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Disorders of the Nervous System

Functional Neuroplasticity in the Nucleus Tractus
Solitarius and Increased Risk of Sudden Death in
Mice with Acquired Temporal Lobe Epilepsy

Isabel D. Derera,1 Brian P. Delisle,1,2 and Bret N. Smith1,2

DOI:http://dx.doi.org/10.1523/ENEURO.0319-17.2017

1Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536 and 2Epilepsy Center,
University of Kentucky, Lexington, KY 40536

Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in individuals with refractory
acquired epilepsy. Cardiorespiratory failure is the most likely cause in most cases, and central autonomic
dysfunction has been implicated as a contributing factor to SUDEP. Neurons of the nucleus tractus solitarius
(NTS) in the brainstem vagal complex receive and integrate vagally mediated information regarding cardiorespi-
ratory and other autonomic functions, and GABAergic inhibitory NTS neurons play an essential role in modulating
autonomic output. We assessed the activity of GABAergic NTS neurons as a function of epilepsy development in
the pilocarpine-induced status epilepticus (SE) model of temporal lobe epilepsy (TLE). Compared with age-
matched controls, mice that survived SE had significantly lower survival rates by 150 d post-SE. GABAergic NTS
neurons from mice that survived SE displayed a glutamate-dependent increase in spontaneous action potential
firing rate by 12 wks post-SE. Increased spontaneous EPSC frequency was also detected, but vagal afferent
synaptic release properties were unaltered, suggesting that an increase in glutamate release from central neurons
developed in the NTS after SE. Our results indicate that long-term changes in glutamate release and activity of
GABAergic neurons emerge in the NTS in association with epileptogenesis. These changes might contribute to
increased risk of cardiorespiratory dysfunction and sudden death in this model of TLE.

Key words: Autonomic; brainstem; epilepsy; EPSC; GABA; vagus

Introduction
Sudden unexpected/unexplained death in epilepsy

(SUDEP) occurs when an individual with epilepsy who is

otherwise healthy dies suddenly for unknown reasons
(Annegers, 1997; Nashef, 1997; Nashef et al., 2012; Tol-
stykh and Cavazos, 2013). For epilepsy patients, the risk
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Significance Statement

Sudden unexpected death in epilepsy (SUDEP) accounts for �17% of deaths in individuals with epilepsy,
but the reasons underlying this increased risk are not known. Most research on SUDEP has focused on
genetic models of epilepsy, identifying seizure-related changes in autonomic function as a contributing
factor to sudden death in these models, but little is known about SUDEP in models of acquired epilepsy.
Here, we show that mice die suddenly and unexpectedly, and excitability in brainstem neurons that regulate
cardiorespiratory function is chronically increased, in a mouse model of acquired epilepsy. These results are
the first to identify a model of SUDEP in acquired epilepsy and to demonstrate functional changes in
brainstem circuitry in response to epileptogenesis.
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of sudden, unexpected death is �20-fold higher than
in the general population and accounts for �17% of
epilepsy-related deaths (Nashef, 1997; Kalume et al.,
2013; Tolstykh and Cavazos, 2013), so it is imperative to
elucidate its underlying mechanisms. Patients with long-
standing epilepsy characterized by frequent generalized
tonic-clonic seizures that are relatively poorly controlled
are at highest risk (Tolstykh and Cavazos, 2013; Thurman
et al., 2014). Patients with temporal lobe epilepsy (TLE)
represent �60% of all epilepsies, and seizures are med-
ically intractable in �30% of these patients, making this
the largest population at risk of SUDEP, yet mechanisms
underlying increased SUDEP risk have not been identified
in animal models of acquired TLE. Peri-ictal, centrally
originating or peripheral autonomic irregularities leading
to cardiorespiratory collapse may be the immediate cause
of death in SUDEP (Ryvlin et al., 2013), but few studies
have been aimed at identifying mechanisms underlying
this autonomic failure. Seizures can increase activity of
neurons in brainstem autonomic areas, independently of
physical activity or peripheral metabolic influences
(Kanter et al., 1995; Takakura et al., 2011), and autonomic
irregularities often develop over time in individuals with
epilepsy, implicating central or peripheral autonomic re-
active neuroplasticity as a potential driver of increased
SUDEP risk in patients and in rodent epilepsy models
(Glasscock et al., 2010; Massey et al., 2014; Biet et al.,
2015). Thus, recurrent seizures might induce changes in
central or systemic physiologic functions that increase the
risk for sudden death.

The brainstem vagal complex is the principal neural
center mediating parasympathetic visceral regulation.
Within the vagal complex, neurons of the nucleus tractus
solitarius (NTS) receive viscerosensory information via va-
gal afferents and project their axons to preganglionic
parasympathetic motor neurons in the dorsal motor nu-
cleus of the vagus (DMV) and the nucleus ambiguus (NA;
Andresen and Kunze, 1994; Doyle and Andresen, 2001;
Wang et al., 2001a, b; Davis et al., 2004; Travagli et al.,
2006; Glatzer et al., 2007; Bailey et al., 2008), as well as to
brainstem and hypothalamic areas responsible for premo-
tor sympathetic regulation and respiratory reflexes (Tak-
enaka et al., 1995; Fontes et al., 2001; Irnaten et al., 2001;
Bonham et al., 2006; Affleck et al., 2012; Zoccal et al.,
2014). Inhibitory GABAergic NTS neurons participate in
vagal reflexes and prominently regulate parasympathetic
output (Davis et al., 2004; Travagli et al., 2006). Evidence
from genetic epilepsy models suggests that epilepsy-
related alterations in peripheral or central vagal function

contribute to cardiorespiratory collapse and SUDEP
(Glasscock et al., 2010, 2012; Cheah et al., 2012; Kalume
et al., 2013; Aiba and Noebels, 2015). Central vagal circuit
plasticity is prominent in disease states that affect auto-
nomic homeostasis (Mei et al., 2003; Bach et al., 2015;
Bhagat et al., 2015; Boychuk et al., 2015), and seizure-
related derangement of central vagal system function has
been briefly described, manifesting as increased likeli-
hood of spreading depolarization in the NTS (Aiba and
Noebels, 2015). Reactive neuroplasticity in the central
vagal complex, however, has not been investigated in
animals with acquired TLE.

