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ABSTRACT OF DISSERTATION 

 

 
ON-FARM UTILIZATION OF PRECISION DAIRY MONITORING:  

USEFULNESS, ACCURACY, AND AFFORDABILITY 
 
 Precision dairy monitoring is used to supplement or replace human observation of 
dairy cattle.  This study examined the value dairy producers placed on disease alerts 
generated from a precision dairy monitoring technology.  A secondary objective was 
calculating the accuracy of technology-generated disease alerts compared against 
observed disease events.  A final objective was determining the economic viability of 
investing in a precision dairy monitoring technology for detecting estrus and diseases.  

 A year-long observational study was conducted on four Kentucky dairy farms.  
All lactating dairy cows were equipped with a neck and leg tri-axial accelerometer.  
Technologies measured eating time, lying time, standing time, walking time, and activity 
(steps) in 15-min sections throughout the day.  A decrease of ≥ 30% or more from a 
cow’s 10-d moving behavioral mean created an alert.  Alerts were assessed by dairy 
producers for usefulness and by the author for accuracy.  Finally, raw information was 
analyzed with three machine-learning techniques: random forest, least discriminate 
analyses, and principal component neural networks.  

 Through generalized linear mixed modeling analyses, dairy producers were found 
to utilize the alert list when ≤ 20 alerts occurred, when alerts occurred in cows’ ≤ 60 d in 
lactation, and when alerts occurred during the week.  The longer the system was in place, 
the less likely producers were to utilize alerts.  This is likely because the alerts were not 
for a specific disease, but rather informed the dairy producer an issue might have 
occurred.  The longer dairy producers were exposed to a technology, producers more 
easily decided which alerts were worth their attention.   

 Sensitivity, specificity, accuracy, and balanced accuracy were calculated for 
disease alerts that occurred and disease events that were reported.  Sensitivity ranged 
from 12 to 48%, specificity from 91 to 96%, accuracy from 90 to 96%, and balanced 
accuracy from 50 to 59%.  The high number of false positives correspond with the lack of 
usefulness producers reported.  Machine learning techniques improved sensitivity (66 to 
86%) and balanced accuracy (48 to 85%).  Specificity (24 to 89%) and accuracy (70 to 
86%) decreased with the machine learning techniques, but overall detection performance 
was improved.  Precision dairy monitoring technologies have potential to detect behavior 
changes linked to disease events. 



 A partial budget was created based on the reproduction, production, and early 
lactation removal rate of an average cow in a herd.  The cow results were expanded to a 
1,000 cow herd for sensitivity analyses.  Four analyses were run including increased milk 
production from early disease detection, increased estrus detection rate, decreased early 
lactation removal from early disease detection, and all changes in combination.  
Economic profitability was determined through net present value with a value ≥ $0 
indicating a profitable investment.  Each sensitivity analysis was conducted 10,000, with 
different numbers for key inputs randomly selected from a previously defined 
distribution.  If either milk production or estrus detection were improved, net present 
value was ≥ 0 in 76 and 85% of the iterations. However, reduced early lactation removal 
never resulted in a value ≥ 0.  Investing in precision dairy technology resulting in 
improved estrus detection rate and early disease detection was a positive economic 
decision in most iterations. 

 

KEYWORDS:  Precision Dairy Monitoring, Transition Cow Disease, Economics,  
    Producer Use, Machine-learning 
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1)CHAPTER ONE 

Review of literature 

INTRODUCTION 

 The use of technology in the dairy industry has increased dramatically in the last 

20 years (USDA, 2016).  Precision dairy technology uses real-time monitoring of animals 

to supplement the “eyes and ears of the farmer” through behavior monitoring, milk yield, 

milk constituents, video analysis, temperature monitoring, or record analysis (Wathes et 

al., 2008, Hogeveen et al., 2010, Rutten et al., 2013).  Precision dairy technology can aid 

in the detection of hypocalcemia, hyperketonemia, metritis, lameness, and mastitis.  

However, sensitivity and specificity must be improved for detection to be useful to dairy 

owners and managers (Hogeveen et al., 2010).  Sensitivity and specificity are defined as 

the proportion of true positives and true negatives identified by a test (Altman and Bland, 

1994).  Technology needs to be sensitive enough to pick up most cases of a particular 

disease (true positives), but specific enough that cows without a particular disease are not 

also identified (false positives; Hogeveen et al., 2010).  The technology must also be 

economically feasible and fit within the farm management style (Yule and Eastwood, 

2012, Borchers and Bewley, 2015).  Many technologies are available to dairy producers 

and researchers with the ability to detect estrus, illness, or calving (Dolecheck et al., 

2016b, Stangaferro et al., 2016a, b, c, Borchers et al., 2017).  However, research on 

producer perception, detection accuracy, and economic feasibility of on-farm daily 

application of health monitoring precision dairy technology is lacking. 
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TRANSITION COW DISEASES 

 The most unstable portion of a dairy cow’s life is the three weeks before to the 

three weeks after parturition, the transition period.  During the transition period, most 

cows experience reduced feed intake, negative energy balance, weight loss, hypocalcemia 

after calving, reduced immune function in the weeks around calving, and bacterial 

contamination of the uterus (LeBlanc, 2010).  Negative energy balance occurs when a 

dairy cow cannot consume enough energy through her diet to offset the energy demands 

of biological processes, namely milk production (Adewuyi et al., 2005).  Inability to 

consume enough energy and nutrients can lead to several clinical and subclinical diseases 

including hyperketonemia, hypocalcemia, retained placenta, and metritis.  Infection 

during the transition period can seriously affect the remainder of the cow’s lactation 

(decreased milk yield and impaired reproductive performance) and lead to other health 

issues (clinical advancement of subclinical diseases, endometritis, lameness, or mastitis 

throughout a lactation) or death (Oetzel, 2011, Giuliodori et al., 2013, Raboisson et al., 

2015). Hyperketonemia, hypocalcemia, and metritis will be discussed in more detail 

below. 

Hyperketonemia 

 Non-esterified fatty acids (NEFA) resulting from lipolysis are an alternative 

energy source to glucose.  Non-esterified fatty acids can be used as a source of energy 

directly or exported to triacylglycerol (TAG) or very low-density lipopolysaccharides 

(VLDL).  Once the liver metabolizes the TAG and oxidizes the VLDL, any remaining 

TAGs are stored in the liver.  Acetyl CoA from fatty acid oxidation is also converted to 

ketone bodies in the liver (Adewuyi et al., 2005).  Peripheral body tissues, the heart, and 
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the brain can use ketone bodies as an energy source in place of glucose.  If more ketone 

bodies are produced than can be used, ketones begin accumulating in the bloodstream.  

The presence of ketone bodies in milk, blood, or urine of cattle indicates severe negative 

energy balance, and at high enough levels cows suffer from hyperketonemia (Goff and 

Horst, 1997, Adewuyi et al., 2005). 

Hyperketonemia is associated with negative energy balance, specifically the 

mobilization of body proteins and fats, measured indirectly through NEFA or directly 

through circulating ketone bodies: acetate, acetoacetate, and β-hydroxybutyrate (BHBA; 

Dye and Dougherty, 1956, Duffield, 2000, Ospina et al., 2010b).  β-hydroxybutyrate has 

become a more standard identification of hyperketonemia and negative energy balance 

instead of acetate, acetoacetate, or NEFA (McArt et al., 2013, Ospina et al., 2013).  

Hyperketonemia, or ketosis, is a metabolic disorder subclinically or clinically affecting 

cattle in the weeks after parturition (Schulz et al., 2014).   

Both subclinical and clinical hyperketonemia have been associated with decreased 

milk yield and increased risk for other fresh cow diseases (Duffield et al., 2009, McArt et 

al., 2012, Schulz et al., 2014).  Hyperketonemia is more prevalent in multiparous (≥ 2 

lactations) dairy cattle because of their increased milk production compared to 

primiparous (1 lactation) dairy cattle (Dye and Dougherty, 1956).  Although 

hyperketonemia may be highly prevalent (1.8 to 55%; Duffield, 1998, McArt et al., 

2011), it is rarely fatal (≤ 5% of all cases; Dye and Dougherty, 1956). 
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Up to 59% of fresh cows may experience subclinical hyperketonemia within the 

first 15 days following calving, although cases may extend two months into lactation 

(Duffield et al., 1998, Duffield, 2000, McArt et al., 2011).  If left untreated, cows are at 

higher risk for other postpartum diseases including clinical hyperketonemia, displaced 

abomasum, and metritis (MacDonald and Bell, 1958, Duffield et al., 2009, Ospina et al., 

2010a).   

Subclinical hyperketonemia is often detected through the concentration of BHBA 

in the urine, blood, or milk (Duffield, 2000).  The cutoff point for subclinical 

hyperketonemia has been reported from 1.0, 1.2, 1.4 and 2.0 mmol/L in the literature.  

Higher prevalence was associated with the lower values (Duffield, 2000).  Cutoff 

thresholds have been based on anecdotal evidence (1.0 mmol/L; Whitaker et al., 1982), 

distribution (1.2 mmol/L; Nielen et al., 1994), additional disease risk (1.4 mmol/L; 

Duffield et al., 1998), and decreased milk yield (2.0 mmol/L; Duffield, 2000).   

Clinical hyperketonemia may be experienced by 2 to 39% of fresh cows over a 

lactation period (Duffield, 2000, McArt et al., 2011).  Clinical signs include decreased 

appetite (particularly of concentrate feeds), decreased milk yield, severe weight loss, hard 

dry feces, apparent blindness, and nervous signs (vigorous licking, turning in circles, etc.; 

Duffield, 2000, McArt et al., 2011).  Subclinical and clinical hyperketonemia have been 

linked to increased occurrences of displaced abomasum, metritis, hypocalcemia, retained 

placenta, clinical and subclinical mastitis, and lameness (Raboisson et al., 2015). 

 

 



5 
 

Prevention of hyperketonemia has been explored through nutrition and 

management.  In one study of 18 German Holstein cows, Schulz et al. (2014) reported 

that cows with a body condition score above 3.0 (1 to 5 point scale; 1 being emaciated 

and 5 being obese; Ferguson et al., 1994) were more likely to experience hyperketonemia 

(89%) than cows with a body condition score around 2.9 (11%).  Feeding preventive feed 

additives pre- and post-parturition have also been explored.  Sodium propionate, choline, 

and monensin have all been shown to reduce subclinical and clinical hyperketonemia 

incidence during the fresh period (Schultz, 1958, Duffield et al., 1998, Oelrichs et al., 

2004).  However, even with a well-managed nutritional program and the addition of feed 

additives, hyperketonemia was present in every herd. 

Treatment of subclinical and clinical hyperketonemia is similar.  To improve 

energy balance, a glucose substrate must be provided.  The glucose substrate should 

stimulate gluconeogenesis and limit mobilization of body fat and muscle protein (Gordon 

et al., 2013).  Substrates to provide glucose commonly used to treat hyperketonemia in 

dairy cattle include propylene glycol, glycerol, and sodium propionate (Geishauser et al., 

2001). Dextrose, glucocorticoids, insulin, cyanocobalamin (vitamin B12), and 

butophosphan have also been considered for hyperketonemia treatment, individually or in 

combination (Gordon et al., 2013). 

Hyperketonemia costs depended on clinical and subclinical hyperketonemia 

incidence, treatment cost, milk price, and herd body condition (Duffield, 2000). If 

hyperketonemia was treated, the cost ranged from $52 to $375 per case (Duffield, 2000, 

Geishauser et al., 2001, McArt et al., 2015, Liang et al., 2017).  McArt et al. (2015) 

divided the costs into component (pertaining directly to hyperketonemia; $119) and costs 
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from increased metritis ($95) and displaced abomasum ($75) incidence.  The cost of 

treatment was only 3% of the component hyperketonemia cost ($4).  The largest 

component costs of hyperketonemia are the indirect costs of reduced reproductive 

performance (34%; $41) and future milk production (26%; $31).  Lost milk production 

ranged from 44 to 328 kg/lactation (Duffield, 2000, Duffield et al., 2009).  Liang et al. 

(2017) modeled a lower lost milk cost, $1.00 ± 0.65 per case (primiparous cows) and 

$6.67 ± 1.69 per case (multiparous cows), compared to $91.00 per case by Guard (2008). 

Hypocalcemia 

 Hypocalcemia, or milk fever, is a disease commonly affecting high producing 

dairy cattle postpartum (Oetzel, 2011).  Hypocalcemia presents with rapid decreases of 

blood calcium (Ca), occasionally decreased phosphates and magnesium, and increased 

blood sugar (Gibbons, 1956, Houe et al., 2000, Goff, 2008).  The body’s demand for Ca 

directly following parturition is increased from 15 to 20g Ca/d to 20 to 30g Ca/d (Oetzel, 

2011).  The cow cannot provide all the Ca for the increased demand from her diet.  

Supplemental Ca is pulled from dissolved Ca solution within the bone structure and 

osteoclastic activity on the bone collagen matrix (Oetzel, 2011).  As Ca is used for milk 

production, the body lacks sufficient Ca to allow the nerve endings to efficiently trigger 

muscle movement resulting in muscle tremors, muscle weakness, and complete loss of 

muscle function (Blowey, 1999, Oetzel, 2011). 

Usually, only multiparous cows are affected by hypocalcemia with a 9% 

increased risk with each following parity (Gibbons, 1956, Oetzel, 2011).  For all cases, 

75% occur within 24 h of parturition, 12% within 24 to 48 h, 6% during parturition, and 

7% occur outside of parturition (nonparturient hypocalcemia; Oetzel, 2011).  
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Hypocalcemia can be diagnosed through blood serum Ca concentrations or through 

physical changes.  The most notable physical change is the cow’s inability to stand, 

commonly referred to as “going down” or “downer cows.”  Herd prevalence may vary (0 

to 54% of cows), but downer cows will have a high mortality risk (60 to 67% of down 

cows; Houe et al., 2000, Goff, 2008).  Since 2004, non-ambulatory cattle cannot be 

marketed and must be humanely euthanized if the cow does not recover (Becker, 2009). 

 Subclinical hypocalcemia is diagnosed through evaluation of blood Ca 

concentrations (Kimura et al., 2006, Goff, 2008).  The cutoff values reported in the 

literature for diagnosing subclinical hypocalcemia vary from 7.5 mg/dL (Bigras-Poulin 

and Tremblay, 1998), 7.9 mg/dL (Massey et al., 1993), 8.0 mg/dL (Goff, 2008), and 8.4 

to 9.2 mg/dL (Chapinal et al., 2011, Chapinal et al., 2012).  The higher thresholds were 

identified through links to reduced milk yield and a higher incidence of hyperketonemia, 

metritis, and displaced abomasum.  Subclinical hypocalcemia may cost $125 to $246 per 

case (Reinhardt et al., 2011, Liang et al., 2017), and cost a 100 cow herd $2,437 annually 

(Oetzel and Eastridge, 2013).  Costs were accrued through decreased dry matter intake, 

decreased milk production, decreased fertility, and increased risk of secondary diseases, 

such as hyperketonemia and displaced abomasum (Oetzel, 2011). 

Clinical hypocalcemia is diagnosed through visual symptoms, including muscle 

weakness, collapse, and disorientation that can continue to unconsciousness (Houe et al., 

2000, Goff, 2008).  Clinical hypocalcemia affects 2 to 14% of dairy cows around 

parturition (Esslemont and Kossaibati, 1996, Oetzel, 2011).  Clinical hypocalcemia can 

result in death (8% of cases), early culling (12% of cases), and decreased milk production 

in subsequent lactations (14% decrease from normal lactation; Oetzel, 2011).  
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Hypocalcemia may increase mastitis risk because of reduced muscle contractions for all 

muscles, including the teat sphincter, and an impaired immune response (Kimura et al., 

2006).  Clinical hypocalcemia cut-off points for each stage decreased as severity 

increases: 5.6 to 7.6 mg/dL (Stage I: standing with clinical signs), 3.4 to 6.4 mg/dL 

(Stage II: sternal recumbency with clinical signs), and 1.0 to 3.4 mg/dL (Stage III: lateral 

recumbency with clinical signs; Oetzel, 2011).   

Treatment for subclinical and clinical hypocalcemia involves providing a Ca 

substrate.  Veterinary and treatment costs were modeled at $85 ± 43 per case of 

hypocalcemia (Liang et al., 2017).  Independent of calcium status, transition cow 

protocols may include an initial Ca treatment followed 12 to 24 h later with a secondary 

treatment.  Cows with subclinical hypocalcemia or Stage I clinical hypocalcemia may be 

treated with an oral Ca supplement (bolus or oral gel; calcium chloride or calcium 

propionate) or a subcutaneous Ca injection (Oetzel, 2011).  Cows with Stage II or III 

clinical hypocalcemia require intravenous Ca.  Additional treatment with oral Ca 

supplements may be needed to prevent a relapse (Oetzel, 2011). Intravenous Ca injection 

is administered with 500 mL of 23% calcium gluconate substrate.  The injection is 

administered slowly, to prevent the cow from going into shock (Oetzel, 2011).  

Decreasing milkings per d following treatment for hypocalcemia may also help prevent a 

relapse (Oetzel, 2011). 

Uterine diseases 

 Metritis is a bacterial infection of the uterus, and a common illness in fresh cows 

(2 to 40% of fresh cows; Risco and Melendez, 2002, Sheldon and Dobson, 2004).  Three 

different definitions of metritis have been established.  Puerperal metritis indicates a cow 
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with an enlarged uterus, fetid watery red-brown vaginal discharge, signs of systemic 

illness, and fever < 21 d after parturition.  Clinical metritis indicates a cow with an 

enlarged uterus and fetid watery red-brown vaginal discharge without systemic signs < 21 

d after parturition.  Finally, clinical endometritis indicates cows with pus in vaginal 

discharge without systemic signs ≥ 21 d after parturition (Sheldon et al., 2006, Dubuc et 

al., 2010a, Giuliodori et al., 2013).   

The primary factor leading to metritis is retained fetal membranes, or retained 

placenta, following parturition (Giuliodori et al., 2013).   A retained placenta occurs 

when the fetal membranes (cotyledons) fail to detach from the uterine membranes 

(caruncles) within 24 h of parturition.  Retained placenta affects 1.3 to 50.0% of all fresh 

cows, particularly those with hypocalcemia, dystocia, or twins (Bretzlaff et al., 1982, 

Esslemont and Kossaibati, 1996, Risco and Melendez, 2002).  Roughly 20 to 88% of all 

retained placenta cases lead to moderate to severe metritis (Bretzlaff et al., 1982, Risco 

and Melendez, 2002). On average, a case of retained placenta costs $106 to $313 (Risco 

and Melendez, 2002, Liang et al., 2017).  Additional factors contributing to metritis 

include dystocia, stillbirth, and negative energy balance (Giuliodori et al., 2013).   

 Metritis may occur in 15 to 24% of fresh cows (Esslemont and Kossaibati, 1996) 

with primiparous cows at 1.5 times greater risk than multiparous cows (Giuliodori et al., 

2013).  Severe metritis (i.e., puerperal) occurs in 18 to 40% of fresh cows with an average 

cost per metritis case of $106 to $161 (Markusfeld, 1987, Drillich et al., 2001, Risco and 

Melendez, 2002).  Liang et al. (2017) modeled a metritis cost of $172 ± 48 for 

primiparous cows and $263 ± 56 for multiparous cows. 
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 Cows with metritis experience reduced milk yield, decreased reproductive 

performance, and increased risk of culling (Sheldon and Dobson, 2004, Bell and Roberts, 

2007, Wittrock et al., 2011, Giuliodori et al., 2013).  Metritic multiparous cows produced 

less over a lactation than their healthy herd mates and decreased dry matter intake during 

the three weeks following parturition (Wittrock et al., 2011).  Primiparous cows did not 

experience these reductions compared to healthy herd mates (Wittrock et al., 2011).  In a 

study by Bell and Roberts (2007), culling and failure to conceive were associated with 

uterine infections. Conversely, Giuliodori et al. (2013) concluded only puerperal metritis 

negatively affected pregnancy rate and calving interval.  Wittrock et al. (2011) suggested 

multiparous cows with metritis were culled because of a combination of illness and low 

milk production instead of impaired reproductive performance.   

 Natural resolution of metritis involves uterine involution or uterine contraction.  

Uterine involution and contraction occur naturally, and self-cure can occur (Giuliodori et 

al., 2013).  Giuliodori et al. (2013) witnessed an 11% cure risk per d postpartum with 

clinically metritic cows having a 95% greater cure risk than puerperally metritic cows.  

When a corpus luteum is present, prostaglandin F2α
 may be used to hasten uterine 

involution to clear the infection from the uterus (Sheldon and Dobson, 2004).  Following 

parturition, oxytocin may be given to help the uterus contract and expel metritis (Blowey, 

1999).  Antibiotics may also be administered to clear bacterial infections, including 

ceftiofur (Risco and Hernandez, 2003, Giuliodori et al., 2013), oxytetracycline, and 

cephalosporins (Sheldon et al., 2004). 
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MASTITIS 

The most costly disease in the dairy industry worldwide is inflammation of the 

mammary gland, more commonly known as mastitis (Jain, 1979, Bramley et al., 1996).  

According to the 2007 NAHMS survey (USDA), 94.9 ± 0.08% of U.S. dairy herds 

reported at least one case of clinical mastitis per year with 16.5 ± 0.05% of each herd 

affected yearly.  In a study by Bar et al. (2007), if a cow experienced a single case of 

clinical mastitis her lactation yield remained below healthy herd mates in the current 

lactation (P < 0.01), and decreased by 1.2 kg/d below healthy herd mates in the 

subsequent lactation.  If a cow experienced a single case of clinical mastitis, she would 

lose 253 kg of milk production within the first two mo after diagnosis.  If a second or 

third case occurred, she would lose an additional 238 or 216 kg of milk production within 

the same period (Bar et al., 2007).  In 2008, Bar et al. simulated the cost of clinical 

mastitis as $71 per cow per yr and $179 per case.  Most of the cost was attributed to milk 

loss ($115), followed by treatment ($50), and increased mortality risk ($14; Bar et al., 

2008).    More recently, Liang et al. (2017) calculated the cost of the average clinical 

mastitis case as $326 ± 71 and $426 ± 80 per case in primiparous and multiparous cows, 

respectively.   

Mastitis indicators can be found in milk composition, with the most readily 

recognized being somatic cell count (SCC).  Somatic cells contain epithelial cells and 

leukocytes (lymphocytes, macrophages, and neutrophils) whose purpose is to 

phagocytize and destroy microorganisms in the infected quarter (Bramley et al., 1996).  

An increased individual cow and bulk tank SCC (> 200,000 cells/mL) can be observed 

with the presence of mastitis.  Increasing a cow’s mean lactation SCC ≥ 100,000 cells/mL 
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decreases milk production in an individual cow, ranging from 91 to 907 kg per year.  

Similarly, increasing bulk tank SCC ≥ 200,000 cells/mL corresponds to the percentage of 

quarters infected in a particular herd, and the resulting production loss (Bramley et al., 

1996).   

Destruction or neutralization of invading agents (or toxins produced by them) is 

the purpose of the inflammatory response that gives mastitis its name.  However, the 

inflammation may also be caused by physical trauma or chemical irritation.  Destruction 

of these intrusive organisms allows the mammary gland to return to its normal function.  

Intramammary infection in dairy cattle is caused by microbial invasion, often bacterial 

(Bramley et al., 1996).  Bacterial agents enter the udder through the teat end and teat 

canal (Jain, 1979).  These bacteria multiply in secretory tissue and create toxins that 

cause injury to the udder, such as Escherichia coli toxemia (Bramley et al., 1996, 

Blowey, 1999).   

Two categories of mastitis have been identified: subclinical and clinical mastitis.  

Subclinical mastitis does not present physical signs in the udder or milk abnormalities but 

does lead to SCC changes.  Subclinical mastitis is the most prevalent in dairy herds (40 

subclinical mastitis cases for every clinical mastitis case), with decreased milk production 

attributing 67% of the cost per case (Hillerton, 1998, Ott, 1999).  Additional costs include 

reduced milk quality, increased labor costs, increased culling, and veterinary and 

treatment costs (Ott, 1999).  Clinical mastitis presents several physical changes including 

flakes, clots, watery appearance in the milk, and heat, sensitivity, swelling, and pain in 

the affected quarter (Jain, 1979, Bramley et al., 1996).  In certain cases, such as acute or 

peracute mastitis, other systems of the cow may be affected and expressed through 
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symptoms such as reduced rumen function, fever, dehydration, weakness, depression, 

loss of appetite, or a rapid pulse (Bramley et al., 1996).   

Mastitis causing agents 

Several causative agents have been linked to mastitis (Bramley et al., 1996).  

Pathogens are grouped into two broad categories: contagious and environmental.  For all 

categories of mastitis, higher parity cows (≥ 4 lactations) are associated with increased 

infection rates (16.5, 20.5, 17.4, and 46.5% of clinical mastitis cases in the 1st, 2nd, 3rd, 

and ≥ 4th lactation, respectively; P < 0.05) and decreased cure rates (39.4, 31.6, 30.3, and 

26.2% of clinical cases in 1st, 2nd, 3rd, and ≥ 4th lactation, respectively; P < 0.05; Deluyker 

et al., 1999).   

 Contagious pathogens are transferred from cow to cow by contact with infected 

quarters.  Contagious pathogens can spread through contaminated milking machine 

inflations, the hands of milking personnel, or dirty udder towels.  Predominant contagious 

pathogens include Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma 

species (Harmon, 1994, González and Wilson, 2003).   

Staphylococcus aureus is an obligatory udder parasite, which means the majority 

of colonies reside within the udder (Jain, 1979).  Staphylococcus aureus can inhabit teat 

and udder skin or infected milk, and spread through contact with contaminated materials 

(Jain, 1979, Fox et al., 1991).  Antibiotic therapy has limited efficacy for treating S. 

aureus infections because bacteria penetrate infected quarter tissue (Jain, 1979).  

Staphylococcus aureus can survive inside neutrophils (Yancey et al., 1991, Mullarky et 

al., 2001), form micro-abscesses and induce fibrosis (Ziv and Storper, 1985, Sordillo et 

al., 1989, Erskine et al., 2003), form small-colony variants (L-forms; Owens and 
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Nickerson, 1989, Brouillette et al., 2004), and invade mammary epithelial cells 

(Lammers, 2000, Kerro Dogo et al., 2002).  All these properties may decrease the 

effectiveness of antimicrobial treatment in cows (Barkema et al., 2006).  Staphylococcus 

aureus has a low clinical-plus-bacteriological cure rate (18%) compared to other 

staphylococcal species (40%; Deluyker et al., 1999).  Segregation or removal of infected 

cows from healthy animals in the herd may effectively reduce the spread of S. aureus 

(Jain, 1979, Barkema et al., 2006).  Staphylococcus aureus can result in necrotic udder 

tissue and death in rare, severe cases (Fox and Gay, 1993, Green and Bradley, 2004). 

Similar to Staphylococcus aureus, most Streptococcus agalactiae colonies also 

reside in the udder (Keefe, 1997, Zadoks et al., 2011).  Streptococcus agalactiae also 

spreads during milking through contaminated milk, milker’s gloves, milking equipment, 

or udder preparation towels (Fox and Gay, 1993, Keefe, 1997).  Streptococcus agalactiae 

infections have been steadily declining, with only 2.6% of US dairy operations testing 

positive in bulk tank samples (USDA-APHIS, 2008).  The decline is likely because 

unlike Staphylococcus aureus, Streptococcus agalactiae responds well to antibiotic 

therapy and can be eradicated from a herd (Jain, 1979).  

Mycoplasma spp. are emerging contagious pathogens (Fox et al., 2003).  

Common Mycoplasma species known to cause mastitis include M. bovis, M. 

bovigenitalium, M. californicum, M. canadense, and M. alkalenscens (Kirk et al., 1994).  

Unlike S. aureus and Strep. agalactiae, Mycoplasma spp. are simple self-replicating 

organisms that attach to host cells to survive (Kirk et al., 1994).  Similar (Kirk et al., 

1994) to S. aureus and Strep. agalactiae, Mycoplasma spp. are spread during milking 

through contaminated milk, milker’s gloves, milking equipment, or udder preparation 
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towels (Kirk et al., 1994).  Mycoplasma species can persist for long periods of time in 

manure and have been isolated from excretions associated with metritis in transition 

cows, respiratory and urogenital tracts, joints, and eyes (Jasper, 1980, Kirk et al., 1994).  

Effective treatments are still being sought for mastitis caused by Mycoplasma species 

(Jasper, 1980, Kirk et al., 1994). 

Environmental pathogens are inherently present in the environment of the cow 

and infect the udder opportunistically or when present in high levels (Bramley et al., 

1996, Bradley, 2002).  Environmental pathogens are not adapted for survival within a 

host, and typically elicit an immune response and are quickly eliminated (Bradley, 2002).  

Environmental risk factors include bacteria level, pathogen nature, environmental 

condition, and cow exposure (Jain, 1979, Bramley et al., 1996, Breen et al., 2007).  

Streptococcus uberis and S. dysgalactiae are the most commonly cultured causative 

agents of environmental mastitis.  These cause subclinical cases that will result in 

occasional flair ups of subacute or acute clinical mastitis (Bramley et al., 1996).  

Environmental streptococcal infection rate increased with increasing parity (0.009 to 

0.0045 infections/cow-d from the 1st to ≥ 6th lactation, respectively; Smith et al., 1985).  

Coliforms encompass two commonly discussed mastitis pathogens: Klebsiella species 

(Klebsiella pneumoniae and Klebsiella oxytocia) and Escherichia coli.  Additional 

coliform bacteria are Enterobacter aerogenes, Citrobacter spp., Serratia spp., and 

Proteus spp. (Smith et al., 1985).  Coliforms cause acute or peracute mastitis with 

occasional subclinical infections.  Typically, coliforms cause no extensive damage or 

decrease in milk production.  In some instances, endotoxemia from coliform mastitis may 

cause death within a few days (Jain, 1979). 
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Some pathogens do not fall into the contagious or environmental categories.  

These include coagulase-negative staphylococci (CNS), yeasts, molds, algae, Bacillus 

species, Pseudomonas aeruginosa, Actinomyces pyogenes, Nocardia species, and 

Mycobacteria species (Bramley et al., 1996).  Coagulase-negative staphylococci are often 

referred to as opportunistic mastitis causing agents present on teat skin and in the teat 

canal (Bramley et al., 1996).  However, CNS are becoming a more prominent mastitis-

causing pathogen (Pitkälä et al., 2004, Olde Riekerink et al., 2008, Oliveira et al., 2013). 

Precision Dairy Monitoring Technology 

Precision livestock technologies’ purpose is real-time monitoring of animals to 

enhance the “eyes and ears of the farmer” (Berckmans, 2015).  Precision livestock 

farming manages a livestock production system according to “the principles and 

technology of process engineering” (Wathes et al., 2008).  Originally developed in 

poultry and swine growing operations, precision livestock farming allows animals to be 

managed at the individual level.  Individual management is especially important for high-

value animals, such as sows and dairy cows (Wathes et al., 2008).  Variables measured 

by technology can be related to several health, management, and production 

characteristics.   

Technologies can be wearable, incorporated into the milking system, stand-alone, 

or part of the management software (Bewley et al., 2017).  Technology evolution can be 

divided into four categories: 1) measurement (quantification), 2) interpretation of 

measurements (classification), 3) integration of interpretation with other information, and 

4) decision support or creation (Rutten et al., 2013).  Quantification simply tells the user 

what has occurred (i.e., the number of steps taken, kg of milk produced, h spent lying 
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down) without drawing any conclusions.  Quantification is the first step in technology 

development and is critical for the development of more sophisticated systems.  

Quantification can be used without further data management, allowing users to decide for 

themselves how the data should be interpreted.  Without any other information, a dairy 

producer could make judgments about data (i.e., daily milk weights) and conclude check 

the cow, cull the cow, etc.   

Interpretation of measurements uses the collected measurements to inform the 

user about the cows’ current state (i.e., estrus, high electrical conductivity) and then the 

user can use that information to form a decision.  An interpretation of this sort categorizes 

data based on the current information and a predetermined threshold.  For example, high 

electrical conductivity does not definitively mean a cow has mastitis, but the electrical 

conductivity of the milk has risen above a predetermined threshold, so the producer or the 

milker is informed of that change (Hogeveen et al., 2010).  Integration of the 

interpretation would mean the system combined the measured information with other 

information (i.e., herd records, weather data, additional cow measurements, or economic 

data) and provided a recommendation to the user or formulated a decision based on the 

recommendation (decision support or creation).  For example, an activity monitor could 

be combined with a herd management software.  An increased activity would not be 

shown to the dairy producer until after the voluntary waiting period had passed.  At this 

point, the technology does not choose to breed the cow (formulating a decision) but in the 

future technology could potentially make those decisions.    
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Technology must provide actionable alerts, with a small number of false alarms 

(false positives).  Too many alerts corresponding to no change, or an unimportant change, 

will cause the user to ignore system alerts completely (Hogeveen et al., 2013, Woodall 

and Montgomery, 2014).  Sensitivity and specificity control the number of alerts 

corresponding to unimportant changes or changes without an explicit action (i.e., breed or 

treat the cow) and are calculated through changes in true positives, false positives, true 

negatives, and false negatives.  For wearable precision dairy monitoring technologies 

(PDM), the test creating an alert was a change in behavior or combination of behaviors 

outside of “normal” behavior ranges (Fricke et al., 2014b, Dolecheck et al., 2016b, 

Stangaferro et al., 2016c, b, a).  True positive (TP) refers to the number of cows correctly 

identified as having a status change (i.e., estrus, metabolic disease, mastitis, or metritis) 

by the technology.  False positive (FP) refers to the number of cows incorrectly identified 

as having a status change when no change had occurred (i.e., not in estrus or ill).  True 

negative (TN) refers to the number of cows correctly identified as not having a status 

change (i.e., not in estrus or ill).  False negative (FN) refers to the number of cows 

incorrectly identified as not having a status change when a change had occurred (i.e., in 

estrus or ill).   

Sensitivity refers to the proportion of true positives detected by a test (Altman and 

Bland, 1994).  Sensitivity is the balance between true positives and false negatives 

calculated as Eq. 1.1 (Altman and Bland, 1994, Hogeveen et al., 2010).   

Sensitivity = 
TP

(TP+FN)
 x 100       Equation 1.1 

For example, a technology that correctly identified 8 out of 10 cows in estrus would have 

a sensitivity of 80%.  Specificity refers to the proportion of true negatives detected by a 
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test (Altman and Bland, 1994).  Specificity is the balance between true negatives and 

false positives calculated as Eq. 1.2 (Altman and Bland, 1994, Hogeveen et al., 2010).  

   Specificity = 
TN

(TN+FP)
 x 100       Equation 1.2  

For example, a technology that correctly identified 8 out of 10 cows not in estrus would 

have a specificity of 80%.  Sensitivity and specificity are inversely related, so achieving a 

balance between them to identify most of the cows with a status change without 

identifying many cows without a status change can be difficult.  Hogeveen et al. (2010) 

suggested mastitis alerts should have a ≥ 80% sensitivity and a ≥ 99% specificity within 

48 h of an event.  However, Leenarts et al. (2017) suggested the economic benefit of 

technology should govern sensitivity and specificity. A less sensitive technology (21.2 or 

54.4%) may still be profitable if no additional investment is required (i.e., calving 

detection from an estrus detection technology; Leenarts et al., 2017). 

Variables measured by PDM – activity, lying or standing time  

Cow activity (steps) was the first behavior measured through precision technology 

(pedometers; Farris, 1954).  Farris (1954) described a marked increase in steps/d 

corresponded to the onset of estrus.  Since that time, more research has been conducted 

describing links to behaviors changes (activity, lying, or standing time) and disease 

(Marchesi, 2013).  Accelerometers measure movement in three directions – up and down, 

side-to-side, and front to back – and provide more information than their predecessor, 

pedometers (Stone, 2017).   

Lying is vital for dairy cattle health and well-being to the extent that lying is 

prioritized above eating and social contact (Munksgaard et al., 2005).  A large portion of 

a dairy cow’s d is spent lying down (10.5 to 11.0 h/d; Ito et al., 2009; Bewley et al., 2010; 
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Medrano-Galarza et al., 2012).  Lying deviations from 10.5 to 11.0 h/d could be linked to 

distress or disease.  Aubert (1999) suggested decreased activity and increased lying time 

were coping mechanisms for diseases, specifically those dealing with pathogenic causes.  

A temperature increase was required to clear animals of pathogen-induced infection.  A 

13% metabolic increase is required to raise internal temperature by 1°C, leaving less 

energy for other functions and leading to conservation of energy (i.e., lying instead of 

walking or standing; Aubert, 1999).  Similarly, lying time decreased when cows’ needed 

to expel heat (heat stress) from 10.9 to 7.9 h/d (P < 0.01; Cook et al., 2007). 

Itle et al. (2015) monitored lying time pre- and post-parturition.  Cows with 

hyperketonemia (BHBA ≥ 1.2 mmol/L) tended to stand longer in the week prepartum and 

d of calving than healthy counterparts (15.0 vs. 13.9 ± 0.5 h/d; P = 0.06).  However, no 

changes in standing time occurred postpartum (Itle et al., 2015).  Conversely, Stangaferro 

et al. (2016a) noted activity (neck activity, arbitrary units) decreased from -5 to 1 d (d 

relative to diagnosis) in cows with hyperketonemia and began to increase 2 d after 

diagnosis.  Tsai (2017) noted decreased lying time (9.8 vs. 10.9 h/d; P < 0.05), activity 

(leg based; 3,137 ± 121 vs. 3,685 ± 73 steps/d; P < 0.05), and neck activity (359 ± 13 vs. 

