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ABSTRACT OF DISSERTATION 

 

 

PROTEIN ENGINEERING IN THE STUDY OF PROTEIN LABELING AND 

DEGRADATION 

 

        Proteins are large macromolecules that play important roles in nature. With the 

development of modern molecular biology techniques, protein engineering has emerged as 

a useful tool and found many applications in areas ranging from food industry, 

environmental protection, to medical and life science. Biomimetic membrane incorporates 

biological elements, such as proteins, to form membranes that mimic the high specificity 

and conductance of natural biological membranes. For any application involving the usage 

of proteins, the first barrier is always the production of proteins with sufficient stability, 

and the incorporation of proteins into the artificial matrix. This thesis contains two major 

parts, the first part is focused on the development and testing of method to immobilize 

active enzymes. The second part is devoted to study the degradation of membrane proteins 

in E. coli cells.  

  In the immobilization study, Pyrophosphatase (PpaC) was chose as a model enzyme. 

A dual functional tag consist of histidine and methionine has been developed, in which 

histidine is used for purification while methionine is metabolically replaced with 

azidohomoalanine (AHA) for immobilization. We found that the addition of the tag and 

the incorporation of AHA did not significantly impair the properties of proteins, and the 

histidine–AHA tag can facilitate protein purification, immobilization, and labeling. This 

tag is expected to be useful in general for many proteins.   

         Degradation of soluble protein has been well characterized, but the membrane protein 

degradation process remains elusive. SsrA tag is a well-known recognition sequence for 

soluble protein degradation, which marks prematurely terminated protein products 

translated from damaged mRNA.  SsrA tagged membrane proteins was found to be 

substrate of a cytosolic protease complex ClpXP, which mediated complete degradation.  
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Chapter I   Introduction 

 

1.1 The brief history of protein engineering  

Protein engineering, a process to develop useful novel proteins, was first described three 

decades ago.1, 2 A lot of techniques have been developed since then. In order to construct 

proteins with function, detailed understanding about protein structure and organization is 

necessary. The first protein sequence was determined in 1951. The sequence of insulin was 

determined by analyzing hydrolyzed protein fractions using paper chromatography.3 In 

1960s, the crystal structure of myoglobin was determined by X-ray diffraction.4 Protein 

Data Bank (PDB), established in 1971, provides researchers a crystallographic database 

for various molecules including protein, nucleic acid, and oligosaccharides.5 In 1980s, 

nuclear magnetic resonance spectroscopy (NMR), an alternative method from X-Ray, was 

first used to determine protein structure.6 Later on, the development in molecular biology 

techniques, especially the Polymerase Chain Reaction  (PCR) technique, enabled the 

development of methods for protein engineering by changing specific residues.  

Nowadays, protein engineering is used in various areas, ranging from food industry to 

environmental and medical applications, to bioassays.7 Engineering of enzyme used in food 

industry was focus on improving its catalytic property, such as thermostability, specificity, 

and catalytic efficiency, which could be optimized using protein engineering.7 For example, 

Altamirano et al. evolved a new phosphoribosylanthranilate isomerase that has catalytic 

properties similar to those of the natural enzyme but with higher specificity constant by 

combining the binding site of phosphoribosylanthranilate with a catalytic template required 

for isomerase activity. This study demonstrated a new direction for the evolution of new 
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biocatalysis.8 The recombinant DNA technology of protein engineering has been used 

successfully in developing novel enzymes for food industry. Bacteria host strains have also 

been modified to increase enzyme yield.9 Engineered transglutaminase, for example,  an 

enzyme crosslinking protein molecules, has been widely used in food industry to improve 

protein properties like elasticity, viscosity, heat stability and water holding capacity. 10 

Protein engineering is also used in environmental applications, such as organic pollution 

elimination, petroleum biorefining, and microbial bioplastics. Peroxidases and laccases 

catalyze the oxidation of a broad range of organic substrate such as polycyclic aromatic 

hydrocarbons (PAHs), phenols, organophosphorus pesticides and azo dyes. However, 

factors including low enzyme stability in organic solvent, unfavorable substrate 

distribution, inhibition of enzyme-substrate complex, low reaction rate, high cost of the 

enzymes, limit the usage of these enzyme for commercial application. To overcome these 

problems, protein engineering or chemical modifications were used to obtain more robust 

enzymes.11 Another example is the application of biotechnology in petroleum refining. For 

instance, desulfurization and denitrogenation of fuels are important refining objects in 

petroleum refining. Using genetic modification to recombine different organisms enabled 

multi-compounds transformation, higher activities refining, and stabilization of process 

conditions. Also, enhanced enzymes with higher solubility in organic media, higher 

activities and stability were created by protein engineering.12 

Last but not least, protein engineering has found diverse applications in the production of 

medical therapeutics. Protein engineering for cancer treatment is a major area of interest. 