We used the pilocarpine-induced status epilepticus
(pilo-SE) model of TLE in mice (Shibley and Smith, 2002;
Borges et al., 2003; Winokur et al., 2004; Gröticke et al.,
2007; Bhaskaran and Smith, 2010a, b; Hunt et al., 2013)
to identify long-term changes in NTS neuron function
coinciding with the development of TLE. Because the NTS
is the primary integration center for cardiorespiratory re-
flexes, and GABA neurons in particular are principal par-
ticipants in vagal reflex activity (Glatzer et al., 2007; Bailey
et al., 2008), increased excitability of these neurons would
be consistent with an increased propensity for central
autonomic failure that could lead to SUDEP in TLE. We
tested the hypothesis that reactive plasticity of GABAer-
gic circuitry in the NTS emerges over time in mice that
survive pilocarpine-induced SE.

Methods
Animals

Four- to six-week-old age-matched male Hsd:ICR
(CD-1; Envigro-Harlan) and GIN (green inhibitory neuron)
mice (Oliva et al., 2000), which express EGFP under
the control of the mouse GAD67 promoter [FVB-
Tg(GADGFP)4570Swn/J; The Jackson Laboratory] were
used. All mice were housed under a 14-h light/10-h dark
cycle in an Association for Assessment and Accreditation of
Laboratory Animal Care International (AALAC)-approved
facility. Water and food were available ad libitum. The Uni-
versity of Kentucky Institutional Animal Care and Use Com-
mittee approved all procedures.

Pilocarpine treatment and seizure assessment
Mice were administered an intraperitoneal (i.p.) injection

of the muscarinic receptor antagonist, methylscopol-
amine (1 mg/kg in 0.9% NaCl) 20 min before an i.p.
injection of pilocarpine (280–285 mg/kg in 1 ml 0.9%
NaCl). The methylscopolamine served to block peripheral
effects of pilocarpine. Age-matched control mice received
a comparable amount of vehicle 20 min after the meth-
ylscopolamine. Behavioral observations of seizures lasted
2 h after pilocarpine, and seizures were evaluated accord-
ing to a modified Racine scale (Racine, 1972), using cat-
egories 1–5, with 5 being the most severe. Categories 1
and 2 (i.e., facial automatisms, tail stiffening, and wet-dog
shakes) were considered together to reduce subjectivity.
All pilocarpine-treated mice displayed some or all of these
behaviors. Category 3 (i.e., low-intensity tonic-clonic sei-
zures marked by unilateral forelimb myoclonus), category
4 (i.e., the addition of bilateral forelimb myoclonus and
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rearing), and category 5 (i.e., bilateral fore- and hindlimb
myoclonus and transient loss of posture) were considered
to be general convulsive seizures. Category 3–5 seizures
were typically 30–90 s in duration and were separated by
periods of relative inactivity of variable duration. A mouse
that experienced a minimum of 3 convulsive (category
3–5) seizure events within 2 h postinjection were consid-
ered to have undergone SE, as �90% these mice go on to
develop spontaneous seizures (Shibley and Smith, 2002;
Winokur et al., 2004; Bhaskaran and Smith, 2010a, b). In
addition to standard diet, mice were given water-
moistened food and a 5% glucose solution in a Petri dish
inside the cage for 4 d after SE. A subset of mice was
maintained for up to 150 days to assess for survival. Other
mice were used for in vitro electrophysiological record-
ings at 1, 6, or 12 wks post-SE. A subset of mice was
monitored for behavioral seizure activity for 6 h during the
week (i.e., 2 h/d, three nonconsecutive days/wk) before
their use in electrophysiological recordings. Spontaneous
seizure activity was rated using the modified Racine scale
by an observer that was blinded to the experimental
groups. Only behavioral seizures at or above category 2
and lasting longer than 10 s were tabulated (Shibley and
Smith, 2002; Hunt et al., 2009; Butler et al., 2015).

Brainstem slice preparation
On-cell and whole-cell patch-clamp recordings were

performed in GABAergic NTS neurons from brainstem
slices in GIN mice. Mice were deeply anesthetized by
isofluorane inhalation and then decapitated while anes-
thetized. The brain was removed and blocked on an
ice-cold stand, and the brainstem was glued on a platform
for sectioning in the coronal plane. Transverse (coronal)
slices (300 �m) from the caudal brainstem were made in
cold (0–2°C) oxygenated (95% O2/5% CO2) artificial ce-
rebral spinal fluid (aCSF) using a vibrating microtome
(Vibratome Series 1000; Technical Products International)
and transferred to a holding chamber. These brainstem
slices contain the NTS and preserve many intact intrinsic
synaptic connections, including from primary vagal affer-
ents in the solitary tract (ST) among vagal complex neu-
rons (Doyle and Andresen, 2001; Glatzer et al., 2003;
Davis et al., 2004; Bach and Smith, 2012). The aCSF
contained (in mM): 124 NaCl, 3 KCl, 2 CaCl2, 1.3 MgCl, 1.4
NaH2PO4, 26 NaHCO3, and 11 glucose (pH 7.2–7.4). For
recordings, a single brain slice was transferred to a cham-
ber mounted on a fixed stage under an upright micro-
scope (BX51WI; Olympus), where it was superperfused
with continuously oxygenated and warmed (30°–32°C)
aCSF.

Electrophysiological recordings
On-cell and whole-cell patch-clamp recordings were

obtained in GABAergic caudal NTS neurons identified by
EGFP expression in FVB male mice. Recording pipettes
were pulled from borosilicate glass (open tip resistance of
3–5 M�; King Precision Glass Co.). The pipette solution
for recordings contained (in mM): 130 K�-gluconate, 1
NaCl, 5 EGTA, 10 HEPES, 1 MgCl2, 1 CaCl2, 3 KOH, and
2 ATP. GABAergic neurons in the NTS were targeted for
recording under a 40� water-immersion objective with

epifluorescence (Olympus). Electrophysiological signals
were obtained using Multiclamp 700B amplifier (Molecular
Devices), low-pass filtered at 2–3 kHz, digitized at 20 kHz,
and recorded onto a computer (Digidata 1440A, Molecu-
lar Devices) using pClamp 10.2 software (Molecular De-
vices). Seal resistance was typically 2–5 G�; series
resistance was �25 M� (mean � SEM 	 16.21 � 5.00
M�, n 	 218 cells) and was monitored periodically
throughout recordings. Electrophysiology data were not
further analyzed if the series resistance changed by
�20% during the recording.