407 ± 16 arbitrary units; P < 0.05) in cows with hyperketonemia compared to healthy 

counterparts  from 1 to 21 DIM.  Liboreiro et al. (2015) and Edwards and Tozer (2004),   

also reported decreased activity in cows with hyperketonemia compared to healthy herd 

mates.  Edwards and Tozer (2004) also noted an increase in activity over healthy herd 

mates in cows with a left displaced abomasum (P < 0.01; LDA), which can occur in 

combination with hyperketonemia.  Hyperketonemia is a result of negative energy 
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balance, and decreased activity could be attributed to energy savings similar to those seen 

with fever (Aubert, 1999, Tsai, 2017).   

Jawor et al. (2012) noted cows with subclinical hypocalcemia stood longer the d 

before calving (2.6 h) and laid down longer (2.7 h) the d after calving.  Tsai (2017) 

reported cows with hypocalcemia had longer lying times (9.4 vs. 8.2 ± 1 h/d; P < 0.01) 

and decreased activity (neck or leg activity) compared to cows without hypocalcemia 

from 1 to 21 DIM.  Tsai (2017) suggested decreased activity and increased lying time 

were linked to energy conservation and impaired muscle function associated with 

calcium deficiency (Goff and Horst, 1997, Kimura et al., 2006, Oetzel, 2011).  

Titler et al. (2013) reported similar changes in behavior, with metritic cows 

standing longer, walking less, and having less lying bouts 1 d before to 3 d after clinical 

diagnosis than healthy counterparts.  Liboreiro et al. (2015) identified decreases in neck 

activity associated with retained placenta (444 ±11 vs. 466 ± 4 neck activity prepartum; 

488 ± 14 vs. 539 ± 6 neck activity postpartum) and metritis (512 ± 11 vs. 539 ± 6 neck 

activity postpartum).  Tsai (2017) also associated decreased activity with metritis (2,125 

± 1,215 vs. 2,689 ± 1,637 steps/d in cows with or without metritis, respectively) although 

no changes in lying time or neck activity were reported.  Stangaferro et al. (2016c) noted 

a decreased neck activity for cows diagnosed with metritis, but the overall decrease 

varied.  Stangaferro et al. (2016c) suggested more severe cases of metritis (systemic 

effects) would have a greater change in activity compared to less severe cases of metritis.  

Metritis can present with a fever (Sheldon and Dobson, 2004, Sheldon et al., 2006), 

which is normally present in severe cases of metritis.  Decreased activity or walking 

could be related to energy saving associated with fever as described by Aubert (1999). 
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Variables measured by PDM – eating or rumination time 

During the transition period, cows experience negative energy balance and high 

demand for calcium and other minerals.  The diet of a dairy cow provides energy and 

calcium to prevent dairy cattle from depleting bodily energy and calcium stores.  

Monitoring eating time or rumination time could emphasize early issues and improve 

detection of diseases (Weary et al., 2009, Bewley, 2010).     

Cows with hyperketonemia spent ≤ 28% time at the feed bunk compared to 

healthy herd mates (Goldhawk et al., 2009, Itle et al., 2015).  Stangaferro et al. (2016a) 

reported decreased rumination -5 to 0 d before hyperketonemia or displaced abomasum 

detection.  Liboreiro et al. (2015) found cows with hypocalcemia had lower rumination 

time on the d of calving or 3 d after parturition.  Cows with hyperketonemia had 

increased rumination time on the d of parturition but decreased rumination time from 8 to 

17 d postpartum.  Tsai (2017) reported no differences in rumination time or eating time in 

cows with hypocalcemia or hyperketonemia from 1 to 21 DIM. 

Cows with metritis consumed less feed, spend less time eating, and drank less 

than cows without metritis (Huzzey et al., 2007).  Liboreiro et al. (2015) identified 

decreases in rumination time associated with stillbirth (478 ± 6 vs 417 ± 23 min/d 

rumination prepartum; 437 ± 5 vs. 386 ± 19 min/d rumination postpartum) and metritis 

(416 ± 10 vs. 441 ± 5 min/d rumination postpartum).  Stangaferro et al. (2016c) reported 

cows with metritis ruminated less than healthy herd mates.  Tsai (2017) found lower 

rumination time in cows with metritis, but no differences in time around the feed bunk or 

time spent eating.   
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Estrus detection 

One of the more common uses of PDM is estrus detection.  Conventional estrus 

detection involves many labor hours, patches to identify mounted cows, or hormones to 

synchronize estrous.  Even with additional support, the mean yearly estrus detection rate 

is around 46.3% (DRMS, 2017).  An ideal replacement would continuously surveil and 

identify cows, require little labor, and accurately predict when cows should be 

inseminated (Senger, 1994).  

Precision dairy monitoring can improve estrus detection rate without 

synchronization hormones and reduce the labor hours spent watching cows.  Instead, 

PDM measure changes in behavior or biology including lying time, activity (steps/d or 

neck and head movement), feeding time, rumination events, mounting events, and blood 

or milk progesterone levels (Senger, 1994, Saint‐Dizier and Chastant‐Maillard, 2012, 

Fricke et al., 2014a).  True estrus detection with a PDM ranged from 74.2% to 89.2% 

(Liu and Spahr, 1993, Cavalieri et al., 2003, Roelofs et al., 2005, Dela Rue et al., 2014).  

Timed artificial insemination (TAI) and PDM were comparable on: probability of 

pregnancy to first artificial insemination, probability of pregnancy to repeat artificial 

insemination, or pregnancy loss (P = 0.81, 0.88, and 0.20, respectively; Dolecheck et al., 

2016), conception risk (17.6 vs. 22.6%, 30.0 vs. 30.1%, and 39.4 vs. 38.1%; Galon, 2010, 

Neves et al., 2012, and Neves and LeBlanc, 2015, respectively), and pregnancy risk (15.9 

vs. 14.6% and 18.0 vs. 17.3%; Neves et al., 2012 and Neves and LeBlanc, 2015, 

respectively). 
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Disease detection 

A new avenue of wearable PDM is disease detection through behavior 

monitoring.  Several papers have been published on assessing milk compositional 

changes to identify mastitis (Hogeveen et al., 2010), but less is known about early 

detection of disease through behavior monitoring.  In a review by Rutten et al. (2013), the 

majority of work conducted on metabolic detection (69%) simply measured changes 

associated with a disease and did not classify a cow as healthy or having a particular 

disease.  Of the 16 publications reported only two focused on behavioral measurements: 

rumination (Bar and Solomon, 2010) and activity (Edwards and Tozer, 2004, Rutten et 

al., 2013).  Conversely, the majority of work conducted on mastitis detection (92%) was 

at the classification level (Rutten et al., 2013).  However, the majority of sensors 

evaluated (29 out of 31 publications) involved nonattached sensors, with one publication 

evaluating a reticular bolus (Rutten et al., 2013).   

Bar and Solomon (2010) associated rumination time decreases from 39 to 255 

min/d with changes in diet, calving, heat stress, estrus, and mastitis.  Clement et al. 

(2013) noted a specificity of 6.9 to 75.0% based on deviation from normal rumination 

time.  Although this specificity may be too low for a sole disease detection method, 

rumination monitoring could give farmers an early disease indication (Clement et al., 

2013).  Decreases in activity (steps/d) and feed intake with changes in standing or lying 

time may also promote early intervention (Proudfoot and Huzzey, 2016).   

Based on a decreased health index score (HIS; calculated by a proprietary 

algorithm), rumination and neck activity correctly identified displaced abomasum 3.0 d 

before clinical diagnosis (98% sensitivity), hyperketonemia 1.6 d before clinical 
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diagnosis (91% sensitivity), indigestion 0.7 d before clinical diagnosis (89% sensitivity), 

or all metabolic and digestive diseases 2.1 d before clinical diagnosis (93% sensitivity; 

Stangaferro et al., 2016a).  In a Stangaferro et al. (2016b) companion paper, HIS 

correctly identified clinical mastitis 0.5 d before diagnosis (58% sensitivity), with clinical 

cases caused by E. coli having the highest sensitivity (81%).  Stangaferro et al. (2016b) 

surmised the severe inflammatory response to E. coli improved detection ability through 

modifying behavior.  Stangaferro et al. (2016c) also noted HIS correctly identified 

metritis (clinical and puerperal) 1.2 d before diagnosis (55% sensitivity).   

Tsai (2017) compared behavioral variables collected by 10 different PDM to 

predict hyperketonemia, hypocalcemia, metritis, or any combination of hyperketonemia, 

hypocalcemia, or metritis.  Variables analyzed included: rumination time (min/d), eating 

time (min/d), time spent at feed bunk (min/d), times visited feed bunk (number/d), 

activity (steps/d or units/d), lying time (min/d), lying bouts (bouts/d), time not active 

(min/d), time active (min/d), high activity (min/d), reticulorumen temperature (°C), 

Tsai’s alerts were created based on a particular variable either rising above the 10th 

percentile value or below the 90th percentile value.  For example, the 10th and 90th 

percentile value for lying time was 315 and 711 min/d (AfiAct pedometer plus).  Lying 

time increased in cows with hypocalcemia, so a hypocalcemia alert would be created 

when a cow’s lying time was > 711 min/d.  Conversely, lying time decreased in cows 

with hyperketonemia, so an alert would be created when a cow’s lying time was < 315 

min/d.  If a technology measured multiple variables (lying, standing, activity, etc.), all 

significant variables were combined to create one alert threshold per technology.  Tsai 

combined this detection method with a time window of -5 to 0 d before disease detection, 
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similar to Stangaferro et al. (2016a; b; c).  This approach was able to detect 

hyperketonemia (32 to 79% sensitivity; 68 to 94% specificity), hypocalcemia (31 to 79% 

sensitivity; 71 to 95% specificity), metritis (28 to 75% sensitivity; 76 to 85% specificity), 

and any combination of diseases (33 to 79% sensitivity; 79 to 96% specificity; Tsai, 

2017).  The lowest sensitivity occurred when hyperketonemia, hypocalcemia, and 

metritis were detected using changes in body weight (kg/d) or reticulorumen temperature 

(°C). 

Technology validation   

Technologies can provide behavior measurements, but technologies must be 

validated to verify behavior measurements.  Van Erp-Van der Kooj et al. (2016) validated 

the ability of Nedap’s (Nedap Livestock Management, the Netherlands) Smarttag Neck 

and Leg technology.  Agreement was assessed between technology detection and visual 

or video observations of eating time (Smarttag Neck), ruminating time (Smarttag Neck), 

resting time (Smarttag Neck), lying time (Smarttag Leg), standing time (Smarttag Leg), 

walking time (Smarttag Leg), and stand-up count (Smarttag Leg).  Concordance 

correlation analysis (CCC) between visual or video observations and Smarttag Neck or 

Leg measurements was high (0.70 to 0.90) or very high (0.90 to 1.00) for all variables 

except walking time (0.47; low correlation 0.30 to 0.50; Hinkle et al., 2003; Van Erp-Van 

der Koof et al., 2016). 

Borchers et al. (2016) validated additional accelerometer technologies: AfiAct 

Pedometer Plus (lying time (h/d); Afimilk, Kibbutz Afikim, Israel), CowManager 

SensOor ( rumination time (h/d); feeding time (h/d); Agis, Harmelen, the Netherlands), 

HOBO Data Logger (lying time (h/d); HOBO Pendant G Acceleration Data Logger, 
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Onset Computer Corp., Pocasset, MA), CowAlert IceQube (lying time (h/d); IceRobotics 

Ltd., Edinburgh, Scotland), Smartbow (rumination time (h/d); Smartbow GmgH, 

Jutogasse, Austria), and Track A Cow (lying time (h/d); feeding time (h/d) based on 

location to feeding area; ENGS, Rosh Pina, Israel).  Feeding behavior was highly 

correlated with visually recorded behavior (CCC = 0.82 and 0.79 for CowManager 

SensOor and Track A Cow, respectively).  Rumination time was weakly correlated with 

SensOor (CCC = 0.59) and strongly correlated with Smartbow (CCC = 0.96).  Lying 

behaviors were highly correlated with CowAlert IceQube, Track A Cow, and AfiAct 

Pedometer Plus (CCC > 0.99, respectively) and moderately correlated with HOBO Data 

Loggers (CCC > 0.81).  Based on these studies, PDM accurately measured cow behaviors 

(Borchers et al., 2016, Van Erp-Van der Kooj et al., 2016). 

Producer adoption 

Technology has been demonstrated to detect estrus, metabolic disorders, and 

mastitis. However, technology adoption among dairy producers has been slower than 

expected (Huirne et al., 1997, Gelb et al., 2001).  In 1993, Spahr stated that although 

technology reduced the amount or time of labor, work difficulty or drudgery, and 

improved cow performance and well-being, producers would not adopt it unless the 

benefits were obvious and technology was easy to learn and use.  Currently, slow 

adoption of technology continues, even though technologies Spahr (1993) dreamed of are 

now a reality.  

Technology adoption may remain slow, and continue to remain slow, because 

producers are not involved in technology development (Huirne et al., 1997, Wathes et al., 

2008).  This can result in technologies that do not answer an on-farm need, are difficult to 
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understand and use, or are cost prohibitive (Huirne et al., 1997, Yule and Eastwood, 

2012, Russell and Bewley, 2013, Borchers and Bewley, 2015).  Since 1993, researchers 

have been asking the question “Why hasn’t technology been adopted yet?”  When 

producers discuss what drives decision making, the answers have stayed fairly consistent: 

economic feasibility (Huirne et al., 1997, Russell and Bewley, 2013, Borchers and 

Bewley, 2015), animal care and well-being (Huirne et al., 1997, Russell and Bewley, 

2013), human factors (quality of life, status, comparison to neighbors, etc.; Huirne et al., 

1997, Russell and Bewley, 2013, Borchers and Bewley, 2015), and usability and 

technical support (Huirne et al., 1997, Borchers and Bewley, 2015). 

 Russell and Bewley (2013) examined what influenced limited technology 

adoption in Kentucky.  Producers were unfamiliar with the available technology, 

perceived an undesirable cost-to-benefit ratio, and did not know what to do with the 

overload of technology information (Russell and Bewley, 2013). Hogeveen et al. (2013) 

noted this issue in automated milking systems (milking robots); only 3% of all generated 

mastitis alerts were checked.  Producer reasons for not checking alerts were no flakes or 

clots on the filter (28% of alerts), cows were repeatedly on the list (10%), and no time to 

check cows (10%; Hogeveen et al., 2013).   

Building on Russell and Bewley (2013), Borchers and Bewley (2015) assessed 

what influenced technology purchases, and which measurements producer’s found most 

useful.  Producers wanted an affordable technology, with a good cost-to-benefit ratio 

(Borchers and Bewley, 2015).  Producers also wanted a simple technology that was easy 

to understand with access to technology support (Borchers and Bewley, 2015).  Producers 

should also consider how technology fits into their operation and what need it will fill 
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(Yule and Eastwood, 2012).  Commonly measured parameters from already adopted 

technologies included daily milk yield (52%), cow activity (41%), mastitis (25%), and 

milk components (25%; n = 109 respondents; Borchers and Bewley, 2015).  Producers, 

both with and without technology, valued mastitis detection (1 to 5 scale; 4.8 ± 0.5), 

standing estrus detection (4.7 ± 0.5), daily milk yield (4.7 ± 0.6), cow activity (4.6 ± 0.8), 

and temperature (4.3 ± 1.0).  However, producers with technology valued milk yield 

above standing estrus, whereas producers without technology valued standing estrus 

above milk yield (Borchers and Bewley, 2015). 

Moving forward, producers desired individualized technology information 

(Huirne et al., 1997).  Producers’ were more willing to adopt technologies providing 

familiar measurements, such as daily milk yield and cow activity (Borchers and Bewley, 

2015).  Providing familiar measurements backed by proven performance through 

research may decrease risk aversion over time (Huirne et al., 1997, Borchers and Bewley, 

2015).  Increased labor shortages may also drive technology adoption, as reliable and 

economical labor becomes scarcer (Borchers and Bewley, 2015).  Overall, manufacturers 

must consider the needs and usefulness to the producer when developing and 

implementing technology (Wathes et al., 2008).  More on-farm evaluations are needed to 

provide producers with more educated decisions and improved technology competition 

(Jago et al., 2013).  Additionally, increased technical support and producer training may 

increase adoption rates in the future (Jago et al., 2013, Borchers and Bewley, 2015). 

Precision Dairy Monitoring Technology Economic Investment 

 Animal health economics is described as providing a framework of “concepts, 

procedures, and data” to support decisions and optimize animal health management 
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(Dijkhuizen et al., 1991).  A model must 1) depict financial losses of animal disease, 2) 

enhance decisions on an animal, herd, or population level, and 3) identify costs and 

benefits of disease prevention (Dijkhuizen et al., 1991).  The three main inputs that must 

be considered are people, products, and resources (McInerney, 1987, Dijkhuizen et al., 

1991).  Disease modeling is complicated by unobvious or slight effects, housing and 

nutrition components, changes in effect over time and stage of life, and inter-related 

diseases (Ngategize and Kaneene, 1985, Dijkhuizen et al., 1991).  However, reducing the 

number of health problems should improve herd production and increase farmer income 

(Dijkhuizen et al., 1991).  

 When considering investment economics of technology to improve animal health 

(improved or earlier detection, faster recovery time, reduced drug usage or cost, etc.), an 

investment cannot provide a return without replacing an older technology with more 

efficiency (Ward, 1990).  El-Osta and Morehart (2000) stated “efficient dairy farmers 

have a better chance at staying competitive and financially solvent” during times of 

market volatility.  Wathes et al. (2008) agreed efficiency drove technology adoption.  

According to Wathes et al. (2008), limited stockmen with slim profit margins drives the 

need to invest in computer-based process management.  For disease, producers must 

spend time visually assessing or monitoring all cows within their herd.  A technology 

must identify sick or injured cows at the same time or before farmers or staff to replace 

visual observation.  Technical progress, farm characteristics, and farm scale must be 

accounted for to model these effects (van Asseldonk et al., 1999a).  Because technology 

investment is somewhat irreversible, investment success influences future investments 
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(van Asseldonk et al., 1999a).  Therefore, careful consideration must be taken when 

investing in precision dairy monitoring technologies.  

 Investing in PDM for early disease detection has a unique problem.  Farm 

personnel must determine a course of treatment with limited or less specific information 

than if clinical signs were present (Stangaferro et al., 2016a).  Because of this, limited 

research has been conducted on early disease detection and intervention.  One study 

conducted by Milner et al. (1997) explored early mastitis detection with electrical 

conductivity.  Mastitis was detected 3.5 milkings (2 d) before clinical signs, required two 

fewer doses of antibiotic therapy (6 vs. 8), and resulted in 100% cure rate on eight cows 

(Milner et al., 1997).  According to Milner et al. (1997), early detection reduced lost milk 

production, decreased the antibiotic withholding period, decreased antibiotic and labor 

use, and prevented long-term milk production depression.  Applying these same 

improvements to fresh cow diseases could result in significant savings to a dairy producer 

(Bewley, 2010, Bewley et al., 2010a, b). 

 Bewley et al. (2010b) developed an investment tool accounting for the 

complexities of dairy cattle reproduction, production, and culling.  Bewley’s model was a 

dynamic, stochastic, mechanistic simulation of a dairy farm created in Microsoft Excel 

2007 (Microsoft, Seattle, WA) with an @Risk 5.0 add-in (Palisade Corporation, Ithaca, 

NY) to allow key model inputs to be chosen from a distribution (2010b).  Detailed 

modules were calculated within the model to account for: 1) the stochastic nature of price 

(milk price, feed price, etc.), 2) the stochastic price associated with disease, reproduction, 

revenues, and expenses, 3) herd demographics, 4) performance of an average (or typical) 

cow, 5) changes in body condition score, 6) changes in reproductive performance and 
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reproduction state, 7) disease cost and incidence, 8) retention pay-off (optimum culling 

moment), 9) changes in culling decisions or time, and 10) investing in a PDM system 

across each mo of a cow’s life across 10 yr (Bewley et al., 2010b).  Bewley et al. (2010a) 

used this model to assess the economic feasibility of investing in an automated body 

condition scoring system.  Bewley et al. (2010a) found that a 1,000-cow herd with 

normal body condition score ranges would only benefit from automated body condition 

score investment 36.1% of the time (positive net present value).  Profitability was heavily 

related to willingness to feed multiple TMR’s, current herd disease incidence, and current 

herd reproductive performance (Bewley et al., 2010a) 

 Dolecheck et al. (2016a) and Liang et al. (2017) created further tools from 

Bewley et al. (2010b) base model.  Liang et al. (2017) created an updated predicted 

disease cost model using the typical cow simulation and disease simulations on a daily 

basis (Bewley et al. (2010b) monthly basis).  Liang’s model incorporated the retention 

pay-off costs of disease, veterinary, treatment, and labor costs, and discarded milk loss 

(Liang et al., 2017).  The greatest contributors to disease were discarded milk, decreased 

milk production, and veterinary or treatment costs.  Cost per clinical case (Mean ± SD 

primiparous; Mean ± SD multiparous) was calculated for mastitis ($325 ± 71; $426 ± 

80), lameness ($185 ± 64; $333 ± 69), metritis ($172 ± 48; $263 ± 56), retained placenta 

($150 ± 51; $313 ± 65), left-displaced abomasum ($432 ± 102; $639 ± 114), 

hyperketonemia ($77 ± 24; $181 ± 64), and hypocalcemia ($181 ± 64; $246 ± 52).  

Liang’s model can help direct future investment decisions based on the overall cost 

associated with a disease.    
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 Dolecheck et al. (2016a) created a model for investing in wearable automated 

estrus detection (AED) technologies.  Dolecheck et al. (2016a) used the daily calculations 

described in Liang et al. (2017) with a PERT distribution (defined by minimum, 

maximum, and mean) to randomly sample values for conception rate, estrus detection 

rate, voluntary waiting period, age at first calving, semen cost, mature cow live weight, 

rolling herd average milk production, replacement price, feed price, milk price, yearly 

veterinary costs per cow, cull cow price, and DIM to assign an open cow as a 

reproductive cull.  Retention pay-off was calculated to define a cost of days open from 

the stochastic model.  Dolecheck et al. (2016a) created a user-friendly decision support 

partial budget with the information collected from the stochastic model.  Dairy producers 

could input their current estrus detection rate and expected estrus detection rate from a 

PDM.  The cost of the PDM, initial installation cost, and annual upkeep cost were 

considered as additional costs.  The reduced cost of days open, semen, and labor were 

considered as revenues.  Tag price and installation cost influenced NPV most, with 

increased costs decreasing NPV (Dolecheck et al., 2016a).  Dolecheck et al. (2016a) 

assumed a 7-yr technology life and had a resulting payback period of 1.6 to 3.8 yr.  

Giordano (2015) suggested a five yr technology life was crucial to purchasing, in line 

with Dolecheck et al. (2016a) findings. 

CONCLUSIONS 

 Transition cow diseases and mastitis make up a large portion of the diseases dairy 

producers must manage.  Precision dairy technologies may help dairy producers monitor 

and manage diseases at or before the appearance of clinical symptoms.  However, all 

analyses have been conducted retrospectively for transition cow disorders.  Estrus 
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detection technologies have promise for additional detection parameters, including 

calving, metabolic disorders, mastitis, and metritis. 
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2)CHAPTER TWO 

Producer use of on-farm precision dairy technology generated disease alerts 

E. A. Eckelkamp* and J. M. Bewley* 

*Department of Animal and Food Sciences, University of Kentucky, Lexington 40546 

INTRODUCTION 

Precision dairy management technologies (PDM) are real-time animal monitors 

to supplement the “eyes and ears of the farmer” and allow producers to manage on an 

individual cow basis (Wathes et al., 2008, Berckmans, 2015).  Technologies can be 

wearable, incorporated into the milking system, stand-alone, or part of the herd 

management software (Bewley, 2010, Borchers and Bewley, 2015).  Wearable 

technologies (leg, neck, or ear attached) have been validated to accurately characterize 

activity (steps/d), lying time, standing time, walking time, eating time, and rumination 

time (Borchers et al., 2016, Van Erp-Van der Kooj et al., 2016).  Changes in behaviors 

have been linked to estrus (Farris, 1954, Fricke et al., 2014a, Dolecheck et al., 2016b), 

calving (Bar and Solomon, 2010, Borchers et al., 2017), and illness (Jawor et al., 2012, 

Itle et al., 2015, Liboreiro et al., 2015).  By quantifying behavioral changes, PDM could 

predict or detect estrus, calving, or illness events.  However, researchers and 

manufacturers can often lose sight of the end user: the dairy producer.   

Precision dairy monitoring alerts correspond to a behavioral change that could be 

associated with estrus, calving, or illness.  Woodall and Montgomery (2014) stated alerts 

must correspond to an actionable and vital status change.  For instance, a PDM alert 

stating a cow is in estrus should correspond to a cow in estrus with a definite action – 

breed the cow.  Users begin ignoring alerts if too many correspond with no visual or 
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actionable change.  For example, when an alert occurs and the cow is not in heat, no 

action should be taken (Woodall and Montgomery, 2014).  Additionally, alerts that occur 

without an actionable change decrease the economic and efficiency advantages that 

should be provided to the producer (Wathes et al., 2008).  Sensitivity and specificity are 

critical to providing actionable alerts to dairy producers.  Sensitivity is defined as the 

proportion of true positives correctly identified by a test, in this case a, PDM alert 

(Altman and Bland, 1994).  Conversely, specificity is defined as the proportion of true 

negatives correctly identified by a PDM alert (Altman and Bland, 1994).   Finding a 

balance between sensitivity and specificity ensures most cows with a condition (estrus, 

illness, or calving) are detected without detecting cows without a condition.  Hogeveen et 

al. (2010) suggested mastitis alerts should have ≥ 80% sensitivity and 99% specificity 

within 48 h of a mastitis event.  Similar suggestions have not been made for other disease 

events. 

Since the 1990’s, precision technologies have been used to detect estrus (Liu and 

Spahr, 1993, Spahr, 1993).  Using precision technologies for illness detection occurred 

much more recently (Stangaferro et al., 2016a, b, c, Stone, 2017, Tsai, 2017).  Most 

research has focused on mastitis or estrus detection (Rutten et al., 2013, Fricke et al., 

2014a).  In a review by Rutten et al. (2013), 31 publications reported technologies able to 

detect mastitis. Conversely, only 16 publications reported technologies to detect 

metabolic diseases (Rutten et al., 2013).  Of those 16 publications, only two focused on 

behavioral measurements collected from wearable PDM: rumination (Bar and Solomon, 

2010) and activity (Edwards and Tozer, 2004).  Consequently, little research has been 

conducted on how producers use PDM alerts for daily farm management decisions.   
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A lack of PDM producer adoption has been attributed to high cost of technology, 

undesirable or unknown cost-to-benefit ratio, lack of technical support, and poor usability 

(Huirne et al., 1997, Russell and Bewley, 2013, Borchers and Bewley, 2015).  Within 

usability, producers were overwhelmed by the vast information provided by systems and 

desired user-friendly technology and more training on technology implementation (Jago 

et al., 2013, Russell and Bewley, 2013, Borchers and Bewley, 2015).  Hogeveen et al. 

(2013) witnessed the reality of information overload with an automated milking system.  

Producers were provided 421 mastitis alerts through the system, and producers only 

checked cows on 3% of the alerts (Hogeveen et al., 2013).  More on-farm evaluations are 

needed to provide producers and manufacturers with more information-based decisions in 

technology adoption and creation (Wathes et al., 2008, Jago et al., 2013). 

Long-term evaluation of PDM generated disease alerts is needed to identify how 

producers incorporate these systems into their management and how useful producers 

find them.  The objective of this study was to quantify the usefulness dairy producers 

associated with PDM technology generated disease alerts.  The hypotheses were 1) 

producer usefulness would decrease over time if un-actionable alerts were created, 2) 

usefulness would be higher for behaviors producers already associated with disease, and 

3) usefulness would be higher in cows that producers were already monitoring, such as 

cows at higher risk for disease. 
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MATERIALS AND METHODS 

 Data were collected from four cooperating Kentucky dairy farms from October 5, 

2015 to October 30, 2016.  Each farm was visited twice weekly for a total of 104 visits.  

All farms, herds, and producers were assigned an identifying number (1 to 4, 

respectively) that will be used from this point forward.  Producers on farm 1, 2, 3, and 4 

enrolled 373, 250, 365, and 386 cows in the study, respectively, from October 5, 2015 to 

October 30, 2016.  Producer 1 enrolled 197 primiparous and 176 multiparous cows; 

producer 2 enrolled 162 primiparous and 88 multiparous cows; producer 3 enrolled 207 

primiparous and 158 multiparous cows; producer 4 enrolled 201 primiparous and 185 

multiparous cows.  Herd 1 was comprised of Holsteins (n = 373); herd 2 was comprised 

of Holsteins (n = 223), Jerseys (n = 1), Brown Swiss (n = 10), and cross-bred cattle (n = 

4); herd 3 was comprised of Holsteins (n = 210), Brown Swiss (n = 2), and cross-bred 

cattle (n = 116); herd 4 was comprised of Holsteins (n = 298) and cross-bred cattle (n = 

61).  Cows within farms 1, 2, 3, and 4 produced 39 ± 10, 36 ± 11, 37 ± 10, and 33 ± 10 

kg/cow/d on DHI test day, respectively.   

Six months before the start of the study, the entire lactating herd for each farm 

was equipped with a tri-axial accelerometer (attached to a right or left rear leg (70 x 40 x 

72 mm, 108 g) with a thermoplastic polyurethane Nedap leg strap) measuring activity 

(steps/d) and lying time (min/d), and a tri-axial accelerometer attached around the neck 

(142 x 80 x 45 mm, 290 g) with a fully adjustable collar measuring eating time (min/d; 

CowWatch; Alta Genetics Inc., Watertown, WI manufactured by Nedap Livestock 

Management, the Netherlands).  Any new cows without technologies entering the 

lactating herd had tags attached at or around calving.  The tags sent their respective 
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information to a wireless reader (located in the holding pen with a 1,000 m wireless 

radius) every 15 min as the number of seconds a behavior occurred (lying or eating time) 

or the number of steps taken within that 15-min interval.  If the reader was out of range of 

the tags, data was stored for 24 h within the tag and each 15-min interval the tag 

attempted to connect with the reader again.  Once a connection was established, all stored 

data was transferred to the reader. 

 Producers interested in purchasing a new precision dairy technology system were 

approached in October 2014.  Four producers agreed to purchase the technology, 

participate in the study, and evaluate daily technology-generated herd health reports. 

Through the company’s management software, a web-based system interface was made 

available to all producers on the study.  The daily technology-generated health report was 

found by selecting the “Health and management” list (Figure 2.1).  The list consisted of 

changes in eating, lying, or activity (steps/d) behavior according to a predetermined 

threshold set by the company.  An alert was generated based on each variable 

individually, with a maximum of three alerts occurring for a cow in a d.  Each cow was 

only listed once on the list, with each variable listed to the right of the cow number.   

 Producer 4 housed lactating cows in freestalls with mattresses and sawdust as the 

primary housing facility, producers 2 and 3 housed lactating cows in a combination of 

deep-bedded sawdust freestalls and compost bedded pack barns, and producer 1 housed 

lactating cows in compost bedded pack barns.  All herds on the study were enrolled in 

DHI.  Producer 3 fed a TMR once daily, with producers 1, 2, and 4 feeding a TMR twice 

daily.  All cows were cooled by fans in the barn, feed alley, and holding pens when the 

temperature ≥ 21°C (Kiser et al., 2016, personal communication).  Cows were milked 3x 



40 
 

throughout the study at 0400, 1100, and 1800 on Farms 1, 2, and 3.  On Farm 4, cows > 

30 DIM were milked 2x, with cows 3 to 30 DIM milked 4x.  On Farm 4, cows 3 to 30 

DIM were milked at the start of the morning and evening milking, and again at the end of 

the morning and evening milking.  Compost bedded pack barns were tilled 2 to 3 times 

per day depending on milking frequency and bedding was added when producers deemed 

appropriate.  Bedding was added to freestalls at least weekly.  No farms had headlocks.  

All handling of cows and attachment of technologies was conducted in handling chutes 

for Farms 1, 3, and 4.  A palpation rail was used for whole herd technology attachment on 

Farm 2.  A handling chute was used for cow handling and additional technology 

attachment after the initial whole herd technology attachment on Farm 2. 

 Two male and two female family members ran Farm 1.  Farm 1 had two farm 

employees to assist with milking and the remaining farm tasks were completed by the 

family.  One male family member ran Farm 2 almost entirely.  Producer 2 also managed 

six chicken houses holding 24,000 birds each.  Farm 2 had three full-time farm 

employees and one part-time farm employee for both the dairy and the chicken houses.  

Two male family members ran Farm 3 with three full-time farm employees.  Two male 

and one female family member ran Farm 4.  Farm 4 had four full-time farm employees. 

Data collection 

 Performance records from DHI were collected with the permission of 

participating producers including bred/heat dates, DIM, parity, and amount of lactating 

animals in the herd.  Producers were provided a HOBO U23 Series Pro v2 Logger 

(Onset, Cape Cod, MA) to collect barn temperature and humidity data.  The HOBO was 

placed near the center of the primary housing barn above the height easily reached by 
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cows and out of the direct airflow of fans.  The HOBO was taken down on Tuesday of 

every week, and the lead author collected the data then restored the HOBO to the barn. 

Herd behavior alert report.  A technology-generated health report was created 

daily for every farm.  Alert creation was proprietary and based on a percentage decrease 

from a cow’s 10-d mean behavior.  The default setting from the company used 

throughout the study was a decrease ≥ 30% from a cow’s previous 10-d mean total daily 

activity (steps/d), lying time, or eating time.  Until a full 10 d of data were collected on a 

cow, no alerts were created.  The web-based interface presented alerts in the “Health and 

management” list as cow, DIM, group, eating attention, lying attention, and steps 

attention.  Only cows with ≥ 1 attention were shown on the list.  On May 11, 2016 a 

software update occurred for all farms.  From October 5, 2015 to May 11, 2016 (version 

1; Figure 2.1a), values were listed as “value (- %)” indicating the previous days’ total 

eating, lying, or steps and the associated decrease from a cow’s 10-d mean.  Values in 

blue indicated no alert, whereas values in red indicated an eating, lying, or step alert.  

From May 11, 2016 to October 31, 2016 (version 2; Figure 2.1b) values were depicted as 

a horizontal bar, with a vertical line within the bar indicating a cow’s 10-d mean.  The 

amount of the bar filled (left to right) indicated the previous day’s total eating or lying 

time.  Blue bars indicated no alert, whereas red bars indicated an eating or lying alert.  

Steps/d were not shown after May 11, 2016, unless an alert was created.  If an alert was 

created, “Decreased step count” appeared to the right of lying time in red.  Although alert 

creation remained the same, cows that were identified as “in estrus” were not included on 

the “Health and management” list after May 11, 2016.  Before May 11, 2016, cows could 

appear in the “Heat detection” and the “Health and management” lists.  Cows in estrus 
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experience a significant increase in activity which could correspond with decreased lying 

or eating time (Farris, 1954, Hurnik et al., 1975).  After May 11, 2016, cows identified as 

in estrus were only shown on the “Heat detection” list even if a corresponding decrease in 

lying or eating time occurred.  Producers were asked to provide feedback on each cow-

alert that occurred on the list each day as explained in the next section.  A cow-alert could 

contain a single change in activity, lying time, or eating time and any combination of the 

single changes. 

 Alert categorization and herd health.  Producers recorded how they used cow-

alerts generated by behavior changes according to Table 2.1 and Figure 2.2 (adapted from 

Hogeveen et al., 2013).  Producers had the option to categorize alerts within an online 

Google form (Figure 2.3).  Only one producer used the online Google form.  Three 

producers printed off the daily health and management list and manually wrote the 

category (shorthand as A, B, or C) and the reason for categorization (shorthand 1 to 9) 

corresponding to the same set-up as the Google form.  Producers were asked to select 

only one category and one reason the producer chose the category per cow-alert (Table 

2.1 and Figure 2.2).  A sample decision tree is provided in Figure 2.2.  When a cow-alert 

occurred, a producer would either provide information on how the alert was used 

(Evaluated) or would not (NotEvaluated).  Alerts producers evaluated could fall into 3 

overall categories: cow visually checked because of the alert (CowCheck), the cow-alert 

behavior change was considered to be real, but the cow was not visually checked because 

of the alert (NoAction), or the cow-alert behavior change was not considered to be real 

(AlertDoubted).   
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 Alerts categorized as CowCheck (cow visually checked because of the alert) were 

further divided into 5 reasons the producer chose the category: 1) cow was visually sick 

and treated, 2) cow was visually sick and not treated, 3) cow was not visually sick and 

treated, 4) cow was not visually sick and not treated, or 5) producer wrote in Other or 

selected “Other.”  Occasionally, producers provided written in responses for “Other” that 

included pen changes, calving, and estrus. 

Alerts categorized as NoAction (cow-alert behavior change was considered to be 

real, but the cow was not visually checked because of the alert) were further divided into 

9 reasons the producer chose the category: 1) the behavioral change from a cow’s normal 

behavior did not worry the producer, 2) the cow underwent a pen change or dry-off, 3) 

the cow underwent a veterinary or pregnancy check or hoof trimming, 4) too many cows 

were currently being treated, 5) the cow had already been designated as a  cull cow, 6) 

the cow was repeatedly on the alert list, 7) the cow was in estrus, 8) the producer had no 

time to visually check the cows, or 9) the producer wrote in Other or selected “Other.”  

