
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Physics and 
Astronomy Physics and Astronomy 

2018 

MAGNETIC FIELD DESIGN TO REDUCE SYSTEMATIC EFFECTS IN MAGNETIC FIELD DESIGN TO REDUCE SYSTEMATIC EFFECTS IN 

NEUTRON ELECTRIC DIPOLE MOMENT MEASUREMENTS NEUTRON ELECTRIC DIPOLE MOMENT MEASUREMENTS 

James Ryan Dadisman 
University of Kentucky, ryandadisman@gmail.com 
Digital Object Identifier: https://doi.org/10.13023/ETD.2018.094 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Dadisman, James Ryan, "MAGNETIC FIELD DESIGN TO REDUCE SYSTEMATIC EFFECTS IN NEUTRON 
ELECTRIC DIPOLE MOMENT MEASUREMENTS" (2018). Theses and Dissertations--Physics and 
Astronomy. 53. 
https://uknowledge.uky.edu/physastron_etds/53 

This Doctoral Dissertation is brought to you for free and open access by the Physics and Astronomy at UKnowledge. 
It has been accepted for inclusion in Theses and Dissertations--Physics and Astronomy by an authorized 
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/physastron_etds
https://uknowledge.uky.edu/physastron_etds
https://uknowledge.uky.edu/physastron
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

James Ryan Dadisman, Student 

Dr. Brad Plaster, Major Professor 

Dr. Christopher Crawford, Director of Graduate Studies 



MAGNETIC FIELD DESIGN TO REDUCE SYSTEMATIC EFFECTS IN
NEUTRON ELECTRIC DIPOLE MOMENT MEASUREMENTS

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
James Ryan Dadisman
Lexington, Kentucky

Director: Dr. Brad Plaster, Professor of Physics
Lexington, Kentucky 2018

Copyright c© James Ryan Dadisman 2018



ABSTRACT OF DISSERTATION

MAGNETIC FIELD DESIGN TO REDUCE SYSTEMATIC EFFECTS IN
NEUTRON ELECTRIC DIPOLE MOMENT MEASUREMENTS

Charge-Conjugation (C) and Charge-Conjugation-Parity (CP) Violation is one of the
three Sakharov conditions to explain via baryogenesis the observed baryon asymme-
try of the universe (BAU). The Standard Model of particle physics (SM) contains
sources of CP violation, but cannot explain the BAU. This motivates searches for
new physics beyond the standard model (BSM) which address the Sakharov criteria,
including high-precision searches for new sources of CPV in systems for which the SM
contribution is small, but larger effects may be present in BSM theories. A promising
example is the search for the electric dipole moment of the neutron (nEDM), which
is a novel system to observe CPV due to the initial and final state being identical. A
non-zero measurement necessarily requires violation of P and T discrete symmetries;
invoking CPT invariance requires that CP is violated. There are BSM theories which
predict a magnitude for the nEDM larger than SM predictions, so that such studies
are beneficial at setting constraints on new physics. The current experimental limit
of dn < 3.0 × 10−26 e cm at 90% CL as set by the Institut Laue-Langevin (ILL) [1]
was largely limited by systematic effects related to the magnetic field. The research
presented here supported technical progress toward a new measurement of the nEDM,
with the goal of improving the result by an order of magnitude. A novel approach
to the problem of limiting systematics is proposed, studied in Monte Carlo simula-
tions, and an optimized prototype was constructed for use in a magnetic resonance
experiment.
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Chapter 1 Theoretical Reasons for Neutron Electric Dipole Moment

Searches

The first measurement of the neutron electric dipole moment (EDM) was published

by Smith, Purcell and Ramsey in 1957 [2], and was consistent with a zero EDM as

“would be expected based on the argument of time-reversal invariance”. This was

seen as a significant test of the fundamental symmetries of parity and time reversal; a

non-zero result would indicate violation of each. In the 1940’s and 1950’s, there was

considerable debate regarding whether these symmetries were universally conserved.

The consensus at the time was yes, until parity violation (PV) was observed in nuclear

beta decay of 60Co by Wu et al. in 1957 [3] based on the suggestion from Lee and

Yang [4] that PV may occur in the weak interaction. In the aftermath of this result,

it was postulated that perhaps the combined transformation of charge-conjugation

with parity (CP) is conserved. This postulate was short-lived, as CP violation was

observed in kaon decays in 1964 [5]. This led to the consensus that the combination

of charge-conjugation with parity and time reversal (CPT) must be invariant, which

is still observed to be true today.

More generally, any quantum field theory which uses a Hermitian Hamiltonian

and is invariant under Lorentz transformations must also be invariant under the

combined CPT transformation [6], [7]. The Hamiltonian must be Hermitian in order

for the energy eigenvalues, which are observable, to be real, and Lorentz invariance is

required for the laws of physics to be valid in any inertial frame. Consequently, CPT

must be a conserved symmetry of nature.

Time-reversal violation (TV) has only recently been observed by the BaBar Col-

laboration [8] in oscillations of entangled B−B pairs. BaBar was able to test CP, T,

and CPT separately, observing CPT invariance with separate CPV and TV consis-

tent with SM predictions for CPV due to the weak interaction. This would seemingly

reduce the importance of measuring the neutron EDM as a fundamental symmetry

test, but the importance remains as a probe of additional sources of CP violation.

A leading open question in physics is the origin of the Baryon Asymmetry of the

Universe (BAU): why is there so much more matter than anti-matter? The presence

of C and CP violation is one of the three conditions proposed by Sakharov to explain

how the currently observed asymmetry between matter and anti-matter could have

developed through baryogenesis; additionally the process must change baryon number

and must be out of thermal equilibrium [9]. The known CP violation in the standard
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model gives a prediction for BAU, defined as the difference between baryons and anti-

baryons over the number of observed photons η = (nB − nB̄)/nγ, as η ≈ O(10−18)

[10], 8 orders of magnitude smaller than the result derived from the cosmic microwave

background η ≈ 6× 10−10 [11].

It seems there must be some additional sources of CP violation beyond the stan-

dard model (BSM). The discovery of the Higgs boson mass of 125 GeV, made by the

CMS collaboration at the Large Hadron Collider [12], constrains electroweak baryo-

genesis models such that BSM physics are necessary to describe the BAU [13]. This

motivates a search for sources of BSM physics which violate CP, which could possibly

satisfy the Sakharov criteria. The standard model prediction for the neutron EDM

is so small, O(10−32 e cm−1) [14], that the search for a non-zero value is a promising

method to probe new physics. Existing BSM theories predict the neutron EDM to be

between the current result dn ≤ 3.0× 10−26e cm at 90% CL and the SM prediction.

1.1 Fundamental Symmetries

A continuous symmetry can be parametrized with a continuous parameter in the

generator of the symmetry; by the Noether theorem this leads to some conserved

“charge”. For example, the generator of rotations about the z-axis is represented

by the unitary operator U = exp(−iφL̂z) for which the conserved charge is angular

momentum Lz. Symmetries and conserved charges represent a rich theoretical topic,

but discrete symmetries, which cannot be parametrized with a continuous parameter,

play a more central role in the theoretical underpinnings of the neutron electric dipole

moment.

There are three types of discrete symmetries: Parity, Charge-conjugation, and

Time-reversal. They are distinct from continuous symmetries in that a continuous

parameter cannot generate the transformations. Starting with parity, which is the

easiest of these to understand: all spatial coordinates are changed by a sign flip: ~r →
−~r;x → −x, y → −y, z → −z. This is equivalent to changing from a right-handed

Cartesian system to a left-handed Cartesian system for three spatial dimensions,

which is perfectly suitable language for visualizing why it is discrete: it is impossible

to make a right hand look like a left hand by rotation only! Parity is often incorrectly

described as “mirror” symmetry. In a 1-dimensional case, this is correct; however, a

mirror does not flip all coordinates, so that the analogy is inaccurate. Vectors change

sign under parity, e.g., position ~r and velocity ~v; pseudo-vectors do not, e.g., angular

momentum ~L.
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P~r = −~r (1.1)

P~v = −~v (1.2)

P ~L = P (~r ×m~v) = (−~r ×−m~v) = ~r ×m~v = ~L (1.3)

Charge-conjugation is the transformation of particles to anti-particles, and vice-

versa. It is trivial to see that this cannot be achieved by any type of continuous

transformation, as particles are inherently discrete. Charge-conjugation, like parity,

is in most cases simple to change or observe in an experiment with charged particles.

Production of particles and anti-particles are typically similar, e.g., through decay of

more massive particles or via pair production at an energy resonance in a particle

collider. This statement refers more to unstable particles which decay, e.g. - pions.

Abundant particles which are stable, e.g., electrons, can be easily extracted from

materials, as opposed to their anti-particles which are not readily available due to

the BAU. For production processes which produce mixtures of charged particles and

anti-particles, it is straightforward to separate them using electric or magnetic fields.

Time reversal symmetry is conceptually simple, but difficult to realize in an ex-

periment. As the name implies, TR is reversing the direction of time t → −t, or

equivalently switching initial and final states. In physics we typically look at colli-

sions or decays in which the initial state may be a collinear beam of particles and

the final state may be a set of identical particles anisotropic in space and time with

momenta directed radially outward from the site of decay or collision. To attempt a

TR experiment would require precise control of the energy, momenta, and timing at

the individual particle level, which is extremely infeasible for most experiments.

PV and CPV have been extensively studied experimentally, excellent summaries

of which can be found in review articles from the Particle Data Group (PDG) [15].

I would like to focus on TR, as it has historically been a significant motivation for

measuring the neutron EDM. I will start with a discussion of CP and T violation in

the standard model as related to the neutron EDM. This will lead into a thorough dis-

cussion of the Rabi and Ramsey methods as applied to a neutron EDM measurement

and the significance of magnetic field design. Chapters 3 and 4 discuss the original

work performed in magnetic field design and simulations, as applied to a prototype

apparatus utilized in Rabi and Ramsey measurements using the ultracold neutron

source at the Los Alamos Neutron Science Center (LANSCE) 5. The final chapter

is a discussion of the first observation of TR violation in a system, measured by the
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BaBar collaboration using entangled B-mesons, and a proposed method of analysis

to which I contributed that may be used to elucidate small SM or new physics effects

via construction of pseudo-‘T’ asymmetries.

Baryon Number Violation

The additional Sakharov criteria necessary to give rise to a non-zero BAU as a re-

sult of baryogenesis are that processes which change baryon number exist, and that

the processes which violate CP and change baryon number occur out of thermal

equilibrium. Establishing baryon number as B = ±1 for baryons and anti-baryons,

respectively, summing over the entire universe would quantify the BAU. In introduc-

ing the Sakharov conditions, the discussion focused on CP violation as though baryon

number violation is secondary to CPV; quite the opposite is true. Charge-conjugation

effectively changes the baryon number sign for the particles in an interaction. For a

process which does not change the baryon number from initial to final states, CPV

will not contribute to the BAU because the number of baryons is unchanged. There-

fore, processes must exist which violate baryon number so that the net baryon number

of the universe can possibly change.

A baryon number violating process in itself is necessary but insufficient. For a

general process which results in ∆B = +1, there is a charge-conjugated process which

results in ∆B = −1. If the two processes occur equally, then the net baryon number

of the universe remains unchanged. This is why C and CP violation are required: in

order for an asymmetry to form, processes which produce an abundance of baryons

must be favored relative to the processes which produce an abundance of anti-baryons.

The requirement that the baryon number violating processes occur outside of

thermal equilibrium may be demonstrated by considering a set of arbitrary reactants

and products: A + B ↔ C + D. In thermal equilibrium, the number of each is

conserved, i.e., the system is invariant under T transformations. This implies that,

in thermal equilibrium, the net number of baryons and anti-baryons is unchanged in

time and thus an asymmetry cannot form.

1.2 Standard Model Contributions to the Neutron EDM

The simplest method of interpreting the effects of PV and TV in the neutron EDM

is based on an examination of the Hamiltonian:

Hn = −~µn · ~B − ~dn · ~E (1.4)
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The only intrinsic “vector” along which the magnetic and electric moments must

align is the spin: ~µn = µn ~J/J ; and ~dn = dn ~J/J . The sign of the electric dipole mo-

ment is embedded in the scalar dn as shown, and is to be determined experimentally.

This means ~dn behaves like ~J , a pseudo-vector, under discrete symmetries. The mag-

netic field is also a pseudo-vector, whereas the electric field is a vector. The electric

dipole term in the Hamiltonian is thus a pseudo-scalar which changes sign separately

under P and T , whereas the magnetic moment term is a scalar that is unchanged

under each. A non-zero value for the electric dipole moment will violate P and T

symmetry; by invoking CPT invariance, CP is also violated.

There are two sources in the Standard Model (SM) which allow for CP and T

violation: the complex phase present in the Cabibbo-Kobayashi-Masukawa (CKM)

matrix due to the weak force; and the so-called θ-term in the strong force. The

relative strength of the θ-term is an outstanding problem in physics: it is observed

to be |θ| < 7.4 × 10−11, the current limit actually set by the neutron electric dipole

moment [16], though as a phase it is expected to take any value from 0 to 2π.

CPV in the weak interaction is well understood and has been experimentally

observed in systems with kaons and B-mesons. The flavor and mass eigenstates of

quarks differ, which results in a mixing between u-type and d-type quarks when

coupled to a W± boson. The relative weighting of the quark mixing is given by the

CKM matrix. A look at equation 1.5 and sum of the squares of any row or column

demonstrates that the CKM matrix is unitary to current precision [15].

|V |CKM =

0.97417(21) 0.2248(6) 0.00409(39)

0.220(5) 0.995(16) 0.0405(15)

0.0082(6) 0.0400(27) 1.009(31)

 (1.5)

|Vi1|2 + |Vi2|2 + |Vi3|2 = |V1j|2 + |V2j|2 + |V3j|2 = 1 (1.6)

When calculating the interaction amplitude of a Feynman diagram, a vertex which

includes a u, d-type quark conversion carries an additional factor of Vij, corresponding

to u-type quark i and d-type quark j. The source of CP violation is the phase δ which

arises from a parametrization of the matrix elements with 3 mixing angles θ12, θ13,,

θ23, and phase δ [17].

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.7)
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Thus far, CP violation has not been discovered in any flavor-conserving interac-

tions [17]. The presence of a neutron EDM clearly does not change the quark flavor

as the initial and final state is that of a neutron, so that the discovery of a non-zero

result would be historic.

The CPV phase δ must not cancel out from Feynman diagrams in order for a

particular diagram to violate CP and T. This is not possible for a neutron coupling

to an external photon until the Feynman diagram has at least 3-loops [18]. The tree

n nΣ

π π

γ

1 2

(a) Effective Feynman diagram

d d

u u

d s

d

d

c , t c , t

W

(b) Vertex 1 diagram

Figure 1.1: Feynman diagram of the leading order contribution to the neutron EDM
considered by [14]. The CP-odd vertex shown contains the CPV phase from the CKM
matrix. The second vertex is a CP-even, non-leptonic effective weak interaction.

level process is a purely QED interaction, i.e., emission or absorption of a photon with

no weak interaction, which does not violate C, P, or T and therefore will not contribute

to an EDM. The 1-loop diagram would involve a W± loop; however there are only

two vertices with CKM factors, such that the V2 = V ∗1 so that the CP-violating phase

will cancel. Shabalin showed that, though the phase survives in individual Feynman

2-loop level diagrams, the contributions from diagrams with different quarks causes

the EDM to vanish at the 2-loop level [18]. Several methods have been used to

determine the neutron EDM with leading order 3-loop diagrams. A calculation made

by Khriplovich and Zhitnisky, shown in figure 1.1, couples an external photon to an

intermediate π+, where one vertex is a CP-even nπ+Σ− effective weak interaction

and the other is CP-odd as a result of quark mixing. Note in figure 1.1b that the d

quark is mixing to c or t; the CKM matrix element Vud does not contain the phase δ

so that it would not result in CPV. The resulting dipole moment of dn = 2× 10−32 e

cm [14] is one of the larger SM predictions. Considerably more 3-loop diagrams can

be drawn using the CKM mechanism at the purely quark level; in order to violate

CP, they must include quark mixing which results in different combinations of CKM

6



matrix elements which do not cancel the phase δ. Purely quark level calculations

result in lower SM predictions for the neutron EDM dn ≈ 10−34 e cm [19].

Copyright c© James Ryan Dadisman, 2018.
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Chapter 2 Measuring the Neutron EDM via the Ramsey Method of

Separated Oscillatory Fields

The most recent upper limit for a neutron EDM of 3.0 × 10−26 e cm at 90% CL

was determined by a room-temperature experiment conducted at the Institut Laue-

Langevin [1] using ultracold neutrons (UCN) with kinetic energy O(100 neV). There

are several new experiments proposed to further improve this limit, notably a proposal

by Golub and Lamoreaux [20] to be performed at the Spallation Neutron Source (SNS)

at Oak Ridge National Laboratory. There are many technical hurdles pertinent for

this experiment, largely related to cryogenics and in-situ UCN production. As a

stepping stone to this experiment, and following an upgrade to the UCN source

at LANL, work has been made toward a room-temperature experiment targeting a

result between the ILL limit and that proposed by the SNS experiment. Much of my

research is in support of this proposed experiment for LANL.

In the presence of a constant magnetic field, it is well understood that a neu-

tron’s spin will precess at the Larmor precession frequency as determined from the

Hamiltonian 1.4.

νL = −γnB
2π

(2.1)

A modification to this is required if the neutron also has an electric dipole moment.

The EDM vector should be parallel or anti-parallel to the spin vector, analogous to

the magnetic moment µn which is embedded in the gyromagnetic ratio γn present

in equation 2.1. The full precession frequency becomes, with the sign of the EDM

relative to the neutron spin absorbed into the variable dn:

νn = −2 [µnB + dnE] /h (2.2)

here h is Planck’s constant. The shift associated with the electric dipole moment is

very small: using the upper end of the standard model prediction dn ∼ 10−32 e cm

[14] with an electric field of 10 kV/cm would result in a frequency shift ∼50 fHz. The

Larmor frequency due to the magnetic field, required to maintain polarization during

the experiment, is ∼30 Hz, so that this fractional shift in frequency is ∼ 10−15. Direct

measurement of a very small frequency shift is difficult, so sophisticated methods

which allow a long time for phase to accumulate is preferred. The Ramsey method
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of separated oscillatory fields is one of the premier methods, and the foundation for

the LANL nEDM experiment.

2.1 Ramsey Method of Separated Oscillatory Fields

A problem arises in trying to directly measure accumulated phase in the plane trans-

verse to the electric and magnetic fields: a count of spin-up and/or spin-down states

is measured, and this is not trivially related to a small shift in frequency. Fortunately,

such information can be accessed by applying an oscillating field transverse to the

initial polarization. This is known as the Rabi method, and relies on the probability

of the spin flipping in the presence of an oscillating field having a resonance when the

oscillation frequency is near the Larmor frequency. A key modification to this Rabi

method was proposed by Ramsey to increase the sensitivity of such measurements

[21].

Derivation of the Rabi Resonance Method

Consider the Schrödinger equation for a general spinor in the Sz basis under the

application of a time-oscillating transverse field.

|Ψ〉 =

(
ψ+(t)

ψ−(t)

)
(2.3)

ih̄

(
ψ̇+(t)

ψ̇−(t)

)
= − h̄γg

2

(
B0 B1e

−iωt

B1e
iωt −B0

)(
ψ+(t)

ψ−(t)

)
(2.4)

where γg is the gyromagnetic ratio of the particle and ω is the angular frequency of

the applied oscillating field B1. It is of particular interest to determine the probability

of an initially spin-up polarization flipping to the opposite state after the oscillating

field has been turned on for some time. For simplicity the transverse B1 field is

considered “circular”, i.e.- composed of perpendicular components in the transverse

plane with the same magnitude but out of phase by 90◦. It is convenient to separate

the time dependence in the state which is the result of the unperturbed Hamiltonian,

H0, and the time dependence due to the time-dependent perturbation, HI .
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H = H0 +HI ; H0 = − h̄γB0

2
σz; HI = − h̄γB1

2

(
0 e−iωt

eiωt 0

)
(2.5)

E± = ∓ h̄
2
γB0 = ∓h̄ω0

2
(2.6)

|ψ+〉 =

(
1

0

)
; |ψ−〉 =

(
0

1

)
(2.7)

Ψ(t) = u(t)e−iE+t/h̄ψ+ + d(t)e−iE−t/h̄ψ− (2.8)

The probability that the spin is found in the up or down state at a later time is

dependent purely on the solutions to the scalar functions u(t) and d(t), respectively.

Assuming an initially polarized sample, this reduces to an initial value problem with

conditions u(t = 0) = 1 and d(t = 0) = 0. A simplification which arises by the use of

pertubation theory is that the interaction terms in the Hamiltonian have now been

separated from the non-interaction, constant field terms. The exact solution is given

by the coupled differential equations:

u̇ =
iγB1

2
ei(ω−ω0)td (2.9)

ḋ =
iγB1

2
e−i(ω−ω0)tu (2.10)

Here ω0 = (E+ − E−)/h̄ = γnB0. Taking the derivative of 2.9 and substituting ḋ

from equation 2.10 yields a 2nd order homogeneous differential equation with constant

coefficients.

ü− i(ω − ω0)u̇+
γ2B2

1

4
u = 0 (2.11)

with general solution

u(t) = ei
ω−ω0

2
t
[
C1e

iΩt + C2e
−iΩt] (2.12)

Ω =

√
(ω − ω0)2 + γ2B2

1

2
(2.13)

d(t) can be determined from the derivative of the general solution to u(t) using

equation 2.9. Assuming an initial “up” polarization, the coefficients C1, C2 are solved
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using initial values u(t = 0) = 1, d(t = 0) = 0. The probability of a spin flip after

time t is given by |d(t)|2.

d(t) =
iγB1√

(ω − ω0)2 + γ2B2
1

sin

(√
(ω − ω0)2 + γ2B2

1

2
t

)
(2.14)

P+→−(t) = |〈ψ−|Ψ(t)〉|2 = |d(t)|2

=
γ2B2

1

(ω − ω0)2 + γ2B2
1

sin2

(√
(ω − ω0)2 + γ2B2

1

2
t

)
(2.15)

This is the famous Rabi formula, with Rabi frequency Ω =
√

(ω − ω0)2 + γ2B2
1/2.

Of particular interest is the (ω − ω0)2 term in the denominator, which produces a

resonance peak at the precession frequency ω0. This method was first proposed by

Rabi to improve measurements of atomic energy transitions. A simple yet elegant

modification was proposed by Ramsey [21]: break a Rabi spin flip into two π/2 pulses,

separated by a period of time with a constant holding field.