Spontaneous action potential firing in GABAergic NTS
neurons was measured using on-cell patch-clamp record-
ings. Cells were recorded at resting membrane potential,
and action potential frequency was calculated over a
2-min segment of continuous firing for each cell. Sponta-
neous, miniature, and evoked excitatory postsynaptic
currents (sEPSCs, mEPSCs, and eEPSCs) were examined
in whole-cell recordings at a holding potential of –70 mV.
The Na� channel blocker, tetrodotoxin (TTX, 1 �M, Alam-
one Labs) was added to the aCSF for �10 min before
recordings of mEPSCs. Resting membrane potential was
measured in current-clamp mode by measuring the mean
resting membrane potential averaged over a 30-s period
with no spontaneous action potential firing. If there was
spontaneous action potential firing, resting membrane
potential was calculated by averaging portions between
action potentials. Input resistance was calculated by plot-
ting the linear portion of the current
voltage curve and
calculating the slope. A platinum-iridium concentric bipo-
lar electrode (125 �m diameter; FHC) was placed on the
ST to activate vagally evoked EPSCs (Glatzer and Smith,
2005; Glatzer et al., 2007). Sets of five current pulses
(30–50 �A; 400 �s) were delivered at 50 Hz. The stimulus
intensity was adjusted so that eESPCs occurred �80% of
the time in GABAergic NTS neurons when stimulation was
applied to the ST. Stimulus sweeps were included only if
an eEPSC was elicited after each stimulation in that
sweep.

ECG telemetry
In vivo telemetry was used to evaluate chronic changes

in heart rate and two measures of heart rate variability
(HRV), the standard deviation between the N-to-N interval
(SDNN) and root mean squared of the standard deviation
(RMSSD), before and after methylscopolomine and pilo-
carpine or vehicle injection, as occurs in rats (Metcalf
et al., 2009b; Bealer et al., 2010; Biet et al., 2015). Mice
were anesthetized with 2.0% isofluorane in 100% O2 at
0.5 l/min, and telemetry units (model ETA-F10; Data Sci-
ences International) were implanted subcutaneously. The
transmitter body was placed on the right flank with the
positive lead near the right pectoral muscle and the neg-
ative lead on the left abdomen. The leads were secured by
being embedded into the fascia under the skin. Mice were
housed individually and allowed to recover for 14 d post-
surgery before pilocarpine or vehicle treatment. During
recovery, mice were housed in an AALAC-approved sat-
ellite facility in which all ECG recordings were conducted,
where they remained for the duration of the 12-wk record-
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ing period. To minimize disturbance and stress to the
animals, implanted telemeters were switched on 24 h
before each data collection period. Data were recorded
for 24 h pre-pilocarpine or vehicle injection, 24 h after
injection, and for 24-h periods at 6 and 12 wks after
injection. ECG data were collected and analyzed with DSI
DataQuest A.R.T. 4.31 and Ponemah 6.10 telemetry soft-
ware. Data were acquired at a sampling rate of 1000 Hz,
which is the standard rate used for mice and results in a
smooth physiologic signal when the ECG waveforms are
graphed; the telemetry device used a factory preset sam-
pling rate of 200 Hz. No low-pass or high-pass filtering
was applied during data acquisition. For ECG waveform
analysis, the software was set to use a 40% QRS detec-
tion threshold (percentage of the largest derivative peak in
a QRS segment resulting in an R that satisfies the mini-
mum heart rate criteria), a minimum R deflection of 0.25
mV, a maximum heart rate of 1000 bpm, and a minimum
heart rate of 80 bpm.

Average heart rate and HRV were calculated from data
from 1-h recording periods, as described previously (Met-
calf et al., 2009b; Ho et al., 2011; Schroder et al., 2015); all
recordings were performed during seizure-free periods.
The RR interval was manually examined and filtered for
abnormal beats by sorting the RR intervals from shortest
to longest and deleting cycles that were two standard
deviations from the average RR interval, and the ECG
channel was subsequently reanalyzed by setting upper
and lower limits on RR values (Thireau et al., 2008). Areas
of the recording that contained skipped beats or loss of
signal were also deleted. The remaining cycles were then
averaged to comprise the NN interval, which was then
used to calculate the SDNN and RMSSD. The SDNN was
calculated by taking the square root of the averaged NN
interval. The RMSSD was calculated with the following
steps: (1) the difference between the NN interval and
delayed NN interval was squared; (2) the squared differ-
ence was summed; (3) the number of NN intervals was
counted; and (4) the sum of the difference squared was
divided by the count of NN intervals. RMSSD is reported
as the square root of this value.

Data analysis
A Kaplan–Meier survival curve was generated to assess

survival rates in pilo-SE and control mice up to 150 d
postinjection, using a log-rank (Mantel–Cox) test to as-
sess statistical significance. On-cell recordings of spon-
taneous action potentials (2-min continuous recording)
were examined with Clampfit 10.2 (Molecular Devices) to
measure the frequency of spontaneous action potentials.
Spontaneous and miniature EPSCs were analyzed with
MiniAnalysis (Synaptosoft). An unpaired t test was used to
compare mean action potential firing, sEPSC or mEPSC
frequency and amplitude, resting membrane potential,
input resistance, paired-pulse ratio (PPr), and frequency-
dependent depression between age-matched vehicle or
pilocarpine treated mice 1, 6, and 12 wks posttreatment.
Two-way ANOVA (Tukey’s post hoc) was used to com-
pare heart rate and heart rate variability in control and
pilo-SE mice over a 12-wk electrocardiography recording

period. Statistical measures were performed with Prism
(GraphPad). Data are presented as mean � SEM, and
statistical significance was set at p � 0.05 for all mea-
surements. Table 1 indicates the tests used for each
assessment and includes confidence intervals for each
statistical measurement.

Results
Pilocarpine-induced SE as a model of SUDEP

Spontaneous seizure activity was monitored in a cohort
of mice (n 	 6 control mice; n 	 6 pilo-SE mice) for 1 wk
between 11 and 12 wks post-SE. Similar to previous
reports (Shibley and Smith, 2002; Winokur et al., 2004;
Hunt et al., 2013), spontaneous seizures were observed
during this period in 83% (5 of 6) of pilocarpine-treated
mice that survived SE. A separate cohort of mice was
monitored for long-term survival after pilocarpine-induced
SE. Similar to previous reports (Shibley and Smith, 2002;
Winokur et al., 2004), all vehicle-injected mice survived
the duration of the monitoring period of 150 days (100%;
n 	 10). Between 1 and 7 d after pilocarpine-induced SE,
there was a 13.33% mortality rate (2/15 mice). These mice
were not considered to have died of SUDEP, as epilepsy
(i.e., with spontaneous seizures) likely had not developed
by this time. Of the 13 pilocarpine-treated mice that sur-
vived for �7 d post-SE, only three mice (23%) survived to
150 d posttreatment, with no obvious trauma or other
incident. All of these mice died 3 wks or more after SE
induction; 60% died after �40 d post-SE (Fig. 1). Thus,
the survival rate of mice that survived pilo-SE was signif-
icantly decreased at 150 d compared with vehicle-treated
control mice (log-rank Mantel–Cox; p 	 0.0002).

