement entropy Im,fin for an interval of

length l as a function of q/qc for g2YM = 10 for a dimensionless length lTH = 0.019. The

dashed curve is Im,fin in the uncondensed phase described by the AdS3 charged black hole.

The solid curves is the result in the condensed phase. In both phases the finite part of

the entanglement entropy increases with increasing charge. However there is a cusp at the

critical point q = qc where dI(l,fin)
dq is discontinuous. Note that in the condensed phase

Im,fin is always smaller than the value of this quantity in the background of a charged

black hole. This is consistent with the fact that condensation results in a depletion of the

number of degrees of freedom.

The monotonic increase of Im,fin with increasing charge continues to larger interval

lengths till we reach a critical interval size lc1. For g2YM = 10 we have lc1TH ∼ 0.15. For

l > lc1 there is a non-monotonic behavior: typically, Im,fin first decreases beyond the cusp

at the critical point, reaches a minimum and increases to reach a maximum, and then

approaches a plateau. This kind of non-monotonic behavior is shown in figure (4) for an
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qc /TH = 33.5

1 2 3 4 5
q/qc

1.460

1.462

1.464

1.466

1.468
Im,fin

lTH=0.219

2 3 4 5
q/qc

-0.002

-0.001

0.001

0.002

0.003

dIm,fin

dq

Figure 4. Typical non-monotonic behavior of Im,fin as a function of q/qc for lTH = 0.219 for

g2YM = 10 depicted in the left plot. Right: its derivative with respect to charge. One can see clearly

two zeros: the first one is minimum at q = 1.8qc, while the second one is maximum at q = 3qc.

interval size lTH = 0.219. There are several notable aspects of the behavior. First, as we

increase lTH the minimum of Im,fin is pushed to values of q away from the critical point

q = qc. In fact the critical length lc1 is the value of l where this local minimum is exactly at

the critical point. Secondly, Im,fin approaches a plateau at large q. The value of Im,fin at

the plateau is larger than the value of Im,fin at q = qc for small interval lengths (still larger

than lc1) whereas at larger interval lengths the value of Im,fin at the plateau is smaller

than the value of Im,fin at q = qc. Finally, the difference of the value of Im,fin and its

minimum value decreases as we increase l.

Consequently, there is another critical interval size lc2. For l > lc2 the quantity Im,fin
decreases monotonically for q > qc. For g2YM = 10 we get lc2TH ∼ 0.22. At this value of l

the minimum of Im,fin is pushed beyond the largest value of q for which we could do the

numerics, while the plateau value becomes very close to the minimum value.

This complex behavior is possibly a result of two competing trends. First, an increasing

charge density tends to increase the entanglement entropy. This is clear in the uncondensed

phase for all values of l. However condensation beyond q = qc results in a depletion of the

number of degrees of freedom, and therefore tend to decrease the entanglement entropy.

For small enough interval sizes, the effect of condensation is not very pronounced, so that

the first trend wins leading to a monotonically increasing SEE
A . In the dual gravity picture

the condensate is pronounced near the horizon - the minimal geodesic stays far from the

horizon for small intervals. This is consistent with the fact that at length scales which are

significantly smaller than the scale of symmetry breaking, effects of symmetry breaking

are invisible. However as the interval size increases, the minimal geodesic goes deep into

the bulk and the effect of the condensate becomes pronounced. The intermediate region

lc1 ≤ l ≤ lc2 is possibly characterized by the regime where these two effects are of the same

order and therefore compete. Finally, for l > lc2 the effect of condensation overcomes the

effect of increasing charge density. The degrees of freedom keep decreasing as we increase

the charge density resulting in a monotonic decrease of the SEE
A .

While we do not have a quantitative calculation to back the above scenario we can

check its consistency by calculating Im,fin for different values of g2YM and therefore changing

the strength of backreaction. As we will see, this turns out to give further insights into
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the nature of the critical values of the critical sizes of lc1 and lc2 and the mechanism of

the competition. We present the g2YM = 10 case first, followed by g2YM = 6 and g2YM = 50.