Figure 2.1: Diagram showing the Ramsey method of separated oscillatory fields. [22]
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Figure 2.1 shows a general overview of the Ramsey method. Neutrons start po-

larized along a constant magnetic field B0. A reference clock, represented by the

oscillating wave on the right side of the figure, maintains the frequency at which the

neutron spin is probed, and maintains a coherent phase throughout the process. A

transverse magnetic field, B1, is turned on and driven by the reference clock to apply

two separate π/2 pulses; the first tips the spin into the plane transverse to the hold-

ing field B0. If the frequency is on resonance, the second π/2 pulse will complete a

spin-flip relative to the initial polarization. The B1 field is turned off between these

two pulses, so that the spins freely precess in the plane transverse to the B0 field

for time T . If the spin-flip pulses are executed consecutively so that T = 0 s, then

this reduces to the Rabi method for a π spin-flip. Splitting the spin-flip into two

π/2 pulses separated in time introduces oscillations of the spin-flip probability which

enables a more precise determination of the resonant frequency.

Derivation of the Ramsey Resonance Method

Using the formalism of the Rabi derivation as a starting point, a unitary transforma-

tion can be constructed to determine the final state, given some initial wavefunction

Ψ. There are three distinct stages of the Ramsey method: 1. The initial π/2 spin

flip for time τ ; 2. The free precession in ideally constant magnetic field for time

T ; 3. The final π/2 spin flip, ideally for the same time τ used for the initial spin

flip. A single unitary operator can describe this entire process, constructed by taking

the product of separate unitary operators acting on the wavefunction in each stage:

U = Uπ
2
U0 Uπ

2
. The central operator used during free precession is found using the

energy eigenvalues.

U0 =

(
e
ω0
2
t 0

0 e−
ω0
2
t

)
(2.16)

A simplification was implicitly made in the Rabi derivation which must now be

corrected. No consideration was given as to the phase of the transverse field which

induces the spin flips. In the case of an initially spin-up neutron, a phase will cancel

out of the observable probability of a spin-flip. With two separate spin rotations,

there can now be interference between the phases, such that a cancellation will not

necessarily occur. This can be accounted for by modifying the interaction terms in

the Hamiltonian.
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HI = − h̄
2
γnB1

(
0 e−i(ωt+φ)

ei(ωt+φ) 0

)
(2.17)

As with the Rabi method, the result is a pair of coupled differential equations,

with an additional phase.

u̇ =
iγnB1

2
ei(ω−ω0)t+iφd (2.18)

ḋ =
iγnB1

2
e−i(ω−ω0)t−iφu (2.19)

For a single application of the transverse, oscillating field starting in a polarized

state with u(t = 0) = 1 and d(t = 0) = 0, this phase will cancel out in the observable

probability of a spin flip after time t, |d(t)|2. The phase cannot be ignored, however,

if multiple applications of the spin-flipping field will occur because the initial state

for all applications subsequent to the first are dependent on u(t) and d(t), which

still include the accumulated phase. Additionally, the final state will include a phase

contribution from the unperturbed Hamiltonian as shown in the general solution for

the time evolution, equation 2.2. Rather than attempting to solve for final states

|Ψf〉 given arbitrary initial states |Ψi〉 =

(
ψ+,i

ψ−,i

)
with complex values for ψ+,i and

ψ−,i, it is favorable to build a unitary operator Uπ
2

which can perform the general

transformation from initial to final states during the spin-flip |Ψf〉 = Uπ
2
|Ψi〉.

|Ψf〉 = Uπ
2
(τ) |Ψi〉 (2.20)(

ψ+,f

ψ−,f

)
=

(
U11 U12

U21 U22

)(
ψ+,i

ψ−,i

)
(2.21)

Equation 2.21 demonstrates a straightforward method of constructing the unitary

transform matrix. The solution to the coupled ODEs 2.18 for an initially polarized

spin-up state |Ψ+〉 =

(
1

0

)
will yield the matrix elements U11, U21; the other two

matrix elements are found by solving for initial state |Ψ−〉.
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(
U11

U21

)
=

(
U11 U12

U21 U22

)(
1

0

)
(2.22)

(
U12

U22

)
=

(
U11 U12

U21 U22

)(
0

1

)
(2.23)

The unitary operator for the spin-flip stages is given by

Uπ
2

=

[cos Ωτ − iω−ω0

2Ω
sin Ωτ

]
ei
ω
2
τ iγnB1

2Ω
sin Ωτei

ω
2
τ+iφ

−iγnB1

2Ω
sin Ωτe−i

ω
2
τ−iφ [

cos Ωτ + iω−ω0

2Ω
sin Ωτ

]
ei
ω
2
τ

 (2.24)

The final spinor state for the Ramsey method is built up by multiplying the

matrices for the unitary transformations using time ordering Uπ
2
,2 U0 Uπ

2
,1, where the

subscripts differentiate between the first (1) and second (2) spin-flips which will have

a different phase φ1,2. Ensuring the spin-flip pulses are coherent must be controlled

by correctly setting the phase, φ, at each of the spin-flip stages. For simplicity, it

can be assumed that φ1 = 0. The phase for the second pulse is chosen based on the

coherence of the transverse field pulses: φ2 is the phase which is accumulated by the

reference “clock” which applies the spin-flip pulses at frequency ω. After an initial

spin-flip applied for time τ and a free precession period T , the initial phase for the

second pulse which is coherent with the first pulse is φ2 = φ1 +ω(τ + T ) = ω(τ + T ).

The net unitary operator can be described, using the applied time t and for initial

RF phase φ:

UR(φ1, t1;T ;φ2, t2) = Uπ
2
(φ2, t2)U0(T )Uπ

2
(φ1, t1) (2.25)

To determine the probability of a spin flip from an initially polarized state requires

calculation of |ψ−,f |2 using the formalism of equation 2.25 and describing the stages

by the effective fields in each as: 1. ~B = B0ẑ + B1 (cos(ωt)x̂+ sin(ωt)ŷ) for time τ ;

2. ~B = B0ẑ for time T ; 3. ~B = B0ẑ +B1 (cos(ωt)x̂+ sin(ωt)ŷ) for time τ .(
ψ+,f

ψ−,f

)
= UR(0, τ ;T ;ωτ + ωT, τ)

(
1

0

)
(2.26)

ψ−,f =− iγB1

2Ω
sin(Ωτ)e−i

ω
2
τ−iφ

2 (2.27)

×
[
2 cos(Ωτ) cos(

ω0 − ω
2

T )− 2
ω0 − ω

2Ω
sin(Ωτ) sin(

ω0 − ω
2

T )

]
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The probability of an initially spin-up neutron to be found in the spin-down state

after a Ramsey cycle is thus:

P+→− = |ψ−,f |2 = (2.28)

4

(
γB1

2Ω

)2

sin2(Ωτ)

[
cos (Ωτ) cos

(
ω0 − ω

2
T

)
− ω0 − ω

2Ω
sin(Ωτ) sin

(
ω0 − ω

2
T

)]2

It is prudent to check that in the limit T → 0, this returns to the Rabi equation

2.15. The second term in brackets goes to zero, and the first reduces to cos2(Ωτ).

Combined with the 4 sin2(Ωτ) outside the bracket, this becomes an overall factor of

sin2(2Ωτ), and equation 2.28 reduces to the Rabi formula for a spin-flip time of 2τ .

The Ramsey sequence contains two separate π/2 spin flips, each for time τ , which

is equivalent to a single Rabi π flip for time 2τ , therefore the two agree in the limit

T → 0.

There is an overall factor proportional to a single Rabi spin-flip which forms an

outer envelope containing higher order oscillations. A conceptual argument can be

made that the limit of precision in measuring the resonant frequency is related to the

width of the central fringe for each method. It will be shown that the width of central

fringes in the Ramsey method is inversely proportional to the free precession time

T , such that the width for the Ramsey method can be made orders of magnitude

smaller than the width of the Rabi envelope. This is demonstrated in simulation

results shown in figure 2.2, for which the simulation method will be discussed in

chapter 3, where increasing the free precession time increases the density of fringes

within the Rabi envelope.

Simulated results demonstrate the value of separating the π
2

pulses. Both have

oscillations inside the Rabi envelope, which has a width ≈ 4 Hz. For T = 1.8 s

the central peak width decreases by an order of magnitude; typical free precession

times for EDM measurements are 100 s - 200 s. The fringes become so close that

countermeasures to prevent magnetic field drifts over time must be implemented,

and the field must be accurately monitored to make systematic corrections when

field deviations are detected.

Extracting Resonant Frequency using Ramsey Interferometry

It was stated without proof that the width of the central fringes are related to the

limit of precision in measuring the resonant frequency. Measurements are made in
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Figure 2.2: Simulated Ramsey fringes for 10mG field with free precession times of T
= 1.8 s and T = 18 s.

experiment by counting the neutrons in each spin state for a series of frequencies near

half the central fringe, which corresponds to approximately equal probability of spin-

up and spin-down. This is the region in which the theoretical probability of spin flip,

equation 2.28, is steepest, i.e.-
∣∣dP
dω

∣∣ is maximal. This is where very small frequency

shifts, for example those associated with the electric dipole coupling to the electric

field, will result in the greatest shift in the measurable polarization. The narrow

fringes in the Ramsey method enable a larger
∣∣dP
dω

∣∣, which is desired, relative to the

Rabi method. However, other factors play a significant role in this. For example,

if a measurement of the Ramsey method is made with free precession time T long

enough that a significant amount of the neutrons depolarize, then it is possible for

the Ramsey method to be less effective than the Rabi method. This is because the

real magnetic field will not be perfectly uniform as used in the derivation, and the

Rabi method requires orders of magnitude less time in the field.

A proper analysis of the precision of the measured frequency should begin with

the determination of the resonant frequency. As previously stated, measurements are

made at approximately ω0 ± δω
2

, corresponding to half the central fringe width. The

width δω is equivalent to the frequency shift between the resonant frequency, where

the probability of spin-flip is one, and the nearest frequency at which the probability

of a spin flip is zero. P+→−(ω = ω0 ± δω) = 0 can be determined by equation 2.28

for the region near the central fringe as
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cos (Ωτ) cos

(
ω0 − ω

2
T

)
=
ω0 − ω

2Ω
sin(Ωτ) sin

(
ω0 − ω

2
T

)
(2.29)

→ ∆ω

2Ω
tan

(
∆ω

2
T

)
= cot (Ωτ) (2.30)

An important note on notation: δω corresponds to the value of ∆ω = ω − ω0

which is equal to the central fringe width at half height. The following equations

will use δω, as it is the special value for ∆ω near which measurements will be taken.

A full analytical solution for δω for all values of t and T is not available due to

discontinuities (poles of ±∞) in the equation. It is a useful first step to write the

factor of γB1 inside Ω in terms of the spin flip time τ . For the circular oscillating

field used in the derivation, the spin-flip tuning can be determined by considering the

Rabi spin-flip probability on resonance from equation 2.15, with ω = ω0:

P+→−(t) = sin2

(
γB1

2
t

)
(2.31)

For a π flip, this probability is 1, which is achieved for γB1t = π. The Ramsey

method splits this into two equal π/2 pulses, so that the circular field amplitude B1

tuning for a π/2 flip time τ is given by

2γB1τ = π (2.32)

This tuning can then be used to simplify Ωτ :

Ωτ =
τ

2

√
δω2 + γ2B2

1 =
1

2

√
τ 2δω2 +

π2

4
≈ π

4
(2.33)

Here the approximation assumes τ 2δω2 << π2

4
, which is supported by simulation

results shown in figure 2.2. This allows extensive simplification, as cot (Ωτ) ≈ 1 and

2Ω ≈ π
2τ

.

δω =
π

2τ
cot

(
δω

2
T

)
(2.34)

δω is expected to be very small, which allows an expansion of the right hand side

for cot
(
δω
2
T
)

in the region δω
2
T ≈ π

2
.

cot

(
δω

2
T

)
≈ π

2
− δω

2
T +O

((
π

2
− δω

2
T

)2
)

(2.35)
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The resulting approximation to the full width at half maximum, which has been

found for T > 100s to agree with the numerically calculated results to within parts-

per-million [23], is given in equation 2.36.

δω =
π

T + 4t/π
(2.36)

The derivative
∣∣∣dP+→−

dω

∣∣∣ is maximized at ∆ω = δω/2, which sets the target fre-

quencies used in the experiment. Rather than fitting the full Ramsey equation, the

limit near the central fringe is used, such that ∆ω << γB1 and Ω ≈ γB1/2. Also

making use of the relation γB1τ = π
2
, the probability of a spin flip 2.28 reduces to

P+→− ≈ 4 sin2

(
γB1

2
τ

)
cos2

(
γB1

2
τ

)
cos2

(
∆ω

2
T

)
= cos2 (π∆ν T ) (2.37)

Assuming perfect experimental setup with no losses of neutrons, no loss of po-

larization, and 100% detection efficiency, the count of neutrons spin-down would be

N− = N0 cos2 (π∆ν T ), where N0 is the total count of initially spin-up neutrons.

Some modifications must be made to this model to account for experimental effects.

Depolarization and the analyzer’s efficiency at differentiating spin-states can be ac-

counted for by introducing Nmax, Nmin, N̄ , and α.

Nmax = ε+N0 (2.38)

Nmin = ε−N0 (2.39)

N̄ =
Nmax +Nmin

2
=
N0

2
(2.40)

α =
ε+ − ε−
ε+ + ε−

= ε+ − ε− (2.41)

Nmax, Nmin correspond to the maximum and minimum counts for the frequency

on resonance; N̄ is the average of the two; and ε± refers to the probability that an

initially spin-up neutron is counted as either spin-up or spin-down. Note that the

cause of mis-counting an initially spin-up neutron as a spin-down (and vice versa) is

a combination of the efficiency of the analyzer and the depolarization of the neutrons.

Here it is assumed there are no losses, so that Nmax + Nmin = N0 and ε+ + ε− = 1.

The count of spin-down neutrons then takes the form
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N− = ε+N0 cos2 (π∆ν T ) + ε−N0 sin2 (π∆ν T ) = N0ε− +N0α(ε+ + ε−) cos2 (π∆ν T )

= N̄ [1 + α cos (2π∆ν T )] (2.42)

N+ +N− = 1 (2.43)

N± = N̄ [1∓ α cos (2π (∆ν + νd)T )] (2.44)

Equation 2.44 is the final form that will be fitted, in which an additional fit

parameter νd has been added to the equation. This term encapsulates any systematic

frequency shifts from the Larmor frequency, including the desired shift resulting from

a non-zero electric dipole moment. It is important to note this explicit separation of

the systematic effects from ω0, which is now only the Larmor frequency due to the

applied magnetic field |γB0|. The reason for this is that the average magnetic field

in the precession chamber will change over time, due to fluctuations in the external

background field and potential drifts in the current source for the B0 magnetic field

coil. It takes many runs to accumulate the required statistics, and there must be some

way to account for systematic shifts in the frequency when combining these runs. For

this reason, co-magnetometers are used to determine the expected Larmor precession

due to the magnetic field coupling alone, so that ∆ν is a number known at analysis

and only the unaccounted for shift is a fit parameter. Assuming all systematic effects

are accounted for, and the only shift from the Larmor frequency is due to the electric

dipole moment, the EDM dn can be calculated from the difference in the fit parameter

νd extracted from measurements with electric field at ± E. Alternatively, the phase

shift can be measured at multiple different values of the electric field, then a linear

fit can extract dn.

dn =
h∆νd

4E
(2.45)

Experimental Sensitivity

Determining the precision with which dn can be measured requires an analysis of

the error in the frequency shift νd and the electric field. Assuming the electric field

is well understood, its error may be assigned as σE. The error in νd will have two
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contributions: the error in the fit σν,f , extracted from the covariance matrix; and

the error in frequency assuming the fit were perfect σν,p, resulting from measured

uncertainties in the input parameters. The final error is found by adding these two

in quadrature: σ2
ν = σ2

ν,f + σ2
ν,p.

Any standard non-linear solver will output a covariance matrix, Cji; for the pa-

rameter νd corresponding to the kth parameter, the fit error in σνd is taken as
√
Ckk.

The error in νd due to the fit, σν,f , follows straightforwardly from error propagation.

σν,f =
√
Ckk (2.46)

The data used to determine νd is taken from a count of spin-up (down) neutrons

given by expression 2.44 at different frequencies near ∆ν = ± δν
2

. σν,p can be backed

out of a calculation for the error propagation for N±, if it is taken as a function of

parameters α, T , N̄ and ν.

σ2
N =

(
∂N

∂ν

)2

σ2
ν,p +

(
∂N

∂T

)2

σ2
T +

(
∂N

∂α

)2

σ2
α +

(
∂N

∂N̄

)2

σ2
N̄ (2.47)

Using Poisson statistics to determine the error in the counts, σN =
√
N , assuming

the σν,p term dominates, and recalling that the frequency is measured at half the

central fringe width such that 2π∆νT = δω
2
T ≈ π

2
:

N = (2παTN̄σν,p)
2 (2.48)

σν,p =
1

2παT
√
N̄

(2.49)

The strength of the Ramsey method comes from the factor of 1
T

in the denom-

inator. Larger free precession times enable greater precision in the measurement of

νd, however neutron decay limits the maximum useful T ∼ O(100s). The average

neutron lifetime in bottle experiments, which is a very suitable value for an EDM

experiment using UCNs in a bottle, is 878s based on a recent result from the UC-

NTau collaboration [24]. Using the relationship between the lifetime τn and half-life

t1/2 = τn ln 2, this means that half of the initial neutrons are lost within 608s. This

excludes neutron losses due to collisions with the wall, which has been measured as

≈ 10−4 per wall collision for nickel-phosphorus (NiP) surfaces [25], commonly used for

UCN experiments due to its effective Fermi potential ∼ 213 neV [25] being suitable

for trapping UCNs. For a thorough discussion, see [26]. For T ∼ 100s, UCNs will
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collide with the walls ∼ 103 times such that approximately 10% of the neutrons which

haven’t decayed will also be lost. Balancing these loss mechanisms to maximize the

statistics N and the visibility of the fringe α sets the discussed limits on T .

Propagating the error in frequency to the electric dipole moment equation 2.45

σ2
d =

h2

16

[
σ2
ν

E2
+
ν2
d

E4
σ2
E

]
(2.50)

In experiments, E is as large as possible, so that the term proportional to E−4 is

much less than the first term. Also assuming the fit error is much less than the error in

the experiment parameters yields the common expression for the error in the Ramsey

method, σd = h
4παTE

√
N

. This indicates that a large electric field is favorable, which is

expected based on the desired frequency shift being proportional to the applied field.

2.2 Ultracold Neutrons

As demonstrated in the previous section, a long free precession time is necessary for

a very sensitive measurement of the frequency. This is one reason why incredibly

low energy neutrons, “ultracold neutrons” (UCNs), are beneficial. The energies are

so low, O(100 neV), that the Fermi potential of many materials is sufficiently high

that the neutrons are totally internally reflected at all incident angles: UCNs can

be bottled and stored for 100’s of seconds. In comparison, consider an example of a

beam of UCNs with velocity ≈ 10 m/s: this would require an experimental apparatus

∼ 1 km long to allow the beam to travel for the equivalent free precession time. This

reductio ad absurdum argument demonstrates why bottling UCNs is so effective: the

time available for phase to accumulate from a potential UCN is several orders of

magnitude larger than for beams. Additionally, systematic effects caused by field

gradients, as discussed in 2.3, are reduced due to the lower velocities of UCNs.

The downside of using UCNs is the substantial drop in statistics. Neutrons are

produced by removing them from heavy nuclei, which is highly dependent on the

process but typically produces neutrons with energies on the order of the nuclear

binding energies ∼MeV. Moderation and downscattering is required to decrease the

energy, but neutrons are lost in the process. Upgrades to the LANL UCN source has

increased UCN production by an order of magnitude in the last decade [27], as shown

in figure 2.3.
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Figure 2.3: UCN production density at the ultracold neutron source at LANSCE as
measured using the same apparatus as a function of year [27].

UCN Properties

Most generally, UCNs could be described as neutrons with energies low enough that

they can be stored inside material containers. This corresponds to energies≤ 300 neV,

the approximate maximum Fermi potentials of most materials. The corresponding

wavelengths of UCNs is greater than 50 nm; as a result, interactions with the atoms

which makeup materials can be approximated by an effective constant, complex po-

tential, VF = V + iW , called the Fermi potential. For a thorough review of UCN

interactions with materials, see [26].

Translating this kinetic energy into a velocity via 1
2
mnv

2 = 300 neV, using the

neutron mass of ∼ 939 MeV/c2 corresponds to a maximum velocity ∼ 7.6 m/s.

Interestingly, UCNs can be contained in an open-top bottle: the potential energy

due to gravity PE = mgh ∼ 102 neV/m, for acceleration due to gravity g ∼ 9.8

m/s. This implies that UCNs cannot escape vertically through an open container

∼ 3 meters high. Gravitational traps can be useful for reducing the number of wall

interactions.

A very beneficial property related to UCNs is the energy shift due to the coupling

of the magnetic moment to magnetic fields, E± = ∓ h̄
2
γB, where the subscript +(−)

corresponds to the spin-up (down) state. Using the values of Planck’s constant h̄ ≈
6.582 × 10−16 eV·s and the neutron gyromagnetic ratio γ ≈ 1.832 × 108 T−1 s−1,

the resulting energy shift of a neutron in a magnetic field is ∆E ≈ ∓ 60.3 neV /

T. Dependent on the direction of the magnetic field, one spin-state of UCNs can

almost completely be rejected by a magnetic field ∼ 5 Tesla, and the other spin-state

is passed through with an energy boost. Very high polarizations can be achieved

using this method. The magnetic interaction is also being used in a novel bottling
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technique by the UCNTau collaboration to reduce the effects of wall collisions [24].

UCN Production

To produce ultracold neutrons, it is first necessary to produce many neutrons. This

is typically done using spallation sources, in which heavy nuclei are bombarded with

high energy protons from an accelerator. The Spallation Neutron Source at Oak Ridge

National Lab uses mercury as its target, whereas the UCN source at LANSCE uses

tungsten. Spallation is a process similar yet different to fission: energy is absorbed

by incident particles in each. In fission, the result is the splitting of the nucleus,

with the release of only a few neutrons. For spallation, the nucleus is excited with a

cascade of hadrons being produced. As the nucleus relaxes, it “evaporates” neutrons

(and other hadrons), producing ∼ 5-6× more neutrons, with ∼ 1/6 the energy from

a similar fission reaction [28]. The increase in neutrons makes spallation favorable as

a source, and the lower energy is also preferable for producing low energy neutrons.