Increased action potential firing in GABAergic NTS
neurons from pilo-SE mice is glutamate receptor
dependent

Seizure-induced spreading depolarization in the NTS of
mice with genetic epilepsies originates in the lateral NTS
(Aiba and Noebels, 2015), an area densely comprised of
GABAergic neurons (Blessing, 1990; Fong et al., 2005;
Glatzer et al., 2007). We hypothesized that GABAergic
NTS neurons, most of which receive primary viscerosen-
sory input from the vagus nerve (Glatzer et al., 2007;
Bailey et al., 2008), are altered functionally post-SE.
On-cell recordings of GABAergic NTS neurons were per-
formed to determine whether spontaneous action poten-
tial firing differed between control and pilo-SE mice (Fig.
2A,B,E). One week posttreatment, GABAergic NTS neu-
rons from seven pilo-SE mice displayed significantly
higher action potential firing frequency (3.35 � 0.46 Hz;
n 	 20 cells) compared with NTS GABAergic neurons
from seven age-matched control mice (1.32 � 0.30 Hz;
n 	 15 cells; p 	 0.002). Spontaneous action potential
firing in GABAergic NTS neurons was also significantly
increased 6 wks after treatment in five pilo-SE mice
(3.32 � 0.65 Hz; n 	 16 cells) compared with eight
age-matched control mice (2.10 � 0.25 Hz: n 	 26 cells;
p 	 0.046). Similarly, action potential firing frequency
remained significantly greater in GABAergic NTS neurons
from seven age-matched pilo-SE (4.27 � 0.96 Hz; n 	 24
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cells) than seven age-matched control mice (2.21 � 0.27
Hz; n 	 23 cells; p 	 .0048) 12 wks posttreatment (Fig.
2E). Therefore, action potential frequency was consis-
tently higher in GABAergic NTS neurons in mice that
survived SE than in control mice.

To determine whether the increase in firing frequency
was due to increased activation of ionotropic glutamate
receptors, spontaneous action potential firing was re-
corded in the presence of the ionotropic glutamate recep-
tor antagonist, kynurenic acid (KYN; 1 mM; Fig. 2C,D,F). In
the presence of KYN, the action potential firing frequency
in GABAergic NTS neurons from pilo-SE mice was similar
to that of control mice 1, 6, and 12 wks posttreatment
(week 1, p 	 0.47; week 6, p 	 0.83; week 12, p 	 0.78;
Fig. 2F). Therefore, the increased action potential firing in
GABAergic NTS neurons from mice that survived SE de-
pended on activation of ionotropic glutamate receptors,

Table 1. Statistical table

Outcome measure Data structure Type of test Confidence interval
a. Survival curve Nominal data, nonnormal distribution Log-rank (Mantel–Cox) 0.03526 to 0.3404
b. Action potential firing frequency ACSF Week 1: normal distribution

Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: 0.83 to 3.23
Week 6: 0.02 to 2.42
Week 12: 0.01 to 4.10

c. Action potential firing frequency KYN Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: –2.28 to 4.61
Week 6: –1.52 to 1.24
Week 12: –2.46 to 1.90

d. sEPSC frequency Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: 1.01 to 5.74
Week 6: 0.03 to 2.41
Week 12: 0.12 to 2.30

e. sEPSC amplitude Week 1:normal distribution
Week 6:normal distribution
Week 12:normal distribution

Unpaired t test Week 1: –4.88 to 6.12
Week 6: –3.93 to 3.56
Week 12: –7.66 to 1.72

f. mEPSC frequency Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: –0.54 to 1.52
Week 6: 0.65 to 2.74
Week 12: 0.30 to 1.81

g. mEPSC amplitude Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: –4.60 to 5.50
Week 6: –4.96 to 0.97
Week 12: –7.66 to 0.69

h. PPr Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1:–0.13 to 0.44
Week 6: –0.12 to 0.66
Week 12: –0.10 to 0.21

i. Mean A5/A1 Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: –0.24 to 0.27
Week 6: –0.17 to 0.64
Week 12:–0.09 to 0.29

j. Input resistance Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: –2.00 to 1.86
Week 6: –1.12 to 0.75
Week 12: –2.13 to 0.99

k. Resting membrane potential Week 1: normal distribution
Week 6: normal distribution
Week 12: normal distribution

Unpaired t test Week 1: –18.72 to 8.75
Week 6: –11.82 to 9.65
Week 12:–11.37 to 7.67

l. Heart rate Normal distribution Two-way ANOVA Baseline: –73.56 to 100.80
24 h: –188.60 to –14.23
Week 6: –94.12 to 80.28
Week 12: –86.80 to 99.64

m. SDNN Normal distribution Two-way ANOVA Baseline: –0.96 to 0.62
24 h: 0.03 to 1.62
Week 6: –0.78 to 0.79
Week 12:

n. RMSSD Normal distribution Two-way ANOVA Baseline: –2.63 to 2.11
24 h: –1.87 to 2.97
Week 6: –2.482 to 2.261
Week 12: –0.92 to 0.77

Figure 1. Pilocarpine-induced SE (pilo-SE) increases the risk of
sudden death. Pilocarpine-treated mice (Pilo-SE; n 	 15) have a
decreased survival rate (23%) compared to control mice (n 	 10,
100%; Log-rank Mantel–Cox; p 	 0.0002). Mice that survived SE
died suddenly and unexpectedly at post-SE time points associ-
ated with the development of spontaneous seizures.
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implicating increased glutamate-mediated, excitatory
synaptic drive to these neurons during epileptogenesis.