The smaller the value, the stronger the back-reaction and the effects of the competition

mentioned above become more pronounced.

The entanglement entropy SEE
A , normalized as Im,fin(I, q)/Im,fin(I, qc), for g2YM = 10

with 6 different sub-system sizes is presented in figure 5, so that all the SEE
A coincide at the

critical point q = qc. In the left figure of figure 5, we show the behavior of entanglement

entropy as we increase the sub-system size from the top plot to the bottom plot. The right

figure is the slope of the entanglement entropy with respect to the charge, dIm,fin(I, q)/dq.

In the range q > qc, the slope is positive for lTH = 0.14 and thus entanglement entropy

increases monotonically, while the slope is negative for lTH = 0.23 with monotonically

decreasing entanglement entropy. The entanglement entropy for 0.21 . lTH . 0.22 have

non-monotonic behaviors revealing two zeros of its derivative. This is shown in the right

panel of figure 6. As we increase the charge, entanglement entropy decreases, hits a min-

imum (first zero of the derivative), increases, arrives at a maximum (second zero of the

derivative), and eventually reaches a plateau. Typically, the second zero corresponding to a

local maximum happens at a very large value of q/qc. Finally, we clearly see that the min-

imum of the entanglement entropy moves to q = qc for lTH = 0.15, while for lTH = 0.22

the minimum and the maximum of the entanglement entropy coincide, forming a point

of inflection.

Similarly, we present entanglement entropy for g2YM = 6 in figure 7 and for g2YM = 50

in figure 8 with different sub-system sizes. The entnaglement entropy shows behaviors

similar to those at g2YM = 10. For g2YM = 6, non-monotonic behavior can be observed for

0.09 . lTH . 0.18 with two critical points located at lc1TH = 0.09 and lc2TH = 0.18.

For g2YM = 50, non-monotonic behavior exists for 0.22 . lTH . 0.29 that is sandwiched

by two critical points lc1TH = 0.22 and lc2TH = 0.29. Combining together we see the

following pattern.

lc1TH lc2TH ∆lTH = lc2TH − lc1TH
g2YM = 6 0.09 0.18 0.09

g2YM = 10 0.15 0.23 0.08

g2YM = 50 0.22 0.29 0.07

g2YM = 250 0.25 0.30 0.05

As we increase the strength of the back reaction, decreasing g2YM, both critical lengths

lc1TH and lc2TH decrease while the invariant distance between them, ∆lTH = lc2TH −
lc1TH , increases.

3.1 A phase diagram

As discussed above, the non-monotonic behavior of the entanglement entropy is a result of a

competition between two effects: the effect of charge density and the effect of condensation.

It is useful to re-cast this in terms of two length scales which emerge in the problem.
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qc /TH = 33.5

1 2 3 4 5
q/qc

0.95

1.00

1.05

1.10

1.15

Im,fin (l, q)

Im,fin (l, qc)

lTH=0.14

lTH=0.15

lTH=0.18

lTH=0.21

lTH=0.22

lTH=0.23

2 3 4 5
q/qc

0.05

0.10

dIm,fin

dq

Figure 5. Normalized entanglement entropy as a function of q/qc for 6 different invariant sub-

system sizes lTH (from top to bottom, lTH = 0.14, 0.15, 0.18, 0.21, 0.22, 0.23) with a fixed

temperature TH = 0.15 and g2YM = 10. The dashed and solid curves are for uncondensed and

condensed phases, respectively.