The LANSCE UCN source, as shown in figure 2.4, uses beryllium and graphite as

moderators to initially decrease neutron energies. Then, the neutrons pass through

a layer of polyethylene beads cooled to 45 K. Finally, UCNs are produced by down-

scattering phonon collisions through a volume of solid deuterium at 5 K. UCNs pass

through the SD2, and pass to the exit guides with the help of a mechanical flapper to

prevent falling back into the moderator [27]. Preventing the UCNs from falling back

into the moderator is essential, as the UCN lifetime in SD2 has been measured to be

∼1.5 ms [29]. From here, NiP coated pipes guide the UCNs into the experiment hall,

where they are routed to different experiments.

2.3 Gradient Field Effects

Magnetic field gradients are problematic in high precision measurements of neutron

spin precession. Though the magnetic field does not appear explicitly in the result

for the electric dipole moment, and also is not present in the error, its effects can be

seen implicitly. In a perfect environment free of all background magnetic fields, then

the polarization of the neutrons could be maintained and the precession frequency

determined exclusively by the electric field coupling to the electric dipole moment as

shown in equation 2.2. However, there is a balance between the environment we can

feasibly achieve with the requirements of the experiment. Typical wall collisions will

depolarize or absorb neutrons at a rate of ≈ 10−4 per collision, and we want as large a

free precession time as possible. We can either decrease the precession time, or build
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Figure 2.4: Schematic diagram of the ultracold neutron source at LANSCE [27].

the chamber larger. A larger chamber means we need a larger magnetically shielded

room, which is already expensive due to the highly magnetic permeable materials

from which it must be constructed. These are the types of trade-offs that must be

made, and this particular trade-off means that typical background magnetic fields

inside the shield are ∼ 1 nT. This sets the order of magnitude for the B0 field, which

must be significantly greater than the background to maintain polarization of the

neutron spin.

This holding field will have gradients, and as a result an ensemble of neutrons

sampling different phase-space will eventually depolarize. The fit parameter α from

equation 2.44 is implicitly linked to the transverse spin relaxation, T2. Parameters

Nmax, Nmin referred to the expected counts of spin-down and spin-up neutrons on the

resonant frequency. Consider the case of a perfect analyzer which is 100% efficient at
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counting spin-up or spin-down correctly, used in a Ramsey cycle measurement of an

initial group of 3 spin-up and 1 spin-down neutrons, N0 = 4, in perfect magnetic fields.

On resonance, a perfect analyzer would detect 1 spin-up and 3 spin-down neutrons,

that is Nmax = 3 and Nmin = 1. This would correspond to α = 0.5, which decreases

the sensitivity in measuring dn by a factor of two. A similar effect will occur if there

is an initially 100% polarized sample which depolarizes during free precession, which

will present as a reduction in the visibility, α. In addition to this, the interference

between magnetic field gradients with motional magnetic fields induced by motion

through an electric field produces a systematic effect which mimics an electric dipole

moment.

Spin Relaxation

Consider two UCNs with the exact same spin state. Over some period of time, if

they experience the same magnetic fields with no other interactions, then they will

have the same final spin state. If they both experience constant magnetic fields

which differ, for example by 1%, then the precession frequencies will differ by 1%

and they will only periodically have the same polarization at later times. There will

always be some inhomogeneity in the magnetic fields which will cause variations in

the average sampled field. In reality, it is more complex than this example which

only considers a single component of the field. It is thus essential to characterize the

spin relaxation of the experiment setup, a property defined as the time in which the

ensemble depolarizes. There are two flavors of spin relaxation: T1, commonly called

the longitudinal spin relaxation because it is the depolarization time for an ensemble

initially polarized along the nominal field vector; and T2, labeled the transverse spin

relaxation because the initial polarization is in the plane perpendicular to the nominal

field vector.

For the case of a longitudinally polarized neutron, i.e., 〈~S〉 = h̄
2
ẑ, it is the trans-

verse components of the magnetic field, ~B⊥ = Bxx̂+Byŷ which cause depolarization.

As a thought exercise, consider a field which has spatial or time variations in the

longitudinal component and zero transverse components ~B = B(~r, t)ẑ (as a thought

exercise only; such a field clearly does not obey Maxwell’s equations). In the Sz basis,

longitudinal polarization corresponds to a spinor of the form ψ =
(
eiφ

0

)
, with phase φ

not observable in 〈 ~Sz〉. The Schrödinger equation in this case has no mixing of the

up and down components of the spinor.
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ih̄ψ̇ = − h̄γBz(~r, t)

2

(
1 0

0 −1

)
ψ (2.51)

(
ψ̇+

ψ̇−

)
= iγBz

(
ψ+

ψ−

)
(2.52)

〈σz(t)〉 =
(
e(−iγBzt+φ0) 0

)(1 0

0 −1

)(
e(iγBzt+φ0)

0

)
= 1 (2.53)

In this thought exercise, the only time dependence is in the phase φ which is not

observable, and so the expectation value 〈Sz〉 is unchanged. This indicates that it is

the transverse fields which will cause longitudinal depolarization.

The transverse spin relaxation is more complicated. Consider an ensemble of

neutrons with initial polarization 〈~S〉 = h̄
2
x̂, corresponding to spinor ψ =

(
1
1

)
/
√

2, in

the non-physical field used in the previous thought exercise. An individual in this

ensemble will experience some time dependent magnetic field B(~rj, tj), which will

differ depending on the phase space sampled by each individual neutron resulting in

different precession frequencies, ωj. Consequently, the neutrons will dephase in the

xy plane over time, dependent on how much the field varies for the parameter space

sampled. Thus, variance in the longitudinal component of the magnetic field causes

transverse spin depolarization.

The addition of transverse magnetic field components introduces mixing of the

up and down states. For a constant transverse component, e.g., ~B = Bxx̂ + Bz ẑ,

the polarization vector will precess about the net magnetic field vector. For a time-

dependent transverse field, the polarization will tip as studied in section 2.1. Gradi-

ents in the magnetic field will cause spatial variations in the field which will appear as

time dependent fields due to the neutron’s motion. Depolarization is thus a complex

relationship between the magnetic field and the phase space, often studied analyt-

ically by correlation functions Si,j =
∫∞

0
eiωτ 〈 ~Bi(0) · ~Bj(τ)〉 [30], see also [31], [32].

Typical solutions are solved for special cases, e.g., ballistic or diffusive motion using

a simple field ~B = (B0 + Gzz)ẑ − Gz
ρ
2
ρ̂ with Gz = dBz

dz
= constant. Using solutions

to the equations of motion with some simple field profile allows for the correlation

functions to be solved by writing the fields as a function of the position and velocity,

using analytical models of the motion.

While many of the analytical solutions fit observations very well, the approxima-

tions break down in the case of larger experimental regions, where higher order terms
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in the magnetic field become more prevalent. In these cases, it is appropriate to use

Monte Carlo simulations of the phase space to study the spin dynamics with high

accuracy as in chapter 3.

False EDM due to Geometric Phase

When measuring an observable which is theoretically predicted to be miniscule, iden-

tification of any systematic effects which are comparable in size is essential. Any effect

which is linearly proportional to the electric field is especially significant, because it

would be interpreted as an electric dipole moment. There is such an effect, which

is the result of interference between gradients in the magnetic field and the motion

through an electric field.

Under special relativity, electromagnetic fields transform such that the component

parallel to the relative velocity between the frames is unchanged, but the components

perpendicular to the boost are

~E
′

⊥ = γr

(
~E⊥ + ~v × ~B

)
(2.54)

~B
′

⊥ = γr

(
~B⊥ −

~v × ~E

c2

)
(2.55)

The relativistic effects are considerable for beam neutron experiments, but for

ultracold neutrons the Lorentz factor γr ≈ 1 and v/c ≈ 10−8, which led to this largely

being disregarded in early UCN experiments. As such, the motional contribution,
~Bv =

~E×~v
c2

, is much smaller than the nominal field B0, however it may be comparable

to the transverse components which are typically orders of magnitude smaller than

B0. The most general spin precession frequency is given by ω0 = γn

∣∣∣ ~B∣∣∣. Assuming

the transverse fields are much smaller than the nominal magnetic field, the effective

frequency shift caused by Bv can be estimated by an evaluation of the magnitude of

the field.

∣∣∣ ~B0 + ~Bv

∣∣∣ =

√
B2

0 +B2
v + 2 ~B0 · ~Bv ≈ |B0|+

1

2 |B0|

(
γr
~v × ~E

c2

)2

− γr
~B0 · ~v × ~E

|B0| c2

(2.56)

The E2 term will not contribute to a false EDM, but the term linear in E will

clearly result in a false EDM at the level of individual neutrons. This is a small

perturbation, so that it is safe to approximate ~E = Eẑ, and as such the false EDM is
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only dependent on the transverse components of ~B0 and ~v: ~B · ~v × ~E = ~E · ~B × ~v =

E(Bxvy−Byvx). Conceptually, one might assume that once the neutrons are isotropic

inside the storage chamber, the contributions of neutrons with ~v would be canceled

by those with −~v, so that this effect may not be seen in the ensemble result. It will

be shown that this assumption does not hold true.

x̂

ŷ

ẑ

Figure 2.5: Coordinate system for a cylindrical bottle. For the methods introduced
in this chapter and used in the proceeding chapters, the nominal B0 field is oriented
with the z-axis (longitudinal), and the transverse oscillating fields used to flip the
spins are in the xy plane. The electric field will be parallel or anti-parallel to the B0

field.

A derivation of the Ramsey-Bloch-Siegert shift [33] is beneficial to calculate the

ensemble effect on the resonant frequency. Assuming, for simplicity, that the neutrons

in a cylindrical chamber follow approximately circular paths in the x−y plane (which,

as shown above, are the only components of velocity to contribute significantly to this

false EDM), define the frequency which a particular neutron circles as ωc. Using the

notation ω0 = γgB0 and ωxy = γgBxy, the resonant frequency in a frame rotating at

ωc, related to the resonant frequency in the stationary frame ω via ω = ω
′
+ ωc, is

given by

ω
′
= γgBef =

√
(ω0 − ωc)2 + ω2

xy (2.57)

where the “effective” magnetic field along ẑ is the result of some pseudo field Bc = ωc
γg

.

In the limit ω0 − ω � ωxy, the resonant frequency in the rotating frame is found to

be

ω
′ ≈ (ω0 − ωc)

[
1 +

ω2
xy

2(ω0 − ωc)2

]
(2.58)
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and the resonant frequency in the non-rotating frame is

ω = ω0 +
ω2
xy

2(ω0 − ωc)
(2.59)

The resulting frequency shift is known as the Ramsey-Bloch-Siegert (RBS) shift

[33], equation 2.60, the starting point for a derivation by Pendlebury et al. [34] to

analytically quantify this false EDM effect.

∆ω =
ω2
xy

2(ω0 − ωc)
(2.60)

The factor in the denominator indicates a resonance dependent on the phase-space

of the neutrons relative to the spin frequency due to the nominal B0. The numerator

is dependent on the transverse velocities of the neutron and transverse components

of the magnetic field, including the motional field Bv. Neglecting background fields,

the transverse components of the magnetic field is directly related to the gradients

in the B0 coil. Assuming a constant gradient, ~Bxy = (γr
~E×~v
c2
− ρ

2
∂B0z

∂z
)ρ̂. Using for

shorthand notation Gz = −∂B0z

∂z
:

ω2
xy = γ2

g

G2
z

ρ2

4
+

(
γr
~E × ~v
c2

)2

+Gzργr
~E × ~v
c2

 (2.61)

Considering the cumulative effect on an isotropic ensemble in circular orbits with

equal probability ~v = ±vφφ̂ with a corresponding sign-flip in ωc and ω2
xy± where the

sign in the subscript corresponds to the sign of the velocity, the RBS shift becomes

∆ω =
ω2
xy+

4 (ω0 − |ωc|)
+

ω2
xy−

4 (ω0 + |ωc|)
(2.62)

Consider the difference between this phase shift for a sign change in the electric

field, denoted ∆ω↑↑−∆ω↑↓, where the first arrow indicates the direction of the mag-

netic field and the second the electric field. Any non-zero result would present as a

systematic effect, but not necessarily a false EDM which must be explicitly linear in

the electric field. The first two terms in ω2
xy clearly cancel, being dependent on B

and E2, neither of which change under the exchange E → −E.

∆ω↑↑ −∆ω↑↓ =
γ2
nγrvφEδB0

2c2

[
1

ω0 − |ωc|
− 1

ω0 + |ωc|

]

= −E
(
∂B0z

∂z

)
γ2
nγrvφρ |ωc|

2c2 (ω2
0 − ω2

c )
(2.63)
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Equation 2.63 indicates that there is a frequency shift for the ensemble of neutrons

which does not cancel when considering the direction of the orbits within the cylindri-

cal chamber. The full form of the false EDM is dependent on the phase-space factor
vφρ|ωc|

(ω2
0−ω2

c)
, which Pendlebury et al. calculated for several cases [34]. Later papers have

used the method of correlation functions as briefly discussed in the spin-relaxation

section to calculate the false EDM [30].

To leading order, the false EDM is dependent on ∂B0z

∂z
, which is used as a key metric

in optimization of magnetic field profiles introduced in chapter 4. Great minds have

put forth substantial effort to derive analytical forms of this effect, but the solutions

are largely limited to special cases, low order expansions of magnetic fields, and

assumptions for the storage chamber geometry as used in the presented derivation.

As suppression of higher order terms in the false EDM effect enter the discussion, it

will become necessary to utilize numerical studies of this frequency shift to assist in

the optimization of magnetic field profiles.

Copyright c© James Ryan Dadisman, 2018.
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Chapter 3 LANL nEDM Simulation

To better understand expected systematic effects for the room-temperature LANL

nEDM experiment, a Monte Carlo simulation was developed in C++, with an em-

phasis on modeling the fields as accurately as possible. The experiment uses the

Ramsey method of separated oscillatory fields as discussed in chapter 2. UCNs will

be guided from the source into two cylindrical chambers. Since the chambers are

identical and symmetrically displaced about the center of the cylindrical solenoid,

the simulation only considers a single chamber. Note that, because of the height

difference of the UCNs between the two chambers, there will be a small shift in the

energy spectra of UCNs. A full analysis of the UCN energy spectrum at some stan-

dard input guide height must be conducted to fully model the experiment. Then the

difference in the top and bottom cells can be simulated by shifting the minimum and

maximum velocities in the simulated neutron event generator.

A 199Hg co-magnetometer is present within the chamber. Once the chamber is

filled, two separate time-dependent B
(n,Hg)
RF pulses are applied for a period t

(n,Hg)
RF

at frequencies to rotate the spins for neutrons and Hg, respectively, into the plane

transverse to the magnetic holding field (a π
2

spin-flip). The gyromagnetic ratios of

the neutron and 199Hg differ enough that separate pulses can be applied with minimal

effect on the polarization of the other (1.83 × 108 T−1 s−1 and 4.77 × 107 T−1 s−1,

respectively [35]). The particles then freely precess for a time period T on the O(100s)

in the B0 field. Finally, a third π
2

pulse is applied to rotate the UCNs anti-parallel

to the original polarization vector. The chambers are then emptied and the UCNs

directed to a spin analyzer to count the number of up and down spins. The simulation

has built-in compatibility to simulate neutrons and 199Hg (or any fermion), but for

the study presented here, only neutrons were considered.

3.1 General Simulation Methods

In the simulation of the Ramsey sequence which I developed, the UCN guide is not

modeled; therefore particles are generated randomly on a thin disk just inside the

cylinder wall at the location where the guide will connect to the chamber. This

simplification is used so that a simpler method of detecting wall collisions may be

used, in which the radius and height is checked against the radius and bottom/top of

the virtual cell. The initial momentum is set as a unit vector, randomly distributed
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within a hemisphere oriented normal to the cylinder wall pointing inward. The vector

components are then scaled with a magnitude sampled from a P (v) ∝ v2 distribution,

up to a typical maximum vmax = 7 m/s. The expected number density for particles is

O(102 cm−3) for UCNs and O(1010 cm−3) for Hg. Both of these number densities are

sufficiently low that the motion is effectively ballistic following kinematic equations,

where g = 9.807 m/s2 is the acceleration due to gravity.

~r(t+ ∆t) = ~r(t) + ~̇r(t)∆t+ ~̈r
∆t2

2
(3.1)

~̇r(t+ ∆t) = ~̇r(t) + ~̈r∆t (3.2)

~̈r = −gẑ (3.3)

Movement through the chamber will be solved exactly at each integration step

using the kinematics equation for the integrated time ∆t, with gravity being the only

present force. Reflections are considered mostly specular, with some percentage of

non-specular reflections with given probability and angles determined by the method

of Steyerl et al. [36]. Spins are treated as 4 numbers: real and imaginary compo-

nents each of the up and down spinors in the z-basis. They obey the Schrödinger

equation, and the full spinor is normalized at each step. All random number gener-

ation is performed by the xor4096 algorithm by R. P. Brent [37], a pseudo-random

number generator (RNG) which is widely available and passes the “Big Crush” test

of randomness.

Bulirsch-Stoer ODE Integrator

The time-dependence of the spin requires a differential equation integrator for each

step made in time. The simplest is the Euler method: y(t+H) ≈ y(t) + dy(t)
dt
H. The

accuracy is highly dependent on the step-size H, thus the first improvement is to

divide H into n sub-steps of size h = H/n. The Runge-Kutta algorithms of different

order are one of several types of algorithms which use some type of sub-step method-

ology to improve the accuracy of the integration over a single integration iteration.

One improvement that can be made is to take measurements using increasing number

of sub-steps n, then extrapolate the results to the limit n → ∞;h → 0. This is the

general idea for the Bulirsh-Stoer algorithm [38]. It is beneficial to use the modified

midpoint method for each set n, as the error expressed as a power series in h contains

only even powers of h. The Runge-Kutta methods to O(n) have error to O(hn+1), e.g.,
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RK4 has error O(h5) and requires 4 calculations of the derivative. Using the same

number of function calls it is possible to run the modified midpoint method multiple

times by re-using the initial derivative to run the set n = 2, 3. Neville’s algorithm

is used to perform polynomial extrapolation after each order in n to estimate the

integral. An additional benefit of extrapolation is that a result is obtained after each

extrapolation of order n, which can be compared with the previous extrapolation to

give an error approximation. This error estimate is used for the adaptive step-size

controller to determine whether the next time step should be larger or smaller, using

the Deuflhard method [39].

Reflections

Wall collisions are handled in a simple and efficient manner. The geometry of the

storage chamber is a cylinder, which makes checking for the occurrence of a wall

collision a matter of checking whether the height z is above or below the top or

bottom of the chamber and if x2 + y2 > ρ2
cell. Before each integration step, this check

is made for the current time-step setting; if a collision is expected, the kinematic

equations are used to set a time-step which will take the neutron exactly to the wall.

After the integration step, the default time-step is restored and the velocity vector is

rotated to model either specular or non-specular reflection.

The method of Steyerl et al. is used with Monte Carlo acceptance / rejection to

determine the angle of reflection [36]. A height correlation function is required to

model the roughness of a surface. One of the more common models is a Gaussian.

fG(δ) = b2 exp

[
− δ2

2w2

]
(3.4)

where b2, the mean square roughness, and w, long-range cutoff, quantify the roughness

and δ is the displacement from center of the Gaussian. The height correlation function

defines a potential at the boundary of a vacuum with a smooth, flat surface of constant

potential. Perturbation theory is used, assuming elastic scattering, to calculate the

reflected wave function for a wave incident from the vacuum side, ψin = exp
(
i~kin · ~r

)
.

From this, the probability of non-specular reflection excluding wall-losses may be

determined:

PNS =
4k4b2w2

2π
cos(θi) cos(θ)2 exp

[
−q

2w2

2

]
(3.5)

where ~q is the in-plane momentum transfer (i.e. - the plane defined by the normal

to the wall surface; recall this is elastic scattering so that ‖~k‖ is conserved) and is a
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function of the incident and reflected angles. Here θ is defined relative to the normal

pointing inward from the surface, and φ is an angle of rotation about the normal

relative to incidence with φ = 0 defined such that the tangential component changes

only in magnitude, not direction. The method of acceptance / rejection is used to

determine non-specularity: the reflected angles θ ∈ (0, π) and φ ∈ (0, 2π) and a

total probability P ∈ (0, 1) are each randomly selected from the RNG. The angles

are inserted into 3.5: if P < PNS(θ, φ) then these are the reflected angles; else the

reflection is specular.

It is important to note that the position distribution of the particles is highly

dependent on the amount of non-specular reflections. Unfortunately, the roughness

parameters are generally not well understood, especially the long-range cutoff w.

The roughness b is better known, and depending on the finishing method typically

falls between 10-50Å for highly polished surfaces [36]. Inhomogeneous distribution

of neutrons within the storage chamber has an effect on the accuracy of the co-

magnetometer determination of the leading order resonance ν0 in equation 2.44. The

average resonant frequency is determined by the average field sampled by the ensemble

of neutrons, which clearly does not correspond to an unweighted geometric average.

This must be corrected in analysis, which will benefit from an accurate model of the

wall collisions.

Figure 3.1: Position distribution in xy plane for different percentage of non-specular
reflection: (a) 0.07%; (b) 2.2%; (c) 12.2%.

The figures 3.1 are for identical physical parameters, and the degree of non-

specularity purely comes from changes to the roughness parameters b, w. Near 100%

specular reflections results in particles spending more time near the outer edges of

the container. The explanation is simple: every particle interacts with the walls

regularly, occupying a region from the radius of the wall to some minimum radius

greater than zero. Introducing any degree of non-specularity results in three regions

in the xy plane, as seen in figures 3.1b and 3.1c: a “core”, a “mantle”, and a “crust”.
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The core and crust occupy the center and outer edges respectively, and generally

have approximately twice the particle density of the mantle. As shown in figure 3.2,

specular reflections result in regular, repeating orbits, which by the previous expla-

nation describes the crust and mantle regions. The core is an interesting result of the

occasional non-specular reflection. The regular, specular orbits in general avoid the

center, and the probability of a particle being initialized with momentum carrying

it through the center of the chamber is very small. However, the cos2 θ dependence

on the probability of non-specular reflection favors reflected trajectories towards the

center. This result can have a big impact on systematics and potentially on mag-

netic field profile design. Mostly specular reflections results in each neutron sampling

a limited phase-space. Non-specularity introduces occasional changes to the phase

space which results in differences in the average magnetic field which is sampled. A

comparison of the results for spin relaxation dramatically demonstrates this effect in

section 3.4.