GABAergic NTS neurons display increased synaptic
excitatory regulation

An increase in spontaneous action potential firing in
GABAergic NTS neurons from pilo-SE mice could occur
because of altered intrinsic and/or synaptic properties. To
determine whether intrinsic properties were altered post-
SE, we measured the resting membrane potential and

input resistance in GABAergic NTS neurons and found
that there were no significant differences between control
and pilo-SE mice at any time point (Table 2). Because
firing rate differences were abrogated by KYN, we hypoth-
esized that excitatory glutamatergic synaptic input was
increased after pilo-SE. To test this hypothesis, whole-cell
patch-clamp recordings were used to examine the fre-
quency and amplitude of spontaneous and miniature EP-
SCs (sEPSCs and mEPSCs) in GABAergic NTS neurons
from age-matched control and pilo-SE mice (Fig. 3). One

Figure 2. Increased action potential frequency in GABAergic NTS neurons from pilo-SE mice is dependent on glutamate receptor
activation. A, Representative traces showing action potential firing (Na� currents) in GABAergic NTS neurons in slices from control
mice recorded in normal ACSF (nACSF) at three different time points (i.e., 1, 6, and 12 wks) after vehicle treatment. B, Representative
traces showing action potential firing in GABAergic NTS neurons from mice that survived pilo-SE under normal recording conditions
(nACSF) at three different time points after SE. C, Representative traces of action potential firing in control mice in the presence of
kynurenic acid (KYN; 1 mM) at the same time points. D, Representative traces of action potential firing in the presence of KYN in
pilo-SE mice. E, Action potential firing frequency is significantly greater in pilo-SE mice compared with age-matched control mice at
1, 6, and 12 wks posttreatment (unpaired t test; �, p � 0.05). F, In the presence of KYN, action potential firing frequency in NTS GABA
neurons from pilo-SE mice was not significantly different from that of control mice (unpaired t test; p � 0.05).

Table 2. Resting membrane potential and input resistance of GABAergic NTS neurons in mice that survived SE is not
significantly different from age-matched control mice at any time point (unpaired t test; p > 0.05)

Time Input resistance (M�) Resting membrane potential (mV)
Control Pilo-SE Control Pilo-SE

Week 1 1160 � 600 1590 � 490 –47.65 � 5.35 –51.69 � 4.25
Week 6 1369 � 346 1180 � 293 –52.23 � 3.69 –53.32 � 3.63
Week 12 2477 � 611 1905 � 429 –55.93 � 3.31 –57.57 � 3.33
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week posttreatment, sEPSC frequency in GABAergic NTS
neurons from six pilo-SE mice (4.98 � 0.98 Hz; n 	 12
cells) was significantly greater than seven control mice
(1.61 � 0.40 Hz; n 	 10 cells; p 	 0.007). The increased
sEPSC frequency was also seen at 6 wks post-SE (five
control mice: 2.17 � 0.46 Hz, n 	 9 cells; seven pilo-SE
mice: 3.40 � 0.36 Hz, n 	 13 cells, p 	 0.045) and 12 wks
posttreatment in seven pilo-SE mice (2.57 � 0.46 Hz; n 	
15 cells) compared with 11 age-matched control mice
(1.55 � 0.27 Hz; n 	 20 cells; p 	 0.03; Fig. 3C). There
was no significant difference in sEPSC amplitude at any

time point posttreatment (week 1, p 	 0.82; week 6, p 	
0.89; week 12, p 0.2; Fig. 3D). Therefore, glutamate re-
lease onto NTS GABAergic neurons was increased after
pilo-SE, and this increased release persisted for at least 3
months post-SE.

The hypothesis that the increased release of glutamate
depended on action potentials in afferent neurons within
the slice was tested by measuring the frequency and
amplitude of mEPSCs in the presence of tetrodotoxin
(TTX; 1 �M), which was added to aCSF to block Na�

channels and prevent action potential firing (Fig. 4). Unlike

Figure 3. Significantly increased sEPSC frequency in GABAergic NTS neurons from pilo-SE mice. A, Representative traces showing
sEPSCs in a GABAergic NTS neuron from control mice 1, 6, and 12 wks posttreatment. B, Representative traces showing sEPSCs
in a GABAergic NTS neuron from pilo-SE mice 1, 6, and 12 wks posttreatment. C, sEPSC frequency is significantly higher in
GABAergic NTS neurons from pilo-SE mice compared with control mice 1, 6, and 12 wks posttreatment (unpaired t test; �, significant).
D, sEPSC amplitude is not significantly different (unpaired t test; p � 0.05) between control and pilo-SE mice at any time point.

Figure 4. Significantly increased mEPSC frequency in GABAergic NTS neurons from pilo-SE mice. A, Representative traces showing
mEPSCs in a GABAergic NTS neuron from a control mouse 1, 6, and 12 wks posttreatment. B, Representative traces showing
mEPSCs in a GABAergic NTS neuron from a pilo-SE mouse 1, 6, and 12 wks posttreatment. C, mEPSC frequency is significantly
higher in GABAergic NTS neurons from pilo-SE mice compared with control mice at 6 and 12 wks posttreatment (unpaired t test;
�, p � 0.05). D, mEPSC amplitude is not significantly different between control and pilo-SE mice at any time point (unpaired t test).
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for sEPSCs at 1 wk posttreatment, mEPSC frequency was
not significantly increased in five pilo-SE mice (2.37 �
0.35 Hz; n 	 9 cells) compared with three control mice
(1.88 � 0.34 Hz; n 	 8 cells; p 	 0.33). Miniature EPSC
frequency was significantly increased, however, in GABAe-
rgic NTS neurons at 6 wks (five control mice: 1.36 � 0.24 Hz,
n 	 15 cells; six pilo-SE mice: 3.10 � 0.47 Hz, n 	 13 cells,
p 	 0.003) and 12 wks (five control mice: 1.46 � 0.13 Hz,
n 	 15 cells; seven pilo-SE mice: 2.52 � 0.38 Hz, n 	 12
cells; p 	 0.007; Fig. 4C). Miniature EPSC amplitude in
GABAergic NTS neurons from control and pilo-SE mice was
not significantly different at any time point posttreatment
(week 1, p 	 0.85; week 6, p 	 0.18; week 12, p 	 0.10; Fig.
4D). Therefore, glutamate release was increased in GABAe-
rgic NTS neurons after pilo-SE, and the increase detected
after 6 wks did not depend on action potential firing in
glutamatergic neurons contained within the slice prepara-
tion, suggesting that changes at the level of the synaptic
terminals contributed to the development of altered gluta-
mate release in the NTS during epileptogenesis.