3.5 4.0 4.5 5.0
q/qc

-0.002

0.002

0.004

0.006

0.008

0.010

dIm,fin

dq

lTH=0.21

lTH=0.213

lTH=0.216

lTH=0.219

lTH=0.224

3.0 3.5 4.0 4.5 5.0
q/qc

-0.001

0.001

0.002

0.003

dIm,fin

dq

Figure 6. Left: a plot enlarging the region 3 ≤ q/qc ≤ 5 of figure 5. We have used the same color

for different invariant sub-system sizes lTH . Right: more details of the second zeros by changing

lTH slightly.

qc /TH = 45.1

1.0 1.5 2.0 2.5 3.0
q/qc

0.9

1.0

1.1

1.2

Im,fin (l, q)+ 1

Im,fin (l, qc)+ 1

lTH=0.09

lTH=0.11

lTH=0.12

lTH=0.17

lTH=0.18

lTH=0.19

2 3 4 5
q/qc

-0.1

0.1

0.2

0.3

dIm,fin

dq

Figure 7. Normalized entanglement entropy as a function of q/qc for g2YM = 6. We plot the

entanglement entropy for 6 different invariant sub-system sizes lTH (from top to bottom, lTH =

0.09, 0.11, 0.12, 0.17, 0.18, 0.19) with a fixed temperature TH = 0.15. The dashed and solid

curves are for uncondensed and condensed phases, respectively.
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qc /TH = 23.6

1.0 1.5 2.0 2.5 3.0
q/qc

0.995

1.000

1.005

1.010

1.015

Im,fin (l, q)

Im,fin (l, qc)

lTH=0.21

lTH=0.23

lTH=0.26

lTH=0.27

lTH=0.29

lTH=0.3

2 3 4 5 6 7
q/qc

0.005

0.010

0.015

dIm,fin

dq

Figure 8. Normalized entanglement entropy as a function of q/qc for g2YM = 50. We plot the

entanglement entropy for 6 different invariant sub-system sizes lTH (from top to bottom, lTH =

0.21, 0.23, 0.26, 0.27, 0.29, 0.3) with a fixed temperature TH = 0.15. The dashed and solid curves

are for uncondensed and condensed phases, respectively.

Let us recapitulate the salient features of our results in Fig 3 - Fig 8. These are all

plots of the entanglement entropy as a function of the charge density, the different curves

being results for different values of (lTH). For a given value of gYM we have the following:

• For l > lc2 the entanglement entropy decreases monotonically as a function of q/qc

• At l = lc2 there is a point of inflextion at q = q?

• For lc2 > l > lc1 the entanglement entropy has a minimum at some value qmin(l) and

a maximum at a larger value qmax(l).

• The minimum qmin(l) increases as a function of l. At l = lc1 one has qmin(lc1) = qc.

On the other hand, qmax(l) decreases with increasing l, reaching its minimum value

q? at l = lc2. Thus at l = lc2 the maximum and the minimum merge into a point of

inflection.

• At l = lc1 the minimum is at q = qc

• For l < lc1 the entanglement entropy increases as a function of q at least upto q ∼ 5qc
which is the maximum value of q used in our calculation.

It is then clear that the minimum of the entanglement entropy as a function of the

charge can occur only for q < q?, while the maximum of the entanglement entropy as a

function of the charge can occur only for q > q?.

To rephrase the behavior in terms of length scales it is useful to plot the quantity

(∂Im,fin/∂q)l as a function of lTH . This is shown in figure (9).

We now define two length scales Lc, Lq, which depend on the charge density, as follows.

(∂Im,fin/∂q)l=Lc = 0, (∂2Im,fin/∂q
2)l=Lc > 0 q < q?

(∂Im,fin/∂q)l=Lq = 0, (∂2Im,fin/∂q
2)l=Lq < 0 q > q? (3.6)
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q/qc=1.0

q/qc=1.2

q/qc=1.8

q/qc=2.2

0.14 0.16 0.18 0.20 0.22 0.24
lTH

-0.05

0.05

0.10

0.15

dIm,fin

dq

q/qc=2.2

q/qc=3.2

q/qc=4.0

q/qc=4.7

0.20 0.21 0.22 0.23
lTH

-0.0025

-0.0020
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-0.0005
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dIm,fin
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Figure 9. ∂Im,fin/∂q as a function of the sub-system size l for gYM = 10 and for various values of

q/qc. The left panel shows the results for q < q?, where q? is in between q/qc = 2 and q/qc = 3. The

zero of ∂Im,fin/∂q in this regime of charge is a minimum (as a function of q), and the length scale

Lc is defined as the value of l at which ∂Im,fin/∂q = 0. Clearly, Lc increases as the charge density

increases. The right panel shows the results for q > q?. Now the zero of ∂Im,fin/∂q is a maximum

(as a function of q). The length scale Lq is defined as the value of l at which ∂Im,fin/∂q = 0.