(a) Cumulative tracks for 10 UCNs

(b) Single Example Specular Track

(c) Single Example Non-Specular Track

Figure 3.2: Tracks over 5 second period comparing specular and non-specular reflec-
tion. Specular reflections result in regular, repeating tracks which avoid the center.
Non-specular reflections result in an increase in particle density near the center.
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3.2 Spin Tracking

Spins are treated quantum mechanically in the Sz basis, in which the z-axis is aligned

axially with the cylinder length and parallel to the nominal magnetic field ~B0, and

the x, y axes define the radial plane. A spinor composed of two complex numbers,

decomposed into 4 real numbers, represents the spin state:

Ψ =

(
ψru + iψiu
ψrd + iψid

)
(3.6)

Initial polarization is along +ẑ, Ψ =
(

1
0

)
. The time-dependence of the spin is

given by the Schrödinger equation:

ih̄
dΨ

dt
= HΨ = −~µ · ~BΨ = γ~S · ~BΨ =

h̄

2
γ~σ · ~BΨ (3.7)

where γ is the gyromagnetic ratio and ~σ = σxx̂ + σyŷ + σz ẑ is the vector of Pauli

matrices.

Equation 3.7 is the differential equation which is being integrated by the Bulirsch-

Stoer algorithm. This general form is used; any magnetic field gradients and the

motional term ∝ ~v × ~E are included in a total magnetic field ~B. As a result, the

position and velocity must be inputs for the differential equation. Integration is

performed with increasing sub-steps n for a single time step until the maximum error

per step (EPS) is achieved. The position and velocity are then set to the new values

from kinematics and the resultant spin state is normalized.

Standard validation tests included velocity and position initialization histograms,

and monitoring longitudinal and transverse polarizations as a function of time for

the perfectly uniform field case. Testing the effects of gradients to confirm correct

function is more difficult to test, as an analytical solution must exist which closely

fits the parameters of the test.

The accuracy of this integrator has been validated by several test cases. First,

validation was performed using neutrons polarized parallel and perpendicular to a

perfectly constant magnetic field; with expected results that the polarization remain

constant, and precessed at constant frequency respectively, were obtained. Addi-

tional tests included comparison of spin relaxation time results compared with some

analytical approximations.
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(a) 10N precessing for 1000s (b) 1N Precessing in transverse plane; frequency
is correct for B = 1µ T

Figure 3.3: Testing the precession within a constant magnetic field.

3.3 Magnetic Field Modeling

A key goal of this simulation is to accurately model the spin precession in a realistic

magnetic field. Two methods were included to execute this goal: trilinear inter-

polation of an input field map; and a polynomial approximation of the field. The

polynomial approximation is more computationally efficient, and also can have ac-

curacy advantages over the interpolation method, which assumes the field changes

linearly within each sub-cube.

Map Interpolation

This method starts by outputting a field map in 1 mm increments for the fiducial

volume into either a tab-delimited text file or binary. Using binary is faster and

decreases the file size, though the latter is still O(1GB). The map is loaded into

a global hash table, that is a list of arrays with a unique index corresponding to

each vertex, each containing only the magnetic field components Bx, By, and Bz.

Selection of coordinates (x, y, z) in integer units of [mm] determine a unique index

corresponding to the array in the table containing the components at that grid point.

Indices in an array begin at zero, so that the last element in the array has index

(nxnynz − 1). This can be shown for the index calculation shown.

i = ix + iynx + iznxny (3.8)

Using this data structure is far more efficient than looping through a multi-

dimensional array and performing a check until the desired positions are found. Each
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time the magnetic field is needed, the first step is to store the ceiling and floor value of

each coordinate into an array. With these, the field components of the 8 nearest grid

points surrounding the true position can be quickly retrieved from the hash table. A

trilinear interpolation algorithm is then used for each component to approximate the

field components at the true position. That is, the field is assumed to be linear in

each axis within the region of each 1 mm3 cube.

Interpolation is not an efficient method for two reasons. First, discontinuities

in the derivatives of the field at the face of each cube causes the adaptive stepsize

controller to reduce the time steps by orders of magnitude, resulting in a severe

increase in the computation time. Tricubic interpolation could be used to make the

derivatives continuous, but it requires 64 rather than 8 nodes and considerably more

calculations. The second reason is a weakness of trilinear interpolation which would

be even worse for tricubic: the interpolation algorithm must be performed for each

component of the holding field, spin-flipper field, and the electric field; that is at least

6 times for the magnetic field (assuming a perfect electric field). It is possible with

analytical models to only calculate the polynomials related to the position a single

time. Interpolation is a general method in that it can be used for any field profile.

However, for fields which can be easily described with polynomials, it is not the best

method for performance.

Analytical Field

Suppose there existed a perfectly uniform magnetic field, with some linear gradient.

This field can be quickly determined everywhere to machine precision by the equation:
~B = (B0 +Gzzẑ)− Gz

2
ρρ̂, with constant Gz = dBz

dz
. This can be extended to arbitrary

order in the gradients, then the coefficients Gi will uniquely define the field. This

process would involve creating a map of the field (from theory, COMSOL, or an

actual map) as in the interpolation case, though the mesh spacing can be much

coarser. Then, a 3-dimensional polynomial fit to any chosen order can be used to

characterize each component of the field using a small set of coefficients.

An important note regarding the fitting is interpolation error. In a single dimen-

sion, it is standard to use samples spaced at the Chebyshev nodes to minimize this

error [40]: xk = cos(2k−1
2n

π), where n refers to the total number of sample points and

k is an integer reference to the node k = 1, ..., n. The goal here is to reduce Runge’s

phenomenon: the presence of large, erroneous oscillations which can occur with min-

imum χ2 fits of polynomial functions with near evenly spaced samples. The theory of

minimizing interpolation error becomes very complex for higher dimensions; for the
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purposes here, it is sufficient to minimize the error in the independent polynomial

axes individually. In order to verify that something akin to Runge’s phenomenon is

not occurring, it is essential to split the data into a fit set, used to perform the fitting

procedure, and a validation set, used to compare with the model constructed from the

fit to check for errors. This can also be helpful in the fitting process, as superfluous

data requires more calculation and reaches a point of diminishing returns.

Field Expansion using Associated Legendre Polynomials

The analytical form of the magnetic field must obey Maxwell’s equations. It is well

established in electrodynamics texts [41] that static electric and magnetic fields can be

determined within a volume free of sources given the field is known on the boundary

surface of the volume. For the case of magnetic fields, the requirements on Maxwell’s

equations are ~J = 0 and ∂ ~E
∂t

= 0. In this case, ∇ × ~B = µ0
~J + µ0ε0

∂ ~E
∂t

= 0. By

application of vector identity ∇·(∇× ~B) = 0, ∇2 ~B = 0. This is the Laplace equation

with well known solutions.

f(r, θ, φ) =
∞∑
l=0

l∑
m=0

rlPm
l (cos θ)[alm cosmφ+ blm sinmφ] (3.9)

The general equation 3.9 is satisfied separately for f = [Bx, By, Bz, U ]. There is a

benefit to using the magnetic scalar potential U , as it is possible to extract information

on the gradients along an axis based on measurements of the field components along

a different axis. This is proposed as a method to monitor magnetic field conditions

in-situ for neutron EDM experiments via boundary condition measurements [42]. For

the purpose of field modeling in a simulation, the “vector” method is more desirable

for its simplicity: at each evaluation of the derivatives for the purpose of integration,

it is only required to calculate each basis function once at the current location, as

these evaluations are common for all components of any field being modeled. e.g.-

The vector components of the ~B0, ~B1, and even ~E can all be determined by using

different coefficients with the same basis functions.

The application of this method to simulations starts with a field map, either

from a theory calculation, COMSOL, or from a map of the actual field. The chi-

squared is minimized in order to fit the general solution as expansions in `,m to

find fit parameters ail,m, b
i
l,m separately for each component Bi. The vector method is

efficient because each expansion term in equation 3.9 can be calculated once for the

current neutron position and stored in an array; it is then computationally trivial to

determine all three components of the magnetic field.
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An additional performance gain was obtained by writing a custom function to

calculate the associated Legendre polynomials. For any order in (`,m), these must

be built up from recursion relations 3.10 [43], given an exact expression for the first

few terms. A lookup table was populated by calling this function once for each posi-

tion, thus a single calculation of P(lmax,mmax) gives the necessary associated Legendre

polynomials for every basis function in 3.9.

(l −m)Pm
l (x) = x(2l − 1)Pm

l−1(x)− (l +m− 1)Pm
l−2(x) (3.10)

Pm+1
l+1 (x)− 2xPm+1

l + Pm+1
l−1 (x) = −(2m+ 1)Pm

l (x) (3.11)

Fitting the field in three dimensions is quite difficult to achieve. All fitting al-

gorithms are highly dependent on the starting point for the parameters, and setting

these initial conditions becomes increasingly complex as the degrees of freedom in-

crease. Additionally, the designed field profiles are typically at least O(` = 6), and

the chi-squared has many local minima in parameter space. Each order in ` con-

tains (2` + 1) parameters, resulting in 49 parameters for ` = 6. Basin-hopping and

simulated annealing optimization methods are better suited to finding estimates of

the global minimum for a flat parameter space with many local minima; however, 49

parameters, which differ in sign and by several orders of magnitude, is too large a

parameter space to reasonably use such methods.

The solution to this problem was to start by fitting single-dimension special cases

to ` = 6 polynomials: the 3 main axes, and the cases z = 0 with x = ±y. Each

coefficient of the polynomial fits will then correspond to a linear combination of the

desired parameters, which can be solved using a least-squares fit. Consider equation

3.12, which gives the ` = 2 term in the general expansion (that is, the quadratic

terms). The coefficient a20 can be extracted directly from a quadratic fit along the z-

axis only, where every other term in the expansion is zero. A quadratic fit parameter

along the x-axis, px2 , is a linear combination of two terms in the ` = 2 expansion:

px2 = −1
2
a20 + 3a22.

B`=2
i = a20(z2 − x2 + y2

2
)− 3z(a21x+ b21y) + 3a22(x2 − y2) + 6b22xy (3.12)

For each power in ` and each 1-dimensional fit axis, a linear equation was con-

structed in a systematic method by evaluating each term of the given power in equa-

tion 3.9, for (x, y, z) set to either 0 or 1 dependent on the current axis being evaluated.
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This gives the relative weight for each term in the 3-dimensional fit relative to the

1-dimensional fit parameters; e.g. - the term a20 contributes to pz2 = a20, but along

the x and y axes it contributes px2,y2 = −1
2
a20. The system of equations can then be

setup as a matrix equation pj = Cijai and directly solved to find the desired volume

parameters ai. However, any disagreement in the single axis fit parameters which

are correlated with other single axis fits can create erroneous results. Therefore, it

is preferable to use a coupled equation least squares fitter to smooth out any incon-

sistencies in the separate fits when they are combined into one. The NumPy least

squares solver in the linear algebra module was selected for this purpose. Figure 3.4

demonstrates the polynomial fits along the axes for the COMSOL model of the B0

coil.

Figure 3.4: Polynomial fits along the main axes of the B0 COMSOL model.

Order ` = 6 is still an approximation, therefore care must be taken to ensure

that the coefficients for the special cases are self-consistent to prevent a breakdown

when the conversion from 1-D to 3-D parameters occurs. For example: the designed

B0 profile from chapter 4 has inflection points in the transverse axes which limits

selection of the signs and magnitudes for the ` = 2, 4, and 6 terms. However, for the

longitudinal z-axis, the field has only a single inflection point in the region of interest,

such that very good fits can be achieved with multiple combinations of these terms.

By the correlation of 1-dimensional to 3-dimensional parameters, the transverse and

longitudinal components are related such that inappropriate fitting of the longitudinal

axis prior to this conversion will result in a very poor fit for the volume expansion.

The reconstructions for this model are shown in figure 3.5. It should be noted

that the axis chosen looks like it could be possibly fit by ` = 4. However, the x-

axis demonstrates clear ` = 6 features, as shown in figure 3.4. Additionally, the fit

is progressively getting worse further from the y-axis, demonstrating higher order

effects. For the B0 coil with nominal setting of 2.22 µT used in the LANL prototype

apparatus, the average magnitude of the residual was found to be Rave = 〈BModel
z −

BCOMSOL
z 〉 = 0.07 nT, ∼ 31 ppm (Fig. 3.6). The resulting set of coefficients was
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Figure 3.5: Comparison of the 49 parameter fit model to COMSOL along the y-axis at
different positions in x and z for the optimized double-gap solenoid. Fiducial volume
is z ∈ (−5 cm, 5 cm) and ρ < 25 cm.

used in simulation to study the systematic effects associated with the details of the

magnetic field profile.

A single set of fit parameters for a typical B0 setting was used and scaled when

testing different settings. The coupling of the magnetic field with the shield is a

complex relationship because of the dependence on the relative magnetic permeability,

µr = µ/µ0, changing with the magnitude of the field inside the shielding material.

42



Figure 3.6: Histogram of the residuals comparing the ` = 6 expansion with the
COMSOL model of the B0 prototype at 2.2 µT.

As the shield saturates, µr decreases, which will result in perturbations to the field

profile. The COMSOL model accounts for this effect by using the hysteresis curve for

a material similar to the real shield, but repeating the COMSOL model and the fitting

procedure for each test is not practical. Though most of the coefficient fitting process

is automated in Python, setting the initial parameters for the 1-dimensional fits is

a very time consuming, manual process. For the ranges of B0 settings considered,

the magnetic flux from the coils does not saturate the shield material as much as the

external background fields. Consequently, for studies which change the B0 setting,

the same set of coefficients were scaled to set the desired B0.

3.4 Spin Relaxation

A neutron polarized along a perfectly uniform magnetic field will retain that polar-

ization indefinitely in the absence of any interactions, e.g., collisions. Real fields will

have non-uniform profiles, such that the direction and magnitude of the field will

vary by position. For an experiment in which knowledge of the polarization is essen-

tial to the result, it must be well understood how long the spins remain polarized.

There are two important spin orientations for experiments: 1. The case in which

the polarization is along the nominal magnetic field such that ~S × ~B0 = 0, T1; 2.

The case in which the polarization is in the plane perpendicular to the magnetic field

such that ~S · ~B0 = 0, T2. Longitudinal polarization must be maintained during the

loading and unloading stages, typically on the order of 10’s of seconds. Transverse

spin relaxation must be sufficiently long that the neutrons do not depolarize during

the free precession period, ∼ 100 seconds. Each of these would present in the Ramsey
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method as decreased visibility of the fringes, α.

Longitudinal Spin Relaxation T1

The longitudinal spin relaxation T1 can be determined by measuring the polarization

as a function of time for an initial sample of neutrons ideally 100% polarized parallel

to the nominal magnetic field. A sufficiently large number of completely unpolarized

neutrons can be expected to have equal counts of spin-up and spin-down within

statistical uncertainty. If these two states are counted as “+1” for up and “−1” for

down, then the average “polarization” of an unpolarized sample would be 0, and 100%

polarization would have an average of ±1. Using this model, the spin relaxation time

can be determined by an exponential fit of the average polarization as a function of

time.

P (t) = P0e
−t/T1 (3.13)

In measuring T1 experimentally, it is unlikely that the initial polarization is per-

fect. This is accounted for by inclusion of P0, the polarization at t = 0 s, as an

additional fit parameter. To determine T1 via simulation for the model B0 field pro-

file, the spinor is initialized in the eigenstate Ψ =
(

1
0

)
, corresponding to spin-up in

the Sz basis. The expectation values for each component of spin are sampled at

pre-determined times and stored in a data file for offline analysis. For each sample,

the expectation value of 〈σz〉 is averaged over all simulated particles. These are then

fitted to equation 3.13 to determine T1 as a fit parameter, with the square root of the

appropriate term in the covariance matrix used as the uncertainty σT1 .

Figure 3.7: Example of simulation results fitted to exponential curve to extract T1.
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For validation purposes, simulations were run with N = 10000 each for UCNs at

different energies corresponding to velocities ranging from |~V | ∈ (3 m/s, 7 m/s). The

magnetic field was assumed to be of the form

B(~r) = (10 [mG]−Gzz)ẑ +
Gz

2
ρρ̂ (3.14)

with Gz = 5× 10−10 T mm−1. The intent was to choose a linear gradient comparable

with that from the ILL experiment [1], which could be compared with the T1 measured

by ILL and theoretical values from Redfield theory as applied by McGregor [31].

1

T1

=
δB2kTτc

2mB2
0 [1 + γ2B2

0τc]
τc ≈

ρL

2(ρ+ L)
√

3kT
m
− gL

(3.15)

where τc is the approximate time between wall collisions, k the Boltzmann constant,

g the acceleration due to gravity, m is the neutron mass, and T the temperature in

Kelvin. This is originally derived for a low density gas; in order to compare with

simulation results, the kinetic energy of the neutrons is converted to a temperature

via 1
2
mv2 = 3

2
kT .

When considering no wall interactions, T1 for this average gradient is O(106 s).

The simulation result is extracted from an exponential fit, which would require con-

siderable computation time. Also, the comparison to the ILL measurement would

not be accurate, because loss / depolarization of neutrons due to wall interactions

and free neutron decay prevents a reasonable measurement on this order of time.

Therefore, an order of magnitude larger gradient was used, resulting in T2 reduced

to O(104 s). The factor of 100× difference between the two for a gradient change

of only 10× is expected, as T1 is inversely proportional to
∣∣dBz
dz

∣∣2 in the McGregor

formulation.

Simulation results give a higher T1 for “realistic” and random reflections than

the gas model of [31]. Diffusive motion is associated with local confinement of a

particle to some region, which would create groups of particles akin to domains,

where they only sample the fields in that region. Consider the limit in which the

neutrons are effectively stationary: the magnetic field vector is constant, and so the

polarization will not change. Modeling diffusion with random wall collisions rather

than a true “random walk” creates an isotropic distribution within the chamber

similar to diffusion, but does not locally confine neutrons. This might also explain

why there is not a large difference in the “realistic” and random wall reflections; one

is more isotropic, but they both sample the cell volume extensively.
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Figure 3.8: A comparison of T1 as a function of UCN energy for “realistic” and
random wall reflections compared to the Redfield / McGregor model for a gas given
as a function of temperature.

It is also interesting to note the fluctuations in the “realistic” reflection simulations

as a function of energy. This is possibly related to the Ramsey-Bloch-Siegert shift,

used to derive the false EDM in section 2.3. Recall in section 2.3 that the transverse

fields alone cause longitudinal depolarization. Specular reflections at large radius can

be approximated as circular orbits, such that the neutrons will experience a rotating

transverse field at angular frequency ω ≈ πρ
vφ

. The orbital velocity vφ is different

for each energy sampled in this simulation and changes within each energy due to

the velocity also containing a vertical component, which results in a complicated

ensemble average ω. There is also a RBS shift to the resonant frequency ω0 which

differs for each velocity, which also affects the probability of a spin-flip as given in

the Rabi formula, equation 2.15. For random reflections, circular paths are not taken

such that the assumptions for the RBS shift and rotating field breaks down, which

explains why these fluctuations are not present for random reflections.

Transverse Spin Relaxation T2

For transverse spin relaxation, the particle is considered to be polarized in the xy

plane. Because the polarization is precessing in the xy plane for this state, the

straightforward analysis used for longitudinal polarization is not applicable. Depo-
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larization in this case can be thought of as the accumulation of different amounts of

phase amongst the sample of neutrons in the plane of precession. An additional effect

is depolarization out of the transverse plane, i.e. - the polarization rotates out of the

transverse plane as a result of the coupling to transverse fields, which then affects the

rate of phase accumulation. This effect was discussed in section 2.3.

In this experiment, the transverse spin relaxation can be determined very simi-

larly as the longitudinal case. The neutrons must first be polarized longitudinally,

then a π/2 spin-flip is applied to polarize the spins in the transverse plane. After

some free-precession time, t, then a second spin-flip is applied and the spins are trans-

ported to an analyzer. Repeating for multiple different holding times t and fitting

the polarization to equation 3.13 will yield T2.

For the simulation, it is easier to use a different analysis. The initial spin state

used for these tests is the eigenstate Ψ = 1√
2

(
1
1

)
, such that every simulated neutron

has the same spin state corresponding to 〈σx〉 = 1. If a histogram were made of

the polarization angle in the xy plane, this initial state would be a delta function

at the initial phase, φ = 0. By comparison, a fully depolarized sample would be

a perfectly flat histogram with equal probability of every angle from φ ∈ (−π, π).

Taking a snapshot at some time t between these two asymptotes and assuming the

distribution of angles is Gaussian, T2 can be extracted directly using the relation 3.16.

P (t) = P0e
−t/T2 = P0 exp

(
σ2
φ + σ2

θ

2

)
(3.16)

Figure 3.9: Sample histogram used to extract T2 from simulation for
∣∣dBz
dz

∣∣ = 5×10−11

T mm−1, using random wall collisions and velocity v = 7 m/s.

As a leading order test of the simulation, T2 was simulated for different discrete

energies of the UCN and compared with the theoretical models of Cates, Schaefer, and
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Happer [32] and McGregor [31]. This model gives an analytical solution for diffusive

motion through a magnetic field with constant gradients as in equation 3.14.

1

T2

=
1

2T2

+
γ2L4

120D

(
∂Bz

∂z

)2

+
7γ2a4

96D

(
∂Bz

∂ρ

)2

(3.17)

D ≈ |v| aL

2(a+ L)
(3.18)

where a is the radius of the cylindrical chamber, L is the length, and the diffusion

constant D is estimated using the volume, surface area, and velocity to determine the

average distance and time between wall collisions. Using the wall reflections based

on the model of Steyerl et al. results in a T2 which differs significantly from the

McGregor model.

Figure 3.10: A comparison of T2 as a function of UCN energy for “realistic” and
random wall reflections compared to the McGregor model for a low density gas as a
function of temperature.

Intuitively, this is to be expected for a high percentage of specular wall collisions.