Occasionally, producers provided written in responses for “Other” that included estrus, 

weather changes, and feed changes. 

Alerts categorized as AlertDoubted (cow-alert behavior change was not 

considered to be real) were further divided into 9 reasons the producer chose the 

category: 1) the alert was not believed to represent a real behavioral change, 2) the cow 

underwent a pen change or dry-off, 3) the cow underwent a veterinary or pregnancy 

check or hoof trimming, 4) the cow had been previously checked and was not ill, 5) the 

ear or neck tag was defective, removed, or lost, 6) the cow was repeatedly on the alert 

list, 7) the cow was in estrus, 8) the producer had no time to visually check the cows, or 
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9) the producer wrote in Other or selected “Other.”  Occasionally, producers provided 

written in responses for “Other” that included estrus, weather changes, and feed changes. 

Producers were asked to only select one overall category and one reason for 

selecting that category.  If multiple reasons were selected (i.e., veterinary check and 

other) the reason providing the most information was selected (i.e., veterinary check).  

The similarities between reasons for NoAction and AlertDoubted were included to keep 

producers from choosing one reason and categorizing alerts based on the reason.  

Choosing an overall category (CowCheck, NoAction, or AlertDoubted) captured how the 

producer perceived that cow-alert’s usefulness, then allowed them to select why the cow-

alert was categorized as CowCheck, NoAction, or AlertDoubted.  The same family 

member from each farm categorized alerts during the study. 

Statistical analyses   

Data cleaning.  Dairy producers only evaluated lactating dairy cows, so the data 

set was limited to lactating cows.  Of the 1,197 cows in all herds with recorded disease 

events or disease alerts, 26 cows were removed from the dataset because some tags were 

assigned to incorrect cows, leaving 1,171 cows in the dataset.  Dairy producers identified 

eleven cows as having incorrect tag information and an additional fifteen cows were 

identified as having incorrect tag information by bred or heat date.  Bred and heat dates 

from the herd management software were compared to increases in activity (steps/d) over 

a cow’s 10-d mean activity on -1 to 1 d around a bred or heat date.  If no increase in 

activity occurred during that period, the tag was determined to be on the wrong cow and 

the cow was removed from the data set. 
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The FREQ procedure of SAS 9.4 (SAS Institute, Inc., Cary, NC) with a Chi-

square analysis was used to assess category and reason distribution across and within 

herds.  Alert categorization reasons (5 to 9) were condensed to three main reasons per 

category.  Reasons that accounted for ≤ 10% of cow-alert categorizations within 

CowCheck, NoAction, or AlertDoubted were combined with similar variables to improve 

odds-ratio calculation (Table 2.1).  Within CowCheck, reasons were condensed to 1) Sick 

(visually sick and treated or visually sick and not treated), 2) NotSick (not visually sick 

and treated or not visually sick and not treated), and 3) Other (producer wrote in another 

response).  Within NoAction, reasons were condensed to 1) ChangeOk (the behavioral 

change from normal behavior did not concern the producer), 2) OutsideInfluence (cow 

underwent a pen change, dry-off, veterinary or pregnancy check, or hoof trim), 3) Other 

(too many cows currently being treated, cow would be culled, cow repeatedly on the list, 

cow was in estrus, producer had no time to visually check cows, or producer wrote in a 

different response).  Within AlertDoubted, reasons were condensed to 1) 

ChangeDoubted (the alert was not considered to represent a real behavior change), 2) 

OutsideInfluence (cow underwent a pen change, dry-off, veterinary or pregnancy check, 

or hoof trim), and 3) Other (cow previously checked and not ill, tag defective, removed, 

lost, cow was repeatedly on the list, cow was in estrus, producer had no time to visually 

check cows, or producer wrote in a different response).  When analyses within 

CowCheck, NoAction, or AlertDoubted were conducted, the data set was reduced to 

include only alerts categorized as CowCheck, NoAction, or AlertDoubted, respectively.  

Associated cow numbers are given as (n = X) throughout the text. 
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Univariate analyses.  A univariate analysis was conducted to test individual 

effects on alert categorization.  Significant univariate effects (P < 0.05) were included in 

a multivariate model as fixed effects (Table 2.2).  Fixed effects tested individually were 

software version, day group, lactation stage, parity, alerts/d, behavior type, and heat 

stress.  Software version was either version 1 (pre-May 11, 2016) or version 2 (post-May 

11, 2016).  Day group was either weekday (Monday to Friday) or weekend (Saturday to 

Sunday).  Lactation stage was either fresh (0 to 29 DIM), early (30 to 100 DIM), or post-

peak (>100 DIM).  Parity group was either 1st lactation, 2nd lactation, or ≥ 3rd lactation.  

Alerts/d were either ≤ 20 alerts/d or > 20 alerts/d.  Alerts/d were divided based on the 

default number the Health and management list displayed (20 cow-alerts).  Multiple 

pages had to be viewed or the default number of alerts showing had to be changed from 

20 to 30, 50, or 100 to view ≥ 20 cow-alerts in a day.  Behavior type triggering alerts was 

either eating time, lying time, activity, or any combination of eating, lying, and activity.  

Heat stress was either present (≥ 68 maximum daily temperature humidity index) or 

absent (< 68 maximum daily temperature humidity index).  Temperature humidity index 

(THI) was calculated using Eq. 2.1 (NOAA, 1976).     

THI = temperature (°F) – (0.55 – (0.55 * relative humidity/100))    Equation 2.1 

            * (temperature (°F) – 58.8) 

A generalized linear mixed model (GLIMMIX procedure; SAS 9.4) with binary 

distribution and logit link was used to test fixed effects on the probability of a cow-alert 

being categorized as Evaluated (producer provided use information) or NotEvaluated 

(producer provided no use information).  The model contained 24,012 observations on 

1,171 cows across four farms.  The random effect of clustering by cow within farm was 
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included in the model.  Repeated measures of cow within farm over the study was also 

included in the model.   

A generalized linear mixed model with multinomial distribution and generalized 

logit link was used to test fixed effects on the probability of a cow-alert being categorized 

as CowCheck, NoAction, or AlertDoubted.  The model contained 15,130 observations on 

1,121 cows across four farms.  The random effect of clustering by cow within farm was 

included in the model.  Repeated measures of cow within farm over the study was also 

included in the model.   

A generalized linear mixed model with multinomial distribution and generalized 

logit link was used to test fixed effects on the probability of a cow-alert being categorized 

as Sick, NotSick, or Other within the CowCheck category.  The model contained 5,034 

observations on 753 cows across four farms. The random effect of clustering by cow 

within farm was included in the model.  Repeated measures of cow within farm over the 

study was also included in the model.     

A generalized linear mixed model with multinomial distribution and generalized 

logit link was used to test fixed effects on the probability of a cow-alert being categorized 

as ChangeOk, OutsideInfluence, or Other within the NoAction category.  The model 

contained 8,093 observations on 1,050 cows across four farms.  The random effect of 

clustering by cow within farm was included in the model.  Repeated measures of cow 

within farm over the study was also included in the model.     

A generalized linear mixed model with multinomial distribution and generalized 

logit link was used to test fixed effects on the probability of a cow-alert being categorized 

as ChangeDoubted, OutsideInfluence, or Other within the AlertDoubted category.  The 
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model contained 2,003 observations on 560 cows across four farms.  The random effect 

of clustering by cow within farm was included in the model.  Repeated measures of cow 

within farm over the study was also included in the model.        

Multivariate analysis – any feedback.   A generalized linear mixed multivariate 

analysis was conducted to determine the effects of significant univariate variables in 

combination on alert categorization (GLIMMIX procedure SAS 9.4).  A generalized 

linear mixed model with binary distribution and logit link was used to test fixed effects 

on alert categorization as Evaluated (producer provided use information) or NotEvaluated 

(producer provided no use information).  Fixed effects were software version, day group, 

lactation stage, heat stress, alerts/d, and behavior type.  The model contained 24,012 

observations on 1,171 cows across four farms.  The random effect of clustering by cow 

within farm was included in the model.  Repeated measures of cow within farm over the 

study was also included in the model.  Odds ratios (OR) were calculated comparing 

Evaluated alerts against alerts that were NotEvaluated for each fixed effect.  Odds ratios 

with a 95% confidence interval including the null value (OR = 1) were not reported.  

Multivariate analysis – evaluated alert categorization.  A generalized linear 

mixed multivariate analysis was conducted to determine the effects of significant 

univariate variables in combination on alert categorization (GLIMMIX procedure SAS 

9.4).  A generalized linear mixed model with multinomial distribution and generalized 

logit link was used to test fixed effects on alert categorization as CowCheck (cow 

visually checked because of the alert), NoAction (cow-alert behavior change was 

considered to be real, but the cow was not visually checked because of the alert), or 

AlertDoubted (the cow-alert behavior change was not considered to be real).  Fixed 
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effects were software version, lactation stage, heat stress, alerts/d, and behavior type.  

The model contained 15,130 observations on 1,121 cows across four farms.  The random 

effect of clustering by cow within farm was included in the model.  Repeated measures of 

cow within farm over the study was also included in the model.  Odds ratios were 

calculated comparing CowCheck against NoAction, CowCheck against AlertDoubted, 

and NoAction against AlertDoubted for each fixed effect.  Odds ratios with a 95% 

confidence interval including the null value (OR = 1) were not reported. 

Multivariate analysis – reasons for categorization: CowCheck.  A generalized 

linear mixed multivariate analysis was conducted to determine the effects of significant 

univariate variables in combination on why alerts were categorized as CowCheck 

(GLIMMIX procedure SAS 9.4).  A generalized linear mixed model with multinomial 

distribution and generalized logit link was used to test fixed effects to compare Sick (cow 

visually sick), NotSick (cow not visually sick), and Other (producer wrote in another 

response) as reasons for categorizing cow-alerts as CowCheck.  Fixed effects were day 

group, lactation stage, alerts/d, and behavior type.  The model contained 5,034 

observations on 753 cows across four farms.  The random effect of clustering by cow 

within farm was included in the model.  Repeated measures of cow within farm over the 

study was also included in the model.  Odds ratios were calculated comparing NotSick 

against Sick, Sick against Other, and NotSick against Other for each fixed effect.  Odds 

ratios with a 95% confidence interval including the null value (OR = 1) were not 

reported.  

Multivariate analysis – reasons for categorization: NoAction.  A generalized 

linear mixed multivariate analysis was conducted to determine the effects of significant 
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univariate variables in combination on why alerts were categorized as NoAction 

(GLIMMIX procedure SAS 9.4).  A generalized linear mixed model with multinomial 

distribution and generalized logit link was used to test fixed effects to compare 

ChangeOk (the behavioral change from normal behavior did not worry the producer), 

OutsideInfluence (cow underwent a pen change, dry-off, veterinary or pregnancy check, 

or hoof trim), and Other (too many cows currently being treated, cow will be culled, cow 

repeatedly on the list, cow was in estrus, producer had no time to visually check cows, or 

producer wrote in a different response) as reasons for categorizing cow-alerts as 

NoCheck.  Fixed effects were software version, day group, lactation stage, heat stress, 

alerts/d, and behavior type.  The model contained 8,093 observations on 1,050 cows 

across four farms.  The random effect of clustering by cow within farm was included in 

the model.  Repeated measures of cow within farm over the study was also included in 

the model.  Odds ratios were calculated comparing ChangeOk against OutsideInfluence, 

ChangeOk against Other, and OutsideInfluence against Other for each fixed effect.  Odds 

ratios with a 95% confidence interval including the null value (OR = 1) were not 

reported.  

Multivariate analysis – reasons for categorization: AlertDoubted.  A generalized 

linear mixed multivariate analysis was conducted to determine the effects of significant 

univariate variables in combination on why alerts were categorized as AlertDoubted 

(GLIMMIX procedure SAS 9.4).  A generalized linear mixed model with multinomial 

distribution and generalized logit link was used to test fixed effects to compare 

ChangeDoubted (the alert was not considered to represent a real behavior change), 

OutsideInfluence (cow underwent a pen change, dry-off, veterinary or pregnancy check, 
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or hoof trim), and Other (cow previously checked and not ill, tag defective, removed, 

lost, cow was repeatedly on the list, cow was in estrus, producer had no time to visually 

check cows, or producer wrote in a different response) as reasons for categorizing cow-

alerts as NoBelief.  Fixed effects were software version, day group, lactation stage, heat 

stress, alerts/d, and behavior type.  The model contained 2,003 observations on 560 cows 

across four farms.  The random effect of clustering by cow within farm was included in 

the model.  Repeated measures of cow within farm over the study was also included in 

the model.  Odds ratios were calculated comparing OutsideInfluence against 

ChangeDoubted, OutsideInfluence against Other, and ChangeDoubted against Other for 

each fixed effect.  Odds ratios with a 95% confidence interval including the null value 

(OR = 1) were not reported.  

RESULTS 

 Overall, 24,012 cow-alerts were generated from 1,171 cows.  Herds 1, 2, 3, and 4 

included 217 ± 23, 137 ± 17, 202 ± 14, and 230 ± 14 lactating cows over the study 

period, respectively.  Of the 24,012 cow-alerts, producers provided feedback on 15,130 

cow-alerts (63%).  Cow-alerts were caused by decreased eating time (n = 9,543), lying 

time (n = 9,777), activity (n = 1,590), or a combination of behaviors (n = 3,102).  Across 

herds, producers provided feedback on 48 to 80% of the total cow-alerts (Table 2.3).  

Across herds, disease alerts were evaluated as CowCheck (2 to 45%), NoAction (17 to 

45%), AlertDoubted (1 to 20%), and not evaluated (19 to 52%; Table 2.3).   

Alert categorization 

Software version.  Software version was defined as 1 (pre-May 11, 2016; Figure 

2.1a) or 2 (post-May 11, 2016; Figure 2.1b).  Version influenced categorization and 
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reason for categorization (P < 0.01) in all univariate models except reasons for 

categorizing cow-alerts as CowCheck (P = 0.11; Table 2.2).  The longer the technology 

was used, the more likely producers were to not evaluate alerts (Table 2.4, OR = 1.40, 

1.24 to 1.57 95% CI).  The alerts that were evaluated in version 2 had an increased 

likelihood of being categorized as CowCheck (OR = 1.24, 1.01 to 1.52 95% CI), and 

were less likely to be categorized as AlertDoubted (OR = 2.90, 2.26 to 3.71 95% CI; 

Table 2.5).  Although alerts were more likely to be assigned to CowCheck in version 2, 

no change in distribution within CowCheck occurred (Table 2.2).   

Within NoAction, producers were more likely to categorize alerts as 

OutsideInfluence in version 1 (Table 2.7) than as ChangeOk or Other.  Within 

AlertDoubted, producers were more likely to categorize alerts as OutsideInfluence in 

version 2 (Table 2.8) than as ChangeDoubted or Other.  Within AlertDoubted, producers 

were more likely to categorize alerts as Other in version 1 (Table 2.8) than 

OutsideInfluence or ChangeDoubted. 

 Day group.  Day group was divided into weekday (Mon to Fri) or weekend (Sat 

and Sun).  Day group influenced categorization and reason for categorization in all 

univariate models (P < 0.01; Table 2.2) except categorization between CowCheck, 

NoAction, and AlertDoubted (P = 0.06; Table 2.2).  Producers were more likely to 

evaluate alerts on weekdays (OR = 1.59, 1.45 to 1.74 95% CI; Table 2.4).  Day group 

also affected distributions within CowCheck, NoAction, or AlertDoubted categorization 

(P < 0.01; Table 2.2).  Within CowCheck, producers were more likely to categorize alerts 

as Sick on weekdays (OR = 1.53, 1.19 to 1.97 95% CI; Table 2.6).  Within NoAction, 

producers were more likely to categorize alerts as ChangeOk instead of Other on 
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weekends (OR = 1.28, 1.07 to 1.52 95% CI; Table 2.7).  Within AlertDoubted, producers 

were more likely to categorize alerts as OutsideInfluence or ChangeDoubted instead of 

Other on weekends (OR = 1.67 and 4.14, respectively; Table 2.8). 

 Lactation stage.  Lactation stage was divided into fresh (≤ 30 DIM), early (31 to 

99 DIM) or post-peak (≥ 100 DIM) lactation.  Lactation stage influenced categorization 

and reason for categorization in all univariate models (P ≤ 0.04; Table 2.2).  Producers 

were more likely to evaluate fresh and early lactation cows than post-peak lactation cows 

(OR = 1.15 and 1.30, respectively; Table 2.4).  However, lactation stage did not affect 

CowCheck, NoAction, or AlertDoubted categorization, or reason for categorizing cow-

alerts as CowCheck (P = 0.08 and 0.07, respectively).   

Producers were more likely to categorize alerts as ChangeOk instead of 

OutsideInfluence in early or post-peak lactation instead of fresh lactation (OR = 2.20 and 

3.58, respectively; Table 2.7).  Alerts were more likely to be categorized as ChangeOk 

and OutsideInfluence instead of Other in fresh lactation instead of early or post-peak 

lactation (Table 2.7).  Within AlertDoubted, alerts in fresh lactation cows were more 

likely to be categorized as OutsideInfluence instead of ChangeDoubted, OutsideInfluence 

instead of Other, and ChangeDoubted instead of Other compared to early and post-peak 

lactation cows (Table 2.8). 

 Alerts/d.  Total cow disease alerts that occurred per day were divided into ≤ 20 

(low) and > 20 (high) alerts/d.  Twenty alerts corresponded to the number of alerts shown 

as the default on the Health and management list.  Alerts/d influenced categorization and 

reason for categorization in all univariate models (P < 0.01; Table 2.2).  Producers were 

more likely to evaluate alerts when ≤ 20 alerts/d occurred (OR = 1.92, 1.78 to 2.07 95% 
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CI; Table 2.4).  When ≤ 20 alerts/d were on the list, producers were more likely to 

categorize alerts as CowCheck instead of NoAction (OR = 1.43, 1.26 to 1.63 95% CI; 

Table 2.5).  Conversely, producers were more likely to categorize alerts as NoAction 

instead of AlertDoubted when > 20 alerts/d were on the list (OR = 1.65, 1.41 to 1.93; 

Table 2.5).   

Within CowCheck when > 20 alerts/d occurred, producers were more likely to 

categorize alerts as Sick or NotSick instead of Other (OR = 2.01 and 2.55, respectively; 

Table 2.6).  Within NoAction when ≤ 20 alerts occurred, producers classified alerts as 

ChangeOk instead of OutsideInfluence (OR = 2.37, 1.98 to 2.85 95% CI; Table 2.7), 

ChangeOk instead of Other (OR = 5.66, 4.84 to 6.61 95% CI; Table 2.7), and 

OutsideInfluence instead of Other (OR = 2.50, 2.06 to 3.04 95% CI; Table 2.7). Within 

AlertDoubted when ≤ 20 alerts occurred, producers categorized alerts as 

OutsideInfluence instead of Other (OR = 2.01, 1.28 to 3.16 95% CI; Table 2.8) and 

ChangeDoubted instead of Other (OR = 3.47, 2.03 to 5.92 95% CI; Table 2.8). 

 Behavior alerted.  Behavior alerted referred to eating, lying, or activity and any 2 

or 3-way combination of the behaviors that decreased below the predetermined threshold 

and triggered an alert to be created on the Health and management list.  Behavior alerted 

influenced categorization and reason for categorization in all univariate models (P < 0.01; 

Table 2.2).  Producers were more likely to evaluate eating over lying alerts, combinations 

over lying alerts, and activity over combination, eating, and lying alerts (Table 2.4).   

When CowCheck and NoAction were compared, producers were more likely to 

visually check eating over combination, lying, or activity alerts (OR = 1.77, 11.28, and 

6.24, respectively), combination over lying or activity alerts (OR = 6.39 and 3.53, 



55 
 

respectively), and activity over lying (OR = 1.81; Table 2.5).  When CowCheck and 

AlertDoubted were compared, producers were more likely to visually check eating over 

combination, lying, or activity alerts (OR = 2.30, 4.65, and 3.93, respectively) and eating 

over lying and activity alerts (OR = 4.65 and 3.93, respectively; Table 2.5).  When 

NoAction and AlertDoubted were compared, producers were more likely to believe 

behavioral changes caused by lying over combination, eating, and activity (OR = 2.81, 

2.56, and 1.53, respectively) and activity over combination and eating alerts (OR = 1.84 

and 1.67, respectively; Table 2.5). 

Within CowCheck, alerts categorized NotSick increased over Sick in eating over 

combination alerts (OR = 2.16), lying over combination and eating (OR = 5.66 and 2.62), 

and activity over combination, eating, and lying alerts (OR = 12.37, 5.74, and 2.19, 

respectively).  Producers were more likely to categorize cow-alerts as Sick instead of 

Other in eating and combination alerts over activity alerts (OR = 4.38 and 3.68, 

respectively).  Producers were more likely to categorize cow-alerts as NotSick instead of 

Other in eating, lying, and activity alerts over combination alerts (OR = 2.60, 4.24, and 

3.63, respectively; Table 2.6).  

Within NoAction, ChangeOk alerts were more likely to be eating over 

combination alerts (OR = 1.61), lying over combination, eating, and activity alerts (OR = 

3.31, 2.06, and 1.58, respectively), and activity over combination alerts (OR = 3.31) 

instead of OutsideInfluence.  ChangeOk alerts were more likely to be lying over 

combination or eating alerts (OR = 1.69 and 1.53, respectively) and activity over 

combination, eating, or lying alerts (OR = 3.44, 3.12, and 2.04, respectively) instead of 

Other.  OutsideInfluence alerts were more likely to be combination over eating or lying 
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alerts (OR = 1.42 and 2.19, respectively), eating over lying alerts (OR = 1.54), and 

activity over eating or lying alerts (OR = 2.23 and 3.43, respectively; Table 2.7) instead 

of Other. 

Within AlertDoubted, OutsideInfluence alerts were more likely to be combination 

over eating alerts (OR = 7.88), lying over eating alerts (OR = 5.12), and activity over 

combination, eating, or lying alerts (OR = 3.31, 26.13, and 5.11, respectively) instead of 

ChangeDoubted.  OutsideInfluence alerts were more likely to be combination over eating 

or lying alerts (OR = 3.66 and 4.44, respectively) and activity over eating or lying alerts 

(OR = 7.69 and 9.32, respectively) instead of Other.  ChangeDoubted alerts were more 

likely to be combination or eating over lying alerts (OR = 3.20 and 5.90, respectively; 

Table 2.8) instead of Other.  

 Parity and heat stress.  Parity was grouped as 1st, 2nd, and ≥ 3rd lactation.  Heat 

stress was grouped as temperature humidity index ≥ 68 or < 68.  Parity group influenced 

categorization and reason for categorization in all univariate models except distribution 

of evaluated or not evaluated alerts (P = 0.84; Table 2.2).  However, parity was not a 

significant influencer in any multivariate model.  Heat stress influenced categorization 

and reason for categorization in all univariate models except distribution with CowCheck 

(P = 0.16; Table 2.2).  Heat stress was only a significant influencer within NoAction and 

AlertDoubted models.  Within NoAction, alerts were more likely to be categorized as 

ChangeOk instead of OutsideInfluence or Other when THI was ≥ 68 (OR = 1.45 and 

5.66, respectively; Table 2.7).  Within AlertDoubted, alerts were more likely to be 

categorized as OutsideInfluence instead of ChangeDoubted when THI was < 68 (OR = 

2.44; Table 2.8). 
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DISCUSSION 

  Stangaferro et al. (2016a; b; c) and Tsai (2017) identified the potential for 

detecting mastitis, metritis, and metabolic disorders with PDM.  In many instances, 

disease detection can occur days before human visual detection (Stangaferro et al., 2016a, 

b, c).  However, little is known about how dairy producers use disease alerts in daily 

management.  Hogeveen et al. (2013) monitored a snapshot of mastitis alerts created by 

an automated milking system, finding only 3% of the 421 alerts were checked by 

producers.  The researchers checked cows based on 421 mastitis alerts and producers 

visually checked cows for 15 of the mastitis alerts (Hogeveen et al., 2013).  Within our 

study, producers explained how they used alerts more often (63%; 15,130 out of 24,012), 

but only 21% of alerts (5,034 out of 24,012) were actively checked by dairy producers.  

Hogeveen et al. (2013) stated producers missed 74% of the clinical mastitis cases found 

by the researchers because of mastitis alerts (10 out of 39 mastitis cases found).  A 

disease alert system is only as beneficial as the producers find it, and the producers in 

Hogeveen et al. (2013) and our study found a small percentage of alerts usable.  Within 

our study, a popular response was ChangeOk (behavior change from normal did not 

worry the producer).  Similarly, the most popular reason for not visually checking a cow 

for mastitis was no flakes or clots were found on the filter (28% of responses; Hogeveen 

et al., 2013).  Admittedly, producers missed a large portion of mastitis events (74%) in 

Hogeveen et al. (2013) study, but in our study a low disease detection sensitivity 

(proportion of true positives) was associated with eating, lying, and activity (steps/d) 

alerts (31 ± 4 to 42 ± 3 sensitivity; Eckelkamp et al., 2017).  The low sensitivity in our 
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study coupled with the producer categorization of alerts as NoAction indicated too many 

alerts without a clear action or health-related issue were occurring. 

Within our study, alert usefulness varied by the producer.  Some producers rarely 

visually checked cows based on alerts (Farm 1; Table 2.3), whereas others preferred to 

check most of the cows (Farm 4; Table 2.3).  Differences in usefulness did not 

necessarily mean the system performed differently on these farms.  Hogeveen et al. 

(2013) reported similar differences with one producer checking an automatically 

generated mastitis alert list 10 times per d routinely and another checking the list 2 to 3 

times per wk. Producer management style could also have influenced producer opinion.  

Farm 3 and 4 relied heavily on non-family labor to conduct daily tasks, allowing owners 

to spend time evaluating cow-alert lists and visually assessing cows.  Farm 1 and 2 had 

limited non-family labor, relying instead on family labor to run the farm.  Reliance on 

family labor limited the daily time owners could spend evaluating alerts and checking 

cows because they were busy with other on-farm tasks. 

Producers on Farm 1 had the lowest number of alerts categorized as CowCheck 

(2%; Table 2.3).  An elevated feed wagon was used to feed fresh cows on Farm 1.  The 

feed wagon design (slanted head entrances) would press against the neck collar and 

prevent the tri-axial accelerometer from registering head movement, resulting in eating 

attentions for all cows in that pen.  Over time, the alerts on cows within that pen were 

categorized as NoAction and written in as “fresh cows.”  Including producers in 

technology development could help pinpoint issues like this before farm implementation 

and improve end-user technology confidence (Wathes et al., 2008).   
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 System.  The longer the system was in place, the less likely dairy producers were 

to give feedback on alerts (comparing evaluated to not evaluated alerts).  According to 

the producers participating in this study, lack of feedback could indicate they were too 

busy, the system was not functioning correctly (lightning storms, lack of internet 

connection), or they were overloaded with alerts (≥ 100 alerts/d on the list; Kiser et al., 

2016, personal communication)  .  Producers consistently provided cow-alert feedback 

(CowCheck, NoAction, or AlertDoubted) at least weekly over the study.  Three 

producers provided feedback at least weekly over the study, with one producer giving 

feedback at least weekly until September 2016.  Producer 3 had a family tragedy and was 

not present on the farm from September to November 2016.  Producers may have been 

more willing to check alerts when the system was still novel.  Decreased evaluations over 

time could have been linked to novelty wearing off or increased producer comfort with 

the system (knowing what was or was not linked to a disease event).  Our results also 

suggested producers failed to evaluate the alerts they deemed unimportant.  The 

likelihood of alerts categorized as CowCheck (cow visually checked because of the alert) 

or NoAction (cow-alert behavior change considered to be real, but the cow was not 

visually checked because of the alert) increased the longer the system was in place (Table 

2.5).  Woodall and Montgomery (2014) suggested too many alerts or alerts without a 

critical change (i.e. sickness) caused users to ignore alerts, in-line with our study 

findings. 

Producers were more likely to attribute behavioral changes to outside influences 

(pen changes, dry-offs, estrus events, veterinary examinations, etc.) the longer the system 

was in place (Tables 2.7 and 2.8).  Increased understanding of the system and logical 
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connections to management effects were probably identified by producers over time.  

Including dairy producers in technology creation, or alert generation strategies, could 

help decrease the number of unnecessary alerts created by a system (Huirne et al., 1997, 

Wathes et al., 2008).  Incorporating management software could also improve alert 

generation (Borchers and Bewley, 2015).  If producers were able to enter pen changes, 

dry-offs, or scheduled events (pregnancy checks, hoof trimmings, etc.), technology 

companies could modify governing algorithms or alert thresholds based on the additional 

information.  Although producers can recognize the changes in behavior occurred 

because of outside influences, potential disease alerts attributed to those changes could 

result in decreased producer confidence in disease alerts as it did in the current study. 

Day group.  Day group played a crucial role in evaluations.  Producers were more 

likely to evaluate alerts, check alerts, and identify cows as sick during the workweek.  

Producers had less labor available on the weekends (personal communication) and were 

more likely to devote time to family (personal communication) than during the 

workweek.  Conversely, Hogeveen et al. (2013) stated 7 AMS producers in the 

Netherlands did not change how often they checked a mastitis alert list between 

weekends and weekdays.  However, Hogeveen et al. (2013) administered a questionnaire 

to gather how producers used mastitis alerts, followed up with five site visits.  Tracking 

changes in how the alerts were used over time could have provided results similar to our 

study.  Showing only urgent or high priority alerts (fresh cows, mastitis, or calving alerts) 

on weekends could improve producer use of disease alerts. 

Lactation stage.  Producers were more likely to evaluate alerts on cows in the 

fresh period or early lactation than cows in later lactation (Table 2.4).  Cows are at the 



61 
 

highest disease risk during the transition period, three wk pre- and three wk post-

parturition (LeBlanc, 2010).  Borchers and Bewley (2015) suggested producers were 

more likely to use measurements they were more familiar with (steps/d and milk 

weights).  The same could be true for which cow-alerts producers placed a priority on.  

Producers may have increased alert evaluation during the fresh period and early lactation 

because of increased concern during that stage of a cow’s life. 

An increased likelihood of coding alerts as ChangeOk in fresh cows instead of 

Other was also seen.  When talking with the producers, an idea was proposed.  The alerts 

monitored eating time, lying time, and steps/d, and the possibility existed for changes in 

one variable to alter another.  The producers noted fresh cows with lying time alerts 

(decreased lying time) could correspond to increases in eating time.  Many alerts were 

coded ChangeOk because of this, with producers viewing this situation as a positive 

change indicative of cows improving postpartum (Kiser et al., 2016, personal 

communication).  Huzzey et al. (2005) noted eating frequency increased postpartum (9.8 

vs. 11.1 ± 0.5 meals/d pre and postpartum, respectively; P = 0.09) with standing time 

increasing postpartum (12.3 vs. 13.4 ± 0.3 h/d pre and postpartum, respectively; P = 

0.02).   

One limitation of the current alert creation strategy was increased behaviors did 

not create disease alerts.  Theoretically, if a cow increased lying time, eating time and 

activity would decrease, creating an alert.  However, the behavior volatility around 

calving could have made establishing a baseline difficult.  Huzzey et al. (2005) reported 

inconsistency within and across herds pre- and postpartum for feeding and drinking 

behavior with standing time only increasing at the time of calving.  With the behavioral 
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volatility around calving, potentially providing different lists for different stages of 

lactation could improve producer use of disease alerts.  Setting higher thresholds (above 

the ≥ 30% decrease set in our study) for later lactation cows could decrease the number of 

unused alerts, and enable producers to more closely focus on high risk cows.   

Alerts/d.  Similarly, ≤ 20 alerts/d on the health and management list improved the 

likelihood of producers evaluating alerts and visually checking alerts.  Having a small 

number of alerts was more manageable to examine both on and off the computer screen.  

To view more than 20 alerts, producers had to either view multiple pages, or alter the 

number of alerts viewed at a single time.  Increasing the number of alerts that can be 

viewed at a single time could improve alert use.  Hogeveen et al. (2013) stated producers 

spent a maximum of 10 min looking at a mastitis alert list.  However, Hogeveen’s 

producers saw between 6 and 30 udder health alerts per d.  Minimizing data noise from 

pen changes or scheduled events could help restrict alerts to health-specific behavioral 

changes and decrease the number of alerts per d and the time needed to evaluate alerts.  

Adopting these changes could encompass Woodall and Montgomery (2014), Wathes et 

al. (2008), and Russell and Bewley (2013) findings that producers desire actionable, 

individualized alerts, instead of information overload.  

Additionally, producers could have associated a high number of alerts with 

increase false positives – an alert was created and the cow was healthy.  Many studies 

have emphasized the importance of limiting false positives and negatives (sensitivity and 

specificity) with behavior generated alerts (Huzzey et al., 2005, Hogeveen et al., 2010, 

Fricke et al., 2014a, Borchers et al., 2017).  In a companion study, the sensitivity ranged 

from 18 ± 3 to 29 ± 4% for the eating, lying, and activity alerts generated compared 



63 
 

against disease events (any disease event: 24 ± 3%; hyperketonemia: 29 ± 4%; 

hypocalcemia: 29 ± 3%; metritis: 18 ± 3%; Eckelkamp et al., 2017).  The results of the 

current study and the companion study indicated the producers had good reason to not 

evaluate alert lists with > 20 alerts/d.     

Behavior alerted.  Behavioral changes that created alerts affected at least one 

category within all groups.  One of the most informative results was producers were more 

likely to evaluate eating or activity alerts instead of lying alerts.  The high number of 

lying alerts (n = 9,777) compared to activity alerts (n = 1,590) further emphasizes the 

importance producers placed on activity alerts.  Although lying time biologically is vital 

for dairy cow health (Munksgaard et al., 2005, Ito et al., 2009, Ito et al., 2010), producers 

did not consider decreased lying time as actionable as decreased eating time or activity.  

Borchers and Bewley (2015) noted producers were more willing to adopt technologies 

providing familiar measurements, particularly activity and milk yield.  Dairy cattle 

activity monitoring (steps/d) has been available since the 1950s (Farris, 1954) with 

pedometers.  Increased familiarity with activity could have influenced producers’ 

preference for activity alerts.  Huirne et al. (1997) and Borchers and Bewley (2015) 

suggested technologies with proven performance on familiar measurements were more 

likely to be adopted by dairy producers.  Over time, lying time could become more 

readily accepted by dairy producers. 

Producers were also more likely to categorize cows as visually ill in combination 

with eating alerts.  In a companion study, eating time was a major influencer for random 

forests, principal component analysis neural networks, and least discriminate analyses 

techniques identifying diseases from behavioral patterns (Eckelkamp et al., 2017).  
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Edwards and Tozer (2004), Clement et al. (2013), Stangaferro et al. (2016a; b; c), and 

Tsai (2017) all reported detection of health disorders based on rumination and activity.  

Producers may have seen decreased activity and eating time as more actionable than 

decreased lying time.  In the future, focusing on individual health behaviors or behavior 

combinations with strong links to diseases could improve alert usefulness and disease 

identification.   

Further discussion 

 A technology must fit within the farm management style and fill a need before it 

can be considered a good investment (Yule and Eastwood, 2012).  Although our study 

took place in the first year of adoption, producers showed a willingness to learn and to 

provide insight into how first-time users viewed technology-generated disease alerts.  Our 

study showed producers placed a higher priority on eating or activity alerts, in fresh or 

early lactation cows, within the typical workweek, and when ≤ 20 alerts were on the alert 

list.  Producers were more willing to evaluate high-risk cows (fresh or early lactation), 

especially when eating time and activity decreased.  Borchers and Bewley (2015) 

suggested producers more readily adopted familiar measurements.  The same could be 

suggested for measurements on cows already being observed.  Willingness to evaluate 

alerts was likely because producers already visually monitored fresh and early lactation 

cows for eating and activity, and were willing to believe the system was accurately 

monitoring them also.   

CONCLUSIONS 

 Precision dairy technology has many potential uses, but more work is needed to 

improve health detection alerts.  Although producers indicated most of the alerts 
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represented a real behavioral change (55%), 37% of alerts were not evaluated and 

producers only visually followed-up on 21% of the alerts.  Behavioral disease alerts must 

be improved and respond to an actionable change for producers to use them.  Producers 

were more likely to utilize eating or activity alerts, alerts in fresh or early lactation cows, 

during the workweek, and when ≤ 20 alerts were on the list.  Incorporating herd 

management software, creating disease alert lists and managing alerts by stage of 

lactation, and focusing on behaviors producers’ already find useful could improve alert 

utilization in the future. 
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Table 2.1.  Categorization guide provided to dairy producers for evaluation of cow-alerts generated through a change in activity 

(steps/d), lying time (h/d), or eating time (h/d) collected by wearing precision dairy technologies.  