Clearly Lq decreases with increasing q.

q �qc

l TH

Lc
Lq

Inflection Point

l c1TH

l c2TH

q = q c q *� q c

Figure 10. Phase space (lTH , q/qc). The two curves Lc(q/qc) and Lq(q/qc) meet at q = q?. In

the tent like region below these curves the derivative (∂Im,fin/∂q)l > 0, outside the tent this is

negative.

From figure (9) it is clear that Lc increases with the charge density while Lq decreases

with the charge density. At q = q? one has Lc(q
?) = Lq(q

?) = lc2, which is the maximum

possible value of either of Lc, Lq.

These two length scales and their dependence on the charge density can be used to

chart out a “phase diagram” for the entanglement entropy. Figure (10) shows the general

nature of the phase diagram, parameterized by the length of a subsystem (vertical axis)

and the charge density q/qc (horizontal axis). The solid lines denote the functions Lc(q/qc)

and Lq(q/qc) - as discussed above the former quantity exists for q < q? while the latter
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quantity exists for q > q?. Note these curves are not real data - they are drawn to provide

an impression of the general behavior. The two curves meet at q = q?, forming a “tent”.

At all points above this tent we have (∂Im,fin/∂q)l < 0, while at points inside the tent we

have (∂Im,fin/∂q)l > 0.

It is natural to associate the scale Lc(q) with the condensation and the scale Lq(q)

with the charge density. As remarked earlier, when the size of the subsystem is small,

the entanglement entropy does not feel the effect of condensation which increases as the

charge density increases. This explains why the region for small l has (∂Im,fin/∂q)l > 0.

When l is large enough, there are two competing effects - condensation tends to reduce the

entanglement entropy while the charge tends to increase it. For very large l the effect of

condensation dominates the physics and the entanglement entropy decreases as a function

of charge since increasing charge leads to more condensation. As remarked at the end of

the last section, the association of Lc(q) with condensation is supported by the fact that

for smaller gYM the value of lc1 decreases so that smaller subsystems can feel the effect of

condensation. The phase diagram figure (10) is a way to express the competition of two

physical effects: the sign of (∂Im,fin/∂q)l is a kind of “order parameter” which distinguishes

two different physical behaviors.

It would be interesting to obtain a quantitative physical understanding of this rather

novel phase diagram.

4 Discussions

In this paper we have used holographic methods to examine how the entanglement entropy

in a 1+1 dimensional field theory behaves as we change parameters such that the system

crosses a critical point. The critical point in question separates a normal phase and a p-

wave superconducting phase. Specifically, we studied the dependence of the entanglement

entropy on the charge density for a given temperature. We found a rich behavior depending

on subsystem size, with regimes of non-monotonicity. While we do not have an analytic

understand of this behavior we have offered a qualitative explanation based on the com-

petition between two opposing factors: the tendency of the entanglement to increase with

increasing charge density and the depletion of degrees of freedom with increasing charge

density in a condensed phase.

It will be interesting to consider the entanglement entropy of the phase transition for

the s-wave models with Maxwell and scalar fields. We expect that some of the characteristic

properties we have found for our p-wave model will present there as well. However to say

anything definite we need to perform detailed calculations.

It would also be interesting to see how the entanglement entropy behaves when we

dynamically go across the critical point as in a quantum quench. In particular we would

like to understand possible universal scaling of the entropy as a function of the quench rate.

While some results about such scaling behavior are known in solvable and integrable field

theories [28–32] , very little is known in strongly coupled systems. In the past, holographic

methods have been useful to understand scaling of one point functions in various regimes
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of the quench rate [33]. The setup used in this paper should be useful in extending the

discussion to entanglement entropy.