As discussed in section 2.3 for the approximation of circular paths inside a cylindrical

chamber, field profiles which are even in ` result in the Larmor frequency being a

function of the radius, whereas field profiles which are odd in ` see an averaging of
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the field such that the Larmor frequency is independent of the radius. As previously

shown, the neutron distribution changes substantially from specular to non-specular

reflections. The McGregor model assumes a low density gas which diffuses through

the chamber. A better comparison with the McGregor solution would use a ran-

dom walk to model diffusion. For simplicity, this was approximated by simulating T2

for random wall reflections, which is shown to agree very closely with the McGregor

model. They diverge at lower energies, which is an artifact of using the wall reflections

to approximate a “random walk”. For lower speeds, the neutron spin accumulates

more phase before sampling a different trajectory. As an additional validation of the

simulation, the constant gradient used here was comparable to the gradient of the

most recent ILL nEDM measurement. T2 was measured to be ∼ 600 s for their ap-

paratus [44], which agrees very well with simulation results for “realistic” reflections.

Recall that the UCN energies have an approximate distribution P (v) ∝ v2, such that

the weighted average of T2 is closer to the values near the maximum velocity.

The sharp decrease in T2 at lower energies is also interesting. Consider the limit

that kinetic energy goes to zero, i.e. - static neutrons, for an isotropic spatial distri-

bution. In this limiting case, there is no sampling of different field regions, such that

depolarization occurs instantly. Local confinement is problematic for T2 because the

rate at which phase accumulates is a function of position, and there is no averaging

when the neutrons are confined. Likewise, very slow neutrons do not sample enough

of the field for substantial averaging to occur.

3.5 Studying the Effects of Non-Constant Gradients

Systematic effects are often analytically quantified by working with leading order

terms in an expansion of the relevant fields. Attempting to correct these effects term-

by-term may be insufficient. For example, the primary focus in designing the B0

coil for the LANL nEDM experiment was to minimize the average magnitude of the

gradient component dBz
dz

in the entire volume of interest. A gapped solenoid, i.e. -

two solenoids separate axially by a gap, can have the gap spacing optimized to reduce

the axial gradient in the magnetic field. Analytical solutions employ an expansion

of the axial component of the field near the center, and set the gap length such that

the leading order term in the gradient is zero [45]. With increased computational

resources, it is feasible to numerically calculate the average of dBz
dz

within a volume of

interest and use optimization algorithms to find the gap length which minimizes this

metric. It is proposed that this method is a better option, because it is possible that
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setting a low order term to zero has a severe negative affect on higher order terms,

which may become significant within a volume. This raises an interesting topic to be

explored in simulation: how much of an effect can be expected due to non-constant

magnetic field gradients? Is it sufficient to look at leading order terms, or should a

method to consider the cumulative effect of all terms be developed?

In deriving analytical solutions to the spin relaxation times, it is common practice

to assume a simple magnetic field profile approximated as a constant gradient in the

region of interest, e.g., ~B = (B0 +Gzzẑ)− Gz
2
ρρ̂, with constant Gz =

(
dBz
dz

)
[31][32].

In designing the prototype B0 coil in chapter 4, the primary goal in optimization

was to minimize the volume average of 〈dBz
dz
〉 in order to minimize the false EDM

effect discussed in section 2.3. This may not be an effective strategy if the systematic

effects are immune or susceptible to different symmetries of the simple model which

was used in the derivation.

Simulation studies were conducted using a 10cm long, 25cm radius cylindrical

storage chamber. Magnetic fields with an even and odd profile were designed with

the same average gradients inside this fiducial volume. Designing magnetic fields

which satisfy Maxwell’s equations, ~∇ · ~B = 0 and ~∇× ~H = ~J + ∂ ~D
∂t

= 0 (no currents

or time-dependent electric fields in the volume), becomes difficult at higher orders

due to an increase in the degrees of freedom, giving more potential field profiles using

a given order in L with the same average gradient. To reduce these complications,

simple linear and quadratic profiles were compared.

Comparing Linear and Quadratic Fields

The magnetic field in this study is designed to have the same nominal field value

of 10 mG = 1 µT, the same average magnitude of the gradient over the chamber

volume
∣∣dBz
dz

∣∣ = 3.0× 10−13 T mm−1, and must satisfy Maxwell’s equations, requiring

the divergence ~∇ · ~B = 0 and ~∇× ~B = 0 (for ~J = d ~D
dt

= 0). For the quadratic field

profile and higher-order terms, there are excessive degrees of freedom compared to the

constraints used, meaning that additional magnetic field anisotropies are possible. For

the quadratic case, I used azimuthal symmetry as an additional constraint to finalize

the field profile. It is worth future study to determine what effects might have been

missed by the azimuthally symmetric quadratic example chosen.

~Blinear = gl x x̂+ gl y ŷ + (B0 − 2gl z)ẑ (3.19)

~Bquad = −gq
3
x z x̂− gq

3
y z ŷ + (B0 + gq z

2)ẑ (3.20)
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where gl = 1.5× 10−13 [T / mm], gq = 1.2× 10−14 [T / mm2], and B0 = 1 µT.

An analysis is made of the transverse spin relaxation time, which is more sig-

nificant than the longitudinal spin relaxation in the method of separated oscillatory

fields. In general, T1 is larger than T2, and T1 is only important during loading and

unloading of the storage cell, which is on the order of 10’s of seconds compared with

the target 100’s of seconds in which the neutrons will precess in the transverse plane.

In the case of purely specular wall reflections, the neutrons sample some average ra-

dius, which for this argument we can consider the trajectories approximately circular

in the xy plane of the cylinder. This approximation becomes increasingly true as

the average radius gets nearer the edge of the cell wall. Even fields are azimuthally

symmetric such that precession frequency will be a function of radius (for approxi-

mately circular trajectories). The precession frequency for odd fields will oscillate as

a function of the orbit angle, all averaging about the central field value. Thus, at

leading order it is expected that for purely specular reflections, the odd field will not

depolarize the neutrons, and the even field will very quickly depolarize them.

The general trend of this argument is found in simulation to be true as shown

in Figure 3.11, where ‘smooth’ wall indicates reflections are 100% specular. The

dephasing at 10 s for the quadratic field is an order of magnitude worse than the

linear field dephasing at 100 s. An interesting feature of these results is that the angles

dephase asymmetrically, which is expected if the precession frequency is a function of

the radius with a uniform distribution. The differential area is dA = ρdφdρ, so that

more neutrons are at a larger radius if the density is constant. This feature begins to

disappear once wall collisions include a small percentage of non-specular reflections

(‘rough’), which will periodically shift the neutron to a different average radius.

Linear fields are demonstrated to also cause depolarization, though the argument

made previously was that they would not. This dissonance is the result of the ‘con-

stant radius’ approximation. For a given state in phase-space, the neutron will not

remain at a constant radius, but will instead move in straight-line chords, as shown in

Figure 3.2, which vary from a minimum radius ρ > 0 to a maximum radius at the cell

wall. The circular orbit argument was dependent on the additional phase accumu-

lated due to the magnetic field shift sampled on one side of the chamber to be exactly

canceled by the magnetic field shift on the opposite side, ∆B(φ) = −∆B(φ + π),

where ∆B is the shift in the magnetic field from the central value B(ρ = 0). This

is not true for chords; in general, the radius of the neutron at a given angle in the

cylinder plane ρ(φ) 6= ρ(φ+ π), so that ∆B(φ) 6= −∆B(φ+ π).

These simulation results indicate that the even terms in the magnetic field impact
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Figure 3.11: Comparison of T2 for a linear and quadratic field profile, with purely
specular reflections and a mix of non-specular.

the transverse spin relaxation time, T2, significantly more than the odd terms. It is

important to note the underlying cause of this mechanism: the radius of the neutrons

are restricted within some range; and a single term in an even field profile will only

either increase or decrease as a function of radius. The latter argument is concerning,

since most magnetic field sources are built with a symmetry which will result in even

field profiles. The qualifier ‘single term’ is important here, because even field profiles

including multiple terms of different even powers in ` with differing signs can result

in oscillations in the field as a function of the radius. Neutrons sample a region from

some minimum to maximum radius, so that this oscillation can reduce the dephasing

substantially. As an example, the prototype coil in chapter 4 has a quadratic term

of gq = −3.0 × 10−14 T / mm2, but a simulated T2 > 800 s, resulting from ` = 4, 6

terms which smooth out the magnetic field profile.
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In summary, depolarization is determined by a complex relationship between the

gradients in the field and the phase-space of the neutrons. For a cylindrical chamber,

the even terms contribute more significantly to transverse spin relaxation, especially

when the wall reflections are primarily specular. Perhaps it is even beneficial to

include as many observable even powers in the field as possible, such that the field

rapidly oscillates as a function of position, but never differs by an appreciable amount.

This could help by averaging out over shorter characteristic times. It could also

be beneficial to use a less symmetric storage chamber in order to promote a more

thorough sampling of the magnetic fields. These are questions which can be studied

best via simulation.

Copyright c© James Ryan Dadisman, 2018.
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Chapter 4 B0 Coil Design

4.1 Gapped Solenoid

Many experiments require some constant, uniform magnetic field, and a long solenoid

of helically wound wire is the most simple method used to produce such a field. An

obvious problem with this in practice is the requirement to have apparatus inside the

center, where the field is most uniform. It is possible to route equipment through

the open ends, though for a uniform field this length can be considerable. Splitting

the solenoid into two smaller solenoids with a gap between them allows easier access

to the center, and also generally increases the uniformity of the magnetic field. As

discussed in section 2.3, field uniformity is of the utmost importance due to systematic

effects in EDM searches.

A gap introduces a degree of freedom which can be tuned to improve the magnetic

field uniformity. A conceptual picture showing the mechanism which reduces the

magnetic field gradients of a gapped solenoid can be seen in Fig. 4.1.

Figure 4.1: A demonstration of the magnetic flux density between split solenoids
(blue lines). Magnetic field lines (black lines) are plotted for simple bar magnets.
Left: A single magnet’s magnetic field diverges in a dipole pattern. Right: Aligned
with an opposite pole and with a gap, the flux is pushed inward, straightening the
magnetic field lines along the length and decreasing the magnetic field gradients over
a greater distance.

Often in magnetic coil design, a “flux return”may be used to reduce the magnetic

field extending into other regions, to prevent saturating an external shield, or to

increase the uniformity of the interior field. A flux return in this sense is a layer

of material with high magnetic permeability which acts as a sink for magnetic flux
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Figure 4.2: A demonstration of the increased magnetic field uniformity when a
solenoid is placed within a magnetically shielded enclosure using 2D FEA. Left: A
single magnet’s magnetic field diverges in a dipole pattern. Right: Surrounded by a
material with high magnetic permeability which draws in magnetic flux density.

from the source. A gapped solenoid can be thought of as two magnetic sources which

return flux to each other at the adjacent ends (not the exterior region, as in the

stated analogy). A comparison of 2D finite element analysis (FEA) results for a

gapped solenoid in vacuum and a single solenoid inside an external shield flux return

(figures 4.1 and 4.2) demonstrates the similar effect each of these have on the interior

field. Due to this flux return type of mechanism, the concavity of the magnetic flux

(i.e.- the degree of inward / outward curvature of the vector potential contours) can

be tuned with the gap-length. The field uniformity advantage of the gapped solenoid

may also be used to substantially shorten the length compared to a solid solenoid.

Gapped solenoids have in fact been extensively used for a very long time: a

Helmholtz coil could be considered a solenoid with a gap composed of two loops of

wire with spacing designed to set ∂2B
∂z2 |~r=0 = 0, with the axis running through the

coils defined as ẑ. There is still a benefit to using traditional solenoids compared

with thin current loops: the larger area with a current density “smooths” out the

magnetic field in a volume. Effectively, this decreases the sensitivity to wire placement

while also increasing uniformity. Unfortunately, optimization of a continuous current

distribution is more difficult to achieve compared with discrete current loops.

In an interesting paper discussing the advantages of optimizing the gap length

between two solenoids (as opposed to current loops), Gosling and Cunningham pro-

posed a straightforward method to optimize the gap depending on the half-length

and radius of the coils [45]. It could be considered a generalization of the Helmholtz

condition for coils of finite length.
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Figure 4.3: Concept used by Gosling and Cunningham [45]. A gapped solenoid is
built of a cylindrical shell sheet of current with half-length Ls and radius a. The gap
is modeled as a cylindrical shell sheet of current with half-length Lg, identical radius,
and opposite current. By superposition, this is equivalent to two individual solenoids
of length (Ls − Lg) with a gap of total length 2Lg and total coil length 2Ls.

As shown in figure 4.3, the authors considered the gapped solenoid to be composed

of a single large cylindrical shell sheet of current, and the gap is a single cylindrical

shell of current in the opposite direction. This was done for simplicity, and is allowed

by the property of superposition. The gap sheet cancels out the large sheet current

to produce zero net current on the sheet in the gap region. Consider the expansion

of the axial field Hm due to one of these sheets in terms of Legendre Polynomials,

normalized to be unit-less.

Hm = Am −
3

2
Bmρ

2P ′2(cos(θ)) + . . . (4.1)

Am ≡ χm
(
1 + χ2

m

)−1/2
(4.2)

Bm ≡ χm
(
1 + χ2

m

)−5/2
(4.3)

χm ≡ Lm/a (4.4)

Here, Lm refers to the half length of either the total solenoid or the gap, a is

the radius. The authors considered field homogeneity near the center, such that
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radial fields will be negligible and the axial component of the field can be written as

an expansion 4.1. In this picture, the total field is the difference between the large

solenoid sheet and the gap sheet: H = Hs−Hg = (As−Ag)− 3
2
(Bs−Bg)ρ

2P ′2(cos(θ))+

. . . . The second term is the leading order in the gradient, which can be tuned to zero

by optimizing the gap length to the condition χs (1 + χ2
s)
−5/2

= χg
(
1 + χ2

g

)−5/2
. They

found that for a properly optimized gapped solenoid, the equivalent field uniformity

in a volume of interest would require a continuous solenoid four to five times longer.

This paper was a great proof of the potential benefits for optimized gapped solenoids.

One important aspect which was not addressed in [45] was the coupling of mag-

netic shielding to a gapped solenoid. A conceptual argument can be made that,

because shielding acts as a sink for magnetic flux, the shield would draw the field

through the gap, making gradients worse than for a continuous solenoid. An analyti-

cal formalism using Fourier transformations for determining the coupling of a source

solenoid and shielding was given in a paper by Turner and Bowley [46]. They con-

sider some cylindrical solenoid inside of an infinitely long, cylindrical shield of infinite

magnetic permeability. The total current density is written as the sum of a known

current distribution solenoid at radius a, ~F , and the undetermined response current

in the shield at radius b, ~f :

~J = ~F (z, φ)δ(ρ− a) + ~f(z, φ)δ(ρ− b) (4.5)

Starting with the vector potential ~A, the authors re-wrote using a Green’s function

the term:

1

|~r − ~r ′|
=

1

π

∞∑
m=−∞

∫ ∞
−∞

dk exp[im(φ− φ′)] exp[ik(z − z′)]Im(kρ<)Km(kρ>) (4.6)

where Im and Km refer to the modified Bessel function of the first and second kind,

respectively. The exponential terms of this expansion can be absorbed into the Fourier

transform of the source current density. As an example, Az is shown.
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fmz (k) =
1

2π

∫ π

−π
dφ exp(−imφ)

∫ ∞
−∞

dz exp(−ikz)fz(φ, z) (4.7)

Az =
µ0

4π

∫
Jz(~r)∣∣∣~r − ~r′∣∣∣dv′ (4.8)

=
µ0

2π

∞∑
m=−∞

∫ ∞
−∞

dk exp(imφ) exp(ikz)Im(kρ) [bf zm(k)KM(kb) + aF z
m(k)KM(ka)]

They then use the conditions

~∇ · ~J = 0

Bρ(ρ = b) =

[
1

ρ

∂Az
∂φ
− ∂Aφ

∂z

]
ρ=b

= 0

to find the shield current as a function of the source current.

fmz (k) = −Fm
z (k)

a2I ′m(ka)

b2I ′m(kb)
(4.9)

This allows for the field everywhere inside the shield to be found using only the

Fourier transform of the source current, which is known. The same procedure is

carried out for the other components, fφ and fρ. This method was extended in a paper

by Bidinosti et al. [47] to consider finite permeabilities and thickness of the shield,

though still only for the case of “infinite” length, cylindrical shields. This paper also

worked out an optimization to the gapped solenoid problem using a similar method

to [45], in which the leading order term in k was set to zero by careful selection of

the gap length, and found a slightly different result, which is expected now that the

shield contributes to the magnetic field.

In designing a scale prototype gapped solenoid for the LANL nEDM experiment,

I utilized the formalism of Bidinosti et al. [47], using the high permeability limit

for the shield, which is a reasonable approximation for an unsaturated mu-metal

shield with relative magnetic permeability µr ∼ O(104). Rather than minimizing the

leading order gradient term in an expansion of the field near the center, I considered

the average magnitude of the gradient within the volume of interest. An analytical

form of the gradient can be taken from the general solution from [47]. Of particular

interest is the ẑ component of the gradient, which, as discussed in section 2.3, is the
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most significant contributor to a false EDM effect, and is easily calculated. Since the

solenoid’s wires will have discrete thickness, and thus the gap length around the edge

circumference of the helically-wound coil will likely vary on the order of this width, it

then becomes reasonable to perform a grid-search for the optimum gap length using

this average gradient.

Gapped Solenoid Theoretical Design

The starting point for my optimization of a gapped solenoid is the equation for

the magnetic field inside an infinitely long cylindrical shield using the formalism of

Bidinosti et al. [47], with Rm(k) as given in the high permeability limit and in the

region ρ < a < b:


Bρ

Bφ

Bz

 =− µ0a

2π

∞∑
m=−∞

eimφ (4.10)

×
∫ ∞
−∞

dk eikz [K ′m(ka) +Rm(k)]Fm
φ (k)


k
i
I ′m(kρ)

m
ρ
Im(kρ)

kIm(kρ)


Rm(k) =− I ′m(ka)Km(kb)

Im(kb)
(4.11)

A benefit of this analytical form is the simple solution to the ẑ component of the

gradient, which is the metric used to optimize the gap length. Having an analytical

form for the gradient reduces the computation time relative to numerically calculating

the derivatives at each integration step.
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
dBρ
dz

dBφ
dz

dBz
dz

 =− µ0a

2π

∞∑
m=−∞

eimφ (4.12)

×
∫ ∞
−∞

dk ik eikz [K ′m(ka) +Rm(k)]Fm
φ (k)


k
i
I ′m(kρ)

m
ρ
Im(kρ)

kIm(kρ)


Rm(k) =− I ′m(ka)Km(kb)

Im(kb)
(4.13)

For approximate coil diameters 1 m and wire diameter 1 mm, the pitch of the

wires is so small that the constant current density sheet model shown in Fig. 4.3 is a

suitable approximation which reduces substantial complexity. The Fourier transform

of the current density for this case is, where Lg is the half-length of the gap, and Ls

is the half-length of the completed solenoid (i.e.- the full length of one of the coils,

plus Lg):

Fm
φ (k) =

I cos θ

πk
[sin(Lsk)− sin(Lgk)] (4.14)

A Python script was written to numerically integrate dBz
dz

, calculated from equa-

tion 4.10, over the region of interest to determine the average gradient. The integra-

tion is repeated in increments of 1 mm added to the gap-length, chosen on the basis

that the gap length can reasonably be controlled to the approximate size of one loop

of wire. The volume average is then minimized via least squares. It is important to

note that this method is general for any fiducial volume, which is significant in that

there is no single optimum gap length for any and all volumes of interest.

Gapped Solenoid Prototype Test

In order to validate this optimization method, a gapped-solenoid was constructed at

approximately half scale to that expected in the full LANL nEDM experiment. The

purpose of this test was to compare the measured field profiles and average gradients

of a real coil to the model as calculated using Python. The coil was constructed with

readily available materials and designed to fit within existing shielding, and likewise

the average gradient in this test was not expected to be near the requirements for a

nEDM experiment.
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Gapped-Solenoid

Figure 4.4: 4:7 Scale Gapped-Solenoid. Included are a set of saddle coils to reduce
backgrounds. The field was mapped inside a cylindrical shield of axially-aligned strips
of Metglas, a material with very high permeability used for magnetic shielding.

The shielding was comprised of a 180 cm long, 94 cm diameter sonotube form

(a dense cardboard material forming a cylindrical shell, used for pouring concrete

columns) with 2 layers of Metglas strips aligned with the length. The coil was wound

on an 80 cm diameter sonotube form; the dimensions can be seen in Fig. 4.4. The

backgrounds inside the shield remained on the O(100 mG), largely due to penetration

through the large, open ends. Consequently, saddle coils were wound on each axis of

the gapped solenoid to shim backgrounds with the coil turned off, and the gapped

solenoid was set to a nominal field of 1 Gauss in order to raise the produced field above

the remaining background. Saddle coils are a method to produce an approximately

constant field along a transverse axis of a cylinder. They are similar to a Helmholtz

coil in that they can be wired with the same current to produce a constant field,

or with the opposite current in a pair to produce a zero central field with a linear

gradient. Here, the pairs were wired to separate DC current supplies so that the

current could have the same direction but different magnitude. Such an “asymmetric”

mode produces a transverse field with a central offset and linear gradient. The shim

coils were able to reduce the backgrounds by a factor of ten.

The resulting average fractional gradient is very close to the theory prediction,

without giving consideration to the uncertainty. A direct comparison of these is

difficult to achieve: there were non-linear background gradients which considerably
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Figure 4.5: Diagram for asymmetric saddle coils, used to produce a transverse field
capable of shimming constant field with a linear gradient.

polluted the desired intrinsic gradients of the coil; and the theory assumes an in-

finitely long shield of infinite permeability. The error in the map is dominated by

the backgrounds, therefore it is more suitable to view this measurement as an upper

limit on the average gradient.

Table 4.1: Comparison of theory to measured average fractional gradients for half-
scale prototype B0 coil. 〈 dBz

dz

B(~r=0)

〉
Theory 2.33× 10−4cm−1

Map 3.05× 10−4cm−1

It is prudent to check the field profiles along main axes to validate the model

calculations. Fig. 4.6 makes this comparison for the same current in coil used for the

theory (no normalization used). The map along the z-axis agrees very well with the

theory, though there is clearly still an un-shimmed linear gradient. The x-axis map

includes a linear gradient as well, and an artifact of the perfect shield limit used in

the theory. Note how the symmetric peaks are in nearly the same positions along

the x-axis for theory and map, but the peak-to-trough amplitude is smaller in the

map. A “perfect” shield would have an induced surface current density sufficient to

cancel the radial component of the magnetic field inside the bulk of the shield (by the

boundary condition Bρ(ρ = ρshield) = 0). An imperfect shield will have less surface

current density, but located at the same radius. Thus, the higher-order gradients
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caused by the induced current in the shield will be softer, but the relative positions

of these features will be unchanged.