Abbreviation Category Subcategory Alerts1 % total 

CowCheck Alert believed to represent a real behavioral 
change and cow visually checked 

 5,0342 21.02 

Sick  Cow visually sick and treated 5323 10.63 

Sick  Cow visually sick and not treated 353 0.73 

NotSick  Cow not visually sick and treated 103 0.23 
NotSick  Cow not visually sick and not treated 4,3553 86.53 
Other  Producer wrote in a different response 1023 2.03 

NoAction Alert believed to represent a real behavioral 
change and cow not visually checked 

 8,0932 33.72 

ChangeOk  Behavioral change from normal did not worry producer 3,7504 46.34 
OutsideInfluence  Cow underwent a pen change or dry-off 1,0784 13.34 

OutsideInfluence  Cow underwent a veterinary or pregnancy check, or hoof 
trimming 4314 5.34 

Other  Too many cows currently being treated 04 0.04 
Other  Cow will be culled 234 0.34 
Other  Cow is repeatedly on the cow-alert list 224 0.34 
Other  Cow is in estrus 6754 8.34 
Other  Producer had no time to visually check cow 1234 1.54 
Other  Producer wrote in a different response 1,9914 24.64 

AlertDoubted Alert is not believed to represent a real 
behavioral change and cow not visually checked 

 2,0032 8.32 

ChangeDoubted  Alert was not considered to represent a real behavior change 4955 24.75 
OutsideInfluence  Cow underwent a pen change or dry-off 7965 39.75 

OutsideInfluence  Cow underwent a veterinary or pregnancy check, or hoof 
trimming 665 3.35 

Other  Cow was previously checked and not visually ill 355 1.75 
Other  Tag was defective, removed, or lost 25 0.15 
Other  Cow is repeatedly on the cow-alert list 505 2.55 
Other  Cow is in estrus 3605 18.05 
Other  Producer had no time to visually check cow 425 2.15 
Other  Producer wrote in a different response 1575 7.85 
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Table 2.1. (cont.) 

1Alerts that were not categorized (NotEvaluated) accounted for 8,882 cow-alerts (37.0%) of 24,012 technology generated disease 
alerts. 
2Number of alerts and percentages referred to the percentage of the total amount of technology generated disease alerts (n = 24,012). 
3Number of alerts and percentages referred to the technology generated disease alerts categorized as CowCheck (cow visually checked 
because of the alert; n = 5,034). 
4Number of alerts and percentages referred to the technology generated disease alerts categorized as NoAction (the cow-alert behavior 
change was considered to be real, but the cow was not visually checked because of the alert; n = 8,093). 
5Number of alerts and percentages referred to the technology generated disease alerts categorized as AlertDoubted (the cow-alert 
behavior change was not considered to be real; n = 2,003). 
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Table 2.2.  Univariate categorical influencers of producer categorization of cow-alerts 

generated by wearable precision dairy technologies from October 2015 to October 2016 

assessed with the GLIMMIX procedure of SAS 9.4.  Only influencers with P < 0.05 were 

included in a multivariate GLIMMIX procedure. 

Producer categorization Influencer P-value 
Evaluated1 to NotEvaluated2   
 Software version3 < 0.01 
 Day group4 < 0.01 
 Lactation stage5 < 0.01 
 Parity group6 0.84 
 Heat stress7 < 0.01 
 Alerts/d8 < 0.01 
 Behavior alerted9 < 0.01 
CowCheck10, NoAction11, or AlertDoubted12   
 Software version3 < 0.01 
 Day group4 < 0.06 
 Lactation stage5 < 0.01 
 Parity group6 < 0.01 
 Heat stress7 < 0.01 
 Alerts/d8 < 0.01 
 Behavior alerted9 < 0.01 
Within CowCheck13   
 Software version3 0.11 
 Day group4 < 0.01 
 Lactation stage5 0.04 
 Parity group6 0.04 
 Heat stress7 0.16 
 Alerts/d8 < 0.01 
 Behavior alerted9 < 0.01 
Within NoAction14   
 Software version3 < 0.01 
 Day group4 < 0.01 
 Lactation stage5 < 0.01 
 Parity group6 < 0.01 
 Heat stress7 < 0.01 
 Alerts/d8 < 0.01 
 Behavior alerted9 < 0.01 
Within AlertDoubted15   
 Software version3 < 0.01 
 Day group4 < 0.01 
 Lactation stage5 < 0.01 
 Parity group6 < 0.01 
 Heat stress7 < 0.01 
 Alerts/d8 < 0.01 
 Behavior alerted9 < 0.01 
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Table 2.2. (cont.) 

1Evaluated indicated cow-alerts that occurred and producer feedback was given.  
Evaluated cow-alerts were categorized as CowCheck, NoAction, and ChangeDoubted.     
2NotEvaluated indicated cow-alerts that occurred, but no producer feedback was given. 
3Software version was grouped as version 1 (pre-May 2016) or 2 (post-May 2016).  The 
software was updated on May 11, 2016 to a visually different interface and cows in estrus 
were not included on the Health and management list. 
4Day group was a weekday (Monday to Friday) or weekend (Saturday to Sunday). 
5Lactation stage was grouped as fresh (≤ 30 DIM), early (31 to 99 DIM) or post-peak (≥ 
100 DIM) lactation. 
6Parity group was 1st, 2nd, and ≥ 3rd lactation. 
7Heat stress was grouped as temperature humidity index ≥ 68 or < 68. 
8Alerts/d were grouped as ≤ 20 cow-alerts on the list per day or high > 20 cow-alerts on 
the list per day.  Twenty cow-alerts corresponded to the default number displayed on the 
Health and management list. 
9Behavior alerted referred to eating time, lying time, or activity (steps/d) and any 2 or 3-
way combination of the behaviors that decreased below the predetermined threshold and 
triggered an alert to be created on the Health and management list. 
10CowCheck indicated the cow was visually checked because of the alert. 
11NoAction indicated the cow-alert behavior change was considered to be real, but the 
cow was not visually checked because of the alert. 
12AlertDoubted indicated the cow-alert behavior change was not considered to be real. 
13Within the alert category CowCheck, Sick indicated a cow was visually sick, NotSick 
indicated a cow was not visually sick, and Other indicated the producer wrote in their 
own response.  Common responses included calving, pen change, and estrus (Table 2.1 
and Figure 2.2). 
14Within the alert category NoAction, ChangeOk indicated the behavioral change from 
normal did not worry the producer; OutsideInfluence indicated the behavioral change was 
attributed to a pen change, dry-off, veterinary or pregnancy check, or hoof trimming; 
Other indicated the producer wrote in their own response.  Common responses included 
estrus, weather changes, and the producer had no time to visually assess cows (Table 2.1 
and Figure 2.2). 
15Within the alert category AlertDoubted, ChangeDoubted indicated the alert was not 
considered to represent a real behavior change; OutsideInfluence indicated the behavioral 
change was attributed to management change including: pen change, dry-off, veterinary 
or pregnancy check, or hoof trimming; Other indicated the producer wrote in their own 
response. Common responses included cow repeatedly on the list, weather changes, and 
the producer had no time to visually assess cows (Table 2.1 and Figure 2.2). 
 
 
 
 
 
 



 
 

Table 2.3.  Categorization distribution of cow-alerts generated by wearable precision dairy technologies within and across farms1. 

Category 
Farm 11 Farm 21 Farm 31 Farm 41 All farms 

Cow-alerts (#; %2,3) Cow-alerts (#; %2,3) Cow-alerts (#; %2,2) Cow-alerts (#; %2,3) Cow-alerts (#; %2,3) 
Total cow-alerts4 6,537   5,394   5,579   6,499   24,012   

Total evaluated5 3,168 48%  3,352 62%  4,506 80%  4,104 63%  15,130 63%  

CowCheck6 103 2% 3% 393 7% 12% 1,588 28% 35% 2,950 45% 72% 5,034 21% 33% 

NoAction7 2,776 42% 88% 2,430 45% 72% 1,772 32% 39% 1,115 17% 27% 8,093 34% 54% 

AlertDoubted8 289 4% 9% 529 10% 16% 1,146 20% 25% 39 1% 1% 2,003 8% 13% 

NotEvaluated9 3,369 52%  2,043 38%  1,075 19%  2,395 37%  8,882 37%  
1Farm 1, 2, 3, and 4 included 217 ± 23, 137 ± 17, 202 ±14, and 230 ± 14 lactating cows, respectively, from October 5, 2015 to October 
30, 2016. 
2First percentage refers to the percent of total alerts generated (Total cow-alerts). 
3Second percentage refers to the percent of total cow-alerts evaluated (Total evaluated). 
4Total cow-alerts included all cow-alerts generated by a -30% decrease in lying time, eating time, or step count from a 10-day moving 
mean regardless of producer evaluation of cow-alert. 
5Total evaluated included all cow-alerts categorized as CowCheck, NoAction, and AlertDoubted. 
6CowCheck indicated the cow was visually checked because of the alert. 
7NoAction indicated the cow-alert behavior change was considered to be real, but the cow was not visually checked because of the 
alert. 
8AlertDoubted indicated the cow-alert behavior change was not considered to be real. 
9NotEvaluated indicated alerts that occurred, but no producer feedback was given.  
 
 
 
 
 
 

70 



 
 

Table 2.4.  Odds ratios and 95% confidence intervals1 for system2, day group3, lactation stage4,5, alerts/d6, and behavior alerted7 effects 

of dairy producer alert evaluation8 from the GLIMMIX procedure of SAS 9.4.  Cow-alerts were generated for a change in activity 

(steps/d), lying time (h/d), or eating time (h/d) collected by wearable precision dairy technologies from October 5, 2015 to October 30, 

2016. 

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
Evaluated8 to NotEvaluated9 cow-alerts     

Version 12 Version 22 1.40 1.24 to 1.57 < 0.01 
Weekday3 Weekend3 1.59 1.45 to 1.74 < 0.01 
Fresh lactation4 Post-peak lactation4 1.15 1.02 to 1.31 < 0.01 
Early lactation4 Post-peak lactation4 1.30 1.15 to 1.46 < 0.01 
≤ 20 alerts/d6 > 20 alerts/d6 1.92 1.78 to 2.07 < 0.01 
Combination7 Lying7 1.14 1.01 to 1.29 < 0.01 
Eating7 Lying7 1.09 1.00 to 1.18 <0.01 
Activity7 Combination7 1.27 1.06 to 1.51 < 0.01 
Activity7 Eating7 1.33 1.13 to 1.56 < 0.01 
Activity7 Lying7 1.45 1.23 to 1.70 < 0.01 

1Confidence intervals (CI) overlapping the null value (OR = 1) were not included in the table. 
2Software version was grouped as version 1 (pre-May 2016) or 2 (post-May 2016). The software was updated on May 11, 2016 to a 
visually different interface and cows in estrus were not included on the Health and management list. 
3Day group was a weekday (Monday to Friday) or weekend (Saturday to Sunday). 
4Lactation stage was grouped as fresh (≤ 30 DIM), early (31 to 99 DIM) or post-peak (≥ 100 DIM) lactation. 
5Heat stress was grouped as temperature humidity index ≥ 68 or < 68.  Heat stress was not a significant influencer of evaluating or not 
evaluating cow-alerts (P = 0.71).  
6Alerts/d were grouped as ≤ 20 cow-alerts on the list per day or high > 20 cow-alerts on the list per day.  Twenty cow-alerts 
corresponded to the default number displayed on the Health and management list. 
7Behavior alerted referred to eating time, lying time, or activity (steps/d) and any 2 or 3-way combination (Combination) of the 
behaviors that decreased below the predetermined threshold and triggered an alert to be created on the Health and management list. 
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Table 2.4. (cont.) 

8Evaluated indicated cow-alerts that occurred and producer feedback was given.  Evaluated cow-alerts were categorized as CowCheck 
(cow visually checked because of the alert), NoAction (the cow-alert behavior change was considered to be real, but the cow was not 
visually checked because of the alert), and AlertDoubted (the cow-alert behavior change was not considered to be real).     
9NotEvaluated indicated cow-alerts that occurred, but no producer feedback was given.
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Table 2.5.  Odds ratios and 95% confidence intervals1 for system2,3,4,5, alerts/d6, and behavior alerted7 effects on dairy producer alert 

evaluation8,9,10 from the GLIMMIX procedure of SAS 9.4.  Cow-alerts were generated for a change in activity (steps/d), lying time 

(h/d), or eating time (h/d) collected by wearable precision dairy technologies from October 5, 2015 to October 30, 2016. 

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
CowCheck8 vs. NoAction9     

Version 22 Version 12 1.24 1.01 to 1.52 < 0.01 
≤ 20 alerts/d6 > 20 alerts/d6 1.43 1.26 to 1.63 < 0.01 
Eating7 Combination7 1.77 1.40 to 2.23 < 0.01 
Combination7 Lying7 6.39 4.84 to 8.42 < 0.01 
Combination7 Activity7 3.53 2.53 to 4.92 < 0.01 
Eating7 Activity7 6.24 4.42 to 8.79 < 0.01 
Activity7 Lying7 1.81 1.39 to 2.35 < 0.01 
Eating7 Lying7 11.28 8.54 to 14.90 < 0.01 

CowCheck8 vs. AlertDoubted10     
Version 22 Version 12 2.90 2.26 to 3.71 < 0.01 
Eating7 Combination7 2.02 1.58 to 2.59 < 0.01 
Combination7 Lying7 2.30 1.75 to 3.02 < 0.01 
Combination7 Activity7 1.93 1.35 to 2.77 < 0.01 
Eating7 Activity7 3.93 2.68 to 5.76 < 0.01 
Eating7 Lying7 4.65 3.53 to 6.13 < 0.01 

NoAction9 vs. AlertDoubted10     
Version 22 Version 12 2.43 1.97 to 2.99 < 0.01 
> 20 alerts/d6 ≤ 20 alerts/d6 1.65 1.41 to 1.93 < 0.01 
Lying7 Combination7 2.81 2.28 to 3.46 < 0.01 
Activity7 Combination7 1.84 1.33 to 2.54 < 0.01 
Activity7 Eating7 1.67 1.24 to 2.26 < 0.01 
Lying7 Activity7 1.53 1.14 to 2.06 < 0.01 
Lying7 Eating7 2.56 2.19 to 2.99 < 0.01 
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Table 2.5. (cont.) 

1Confidence intervals (CI) overlapping the null value (OR = 1) were not included in the table. 
2Software version was grouped as version 1 (pre-May 2016) or 2 (post-May 2016). The software was updated on May 11, 2016 to a 
visually different interface and cows in estrus were not included on the Health and management list. 
3Lactation stage was grouped as fresh (≤ 30 DIM), early (31 to 99 DIM) or post-peak (≥ 100 DIM) lactation.  Stage of lactation was 
not a significant influencer of CowCheck, NoAction, or AlertDoubted (P = 0.08). 
4Parity group was 1st, 2nd, and ≥ 3rd lactation.  Parity was not a significant influencer of CowCheck, NoAction, or AlertDoubted (P = 
0.26).  
5Heat stress was grouped as temperature humidity index ≥ 68 or < 68.  Heat stress was not a significant influencer of CowCheck, 
NoAction, or AlertDoubted (P = 0.97). 
6Alerts/d were grouped as ≤ 20 cow-alerts on the list per day or high > 20 cow-alerts on the list per day.  Twenty cow-alerts 
corresponded to the default number displayed on the Health and management list. 
7Behavior alerted referred to eating time, lying time, or activity (steps/d) and any 2 or 3-way combination of the behaviors that 
decreased below the predetermined threshold and triggered an alert to be created on the Health and management list. 
8CowCheck indicated the cow was visually checked because of the alert. 
9NoAction indicated the cow-alert behavior change was considered to be real, but the cow was not visually checked because of the 
alert. 
10AlertDoubted indicated the cow-alert behavior change was not considered to be real. 
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Table 2.6.  Odds ratios and 95% confidence intervals1 for day group2,3,4, alerts/d5, and behavior alerted6 effects on dairy producer alert 

evaluation within cow-alerts believed to represent a real behavioral change and cow visually checked based on the alert7,8,9 from the 

GLIMMIX procedure of SAS 9.4.  Cow-alerts were generated for a change in activity (steps/d), lying time (h/d), or eating time (h/d) 

collected by wearable precision dairy technologies from October 5, 2015 to October 30, 2016. 

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
NotSick7 vs.Sick8     

Weekend2 Weekday2 1.53 1.19 to 1.97 < 0.01 
Eating6 Combination6 2.16 1.47 to 3.16 < 0.01 
Lying6 Combination6 5.66 3.31 to 9.65 < 0.01 
Lying6 Eating6 2.62 1.70 to 4.04 < 0.01 
Activity6 Combination6 12.37 5.98 to 25.59 < 0.01 
Activity6 Eating6 5.74 2.78 to 11.85 < 0.01 
Activity6 Lying6 2.19 1.01 to 4.74 < 0.01 

Sick8 vs. Other9     
> 20 alerts/d5 ≤ 20 alerts/d5 2.01 1.09 to 3.70 < 0.01 
Combination6 Activity6 3.68 1.30 to 10.42 < 0.01 
Eating6 Activity6 4.38 1.53 to 12.61 < 0.01 

NotSick7 vs. Other9     
> 20 alerts/d5 ≤ 20 alerts/d6 2.55 1.43 to 4.54 < 0.01 
Eating6 Combination6 2.60 1.38 to 4.91 < 0.01 
Lying6 Combination6 4.24 1.98 to 9.07 < 0.01 
Activity6 Combination6 3.63 1.47 to 8.99 < 0.01 

1Confidence intervals (CI) overlapping the null value (OR = 1) were not included in the table. 
2Day group was a weekday (Monday to Friday) or weekend (Saturday to Sunday). 
3Lactation stage was grouped as fresh (≤ 30 DIM), early (31 to 99 DIM) or post-peak (≥ 100 DIM) lactation.  Lactation stage was not 
a significant influencer of NotSick, Sick, or Other (P = 0.07). 
4Parity group was 1st, 2nd, and ≥ 3rd lactation.  Parity group was not a significant influencer of NotSick, Sick, or Other (P = 0.09). 
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Table 2.6. (cont.) 

5Alerts/d were grouped as ≤ 20 cow-alerts on the list per day or high > 20 cow-alerts on the list per day.  Twenty cow-alerts 
corresponded to the default number displayed on the Health and management list. 
6Behavior alerted referred to eating time, lying time, or activity (steps/d) and any 2 or 3-way combination of the behaviors that 
decreased below the predetermined threshold and triggered an alert to be created on the Health and management list. 
7NotSick indicated within the cow-alert category CowCheck (cow visually checked because of the alert) a cow was not visually sick 
(Table 2.1 and Figure 2.2).  
8Sick indicated that within the cow-alert category CowCheck a cow was visually sick (Table 2.1 and Figure 2.2). 
9Other indicated within the cow-alert category CowCheck the producers wrote in their own response.  Common responses included 
calving, pen change, and estrus (Table 2.1 and Figure 2.2). 
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Table 2.7.  Odds-ratios and 95% confidence intervals1 for system2, day group3, lactation stage4,5, heat stress6, alerts/d7 and behavior 

alerted8 effects on dairy producer alert evaluation within cow-alerts believed to represent a real behavioral change and cow not 

visually checked based on the alert9,10,11 from the GLIMMIX procedure of SAS 9.4.  Cow-alerts were generated for a change in 

activity (steps/d), lying time (h/d), or eating time (h/d) collected by wearable precision dairy technologies from October 5, 2015 to 

October 30, 2016.  

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
ChangeOk9 vs. OutsideInfluence10     

Version 22 Version 12 1.55 1.14 to 2.11 < 0.01 
Early lactation4 Fresh lactation4 2.20 1.64 to 2.94 < 0.01 
Post-peak lactation4 Fresh lactation4 3.58 2.72 to 4.74 < 0.01 
Post-peak lactation4 Early lactation4 1.62 1.25 to 2.13 < 0.01 
THI ≥ 686 THI < 686 1.45 1.12 to 1.89 < 0.01 
≤ 20 alerts/d7 > 20 alerts/d7 2.37 1.98 to 2.85 < 0.01 
Eating7 Combination8 1.61 1.19 to 2.17 < 0.01 
Lying8 Combination8 3.31 2.45 to 4.48 < 0.01 
Activity8 Combination8 2.09 1.38 to 3.16 < 0.01 
Lying8 Eating8 2.06 1.62 to 2.61 < 0.01 
Lying8 Activity8 1.58 1.10 to 2.28 < 0.01 

ChangeOk9 vs. Other11     
Weekend3 Weekday3 1.28 1.07 to 1.52 0.02 
Fresh lactation4 Early lactation4 3.27 2.44 to 4.37 < 0.01 
Fresh lactation4 Post-peak lactation4 2.80 2.14 to 3.67 < 0.01 
THI ≥ 686 THI < 686 1.56 1.24 to 1.95 < 0.01 
≤ 20 alerts/d7 > 20 alerts/d7 5.66 4.84 to 6.61 < 0.01 
Lying8 Combination8 1.69 1.24 to 2.30 < 0.01 
Lying8 Eating8 1.53 1.21 to 1.94 < 0.01 
Activity8 Combination8 3.44 2.16 to 5.50 < 0.01 
Activity8 Eating8 3.12 2.03 to 4.81 < 0.01 
Activity8 Lying8 2.04 1.37 to 3.02 < 0.01 
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Table 2.7. (cont.)  

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
OutsideInfluence10 vs. Other11     

Version 12 Version 22 1.76 1.27 to 2.43 < 0.01 
Fresh period4 Early lactation4 9.46 6.93 to 12.92 < 0.01 
Fresh period4 Post-peak lactation4 11.45 8.44 to 15.54 < 0.01 
≤ 20 alerts/d7 > 20 alerts/d7 2.50 2.06 to 3.04 < 0.01 
Combination8 Eating8 1.42 1.06 to 1.91 < 0.01 
Combination8 Lying8 2.19 1.59 to 3.03 < 0.01 
Eating8 Lying8 1.54 1.19 to 1.99 < 0.01 
Activity8 Eating8 2.23 1.41 to 3.52 < 0.01 
Activity8  Lying8 3.43 2.15 to 5.48 < 0.01 

1Confidence intervals (CI) overlapping the null value (OR = 1) were not included in the table. 
2Software version was grouped as version 1 (pre-May 2016) or 2 (post-May 2016).  The software was updated on May 11, 2016 to a 
visually different interface and cows in estrus were not included on the Health and management list. 
3Day group was a weekday (Monday to Friday) or weekend (Saturday to Sunday). 
4Lactation stage was grouped as fresh (≤ 30 DIM), early (31 to 99 DIM) or post-peak (≥ 100 DIM) lactation. 
5Parity group was 1st, 2nd, and ≥ 3rd lactation.  Parity group was not a significant influencer of ChangeOk, OutsideInfluence, or Other 
(P = 0.61). 
6Heat stress was grouped as temperature humidity index ≥ 68 or < 68.   
7Alerts/d were grouped as ≤ 20 cow-alerts on the list per day or high > 20 cow-alerts on the list per day.  Twenty cow-alerts 
corresponded to the default number displayed on the Health and management list. 
8Behavior alerted referred to eating time, lying time, or activity (steps/d) and any 2 or 3-way combination of the behaviors that 
decreased below the predetermined threshold and triggered an alert to be created on the Health and management list. 
9ChangeOk indicated within the cow-alert category NoAction (the cow-alert behavior change was considered to be real, but the cow 
was not visually checked because of the alert) that the behavioral change from normal did not worry the producer (Table 2.1 and 
Figure 2.2). 
10OutsideInfluence indicated within the cow-alert category NoAction the behavioral change was attributed to a pen change, dry-off, 
veterinary or pregnancy check, or hoof trimming (Table 2.1 and Figure 2.2). 
11Other indicated that within the cow-alert category NoAction the producers wrote in their own response.  Common responses 
included estrus, weather changes, and the producer had no time to visually assess cows (Table 2.1 and Figure 2.2). 
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Table 2.8.  Odds ratios and 95% confidence intervals1 for system2, day group3, lactation stage4,5, heat stress6, alerts/d7, and behavior 

alerted8 effects on dairy producer alert evaluation within cow-alerts not believed to represent a real behavioral change and cow not 

visually checked based on the alert9,10,11 from the GLIMMIX procedure of SAS 9.4.  Cow-alerts were generated for a change in 

activity (steps/d), lying time (h/d), or eating time (h/d) collected by wearable precision dairy technologies from October 5, 2015 to 

October 30, 2016. 

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
OutsideInfluence9 vs. ChangeDoubted10     

Version 22 Version 12 14.67 6.36 to 33.83 < 0.01 
Fresh lactation4  Early lactation4 10.16 4.15 to 24.89 < 0.01 
Fresh lactation4  Post-peak lactation4 7.59 3.12 to 18.41 < 0.01 
THI < 686 THI ≥ 686 2.44 1.28 to 4.66 0.01 
Combination8 Eating8 7.88 4.06 to 15.31 < 0.01 
Lying8 Eating8 5.12 2.77 to 9.44 < 0.01 
Activity8 Combination8 3.31 1.07 to 10.26 < 0.01 
Activity8 Eating8 26.13 8.84 to 77.20 < 0.01 
Activity8 Lying8 5.11 1.74 to 14.95 < 0.01 

OutsideInfluence9 vs. Other11     
Version 22 Version 12 32.99 14.26 to 76.29 < 0.01 
Weekend3 Weekday3 1.67 1.14 to 2.43 < 0.01 
Fresh lactation4 Early lactation4 22.60 8.95 to 57.05 < 0.01 
Fresh lactation4 Post-peak lactation4 28.46 12.73 to 63.62 < 0.01 
≤ 20 alerts/d7 > 20 alerts/d7 2.01 1.28 to 3.16 < 0.01 
Combination8 Eating8 3.66 1.88 to 7.11 < 0.01 
Combination8 Lying8 4.44 2.32 to 8.48 < 0.01 
Activity8 Eating8 7.69 3.04 to 19.45 < 0.01 
Activity8 Lying8 9.32 3.87 to 22.49 < 0.01 

ChangeDoubted10 vs. Other11     
Version 22 Version 12 5.65 2.09 to 15.29 < 0.01 
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Table 2.8. (cont.)  

Categorization and Risk factor Reference Group Odds ratio (OR) 95% CI1 (OR) P-value 
ChangeDoubted10 vs. Other11     

Weekend3 Weekday3 4.14 2.58 to 6.65 < 0.01 
Fresh lactation4 Early lactation4 3.22 1.29 to 8.08 < 0.01 
Fresh lactation4 Post-peak lactation4 5.92 2.30 to 15.21 < 0.01 
≤ 20 alerts/d7 > 20 alerts/d7 3.47 2.03 to 5.92 < 0.01 
Combination8 Lying8 3.20 1.28 to 7.99 < 0.01 
Eating8 Lying8 5.90 3.08 to 11.28 < 0.01 

1Confidence intervals (CI) overlapping the null value (OR = 1) were not included in the table. 
2 Software version was grouped as version 1 (pre-May 2016) or 2 (post-May 2016). The software was updated on May 11, 2016 to a 
visually different interface and cows in estrus were not included on the Health and management list. 
3Day group was a weekday (Monday to Friday) or weekend (Saturday to Sunday). 
4Lactation stage was grouped as fresh (≤ 30 DIM), early (31 to 99 DIM) or post-peak (≥ 100 DIM) lactation. 
5Parity group was 1st, 2nd, and ≥ 3rd lactation.  Parity group was not a significant influencer of OutsideInfluence, ChangeDoubted, or 
Other (P = 0.29). 
5Heat stress was grouped as temperature humidity index ≥ 68 or < 68.   
6Alerts/d were grouped as ≤ 20 cow-alerts on the list per day or high > 20 cow-alerts on the list per day.  Twenty cow-alerts 
corresponded to the default number displayed on the Health and management list. 
7Behavior alerted referred to eating time, lying time, or activity (steps/d) and any 2 or 3-way combination of the behaviors that 
decreased below the predetermined threshold and triggered an alert to be created on the Health and management list. 
8ChangeDoubted indicated within the cow-alert category AlertDoubted (the cow-alert behavior change was not considered to be real) 
that the alert was not considered to represent a real behavior change (Table 2.1 and Figure 2.2). 
9OutsideInfluence indicated within the cow-alert category AlertDoubted the behavioral change was attributed to a pen change, dry-off, 
veterinary or pregnancy check, or hoof trimming (Table 2.1 and Figure 2.2). 
10Other indicated that within the cow-alert category AlertDoubted the producers wrote in their own response. Common responses 
included cow repeatedly on the list, weather changes, and the producer had no time to visually assess cows (Table 2.1 and Figure 2.2). 
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Figure 2.1.  Health and management alert list created at midnight EST (Farm 4) or CST 

(Farm 1, 2, 3) for eating, lying, or activity behavior changes ≥ 30% from a cow’s 

previous 10-d moving mean evaluated by dairy producers from October 5, 2015 to May 

11, 2016 (a) and May 11, 2016 to October 31, 2016 (b).  The physical appearance1 of the 

list changed on May 11, 2016 (a to b), but behavior alert creation and producer evaluation 

remained the same from October 5, 2015 to October 31, 2016. 

a) 
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Figure 2.1. (cont.) 

b) 

 
1Physical appearance of the health and management list changed only for eating time, 
lying time, and activity (step #) alerts.  Alert values were depicted with a horizontal bar 
instead of values in red (alert) or blue (no alert).  Activity alerts were not depicted as a 
horizontal bar but indicated with “Decreased step count” in red. 
 

 

 

 

 

 



 
 

Figure 2.2.  Decision tree for producer evaluation of technology generated behavior alerts1,2.  Cow-alerts were generated for a change 

in activity (steps/d), lying time (h/d), or eating time (h/d) collected by wearable precision dairy technologies from October 5, 2015 to 

October 30, 2016.  

 

 

 

 

 

 

 

 

 

1Cow alerts were generated when a cow’s lying time, eating time, activity (steps/d), or any combination decreased -30% or more from 
her 10-d moving average. 
2Reference Table 2.1 for a full explanation of cow alert categorization. 
3NotEvaluated indicated cow alerts that occurred, but no producer feedback was given. 
4Evaluated included cow alerts that occurred and producer feedback was given.  Evaluated cow alerts were categorized as CowCheck 
(cow visually checked because of the alert), NoAction (the cow alert behavior change was considered to be real, but the cow was not 
visually checked because of the alert), and AlertDoubted (the cow alert behavior change was not considered to be real). 

Cow-alert1 

NotEvaluated3 Evaluated4 

CowCheck AlertDoubted 

Sick NotSick Other 

ChangeOk OutsideInfluence Other 

ChangeDoubted OutsideInfluence Other 

NoAction 
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Figure 2.3.  Google document made available to dairy producers for evaluation of health 

and management list behavior alerts according to Table 2.1 and Figure 2.2.  Farm 3 chose 

to use the Google form and Farm 1, 2, and 4 chose to print off the health and 

management list and record their categorization with shorthand (category A, B, or C and 

subcategory 1 to 9). 
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Figure 2.3 (cont.) 
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Precision dairy technology-generated disease alert accuracy and disease 

prediction with machine-learning techniques 

E. A. Eckelkamp*, Y. M. Chang, K. Zhao, and J. M. Bewley*1 

*Department of Animal and Food Sciences, University of Kentucky, Lexington 40546 

1Corresponding Author: Jeffrey Bewley, 407 W. P. Garrigus Building, University of 

Kentucky, Lexington, KY 40546; 859-257-7543; jbewley@uky.edu 

INTRODUCTION 

 Health disorders throughout lactation affect a large portion of cows within a herd, 

detrimentally impacting health, performance, welfare, and farm profitability.  

Hyperketonemia, hypocalcemia, metritis, and other diseases cause losses in production 

(Oetzel, 2011, McArt et al., 2015, Liang et al., 2017), increased risk of additional 

diseases, culling, or death (Goff, 2008, Chapinal et al., 2011, Raboisson et al., 2015), 

impaired reproductive performance (LeBlanc et al., 2002, Chapinal et al., 2012), and 

increased treatment costs (Milner et al., 1997, Duffield, 2000, McArt et al., 2014).  Early 

detection could prevent disease progression, improve response to treatment, and reduce 

treatment costs (Milner et al., 1997, Stangaferro et al., 2016a). 

 Precision dairy management (PDM) technologies are real-time monitors to 

supplement the “eyes and ears of the farmer” and allow producers to manage on an 

individual cow basis (Wathes et al., 2008, Berckmans, 2015).  Wearable PDM 

technologies (leg, neck, or ear attached) have been validated to accurately characterize 

leg activity (steps/d), neck activity (arbitrary units), lying time, standing time, walking 

time, eating time, and rumination time (Borchers et al., 2016, Van Erp-Van der Kooj et 
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al., 2016).  Wearable PDM technologies have been used for estrus (Galon, 2010, Neves 

and LeBlanc, 2015, Dolecheck et al., 2016b), disease (Edwards and Tozer, 2004, 

Liboreiro et al., 2015, Stangaferro et al., 2016a, b, c), and calving (Maltz and Antler, 

2007, Ouellet et al., 2016, Borchers et al., 2017) detection through behavioral changes.  

However, few studies have assessed wearable PDM technology generated alerts for 

disease detection (Liboreiro et al., 2015, Stangaferro et al., 2016a, b, c).   

Disease alerts must occur in conjunction with disease events to be useful to dairy 

producers (Woodall and Montgomery, 2014).  Sensitivity and specificity are evaluations 

of how often a test (disease alert) coincides with an event, in this case, a disease.  True 

positive (TP) refers to the number of cows correctly identified as having a status change 

(alert + illness).  False positive (FP) refers to the number of cows incorrectly identified as 

having a status change when no change occurred (alert + healthy).  True negative (TN) 

refers to the number of cows correctly identified as not having a status change (no alert + 

healthy).  False negative (FN) refers to the number of cows incorrectly identified as not 

having a status change when a change has occurred (no alert + illness).  Sensitivity is the 

proportion of true positives detected by a PDM (TP / (TP + FN) *100), whereas 

specificity is the proportion of true negatives detected by a PDM (TN / (TN + FP) * 100; 

Altman and Bland, 1994).  Hogeveen et al. (2010) suggested automated milking system 

mastitis alerts should have ≥ 80% sensitivity and ≥ 99% specificity within 48h of an 

event.  However, Leenarts et al. (2017) suggested a less sensitive technology (21 or 54%) 

could still be profitable if no additional investment was required (i.e., calving detection or 

disease detection from an estrus detection technology). 
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 Several studies have been conducted using commercially available wearable PDM 

to detect or predict disease.  Activity (steps/d or neck activity; Edwards and Tozer, 2005, 

Liboreiro et al., 2015, Stangaferro et al., 2016a, b, c), rumination time (Bar and Solomon 

2010, Clement et al., 2013, Liboreiro et al., 2015, Stangaferro et al., 2016a, b, c,), eating 

and lying time (Tsai, 2017), and movement (Titler et al., 2013, Tsai, 2017) have been 

discussed as potential predictors for disease detection.  Decreased rumination and eating 

time has been associated with hyperketonemia, displaced abomasum, mastitis, metritis, 

and stillbirth (Huzzey et al., 2007, Liboreiro et al., 2015, Stangaferro et al., 2016a, b, c, 

Tsai, 2017).  Decreased activity (neck, steps/d, walking time) and changes in lying and 

standing time have been associated with hyperketonemia, hypocalcemia, displaced 

abomasum, mastitis, metritis, and retained placenta (Jawor et al., 2012, Titler et al., 2013, 

Liboreiro et al., 2015, Tsai, 2017).       

 Precision dairy technologies that monitor daily changes in eating time, lying time, 

standing time, walking time, and activity (steps/d) have potential to detect diseases 

throughout a lactation.  However, the sensitivity and specificity of disease detection with 

PDM has not been well documented (Clement et al., 2013, Stangaferro et al., 2016a, b, c, 

Tsai, 2017).  More information is needed on the ability of these PDM to predict or 

coincide with a disease event.  The objectives of this study were to 1) identify the 

sensitivity, specificity, accuracy, and balanced accuracy of disease detection available 

with two commercially available technologies, 2) determine the disease prediction 

efficacy of the technologies separately using machine-learning techniques, and 3) 

determine the disease prediction efficacy of both technologies with previous lactation 

information using machine-learning techniques.  The study hypotheses were 1) 
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technology generated disease alerts would detect disease events over lactation, 2) 

individual technology machine-learning techniques would improve detection accuracy 

over the technology generated disease alerts, and 3) combining behavior changes with 

herd record information would provide the best detection accuracy. 

MATERIALS AND METHODS 

 Data were collected from four cooperating Kentucky dairy farms from October 5, 

2015 to October 30, 2016.  Each farm was visited twice weekly for 104 visits and 

assigned an identifying number (1 to 4).  Producers on farm 1, 2, 3, and 4 enrolled 373, 

250, 365, and 386 cows in the study (n = 1,374 total cows enrolled), respectively, from 

October 5, 2015 to October 30, 2016.  Producer 1 enrolled 197 primiparous and 176 

multiparous cows; producer 2 enrolled 162 primiparous and 88 multiparous cows; 

producer 3 enrolled 207 primiparous and 158 multiparous cows; producer 4 enrolled 201 

primiparous and 185 multiparous cows.  Detailed herd and housing information can be 

found in Eckelkamp and Bewley (2017). 

 Six months before the start of the study, the entire lactating herd for each farm 

was equipped with a tri-axial accelerometer (attached to a right or left rear leg (70 x 40 x 

72 mm, 108 g) with a thermoplastic polyurethane Nedap leg strap) measuring activity 

(steps/d) and lying, standing, and walking time (min/d), and a tri-axial accelerometer 

attached around the neck (142 x 80 x 45 mm, 290 g) with a fully adjustable collar 

measuring eating time (min/d; CowWatch; Alta Genetics Inc., Watertown, WI 

manufactured by Nedap Livestock Management, the Netherlands).  Any cows without 

technologies entering the lactating herd had tags attached at or around calving.  The tags 

sent their respective information to a wireless reader (located in the holding pen with a 
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1,000 m wireless radius) every 15 min as the number of seconds a behavior occurred 

(lying, walking, standing, or eating time) or the number of steps taken within that 15-min 

interval.  If the reader was out of range of the tags, data was stored for 24 h within the tag 

and each 15-min interval the tag attempted to connect with the reader again.  Once a 

connection was established, all stored data were transferred to the reader. 

 Producers interested in purchasing a new precision dairy technology system were 

approached in October 2014.  Four producers agreed to purchase the technology, 

participate in the study, and evaluate daily technology-generated herd health reports.  