Primary vagal afferent input to GABAergic NTS
neurons was not altered in pilo-SE mice

The increase in mEPSC frequency in GABAergic NTS
neurons from pilo-SE mice suggests an increase in the
probability of presynaptic glutamate release, possibly in-
cluding from vagal afferent terminals. Nerve terminals of
viscerosensory primary vagal afferents synapse directly
onto second-order sensory NTS neurons, including

GABAergic neurons, the majority of which receive primary
vagal input (Glatzer et al., 2007; Bailey et al., 2008).
Synaptic responses evoked after stimulating vagal affer-
ents exhibit paired-pulse inhibition and frequency-
dependent depression (Miles, 1986; Doyle and Andresen,
2001; Glatzer and Smith, 2005; Bailey et al., 2008). We
therefore tested the hypothesis that glutamate release
from primary vagal afferents was enhanced in pilo-SE
mice by measuring synaptic responses to stimulation of
the ST in GABAergic NTS neurons. Examples of re-
sponses in NTS GABA neurons to repetitive stimulation of
the ST in each group are shown in Fig. 5. One week
posttreatment, the PPr was not significantly different be-
tween three control mice (0.71 � 0.07; n 	 8 cells) and
three pilo-SE mice (0.87 � 0.10; n 	 8 cells; p 	 0.27). At
6 wks posttreatment, the PPr was not significantly altered
in four pilo-SE mice (0.1.02 � 0.13; n 	 8 cells) compared
with five control mice (0.75 � 0.14; n 	 5 cells; p 	 0.16).
There was also no significant difference in the PPr at 12
wks posttreatment between five control mice (0.71 �
0.06; n 	 11 cells) and six pilo-SE mice (0.82 � 0.06; n 	
14 cells; p 	 0.12; Fig. 5D). Thus, the increased glutamate
release in GABAergic NTS neurons that developed after
pilo-SE was likely not due to modification of synaptic
release probability in vagal afferents.

Although changes in the PPr after SE survival are an
indicator of alterations in the releasable vesicle pool
(Schild et al., 1995; Zucker and Regehr, 2002; Pami-
dimukkala and Hay, 2004), frequency-dependent depres-

Figure 5. PPr and frequency-dependent depression are unaltered in pilo-SE mice. A, Representative traces of eEPSC responses
in GABAergic NTS neurons 1 wk posttreatment from control and pilo-SE mice. B, Representative traces of eEPSC responses in
GABAergic NTS neurons 6 wks posttreatment from control and pilo-SE mice. C, Representative traces of eEPSC responses in
GABAergic NTS neurons 12 wks posttreatment from control and pilo-SE mice. D, The PPr was not significantly different between
control and pilo-SE mice at any time point posttreatment (unpaired t test; p � 0.05). E, The ratio of the 5th response amplitude to that
of the 1st response was also not significantly altered in pilo-SE mice at any time point (unpaired t test; p � 0.05).
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sion provides insight into synaptic communication
between the vagal afferent fibers and GABAergic NTS
neurons that may rely on additional mechanisms (Chen
et al., 1999; Atwood and Karunanithi, 2002; Kline, 2008;
Zhao et al., 2015). Frequency-dependent depression is a
common characteristic of second-order NTS neurons re-
ceiving viscerosensory afferent input and has been hy-
pothesized to contribute to central adaptation during
cardiovascular and respiratory reflexes (Miles, 1986;
Doyle and Andresen, 2001; Kline et al., 2005; Glatzer
et al., 2007; Bailey et al., 2008; Kline, 2008).

We also tested the hypothesis that frequency-
dependent depression was altered in mice that survived
SE by analyzing the amplitude ratios of the 5th to the 1st
eEPSC in a train (Fig. 5F). Similar to the PPr analysis, there
was no significant difference between three control mice
1 wk (0.55 � 0.09; n 	 8 cells) and three pilo-SE mice
(0.56 � 0.08; n 	 8 cells; p 	 0.89), 6 wks (control:
0.52 � 0.08; n 	 5 cells; pilo-SE: 0.78 � 0.12; n 	 8 cells;
p 	 0.14), or 12 wks posttreatment (control: 0.56 � 0.07;
n 	 11 cells; pilo-SE: 0.71 � 0.07; n 	 14 cells; p 	 0.31;
Fig. 5F). These data are consistent with the hypothesis
that release properties at vagal afferent synapses with
GABAergic NTS neurons are not altered after pilo-SE.

Heart rate and heart rate variability in mice surviving
SE is not altered long-term

In chemoconvulsant-induced SE models of acquired
TLE in rats, changes in cardiac rhythmicity that may
reflect plasticity of either central or peripheral vagal reg-
ulatory function or cardiac remodeling are detected coin-
cident with epileptogenesis (Metcalf et al., 2009b; Bealer
et al., 2010; Biet et al., 2015). We examined mouse ECG
activity for changes in heart rate and heart rate variability
over time after to assess whether ongoing cardiac
rhythms were altered following SE. Table 3 describes
heart rate and two measures of heart rate variability in six
control mice and eight pilocarpine-treated mice that sur-
vived SE. Heart rate was significantly increased in mice
that survived SE compared with their heart rate 24 h
before treatment (baseline, 525.8 � 22.02 bpm; post-SE,
636.1 � 39.12 bpm; n 	 8 mice; p 	 0.018). This was also
true for the SDNN, a measure of heart rate variability. The
SDNN was significantly increased 24 h post-SE (baseline,
10.77 � 0.21 ms; posttreatment, 9.85 � 0.34 ms; p 	
0.038). No significant differences were detected at any

other time points after SE induction in these same mice,
nor were any differences detected over the 12-wk record-
ing period in the RMSSD (two-way ANOVA; F(3,46)	
0.135; p 	 0.939; Table 3).