Figure 4.6: Theory vs. Map along the x and z axes of the gapped solenoid. The
left axis scale is for the field map, the right axis scale is for the theory plot. The
saddle coils used to trim the background field are included in the theoretical gapped
solenoid plot.

The theory code is effective at predicting the general features of the field profile,

but its limitations are evident. Furthermore, the “infinite, cylindrical” shield assump-

tion is not accurate for finite shields with rectangular prism geometry, as will be used

for the nEDM experiment. This dictates that the full design be performed in a more

robust and general method, e.g., finite element analysis. Optimization using an FEA

package, such as COMSOL, can be more time-consuming than this analytical model

using Fourier transforms in Python. Thus, this method has value in setting a starting

set of parameters and limiting the parameter space to be evaluated in COMSOL.

4.2 Current Optimizations in a Double-Gap Solenoid

It has been shown that adding a gap to a solenoid can increase the magnetic field

uniformity by a “flux-return” type mechanism. A logical evolution is to then add more

gaps to increase the axial length along which the magnetic field retains the desired

uniformity. This geometry makes even more sense in the context of a double-chamber

experiment as proposed: if the field is highly uniform in the gap region between two

solenoids, and there are two volumes of interest, then having two gaps makes sense.

A double-gapped solenoid (DGS) can be thought of as an inner coil and two axially

symmetric outer coils. This symmetry for a centrally located fiducial volume then

presents a new degree of freedom: modifying the current in the outer coils relative
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to the inner coil. This can be thought of as a “flux focusing” type of mechanism,

analogous to optics, capable of further reducing the average magnetic field gradients

by a factor of 10×. This mechanism is identical to that shown in figure 4.1; however,

by changing the magnetic flux from the outer coils relative to the inner coil, the flux

inside the inner coil can be either compressed inward or expanded outward (“focusing”

the flux) to further increase the magnetic field uniformity. A DGS geometry was thus

chosen for the prototype apparatus built for a demonstration of the Ramsey method

of separated oscillatory fields conducted at LANL.

Figure 4.7: Contours of the vector potential are plotted for a DGS configuration of
magnets. The blue lines represent edges of permanent magnets. Left: Inner and
outer currents are equal. Right: Example with a substantially larger current in the
outer coils relative to the inner coil. Note how the vector potential lines have gone
from diverging to converging within the central coil.

For the Ramsey cycle demonstration B0 coil, an order of magnitude decrease in

the volume average magnetic field gradients was predicted in COMSOL for the outer

coils having a range 8% to 10% more current than the inner coil, as shown in figure 4.8.

The current optimization of a DGS improves magnetic field uniformity comparable

to the improvement the DGS provides relative to a solid solenoid.

Similar optimizations have been used in recent experiments, notably involving
129Xe EDM measurements [48].

A cos θ coil is typically used in experiments where magnetic field uniformity is

important, because a current distribution on an infinitely long cylindrical shell which

is proportional to the cosine of the azimuthal angle will produce a perfectly uniform

field. When the length of the coil is comparable to the radius this approximation

breaks down considerably. Nevertheless, it produces a very uniform field for finite

lengths such that it is commonly used, and thus should be the benchmark for the
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Figure 4.8: Comparison of a COMSOL model of the prototype B0 coil design for a
solid solenoid (left), double-gapped solenoid (middle), and current optimized DGS
with IOuter = 1.1IInner (right). The colormap scale has a range of 1% of the central
magnetic field value Bz = 10 mG. The white box indicates the fiducial region.

optimized double-gap solenoid. For the same geometry as the DGS, a cos θ coil will

produce a field transverse to the DGS; as a result, comparisons are made for a 30-turn

cos θ coil in the same configuration as the DGS and rotated 90 deg as shown in figure

4.9.

Figure 4.9: Geometry used for benchmark cos θ coils: The left geometry will produce
a magnetic field along the x-axis; the right will produce a magnetic field along the
z-axis.
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Figure 4.10: COMSOL model comparing a cos θ coil with the same dimensions and
shielding as the prototype DGS (top) in the transverse (xy) plane. The cos θ coil
produces nominally a field perpendicular to the longitudinal axis (left); it can be
turned on its side (right) to produce a field in the same direction as the DGS. The
white lines indicate the fiducial region under consideration for a double-chamber
experiment, for which the DGS is proposed to be superior.

Along the y-axis, the cos θ coil has a variance in the magnetic field ≈ 4× that of

the DGS; however, along the x and z-axes, the DGS is easily an order of magnitude

more uniform. Note this is a comparison to the DGS optimized for a single, central

storage chamber rather than the 2-chamber design.

4.3 Ramsey Demonstration B0 Coil

As a proof of capability towards a full neutron EDM measurement, an experiment

designed to measure the Ramsey method of separated fields fringe was conducted

at Los Alamos Neutron Science Center (LANSCE). In order to suppress the false

EDM effect due to the motional ~v × ~E field in the full EDM measurement, the

specification for magnetic field uniformity is
〈 dBz

dz

Bz(~r=0)

〉
< 3.0×10−6 cm−1. COMSOL

models indicated it was possible to optimize the fractional gradient to
〈 dBz

dz

Bz(~r=0)

〉
<

1.0 × 10−6 cm−1 if the coil was built to just barely fit inside of the shield. It was

determined that for this demonstration, the level of performance did not need to
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Figure 4.11: COMSOL model comparing a cos θ coil with the same geometry and
shielding as the prototype DGS (top) in the longitudinal (yz) plane. The cos θ coil
produces nominally a field perpendicular to the longitudinal axis (left); it can be
turned on its side (right) to produce a field in the same direction as the DGS. The
white lines indicate the fiducial region under consideration for a double-chamber
experiment, for which the DGS is proposed to be superior.

meet the full experiment specification, considering only the magnetic field resonance is

being measured and it is the false EDM effect which requires such a strict specification.

The focus was then on a more easily constructed coil which nevertheless improves

upon technical expertise for the full experiment.

Prototype B0 Design

An additional consideration is the interior dimensions of the shield. For this first

demonstration, an existing shield was selected to accelerate the timing and minimize

costs over having a new shield custom built. The interior dimensions of this shield

are 52 3/4 in (W) × 60 1/4 in (L) × 70 in (H). Ideally, the coil should be as large as

possible to improve the uniformity; however, there must be additional space to allow

for maneuvering the coil inside the shield and to allow for working room inside the

shield.

The coil dimensions were set at a diameter of 42 in and a total length of 47 in.
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Constraints for the inner coil and gap lengths were set by the positions and dimensions

of the UCN guide and storage cell. Using the techniques of sections 4.1-4.2, the

dimensions were optimized within the allowable range: inner coil length = 7 in; gap

length = 6 7/16 in; outer coil lengths = 12 3/4 in. The winding surface frames were

composed of fiberglass-reinforced plastic (FRP) from a vendor. To provide additional

structure, a set of flanges was cut from 1.5 in thick laminated bamboo sheets with

an inner diameter matching the outer diameters of the FRP frames to within 1/16

in, and outer diameter 1.5 in larger. These were attached to the top and bottom of

the FRP tubes using brass screws. 18AWG gauge, solid core copper, enamel-coated

magnet wire was wound on the outer surface of the FRP frames between the two

flanges. The separate pieces were connected via fiberglass threaded rods, using thick

fiberglass tubes cut to the required gap length to support the weight of each section.

The complete B0 coil assembly inside the shield is shown in 4.12.

Figure 4.12: Double-gapped solenoid inside shield. The two vertical struts in the
foreground, resting on the top of the B0 frame, are rectangular fiberglass frames
which support the spin-flipping B1 coils.
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Simulated T2

Using the simulation discussed in chapter 3, the transverse spin relaxation time was

determined for the theoretical coil. As discussed in section 3.4, the spin relaxation is

highly dependent upon the velocity distribution of the neutrons. Figure 4.13 compares

the distribution of the transverse plane polarization angle φ for the prototype B0 coil,

using the analytical fit model discussed in section 3.3, for maximum UCN velocities

of 7 m/s and 5 m/s, both using a P (v) ∝ v2 distribution.

Figure 4.13: Histogram of the transverse polarization angle, φ, after 350 s of free
precession for the prototype B0 coil set to produce a 10 mG field. The left histogram
is for the upper velocity cutoff of the velocity distribution vmax = 5 m/s; the right
histogram is for vmax = 7 m/s.

As expected from the discussion in section 3.4, the spin relaxation time is shorter

for slower neutrons. The results of these simulations are: for vmax = 7 m/s, T2 ∼ 850

s; for vmax = 5 m/s, T2 ∼ 350 s.

Preliminary B0 Mapping

After fabrication and assembly of the prototype B0 coil, a series of magnetic field maps

were collected using a Bartington MAG-03MSESL triple-axis fluxgate magnetometer

mounted along a rail which defines the x-axis, with 6 available positions along the

y-axis and 3 positions along the z-axis. This map was collected upon coil completion

and prior to assembly of the storage chamber, so that only the B0 coil was inside

the shieldhouse, which itself was in a staging area separate from the experiment hall.

After degaussing the shield, a background map was taken with the B0 coil turned

off. A set of field cancellation coils was not used for the Ramsey demonstration, so
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that background reduction was only dependent on the shield. The manufacturer label

indicated a minimum performance for field attenuation of HOutside

HInside
≥ 100, which was

confirmed by comparisons of the field measured inside and outside of the shield. As

shown in 4.14, the result is background fields on the order of several percent of the

nominal B0 ≈ 10 mG, with gradients an order of magnitude larger than the designed

B0 field gradients.

Figure 4.14: Measured background inside shield after degaussing. Dashed lines indi-
cate the edge of the fiducial region.

In order to evaluate the performance of the B0 coil, the nominal field was increased

an order of magnitude to increase the magnetic field profile above the backgrounds.

To verify the performance of the current optimization, maps were taken with the

current ratio at 100% (Iouter = Iinner) and 110% (Iouter = 1.1Iinner).

The results clearly indicate the effectiveness of the optimization techniques: adding

appropriate gaps in a solenoid will substantially improve the uniformity in a larger

volume as compared with a solid solenoid, especially useful along the length or as

a method to shorten a solenoid; and the flux can be focused to further increase the

uniformity within a specific region by altering the current in respective sections of

coils. The magnetic field profile along the mapping axis shows very good agreement

with the COMSOL model. The other axes did not have enough resolution to make

any statement regarding their comparison with theory.

A statement on the volume average gradient could not be made for two reasons:

1. The background gradients still contributed a gradient which was on the order of

the designed gradients in B0 even with the magnetic field scaled; 2. There was a large

gradient along the vertical axis which was discovered in the analysis process that had

not been shimmed.
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Figure 4.15: Comparison of DGS with current optimization and without (current in
inner and outer coils is the “same”) along x-axis. Dashed lines indicate the edges of
fiducial volume, and fields are normalized to the central value.

Figure 4.16: Measured B0 coil at 110% current ratio compared to COMSOL model.

The vertical gradient was studied after the data collection, and is the result of

the B0 coil not being centered within the shield as designed. The offset was ∼ 3 in,

and due to the requirement that the static UCN guide be aligned with the solenoid

gap it could not be centered. The sources of this gradient are the induced surface

currents in the magnetic shield which distort the magnetic fields similar to the “flux

focusing” mechanism discussed previously. This can be used to the advantage of

71



magnetic field design by use of magnetic endcaps as previously discussed. However,

when the magnetic source is not centered relative to the shield, the symmetry of the

magnetic field is broken resulting in stronger magnetic fields where the coil is nearer

the shield and weaker in the region farthest from the shield. In the fiducial region,

this produced a linear gradient along the length of the coil. This was subsequently

shimmed via addition of 10-turn coils to the top and bottom of the B0 coil and wired

in an anti-Helmholtz configuration (though not at Helmholtz spacing by constraints).

The vertical offset had a severe negative impact on the magnetic field uniformity.

The current loop pair shim produced an approximately linear field along the z-axis,

but it also produces gradients along the transverse axes which are considerably larger

than those resulting from the B0 coil. Additionally, the linear gradient it does produce

is only approximately linear for a narrow region along the z-axis, until higher order

terms contribute at a larger radius.

Table 4.2: Target nEDM uniformity compared with the prototype COMSOL models,
centered and 3-in offset with z-shim. 〈 dBz

dz

B(~r=0)

〉
nEDM Target ≤ 3.0× 10−6cm−1

Centered 5.6× 10−5cm−1

Offset 7.3× 10−4cm−1

Placement of the coil offset from the center of the shield is a problem, but study of

this effect demonstrates an interesting potential method of shimming magnetic fields

in future experiments. If the addition of linear gradients or the cancellation of stable

background gradients are desired, the coil could be mounted on adjustable kinetic

mounts. By adjusting the position of the coil relative to the center of the shield, the

induced currents in the shield can be used to produce very uniform linear gradients.

Figure 4.17 demonstrates this effect, producing linear gradients in the ẑ component

of the field.

It is interesting to note that the radial offset results in a far smaller gradient

than the vertical offset. The reason for this is that the magnitude of the magnetic

field on the top / bottom is ≈100× the magnitude on the sides, which means the

induced surface currents in the shield will be similarly smaller on the sides. Addition

of coils to shim dBz
dz

is simple via addition of large circular loops wound on each end

of the coil. Shimming dBz
dx

and dBz
dy

requires shim coils with more complex geometry,

which also tend to produce undesirably large off-axis components. Controlling the
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Figure 4.17: Comparison of separate radial and vertical offsets of 1 in between the
center of the coil and the shield. The same color scale is used for each.

offset is a promising method of avoiding such side-effects. The effective range of

uniformity must be considered for the B0 coil if this method were used. e.g., If the

field only achieves the uniformity specification in a radius of ρmax, then the maximum

displacement for shimming purposes must be limited to ∆x,y ≤ |ρmax − ρcell|. Based

on studies of asymmetric v. symmetric magnetic field profiles, it may actually be

beneficial to have a slight offset so that the magnetic fields are no longer azimuthally

symmetric (see section 3.5). For the two-chamber experiment design, there might

be some concern about vertical offsets creating different Larmor frequencies in each

chamber. Co-magnetometers are used so that the leading order resonant frequency

due to the magnetic fields alone can be determined. However, separate spin analyzers

must be used for counting the neutrons in the top and bottom chambers separately in

order to account for the systematic shift induced by these gradients. Use of separate

analyzers is a good idea in general because it is likely there will be some very small

shift in the average magnetic field for each chamber.

4.4 In-Situ Mapping

Mapper Design

In the experiment hall, the shield was elevated ∼ 6 ft above the floor to align it with

the UCN source guide. Combined with the presence of the UCN storage chamber,

the manual mapper using a rail was not achievable. A custom triple-axis mapper was

designed and built so that the magnetic field could be measured in-situ with all of

the equipment in place. There were two discrete sections of hardware components:
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a setup inside the shield which would support and move the probe and required all

non-magnetic materials; and an external setup which contained the stepper motors

used to actuate motion.

The internal setup of the mapper is comprised of an aluminum plate supporting

a rotating sub-assembly, shown in figure 4.18. A cylindrical shaft made of UHMW,

a grade of plastic with a low coefficient of friction, passes through a 4 in hole in the

aluminum plate, connecting top and bottom plates made from acrylic on each side

with brass bolts. A teflon thrust bearing is placed between the acrylic top plate and

aluminum base to support the rotating assembly weight. Kevlar string is wound on

the top of this shaft, with ends exiting on opposite sides of the shaft to enable rotation

in either direction via tension. The kevlar string is guided out of the shield through

a small port using a system of bronze pulleys. A single stepper motor, a Velmex

PK296, can then control the angle of the rotating assembly relative to the aluminum

plate. This motor has discrete steps of 1.8 degrees; with a 2 in spool mounted to

the motor shaft used to wind the string, this corresponds to 0.9 degree steps in the

rotating assembly.

A
B

C D

Figure 4.18: Rotating assembly: A) Hollow UHMW shaft; B) Acrylic top / bottom
plates; C) Aluminum base; D) Teflon thrust bearing.

Mounted on the bottom plate of the rotating assembly is a frame made of 1/4 in

thick G10 strips, shown in figure 4.19, which supports one of two mapper styles. For

field monitoring during data collection, fluxgate magnetometers are directly mounted

to slits in the vertical G10 rails. Kevlar strings support the weight of the magnetome-

ters, using the balance of weight and tension to control the height via adjustments to
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the string length. Individual Velmex P264 stepper motors control the string lengths,

with 1.8 degrees per step and 1.5 in spools resulting in 1.1 mm per step control. In

this configuration, multiple sets of boundary conditions sampled from a cylindrical

shell can be taken per data collection cycle.

Figure 4.19: Diagram showing how the triple-axis magnetometers mount to slits in
the vertical rails via brass screws for boundary value measurements. Screws hold the
probe flush to the vertical rail, and there is clearance between the slit and the screws
so that they are free to slide vertically. String connects at the top of the probe to set
height.

For in-situ volume mapping, the configuration is as shown in Fig. 4.20. UHMW

end caps are mounted to and free to slide along each vertical rail. A horizontal rail

made of UHMW is clamped on each end to the endcaps, and a holder made of PVC,

which supports a single magnetometer, is supported by and free to slide along the

rail. Kevlar string from individual stepper motors is routed through additional bronze

pulleys mounted to the end caps, and connects to each side of the PVC probe holder.

In this configuration, coordinated motion of the two PK264 motors can be used to

change the vertical position of the end cap / rail / probe sub-assembly, or to control

the radial position of the PVC probe holder along the rails.

Consider the strings connected to each end of the PVC holder to have lengths

l1 and l2. For the ideal case, in which the lengths of each string are simultaneously

changed at the same rate and by the same amount, then the position can be “easily”

controlled as in equations 4.15.
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Figure 4.20: Overview of internal assembly as setup for collecting volume maps.

∆z = ∆l1 = ∆l2

∆ρ = ∆l1 = −∆l2 (4.15)

Appropriately synchronized motion was achieved, but difficulties arose as a result of

motor backlash for vertical motion and horizontal rail tilting for radial motion.

When moving the sub-assembly vertically up, backlash in the motor between the

moving state and holding state would cause an inconsistent amount of drop in the

position. This seemed to be a consequence of the torque applied during the moving

state being higher than the holding state when the string was wound onto the spool.

When unwinding, the motors never had any backlash (i.e.- when the moving state

of the motor had lower torque than the holding state). This allowed for a software

countermeasure: when moving up, the motors were instructed to take additional

steps above the desired position, then to step back down. This allowed all vertical

adjustments to finish with a transition to the holding state from the lower torque

unwinding condition, preventing all backlash.

A similar countermeasure was applied to the problem of rail tilting. Due to some

slight looseness between the end caps and the vertical G10 rails, the horizontal map-

ping rail could tilt up to 1 degree, with the direction of motion being the side which
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tilts up (i.e.- the end at which the string is decreasing in length). The maximum angle

was not immediately reached but rather took several centimeters of radial motion to

peak. This allowed the rail to be effectively leveled by using a decaying oscillation

about the desired radial position.

A controlling program was written in C++. Bartington Mag-03MSESL triple

axis magnetic field probes were used, connected to Bartington signal conditioning

units. The SCU output was wired to a Measurement Computing USB-2416 ADC

in single-ended mode with all grounds connected to the ADC ground. Two Velmex

stepper controller units were used to control the motors. The ADC and controllers

were connected to a computer via separate USB cables. Firmware was available with

the controller and ADC for Windows, but was not Linux compatible. A Windows

graphical interface was written to adjust settings and manually control the motors

for calibration. A routine was written to automate the boundary value and volume

map functions. At each data collection point, a series of 10 measurements of the

magnetic field, separated by 5 ms each, was used to validate stability of the reading.

The average and standard deviation of each measurement for all three components

and the probe coordinates were output to a tab-delimited text file for offline analysis.

In-Situ Results

After installation and calibration of the volume mapper, a series of maps were col-

lected with the UCN storage cell top-plate removed. This allowed for measurements

close to the cell walls and valve to check for local perturbations caused by potential

magnetic material contamination. The center of the storage cell was set as the origin

of the coordinate system. Initial results along the “x-axis”, defined as the axis parallel

to the UCN guide, indicates some asymmetric perturbation that gets stronger near

the bottom of the storage cell, as displayed in Fig. 4.21.

This same feature is present in the background, and appears to have the same

amplitude in both cases. Fig. 4.24 shows the B0 field with background subtracted at

various heights, which results in a very flat magnetic field profile as designed.

Volume maps were also collected for B0 = 222 mG, which included the same

characteristic perturbation as shown in Fig. 4.25, increasing in amplitude near the

bottom center of the cell. Such a feature, which is independent of the applied magnetic

field, is characteristic of a magnetically saturated material. The UCN port is in the

center bottom, and a valve apparatus directly below the port. It was discovered that

the valve bellows was a grade of stainless steel, and was subsequently replaced with

a titanium bellows.
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Figure 4.21: Comparison of B0 = 22 mG along the x-axis at different heights.

Figure 4.22: Comparison of background along the x-axis at different heights.
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Figure 4.23: Comparison of B0 to the background with a constant 22.08 mG offset.

Figure 4.24: B0 with background subtracted at different heights.
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Figure 4.25: B0 = 222 mG at different heights.

4.5 Full-size Neutron EDM B0 Design Recommendations

Magnetic shields can be very expensive, upwards of $1M, which makes efficient use

of the volume crucial. It is also important to have as large a storage container as

possible in order to minimize the number of wall collisions, which can cause depolar-

ization or loss of neutrons through upscattering and absorption. Multi-gap solenoids

using current optimization can help to reconcile these conflicting considerations. Flux

focusing reduces the importance of solenoid length for field uniformity requirements,

which makes the footprint, i.e.- the circular area for a cylindrical cell, the more crit-

ical parameter for setting the dimensions of a coil. A shorter shield with a wider

footprint is beneficial for several reasons.

Higher order terms in the field expansion result in large gradients near the coil,

e.g., B ∝ r6. When the radius of the fiducial region is similar in size to the radius

of the coil, higher order terms will always have an impact. Additionally, due to the

ρ2 dependence on area, the higher radius regions make up more area per differential

segment dρ. Increasing the footprint of the solenoid reduces this effect.