Through the company’s management software, a web-based system interface was made 

available to all producers on the study.  The daily technology-generated health report was 

found by selecting the “Health and management” list (Appendix I).  The list consisted of 

changes in eating, lying, or activity (steps/d) behavior according to a predetermined 

threshold set by the company – a decrease of ≥ 30% from a cow’s 10-d moving mean 

behavior.  An alert was generated based on each variable individually, with a maximum 

of three alerts occurring for a cow in a d.  Each cow was only listed once on the list, with 

each variable listed to the right of the cow number.   

Data collection 

 Performance records from DHI were collected with the permission of 

participating producers including disease events, DIM, parity, number of lactating 

animals in the herd, and previous lactation milk yield, fat, protein, lactation length, 

average SCS, and actual calving interval.  Producers were provided a HOBO U23 Series 

Pro v2 Logger (Onset, Cape Cod, MA) to collect barn temperature and humidity data.  

The HOBO was placed near the center of primary housing barn above the height easily 
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reached by cows and out of the direct air flow of fans.  The HOBO was taken down on 

Tuesday of every week, the lead author collected the data, and the HOBO was restored to 

the barn. 

Herd health.  Dairy producers and farm staff recorded observed clinical cases of 

disease (clinical mastitis, hypocalcemia, hyperketonemia, retained placenta, metritis, 

displaced abomasum, and lameness).  Participating producers were provided a laminated 

identification sheet and a binder containing pre-printed recording sheets for mastitis 

(Figure 3.1) and other clinical diseases (Figure 3.2).  Each sheet had a coding guide (all 

diseases sheet: MF = hypocalcemia, MET = metritis, LDA = left displaced abomasum, 

RDA = right displaced abomasum, LAME = lameness, RP = retained placenta, and KET 

= hyperketonemia; mastitis sheet: LF = left front quarter, RF = right front quarter, LR = 

left rear quarter, and RR = right rear quarter; severity score: 1 = abnormal milk but no 

swelling, 2 = abnormal milk with swelling, and 3 = abnormal milk with systemic signs; 

Hogan et al., 1989; Bramley et al., 1996), a column for date, cow number, event type, 

milking event occurred (mastitis only), quarter affected (mastitis only), severity score 

(mastitis only), treatment (Y/N), treatment type, and treatment length.  Mastitis quarter 

and severity was not included in analyses but was recorded for culture reports delivered 

to dairy producers. 

Examinations were conducted Tuesday and Friday of every week by the lead 

author on cows from 3 to 6 and from 7 to 10 DIM.  Cows were either separated after 

milking or separated out of their pens by the lead author and farm staff or owners.  Cows 

were confined in a chute area, and the lead author collected rectal temperature with a 

rectal probe attachment (M700 Thermometer; GLA Agricultural Electronics, San Luis 
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Obispo, CA).  The lead author collected vaginal fluid with the MetriCheck device 

(MetriCheck; VetENT, New Zealand).  The lead author collected blood from the 

coccygeal vein for later analysis with an 18-gauge 2.54 cm multi-sample needle and a 

10cc vacutainer tube without additives (red top).  A stainless-steel bucket was filled with 

warm water and Dermachlor 2% chlorhexidine solution (Henry Schein Animal Health, 

Dublin, OH) according to label directions.  Clean paper towels were submerged in the 

solution, and the MetriCheck device remained in the solution when not in use.  The rectal 

thermometer and MetriCheck were wiped clean between cows, and the rectum and vulva 

of each cow were cleaned with clean paper towels and the chlorhexidine solution before 

rectal or vaginal samples were taken.  Cows with rectal temperatures > 39.3°C were 

classified with a fever.  Fever was collected to provide producers with additional 

information not as a definitive sign of disease.  Cows with pus or purulent discharge were 

considered to have metritis (≥ 2 on a 1 to 3 scale; Sterrett et al., 2014).  The PrecisionXtra 

device (Abbot Laboratories, Chicago, IL) was used cow-side with 1 drop of blood from a 

red top tube to determine β-hydroxybutyrate concentrations (Iwersen et al., 2009).  Cows 

with β-hydroxybutyrate concentrations ≥ 1.2 mmol/mL were considered to have 

subclinical hyperketonemia (Nielen et al., 1994).  Tubes were kept in a cooler after 

collection.  At the end of a data collection day, tubes were centrifuged at 3000 RPM for 

20 min (CR4-12, Jouan Inc.).  Serum was separated into 5 mL vials and stored in a 

refrigerator until calcium analysis at the University of Kentucky Veterinary Diagnostic 

Laboratory.  The Calcium-Arsenazo assay (ACE Alera, Alfa Wassermann Diagnostic 

Technologies, LLC, West Caldwell NJ) was used to analyze serum Ca concentrations.  
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Cows with serum Ca concentrations ≤ 8.6 mg/dL were considered to have subclinical 

hypocalcemia (Oetzel 2014, personal communication). 

Behavior collection and alerts.  The neck and leg technologies used a tri-axial 

accelerometer to define changes in behavior.  The technologies were validated for eating 

(neck tag only), lying (leg tag only), standing (leg tag only), walking (leg tag only), and 

activity (steps/d; leg tag only) characterization by Van Erp-Van der Kooj et al. (2016).  

Offloads from the Nedap Livestock Management – Dairy Management systems group 

(Nedap, Groenlo, The Netherlands) were received daily for all variables on all cows 

equipped with technologies in all herds.   

A technology-generated health report was created daily for every farm.  Alert 

creation was proprietary and based on a percentage decrease from a cow’s 10-d mean 

behavior.  The default setting from the company used throughout the study was a 

decrease ≥ 30% from a cow’s previous 10-d mean total daily activity (steps/d), lying 

time, or eating time.  Until a full 10 d of data were collected on a cow, no alerts were 

created.  The web-based interface presented alerts in the “Health and management” list as 

cow, DIM, group, eating attention, lying attention, and steps attention (Figure 2.1; 

Eckelkamp and Bewley, 2017).  Only cows with ≥ 1 attention were shown on the list.  

From October 5, 2015 to May 11, 2016, values were listed as “value (- %)” indicating the 

previous days total eating, lying, or steps and the associated decrease from a cow’s 10-d 

mean.  Values in blue indicated no alert, whereas values in red indicated an eating, lying, 

or step alert (Figure 2.1a; Eckelkamp and Bewley, 2017).  From May 11, 2016 to October 

31, 2016 values were depicted as a horizontal bar, with a vertical line within the bar 

indicating a cow’s 10-d mean.  The amount of the bar filled (left to right) indicated the 
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previous day’s total eating or lying time.  Blue bars indicated no alert, whereas red bars 

indicated an eating or lying alert.  Steps/d were not shown post-May 11, 2016 unless an 

alert was created.  If an alert was created “Decreased step count” appeared to the right of 

lying time in red (Figure 2.1b; Eckelkamp and Bewley, 2017).  Although alert creation 

remained the same, cows that were identified as “in estrus” were not included on the 

“Health and management” list after May 11, 2016.  Before May 11, 2016, cows could 

appear in the “Heat detection” and the “Health and management” list.  Cows in estrus 

experience a significant increase in activity which could correspond with decreased lying 

or eating time (Farris, 1954, Hurnik et al., 1975).  After May 11, 2016, cows identified as 

in estrus were only shown on the “Heat detection” list even if a corresponding decrease in 

lying or eating time occurred.  A cow-alert could contain a single change in activity, 

lying time, eating time, or any combination of the single changes.  Daily, cow-alerts were 

recorded by the lead author for analyses of sensitivity, specificity, accuracy, and balanced 

accuracy.   

Behavior data conversion.  A daily offload was received from Nedap for eating 

time, lying time, standing time, walking time, and activity (steps/d) for every herd for the 

previous two wk period.  Data were received as seconds of behavior (eating, lying, 

standing, and walking time) or steps (activity) that occurred in a 15-min period.  Data 

were converted from Central European Summer Time to Central Standard Time (Farm 1, 

2, and 4) or Eastern Standard Time (Farm 3) and summed to daily totals using MATLAB 

7.14.0.739 (The MathWorks Inc., 2012, Natick, Massachusetts).  Offloads from a 15-min 

period without data were recorded as “-1” by the system.  If no action occurred and data 

was transferred, data was recorded as “0” by the system.  If less than 92 15-min periods 
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had actual data recorded (< 23h of data), that d was considered missing.  The EXPAND 

procedure of SAS 9.4 (SAS Institute, Inc., Cary, NC) was used to calculate a 10-d 

moving mean of daily totals for eating, lying, standing, walking, and activity to mirror the 

alerts created by the system.  Daily activity, eating, lying, standing, and walking time 

deviations from a 10-d moving mean were calculated to explore differences outside a ≥ 

30% decrease in behavior on sensitivity, specificity, accuracy, and balanced accuracy.  

Daily differences were calculated as a percent of a 10-d moving mean of daily totals and 

could be positive or negative differences. 

Analyses   

The four herds provided data for 1,374 cows and 517,293 cow-days.  Cow-days 

referred to the number of calendar days an individual cow had recorded behavior data 

from the technology.  Exclusions were sequentially applied as follows: 

1) Twenty-six cows with incorrect technology information were removed (n = 

1,348 cows and n = 506,711 cow-days remaining in the data set).  Eleven 

cows were identified by dairy producers as having incorrect tag information, 

fifteen cows were identified by bred or heat date.  Bred and heat dates from 

the herd management software were compared to increases in activity 

(steps/d) over a cow’s 10-d mean activity on -1 to 1 d around a bred or heat 

date.  If no increase in activity occurred during that period, the tag was 

determined to be on the incorrect cow, and the cow was removed from the 

data set. 

2) Data were confined within the start (October 5, 2015) and end (October 31, 

2016) date of the project.  Dry cow-days and days after a cow left the herd 
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were removed based on DHI records (n = 1,251 cows and 307,827 cow-days 

remaining in the data set). 

3) Cows with ≤ 7 d total of technology data or no records for technology data 

were removed (n = 1,169 cows and 302,876 cow-days remaining in the data 

set). 

4) Cow-days with no data recorded or with < 92 15-min periods (23 h) of 

recorded data were removed based on visually checking the data around 

calving or dry-off to remove d before the tag was attached or after the tag was 

removed (n = 1,168 cows and 296,824 cow-days remaining in the data set). 

Statistical analysis 

 Within the data set, four disease scenarios were examined: 1) any disease event (n 

= 2,252 cow-days; AllEvents; hyperketonemia, hypocalcemia, retained placenta, metritis, 

displaced abomasum, lameness, mastitis, or other on d of disease detection), 2) 

hyperketonemia (n = 311 cow-days; hyperketonemia alone or with any other disease on d 

of disease detection), 3) hypocalcemia (n = 748 cow-days; hypocalcemia alone or with 

any other disease on d of disease detection), and 4) metritis (n = 505 cow-days; metritis 

alone or with any other disease on d of disease detection).  Cow-days with recorded 

mastitis (n = 166 cow-days), lameness (n = 120 cow-days), retained placenta (n = 95 

cow-days), displaced abomasum (n = 18 cow-days), or other disease (n = 66 cow-days) 

did not occur frequently enough to be included individually in analysis.  Other diseases 

reported by producers included eye infection (n = 1 cow-day), pneumonia (n = 9 cow-

days), sick (n = 55 cow-days), and uterine torsion (n = 1 cow-day).  The first recorded 



97 
 

incidence of a disease, whether by the farm staff or by the lead researcher, was 

considered the d of disease detection.  Duplicate data was removed from the data sets.    

Because the majority of diseases reported occurred during the transition period, 

analyses of behavior changes during that time was conducted.  The MIXED procedure of 

SAS was used to quantify behavior changes (eating time, lying time, standing time, 

walking time, and activity) within the first 21 d of lactation based on the methodology of 

Tsai (2017).  Analyses included events that occurred during the first 21 d of lactation for 

1) cows with no record of disease (n = 451) and cows with any recorded disease event (n 

= 717), 2) cows with no recorded metritis (n = 785) and cows with metritis (n = 383), 3) 

cows with no recorded hyperketonemia (n = 937) and cows with subclinical or clinical 

hyperketonemia (n = 229 and n = 2, respectively), and 4) cows with no recorded 

hypocalcemia (n = 614) and cows with subclinical or clinical hypocalcemia (n = 539 and 

n = 15, respectively).  Cows with hyperketonemia, metritis, or hypocalcemia could have 

had an individual disease or the disease of interest and another disease(s).   

 To quantify the efficacy of the wearable technologies to identify a cow with a 

disease, 11 lengths of time around a disease event (time-windows) were compared.  

Time-windows were created using the EXPAND procedure of SAS 9.4.  Time-windows 

increased the length of time a disease event and a cow-alert could occur simultaneously.  

Time-windows were 1) the d of visual disease detection, 2) the d of and d after visual 

disease detection, 3) the d of and 2 d after visual disease detection, 4) the d of and 3 d 

after visual disease detection, 5) the d of and 4 d after visual disease detection, 6) the d of 

and 5 d after visual disease detection, 7) the d of and 6 d after visual disease detection, 8) 

the d before to the d after visual disease detection, 9) 2 d before to 2 d after visual disease 
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detection, 10) 3 d before to 3 d after visual disease detection, and 11) 5 d before to 2 d 

after visual disease detection (adapted from Stangaferro et al., 2016a, b, c).  

 The FREQ procedure of SAS 9.4 was used to calculate the occurrence of true 

positives, true negatives, false positives, and false negatives. Sensitivity, specificity, 

accuracy, and balanced accuracy were calculated for each time-window.  Sensitivity was 

calculated using Eq. 3.1, specificity using Eq. 3.2, accuracy using Eq. 3.3, and balanced 

accuracy using Eq. 3.4.  Balanced accuracy was included to account for the imbalance 

between healthy cow-days and disease cow-days. 

 Sensitivity = True positive
(True positive+False negative)                    Equation 3.1 

 Specificity = True negative
(True negative +False positive)                   Equation 3.2 

 Accuracy = (True positive+True negative)
(True positive+False positive+True negative+ False negative)    Equation 3.3 

 Balanced accuracy = 
True positive

�True positive+False positive�+
True negative

�True negative+False negative�
2   Equation 3.4 

 Odds-ratios and significance estimations were conducted using a logistic 

regression model.  The generalized linear model (GENMOD procedure; SAS 9.4) with a 

binomial distribution was used to test fixed effects on the probability of a disease event 

occurring.  The model contained 1,168 cows and 296,824 cow-days across four farms.  

The repeated effect of cow with an exchange correlation was included in the model.  

Fixed effects included previous lactation actual milk yield, previous lactation projected 

305-d mature equivalent (ME) milk yield, previous lactation ECM, previous lactation 

actual fat %, previous lactation ME fat %, previous lactation actual protein %, previous 

lactation ME protein %, previous lactation mean SCS, previous lactation last test day 

SCS, previous lactation last test day SCC, previous lactation length; previous lactation 
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days dry, previous lactation actual calving interval, daily maximum temperature humidity 

index, daily mean ambient temperature, or daily mean ambient humidity.  Daily 

maximum temperature humidity index (THI) was calculated using Eq 3.5 (NOAA, 

1976). 

THI = temperature (°F) – (0.55 – (0.55 * relative humidity/100))    Equation 3.5 

            * (temperature (°F) – 58.8) 

Only variables with P ≤ 0.05 were considered for inclusion in the machine-learning 

prediction models.  Previous lactation ECM (P = 0.01), previous lactation mean SCS (P = 

0.01), previous lactation length (P = 0.05), previous lactation actual calving interval (P = 

0.03), and daily maximum THI (P = 0.04) were included in machine-learning models. 

Prediction model development 

Machine-learning techniques were applied to the data set to predict 

hyperketonemia, hypocalcemia, metritis, or AllEvents.  The 3 machine-learning 

techniques used were previously described by Borchers et al. (2017).  Briefly, linear 

discriminant analysis (LDA), random forest (RF), and principal component analysis 

neural network (PCANNet) were used.  Linear discriminant analysis uses a categorical 

dependent variable and several continuous independent variables, similar to an ANOVA 

(McLachlan, 2004, Wetcher-Hendricks, 2011).  The random forest method develops a 

group of decision-tree classification models.  Each tree classifies the data independently.  

The forest then pulls from the individual classifications and classifiers, returning the most 

popular class (Breiman, 2001, Kamphuis et al., 2010, Shahinfar et al., 2014).  Principal 

component analysis neural networks are a modification of the neural network.  Neural 

networks simulate human intelligence by mimicking the function and structure of the 
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human brain, continuously adapting, learning independently, and applying inductive 

reasoning (Zahedi, 1991, Krieter et al., 2006).  Instead of the traditional neural network 

(Borchers et al., 2017), the PCANNet was used to improve classification over the 

traditional neural network by identifying and grouping similar variables through data 

reduction (Maćkiewicz and Ratajczak, 1993, Tantithamthavorn et al., 2016).   

All analyses were constructed and executed used the lattice, caret, e1071, and 

randomForest packages in R (version 3.3.3; R Foundation for Statistical Computing, 

Vienna, Austria).  Prediction models were developed with the intention of identifying 

each disease at or before diagnosis.  Four time-windows were examined, 1) d of, 2) d 

before to d of disease detection, 3) 3 d before to d of disease detection, and 4) 5 d before 

to d of disease detection.  To identify technology variable disease detection efficacy, 5 

scenarios were run.  Scenario 1 included daily eating and lying time, daily step count, and 

the daily difference in eating, lying, and steps from a 10-d moving mean as predictors for 

AllEvents, hyperketonemia, hypocalcemia, or metritis.  Scenario 2 included daily eating 

time and daily eating difference from a 10-d moving mean as predictors for AllEvents, 

hyperketonemia, hypocalcemia, or metritis.  Scenario 3 included daily lying, standing, 

and walking time, daily step count, and the daily difference in lying, standing, walking, 

and step count from a 10-d moving mean as predictors for AllEvents, hyperketonemia, 

hypocalcemia, and metritis.  Scenario 4 included daily eating, lying, standing, and 

walking time, daily step count, and the daily difference in eating, lying, standing, 

walking, and step count from a 10-d moving mean as predictors for AllEvents, 

hyperketonemia, hypocalcemia, and metritis.  Scenario 5 included daily eating, lying, 

standing, and walking time, daily step count, daily difference in eating, lying, standing, 
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walking, and step count from a 10-d moving mean, previous lactation ECM, previous 

lactation mean SCS, previous lactation DIM, previous lactation actual calving interval, 

and daily maximum THI as predictors for AllEvents, hyperketonemia, hypocalcemia, and 

metritis.  Separate LDA, RF, and PCANNet analyses were run for each combination of 

time-windows and predictors for a total of 240 prediction models (5 scenarios x 4 time-

windows x 3 machine-learning techniques x 4 disease groups).   

The data sets used for each model were prepared the same way.  A data subset of 

80% of the observations was used as a training set to generate the prediction models.  

Within the training set, 10-fold cross-validation with down-sampling was used.  Cross-

validation allowed the model to further divide the 80% into 10 segments.  Each segment 

was then run through the training model, with each subsequent run improving the 

predictive power of the model.  The remaining 20% was used as a testing set, evaluating 

the performance of the prediction created by the training set.  The output calculated for 

each model included sensitivity, specificity, accuracy, and balanced accuracy. 

RESULTS 

Behavior variables: Activity, eating, lying, standing, and walking time 

 Overall, 827 cows out of 1,168 cows experienced a disease event over their 

lactation (Table 3.1).  If a disease occurred during the first 21 DIM, cows were 

considered positive for that disease from 0 to 21 DIM.  Cows were grouped as no disease 

(ND - no recorded diseases; n = 451 cows) or disease (D – recorded disease; n = 717 

cows). Cows were further grouped as metritis (Met+: n = 383 cows with metritis; Met-: n 

= 785 cows without metritis), hyperketonemia (Ket+: n = 231 cows with 

hyperketonemia; Ket-: n = 937 cows without hyperketonemia), and hypocalcemia 
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(Hyp+: n = 554 cows with hypocalcemia; Hyp-: n = 614 cows without hypocalcemia).  

All behavior variables were changed by the presence of disease (Figures 3.3 to 3.6).  

Eating time, walking time, and activity remained below herd mates without a recorded 

disease throughout the first 21 DIM (LSM ± SE: 213 ± 1 vs. 243 ± 2 min/d eating, 46.9 ± 

0.1 vs. 52.4 ± 0.3 min/d walking, and 4,100 ± 11 vs. 4,539 ± 26 steps/d for D and ND, P 

< 0.01 respectively; Figure 3.1a, d, e).  Conversely, standing time remained similar 

between disease and no disease cows (806 ± 1 vs. 811 ± 3 min/d standing for D and ND, 

P = 0.10; Figure 3.1c) while lying time remained slightly elevated in D cows throughout 

the first 21 DIM (587 ± 1 vs. 577 ± 3 min/d lying for D and ND cows, P < 0.01; Figure 

3.1c).   

 During the first 8 DIM, cows with metritis had lesser eating time (199 ± 5 vs. 217 

± 4 min/d in Met+ and Met- cows; P < 0.01; Figure 3.2a), greater lying time (627 ± 8 vs. 

600 ± 7 min/d in Met+ and Met- cows; P < 0.01; Figure 3.2b), and lesser standing time 

(763 ± 8 vs. 787 ± 7 min/d in Met+ and Met- cows; P < 0.01; Figure 3.2c).  From 8 to 21 

DIM, eating, lying, and standing time were similar between Met+ and Met- cows (224 ± 

5 vs. 221 ± 4 min/d eating, 570 ± 8 vs. 569 ± 7 min/d lying, and 826 ± 8 vs. 824 ± 6 

min/d standing in Met+ and Met- cows, respectively; Figure 3.2a, b, c).  However, 

walking time and activity remained lesser in cows that had experienced metritis from 1 to 

21 DIM (45.9 vs. 49.0 ± 0.2 min/d walking and 4,023 ± 16 vs. 4,270 ± 13 steps/d for 

Met+ and Met- cows, P < 0.01 respectively; Figure 3.2d, e).   

 Cows that experienced hyperketonemia (BHBA ≥ 1.2 mmol/L) had marked 

elevation in lying time (615 ± 2 vs. 576 ± 1 min/d in Ket+ and Ket- cows; P < 0.01; 

Figure 3.3b) and a corresponding suppression in standing time (783 ± 2 vs. 814 ± 1 min/d 
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in Ket+ and Ket- cows; P < 0.01; Figure 3.3c) throughout the first 21 DIM.  Walking 

time and activity remained below Ket- in Ket+ cows from 2 to 21 DIM (42.2 ± 0.3 vs. 

49.5 ± 0.2 min/d walking and 3,757 ± 20 vs. 4,298 ± 11 steps/d in Ket+ and Ket- cows, 

respectively; P < 0.01; Figure 3.3d, e).  Eating time changed the least between Ket+ and 

Ket- cows (211 and 219 ± 1 in Ket+ and Ket- cows, respectively; P < 0.01; Figure 3.3a).  

Cows with and without hyperketonemia both experienced lesser eating time following 

parturition, with Ket+ cows spending less time eating from 6 to 11 DIM.  From 11 to 21 

DIM, Ket+ and Ket- cows spent similar time eating (221 ± 6 vs. 226 ± 3 min/d eating in 

Ket+ and Ket- cows). 

 Cows that experienced hypocalcemia (serum Ca ≤ 8.6 mg/dL) had lesser eating 

time throughout the first 21 DIM (211 vs. 227 ± 1 min/d eating Hyp+ and Hyp- cows, 

respectively; P < 0.01; Figure 3.4a).  Lying time was greater while standing time was 

lesser until 12 DIM in Hyp+ cows compared to Hyp- cows (617 ± 7 vs. 588 ± 8 min/d 

lying and 775 ± 6 vs. 799 ± 8 min/d standing in Hyp+ cows and Hyp- cows, respectively; 

P < 0.01; Figure 3.4b, c).  Walking time and activity remained suppressed below Hyp- 

cow levels in Hyp+ cows throughout the first 21 DIM (46.0 vs. 50 ± 0.2 min/d walking 

and 4,040 ± 13 vs. 4,358 ± 16 steps/d in Hyp+ and Hyp- cows, respectively; P < 0.01; 

Figure 3.4d, e). 

Precision Dairy Monitoring technology-generated alerts  

 Depending on the time-window, 1,646 to 9,550 out of 296,824 cow-days had 

recorded disease events for 827 cows (Table 3.2).  Over the study, the technologies 

generated 10,349 to 26,133 cow alerts, depending on the combination of alerts considered 

(Tables 3.3 to 3.7).  This discrepancy was apparent throughout the models, with 91 to 
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97% specificity and 13 to 48% sensitivity for all system generated disease alerts (Table 

3.3 to 3.7).  Compared to the system default variables of eating, lying, and activity, 

decreased sensitivity was observed when all variables from the leg tag were considered 

(Table 3.6), when eating time was considered (Table 3.5), and when all variables were 

considered (Table 3.7).  Improved sensitivity occurred when more than one variable was 

considered (eating time only: 25 ± 6% sensitivity).  However, the greatest accuracy and 

balanced accuracy occurred when only eating alerts were considered (Table 3.5).  Across 

diseases, sensitivity and specificity remained similar, except for metritis detection with 

only eating alerts (18 ± 3% sensitivity).  The greatest sensitivity occurred for 

hyperketonemia on the day of disease detection when eating, lying, and activity alerts 

were considered (48% sensitivity, 92% specificity).   

 Sensitivity was highest on the day of disease detection (d 0; Table 3.13).  

Balanced accuracy was highest at the longer time-windows, particularly -5 to 2 d after 

disease detection.  However, sensitivity, specificity, accuracy, and balanced accuracy 

were within < 1 to 4% across all time-windows within a disease (Tables 3.3 to 3.7).  

Across all time-windows, specificity, accuracy, and balanced accuracy remained similar 

(Table 3.13) with sensitivity causing the variability in accuracy and balanced accuracy.  

Machine-learning analyses 

 Machine-learning techniques produce results and outputs unlike algorithm 

producing prediction models.  Prediction performance for each variable group is shown 

in Tables 3.8 to 3.12.  Overall, PCANNet had the best sensitivity across diseases and 

time-windows (Table 3.13; 82 to 84 ± 3), whereas the highest balanced accuracy 

occurred with the RF (Table 3.13; 79 ± 5 to 80 ± 6).  The best prediction models for neck 
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tag only alerts (eating time) were PCANNet, with random forest analysis being the better 

predictor for all other combinations.  The best prediction models for all disease events 

(any event) were the PCANNet.  Predicting specific diseases (hypocalcemia, 

hyperketonemia, and metritis) was best with the random forest analysis.  Although an 

algorithm was not created, variables of importance could be calculated through R.  Daily 

eating time was the most important variable for disease detection in every LDA and 

PCANNet model.  In the RF models where daily eating time was the 2nd or 3rd most 

important variable, daily difference in eating time from a cow’s 10-d mean was the most 

important variable for disease detection. 

 Sensitivity, specificity, accuracy, and balanced accuracy were similar between 

PCANNet, random forest, and linear discriminant analysis (79 ± 5% sensitivity, 74 ± 9% 

specificity, 80 ± 5% accuracy, and 77 ± 6% balanced accuracy).  Neck tag measurements 

had a lower sensitivity compared to combinations of neck and leg tag measurements 

(Table 3.8; 75 ± 5 vs. 81 ± 4%).  Leg tag measurements had similar sensitivity but lower 

specificity to combinations of neck and leg tag measurements (Table 3.10; 81 ± 4% 

sensitivity, 64 ± 12 vs. 78 ± 7% specificity).  The best combination of sensitivity, 

specificity, accuracy, and balanced accuracy was achieved when neck, leg, and previous 

lactation information were combined (81 ± 4, 79 ± 6, 81 ± 4, and 80 ± 5% sensitivity, 

specificity, accuracy, and balanced accuracy, respectively; Table 3.12). 

DISCUSSION 

Behavior variables: Activity, eating, lying, standing, and walking time 

 Decreased activity was associated with ill, Met+, Ket+, and Hyp+ cows in our 

study.  Similarly, Tsai (2017) reported decreased activity in cows with metritis (2,125 ± 
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1,215 vs. 2,689 ± 1,637 steps/d), hyperketonemia (3,137 ± 121 vs. 3,685 ± 72 steps/d), 

and hypocalcemia (2,490 vs. 2,856 ± 1,180 steps/d) from 1 to 21 DIM.  Stangaferro et al., 

(2016a; b; c) noted decreased neck activity (au/d) -5 d to d of clinical diagnosis in cows 

with mastitis, metritis, or metabolic disorders (displaced abomasum, indigestion, 

hyperketonemia, or all).  Liboreiro et al. (2015) also reported decreased neck activity 

(512 ± 11 vs. 539 ± 6 au/d) in cows with metritis compared to cows without metritis.  In 

our study, walking time also decreased parallel to activity (Figure 3.3 to 3.7).  Titler et al. 

(2013) recorded decreased walking time in cows that experienced metritis from 1 d 

before to 3 d after clinical diagnosis compared to healthy counterparts.   

 In our study, lying time was higher in Met+, Ket+, and Hyp+ with a 

corresponding lower standing time.  Tsai (2017) also reported increased lying time in 

Ket+ and Hyp+ cows compared to Ket- and Hyp- cows, respectively.  Although Itle et al. 

(2015) reported Ket+ cows had lower lying time compared to Ket- cows, Sepúlveda-

Varas et al. (2014) noted cows that experienced multiple diseases had greater lying times 

than cows that experienced only one disease.  Like Tsai (2017), most cows in our study 

that experienced disease experienced > 1 throughout their lactation (507 out of 844 

cows).  Herdt (1988) suggested increased lying time was an energy conservation response 

to disease.  The need for energy conservation could have been exacerbated by the 

decreased eating time experienced by Met+, Ket+, and Hyp+ cows in our study. 

 Conversely, Tsai (2017) reported no difference in lying time in Met+ cows.  Titler 

et al. (2013) reported longer standing times in Met+ compared to Met- cows, unlike Tsai 

(2017) or the current study.  Decreased activity and increased lying time are energy 

conservation methods employed by many species (Aubert, 1999).  Aubert (1999) 
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suggested diseases, particularly those with a pathogenic cause, required animals to 

conserve energy to support a temperature increase.  Metritis was the only disease of 

interest with a bacterial cause and had the shortest period of difference (1 to 8 DIM) 

compared to herd mates without metritis.  Stangaferro et al. (2016c) reported high 

variability in activity and rumination responses in Met+ cows.  Stangaferro et al. (2016c) 

attributed the variability in behavior response to the variability in metritis severity with 

more severe cases of metritis causing a greater behavior change.  Our study did not have 

enough cases of metritis to break them out by severity score, but differing degrees of 

decrease could have occurred.   

 Eating time remained below herd mates without the disease of interest for any 

disease and hypocalcemia from 1 to 21 DIM.  Metritis cows had decreased eating time 

from 1 to 8 DIM, with hyperketonemia cows having decreased eating time from 6 to 11 

DIM.  Huzzey et al. (2007) also reported decreased eating time and feed consumption in 

cows with metritis.  Tsai (2017) also characterized eating time from 1 to 21 DIM.  Unlike 

our study, Tsai (2017) noted no significant differences in eating time in cows with 

hypocalcemia, hyperketonemia, or metritis although numeric decreases in eating time 

occurred.  Lack of significant difference between cows with or without hypocalcemia, 

hyperketonemia, or metritis could indicate not enough cows were included in Tsai (2017) 

study (n = 138 cows).  More cows in Tsai (2017) could have yielded significant 

differences similar to Liboreiro et al., (2015), Stangaferro et al., (2016a; c), and our 

study.   

Unlike metritis, hypocalcemia and hyperketonemia do not require an elevated 

temperature to eradicate a pathogen (Goff and Horst, 1997, DeGaris and Lean, 2008, 
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Oetzel, 2011).  Hyperketonemia is associated with negative energy balance, specifically 

mobilization of body fats to supplement cow maintenance and lactation requirements 

postpartum (Duffield, 2000, Ospina et al., 2010b).  Similarly, hypocalcemia occurs when 

cows lack sufficient calcium to maintain muscle function (Houe et al., 2000, Goff, 2008, 

Oetzel, 2011).  Decreased activity and increased lying time could serve as energy 

conserving methods for cows in negative energy balance.  Tsai (2017) suggested muscle 

weakness and fatigue could contribute to decreased activity and increased lying time in 

cows with hypocalcemia. 

Precision Dairy Monitoring technology-generated alerts 

 Overall, PDM-generated alerts had the highest sensitivity on d 0, the day of 

disease detection.  Conversely, balanced accuracy was highest when -5 to 2 d or -3 to 3 d 

around a disease detection were considered.  Balanced accuracy considers the balance 

between positives (true and false) and negatives (true and false).  Accuracy divides TP 

and TN by TP, TN, FP, and FN.  Accuracy can be artificially inflated if sensitivity or 

specificity is high.  For instance, a 38% sensitivity in combination with a 93% specificity 

had an associated 92% accuracy.  A 92% accuracy would imply a low number of false 

positives and negatives, which was not the case.  Conversely, 38% sensitivity with 93% 

specificity had an associated 53% balanced accuracy, more precisely reflecting the 

number of false positives associated with that test (Table 3.3).   

 The longer time-windows (-5 to 2 or -3 to 3 d) had the most desirable balanced 

accuracy and specificity (lowest number of false positives – cows without disease but an 

alert created).  Confounding effects with the days of data collection were unlikely, as 

examination days were set and had no influence on when disease alerts were generated.  



109 
 

Hogeveen et al. (2010) suggested a 48h time-window around an event was an acceptable 

alert window.  However, Stangaferro et al., (2016a; b; c) used -5 to 2 d after clinical 

diagnosis to set their sensitivity.  Widening the alert window could provide additional 

information to dairy producers, especially if days a suspected disease condition lasted 

were recorded.  Stangaferro et al. (2016a) reported steady decreases in rumination time 

(min/d) from -5 to -1 d before hyperketonemia diagnosis and steady decreases in neck 

activity (arbitrary units/d) from -5 to 1 d around hyperketonemia diagnosis.  Similarly, 

rumination time (min/d) and neck activity (arbitrary units/d) steadily decreased from -5 d 

to d of displaced abomasum diagnosis (Stangaferro et al., 2016a).  Potentially identifying 

diseases earlier in the behavior decrease could prevent disease progression, improve 

treatment efficacy, reduce treatment cost, and prevent relapse (Milner et al., 1997, 

Stangaferro et al., 2016a).  Conversely, rumination steadily increased from -5 to 5 d 

around metritis diagnosis, but was lower than healthy herd mates from -5 to 5 d around 

metritis diagnosis (P < 0.01; Stangaferro et al., 2016a).  Comparing cows to herd mates at 

the same stage of lactation and themselves could improve alert detection instead of 

considering one or the other.  A difficulty with behavioral changes is each disease affects 

behavior differently, and each cow responds differently also.  In the future, utilizing 

behavior data in combination with other data (herd records, milk components, feed 

intake, etc.) could create a more robust, disease specific alert by accounting for more 

variability.  

 Within our study, mean (± SD) sensitivity (31 ± 7%) was lower than sensitivities 

reported by Stangaferro et al. (2016a; b; c; 55 to 98%) and well below the sensitivity 

suggested by Hogeveen et al., (2010; ≥ 80%).  Low sensitivity coincided with low 



110 
 

producer use of cow-alerts.  In a companion study, Eckelkamp and Bewley (2017) 

reported producers followed-up 21% of cow-alerts with a visual examination.  The 

remaining 79% were either not checked, ignored, or attributed to known herd changes.  

To address this issue, Wathes et al. (2008), Russell and Bewley (2013), and Woodall and 

Montgomery (2014) stressed the importance of actionable alerts, decreasing false positive 

alert creation, and reducing information overload. 

 The best sensitivity occurred when eating, lying, and activity alerts were 

considered together (Table 3.3 and 3.4).  Similar performance was seen between the daily 

recorded eating, lying, and activity alerts and the calculated eating, lying, and activity 

alerts from the daily offloads (Table 3.3 and 3.4).  This result indicated recorded and 

calculated alerts were similar, validating the calculations done to create alerts from raw 

data by the lead author.  Similar results were expected from evaluating similar variables.  

Stangaferro et al. (2016a, c) noted a combination of an intake measurement (rumination) 

and mobility (neck activity) was able to identify cows with metritis and hyperketonemia.  

However, Stangaferro et al. (2016a, b) reported greater sensitivity for hyperketonemia 

and metritis compared to our study (22 to 38% compared to 91% sensitivity 

hyperketonemia; 18 to 31% compared to 55% sensitivity metritis).  Although these 

variables are not identical, a combination of intake (eating instead of rumination time) 

and cow mobility (lying time and steps/d instead of neck activity) outperformed other 

behavior variable combinations in our study.  The technology Stangaferro et al. (2016a; 

b; c) used had the advantage of providing rumination and neck activity within the same 

tag.  Our study required two tags to provide eating time and activity (steps/d).   
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 When eating alerts were considered individually, sensitivity decreased and 

specificity increased compared to eating, lying, and activity models.  Metritis events, in 

particular, had poor sensitivity (18 ± 3%).  When considering eating events, this finding 

could be expected.  Cows with hypocalcemia or hyperketonemia often experience 

decreased feed intake (Duffield, 2000, Oetzel, 2011).  Eating decreases may not be as 

severe or as noticeable within a cow.  Stangaferro et al. (2016c) reported a decrease in 

rumination time in cows with metritis compared to herd mates, but rumination time 

within a cow still increased following calving.  Conversely, cows diagnosed with 

hyperketonemia decreased in rumination time until the day of diagnosis (Stangaferro et 

al., 2016a). 