Finally, it will be interesting to explore in detail the stringy embedding of the 3d toy

model (2.1). In the probe limit of flavor branes, the toy model (2.1) corresponds to a

D3 − D3 system of type IIB string theory [18] without backreaction. In this limit the

dilaton is a constant, which is why it is omitted in (2.1). In the presence of backreaction,

the dilaton runs, making the problem much more difficult. It would be interesting to see

if the strategy of [34, 35] which expresses the leading order correction to the entanglement

entropy in terms of the energy momentum tensors of the probe brane and the minimal

surface and the bulk graviton propagator can be used to calculate this. Such a calculation

would also need to include the backreaction of the four form gauge field sourced by the D3

branes. We hope to pursue this in the near future.

Acknowledgments

We would like to thank for Matteo Baggioli, Akikazu Hashimito, Song He, Matthias Kamin-

ski, and Elias Kiritsis for helpful discussions. This work is partially supported by the grants

NSF-PHY-1521045. SRD would like to thank Tata Institute of Fundamental Research for

hospitality during the completion of this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black

holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

[2] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

[3] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal

field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

[4] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[5] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42

(2009) 504005 [arXiv:0905.4013] [INSPIRE].

[6] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42

(2009) 504007 [arXiv:0905.2562] [INSPIRE].

[7] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena,

Phys. Rev. Lett. 90 (2003) 227902 [quant-ph/0211074] [INSPIRE].

[8] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[9] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.34.373
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D34,373%22
https://doi.org/10.1103/PhysRevLett.71.666
https://arxiv.org/abs/hep-th/9303048
https://inspirehep.net/search?p=find+EPRINT+hep-th/9303048
https://doi.org/10.1016/0550-3213(94)90402-2
https://arxiv.org/abs/hep-th/9403108
https://inspirehep.net/search?p=find+EPRINT+hep-th/9403108
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.4013
https://doi.org/10.1088/1751-8113/42/50/504007
https://doi.org/10.1088/1751-8113/42/50/504007
https://arxiv.org/abs/0905.2562
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2562
https://doi.org/10.1103/PhysRevLett.90.227902
https://arxiv.org/abs/quant-ph/0211074
https://inspirehep.net/search?p=find+EPRINT+quant-ph/0211074
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605073


J
H
E
P
0
9
(
2
0
1
7
)
0
1
6

[10] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J.

Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[11] T. Albash and C.V. Johnson, Holographic studies of entanglement entropy in

superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].

[12] R.-G. Cai, S. He, L. Li and Y.-L. Zhang, Holographic entanglement entropy in

insulator/superconductor transition, JHEP 07 (2012) 088 [arXiv:1203.6620] [INSPIRE].

[13] R.-G. Cai, S. He, L. Li and Y.-L. Zhang, Holographic entanglement entropy on p-wave

superconductor phase transition, JHEP 07 (2012) 027 [arXiv:1204.5962] [INSPIRE].

[14] S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008)

033 [arXiv:0805.2960] [INSPIRE].

[15] M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave

superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].

[16] X.-M. Kuang, E. Papantonopoulos and B. Wang, Entanglement entropy as a probe of the

proximity effect in holographic superconductors, JHEP 05 (2014) 130 [arXiv:1401.5720]

[INSPIRE].

[17] M. Kord Zangeneh, Y.C. Ong and B. Wang, Entanglement entropy and complexity for

one-dimensional holographic superconductors, Phys. Lett. B 771 (2017) 235

[arXiv:1704.00557] [INSPIRE].

[18] X. Gao, M. Kaminski, H.-B. Zeng and H.-Q. Zhang, Non-equilibrium field dynamics of an

honest holographic superconductor, JHEP 11 (2012) 112 [arXiv:1204.3103] [INSPIRE].

[19] K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109

[arXiv:1012.4831] [INSPIRE].

[20] P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole,

Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [INSPIRE].
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