An added benefit lies in spin-transport. A UCN guide passing from outside to

inside the coil will experience a zero crossing, which will cause depolarization. A coil

with sufficiently large radius allows enough space for a holding field to be maintained
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up to the coil, then tapered to zero toward the center of the coil to promote adiabatic

spin transport.

Preliminary work has been completed in designing a full-size, multi-gap solenoid

for implementation of a full double-chamber neutron EDM experiment. A full op-

timization cannot be completed yet, as the chamber, electrode, guide, and shield

designs have not been finalized as of this writing; thus, the related constraints on the

gap positions are undetermined. Meeting the uniformity requirements to suppress

the false EDM effect should be easily accomplished used multi-gap solenoids with

current and gap length optimizations.

1 [μT]-0.1% +0.1%

Figure 4.26: Concept multi-gap solenoid with current optimizations. Colormap indi-
cates the nominal field component with a scale of ±0.1%. Shield dimensions are 2 m
× 2 m × 1 m

Copyright c© James Ryan Dadisman, 2018.
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Chapter 5 LANL Ramsey Cycle Demonstration

As a proof of capability to perform a neutron EDM measurement prior to the final

design of the experiment, a prototype apparatus was built to measure the Larmor

precession frequency for neutrons in a magnetic field using the Ramsey method of

separated oscillatory fields. A summary of the experiment setup is presented, followed

by a brief discussion of the results [49].

5.1 Setup

One key component driving design considerations for this test, especially important

to the magnetic field source, was the magnetic shield. There was an existing, unused

shield at Los Alamos which was loaned to this test with interior dimensions 52 3/4

in (W) × 60 1/4 in (L) × 70 in (H). This constrained the dimensions of any coils to

maximum radius r < 64 cm and total length L < 177 cm, without giving extra space

between the coil and the shield wall. Considering the magnetic field only needed to

be uniform enough to maintain polarization for this test and in order to allow extra

space for working and support structures, the decision was made to use a smaller coil

with radius r = 21 in ≈ 53 cm and total length L = 120 cm.

The B0 gap lengths were optimized as discussed in chapter 4, with the UCN guide

diameter and position setting constraints on the gap lengths and positions, resulting

in the optimized inner coil half-length of 9 cm and gap length of 16 cm. Current was

supplied by a Keysight B2962A low noise, 2-channel DC power supply; one channel

was used to power the center section of the coil at 2.45 mA, and the other channel

powered the outer coils at 2.6705 mA, the optimum current ratio being 9% more

current in the outer coils relative to the inner.

For simplicity, the B1 coil used to generate the transverse oscillating field for the

π/2 spin flips was constructed as a rectangular coil pair of dimensions 48 in × 52 in,

separated by 30 in. A Stanford Research DS345 signal generator synchronized to a

Stanford Research FS725 rubidium frequency standard is used to apply voltage for

the RF pulses with precise frequency and phase control [49]. The spin-flip efficiency

was simulated using a model of the B1 coil and found to be ≈ 99.995%. Simulation

was used in lieu of measurement due to polarization losses in spin-transport; the

magnitude of the on-resonance asymmetry measurement of the Rabi fringe shown in

figure 5.6 agrees with the asymmetry measurement for similar holding times in the
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T1 measurement shown in figure 5.5, supporting the simulation results for spin-flip

efficiency.

An aluminum frame supports the UCN storage chamber and B0 coil. The lower

section of the coil is installed prior to the UCN chamber, which is then connected

to the guide. The middle and upper sections of the coil are then attached, and the

mapper is fastened with aluminum dowel pins to the top of the B0 frame.

The UCN source is surrounded by lead and concrete biological shielding, and

UCNs are piped out via a stainless steel guide coated with nickel-phosphorus to

decrease UCN losses. A gate valve is upstream of a superconducting 5 T polarizing

magnet. As shown in section 2.2, magnetic fields coupling to the spin changes the

energy of UCNs such that nearly 100% polarization can be obtained with a 5 T field.

A rotating switcher is between the polarizer and magnetic shield, and connects the

UCN guide from the source to the storage chamber during loading, then “switches”

at unloading to connect the chamber guide to an analyzer. This overall setup is

displayed in Fig. 5.1.

(a)

(b)

(c)

(d)

Figure 5.1: Ramsey measurement general apparatus: (a) magnetic shield; (b)
switcher; (c) analyzer; (d) polarizer.

The UCN guide passes through a hole in the shield aligned with the lower gap of

the B0 coil, approximately 17 cm below the center. Outside of the shield, there are

holding coils mounted onto the guide in multiple locations which produce a nominal

field of ≈ 5 Gauss along the length of the guide to maintain longitudinal spin polar-

ization. The B0 field is oriented perpendicular to the guide, so that the polarization

must be rotated as UCNs enter the cell. An argument was made that the fringe fields

from the coil would be sufficient to perform this task. However, there is an abrupt

change in the field from just outside to inside the shield which can cause depolar-

ization, and the B0 coil produces a zero crossing in the gap between sections. Early
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(a)

(b)

(c)

Figure 5.2: Apparatus inside shield (excludes support structures), side view (Left)
and angle view (Right): (a) B1 coils; (b) B0 coil; (c) storage cell.

tests indicated that neutrons were not maintaining polarization during loading and

unloading, demonstrating poor spin transport.

The simplest solution was to use a series of solenoids along the guide with radii

a few centimeters larger than the guide, each ≈ 5 cm in length, as shown in Fig.

5.3. Two solenoids were used between the B0 frame and the shield wall to produce

a constant holding field. Three more solenoids were inside of the B0 frame and

produced a field which decreased linearly to zero at the center. Superimposed with

the B0 field, this results in a magnetic field vector which points radially inward at the

B0 coil frame and rotates along the guide until it is axial with the B0 frame at the

center. This slow rotation along the guide allows for nearly adiabatic spin transport,

that is the spins slowly rotate from polarization longitudinal to axial with the coil.

Using these spin-transport coils (STC) produced a measurable polarization of ∼30%

after loading then unloading the cell with no holding time.

Several novel spin analyzers are proposed for the full nEDM experiment; for this

prototype apparatus, a well established method similar to that used in the previous

ILL result was used. A thin film of iron is deposited on a silicon substrate attached to

an ionization chamber filled with 3He gas. The iron is magnetized using permanent

magnets attached to the edges. The magnetization is not enough to produce a large

external field, but on the scale of nanometers from the surface, this field can be as

large as several Tesla. The result is that spin-up neutrons are passed through the

thin film, and spin-down neutrons are rejected (within some efficiency). 3He captures

neutrons with a large cross-section, releasing ∼ 764 keV via 3He + n → 3H + p.
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Figure 5.3: Spin transport coil placement (five total, blue).

5.2 Measurement Cycle

A single measurement cycle begins with a 50 s loading period. The spin-transport

coils are turned on, the cell-valve is opened, and UCNs are guided from the source

into the storage chamber. The current in the STCs is linearly decreased to zero

over 5 s once the cell valve closes, to prevent perturbations to the magnetic field in

the chamber which might cause depolarization. What occurs next is dependent on

the measurement being conducted. Common to all measurements is the unloading

process.

Five seconds prior to the cell valve opening, the current in the STCs is linearly

ramped up to prepare for spin transport. The switcher rotates to the appropriate

position to connect the storage chamber to the spin analyzer. Only a single spin state

can be counted at a time, as the wrong polarization is reflected by the analyzer foil.

In order to count both spin states, unloading is split into two discrete times of length

t1 and t2. During one of these, a spin-flipper just above the analyzer will be turned

on which converts spin-up to spin-down and vice versa. Depolarization and neutron

losses in wall collisions will cause the second spin state measured to be under-counted.

To correct this, measurements are made in “quads”, four consecutive measurement

cycles where the spin state measured first will be changed, e.g., “up, down, down,

up”. A composite measurement for a quad is shown in figure 5.4.

Loading and unloading were unchanged for different measurements. To measure

T1, quads are collected with different holding times. An exponential fit of the asym-

metry as a function of holding time will give the longitudinal spin relaxation time,

T1. Transverse spin relaxation, T2, can be measured similarly to the longitudinal spin

relaxation, with the addition of on-resonance π/2 spin flips at the start and end of
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Figure 5.4: Combined quad measurement for a 30 s holding time. The initial peak
near 55 s is due to the switcher connecting the chamber, with the cell valve closed,
to the analyzer. The result is any UCNs left in the guide and valve assembly pass
into the analyzer. The cell valve is opened at 85 s; the final peak at 95 s is due to the
analyzer spin-flipper turning on, allowing the remaining UCNs of opposite spin-state
to be counted.

the holding time.

The resonant frequency was measured for B0 = 22.2 mG using both the Rabi and

Ramsey methods. For the Rabi method, a π pulse is applied, after the STCs have

ramped down. For the Ramsey method, two π/2 pulses are separated by some free

precession time T . The STCs ramp back up and the cell is unloaded to complete the

Rabi measurement.

The analysis of the Ramsey method was detailed in chapter 2. Of interest was the

discussion of using the co-magnetometer as a leading order estimate of the precession

frequency. This was not implemented for this prototype test, so instead a pair of

QuSpin scalar magnetometers were utilized, one located on the top center and the

other on the bottom off-center of the exterior of the storage chamber. The average

of these determined the ν0 of equation 2.44, and was used to set the measurement

frequencies ν. Rather than perform a high-precision measurement of the resonant

frequency, the Rabi and Ramsey fringes were measured by sweeping through a wide

range in ν.
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5.3 Results

The results for T1 and T2 were extracted from exponential fits of the data shown in

figure 5.5. Fits for T1 were conducted separately for each counting time t1 and t2.

(a) T1 Measurement (b) T2 Measurement

Figure 5.5: Measurements for spin relaxation times T1 and T2.

T1 = 119(13) s (5.1)

T2 = 19.5(2.7) s (5.2)

where T1 is the combined result for the counting periods t1 and t2. It should be noted

that the data for T2 is extracted from the maximum polarization measured for each

free precession setting for the Ramsey fringe data. Essentially, the T2 measurement

cycle is the same as a Ramsey cycle, but the frequency must be on resonance. It is

easier to sweep through a large set of frequencies to measure the Ramsey fringe, then

extract the T2 as performed here.

The results for T1 and T2 were lower than expectations based on simulations

using the magnetic field profile model. One large factor in this was the presence of a

stainless steel bellows in the cell valve assembly, which produced local field gradients

in the center of the storage chamber > 25 µG cm−1 as measured 1-2 cm above the cell

bottom, independent of applied magnetic fields. The offset between the center of the

B0 coil and the center of the shield also reduced the designed field uniformity by a

factor of 10×. The coil was designed, for the setting B0 = 22.2 mG, to have a volume

average gradient magnitude of ≤ 1.2 µG cm−1 for the centered case, which increased

to ≤ 15 µG cm−1 for the vertically offset and shimmed case. The magnitude of

87



external background magnetic fields inside of the shield was ∼ 1% of the B0 setting;

though it should be noted that measurements indicate the background was dominated

by perturbations due to the bellows.

An additional consideration for the discrepancy between simulated and measured

T2 is the UCN spectrum used. Simulation used a velocity distribution P (v) ∝ v2, with

vmax = 7 m/s. Measurements have indicated that the average velocity magnitude was

∼ 5.7 m/s [49], substantially lower than the distribution used in simulation. As shown

in section 3.4, the theoretical models and simulation both predict a sharp decrease in

T2 at lower energies.

The Rabi and Ramsey fringes were measured and are shown in figures 5.6,5.7,5.8,

and 5.9. For each of these, the red data corresponds to counting time t1 and blue to

t2. For the Rabi measurement, the B1 field was turned on for τ = 1 s to apply a π

spin flip; for the Ramsey method, this was separated into two π/2 spin-flips for 0.5 s

each.

Δ f

Figure 5.6: Measurement of the Rabi resonance envelope.

Using the central fringe full width at half maximum determined in section 2.1,

δν ≈ 1
2T+8t/π

, the expected full width for T = 1 s, 10 s, and 20 s are: 0.306 Hz,

0.047 Hz, and 0.024 Hz. These agree well with the measurements, though it should

be noted that the T = 10 s and 20 s fringes are likely not the central, on resonance

fringes. There appears to be a linear trend for the T = 10 s and 20 s fringes, which

is expected if there was a systematic shift in the leading order ν0 determined by

magnetometry. This is very likely due to the use of two magnetometer samples

rather than a co-magnetometer which gives an estimate for the entire volume. The

resonance frequencies were all ∼ 65 Hz, so that the width of the fringes for which
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Δ f

Figure 5.7: Central Ramsey fringe for T = 1 s, τ = 0.5 s.

Figure 5.8: Ramsey fringe for T = 10 s, τ = 0.5 s.

data was collected are ∆ν
ν0

< 1%. For the method of magnetometry used, it is not

surprising to measure several fringes from the central.

This met the original goal to measure the Ramsey fringe with a prototype appa-

ratus. More importantly is the technical expertise acquired. The most critical lessons

pertinent to the magnetic field design involve the requirement to center the B0 coil

relative to the shield in order to reduce the gradients which require shimming, and

the need to incorporate the spin transport into the coil designs.

Copyright c© James Ryan Dadisman, 2018.
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Figure 5.9: Ramsey fringe for T = 20 s, τ = 0.5 s.
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Chapter 6 Time-Reversal Violation in B-Mesons

As discussed in the opening chapter, discrete symmetries have a central role in fun-

damental physics and is a strong motivator for many experimental searches. Time

reversal is the most difficult to realize experimentally, thus the BaBar collaboration

should be recognized for their achievement. I contributed to a phenomenology paper

[50] which studied the interpretation of the BaBar result and proposed an analysis

method which no longer tests for a T -asymmetry, but may be used to elucidate small

SM or new physics effects using the novel CP and T-tagging methods which BaBar

developed.

6.1 BaBar Experiment

The BaBar Collaboration was the first to definitively measure a time-asymmetry, with

T-violating parameters ∆S+
T = −1.37±0.14stat±0.06syst and ∆S−T = 1.17±0.18stat±

0.11syst [8]. CPLEAR was a previous experiment which purported to measure TV,

but was criticized for the lack of detailed balance in K0 −K0, a low statistics result

of {Aexp
T } = (6.6± 1.3stat ± 1.0syst)× 10−3 [51], and whether is was in fact a true test

of TV. There were three key elements which enabled the successful result by BaBar:

Einstein-Podolsky-Rosen (EPR) entanglement [52]; CP / flavor tagging; and neutral

meson oscillations.

The B-factories produced EPR entangled BB via e−e+ collisions at the Υ(4S)

resonance [53], with center of mass energy 10975 MeV. The entanglement of the

initial state holds as the particles propagate in time.

|Ψi〉 =
1√
2

(
|B0(~k), B0(−~k)〉 − |B0(−~k), B0(~k)〉

)
(6.1)

The branching ratio to BB is > 96 %, which breaks down to B+B− CP eigenstates

(51.4 %) and B0B̄0 flavor eigenstates (48.6 %) [54]. The quark content of the flavor

eigenstates B0(B̄0) are d b (d b). The below description of CP eigenstates uses the

formalism of the seminal paper by Bañuls and Bernabéu [55] which set the foundation

for the BaBar experiment.

|B±〉 =
1√
2

(I ± CP ) |B0〉 =
1√
2

(|B0〉 ± CP∗12 |B̄0〉) (6.2)
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where CP ∗12 is a phase from the charge conjugation operator. It is evident that

a neutral B-meson may exist and decay from flavor or CP eigenstates, with unique

decay products which allow for identification of the eigenstate from which the particle

decayed. Combining this with the EPR entanglement of the system allows for a

“tagging” of the surviving meson after the first decays.

The neutral B-meson, and similarly the neutral kaon, can oscillate between par-

ticle and anti-particle via the weak interaction box diagram.

b

d
u, c, t

u, c, t
d

b

W ± W ±B0 B0

b

d

u, c, t

d

b
W

W 

B0 B0u, c, t

Figure 6.1: Lowest order “box” Feynman diagrams for BB mixing. By exchange of
two charged W± bosons, the final state is the initial state under charge-conjugation:
d b→ b d. The diagrams are identical for the opposite oscillation.

This process is one source of CP violation, commonly referred to as “CPV from

mixing”. The weak interaction is also responsible for the decay of the neutral B-

meson.

The specific decay of b → cc̄s̄ and its CP conjugate are of central importance to

the BaBar experiment, and will equivalently be referred to as B0 → J/ψK0. It is

important to note that the B-meson may also decay from a CP eigenstate B±, in

which case it will decay to a CP eigenstate of the kaon K±, or commonly referred to

as KS,L. Here the ‘S’ and ‘L’ subscripts refer to the ‘short’ and ‘long’ lifetime of the

CP eigenstates, which differ by a factor of 555, so that τL ≈ 555τS [54].

Consider a single BB entangled pair. At some initial time t0, one of these will

decay. The products can be analyzed to determine exactly which flavor or CP eigen-

state from which this particle decayed. Due to entanglement, this means the state

of the surviving B-meson can be “tagged” at the time t0. This is the power of this
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(a) Semi-leptonic Decay
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(b) Mesonic Decay: Tree Diagram
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B0
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(c) Mesonic Decay: Penguin Diagram

Figure 6.2: Leading order decay modes for the neutral B-meson. Of special interest
to CKM unitarity angle β is the decay of b→ cc̄s̄.

experimental method: the initial state of a B-meson can be known due to EPR en-

tanglement, and the meson mixes such that it can decay from a different flavor or

CP eigenstate. There are 4 unique initial states and final states which can be used

to measure CP, T, and CPT asymmetries. An example is given in table ??.

Table 6.1: Sample of initial and final state CP, T, and CPT asymmetries.

Control CP T CPT

B0 → B+ B
0 → B+ B+ → B0 B+ → B

0

The time-dependent decay probabilities were worked out by Bañuls and Bernabéu

[55]; for simplicity, I shall use a formalism first used by Applebaum et al. [56]

Γ(f1)⊥,f2 = N1N2e
−Γ(t1+t2)[1 + C(1)⊥,2 cos(∆mB t)

+ S(1)⊥,2 sin(∆mB t)] , (6.3)

with the conditions from [50]: Γ ≡ (ΓH + ΓL)/2, ∆mB ≡ mH −mL, t = t2 − t1 ≥
0, S(1)⊥,2 ≡ C1S2 − C2S1, and C(1)⊥,2 ≡ −[C2C1 + S2S1] [56]. Moreover, Cf ≡
(1− |λf |2)/(1 + |λf |2) and Sf ≡ 2=(λf )/(1+|λf |2), where λf ≡ (q/p)(Āf/Af ), noting
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Af ≡ A(B0 → f), Āf ≡ A(B̄0 → f), Nf ≡ A2
f + Ā2

f , and q and p are the usual

BB̄ mixing parameters such that (q/p) ≈ VtdV
∗
tb

V ∗tdVtb
[57]. Note that f1, f2 refer to the

initial and final decay products respectively. An additional simplification follows by

neglecting wrong-sign semileptonic decays: C`+X = −C`−X = 1. For the CP and T

cases of importance to the BaBar experiment, e.g., table ??, the asymmetries become:

ACP = AT = −|Sf | cos(∆mBt) (6.4)

Sf ≡ 2=(λf )/(1 + |λf |2) (6.5)

λf ≡ (q/p)(Āf/Af ) (6.6)

One note on notation: BaBar actually performs a likelihood fit, in which the

coefficient is
∆Sf

2
. For the “golden mode” decays B → J/ΨKS,L, λJ/ΨKS = −λJ/ΨKL

and the coefficient reduces to equation 6.4. The result from BaBar found this TV

term to be non-zero at 14σ confidence [8].

6.2 Sensitivity to BSM Effects

Any beyond standard model (BSM) physics would appear as a relatively small effect.

However, the non-dominant SM effects must first be well understood before any claims

regarding BSM can be considered valid. One important test is the “universality” of

the CKM unitarity angle β ≡ arg
[
−VcdV

∗
cb

VtdV
∗
tb

]
, where the V ’s are elements of the CKM

matrix. Looking more closely at the composition of λf reveals how β becomes an

observable. The mixing term (q/p) ≈ VtdV
∗
tb

V ∗tdVtb
to leading order. The tree diagrams in

figure 6.2b dominate the decay amplitudes, such that
ĀJ/ΨKS
AJ/ΨKS

≈ ηCP
VcbV

∗
cd

VcdV
∗
cb

[53], where

CP|f〉 = ηfCP |f〉. The result: λ ≈ ηCP e
−2iβ. Inserting this into Sf and considering the

sign difference in ηKS = −ηKL = −1, then |SJ/ΨKS,L | = sin(2β). Likewise, |λf |2 = 1

and Cf = 0.

The results discussed thus far ignore the contributions of higher order terms,

namely the penguin decay diagrams shown in figure 6.2c, which are small and difficult

to separate from the leading order processes. It was proposed by Dadisman et al.

[50] that the smaller SM contributions might be better understood by constructing

asymmetries in which the leading order tree diagrams cancel out.

Interpretation of T-Asymmetry

A discussion of the interpretation of AT measured by BaBar is required for this

concept. Figure 6.3 a) shows the ideal picture of AT , in which an exact time-reversed
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process is measured uniquely. Using the formalism of Applebaum et al. [56], the

tagging process at the initial time of the remaining meson can be thought of as an

inverse decay from the opposite CP or flavor tag. The picture is muddled by the fact

that the decay products are not directly detected. The CP tag of the B-meson is

determined by its decay to the KS or KL CP eigenstates of the kaon, which is in turn

detected by the kaon decay products. CP-violation in the kaon mixing and decay

can break the picture of a perfect time-reversal process, as shown in figure 6.3. For

a complete discussion of the conditions for AT to be interpreted as a true test of T,

see [50, 56].

J/Ψ KSJ/Ψ KS BB B0B0 ll

l J/Ψ KL

B0 B

J/Ψ KSJ/Ψ KS(→ π π    ) BB B0B0 ll

a)

b)

t

-

-

-

-

-

+

+

+

+

+

Figure 6.3: The transition B0 → B− and the construction of its time-conjugate
B− → B0. a) Idealized: the initial detection of `− projects the surviving B into the
orthogonal flavor state, realizing B0 → B− upon subsequent detection of J/ψKS,
whereas the initial detection of J/ψKL projects the surviving B into the CP = −
state. In this latter case subsequent detection of `+X realizes B− → B0, the time-
reversed process associated with B0 → B−. The initial-state projections can be
thought of as inverse decays of `+ and J/ψKS, respectively [56]. b) Expanded to
include the particles that are detected (boxes) to tag the initial and final states of the
B-meson. The second process is not the time conjugate of the first once direct CP
violation in the tagging decay is included. The CP state of the B-meson prepared
through inverse decay is not identical to that of the B which decays to J/ψKS(π+π−).