 When leg tag variables (lying, standing, walking, and activity) were considered 

together, sensitivity decreased, and specificity remained similar to eating, lying, and 

activity models.  Activity (steps/d) or neck activity (arbitrary units) have been shown to 

change around disease events (Edwards and Tozer, 2004, Proudfoot and Huzzey, 2016), 

along with standing or lying time and walking time (Titler et al., 2013).  Within our leg 

tag model, the highest sensitivity was seen for hyperketonemia on the day of disease 

detection.  Stangaferro et al. (2016a) reported a steady decrease from -5 d to the day after 

disease diagnosis.  However, the health index score Stangaferro et al. (2016a) relied on 

did not decrease until the day after disease diagnosis.  Low sensitivities in our study 

could also indicate the detection threshold was set too low.  This would allow steady 

decreases like those seen in hyperketonemia and clinical metritis to generate disease 

alerts, but also created alerts for sudden short changes such as pen movements 

(Stangaferro et al., 2016c, a, Eckelkamp and Bewley, 2017). 
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 When all leg tag and neck tag variables (lying, standing, walking, activity, and 

eating) were considered together, sensitivity was slightly lower than the eating, lying, and 

activity model (33 ± 4 vs. 37 ± 5%) with similar specificity (91 vs. 92%).  Our study 

indicated although sensitivity was low, eating, lying, and activity alerts could predict 

diseases.  When used individually, eating time had more potential then lying, standing, 

walking, and activity alerts for predicting disease events. 

Machine-learning prediction 

 Machine-learning techniques greatly improved sensitivity, specificity, accuracy, 

and balanced accuracy over PDM-generated alerts (Table 3.8 to Table 3.12).  Sensitivity 

never fell below 67%, with specificity falling below 63% when all leg tag variables were 

considered (Table 3.10).  Unlike the generated alerts, combinations of eating, lying, and 

activity had inferior predicting ability compared to all behavior variables, and all 

behavior variables with previous lactation information.  Similarly, Vergara et al. (2014) 

noted when previous lactation milk production was included in a model, postpartum 

disease prediction improved.  Nordlund and Cook (2004) also noted a decreased ME milk 

yield at first test compared to a cow’s previous lactation could detect hyperketonemia, 

displaced abomasum, and digestive disorders. 

 Other disease predictions have been conducted by examining herd records 

(Nordlund and Cook, 2004, Vergara et al., 2014), behavioral changes (Stangaferro et al., 

2016c, b, a), automated milk analysis (automatic milking systems; Kamphuis et al., 

2010), and blood NEFA (Dubuc et al., 2010b, Ospina et al., 2010b) or BHBA (Ospina et 

al., 2010b, Chapinal et al., 2011).  However, sensitivity and specificity were rarely as 

high in combination as our study.  Specificity and sensitivity are inversely proportional, 
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increasing the difficulty of identifying all true positive incidences without a high 

proportion of false positives.  Kamphuis et al. (2010) noted this difficulty, even when 

using decision tree models with bagging or boosting, similar to our random forest 

technique (25 to 40% sensitivity with 99% specificity; 44 to 57% sensitivity with 97.9% 

specificity).  Also unlike our study, Kamphuis et al. (2010) witnessed the greatest 

combination of sensitivity and specificity when -10 to 7 d after a clinical mastitis 

observation were considered.  Within our study, the greatest combinations of sensitivity 

and specificity occurred within 24 h before a clinical disease event.  If producers were 

provided with reliable disease-specific information, cows could experience improved 

treatment responses, decreased antibiotic or treatment administrations, and less impaired 

lactation yield (Milner et al., 1997). 

 Although the best prediction across generated or machine-learning alerts occurred 

with combinations of eating, lying, and activity behavior, two technologies were required 

to generate these results.  A few technologies can measure a mixture of these behaviors, 

but most technologies do not measure all three or four (including walking time) in 

combination.  For dairy producers, investing in two technologies for health detection 

would not be economically feasible (Borchers et al., 2017).  Unlike Borchers et al. 

(2017), machine-learning techniques applied to technologies measuring eating time, or 

rumination and neck activity, could be the best option for behavior-based disease 

detection (Liboreiro et al., 2015, Stangaferro et al., 2016a, b, c). 

CONCLUSIONS 

Precision dairy monitoring technologies can efficiently track behavioral changes 

around hypocalcemia, metritis, hyperketonemia, and other diseases.  However, 
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technology generated disease alerts were not sensitive enough to be used as sole disease 

detection criteria.  Applying machine-learning principles to the behavior data improved 

sensitivity, and the balance between sensitivity and specificity.  A combination of eating 

and movement behaviors with additional herd information provided the highest 

sensitivity and specificity.  However, eating time and the daily difference from a cow’s 

10-d moving mean have potential to be an effective predictor of disease.  Future research 

should focus on applying machine-learning principles to behavioral data to create 

meaningful, actionable alerts for producers. 
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Table 3.1.  Cows that experienced a disease event over a lactation (n = 1,168 total cows 

on study) monitored from October 5, 2015 to October 31, 2016. 

Disease event Number of cows 
Any disease event1 827 
 Hyperketonemia2 24 
 Hypocalcemia3 161 
 Metritis4 83 
 Other5 129 
 Hyperketonemia2and hypocalcemia3 57 
 Hyperketonemia2and metritis4 17 
 Hyperketonemia2and other5 4 
 Hypocalcemia3and metritis4 109 
 Hypocalcemia3and other5 50 
 Metritis4 and other5 14 
 Hyperketonemia2, hypocalcemia3, and metritis4 66 
 Hyperketonemia2, hypocalcemia3, and other5 19 
 Hyperketonemia2, metritis4, and other5 2 
 Hypocalcemia3, metritis4, and other5 50 
 Hyperketonemia2, hypocalcemia3, metritis4, and other5 42 

1Any disease event referred to cows that experienced any disease event over their 
lactation. 
2Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM (n = 229 cows).  Farm staff also recorded 
hyperketonemia if any clinical signs were present throughout lactation (n = 2 cows). 
3Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM (n = 539 cows).  Farm staff also recorded hypocalcemia if any 
clinical signs were present throughout lactation (n = 15 cows). 
4Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM (n = 371 cows). Farm staff also 
recorded metritis if any clinical signs were present throughout lactation (n = 12 cows). 
5Other referred to retained placenta (n = 35 cows), displaced abomasum (n = 15 cows), 
lameness (n = 73 cows), eye infection (n = 1 cow), pneumonia (n = 7 cows), uterine 
torsion (n = 1 cow), generic illness defined as “sick” by the producer (n = 55 cows), or 
mastitis (n = 121 cows) recorded by farm staff if any clinical signs were present 
throughout lactation. 
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Table 3.2.  Cow-days with recorded disease events expanded across 14 time-windows1,2 

on 1,168 cows monitored from October 5, 2015 to October 31, 2016.  Changes in disease 

event cow-days correspond to the expanded period when disease events and disease alerts 

were considered to be true positives. 

Time-window All3 Hyperketonemia4 Hypocalcemia5 Metritis6 

 01,2 1,646 311 748 505 
11 3,254 662 1,501 1,007 
21 4,838 930 2,253 1,506 
31 6,242 1,209 2,948 1,958 
41 7,430 1,452 3,557 2,362 
51 8,608 1,694 4,167 2,766 
61 9,833 1,937 4,775 3,174 

-1 to 11 4,807 925 2,234 1,494 
-2 to 21 7,331 1,438 3,480 2,327 
-3 to 31 9,414 1,884 4,462 3,076 
-5 to 21 9,550 2,038 4,604 3,313 
-1 to 02 3,647 730 1,804 1,133 
-3 to 02 6,104 1,325 3,283 2,018 
-5 to 02 7,309 1,660 3,800 2,605 

1Time-windows were calculated as d of (0), d of to 1 d after (1), d of to 2 d after (2), d of 
to 3 d after (3), d of to 4 d after (4), d of to 5 d after (5), d of to 6 d after (6), d before to d 
after (-1 to 1), 2 d before to 2 d after (-2 to 2), 3 d before to 3 d after (-3 to 3), and 5 d 
before to 2 d after (-5 to 2) disease detection by producer or lead author. 
2Time-windows correspond to linear discriminant analysis, random forest, or principal 
component analysis neural network machine-learning prediction techniques on 
technology measured parameters, previous lactation information, and ambient 
temperature-humidity index.  Time-windows were calculated as d of (0), d before to d of 
(-1 to 0), 3 d before to d of (-3 to 0), and 5 d before to d of (-5 to 0) disease detection by 
the producer or lead author. 
3All disease events referred to cows that experienced any disease event over their 
lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, displaced 
abomasum, or retained placenta. 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation. 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation. 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation. 
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Table 3.3.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

monitoring technology generated alerts2 for identifying any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Alerts based on activity (steps/d), eating time (min/d), and 

lying time (min/d) were created if that behavior decreased ≥ 30% from a cow’s previous 

10-d moving mean for each behavior.  Eleven time-windows7 were considered to 

determine true positives when disease alerts and events would overlap. 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
 0 43 92 92 51 
 1 40 92 92 52 
 2 38 93 92 53 
 3 36 93 91 54 
 4 35 93 91 55 
 5 33 93 91 55 
 6 31 93 91 55 
 -1 to 1 39 93 92 53 
 -2 to 2 37 93 91 55 
 -3 to 3 35 93 91 56 
 -5 to 2 34 93 91 56 
 Mean ± SD 36 ± 3 93 ± 0 91 ± 0 54 ± 1 
Hyperketonemia4      
 0 48 92 92 50 
 1 44 92 92 51 
 2 43 92 92 51 
 3 40 92 92 51 
 4 39 92 92 51 
 5 37 92 92 51 
 6 35 92 92 51 
 -1 to 1 43 92 92 51 
 -2 to 2 43 92 92 51 
 -3 to 3 41 92 92 51 
 -5 to 2 44 92 92 52 
 Mean ± SD 42 ± 3 92 ± 0 92 ± 0 51 ± 0 
Hypocalcemia5      
 0 46 92 92 51 
 1 43 92 92 51 
 2 42 92 92 52 
 3 40 92 92 52 
 4 39 92 92 53 
 5 37 92 92 53 
 6 36 92 92 53 
 -1 to 1 43 92 92 52 
 -2 to 2 41 92 92 53 
 -3 to 3 39 92 92 53 
 -5 to 2 39 92 92 53 
 Mean ± SD 40 ± 3 92 ± 0 92 ± 0 52 ± 1 
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Table 3.3. (cont.) 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Metritis6      
 0 38 92 92 50 
 1 33 92 92 51 
 2 31 92 92 51 
 3 28 92 92 51 
 4 27 92 92 51 
 5 26 92 92 51 
 6 25 92 91 51 
 -1 to 1 34 92 92 51 
 -2 to 2 33 92 92 52 
 -3 to 3 32 92 92 52 
 -5 to 2 35 92 92 52 
 Mean ± SD 31 ± 4 92 ± 0 92 ± 0 51 ± 0 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated from true 
positives, true negatives, false positives, and false negatives. 
2Eating time, lying time, and activity (steps/d) alerts were generated when decreases of 
30% or more from a 10-d moving mean occurred.  Alerts were limited to ones identified 
by the system and presented to dairy producers on a daily basis (n = 23,737). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), 1 (d of to 1 d after DD), 2 (d of to 2 d after 
DD), 3 (d of to 3 d after DD), 4 (d of to 4 d after DD), 5 (d of to 5 d after DD), 6 (d of to 
6 d after DD), -1 to 1 (d before to d after DD), -2 to 2 (2 d before to 2 d after DD), -3 to 2 
(3 d before to 3 d after DD), and -5 to 2 (5 d before to 2 d after DD). 
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Table 3.4.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

monitoring technology generated alerts2 for identifying any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Alerts based on activity (steps/d), eating time (min/d), and 

lying time (min/d) were created if that behavior decreased ≥ 30% from a cow’s previous 

10-d moving mean for each behavior.  Eleven time-windows7 were considered to 

determine true positives when disease alerts and events would overlap. 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
 0 38 93 92 51 
 1 37 93 92 52 
 2 36 93 92 53 
 3 34 93 92 54 
 4 32 93 92 55 
 5 31 93 91 55 
 6 29 93 91 55 
 -1 to 1 36 93 92 53 
 -2 to 2 35 93 92 55 
 -3 to 3 32 93 91 56 
 -5 to 2 32 93 91 56 
 Mean ± SD 34 ± 3 93 ± 0 92 ± 0 54 ± 1 
Hyperketonemia4      
 0 45 93 93 50 
 1 43 93 93 51 
 2 43 93 93 51 
 3 41 93 92 51 
 4 39 93 92 51 
 5 37 93 92 51 
 6 34 93 92 51 
 -1 to 1 44 93 93 51 
 -2 to 2 43 93 92 51 
 -3 to 3 41 93 92 52 
 -5 to 2 43 93 92 52 
 Mean ± SD 41 ± 3 93 ± 0 92 ± 0 51 ± 0 
Hypocalcemia5      
 0 42 93 93 51 
 1 42 93 92 51 
 2 41 93 92 52 
 3 39 93 92 52 
 4 38 93 92 53 
 5 36 93 92 53 
 6 34 93 92 53 
 -1 to 1 41 93 92 52 
 -2 to 2 39 93 92 53 
 -3 to 3 38 93 92 53 
 -5 to 2 38 93 92 53 
 Mean ± SD 39 ± 2 93 ± 0 92 ± 0 52 ± 1 
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Table 3.4. (cont.) 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Metritis6      
 0 33 93 93 50 
 1 30 93 92 51 
 2 29 93 92 51 
 3 27 93 92 51 
 4 25 93 92 51 
 5 24 93 92 51 
 6 23 93 92 51 
 -1 to 1 32 93 92 51 
 -2 to 2 31 93 92 51 
 -3 to 3 30 93 92 52 
 -5 to 2 33 93 92 52 
 Mean ± SD 29 ± 3 93 ± 0 92 ± 0 51 ± 0 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated from true 
positives, true negatives, false positives, and false negatives. 
2Eating time, lying time, and activity (steps/d) alerts were calculated from raw data 
offloads when decreases of 30% or more from a 10-d moving mean occurred (n = 
22,077). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), 1 (d of to 1 d after DD), 2 (d of to 2 d after 
DD), 3 (d of to 3 d after DD), 4 (d of to 4 d after DD), 5 (d of to 5 d after DD), 6 (d of to 
6 d after DD), -1 to 1 (d before to d after DD), -2 to 2 (2 d before to 2 d after DD), -3 to 2 
(3 d before to 3 d after DD), and -5 to 2 (5 d before to 2 d after DD). 
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Table 3.5.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

monitoring technology generated alerts2 for identifying any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Alerts based on eating time (min/d) were created if that 

behavior decreased ≥ 30% from a cow’s previous 10-d moving mean.  Eleven time-

windows7 were considered to determine true positives when disease alerts and events 

would overlap. 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
 0 29 97 96 52 
 1 28 97 96 54 
 2 26 97 96 55 
 3 24 97 95 56 
 4 22 97 95 57 
 5 20 97 95 57 
 6 19 97 94 57 
 -1 to 1 27 97 96 56 
 -2 to 2 24 97 95 58 
 -3 to 3 22 97 95 59 
 -5 to 2 22 97 95 59 
 Mean ± SD 24 ± 3 97 ± 0 95 ± 0 56 ± 2 
Hyperketonemia4      
 0 34 97 96 50 
 1 32 97 96 51 
 2 29 97 96 51 
 3 28 97 96 51 
 4 26 97 96 52 
 5 24 97 96 52 
 6 22 97 96 52 
 -1 to 1 32 97 96 51 
 -2 to 2 30 97 96 52 
 -3 to 3 28 97 96 52 
 -5 to 2 29 97 96 53 
 Mean ± SD 29 ± 4 97 ± 0 96 ± 0 52 ± 1 
Hypocalcemia5      
 0 34 97 96 51 
 1 34 97 96 52 
 2 32 97 96 53 
 3 30 97 96 54 
 4 27 97 96 54 
 5 25 97 96 55 
 6 23 97 96 55 
 -1 to 1 32 97 96 53 
 -2 to 2 29 97 96 54 
 -3 to 3 27 97 96 55 
 -5 to 2 27 97 96 55 
 Mean ± SD 29 ± 3 97 ± 0 96 ± 0 54 ± 1 
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Table 3.5. (cont.) 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Metritis6      
 0 21 97 96 50 
 1 19 97 96 51 
 2 17 97 96 51 
 3 16 97 96 51 
 4 15 97 96 51 
 5 13 97 96 51 
 6 13 97 96 51 
 -1 to 1 20 97 96 51 
 -2 to 2 20 97 96 52 
 -3 to 3 19 97 96 52 
  -5 to 2 22 97 96 53 
 Mean ± SD 18 ± 3 97 ± 0 96 ± 0 51 ± 1 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated from true 
positives, true negatives, false positives, and false negatives. 
2Eating time alerts were calculated from raw data offloads when decreases of 30% or 
more from a 10-d moving mean occurred (n = 10,349). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), 1 (d of to 1 d after DD), 2 (d of to 2 d after 
DD), 3 (d of to 3 d after DD), 4 (d of to 4 d after DD), 5 (d of to 5 d after DD), 6 (d of to 
6 d after DD), -1 to 1 (d before to d after DD), -2 to 2 (2 d before to 2 d after DD), -3 to 2 
(3 d before to 3 d after DD), and -5 to 2 (5 d before to 2 d after DD). 
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Table 3.6.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

monitoring technology generated alerts2 for identifying any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Alerts based on activity (steps/d), standing (min/d), walking 

(min/d), or lying time (min/d) were created if that behavior decreased ≥ 30% from a 

cow’s previous 10-d moving mean for each behavior.  Eleven time-windows7 were 

considered to determine true positives when disease alerts and events would overlap. 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
 0 23 94 93 51 
 1 22 94 93 51 
 2 23 94 93 52 
 3 22 94 92 53 
 4 23 94 92 53 
 5 22 94 92 54 
 6 22 94 92 54 
 -1 to 1 22 94 93 52 
 -2 to 2 22 94 92 53 
 -3 to 3 22 94 92 54 
 -5 to 2 21 94 92 54 
 Mean ± SD 22 ± 1 94 ± 0 92 ± 1 53 ± 1 
Hyperketonemia4      
 0 30 93 93 50 
 1 28 93 93 50 
 2 30 94 93 51 
 3 29 94 93 51 
 4 29 94 93 51 
 5 28 94 93 51 
 6 27 94 93 51 
 -1 to 1 27 94 93 51 
 -2 to 2 29 94 93 51 
 -3 to 3 28 94 93 51 
 -5 to 2 28 94 93 51 
 Mean ± SD 29 ± 1 94 ± 0 93 ± 0 51 ± 1 
Hypocalcemia5      
 0 25 93 93 50 
 1 22 94 93 51 
 2 24 94 93 51 
 3 23 94 93 51 
 4 24 94 93 52 
 5 24 94 93 52 
 6 24 94 93 52 
 -1 to 1 24 94 93 51 
 -2 to 2 24 94 93 52 
 -3 to 3 24 94 93 52 
 -5 to 2 24 94 93 52 
 Mean ± SD 24 ± 1 94 ± 0 93 ± 0 51 ± 0 
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Table 3.6. (cont.) 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Metritis6      
 0 25 93 93 50 
 1 22 93 93 50 
 2 22 94 93 51 
 3 21 94 93 51 
 4 21 94 93 51 
 5 21 94 93 51 
 6 20 94 93 51 
 -1 to 1 22 94 93 51 
 -2 to 2 23 94 93 51 
 -3 to 3 22 94 93 51 
  -5 to 2 23 94 93 51 
 Mean ± SD 22 ± 1 94 ± 0 93 ± 0 51 ± 0 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated from true 
positives, true negatives, false positives, and false negatives. 
2Standing time, lying time, walking time, and activity (steps/d) alerts were calculated 
from raw data offloads when decreases of 30% or more from a 10-d moving mean 
occurred (n = 19,485). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), 1 (d of to 1 d after DD), 2 (d of to 2 d after 
DD), 3 (d of to 3 d after DD), 4 (d of to 4 d after DD), 5 (d of to 5 d after DD), 6 (d of to 
6 d after DD), -1 to 1 (d before to d after DD), -2 to 2 (2 d before to 2 d after DD), -3 to 2 
(3 d before to 3 d after DD), and -5 to 2 (5 d before to 2 d after DD). 
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Table 3.7.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

monitoring technology generated alerts2 for identifying any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Alerts based on activity (steps/d), eating (min/d), standing 

(min/d), lying (min/d), and walking time (min/d) were created if that behavior decreased 

≥ 30% from a cow’s previous 10-d moving mean behavior.  Eleven time-windows7 were 

considered to determine true positives when disease alerts and events would overlap. 

Disease Time-
window7 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
 0 34 91 91 51 
 1 34 91 91 52 
 2 33 92 91 52 
 3 31 92 90 53 
 4 31 92 90 53 
 5 30 92 90 54 
 6 29 92 90 54 
 -1 to 1 33 92 91 52 
 -2 to 2 32 92 90 54 
 -3 to 3 30 92 90 54 
 -5 to 2 29 92 90 54 
 Mean ± SD 31 ± 2 92 ± 0 90 ± 0 53 ± 1 
Hyperketonemia4      
 0 38 91 91 50 
 1 38 91 91 50 
 2 39 91 91 51 
 3 37 91 91 51 
 4 37 91 91 51 
 5 36 91 91 51 
 6 34 91 91 51 
 -1 to 1 39 91 91 51 
 -2 to 2 39 91 91 51 
 -3 to 3 38 91 91 51 
 -5 to 2 39 91 91 51 
 Mean ± SD 38 ± 2 91 ± 0 91 ± 0 51 ± 0 
Hypocalcemia5      
 0 35 91 91 50 
 1 36 91 91 51 
 2 35 91 91 51 
 3 34 91 91 52 
 4 34 92 91 52 
 5 34 92 91 52 
 6 32 92 91 52 
 -1 to 1 36 91 91 51 
 -2 to 2 34 92 91 52 
 -3 to 3 34 92 91 52 
 -5 to 2 34 92 91 52 
 Mean ± SD 34 ± 1 91 ± 0 91 ± 0 52 ± 1 
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Table 3.7. (cont.) 

Disease Time-
window3 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Metritis7      
 0 32 91 91 50 
 1 30 91 91 50 
 2 29 91 91 51 
 3 31 91 91 51 
 4 27 91 91 51 
 5 27 91 91 51 
 6 26 91 91 51 
 -1 to 1 30 91 91 51 
 -2 to 2 30 91 91 51 
 -3 to 3 29 91 91 51 
  -5 to 2 31 91 91 52 
 Mean ± SD 29 ± 2 91 ± 0 91 ± 0 51 ± 0 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated from true 
positives, true negatives, false positives, and false negatives. 
2Eating time, standing time, lying time, walking time, and activity (steps/d) alerts were 
calculated from raw data offloads when decreases of 30% or more from a 10-d moving 
mean occurred (n = 26,133). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), 1 (d of to 1 d after DD), 2 (d of to 2 d after 
DD), 3 (d of to 3 d after DD), 4 (d of to 4 d after DD), 5 (d of to 5 d after DD), 6 (d of to 
6 d after DD), -1 to 1 (d before to d after DD), -2 to 2 (2 d before to 2 d after DD), -3 to 2 
(3 d before to 3 d after DD), and -5 to 2 (5 d before to 2 d after DD). 
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Table 3.8.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

technology collected behaviors2 for predicting any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Behaviors collected were activity (steps/d), eating (min/d), 

and lying time (min/d).  Three machine-learning methods7 and four time-windows8 were 

considered to determine true positives when diseases were accurately predicted.  

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
LDA7      

 0 72 69 72 71 
 -1 to 0 72 71 72 71 
 -3 to 0 72 68 72 70 
 -5 to 0 71 68 71 69 

PCANNet7      
 0 84 70 84 77 
 -1 to 0 83 76 83 80 
 -3 to 0 83 72 83 78 
 -5 to 0 82 71 82 77 

RF7      
 0 80 75 80 78 
 -1 to 0 81 77 81 79 
 -3 to 0 81 75 81 78 
 -5 to 0 79 75 79 77 
Hyperketonemia4      

LDA7      
 0 73 69 73 71 
 -1 to 0 73 72 73 72 
 -3 to 0 71 68 71 70 
 -5 to 0 70 68 70 69 

PCANNet7      
 0 83 76 83 80 
 -1 to 0 83 83 83 83 
 -3 to 0 84 84 84 84 
 -5 to 0 84 80 84 82 

RF7      
 0 82 82 82 82 
 -1 to 0 81 89 81 85 
 -3 to 0 79 85 79 82 
 -5 to 0 81 82 81 82 
Hypocalcemia5      

LDA7      
 0 74 74 74 74 
 -1 to 0 74 73 74 73 
 -3 to 0 73 70 73 72 
 -5 to 0 73 70 73 71 
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Table 3.8. (cont.) 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Hypocalcemia5      
PCANNet7      

 0 86 77 86 81 
 -1 to 0 87 78 86 82 
 -3 to 0 86 79 86 82 
 -5 to 0 84 76 84 80 

RF7      
 0 84 81 84 82 
 -1 to 0 82 83 82 82 
 -3 to 0 83 83 83 83 
 -5 to 0 83 81 83 82 
Metritis6      

LDA7      
 0 73 66 73 69 
 -1 to 0 74 68 74 71 
 -3 to 0 75 70 75 72 
 -5 to 0 74 69 77 72 

PCANNet7      
 0 81 73 81 77 
 -1 to 0 84 76 84 80 
 -3 to 0 85 81 85 83 
 -5 to 0 85 79 85 82 

RF7      
 0 80 80 80 80 
 -1 to 0 82 81 82 82 
 -3 to 0 83 81 83 82 
 -5 to 0 82 84 82 83 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated outputs from each 
machine-learning model based on true positives, true negatives, false positives, and false 
negatives. 
2Daily eating time, lying time, activity (steps/d) and a calculated daily difference from an 
individual cow’s 10-d moving mean for each behavior were included as explanatory 
variables for each machine-learning model (n = 1,168 cows and 296,824 cow-days). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
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Table 3.8. (cont.) 

6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7A least discriminant analysis (LDA), principle component analysis neural network 
(PCANNet), and a random forest (RF) technique were run on all data to identify patterns 
in the data and predict disease incidence within four time-windows. 
8Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), -1 to 0 (1 d before to d of DD), -3 to 0 (3 d 
before to d of DD), and -5 to 0 (5 d before to d of DD).  
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Table 3.9.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

technology collected behavior2 for predicting any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Behavior collected was eating time (min/d).  Three machine-

learning methods7 and four time-windows8 were considered to determine true positives 

when diseases were accurately predicted. 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
LDA7      

 0 72 70 72 71 
 -1 to 0 73 71 73 72 
 -3 to 0 71 69 71 70 
 -5 to 0 70 68 70 69 

PCANNet7      
 0 81 67 81 74 
 -1 to 0 80 73 80 77 
 -3 to 0 80 69 80 74 
 -5 to 0 79 69 78 74 

RF7      
 0 71 69 71 70 
 -1 to 0 70 72 70 71 
 -3 to 0 69 67 69 68 
 -5 to 0 67 67 67 67 
Hyperketonemia4      

LDA7      
 0 71 65 71 68 
 -1 to 0 71 67 71 69 
 -3 to 0 69 69 69 69 
 -5 to 0 70 66 70 68 

PCANNet7      
 0 80 66 80 73 
 -1 to 0 79 78 79 79 
 -3 to 0 80 75 80 77 
 -5 to 0 80 73 80 76 

RF7      
 0 73 63 73 68 
 -1 to 0 73 73 73 73 
 -3 to 0 71 71 71 71 
 -5 to 0 71 68 71 69 
Hypocalcemia5      

LDA7      
 0 74 80 74 77 
 -1 to 0 74 73 74 74 
 -3 to 0 73 70 73 71 
 -5 to 0 73 71 73 72 
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Table 3.9. (cont.) 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Hypocalcemia5      
PCANNet7      

 0 84 77 84 80 
 -1 to 0 84 72 84 78 
 -3 to 0 83 73 82 78 
 -5 to 0 82 73 82 78 

RF7      
 0 74 79 74 76 
 -1 to 0 76 73 76 75 
 -3 to 0 74 72 74 73 
 -5 to 0 72 74 72 73 
Metritis6      

LDA7      
 0 73 68 99 71 
 -1 to 0 73 71 73 72 
 -3 to 0 74 68 74 71 
 -5 to 0 73 68 73 71 

PCANNet7      
 0 76 71 76 74 
 -1 to 0 80 76 80 78 
 -3 to 0 82 74 82 78 
 -5 to 0 83 74 82 78 

RF7      
 0 72 66 72 69 
 -1 to 0 72 74 72 73 
 -3 to 0 73 74 73 74 
 -5 to 0 73 73 73 73 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated outputs from 
each machine-learning model based on true positives, true negatives, false positives, and 
false negatives. 
2Daily eating time and a calculated daily difference from an individual cow’s 10-d 
moving mean eating time were included as explanatory variables for each machine-
learning model (n = 1,168 cows and 296,824 cow-days). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
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Table 3.9. (cont.) 

6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
7A least discriminant analysis (LDA), principle component analysis neural network 
(PCANNet), and a random forest (RF) technique were run on all data to identify patterns 
in the data and predict disease incidence within four time-windows. 
8Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), -1 to 0 (1 d before to d of DD), -3 to 0 (3 d 
before to d of DD), and -5 to 0 (5 d before to d of DD). 
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Table 3.10.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

technology collected behaviors2 for predicting any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Behaviors collected were activity (steps/d), standing 

(min/d), lying (min/d), and walking time (min/d).  Three machine-learning methods7 and 

four time-windows8 were considered to determine true positives when diseases were 

accurately predicted. 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
LDA7      

 0 76 61 76 68 
 -1 to 0 76 61 76 69 
 -3 to 0 78 55 78 67 
 -5 to 0 80 53 79 66 

PCANNet7      
 0 86 49 86 68 
 -1 to 0 88 50 87 69 
 -3 to 0 89 42 88 66 
 -5 to 0 88 42 87 65 

RF7      
 0 76 72 76 74 
 -1 to 0 78 72 77 75 
 -3 to 0 78 71 78 75 
 -5 to 0 78 69 78 72 
Hyperketonemia4      

LDA7      
 0 78 71 78 75 
 -1 to 0 74 78 74 76 
 -3 to 0 75 72 75 74 
 -5 to 0 75 68 75 72 

PCANNet7      
 0 82 60 82 71 
 -1 to 0 83 59 83 71 
 -3 to 0 84 52 84 68 
 -5 to 0 87 46 87 67 

RF7      
 0 82 74 82 78 
 -1 to 0 79 74 79 76 
 -3 to 0 78 80 78 79 
 -5 to 0 79 77 79 78 
Hypocalcemia5      

LDA7      
 0 77 68 80 74 
 -1 to 0 79 61 79 70 
 -3 to 0 81 59 81 70 
 -5 to 0 84 56 83 70 
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Table 3.10. (cont.) 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Hypocalcemia5      
PCANNet7      

 0 90 45 90 67 
 -1 to 0 87 49 86 68 
 -3 to 0 87 52 87 70 
 -5 to 0 90 48 89 69 

RF7      
 0 78 81 78 79 
 -1 to 0 81 74 81 78 
 -3 to 0 81 78 81 80 
 -5 to 0 81 79 80 80 
Metritis6      

LDA7      
 0 76 60 76 68 
 -1 to 0 77 72 77 74 
 -3 to 0 78 64 78 71 
 -5 to 0 78 61 78 70 

PCANNet7      
 0 83 64 83 74 
 -1 to 0 83 60 83 72 
 -3 to 0 86 58 85 72 
 -5 to 0 89 50 88 69 

RF7      
 0 80 79 80 80 
 -1 to 0 81 81 81 81 
 -3 to 0 81 75 81 78 
 -5 to 0 81 77 81 79 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated outputs from 
each machine-learning model based on true positives, true negatives, false positives, and 
false negatives. 
2Daily lying time, standing time, walking time, activity (steps/d), and a calculated daily 
difference from an individual cow’s 10-d moving mean for each behavior were included 
as explanatory variables for each machine-learning model (n = 1,168 cows and 296,824 
cow-days). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
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Table 3.10. (cont.) 

7A least discriminant analysis (LDA), principle component analysis neural network 
(PCANNet), and a random forest (RF) technique were run on all data to identify patterns 
in the data and predict disease incidence within four time-windows. 
8Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), -1 to 0 (1 d before to d of DD), -3 to 0 (3 d 
before to d of DD), and -5 to 0 (5 d before to d of DD). 
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Table 3.11.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

technology collected behaviors2 for predicting any disease3, hyperketonemia4, 

hypocalcemia5, or metritis6.  Behaviors collected were activity (steps/d), eating (min/d), 

walking (min/d), standing (min/d), and lying time (min/d).  Three machine-learning 

methods7 and four time-windows8 were considered to determine true positives when 

diseases were accurately predicted. 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All3      
LDA7      

 0 74 72 74 73 
 -1 to 0 76 73 76 74 
 -3 to 0 73 70 73 72 
 -5 to 0 72 69 72 71 

PCANNet7      
 0 80 73 80 77 
 -1 to 0 84 75 84 80 
 -3 to 0 83 73 83 78 
 -5 to 0 83 70 83 76 

RF7      
 0 82 74 82 78 
 -1 to 0 83 78 83 80 
 -3 to 0 82 77 82 80 
 -5 to 0 81 74 81 78 
Hyperketonemia4      

LDA7      
 0 80 84 80 82 
 -1 to 0 78 82 78 80 
 -3 to 0 77 72 77 75 
 -5 to 0 76 67 76 72 

PCANNet7      
 0 79 74 79 77 
 -1 to 0 85 71 85 78 
 -3 to 0 84 82 84 83 
 -5 to 0 83 80 83 82 

RF7      
 0 79 84 79 81 
 -1 to 0 82 86 82 84 
 -3 to 0 81 87 81 84 
 -5 to 0 82 85 82 84 
Hypocalcemia5      

LDA7      
 0 79 78 79 78 
 -1 to 0 76 73 76 75 
 -3 to 0 76 74 76 75 
 -5 to 0 75 71 75 73 
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Table 3.11. (cont.) 

Disease Time-
window8 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Hypocalcemia5      
PCANNet7      

 0 85 79 85 82 
 -1 to 0 85 77 85 81 
 -3 to 0 85 85 85 85 
 -5 to 0 85 79 84 82 

RF7      
 0 86 84 86 85 
 -1 to 0 84 80 84 82 
 -3 to 0 84 86 84 85 
 -5 to 0 84 86 84 85 
Metritis6      

LDA7      
 0 76 73 76 75 
 -1 to 0 75 76 75 75 
 -3 to 0 77 75 77 76 
 -5 to 0 78 70 78 74 

PCANNet7      
 0 80 82 80 81 
 -1 to 0 83 81 83 82 
 -3 to 0 86 81 86 84 
 -5 to 0 85 80 85 83 

RF7      
 0 81 87 81 84 
 -1 to 0 83 87 83 85 
 -3 to 0 84 87 84 85 
 -5 to 0 84 85 84 85 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated outputs from 
each machine-learning model based on true positives, true negatives, false positives, and 
false negatives. 
2Daily eating time, lying time, standing time, walking time, activity (steps/d), and a 
calculated daily difference from an individual cow’s 10-d moving mean for each behavior 
were included as explanatory variables for each machine-learning model (n = 1,168 cows 
and 296,824 cow-days). 
3All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
4Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
5Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
6Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
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Table 3.11. (cont.) 

7A least discriminant analysis (LDA), principle component analysis neural network 
(PCANNet), and a random forest (RF) technique were run on all data to identify patterns 
in the data and predict disease incidence within four time-windows. 
8Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), -1 to 0 (1 d before to d of DD), -3 to 0 (3 d 
before to d of DD), and -5 to 0 (5 d before to d of DD). 
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Table 3.12.  Sensitivity, specificity, accuracy, and balanced accuracy1 of precision dairy 

technology collected behaviors2 with previous lactation information3 and daily THI4 for 

predicting any disease5, hyperketonemia6, hypocalcemia7, or metritis8.  Behaviors 

collected were activity (steps/d), eating (min/d), walking (min/d), standing (min/d), and 

lying time (min/d).  Three machine-learning methods9 and four time-windows10 were 

considered to determine true positives when diseases were accurately predicted. 

Disease Time-
window10 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

All5      
LDA9      

 0 75 70 75 73 
 -1 to 0 75 74 75 74 
 -3 to 0 73 71 73 72 
 -5 to 0 72 68 72 70 

PCANNet9      
 0 80 71 80 75 
 -1 to 0 81 74 81 78 
 -3 to 0 81 74 81 77 
 -5 to 0 82 72 82 77 

RF9      
 0 82 75 82 79 
 -1 to 0 84 81 84 82 
 -3 to 0 84 80 84 82 
 -5 to 0 83 78 83 81 
Hyperketonemia6      

LDA9      
 0 81 87 81 84 
 -1 to 0 79 82 79 80 
 -3 to 0 79 77 79 78 
 -5 to 0 77 72 77 75 

PCANNet9      
 0 80 74 80 77 
 -1 to 0 82 77 82 80 
 -3 to 0 83 82 83 83 
 -5 to 0 83 79 83 81 

RF9      
 0 82 90 82 86 
 -1 to 0 83 88 83 86 
 -3 to 0 84 89 84 87 
 -5 to 0 85 89 85 87 
Hypocalcemia7      

LDA9      
 0 78 80 78 79 
 -1 to 0 78 72 78 75 
 -3 to 0 76 74 76 75 
 -5 to 0 75 71 75 73 
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Table 3.12. (cont.) 