Discussion
The present study investigated survival rates and

changes in GABAergic NTS neuron function in mice that
survived pilo-SE. Mice that died within 1 wk of SE were
considered to have failed to recover from SE and there-
fore not to have died of SUDEP, since they likely did not
have epilepsy. Of the mice that survived the first week
after pilocarpine-induced SE, just 23% survived to 150 d
post-SE, whereas 100% of control mice survived for the
duration of the study. Patients with longstanding epilepsy
characterized by frequent generalized tonic-clonic sei-
zures that are relatively poorly controlled are at highest
risk of SUDEP (Surges and Sander, 2012; Tolstykh and
Cavazos, 2013; Massey et al., 2014; Thurman et al., 2014;
Dlouhy et al., 2016). SUDEP risk in patient populations
with relatively rare genetic epilepsies such as Dravet syn-
drome, which accounts for �3% of patients with epilepsy,
is high (Wu et al., 2015), and many studies have been
aimed at elucidating the causes of SUDEP in models of
genetic epilepsies. Patients with TLE represent �60% of
all epilepsies, however, and seizures are medically intrac-
table in about one-third of TLE patients, making this the
largest epilepsy patient population at risk of SUDEP. The
pilocarpine-induced SE model in mice represents a con-
sistent and highly replicable TLE model in which mice
develop spontaneous seizures within a few weeks after
recovery from SE (Shibley and Smith, 2002; Winokur
et al., 2004; Scorza et al., 2009; Bhaskaran and Smith,
2010a, b). A large proportion of the mice that survived
pilocarpine-induced SE died suddenly and unexpectedly
at time points corresponding with the development of
spontaneous seizures (Shibley and Smith, 2002; Winokur
et al., 2004; Bhaskaran and Smith, 2010b), promoting this
mouse as a reasonable model of SUDEP in TLE. Pilo-
carpine plasma and brain levels peak in the minutes after
injection and fall to almost zero by 2 h postinjection; it is
therefore doubtful that the single exposure to pilocarpine
itself is responsible for our findings, which were measured
days to months after injection (Römermann et al., 2015).
Additionally, microinjection of muscarinic receptor ago-
nists in the NTS alters function for 4–6 min after applica-

Table 3. Heat rate and heart rate variability (HRV) in mice that survived SE.

Time Control (n 	 6) Pilo-SE (n 	 8)
Heart rate (bpm) SDNN (ms) RMSSD (ms) Heart rate (bpm) SDNN (ms) RMSSD (ms)

Baseline 539.42 �
14.23

10.60 � 0.13 2.96 � 0.65 525.8 �
22.02

10.77 � 0.21 3.22 � 0.38

24 h 534.66 �
8.92

10.68 � 0.08 3.37 � 0.51 636.10 � 39.12 9.85 �
0.34

2.86 � 0.59

Week 6 549.96 �
12.93

10.48 � 0.13 3.21 � 1.25 556.90 � 26.26 10.47 � 0.23 3.32 � 0.45

Week 12 530.54 �
9.28

10.68 � 0.09 3.12 � 0.66 524.10 � 18.19 10.75 � 0.19 3.27 � 0.62

Heart rate and the standard deviation of the N-to-N interval (SDNN) were increased 24 h after SE, but no differences were detected at other time points
(heart rate: two-way ANOVA, F(3,46) 	 2.52, p 	 0.069; SDNN: two-way ANOVA, F(3,46) 	 2.25, p 	 0.094). The root mean squared of the standard devia-
tion (RMSSD) was not significantly different at any time point (two-way ANOVA, F(3,46) 	 0.135, p 	 0.939).
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tion without sustained changes (Sundaram et al., 1988).
Thus, decreased survivability and increased NTS circuit
excitability likely develop coincident with epileptogenesis
in this model, rather than as a result of brief exposure to
the muscarinic agonist.

Sudden unexpected death has been documented in
mouse models of genetic epilepsy (Goldman et al., 2009;
Glasscock et al., 2010; Cheah et al., 2012; Aiba and
Noebels, 2015), and unexpected death has been noted
anecdotally in models of acquired TLE. In murine Kv1.1-/-

and Dravet syndrome genetic epilepsy models, mice be-
gin having seizures by approximately the third week of life,
and most animals do not survive past postnatal day 90
(Cheah et al., 2012). These models use genetically medi-
ated ion channel derangement to induce epilepsy, and the
channelopathies could themselves increase the likelihood
of sudden death. They can also result in altered electrical
properties of cardiomyocytes, complicating interpreta-
tions of the contribution of the effects of seizures—versus
the channelopathy itself—to death (Auerbach et al., 2013).
Conversely, seizures in the pilocarpine-induced SE model
induce reactive neuroplasticity, including ion channel and
synaptic reorganization in cortical structures (Shibley and
Smith, 2002; Su et al., 2008; Metcalf et al., 2009b; Bealer
et al., 2010; Guo et al., 2013), and the present results
indicate they also induce remodeling in brainstem neu-
rons or circuits, which could contribute to central auto-
nomic dysregulation. After the initial post-SE period, heart
rate and HRV were not affected in this mouse model, but
cardiac arrhythmias have been detected in rats with ac-
quired epilepsy (Powell et al., 2014). An increase in base-
line HR that coincided with sympathovagal imbalance has
been described in rats 2 wks after pilocarpine injection,
before the development of spontaneous seizures (Metcalf
et al., 2009a; Bealer et al., 2010). Although similar
changes were not detected in the mouse model of TLE
used here, further work is necessary to determine whether
seizure-related peripheral changes in cardiorespiratory
function accompany epileptogenesis in mice, perhaps
using isolated hearts to limit the influence of central au-
tonomic regulatory mechanisms (Powell et al., 2014). Our
results are consistent with the hypothesis that central
autonomic plasticity develops during epileptogenesis in
mice, regardless of any potential for cardiac remodeling.
Given the critical importance of the vagal complex in
regulating cardiac and respiratory reflex function, the de-
velopment of increased excitability in the NTS during
epileptogenesis could reasonably be predicted to in-
crease the propensity for SUDEP in pilocarpine-treated
mice.

The vagal complex in the caudal brainstem controls
autonomic output to thoracic and most abdominal vis-
cera. Within the vagal complex, GABAergic neurons in the
NTS receive, filter, and integrate viscerosensory informa-
tion regarding cardiorespiratory function and modulate
both vagal and sympathetic tone. Neuroplasticity in the
vagal complex occurs in a variety of diseases (Mei et al.,
2003; Zsombok and Smith, 2009; Bach et al., 2015) and
these neurons also displayed functional changes weeks
to months after SE. GABAergic NTS neurons displayed

significantly and chronically increased spontaneous ac-
tion potential firing after SE. Significant differences in the
passive membrane properties of GABAergic NTS neurons
in pilo-SE mice were not detected, but the increase in
excitability was accompanied by increased glutamate re-
lease, evidenced by significantly higher sEPSC and
mEPSC frequency versus age-matched controls. Notably,
age-related increases in NTS neuron excitability have
been documented (Johnson and Felder, 1993), so all
comparisons made here were between age-matched
groups. The increased activity was eliminated when iono-
tropic glutamate receptors were blocked, providing fur-
ther evidence that long-term changes in synaptic function
are associated with epileptogenesis in this model.