From here, “T”-asymmetries can be constructed using BB looking for specific

combinations of CP tags which are indisputably no longer a true test of T . However,

these pseudo-asymmetries could be useful by selecting such pairs that will produce a

cancellation of the tree-level decay contributions.
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“Trapping Penguins” by Construction of Pseudo-‘T’ Asymmetries

Looking at general decay products of CP eigenstates f 6= J/ΨKS,L such that λo 6=
±λe, with “e(o)” corresponding to CP even (odd) states, the general form of these

pseudo-asymmetries change:

Ae+CP ≡
Γ′(`−X)⊥,fe

− Γ′(`+X)⊥,fe

Γ′(`−X)⊥,fe
+ Γ′(`+X)⊥,fe

= Ce cos(∆mB t)− Se sin(∆mB t) , (6.7)

Ae−CP ≡
Γ′(fe)⊥,`−X − Γ′(fe)⊥,`+X
Γ′(fe)⊥,`−X + Γ′(fe)⊥,`+X

= Ce cos(∆mB t) + Se sin(∆mB t) , (6.8)

where Ae+CP → Ao+CP and Ae−CP → Ao−CP follow by replacing fe → fo, and the time

ordering of the tags is now explicitly stated via the notation +(−). Moreover,

Ao+T ≡
Γ′(fo)⊥,`−X − Γ′(`+X)⊥,fe

Γ′(fo)⊥,`−X + Γ′(`+X)⊥,fe

=
(Ce + Co) cos(∆mB t) + (So − Se) sin(∆mB t)

2 + (Co − Ce) cos(∆mB t) + (So + Se) sin(∆mB t)
, (6.9)

Ao−T ≡
Γ′(`−X)⊥,fo

− Γ′(fe)⊥,`+X
Γ′(`−X)⊥,fo

+ Γ′(fe)⊥,`+X

=
(Ce + Co) cos(∆mB t)− (So − Se) sin(∆mB t)

2 + (Co − Ce) cos(∆mB t)− (So + Se) sin(∆mB t)
(6.10)

Ae+T ≡
Γ′(fe)⊥,`−X − Γ′(`+X)⊥,fo

Γ′(fe)⊥,`−X + Γ′(`+X)⊥,fo

=
(Ce + Co) cos(∆mB t)− (So − Se) sin(∆mB t)

2− (Co − Ce) cos(∆mB t) + (So + Se) sin(∆mB t)
(6.11)

Ae−T ≡
Γ′(`−X)⊥,fe

− Γ′(fo)⊥,`+X
Γ′(`−X)⊥,fe

+ Γ′(fo)⊥,`+X

=
(Ce + Co) cos(∆mB t) + (So − Se) sin(∆mB t)

2− (Co − Ce) cos(∆mB t)− (So + Se) sin(∆mB t)
, (6.12)

Each time-dependent asymmetry has four parameters made distinguishable by the

various time-dependent functions, and they can be measured experimentally. Indeed
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the individual asymmetries can be simultaneously fit for So + Se, So − Se, Co + Ce,

and Co − Ce. Note that if Co = Ce and So = −Se, Ae+CP = Ao−CP = Ao+T = Ae−T and

Ae−CP = Ao+CP = Ao−T = Ae+T , as before. Recall that to leading order, Sf ≈ −ηfCP sin 2β

and Cf ≈ 0. The leading order contributions cancel from the parameter So+Se, such

that small effects, e.g., from penguin contributions, and any BSM effects would be

directly determined. To determine whether BSM effects are present, it is necessary to

correlate the observable deviations in Sf from sin 2β due to the penguin contributions.

Revisiting the previous calculation of λ, let us consider amplitudes from the tree

and penguin diagrams while retaining the approximate form of the mixing term (q/p).

By CKM unitarity, a single decay amplitude can be written in terms of two weak

mixing angles, for this example the “charm” angle θc = 0 and “up” angle θu = γ. If

we combine the topological amplitudes for each weak phase up to penguin diagrams

into terms acf and auf , in which the f refers to the final decay state and c, u indicate

the corresponding weak mixing angle, then the total amplitude may be written Af =

acfe
−iθc + aufe

−iθu = acf + aufe
−iγ. Now λ may be rewritten:

λf = −ηfCP e
−2iβ 1 + dfe

−iγ

1 + dfeiγ
, (6.13)

df ≡
∣∣∣∣V ∗ubVusV ∗cbVcs

∣∣∣∣ aufacf , (6.14)

Completing the calculation for the time-dependent asymmetry parameters yields:

Sf = −ηfCP
sin(2β) + 2<(df ) sin(2β + γ) + |df |2 sin(2β + 2γ)

1 + |df |2 + 2<(df ) cos(γ)
,

Cf =
−2=(df ) sin(γ)

1 + |df |2 + 2<(df ) cos(γ)
. (6.15)

Noting that the dominant phase contribution comes from acf such that df ≈ 0 restores

the results for Sf = −ηfCP sin(2β), Cf = 0 previously given to leading order. These

expressions reveal the fundamental difficulty in separating the tree diagrams from

the penguin contributions, therefore a common simplification is used in theoretical

studies [58–60]: Sf = −ηfCP (sin(2β) + ∆Sf ). Because df is small, the denominator

can be expanded to account for the sin 2β cancellation, but there remains the added

complication of terms mixed with de and do such that it is more accurate to state

that So + Se = δSe − δSo .
It is worrisome to extract a result from the difference of two small numbers.

However, the decay b → cc̄s is considered the “golden mode”, because penguin con-

tributions are expected to be ≤ 1% [53]. Other decay modes have calculated and
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measured penguin contributions O(10%) [53, 58], but with very large uncertainties

comparable to the contribution’s magnitude. Using the “golden mode” as one of the

CP tags will result in So+Se ≈ ηfCP δSf , where f corresponds to the non-“golden” de-

cay amplitude. The error introduced by this δSb→cc̄s = 0 approximation is ≤ O(10%);

a considerable improvement in the determination of the penguin contributions is thus

dependent on how well the fit parameters can be determined.

Copyright c© James Ryan Dadisman, 2018.
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Chapter 7 Summary of Progress Toward a Neutron EDM Measurement

The overarching theme of this dissertation is the complex relationship between mag-

netic field profiles and systematic effects in spin-resonance experiments, especially

neutron electric dipole moment searches. Even the simplest magnetic field sources

produce fields which, if written as an expansion in the spatial coordinates, require

a high order in the expansion to properly describe inside a fiducial volume which

is on the same order of magnitude as the magnetic field source. These higher order

terms in the field may have a larger effect on the systematics dependent on the phase-

space. For a perfectly uniform distribution of neutrons inside a cylindrical chamber,

the number of neutrons at a given radius is a function of the radius, i.e., there are

more neutrons at the edges of the fiducial region than at the center. It is likely that

the neutrons are not uniformly distributed; unfortunately, the density as a function

of position is highly dependent on the type of wall collisions, which is difficult to

characterize for the storage chamber. Additionally, the geometry of the chamber and

the location where the UCN guide connects to it will affect the phase-space of the

neutrons.

Figure 7.1: Histograms showing the simulated neutron distribution as a function of
radius for roughness parameters b = 2nm, w = 10nm (left), and b = 25nm, w =
125nm (right).

As shown in figure 7.1, using the Steyerl model with larger roughness parameters,

corresponding to a higher percentage of non-specular reflections, results in the neu-

tron distribution being approximately a linear function of the radius. This result is
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expected for a uniform neutron density. For more specular reflections, there seems

to be a more exponential increase in density at increasing radius. At this level of

comparison, these differences are subtle; however, combined with the different trajec-

tories, this can have an appreciable effect in simulated results. Simulations in section

3.4 demonstrated that the transverse spin relaxation time, T2, is highly dependent

on the percentage of specular reflections; in fact, it seems having rougher walls to

introduce more non-specular reflections can increase T2. However, this could result

in an increase in additional wall losses [36], so that further studies are warranted.

At the outset of this research, these complexities were not clear to the author. The

experimental research starting point was optimization of a gapped solenoid for use in

the LANL nEDM prototype apparatus. The strategy selected was to minimize the

volume averaged magnitude of the gradient term dBz/dz, in order to reduce the false

EDM effect. It became clear that adding more gaps created more degrees of freedom

which could be optimized: gap lengths between, and the current within, each section.

The most significant advantage to this is the increase in uniformity along the longi-

tudinal axis of the coils, particularly useful for a double-chamber experiment. This

advantage over traditionally used coils cannot be overstated: the strategy typically

used to increase magnetic field uniformity is to either make the coil bigger, which can

substantially increase the cost of the experiment primarily due to the cost of a larger

magnetic shield, or by using special coil geometry at the endcaps to reduce distortion

due to end-effects, which is very sensitive to misplacement of the wires. In contrast,

multi-gap solenoids can achieve the required uniformity with reduced length, and are

less sensitive to wire misplacement because a single wire in a solenoid contributes a

smaller percentage to the total field than, say, a discretized cos θ coil. Optimization

of the current in each section is a novel technique which has value in any experiment

which requires highly uniform magnetic fields, and should be explored as a more

easily tuned parameter compared with precise wire spacing.

Construction and study of the multi-gap solenoid concept is the greatest contribu-

tion of this dissertation. This type of design has been perhaps overlooked due to its

simplicity, which is unfortunate because it is easy to optimize and it is very effective

at producing highly uniform magnetic fields. The novel contribution here is the idea

to optimize the current in different sections of the coil as a fine-tuning parameter, and

to use numerical methods to optimize the total uniformity for a volume of interest

rather than selectively reducing certain terms in an expansion. The argument here

is that, for a volume, only reducing a lower order term may result in an accidental

increase in a higher order term which, for a large volume, may be worse for system-
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atic effects. The multi-gap solenoid concept demonstrates the capability to exceed

the magnetic field specifications for a neutron electric dipole moment experiment.

A simulation was written to evaluate the expected performance of the resulting

magnetic field of the prototype B0 coil. It was through these studies that the com-

plex relationship between the magnetic field and phase-space became apparent to the

author. The initial goal of the simulation was high accuracy; in retrospect, more em-

phasis should have been placed on a faster simulation so that more of the phase-space

was sampled. Due to the complexities, it is advantageous to use such a simulation

for the optimization of experiment design parameters, e.g., the geometric design of

the storage chamber, guides, and for magnetic field design.

Mapping hardware was built to map in-situ the magnetic field of the prototype,

and to study the effectiveness of magnetic field reconstruction methods. Reconstruc-

tion methods show promise, at a minimum, to supplement co-magnetometers by

providing information on gradients which may be used in improving analysis of sys-

tematic effects. Further refinement of the method may be capable of fully replacing

co-magnetometers.

7.1 Evaluation of the Multi-gap Solenoid Concept

The theoretical models for multi-gap solenoids with gap length and current opti-

mizations demonstrates great promise for use in a neutron EDM experiment. As

demonstrated by comparisons with cos θ coils in chapter 4, the prototype DGS which

was optimized for a single chamber produces a field for a double-chamber configura-

tion which varies by < 0.2% of the value inside the center of the chamber. Notably,

this coil was designed to be an order of magnitude less uniform than what could

have been accomplished if the coil were the maximum size allowable by the interior

dimensions of the shield.

An additional benchmark which is suitable is the B0 coil being designed for a

similar nEDM experiment currently being developed at the Paul Scherrer Institute

[61]. The design for this coil is a rectangular solenoid with dimensions ∼ 2.7 m ×
2.7 m × 2.7 m, and wires spaced 15 mm apart. Special wire-routing for pass-through

holes is included, and additional wire “endcaps” are used to increase the uniformity.

For a double-chamber configuration, the magnetic field is expected to be within 0.01%

of the central field value everywhere within the 40 cm radius chambers. This level of

uniformity has been achieved for a cylinder of 25 cm radius and 10 cm in length, the

dimensions to be used in the LANL experiment, in a 4-gap solenoid COMSOL model
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with 1 m radius and 1.5 m total length, inside of a magnetic shield with dimensions

2.5 m × 2.5 m × 2 m. It should be noted that, because constraints on the design are

still undetermined, minimal effort has been put into the optimization for the full-size

coil.

B
Z
 [mG]

Figure 7.2: A model 4-gap solenoid, lightly optimized for a double-chamber configu-
ration. Model is shown on the left, Bz is shown on the right. The white box indicates
the edges of the fiducial volume. Note the heatmap scale is (1± 7.6× 10−5)× 13.175
[mG].

The model indicates that the uniformity requirements for a neutron EDM exper-

iment can be achieved using a multi-gap solenoid. However, additional studies must

be conducted to determine the sensitivity to gradients induced by vertical displace-

ments. As was shown in the prototype coil, vertical offsets on the order of inches will

result in an order of magnitude degradation in the uniformity. This has also been

noted by the PSI collaboration [61], where strict limits have been set on individual

terms in the multipole expansion of the magnetic field. They found that a vertical

displacement of the coil relative to the shield of 0.25 mm produces a gradient term

dBz/dz greater than specification; a vertical displacement of 1 mm causes multiple

other multipole expansion terms to be out of specification.

7.2 Improvements in Simulation of Neutron Electric Dipole Moment Ex-

periments

Several recommendations can be made for improving the simulations presented in

chapter 3. It may be beneficial to use a simplified model of wall reflections, a more

general method of detecting wall collisions, and using a Runge-Kutta integrator for

the spin. Modeling of the magnetic fields using the method outlined in section 3.3 is

102



very effective at capturing the complexities of the magnetic field and is computation-

ally efficient, and should be used for future simulations.

The method of Steyerl et al. [36] is one of the more advanced models of UCN

wall reflections; however, it is dependent on “roughness” parameters which are not

very well understood. If these properties are characterized for samples of the surface

materials used in the guides and storage chamber, then this method of modeling

reflections is preferable; the reflected angles and the absorption coefficient can both

be calculated, and are dependent on the incident angles and momentum. However, if

they are not characterized, it would be better to set the percentage of non-specular

wall collisions in simulation as a tunable parameter, as this percentage is difficult to

control using the roughness parameters. The non-specular reflected angle can then be

sampled from a cos θ distribution from normal, as required by detailed balance [36].

This method would be computationally more efficient than the method of Steyerl et

al., though some of the phase-space dependence on reflections is lost.

Consideration should also be given to improving the accuracy of the geometry

model and a more general method of detecting wall collisions. In the region where

the storage cell valve and the cell wall meet, there are chamfers to the geometry

to facilitate smooth valve actuation. These may have appreciable effects on the

trajectories of the neutrons. Simple cylindrical walls were used in simulation, as

it was easier to detect wall collisions by direct comparison of the location of the

neutrons relative to the dimensions of the cylinder. By implementing a more general

method of wall collision detection in the simulation, more complex geometries can

be constructed. This is especially significant for the problem of simulating the spin

transport into and out of the chamber, as the valve assembly which connects the

UCN guide to the storage chamber is more geometrically complex. Such a simulation

would be a great benefit to the LANL experiment.

The emphasis placed on accuracy in selecting the Bulirsch-Stoer algorithm may

have been unnecessary. Typically, the integration over a time step ∆t would resolve

after the second extrapolation step, i.e., the third integration using increasing sub-

steps and the first which produces an error estimate, and this was largely independent

of the error per step setting. Even with a field model expansion to O(` = 6), the

uniformity of the magnetic field was such that the adaptive stepsize controller rarely

changed the stepsize, and extrapolation using increasing number of substeps provided

little benefit. This indicates that it may be more computationally efficient, with no

loss in accuracy, to use a 4th order Runge-Kutta algorithm. The expected increase in

efficiency would allow for more phase-space to be sampled. For this particular system,
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if the tradeoff between accuracy and efficiency is 1:1, i.e., a factor of ten reduction in

accuracy results in a factor of ten improvement in efficiency, then it is preferable to

sample 106 neutrons with error in the expectation value of the 〈σz〉 of 10 ppm than

105 neutrons with error 1 ppm.

An additional consideration for simulation of a false EDM based on the Ramsey

method is the difficulty in setting the leading order resonant frequency estimate. In

experiment, a co-magnetometer with atoms distributed very similarly to the UCNs

gives the leading order estimate. In simulation, this estimate must be calculated

from the field profile. This is highly dependent on the phase-space of the neutrons.

Simulations can give a distribution of the positions as in figure 7.1, however, the

trajectory information is just as important and is not as easily approximated. This

information is embedded in the results given by a co-magnetometer, but is not so

simple to determine in simulation.

As a result, Ramsey fringes from simulation have systematic shifts from the leading

order estimate resonant frequency. This is problematic when it comes to setting

probe frequencies, which as discussed in section 2.1 should be targeted at ν ≈ ν0 ±
δν/2. If the leading order estimate is offset by nearly δν/2, as in figure 7.3, then the

simulations will be performed where the Ramsey method is least sensitive to small

shifts rather than most sensitive. This can be counteracted by measuring a larger set

of frequencies in a range ν ∈ (ν0− δν/2, ν0 + δν/2) centered about the leading order

estimate. The problem with this is the reduction in useful statistics; approximately

60% of the simulation results will likely be at frequencies with minimum sensitivity

to small shifts. This is problematic when it takes considerable amount of simulation

time to accumulate suitable statistics.

7.3 Magnetometry Improvements

It has been proposed to use measurements of components of the magnetic field at op-

timized boundary locations as a method of reconstructing the field within the fiducial

volume during the experiment [42]. Having the capability to accurately reconstruct

the vector components of the magnetic field would allow systematic corrections, e.g.,

due to the false EDM ~v × ~E term, to be made for each data run. Co-magnetometers

only give an average scalar magnitude of the field inside of the storage chamber.

Any systematic corrections based on the gradients must then be made using maps of

the field which are taken without the full apparatus in place, and on separate days

from the data collection. This introduces greater error in the systematic correction,
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Figure 7.3: A simulated Ramsey measurement to determine the false EDM. Note
the leading order estimate is shifted by nearly δν/2; as a result, only ∼25% of the
simulated frequencies are useful.

compared to gradient information collected simultaneous with the EDM data.

A prototype apparatus was constructed to do this, as discussed in section 4.4.

The hardware demonstrated capability, and in-process refinements to the hardware

and reconstruction method should soon make this technique ready for deployment.

The hardware improvements are primarily needed to promote long-term reliabil-

ity. Stepper motors were used in this first apparatus, and are not ideal for the task.

The main reason is that stepper motors do not “know” their position; there is no

way to detect slipping or backlash in the motor. The position is tracked in soft-

ware, which will become incorrect if the stepper motor slips. Servo motors would

be a better option, because they have an intrinsic mechanism which determines the

motor’s absolute position, and also have improved control over motion. An addi-

tional improvement would be in the use of a timing belt for rotating the turn-table.

Kevlar string was used in the apparatus because it stretches little under tension. It

was discovered that the length of string required between the turntable inside of the

shield and the motor outside of the shield allowed enough stretch that an appreciable

tension difference developed between the string on each side of the turn-table. This

would cause problems syncing the angular rotation of the motor to the rotation of

105



the turn-table. A timing belt requires a more complex apparatus, but is more reli-

able than kevlar string. Combined with improvements to the turntable, this should

substantially improve the long-term reliability of the mapper.

The reconstruction method was briefly discussed in the magnetic field modeling

for simulation in section 3.3. The method is being refined by collaborators, but

the closeness of the work with the author’s research warrants some brief comments.

One difficulty is the number of boundary values which must be collected in order to

reconstruct enough fit parameters: for `v = 6 in the vector components, the scalar

potential method, preferred for reconstruction because a single set of coefficients

determines all vector components, requires `s = 7. This would require a minimum

of 63 measurements to fit 63 components. Simplifications can be made, e.g., by

symmetry, most of the odd terms in the vector, i.e., even in `s, will be zero. Setting the

`s = 4, 6 terms to zero, only 52 measurements are needed. The prototype apparatus

can perform this number of measurements for each measurement cycle. However, in

the case of cryogenic experiments, as in the proposed SNS nEDM experiment, the

probes must be set in stationary locations, at least one probe for each fit parameter.

Another difficulty in the reconstruction method comes from the fitting algorithm.

Any optimization algorithm is strongly dependent on the initial estimate for the

fit parameters. The B0 source coil can be characterized beforehand, as in section

3.3, and these parameters can be used as the initial parameters used by the fitting

procedure. The reconstruction problem then becomes the simpler case of solving for

the perturbations to the ideal magnetic field.

If the boundary value method of magnetometry is to replace co-magnetometers

completely, the phase-space of the neutrons must be very well understood. Such

information is needed to calculate the weighted average magnitude of the magnetic

field, so that an accurate leading-order estimate of the resonant frequency can be

calculated from boundary measurements of the magnetic field.

7.4 Final Notes on Magnetic Field Design for the Proposed LANL EDM

Experiment

Future design of neutron EDM experiments should utilize spin simulations to assist

in design optimization. It is of particular interest to study the systematics resulting

from magnetic field profiles which are optimized using different metrics. The standard

formulation of the false EDM effect is typically given assuming a constant gradient

dBz/dz; however, a topic of recent conferences is the contributions of higher order
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terms in the gradient. Perhaps there is another metric which is superior for minimiz-

ing this effect. As was discussed in an analysis of simulations for the transverse spin

relaxation time for average gradients of different profiles in section 3.5, consideration

of the average magnitude of the gradient may not be the best option.

In deriving the false EDM, it is the contribution to the transverse fields caused by

the constant gradient which are of interest. A contributing factor is the cylindrical

symmetry of the magnetic field being considered. It may be more suitable to minimize

the transverse components of the fields produced by the coil, or equivalently, by
~∇ · ~B = 0, minimizing the variance in the longitudinal component, and to design

coils which are azimuthally asymmetric. Extensive studies should be conducted in

simulations comparing the false EDM for coils optimized using different metrics in

order to identify the most effective method. Attempting to minimize the effect by

increasing order of an expansion is inefficient, and may in fact cause adversely large

higher order terms.

The phase-space of the neutrons must also be studied experimentally. Accurate

implementation of this in simulation can help tune the storage chamber dimensions;

if it is determined that a disproportionate number of neutrons are located at larger

radii, it may be beneficial to reduce the radius of the chamber to reduce systematic

effects due to the magnetic fields.

Understanding more about a topic inevitably leads to new questions. The research

presented here has contributed to future nEDM experiments, and raises interesting

new questions to be studied in order to more thoroughly understand magnetic field

related effects in spin-resonance experiments.
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