Disease Time-
window10 Sensitivity1 Specificity1 Accuracy1 Balanced 

accuracy1 

Hypocalcemia7      
PCANNet9      

 0 79 72 79 76 
 -1 to 0 84 79 84 82 
 -3 to 0 85 83 85 84 
 -5 to 0 85 81 85 83 

RF9      
 0 84 82 84 83 
 -1 to 0 86 85 86 85 
 -3 to 0 86 88 86 87 
 -5 to 0 86 88 86 87 
Metritis8      

LDA9      
 0 78 75 78 77 
 -1 to 0 77 77 77 77 
 -3 to 0 78 76 78 77 
 -5 to 0 79 70 79 75 

PCANNet9      
 0 75 75 75 75 
 -1 to 0 84 83 84 83 
 -3 to 0 84 83 84 83 
 -5 to 0 85 83 85 84 

RF9      
 0 82 91 82 86 
 -1 to 0 85 86 85 85 
 -3 to 0 85 88 85 86 
 -5 to 0 85 87 85 85 

1Sensitivity, specificity, accuracy, and balanced accuracy were calculated outputs from 
each machine-learning model based on true positives, true negatives, false positives, and 
false negatives. 
2Daily eating time, lying time, standing time, walking time, activity (steps/d), and a 
calculated daily difference from an individual cow’s 10-d moving mean for each behavior 
were included as explanatory variables for each machine-learning model (n = 1,168 cows 
and 296,824 cow-days). 
3Previous lactation information included energy corrected milk, average somatic cell 
score, lactation length, and actual calving interval (Dairy Herd Information Association, 
DRMS, Raleigh, NC). 
4Daily maximum temperature humidity index (THI) was calculated from daily barn 
ambient humidity and temperature according to NOAA (1976). 
5All disease events referred to cow-days when any disease event occurred for the first 
time in a lactation including hyperketonemia, hypocalcemia, metritis, lameness, mastitis, 
displaced abomasum, retained placenta, or other disease identified by producers (Table 
3.2). 
6Hyperketonemia was defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L when cows 
were examined between 3 and 7 DIM.  Farm staff also recorded hyperketonemia if any 
clinical signs were present throughout lactation (Table 3.2). 
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Table 3.12 (cont.) 

7Hypocalcemia was defined as serum Ca ≤ 8.6 mg/dL when cows were examined 
between 3 and 7 DIM.  Farm staff also recorded hypocalcemia if any clinical signs were 
present throughout lactation (Table 3.2). 
8Metritis was defined as vaginal discharge score ≥ 2 (1 to 3 scale; Sterrett et al., 2014) 
when cows were examined between 3 and 7 DIM. Farm staff also recorded metritis if any 
clinical signs were present throughout lactation (Table 3.2). 
9A least discriminant analysis (LDA), principle component analysis neural network 
(PCANNet), and a random forest (RF) technique were run on all data to identify patterns 
in the data and predict disease incidence within four time-windows. 
10Time-windows were set around the d of disease detection (DD) by producers or lead 
author. Time-windows were 0 (d of DD), -1 to 0 (1 d before to d of DD), -3 to 0 (3 d 
before to d of DD), and -5 to 0 (5 d before to d of DD). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



142 
 

Table 3.13.  Detection1 or prediction2 performance3 of precision dairy technology 

measured behaviors for all diseases, hyperketonemia, hypocalcemia, and metritis 

occurrence was done individually in Tables 3.3 to 3.12.  An overview of detection and 

prediction performance is given here as a mean ± SD across all diseases and behavior 

combinations for each time-window4,5. 

Alert type Time-
window4,5 Sensitivity3 Specificity3 Accuracy3 Balanced 

accuracy3 

Generated1      
 04 35 ± 8  93 ± 2 93 ± 2 51 ± 0 
 14 33 ± 8 93 ± 2 93 ± 2 51 ± 1 
 24 32 ± 7 93 ± 2 93 ± 2 52 ± 1 
 34 31 ± 7 93 ± 2 93 ± 2 52 ± 2 
 44 30 ± 7 93 ± 2 93 ± 2 52 ± 2 
 54 28 ± 7 93 ± 2 93 ± 2 53 ± 2 
 64 27 ± 6 93 ± 2 92 ± 2 53 ± 2 
 -1 to 14 33 ± 7 93 ± 2 93 ± 2 52 ± 1 
 -2 to 24 32 ± 7 93 ± 2 93 ± 2 53 ± 2 
 -3 to 34 31 ± 7 93 ± 2 92 ± 2 53 ± 2 
 -5 to 24 31 ± 7 93 ± 2 92 ± 2 53 ± 2 

Machine-learning      
 LDA2      
 05 76 ± 3 72 ± 7 77 ± 6 74 ± 5 
 -1 to 05 75 ± 2 72 ± 5 75 ± 2 74 ± 3 
 -3 to 05 75 ± 3 70 ± 5 75 ± 3 72 ± 3 

 -5 to 05 75 ± 4 67 ± 5 75 ± 4 71 ± 2 
 PCANNet2      
 05 82 ± 3 70 ± 9 82 ± 3 76 ± 4 
 -1 to 05 83 ± 2 72 ± 10 83 ± 2 78 ± 5 
 -3 to 05 84 ± 2 73 ± 12 84 ± 2 78 ± 6 

 -5 to 05 84 ± 3 70 ± 13 84 ± 3 77 ± 6 
 RF2      
 05 79 ± 4 78 ± 7 79 ± 4 79 ± 5 
 -1 to 05 80 ± 5 80 ± 6 80 ± 5 80 ± 5 
 -3 to 05 80 ± 5 80 ± 7 80 ± 5 80 ± 6 

 -5 to 05 80 ± 5 79 ± 7 80 ± 5 79 ± 6 
1Generated referred to eating time, standing time, lying time, walking time, and activity 
(steps/d) alerts created when decreases of 30% or more from a 10-day moving mean were 
calculated either individually or in combination (Table 3.3 to 3.7). 
2A least discriminant analysis (LDA), principle component analysis neural network 
(PCANNet), and a random forest (RF) technique were run on all data to identify patterns 
in the data and predict disease incidence within four time-windows (Table 3.8 to 3.12). 
3Sensitivity, specificity, accuracy, and balanced accuracy were calculated from true 
positives, true negatives, false positives, and false negatives. 
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Table 3.13. (cont.) 

4Time-windows correspond to eating, lying, standing, walking, or activity alerts 
generated from a neck or leg attached precision dairy monitoring technology (Table 3.3 
to 3.7).  Time-windows were were set around the d of disease detection (DD) by 
producers or lead author. Time-windows were 0 (d of DD), 1 (d of to 1 d after DD), 2 (d 
of to 2 d after DD), 3 (d of to 3 d after DD), 4 (d of to 4 d after DD), 5 (d of to 5 d after 
DD), 6 (d of to 6 d after DD), -1 to 1 (d before to d after DD), -2 to 2 (2 d before to 2 d 
after DD), -3 to 2 (3 d before to 3 d after DD), and -5 to 2 (5 d before to 2 d after DD). 
5Time-windows correspond to linear discriminant analysis, random forest, or principal 
component analysis neural network machine-learning prediction techniques on 
technology measured parameters, previous lactation information, and ambient 
temperature-humidity index (Table 3.8 to 3.12).  Time-windows were set around the d of 
disease detection (DD) by producers or lead author. Time-windows were 0 (d of DD), -1 
to 0 (1 d before to d of DD), -3 to 0 (3 d before to d of DD), and -5 to 0 (5 d before to d of 
DD). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 3.1.  Mastitis recording sheet used by producers on Farm 1 to 4 from October 5, 2015 to October 31, 2016.  

Mastitis Report Sheet 
Farm ID: __________________ 
 

Date Cow 
Number 

Milking 
(1st, 2nd, 3rd 

etc.) 

Quarter 
Infected 

Mastitis 
Severity Code 

Treated 
(Yes/No) 

Length of 
treatment 

(days) 
Product treated with: 

        

        

        

        

        

        

        

Use a row for each case of mastitis.  If more than 1 quarter is infected, repeat the information for the cow and the other quarter(s) 
infected in a new row. Please include non-antibiotic treatments as well, such as UdderComfort, oxytocin, etc.  Quarters should be 

labeled as LF (left front), LR (left rear), RR (right rear), or RF (right front). 
 

Please use the following guide for severity score: 
1 – milk changes (clots, flakes, clear) 
2 – milk changes plus udder changes (reddening, hardening, heat) 
3 – systemic changes (depression, fever, dehydration, weakness, loss of appetite, or rapid pulse) 
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Figure 3.2.  Clinical disease recording sheet used by producers on Farm 1 to 4 from October 5, 2015 to October 31, 2016. 

Disease Incidence Report Sheet 
 

Farm ID: __________________ 
 

Date Cow 
Number 

Disease 
Identified 

Initials of Person who 
identified disease 

Treated 
(Yes/No) 

Length of 
treatment (days) Product treated with: 

       

       

       

       

       

       

       

       

Please use the following shorthand for disease identification: 
LDA – left displaced abomasum 
RDA – right displaced abomasum 
MF – milk fever 
KET – ketosis 
RP – retained placenta 
MET – metritis 
LAME – animal visually identified as lame 
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Figure 3.3.  LSMean ± SE eating time (a; min/d), lying time (b; min/d), standing time (c; 

min/d), walking time (d; min/d), and activity (e; steps/d) characterized by a precision 

dairy monitoring technology for cows without (n = 451; grey lines) or with (n = 717; 

black lines) any disease events1,2 within the first 21 DIM on 1,168 cows observed across 

4 farms from October 5, 2015 to October 31, 2016 calculated with the MIXED procedure 

of SAS 9.4 (Cary, NC).  Statistically different LSMeans are represented as: ⁎ health 

status (no disease vs. disease); † DIM; ‡ health status x DIM. 

a)       b) 

    
c)       d) 

   
e) 
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Figure 3.3. (cont.) 

1Cows without any recorded disease events by the lead author or the farm owners and 
staff within the first 21 DIM per lactation were considered healthy (grey line). 
2Cows with any recorded disease events (hyperketonemia, hypocalcemia, metritis, 
lameness, mastitis, retained placenta, pneumonia, displaced abomasum, or other disease 
event; Table 3.2) by the lead author or the farm owners and staff within the first 21 DIM 
per lactation were considered not healthy (black line). 
a)Health status (no recorded disease events vs. recorded disease events), DIM, and the 
interaction of health status and DIM impacted eating behavior throughout the first 21 
DIM (P < 0.01, respectively) 
b)Health status and DIM impacted lying behavior throughout the first 21 DIM (P < 0.01, 
respectively). 
c)Days in milk impacted standing behavior throughout the first 21 DIM (P < 0.01). 
d)Health status and DIM impacted walking behavior throughout the first 21 DIM (P < 
0.01, respectively). 
e)Health status and DIM impacted activity behavior throughout the first 21 DIM (P < 
0.01, respectively). 
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Figure 3.4.  LSMean ± SE eating time (a; min/d), lying time (b; min/d), standing time (c; 

min/d), walking time (d; min/d), and activity (e; steps/d) characterized by a precision 

dairy monitoring technology for cows without (n = 785; grey lines) or with (n = 383; 

black lines) metritis events1,2 within the first 21 DIM on 1,168 cows observed across 4 

farms from October 5, 2015 to October 31, 2016 calculated with the MIXED procedure 

of SAS 9.4 (Cary, NC).  Statistically different LSMeans are represented as: ⁎ health 

status (metritis vs. none); † DIM; ‡ health status x DIM. 
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Figure 3.4. (cont.) 

1Cows without any recorded metritis events by the lead author or the farm owners and 
staff within the first 21 DIM per lactation are depicted by the grey lines. 
2Cows with any recorded metritis events (vaginal discharge score ≥ 2 on 1 to 3 scale 
described by Sterrett et al., 2014) by the lead author or the farm owners and staff within 
the first 21 DMI per lactation were considered to have metritis (black line). 
a)Health status (no metritis events vs. recorded metritis events), DIM, and the interaction 
of health status and DIM impacted eating behavior throughout the first 21 DIM (P < 0.01, 
respectively) 
b)Health status, DIM, and the interaction of health status and DIM impacted lying 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
c)Health status, DIM, and the interaction of health status and DIM impacted standing 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
d)Health status and DIM impacted walking behavior throughout the first 21 DIM (P < 
0.01, respectively). 
e)Health status and DIM impacted activity behavior throughout the first 21 DIM (P < 
0.01, respectively). 
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Figure 3.5. LSMean ± SE eating time (a; min/d), lying time (b; min/d), standing time (c; 

min/d), walking time (d; min/d), and activity (e; steps/d) characterized by a precision 

dairy monitoring technology for cows without (n = 937; grey lines) or with (n = 231; 

black lines) hyperketonemia events1,2 within the first 21 DIM on 1,168 cows observed 

across 4 farms from October 5, 2015 to October 31, 2016 calculated with the MIXED 

procedure of SAS 9.4 (Cary, NC).  Statistically different LSMeans are represented as: ⁎ 

health status (hyperketonemia vs. none); † DIM; ‡ health status x DIM. 
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Figure 3.5. (cont.) 

1Cows without any recorded subclinical or clinical hyperketonemia events by the lead 
author or the farm owners and staff within the first 21 DIM per lactation are depicted by 
the grey lines. 
2Cows with any recorded subclinical or clinical hyperketonemia events (cows with β-
hydroxybutyrate levels ≥ 1.2 mmol/mL were considered to have subclinical 
hyperketonemia; Nielen et al., 1994) by the lead author or the farm owners and staff 
within the first 21 DIM per lactation were considered to have hyperketonemia (black 
line). 
a)Health status (no hyperketonemia events vs. recorded hyperketonemia events) and DIM 
impacted eating behavior throughout the first 21 DIM (P < 0.01, respectively) 
b)Health status (P < 0.01), DIM (P < 0.01), and the interaction of health status and DIM 
(P = 0.04) impacted lying behavior throughout the first 21 DIM. 
c)Health status (P < 0.01), DIM (P < 0.01), and the interaction of health status and DIM 
(P < 0.05) impacted standing behavior throughout the first 21 DIM. 
d)Health status, DIM, and the interaction of health status and DIM impacted walking 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
e)Health status, DIM, and the interaction of health status and DIM impacted activity 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
 

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

Figure 3.6.  LSMean ± SE eating time (a; min/d), lying time (b; min/d), standing time (c; 

min/d), walking time (d; min/d), and activity (e; steps/d) characterized by a precision 

dairy monitoring technology for cows without (n = 614; grey lines) or with (n = 554; 

black lines) hypocalcemia events1,2 within the first 21 DIM on 1,168 cows observed 

across 4 farms from October 5, 2015 to October 31, 2016 calculated with the MIXED 

procedure of SAS 9.4 (Cary, NC).  Statistically different LSMeans are represented as: ⁎ 

health status (hypocalcemia vs. none); † DIM; ‡ health status x DIM. 
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Figure 3.6. (cont.) 

1Cows without any recorded subclinical or clinical hypocalcemia events by the lead 
author or the farm owners and staff within the first 21 DIM per lactation are depicted by 
the grey lines. 
2Cows with any recorded subclinical or clinical hyperketonemia events (cows with blood 
serum calcium levels ≤ 8.6 mg/dL were considered to have subclinical hypocalcemia; 
Oetzel 2014, personal communication) by the lead author or the farm owners and staff 
within the first 21 DIM per lactation were considered to have metritis (black line). 
a)Health status (no hypocalcemia events vs. recorded hypocalcemia events), DIM, and the 
interaction of health status and DIM impacted eating behavior throughout the first 21 
DIM (P < 0.01, respectively) 
b)Health status, DIM, and the interaction of health status and DIM impacted lying 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
c)Health status, DIM, and the interaction of health status and DIM impacted standing 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
d)Health status, DIM, and the interaction of health status and DIM impacted walking 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
e)Health status, DIM, and the interaction of health status and DIM impacted activity 
behavior throughout the first 21 DIM (P < 0.01, respectively). 
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4)CHAPTER FOUR 

A decision support tool for investment analysis of a wearable precision dairy 

management technology for detection of estrus and disease 

E. A. Eckelkamp*, T.B. Mark†, and J. M. Bewley* 

*Department of Animal and Food Sciences, University of Kentucky, Lexington 40546 

†Department of Agricultural Economics, University of Kentucky, Lexington 40546 

INTRODUCTION 

Precision dairy technologies allow producers to monitor dairy cattle production, 

health, and welfare (Bewley et al., 2017).  Precision dairy technologies may increase 

efficiency and decrease costs (Boehlje et al., 1999, Bewley et al., 2017).  Producing high-

quality milk more efficiently can improve a dairy farm’s financial performance (Fetrow 

and Eicker, 2017).  Milk production can be decreased by disease (Bar et al., 2008, McArt 

et al., 2015, Liang et al., 2017), reproductive performance (Groenendaal et al., 2004, De 

Vries, 2006), housing (Fregonesi and Leaver, 2001, 2002, Simensen et al., 2007), 

nutrition (Eastridge, 2006, Bach and Cabrera, 2017), and management (Goodger et al., 

1988, Dufour et al., 2011).  Lost or discarded milk production is a central component in 

many economic models evaluating disease, and makes up most of the disease costs for 

mastitis, metabolic disorders, and reproductive disorders (McArt et al., 2015, Raboisson 

et al., 2015, Liang et al., 2017).  Dairy producers may make decisions to improve milk 

production by reducing disease incidence, improving reproductive performance, and 

reducing involuntary culls and death loss. 
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 Wearable precision dairy monitoring technologies (neck, leg, or ear devices) can 

improve estrus and health disorder detection.  Mastitis, metabolic disorders, and metritis 

can be detected 0.5 to 3.0 d before visual identification by farm owners or staff (Titler et 

al., 2013, Stangaferro et al., 2016a, b, c).  Early disease detection could prevent disease 

progression, improve response to treatment, reduce treatment cost, reduce discarded milk 

because of treatment, and improve overall lactation performance (Milner et al., 1997, 

Stangaferro et al., 2016a).  

 Adoption of precision dairy monitoring (PDM) technology has been limited, 

despite PDM variety and availability (Eleveld et al., 1992, Huirne et al., 1997, Gelb et al., 

2001).  Slow adoption occurs throughout agriculture, not just in the dairy sector 

(Rosskopf and Wagner, 2003).  Producers have stated unknown or undesirable cost-to-

benefit ratio and the initial investment cost deter investment in technology (Daberkow 

and McBride, 1998, Russell and Bewley, 2013, Borchers and Bewley, 2015).  To date, 

little research has been conducted on the economic impact of investing in PDM for dairy 

producers (van der Voort et al., 2017).  Bewley et al. (2010a; b) described a detailed cow 

simulation model to determine investment in any PDM or an automated body condition 

scoring system.  Precision dairy monitoring was economically beneficial, but the benefits 

were linked to many variables including culling changes, reproductive performance, and 

production.  Improving body condition score through PDM improved reproduction and 

decreased disease occurrence, resulting in an overall reduction in discarded or unrealized 

milk production (Bewley et al., 2010a).  More analyses have been conducted using PDM 

for estrus detection (Fricke et al., 2014b, Rutten et al., 2014, Dolecheck et al., 2016a).  
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Dolecheck et al. (2016a) noted the two most important factors for economic profitability 

were the installation price and the cost of the individual device. 

 The objective of this research was to create a partial budget for investing in PDM 

based on potential disease detection and estrus detection benefits.  Two simulations were 

created, a baseline herd before PDM investment and a concurrent simulation after PDM 

investment.  Changes in milk yield, estrus detection rate, and early lactation culling were 

considered individually and together.  The stochastic simulation was used to account for 

price volatility in herd and technology prices by randomly drawing numbers from 

reasonable, representative distributions (Fetrow and Eicker, 2017).  Both the economic 

profitability and payback period of the initial investment and continued upkeep of the 

system were calculated. 

MATERIALS AND METHODS 

 A Microsoft Excel Spreadsheet (Microsoft Excel 2013, Microsoft, Seattle, WA) 

partial budget model was developed to evaluate the profitability and financial feasibility 

of PDM investment.  The @Risk 7.5 (Palisade Corporation, Ithaca, New York) add-in for 

Excel allowed key-model inputs to be modeled stochastically.  Stochastic simulations 

allow specific inputs and assumptions to be selected randomly from a distribution of 

likely values (Fetrow and Eicker, 2017).  Stochastic simulations allowed a model to 

account for variability in prices, costs, and impacts of an investment decision. The model 

included a cost prediction for installation of a PDM system, PDM technology cost, and 

continued upkeep of a PDM.  All milk yield, DMI, and body weight calculations were 

conducted for an average cow in the herd on a daily basis within a lactation.  Economic 
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analyses were run on yearly changes in herd milk yield, DMI, reproductive performance, 

culling, and death, expanded from the average cow. 

Stochastic model structure 

 The partial budget model was developed using equations from published literature 

and a model described by Bewley et al. (2010a; b), Dolecheck et al. (2016a), and Liang et 

al. (2017).  A cow-level stochastic Monte Carlo simulation model was created as first 

described by Bewley et al. (2010b) and modified by Liang et al. (2017).  Briefly, the 

model simulates the life of an average dairy cow through daily time steps.  Each cow life 

(one simulation) was calculated 10,000 times (iterations).  Daily information from an 

average cow was expanded to model a whole herd (1,000 lactating cows) based on Table 

4.1.  Revenues associated with milk yield and calf production along with costs associated 

with feeding, breeding, veterinary costs, culling, and mortality were calculated on a daily 

basis.  Table 4.1 presents default values, stochastic ranges, and assumptions used in the 

model. 

 The stochastic nature of the model allowed vital inputs to change with each of the 

10,000 model iterations (Fetrow and Eicker, 2017).  The price of essential inputs was 

modeled stochastically from historical US prices from 1971 to 2017 for milk price, 

replacement heifers, alfalfa, corn, and soybeans  were collected from “Understanding 

Dairy Markets” website (Gould, 2017).  Dry matter intake was calculated daily using the 

National Resource Council (NRC, 2001) equations as explained in Bewley et al. (2010b).  

Slaughter prices from 1970 to 2008 were collected from the USDA-National Agricultural 

Statistics Service historical prices for beef cow and cull dairy cows sold for slaughter 

(USDA-NASS, 2009). Future prices, except replacement heifer price, were collected 
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from the 2017 US Baseline Briefing Book: Projections for Agricultural and Biofuel 

Markets (FAPRI, 2017).  Replacement price, heifer price, and bull calf price were 

calculated according to Bewley et al. (2010b) as updated by Liang et al. (2017).  Milk 

yield, fat %, protein %, age at first calving, estrus detection rate (EDR), conception rate 

(CR), voluntary waiting period (VWP), culling rate, and mortality rate were collected 

from DairyMetrics (2017).  The DairyMetrics report was limited to Holstein only herds 

with ≥ 100 lactating cows.  The report was also restricted to herds with a 21-d EDR 

between 10 and 70 to attempt removal of herds with a distorted EDR (Dolecheck et al., 

2016a).  The collected information was used to establish a representative herd based on 

the average cow.  The representative herd’s performance was used to calculate yearly 

changes in revenues and costs associated with PDM investment. 

 Within the model, two average cow simulations were run simultaneously, as 

described in Bewley et al. (2010b).  Each simulation was controlled by the inputs listed in 

Table 4.1 and the stochastic prices calculated from historical and futures prices.  One cow 

simulation was based on the average cow in a herd before investment in a PDM 

(baseline) with a parallel simulation based on the stochastic change in daily milk yield, 

estrus detection rate, culling rate, and death rate following investment in PDM (PDM 

change).  Four sensitivity tests were run on 1) milk yield adjustments only, 2) estrus 

detection rate adjustments only, 3) culling and death rate adjustments only, and 4) all 

adjustments run concurrently.  

Model adjustments: Milk yield.  Decreased milk yield has been a central factor in 

disease modeling, and a significant contributor to the cost of any disease (Hogeveen et 

al., 2011, McArt et al., 2014, Raboisson et al., 2015).  Identifying diseases earlier can 
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lead to decreased milk loss, thereby reducing the overall cost of a disease event (Milner et 

al., 1997).  Early detection and treatment of mastitis led to decreased milk yield loss and 

lactation yield similar to herd mates without mastitis (Milner et al., 1997).  Although 

studies evaluating early intervention effects on discarded milk and unrealized milk 

production are scarce, early disease detection could improve milk production over herd 

mates that do not receive early intervention.  Stangaferro et al. (2016c, 2016b, 2016a) 

reported disease detection through behavioral changes 0.5 to 3.0 d before clinical 

diagnosis for metabolic disorders, digestive diseases, metritis, and mastitis suggesting 

early intervention could be possible.  Many studies have discussed the interwoven nature 

of diseases, further increasing the difficulty in modeling such a complex system (Vergara 

et al., 2014, Raboisson et al., 2015, Mostert et al., 2017).  To account for an overall 

benefit instead of a disease-specific change, an overall improvement in rolling herd 

average actual milk production (RHAM) was modeled following PDM investment.  The 

change in herd daily milk yield was based on adding a random number chosen from a 

PERT distribution (minimum, mean, maximum) times 365.25 to the baseline herd 

RHAM.  The distribution was a minimum = 0.0, mean = 0.4, maximum = 0.9 kg/d for 

additional milk yield.  Dairy producers were assumed to use the technology for early 

detection of mastitis, metabolic, digestive, and reproductive disorders.  Identifying a 

portion of these diseases earlier and treating them would result in decreased milk loss 

from 1) discarded milk and 2) reduced production throughout that lactation.  Complete 

removal of the milk production affects associated with a particular disease was not 

assumed.  Because a cow would have already contracted the disease, complete 

amelioration of the disease effects was unrealistic.  
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The resulting RHAM was used to calculate a daily milk yield in the PDM 

investment simulation using the lactation curve developed by Oltenacu et al. (1981) 

modified by Marsh et al. (1988) and Skidmore (1990) as described in Bewley et al. 

(2010b).  Milk production per d was calculated as Eq. 4.1 (Skidmore, 1990): 

 MYD = A (DIM)b ecDIM egDCC        Equation 4.1 

where MYD was the daily milk production calculation, A was the adjustment factor 

calculated from RHAM, DIM was the d in milk of the production calculation, DCC was 

the number of d in gestation, and b, c, and g were constants from Skidmore (1990).  The 

adjustment factor A was different for lactation 1 and ≥ 2; constants b, c, and g were 

specific for lactation 1, 2, and ≥ 3 (Skidmore, 1990). 

The resulting simulation provided a mean production per d, an adjusted DMI 

based on milk production, and the associated cost of lactating cow feed and milk revenue 

over an entire lactation.   

Model adjustments: Estrus detection rate.  The ability of PDM to detect estrus 

has been well documented (Fricke et al., 2014b, Dolecheck et al., 2016b, Giordano and 

Fricke, 2017) and is one of the oldest uses for PDM (Farris, 1954).  Improved EDR 

improves pregnancy rate, decreases calving interval, improves overall herd performance, 

and increases a herd’s profitability per calendar yr.  The change in EDR was based on the 

stochastic baseline EDR. The baseline EDR was chosen from a normal distribution (mean 

± SD: 49.2 ± 14.2%; DairyMetrics, 2017) limited to 10% minimum and 80% maximum 

EDR.  The change in EDR following PDM investment was created from a PERT 

distribution (minimum = 50, mean = 60, maximum = 80%).  From these distributions, 

two EDR were calculated for each iteration of the model, an EDR before PDM and an 
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EDR after PDM.  Because it is unlikely that EDR would decrease following PDM 

investment, the EDR after PDM was set equal to the baseline EDR if the random EDR 

after PDM was lower than the baseline EDR.  The EDR was used to calculate calving 

interval as Eq. 4.2 (Groenendaal et al., 2004): 

 CI = (VWP + 21 / (EDR x CR) + GL)      Equation 4.2 

where CI was the calving interval, VWP was the voluntary waiting period, EDR was the 

estrus detection rate, CR was the conception rate calculated from a normal distribution 

(mean ± SD: 25.2 ± 9.9% limited to a 10% minimum and 80% maximum; DairyMetrics, 

2017), and GL was the gestation length (Table 4.1). 

Calving interval was used to calculate DIM, DIM at conception, start of lactation 

for each parity (2 to ≥ 6), services per pregnancy, and the semen cost per pregnancy for 

the baseline and PDM simulations.  The resulting outcomes provided DIM/yr, adjusted 

milk yield/yr, adjusted DMI/yr, adjusted milk revenue/yr, adjusted lactating and dry feed 

costs/yr, and adjusted breeding costs/yr. 

Another key to reproductive performance is the cost of days open (CDO).  This is 

the associated cost of each day past the voluntary waiting period (59 DIM; DairyMetrics, 

2017) the producer incurs based on pregnancy rate.  Pregnancy rate is a function of EDR 

and CR calculated as EDR multiplied by CR.  If CR is held constant, an improvement in 

EDR will improve pregnancy rate, which will reduce the number of days open.  The cost 

of days open was calculated based on the equations created by Dolecheck et al. (2016a).  

The full equations are available online at https://afs.ca.uky.edu/dairy/decision-

tools/CostDaysOpen.  Incorporating these equations allowed the model to simulate the 

change in CDO between the baseline herd and the PDM herd with the change in EDR. 
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Model adjustments: Culling and mortality rate.  Retention pay-off (RPO) 

estimates the value of a cow currently in the herd versus her hypothetical replacement.  

Retention pay-off is highest after calving and increases again during late gestation (dry 

period).  Retention pay-off changes daily throughout lactation, decreasing until the 

optimum moment of replacement – when the cow’s value drops below the value of her 

replacement.  This point occurs for each lactation, with a cow’s value peaking again 

following calving (Groenendaal et al., 2004). Consequently, early lactation involuntary 

culls from transition issues are costly to dairy producers.  The highest percentage of culls 

and mortalities occur during the first 60 DIM (7.0 to 8.9% of all culls; 16.0 to 23.8% of 

all mortalities; Hadley, 2003; Table 4.1) because of transition diseases and calving 

complications (LeBlanc, 2010, Vergara et al., 2014, Raboisson et al., 2015).  Decreasing 

early lactation culls and mortalities through improved management can result in 

decreased losses to the dairy producer. 

Retention pay-off was calculated according to Bewley et al. (2010b) as described 

by Groenendaal et al. (2004).  Briefly, RPO is calculated from a cow’s marginal net 

revenue (MNR) and expected maximum annuity net revenue (ANR).  Marginal net 

revenue was calculated as Eq. 4.3: 

 MNRi = (Ri – Ci) + (Si – Si -1) – (Di x DF)      Equation 4.3 

where MNRi was the marginal net revenue at mo i, Ri was the revenues generated from 

milk production and calving in mo i, Ci was the costs generated from feed, veterinary, 

breeding, and mortality costs in mo i, Si was the slaughter value in mo i minus the 

slaughter value in the previous mo (Si-1), Di was the probability of disposal at each mo in 
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lactation, and DF was the financial loss at disposal in mo i.  Annuity net revenue was 

calculated as Eq. 4.4: 

  ANRj = [ ∑i = 1…..j pi x 1 / 1 (1 + r)I x MNRi ]      Equation 4.4 

x r / [1 – (1 + r)-∑
i = 1….j pi

 x mo
i 

where ANRj was the annuity of the net revenue of a cow’s immediate replacement per 

mo, i was the decision moment of replacement (mo), j was the period (mo) when the cow 

could be replaced, r was the discount rate per mo, p was the probability of a cow’s 

survival to the end of mo i, and MNR was the associated marginal net revenue in mo i.  

Retention pay-off was calculated as Eq. 4.5: 

  RPOj = ∑  × pj×1 / (1+r)j×(MNRj- ANRmax× moj)j=j+1..d     Equation 4.5 

where RPOi was the retention pay-off at the decision moment of culling j, d was the 

optimal moment of replacement when MNRj < ANRmax, r was the discount rate per mo, p 

was the probability of a cow’s survival to the end of the following mo, j was the period 

(mo) when the cow could be replaced, MNRj was the marginal net revenue in mo i, and 

ANRmax was the maximum annuity net revenue per mo. 

According to Groenendaal et al. (2004), RPO reaches the lowest value at mo 7, 8, 

or 9 in lactation.  To calculate the value of an early lactation cow, daily RPO was 

averaged for the first 30 DIM and 31 to 60 DIM.  To calculate the value of an early 

lactation cull (within the first or second mo of lactation), the average daily RPO from mo 

7 to 9 was subtracted from the early lactation cow value.  This value was used to 

calculate the opportunity cost of culling, which will be explained in more detail below. 

The changes in early lactation culling and early lactation mortality were based on 

adjusting the percent of cows culled or died during the first 60 DIM.  The percent of cows 
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culled or died in the first 30 and 60 DIM were collected from Hadley (2003) as described 

in Bewley et al. (2010b; Table 4.1).  The change in early lactation culling and mortality 

rate was based on subtracting a random percentage chosen from a PERT distribution 

(minimum = 0%, most likely value = 25%, maximum = 50%) from the baseline culling 

and mortality percentage from 0 to 30 DIM and 31 to 60 DIM.  The changes in culling 

and mortality rate were used in the herd module to calculate the change in RPO and death 

cost.  Early lactation culls were calculated by multiplying the baseline and PDM culling 

rate in mo 1 and 2 of lactation by the number of cows in parity 1 to ≥ 6, respectively.  

The number of cows culled was then multiplied by the associated stochastic RPO for that 

mo and parity.  Early lactation deaths were calculated by multiplying the baseline and 

PDM death rate in mo 1 and 2 of lactation by the number of cows in parity 1 to 6+, 

respectively.  The number of cows died was then multiplied by the stochastic replacement 

heifer price.  When a cow died, they were automatically removed from the herd, and no 

associated revenue was collected from a dead cow.  Because of this, the cost was higher, 

the full cost of a new heifer replacement.   

To calculate the change in costs and revenues, the baseline herd values were 

subtracted from the PDM herd values.  The values used for revenues were the total value 

of milk produced (all lactations for a yr), the total value of calves born and survived 

during the yr (total calves minus calves born dead and calf mortality), the change in RPO, 

and the change in death loss.  The values used for costs were the total lactating feed costs, 

total dry cow feed costs, and total breeding costs.  With each sensitivity analysis, the 

revenues were altered, but all the costs were included. 
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 Technology assumptions.  Installation cost and device price were modeled 

stochastically to account for differences in price per device and a one-time installation 

cost.  The one-time installation cost included installation of any hardware, antennas to 

transmit signals, software to interpret signals, and labor to install the system.  A PERT 

distribution was used for installation cost (minimum = $5,000, mean = $10,000, 

maximum = $20,000) and individual device cost (minimum = $50, mean = $100, 

maximum = $200) adjusted from Dolecheck et al. (2016a).  Yearly upkeep costs were set 

at $3.90/PDM based on the cost a dairy producer pays for replacement attachment 

devices (personal communication with the dairy producer) times the number of cows 

culled or died during a yr.  Because PDM attachment devices (straps, bands, collars) may 

not be transferable from cow to cow, new attachment devices may be required to transfer 

PDM from one cow to another.  Investment length was set at 5 yr as suggested by 

Giordano (2015), 2 yr shorter than the 7 yr lifetime of the PDM (Dolecheck et al., 2016a) 

with an 8% discount rate (Hyde and Engel, 2002; Table 4.2). 

Device replacement rate was modeled stochastically with a PERT distribution 

(minimum = 0, mean = 5, maximum = 10%).  Device replacement referred to the number 

of units that were defective or lost during a yr.  Additional labor from the PDM was set at 

3.5 h/wk as suggested by Dolecheck et al. (2016a) with a labor cost of $15.77/h adjusted 

for inflation from Galvão et al. (2013; Table 4.2). 
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Net present value and payback period 

Concurrently, baseline and PDM simulations were run for 10,000 iterations to 

calculate an associated net present value (NPV) from 1 to 10 yr following initial 

investment.  Net present value of the PDM system was calculated as Eq. 4.6 (Boehlje and 

Ehmke, 2005): 

   NPV = ∑ � ∆F
(1+DR)n� - TICn

n=0         Equation 4.6 

where NPV was the net present value of the PDM system over the investment period, n 

was the year of investment, ∆F was the change in revenues and costs for each year n, DR 

was the discount rate, and TIC was the total investment cost of the PDM (initial 

investment price plus the total device costs (PDM price x herd size)).  Changes in 

revenues included Δ milk revenue (PDM simulation – baseline; $/yr), Δ calf revenue 

($/yr), Δ death loss ($/yr), and Δ culling loss ($/yr).  Changes in costs included 

replacement device cost ($ per device x replacement rate), maintenance cost ($3.90 per 

attachment device x cows died and culled per yr), Δ DMI cost ($/yr), Δ breeding costs 

($/yr), and labor cost (additional 3.5 h/wk at $15.77/h with PDM investment).  Changes 

in costs and revenues were held constant for yr 1 to yr 10 of investment.  Changes were 

held constant because the herd was assumed to progress identically through time, with the 

only change being the intervention of the technology. 

 Cash flow (ΔF) was used to calculate payback period in yr for the PDM system as 

Eq. 4.7: 

   PP = Ln
(CCn/CAn+1)

        Equation 4.7 

where PP was payback period, Ln was the last year (n) where cumulative ΔF was 

negative. CCn was the absolute value of cumulative ΔF in year n, and CAn + 1 was the 
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actual ΔF in the year after n.  Changes in inputs, changes in costs and revenue, net 

present value, and PP were collected for each iteration of the simulation. 

Model limitations 

 No economic model can perfectly describe a situation or account for all potential 

variables (Bethard, 1997).  However, even oversimplification in a model will inform the 

user beyond the cognitive abilities of producers and managers  (Delorenzo and Thomas, 

1996).  A limitation of the model is relying on historical data to predict future trends in 

the dairy industry and commodity pricing.  Although relying on historical data has been 

used in many models, the future will continue to be volatile.  The stochastic nature of 

analyses should account for some future price volatility, but it will still be imperfect.  