The increased glutamate release shortly after pilo-SE
was action potential dependent, suggesting an initial in-
crease in excitability of local interneurons. Action poten-
tial–independent release, however, was significantly
increased by 6 wks, suggesting the development of al-
tered presynaptic release properties or formation of new
synapses in the NTS during epileptogenesis. Most
GABAergic NTS neurons receive direct vagal input
(Glatzer et al., 2007; Bailey et al., 2008), evidenced by
eEPSCs with constant response latency (i.e., synaptic
jitter �0.2 ms) after TS stimulation. Reduced expression
of K� channels in the vagus nerve of Kv1.1-/- mice with
epilepsy has been reported (Goldman et al., 2009;
Glasscock et al., 2010, 2012), and seizure-induced K�

channel remodeling in vagal or other afferents could con-
tribute to the increase in glutamate release onto the
GABAergic NTS neurons in pilocarpine-treated mice.
However, changes in synaptic release properties of vagal
afferent terminals were not detected. In addition to syn-
aptic vagal afferent input, these neurons receive glutama-
tergic synapses originating from local NTS neurons and
from other brain areas (Nishimura and Oomura, 1987;
Zhang et al., 1999; Glatzer et al., 2007), consistent with
the hypothesis that synaptic reorganization of central neu-
rons contributes to increased glutamate release in the
NTS during epileptogenesis.

The cellular mechanisms underlying the increased glu-
tamate release and enhanced excitability of NTS GABA
neurons have yet to be elucidated, but the increase in
synaptic excitation is reminiscent of the synaptic rear-
rangement that occurs in cortical inhibitory interneurons
during epileptogenesis (Hunt et al., 2011; Zhang et al.,
2011) and is consistent with dysregulation of autonomic
control of the thoracic and abdominal viscera. Increased
synaptic excitation of GABAergic NTS neurons would be
expected to inhibit parasympathetic motor output and
suppress autonomic reflex responses in pilo-SE mice.
Because NTS neurons also project to neurons that inhibit
medullary sympathetic circuits (Card et al., 2006), in-
creased activity might also chronically disinhibit sympa-
thetic motor output. Respiratory centers receiving input
from NTS neurons with altered excitability may also be
affected (Stornetta and Guyenet, 1999).

The chronic increase in glutamate-mediated cellular
excitability after SE may also make GABAergic NTS neu-
rons more susceptible to sodium channel inactivation in
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the event of excessive depolarization, as can occur if
seizures spread to this brainstem area (Aiba and Noebels,
2015). Spreading depression and depolarization block
have been well studied in cortical neurons and implicated
in the pathophysiology of migraine and stroke (Dreier and
Reiffurth, 2015; Dreier et al., 2015). NTS neurons are
normally resistant to spreading depression (Somjen,
2001; Dreier and Reiffurth, 2015), but focal cortical sei-
zures in mice with epilepsy induced spreading depolar-
ization in the NTS under conditions of metabolic
deprivation, which was followed by cardiorespiratory col-
lapse and sudden death in genetic epilepsy models (Aiba
and Noebels, 2015). Spreading depression is typically
initiated in the lateral NTS (Aiba and Noebels, 2015), an
area of the nucleus that receives inspiratory vagal afferent
input from the lung (Donnelly et al., 1989) and is enriched
in GABAergic neurons (Blessing, 1990; Fong et al., 2005;
Glatzer et al., 2007). The elevated synaptic excitability
in GABAergic NTS neurons in mice that survived
pilocarpine-induced SE is consistent with an increased
propensity for depolarization block and action potential
inactivation in these neurons, which could increase the
likelihood that depolarization block and spreading de-
pression could evolve in the NTS (Haller et al., 2001;
Larrosa et al., 2006; Sawant-Pokam et al., 2017). Whereas
cortical seizures that spread to the NTS can evoke
spreading depolarization associated with SUDEP, other
coordinated input to the nucleus, such as that which
occurs during vagal reflex initiation, might also render the
region susceptible to spreading depolarization in mice
with TLE. GABAergic NTS neurons play a critical role as
mediators of cardiac, respiratory, and baroreceptor re-
flexes (Andresen and Kunze 1994; Kanter et al., 1995;
Wang et al., 2001a, b; Zoccal et al., 2014). Because we
did not see any cardiac-specific phenotypes in the mice
with pilocarpine-induced TLE, we hypothesize that the
increase in NTS neuron excitability leads to an increased
propensity for depolarization block and spreading de-
pression centrally, resulting in sudden death under spe-
cific conditions (Aiba and Noebels 2015). Notably, this is
not necessarily superimposed on chronic changes in car-
diac function in this model. These central mechanisms
may lead to aberrant baroreceptor or cardiorespiratory
reflexes in the pilo-SE mice, but intrinsic changes in car-
diac function may not be expressed under nominal con-
ditions.

The present results show that mice that survive SE are
susceptible to SUDEP after several weeks. Our findings
are consistent with the hypothesis that glutamate release
is persistently elevated in the NTS after SE, evidenced by
an increase in glutamatergic synaptic input to GABAergic
NTS neurons and a corresponding increase in neuronal
activity. Chronically increased activity in GABAergic NTS
neurons would be expected to impact parasympathetic
or sympathetic tone, autonomic reflexes, including car-
diorespiratory reflexes, and may underlie seizure-induced
depolarization block and spreading depression in the nu-
cleus, leading to cardiorespiratory collapse and SUDEP.
Our results also suggest multiple components contribut-
ing to the altered excitation of NTS GABA neurons, in-

cluding an initial increase in glutamate release driven by
action potentials in local neurons and a delayed, persis-
tent increase in presynaptic glutamate release from syn-
aptic terminals of central neurons. These changes likely
involve seizure-induced synaptic or channel reorganiza-
tion within the central vagal system. Although the mech-
anistic cause of SUDEP per se has been debated (Surges
and Sander, 2012; Ryvlin et al., 2013; Aiba and Noebels,
2015), it is most likely not due to a single etiology such as
cardiac changes, at least in mice with TLE. We posit that
in TLE, SUDEP may result from multiple factors (e.g.,
cardiac or respiratory failure), and the triggers for these
are superimposed on dysregulated NTS circuits. Under-
standing the cellular changes in the NTS that are associ-
ated with seizures may prompt the development of
predictive biomarkers for SUDEP in those populations
most at risk, and eventually therapies to prevent SUDEP.
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