There may also be some correlation among commodity pricing, including milk price, not 

currently accounted for in the model.  Correlation in pricing may be addressed in future 

modeling efforts. 

 An additional area of oversimplification was the use of PERT distributions for 

stochastic inputs.  The PERT distribution allowed the model to be defined based on 

ranges from the literature.  This allowed the distribution to be tailored to the needs of the 

model, particularly when subjective decisions were made.  This distribution does limit the 

ability to model extreme highs or lows outside of the determined range.  The model also 

assumes that the distributions chosen are correct, and accurately represent the true state of 

the industry.   

Within each sensitivity analysis, an additional limitation was investment in 

technology could only improve or not change current production, reproduction, or culling 

rate.  Farm management of a technology will influence its usefulness and overall impact 



168 
 

on the farm.  Poor management of a technology and poor incorporation into the farm may 

negatively influence production, reproduction, or culling rate.  Without more on-farm 

data, negative consequences are more difficult to model, and were not included in the 

current analyses. 

RESULTS AND DISCUSSION 

 The goal of economic analysis is not to decide for the end-user, but to inform the 

end-user of their options  (Fetrow and Eicker, 2017).   Conducting sensitivity analyses 

provided insight into the individual benefits possible with PDM and the potential additive 

benefit if all potential benefits were considered.  The assumptions for the 1,000-cow herd 

were the same for each sensitivity analysis.  Distributions are listed for stochastic 

variables of importance for NPV and payback period in Table 4.3.   

Sensitivity analysis: Milk yield 

 Milk yield improvement occurred at 0.45 ± 0.17 kg/d (0.02 to 0.89 kg/d).  

Overall, herd RHAM improvement was 167.59 ± 144.50 kg/yr with an associated herd 

DMI increase of 56.27 ± 21.93 kg/yr following PDM investment.  An improvement in 

MY resulted in a NPV ≥ 0 for 75.6% of 10,000 iterations (Figure 4.1).  The positive NPV 

($14.87 ± 20.27 per cow per yr) indicated investment in a PDM for health monitoring 

was an economically sound investment.  Along with a positive NPV, the payback period 

was ≤ 5 yr for 75.6% of the 10,000 iterations.  The payback period was 4.03 ± 2.92 yr 

overall, indicating that the technology would pay for itself well within the lifetime of the 

technology, and within the investment period suggested by Giordano (2015). 

 The regression correlations identified by @Risk 7.5 are depicted in Figure 4.2a,b.  

For every SD increase in milk yield change, CR, EDR, lactating feed price, replacement 
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heifer price, baseline RHAM, individual device price, and installation price NPV was 

adjusted by a portion of a SD.  As shown in Figure 4.2a, the largest NPV influencers 

were change in milk yield (0.84 SD), individual device price (-0.33 SD), baseline EDR 

(0.13 SD), and CR (0.13 SD).  As shown in Figure 4.2b, the largest payback period 

influencers were change in milk yield (-0.76 SD), individual device price (0.34 SD), 

baseline EDR (- 0.10 SD), and CR (- 0.10 SD).  When no additional changes occurred in 

EDR, a herd with improved reproductive performance experienced greater benefit from 

PDM investment.  A herd with improved reproductive performance would experience 

shorter calving intervals and fewer services per pregnancy.  This would translate to 

greater potential milk yield per yr that was amplified with improved milk yield attributed 

to reduced disease events.   

 Similar to Dolecheck et al. (2016a), increased device price decreased NPV and 

increased payback period.  Installation price was a small influencer of NPV and payback 

period, whereas Dolecheck et al. (2016a) found installation price to be one of the most 

critical factors for automated estrus detection technology.  In a preliminary analysis, 

André et al. (2007) suggested increased milk production and precision concentrate 

feeding improved farm profitability.  André et al. (2007) modeled a 0.9 and 0.7 kg per 

cow per d increase in roughage and concentrate intake, respectively, and an associated 

2.1 kg per cow per d milk yield increase.  Overall, the producer would net $0.64 per cow 

per d.  Similarly, van Asseldonk et al. (1999b) stated improved milk production from 

7,500 to 9,000 kg per cow per yr of fat and protein corrected milk production, attributed 

to a precision feeding system, resulted in increased milk revenue from $3,168 up to 

$3,849 per cow (converted from Dfl. to USD).  However, van Asseldonk et al. (1999b) 
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and André et al. (2007) did not account for technology investment in either study and no 

economic analyses were conducted. In a companion study, van Asseldonk et al. (1999a) 

reported a positive NPV with a 1.27 benefit to cost ratio when automated concentrate 

feeders and activity monitoring were invested in concurrently.  As with a positive NPV, a 

benefit to cost ratio > 1 indicates a sound economic investment, as seen in our results.     

Sensitivity analysis: Estrus detection rate 

 Estrus detection rate after PDM investment was 70.3 ± 3.8% (60.1 to 80.0% 

EDR).  In the baseline herd, EDR was 48.8 ± 13.4%, dramatically lower than PDM EDR.  

An improvement in EDR resulted in a NPV ≥ 0 for 85.4% of 10,000 iterations (Figure 

4.3).  The positive NPV ($179.29 ± 220.40 per cow per yr) indicated investment in a 

PDM for estrus detection was an economically sound investment.  Along with a positive 

NPV, the payback period was ≤ 5 yr for 85.4% of the 10,000 iterations.  The payback 

period was 2.26 ± 3.46 yr overall, indicating that the technology would pay for itself well 

within the lifetime of the technology, and within the investment period suggested by 

Giordano (2015).  Dolecheck et al. (2016a) noted in 7 out of 8 simulations with a positive 

NPV, automated estrus detection technology payback period occurred < 5 yr.  Under 

assumptions like our study (no previous precision technology use), NPV was always 

positive and payback period occurred from 1.6 to 4.5 yr (Dolecheck et al., 2016a).  

Although Dolecheck et al. (2016a) observed a lower NPV ($15.32 ± 5.55 per cow per yr), 

she assumed a lower herd number (323 cows vs. 1,000).  Dolecheck et al. (2016a) also 

calculated deterministic outputs and gathered results based on specific changes in input 

values.  Including more herd information stochastically and linking changes in EDR to 

overall herd performance contributed to our higher NPV through increased milk yield 
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(715.15 ± 764.47 kg added per yr; $278,451.62 ± 302,827.82 total milk revenue per yr) 

and increased calf revenue (94 ± 76 calves/yr; $23,298.92 ± 20,346.37 total calf revenue 

per yr).   

 The regression correlations identified by @Risk 7.5 are depicted in Figure 4.4a,b.  

For every SD increase in baseline EDR, PDM EDR, CR, baseline RHAM, individual 

device price, lactating feed price, and replacement heifer price NPV was adjusted by a 

portion of a SD.  As shown in Figure 4.4a, the largest NPV influencers were baseline 

EDR (-0.87 SD), PDM EDR (0.43 SD), CR (-0.25 SD), and baseline RHAM (0.20 SD).  

For example, for every SD increase in baseline EDR (13.4%) the NPV decreased by 0.87 

of a SD (-$191.75 per cow per yr).  Conversely, for every SD increase in PDM EDR 

(3.8%) the NPV increased by 0.43 of a SD ($94.77 per cow per yr).  As shown in Figure 

4.4b, the largest payback period influencers were PDM EDR (0.66 SD), baseline EDR 

(0.62 SD), CR (0.11 SD), and baseline RHAM (- 0.10 SD).  Unlike improving milk yield, 

a herd with strong reproductive performance (high EDR and CR) did not reap as many 

benefits following PDM investment as a herd with weak reproductive performance.  

Dolecheck et al. (2016a) modeled similar results, with herds currently using timed 

artificial insemination and achieving good pregnancy rates not realizing a NPV > 0 in 4 

out of 8 simulations ($7.81 ± 19.11 per cow per yr).  However, as with increased milk 

yield, a high producing herd (increased RHAM) would gain more benefit from PDM 

EDR and have a shorter payback period.  The association with RHAM was tied to calving 

interval.  A lower calving interval increased the amount of milk produced during a yr, 

instead of having milk yield from 1 lactation spread over a year or more.  After investing 

in a PDM, calving interval decreased from 540 ± 112 d to 465 ± 49 d.  Since CDO was 



172 
 

not correlated with NPV or payback period, the contribution of decreased CDO did not 

play as large a role as increased production over the yr.   

Sensitivity analysis: Early lactation removal 

 After PDM investment, the cow removal rate from early lactation culling or death 

was decreased by 25.0 ± 9.4% (0.5 to 49.8%).  For example, if a heifer entered her first 

lactation, she had a 10.3% chance of being culled and a 1.3% chance of dying in her first 

lactation.  Within that first lactation, she had a 1.6% chance of being culled within the 

first two mo after calving (16.0% of culls for first lactation cows occurred in the first 2 

mo of lactation; Hadley, 2003).  She also had a 0.4% chance of dying within the first two 

mo after calving (32.0% of mortalities for first lactation cows occurred in the first 2 mo 

of lactation; Hadley, 2003).  The adjusted culling and death rate would be 1.2% and 0.3% 

for the first 2 mo in lactation, respectively, with a 25% decrease in culling and death rate.  

 Unlike adjusting milk production and EDR, adjusting removal rate did not result 

in a NPV ≥ 0 (-$23.49 ± 7.38 per cow per yr; Figure 4.5).  The PP was always > 10 yr, 

indicating that the technology would not pay for itself within the lifetime of the 

technology, or within the investment period suggested by Giordano (2015).  The 

regression correlations identified by @Risk 7.5 are depicted in Figure 4.6.  For every SD 

increase in individual device price, change in removal rate, replacement device %, 

replacement heifer price, baseline RHAM, installation price, calf price, slaughter value, 

and baseline EDR NPV was adjusted by a portion of a SD.  As shown in Figure 4.6, the 

largest NPV influencers were device price (-0.90 SD), change in removal rate (0.32 SD), 

replacement device % (-0.22 SD), and replacement heifer value (0.10 SD).  Dolecheck et 

al. (2016a) based the bulk of investment on CDO, which is calculated from the difference 
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in RPO between two identical cows, one pregnant and one not pregnant (Groenendaal et 

al., 2004).  Using CDO could explain why installation cost and individual device price 

were large influencers of PDM investment in Dolecheck et al. (2016a) and were not in 

our milk yield and EDR sensitivity analyses.   

 The greatest total revenue possible from decreasing removal rate was $21,937.09 

(mean ± SD; $4,377.54 ± 1,774.90 death loss; $4,436.73 ± 1,756.15 culling loss).  The 

low revenue increase would only be profitable if the total investment (installation cost 

and individual device price) was ≤ $8,814.27 for most of the iterations.  The most likely 

value for installation price was $10,000, $1,185.73 over the revenue earned.  

Groenendaal et al. (2004) modeled the maximum RPO of a cow at $1,995.00, assuming 

she produced 124% more than the herd mean milk yield.  Within our model, the average 

cow was simulated and expanded to create an entire herd.  A limitation of our design is 

assuming all cows in the herd will behave as the average cow, which we know is not 

biologically true.  However, the added complexity and computer processing required for 

a model to create a herd based on creating individual cows would be cumbersome and not 

end-user friendly.  Another limitation was assuming culling rate and mortality rate were 

fixed, along with the percentage of culls and mortalities occurring within the first two mo 

of lactation.  Potentially, running removal rate stochastically could have resulted in a 

NPV > 0.   

Sensitivity analysis: All adjustments 

 When the effect of technology on RHAM, EDR, culling rate, and death rate were 

considered concurrently, NPV was ≥ 0 for 98.8% of the 10,000 iterations.  This outcome 

indicated investment in PDM was a sound economic decision ($233.25 ± 222.35 per cow 
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per yr; Figure 4.7).  Along with a positive NPV, payback period was ≤ 5 yr for 98.8% of 

10,000 iterations and ≤ 10 yr for 99.7% of 10,000 iterations.  The payback period was 

0.82 ± 1.00 yr overall, indicating that the technology would pay for itself well within the 

7 yr lifetime of the technology, and within the 5 yr investment period suggested by 

Giordano (2015).  The regression correlations identified by the software are depicted in 

Figure 4.8a,b.  For every SD increase in baseline EDR, PDM EDR, CR, baseline RHAM, 

change in milk yield, individual device price, lactating feed price, and change in removal 

rate NPV was adjusted by a portion of a SD.  As shown in Figure 4.8a, the largest NPV 

influencers were baseline EDR (-0.86 SD), PDM EDR (0.42 SD), CR (-0.31 SD), and 

baseline RHAM (0.20 SD).  For every SD increase in baseline EDR, PDM EDR, change 

in milk yield, individual device price, baseline RHAM, CR, change in removal rate, and 

replacement device % payback period was adjusted by a portion of a SD.  As shown in 

Figure 4.8b, the largest payback period influencers were PDM EDR (0.55 SD), baseline 

EDR (0.51 SD), change in milk yield (-0.22 SD), and individual device price (0.20 SD).   

 Similar to the EDR and milk yield change only simulations, herds with a higher 

level of production (baseline RHAM) had greater profitability after PDM investment.  

Additionally, as baseline herd reproductive performance increased (baseline EDR and 

CR), NPV decreased.  Dolecheck et al. (2016a) reported the same response, with herds 

already having above average reproductive performance not gaining as much benefit 

from automated estrus detection.   

 The high positive NPV percentage was attributed to multiple herd factors 

changing simultaneously.  Within our model, the lowest NPV, -$24.35 per cow, occurred 

when all influencers occurred at or near 0.  However, the lowest NPV when all changes 
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could occur together was higher than when milk yield change, EDR, and removal rate 

were considered individually (-$52.55, -$44.22, and -$49.33, respectively).  With any 

incremental change, positive benefits of investing in a PDM outweighed the initial 

investment and continued upkeep costs.  Decreased NPV with increased device price was 

in line with Dolecheck et al. (2016a) investment analysis considering EDR changes only.  

Our installation costs ranged from $5,000 to $20,000, $10,000 over the maximum 

suggested by Dolecheck et al. (2016a).  Unlike Dolecheck et al. (2016a), initial 

investment cost did not influence NPV or payback period when all three changes were 

considered.  Additionally, change in RPO and death loss were not significant influencers 

of investment.  Our reductions were strict for reduced involuntary removal, reducing at 

maximum involuntary removal by 50%.  However, the adjustment reduced loss by a 

maximum of 12 (culling: $11,491/yr) or 5 cows (death: $10,129/yr).  Although these 

savings are not trivial, the maximum savings if lowest death and culling losses were 

achieved simultaneously was $21,937/yr, only marginally more than the maximum 

installation cost of $20,000 without accounting for 1,000 individual tags priced at $108 ± 

27. 

Further discussion and considerations 

 No model can explain a biological system with 100% accuracy (Bethard, 1997).  

Oversimplification in a model may be a critique, but even simplified models exceed the 

cognitive and calculative abilities of individual dairy producers and farm managers 

(Delorenzo and Thomas, 1996).  Creating models that incorporate all biological and 

physical parameters is not feasible, and can impede model adoption by end-users 

(Jalvingh, 1992, Delorenzo and Thomas, 1996).  The goal of an economic simulation is 



176 
 

not to provide exact results, but rather to “highlight relative consequences of different 

strategies” (Lien, 2003).   

 Several assumptions were made that could not be adequately defined in the 

model.  As stated previously, a herd was created from the simulated life of an average 

cow.  This meant that all parity information was collected from the life of an average 

cow, assuming every cow in the herd during that simulation began lactation the same 

way, had identical reproductive performance, the same culling value, and death loss.  

This is not biologically accurate, as a herd is made up of many individual cows with 

different starting points and performance throughout their lifetime.  However, modeling 

1,000 individual cows for a herd simulation and attempting to account for all variability 

and variety is overly complicated and computationally challenging. 

 Including stochastic inputs accounted for volatility between an “average” cow in 

each iteration.  Values that were pulled randomly from reasonable distributions improved 

model accuracy, and allowed our study to report values based on 10,000 iterations.  This 

meant 10,000 possible scenarios were run for each sensitivity analysis.  However, 

reasonable ranges were determined by the authors.  Although these changes were based 

on research and were conservative, real-life situations rarely respond identically to a 

modeled scenario.  Results should be interpreted with this limitation in mind while 

encouraging producers to input farm-specific values into a deterministic model. 

CONCLUSIONS 

 Stochastic simulations can be a useful tool to determine investment under volatile 

market conditions.  By running stochastic variables, researchers can capture changes 

throughout lactation, and the influence of price volatility.  Our study results indicated that 
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if using a PDM improved milk production or estrus detection rate, NPV was ≥ 0 for most 

iterations.  Although increased individual device price would decrease NPV and increase 

payback period, initial installation cost had little to no impact.  Providing a deterministic 

model for dairy producers could improve adoption rate by showing producers the 

potential improvement in different sectors of their dairy, and the low investment risk 

under the current assumptions. 
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Table 4.1.  Fixed and stochastic variable inputs for average cow and herd outputs used to calculate net present value and payback 

period in a precision dairy technology purchased for early disease detection, improved estrus detection, or both.  Revenue changes 

from reduced milk production loss attributed to decreased disease events, improved estrus detection rate, and decreased early lactation 

herd removal individually or in combination were calculated for 10,000 iterations with an @Risk add-in for Microsoft Excel.  

Parameter Fixed value Stochastic value Reference 
Number of milking cows 1,000 NA Model input 
Heifers (0 to 12 mo as % of total herd) 47.8 NA DairyMetrics (2017) 
Heifers (≥ 13 mo as % of total herd) 48.7 NA DairyMetrics (2017) 
Percentage of herd in 1st lactation 36.1 NA Dhuyvetter et al. (2007) 
Percentage of herd in 2nd lactation 26.0 NA Dhuyvetter et al. (2007) 
Percentage of herd in 3rd lactation 17.7 NA Dhuyvetter et al. (2007) 
Percentage of herd in 4th lactation 11.0 NA Dhuyvetter et al. (2007) 
Percentage of herd in 5th lactation 5.8 NA Dhuyvetter et al. (2007) 
Percentage of herd in ≥ 6th lactation 3.4 NA Dhuyvetter et al. (2007) 
Mature cow live body weight (kg) 723.5 NA NRC (2001) 
Calf birth body weight (kg) 41.7 NA Kertz et al. (1997) 
Voluntary waiting period (d) 59 NA DairyMetrics (2017) 
Gestation length (d) 279 NA Norman et al. (2009) 
Age at first calving (mo)1 NA 20 to 41 DairyMetrics (2017) 
Days dry (d) 57 NA NAHMS (2014) 
Estrus detection rate (%/21-d period)2 NA 49.2 ± 14.2 DairyMetrics (2017) 
Conception rate (%)3 NA 25.2 ± 9.9 DairyMetrics (2017) 
Initial RHAM (kg/yr)4 NA 3,211 to 16,984 DairyMetrics (2017) 
Butterfat (%) 3.7 NA DairyMetrics (2017) 
Protein (%) 3.1 NA DairyMetrics (2017) 
Culling rate (% of total herd culls in 1st lactation) 10.3 NA DairyMetrics (2017) 
 0 to 30 DIM (% of 1st lactation culls) 8.0 NA Hadley (2003) 
 31 to 60 DIM (% of 1st lactation culls) 8.0 NA Hadley (2003) 
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Table 4.1. (cont.)  

Parameter Fixed value Stochastic value Reference 

Culling rate (% of total herd culls in 2nd lactation) 9.3 NA DairyMetrics (2017) 
 0 to 30 DIM (% of 2nd lactation culls) 7.0 NA Hadley (2003) 
 31 to 60 DIM (% of 2nd lactation culls) 7.0 NA Hadley (2003) 
Culling rate (% of total herd culls in ≥ 3rd lactation) 18.9 NA DairyMetrics (2017) 
 0 to 30 DIM (% of ≥ 3rd lactation culls) 8.9 NA Hadley (2003) 
 31 to 60 DIM (% of ≥ 3rd lactation culls) 8.9 NA Hadley (2003) 
Mortality rate (1st lactation) 1.3 NA DairyMetrics (2017) 
 Percent culled 0 to 30 DIM 16.0 NA Hadley (2003) 

 Percent culled 31 to 60 DIM 16.0 NA Hadley (2003) 

Mortality rate (2nd lactation) 1.3 NA DairyMetrics (2017) 

 Percent culled 0 to 30 DIM 17.5 NA Hadley (2003) 

 Percent culled 31 to 60 DIM 17.5 NA Hadley (2003) 

Mortality rate (≥ 3rd lactation) 3.2 NA DairyMetrics (2017) 

 Percent culled 0 to 30 DIM 23.8 NA Hadley (2003) 

 Percent culled 31 to 60 DIM 23.8 NA Hadley (2003) 
Yearly veterinary cost ($) 65.05 NA Kalantari and Cabrera (2012)5 
Semen costs ($ per unit) 15.54 NA VanRaden and Cole (2014)5 
Financial loss at disposal ($) 63.35 NA Groenendaal et al. (2004)5 

1Age at first calving was a stochastic input, with a random number drawn from a PERT distribution (minimum = 20.0, mean = 25.2, 
maximum = 41.0 mo) during each iteration of the model. 
2Estrus detection rate was a stochastic input, with a random number drawn from a normal distribution (mean ± SD) restricted to a 10% 
minimum and 80% maximum value during each iteration of the model. 
3Conception rate was a stochastic input, with a random number drawn from a normal distribution (mean ± SD) restricted to a 10% 
minimum and 80% maximum value during each iteration of the model. 
4Initial rolling herd average actual milk production (RHAM) was a stochastic input, with a random number drawn from a PERT 
distribution (minimum = 3,211, mean = 10,906, maximum = 16,984 kg/yr) during each iteration of the model. 
5Adjusted for inflation to 2017 dollar value. 
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Table 4.2.  Costs associated with purchasing and implementing a precision dairy monitoring technology and potential improvement in 

milk production, estrus detection rate, and early lactation removal rate from monitoring dairy cow health and estrus. 

Parameter Value Reference 
Initial installation price ($)1 5,000 to 20,000 Dolecheck et al. (2016a) 
Technology price ($/device)2 50 to 200 Dolecheck et al. (2016a) 
Additional labor required (h/wk) 3.5 Dolecheck et al. (2016a) 
Labor wages ($/h)3 15.77 Galvão et al. (2013) 

Technology upkeep ($/device/yr) 3.90 personal communication, producer, 2017 
Replacement device (%/yr)4 0 to 10 Dolecheck et al. (2016a) 
Investment length (yr) 5 Model input 
Discount rate (%) 8 Hyde and Engel (2002) 
Change in milk production (kg/d)5 0.00 to 0.91  Model input 
Estrus detection rate (%/21-d period)6 60 to 80 Model input 
Change in early lactation removal rate (%)7 0 to 50 Model input 

1Initial installation price was a stochastic input, with a random number drawn from a PERT distribution (minimum = $5,000, mean = 
$10,000, maximum = $20,000) during each iteration of the model.  Initial installation was a one-time payment that occurred the yr the 
PDM was purchased. 
2Technology price was a stochastic input, with a random number drawn from a PERT distribution (minimum = $50, mean = $100, 
maximum = $200) during each iteration of the model.  Technology price was the price per unit (PDM device) purchased for the herd.  
The number of tags required was equal to the lactating herd number (1,000 cows). 
3Adjusted for inflation to 2017 dollar value. 
4Replacement device was a stochastic input, with a random number drawn from a PERT distribution (minimum = 0%, mean = 5%, 
maximum = 10%) during each iteration of the model.  Replacement technology was the amount of new units (PDM tags) purchased to 
replace lost or defective units. 
5Change in milk production was a stochastic input, with a random number drawn from a PERT distribution (minimum = 0.00 kg/d, 
mean = 0.45 kg/d, maximum = 0.91 kg/d) multiplied by 365.4 for a yearly total addition to the baseline simulation rolling herd 
average (Table 4.1). 
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Table 4.2. (cont.) 

6Estrus detection rate with a precision dairy technology was a stochastic input, with a random number drawn from a PERT distribution 
(minimum = 60%, mean = 70%, maximum = 80%) during each iteration of the model.  If estrus detection rate was lower than baseline 
estrus detection rate (Table 4.1), precision dairy technology estrus detection rate was set equal to the baseline value. 
7Change in early lactation removal rate was a stochastic input, with a random number drawn from a PERT distribution (minimum = 
0%, mean = 25%, maximum = 50%) during each iteration of the model.  The adjustment factor was multiplied by the culling or 
mortality rate for the associated lactation (Table 4.1).  The new culling or mortality rate was the baseline value minus the decreased 
value. 
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Table 4.3.  Mean, standard deviation, minimum, and maximum values from the distributions of stochastic input values from 10,000 

iterations of a simulation model run with an @Risk add-in to a Microsoft Excel based model. 

Variable Mean Standard deviation Minimum Maximum 
Baseline herd     

Age at first calving (mo) 26.97 3.74 20.06 39.79 
Rolling herd average (kg/yr) 10,637 2,595 3,510 16,788 
Calving interval (d) 540 112 389 2,066 
Estrus detection rate (%/21-d period) 48.8 13.4 10.0 80.0 
Conception rate (%) 26.5 8.7 10.0 63.3 
Heifer calf value ($/calf) 396.76 144.03 234.94 677.66 
Bull calf value ($/calf) 139.97 44.17 77.46 240.09 
Replacement heifer value ($/heifer) 1,844.06 232.26 1,542.84 2,278.44 
Milk price ($/kg) 0.39 0.06 0.29 0.49 
Slaughter value ($/kg) 1.43 0.20 1.04 1.76 
Lactating feed price ($/kg)1 0.15 0.02 0.11 0.20 

Precision technology herd     
Change in milk yield (kg/d) 0.45 0.17 0.02 0.89 
Estrus detection rate (%/21-d period) 70.3 3.8 20.1 39.8 
Early lactation removal adjustment (%) 25.0 9.4 0.5 49.8 
Rolling herd average (kg/yr) 10,802 2,596 3,705 17,074 
Calving interval (d) 465 49 384 657 
Individual technology price ($/device) 108.33 27.64 50.92 192.84 
Installation price (one-time price) 10,833.33 2,763.95 5,091.64 19,354.43 
Replacement device  (%/yr) 5.0 1.9 0.1 9.8 

1Lactating cow feed price was calculated stochastically from historic and future alfalfa hay, soybean, and corn prices from FAPRI 
(2017). 
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Figure 4.1.  Net present value (NPV) distribution of investment in a precision dairy 

monitoring (PDM) system for early health detection when revenue was increased based 

on milk production increases.  Investments were made assuming a 1,000-cow herd and a 

5 yr investment period.  Net present value was $14.87 ± 20.26 per cow per yr in a 1,000-

cow herd with a 5 yr investment length.  Investment in PDM was a sound economic 

decision (NPV ≥ 0) in 75.6% of 10,000 iterations. 
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Figure 4.2.  Regression coefficients for net present value (NPV; a) and payback period (PP; b) following investment in a precision 

dairy monitoring system for early health detection when revenue was increased based on milk production increases.  Investments were 

made assuming a 1,000-cow herd and a 5 yr investment period.  The regression coefficients were the change in NPV (a) and PP (b) 

standard deviation assuming a one standard deviation increase in the input variables (y-axis).  One SD change in NPV was $20.26 per 

cow per yr.  One SD change in PP was 2.9 yr.  Input variable standard deviations and explanations are given in Table 4.3. 
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Figure 4.2. (cont.)  
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Figure 4.3.  Net present value (NPV) distribution of investment in a precision dairy 

monitoring (PDM) system for estrus detection when revenue was increased based on 

improved reproductive performance.  Investments were made assuming a 1,000-cow herd 

and a 5 yr investment period.  Net present value was $179.29 ± 220.40 per cow per yr in 

a 1,000-cow herd with a 5 yr investment length.  Investment in PDM was a sound 

economic decision (NPV ≥ 0) in 85.4% of 10,000 iterations.  
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Figure 4.4.  Regression coefficients for net present value (NPV; a) and payback period (PP; b) following investment in a precision 

dairy monitoring system for estrus detection when revenue was increased based on improved reproductive performance.  Investments 

were made assuming a 1,000-cow herd and a 5 yr investment period.  The regression coefficients were the change in NPV (a) and PP 

(b) standard deviation assuming a one standard deviation increase in the input variables (y-axis).  One SD change in NPV was $220.40 

per cow per yr.  One SD change in PP was 3.5 yr.  Input variable standard deviations and explanations are given in Table 4.3. 
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Figure 4.4. (cont.) 

b) 
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Figure 4.5.  Net present value (NPV) distribution of investment in a precision dairy 

monitoring (PDM) system for early health detection when revenue was increased based 

on decreased culling and mortality loss in early lactation (mo 1 and 2 in lactation).  

Investments were made assuming a 1,000-cow herd and a 5 yr investment period.  Net 

present value was -$23.49 ± 7.38 per cow per yr in a 1,000-cow herd with a 5 yr 

investment length.  Investment in PDM was never a sound economic decision (NPV ≥ 0) 

in 10,000 iterations. 
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Figure 4.6.  Regression coefficients for net present value (NPV) following investment in a precision dairy monitoring system for early 

health detection when revenue was increased based on decreased culling and mortality loss in early lactation (mo 1 and 2 in lactation).  

Investments were made assuming a 1,000-cow herd and a 5 yr investment period.  The regression coefficients were the change in NPV 

standard deviation assuming a one standard deviation increase in the input variables (y-axis).  One SD change in NPV was $7.38 per 

cow per yr.  Net present value was always negative, and payback never occurred within 10 yr after investment.  Input variable 

standard deviations and explanations are given in Table 4.3. 
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Figure 4.7.  Net present value (NPV) distribution of investment in a precision dairy 

monitoring (PDM) system for estrus detection and early health detection when revenue 

was increased based on decreased culling and mortality loss in early lactation (mo 1 and 

2 in lactation), reducing disease-related milk loss, and improving reproductive 

performance.  Investments were made assuming a 1,000-cow herd and a 5 yr investment 

period.  Net present value was $233.25 ± 222.35 per cow per yr in a 1,000-cow herd with 

a 5 yr investment length.  Investment in PDM was a sound economic decision (NPV ≥ 0) 

in 98.8% of 10,000 iterations. 
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Figure 4.8.  Regression coefficients for net present value (NPV; a) and payback period (PP; b) following investment in a precision 

dairy monitoring system for estrus detection and early health detection when revenue was increased based on decreased culling and 

mortality loss in early lactation (mo 1 and 2 in lactation), reducing disease-related milk loss, and improving reproductive performance. 

Investments were made assuming a 1,000-cow herd and a 5 yr investment period.  The regression coefficients were the change in NPV 

(a) and PP (b) standard deviation assuming a one standard deviation increase in the input variables (y-axis).  One SD change in NPV 

was $222.35 per cow per yr.  One SD change in PP was 1.0 yr.  Input variable standard deviations and explanations are given in Table 

4.3. 
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Figure 4.8. (cont.) 
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5)CHAPTER FIVE 

Conclusions 

 The first two studies (Chapters 2 and 3) focused on end-user implementation of 

disease alerts generated from precision dairy technology and the ability of the technology 

to detect diseases from behavioral changes.  Four dairy producers in Kentucky purchased 

technologies including a neck collar measuring eating time (h/d) and a leg tag measuring 

lying time (h/d), standing time (h/d), walking time (h/d), and activity (steps/d).  Daily, a 

disease alert report was generated on a web-interface from individual cow decreases in 

lying time, eating time, and activity.  Dairy producers provided insight on how they 

categorized alerts, including if the cows were visually assessed because of the alert, if the 

behavior change was believed to be a true behavior change not linked to a disease event, 

or if the behavior change was not believed to be a true behavior change.  Producers 

indicated only 21% of all generated alerts (5,034 out of 24,012 total alerts generated from 

1,171 enrolled cows) were considered valid enough to visually check the cow.  Odds-

ratios with a generalized linear mixed model were used to assess the impacts of parity, 

temperature humidity index, behavioral change, day group (weekend or weekday), 

lactation stage (fresh, early, or late lactation), and number of cows on the daily health list 

(> 20 or ≤ 20 cows) on alert categorization.  Producers were more likely to utilize eating 

or activity alerts, alerts in fresh or early lactation cows, during the work week, and when 

≤ 20 cows were on the health list per d.   

 Additionally, validity of the disease alerts was assessed against recorded clinical 

disease events recorded by dairy producers and their staff.  Subclinical and clinical 

hyperketonemia, hypocalcemia, and metritis events were also recorded by the lead author 
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on all fresh cows between 3 to 6 DIM and 7 to 10 DIM.  Disease events were not double-

counted between farm staff and researchers.  To increase the amount of time when a 

disease event and an alert could coincide, time-windows were created.  True positives 

could occur when an alert occurred on the d of, d of to 1 d after, d of to 2 d after, d of to 3 

d after, d of to 4 d after, d of to 5 d after, d of to 6 d after, d before to d after, 2 d before to 

2 d after, 3 d before to 3 d after, and 5 d before to 2 d after the d of disease detection by 

producer or lead author.  When alerts were created based on ≥ 30% decrease in behavior 

variables from a 10-d rolling mean, sensitivity remained between 13 to 48% with a 91 to 

97% specificity.  The maximum balanced accuracy achieved with technology-generated 

disease alerts was 59%.  This occurred at the widest time-windows of 5 d before to 2 d 

after the d of disease detection and 3 d before to 3 d after the d of disease detection.  The 

greatest balanced accuracy was also seen when all behavior changes were considered in 

combination and when the changes in behavior were predicting any possible disease 

instead of a specific disease.  The best individual behavior for disease detection was 

eating time from the neck collar with a balanced accuracy between 50 to 59%. 

 Daily behavior information collected from the neck and leg technologies along 

with the daily difference from each cow’s 10-d rolling mean eating, standing, lying, 

walking, and activity (steps/d) were run through three machine-learning analyses.  The 

random forest, principle component neural network analysis, and linear discriminant 

analysis were all used to predict disease occurrence.  Similar to behavior generated alerts, 

time-windows were created.  True positives could occur when an alert occurred on d of, d 

before to d of, 3 d before to d of, and 5 d before to d of (-5 to 0) disease detection by the 

producer or lead author.  All machine-learning analyses performed similarly and 
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improved sensitivity and balanced accuracy compared to the technology-generated 

disease alerts.  The linear discriminant analysis required the least processing capability 

and had the fastest run time compared to the random forest and principle component 

neural network analysis.  Sensitivity ranged from 67 to 90%, specificity from 42 to 87%, 

accuracy 67 to 99%, and balanced accuracy from 66 to 87% across time-windows, 

disease categories, and behavior combinations.  Unlike the technology-generated alerts, 

machine-learning predictions performed best during the 24 h before the d of disease 

identification and when individual diseases were predicted (hypocalcemia, 

hyperketonemia, or metritis).   

 The final study (Chapter 3) focused on the economic feasibility of precision dairy 

technology investment.  The model created included changes to three of the costliest 

areas of opportunity on dairies: reproductive performance, disease, and early lactation 

culling or death.  To incorporate the volatility inherent to dairy operations, the model was 

created in Microsoft Excel (Microsoft, Seattle, WA) with an @Risk add-in (Palisade 

Corporation, Ithaca, NY) to allow key inputs to be modeled stochastically within a Monte 

Carlo simulation.  The lifetime of an average cow in the herd was modeled based on days 

at first calving, lactation performance, body weight, estrus detection rate, conception rate, 

dry matter intake, retention pay-off, and the cost of days open.  Costs included were 

reproduction costs, treatment costs, veterinary costs, and feed costs.  Technology 

investment in the model could alter milk production, estrus detection rate, or early 

lactation culling and mortality rate.  Under the model assumptions, no improvement 

could occur but performance could not worsen after technology investment.  The average 

cow was used as a baseline to compare changes in estrus detection, milk production, 
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reduced culling and mortality, and all changes occurring concurrently.  The baseline and 

investment average cows were each expanded to a 1,000-cow herd.  Net present value 

analyses were used to determine the economic feasibility of technology investment.  The 

net present value was calculated based on differences in costs and revenues between the 

baseline and investment herds over 10,000 iterations of the stochastic variables.  All 

changes following technology investment were feasible except decreased early lactation 

culling and mortality.  If early lactation removal was considered as the only benefit, 

technology investment was never feasible.  However, improved estrus detection rate and 

improved milk production were positive economic decisions ≥ 76% of 10,000 iterations 

with a payback period < 5 yr. 

Future research 

 Based on this research, precision technology-generated disease alerts based solely 

on behavior are not sufficient for dairy producers to visually assess cows.  A large 

number of alerts were generated, and the detection accuracy was low.  Because improved 

estrus detection rate and decreased milk loss from disease showed economic feasibility, 

improvement to disease detection is critical for companies marketing technologies and 

producers purchasing them.  Future research should focus on combinations of behaviors 

instead of individual behaviors to detect diseases.  Future studies should also take into 

consideration the inherent behavioral differences with different stages of lactation.  

Tailoring disease alerts to meet the needs of the end-user while emphasizing care of the 

cow has high potential.  Great success has been made with estrus detection across 

technology companies, and increasing effectiveness of disease alerts should be the next 

logical step.  A future study with large numbers of cows needs to be done with a portion 
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of cows managed based on disease alerts and another based on regular management 

strategies to see the technology specific changes.  One of the most glaring finds from the 

literature review and analyses was the lack of literature dealing with early intervention.  

Additional studies need to be conducted on the differences between early intervention 

and treatment and traditional intervention and treatment.  Identifying case specific and 

lactation long differences would be a valuable addition to the literature and future 

economic assessments. 
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