Modified proteins, polypeptides and other drug delivery vehicles at nano scale can be used 

in diagnosis and selectively targeting in cancer therapies.13 Secreted protein such as 



 3 

erythropoietin, insulin, interferon, plasminogen activators, growth hormone and colony-

stimulating factors are new sourced that are engineered to produce therapeutics.14 

Meganucleases, sequence-specific endonucleases, could be used in gene therapy to correct 

mutated genes.15 Modified antibody with altered antigen binding sites and size have been 

generated and evaluated as imaging probes to target tissues of interests, which was 

accomplished through protein engineering. It is obvious that antibody-based molecular 

imaging will be a convenient tool to diagnose cancer and other diseases,16 and biopolymer 

production has great potentials in medical applications.17 

 

1.2 Methods of Protein engineering  

More and more methods are becoming available for protein engineering with the 

development of biological science. Basically, there are two flavors of protein engineering. 

In “Rational design”, specific sites were modified on the protein. This method, in general, 

has to rely on detailed knowledge of the target protein. In “directed evolution”, mutations 

are randomly introduced into proteins and then hits with desired properties are selected.7 

The random method overcomes some problems in the rational method, which is limited by 

the level of understanding of the target protein. Replacing one amino acid with another 

may lead to structure and function change. Therefore, randomly mutation coupled with 

selection for the desired feature is a powerful method.18 A simplest and most common 

technique used for random mutagenesis is called “saturation mutagenesis”, a method that 

alters a single amino acid to each of the remaining natural amino acids to provide every 

possible variant of the protein.18, 19 Evolutionary methods is used for randomization of the 

entire gene of interest by error prone PCR to create variants with desired changes.18, 20   
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Another useful tool for protein engineering is “cell-free protein expression”, which solves 

certain limitation of recombinant protein expression in living cells, such as aggregation or 

degradation.21 In this method, proteins are produced by combining DNA encoding the 

target protein with all component needed for protein translation. This method may 

substitute in vivo protein expression  in the future due to its controllability and simplicity.22 

 

A good example of protein engineering is Green fluorescent protein (GFP), which is widely 

used in life science research for its high stability and spectroscopic characteristics.23 GFP 

has been used to signal gene expression,24 protein localization,25 biosensor,26 and protein-

protein interactions.27, 28 Protein engineering studies have helped improve the folding of 

GFP and produce variants of different colors.29  

 

1.3 Protein functional tag  

In the study of proteomics, protein engineering techniques provide the methods to modify 

proteins, so that the protein of interest is more amendable for study. Protein tags, a peptide 

sequences facilitating purification, labeling, detecting, or imaging of  proteins, have been 

attached to the proteins of interests by genetically modifying the gene encoding the target 

protein and used broadly both in basic research and commercial applications.30 

In order to efficiently purify target protein with low cost and labor consumption, affinity 

tags have been fused onto the protein to facilitate easy purification, including protein 

purification based on protein-protein interactions, enzyme-substrate interactions, protein-

metal interactions etc.31 Several features are shared by affinity tags, such as one-step 
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adsorption, minimum effect on protein structure and function, specifically removable, 

simple and accurate binding, and applicable to different proteins.30, 32 When choosing a 

system for protein purification several factors need to be considered. Small tags such as 

flag-, poly-His-, poly-Arg-, S-, Strep- tags etc, have less influence on protein structure and 

activity on specific location of target protein, are often not removed after purification, while 

larger peptide or fusion proteins have to be removed so that can be used for different  

applications later on, such as crystallization or antibody production.33 Several functional 

tags are listed in Table 1.1. 

Polyarginine tag 

The Arg-tag is the peptide consists of five to six arginines and was first described in 1984.34 

The polyaginine was fused at the C-terminal of human urogastrone, and a two-step ion 

exchange chromatography led to  >95% purity with 44% yield. The basic polyarginine tag 

was then removed by carboxypeptidase to avoid potential interference of protein structure 

and function.34 Arg9-tag had been fused to bovine pancreatic ribonuclease (RNase A) at 

the C-terminus, and the positive changed tag strengthened the interaction of the protein 

with cation-exchange resins. Thus, most Arg9-tagged RNase A bound to the column, and 

could be eluted with concentrated NaCl solution (> 1 M). The exoprotease 

carboxypeptidase B (CPB), which catalyzes the hydrolysis of peptide bonds at the C-

terminus of basic residues, was used to remove the Arg9-tag. Although the Arg9-tag did not 

affect the activity of RNase A, it destabilized the protein due to unfavorable interaction 

between cationic the Arg-tag and the overall cationic RNase A.35 Polyarginine peptides 

bind to negatively charged mica surfaces, which enables oriented protein immobilization 

on flat surfaces.36 Hexa-arginine-tagged esterase has been effectively immobilized on gold-
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coated magnetic nanoparticles. The immobilization decreased the activity by 40% but can 

be retained after several uses by magnetic decantation.37 

Polyhistidine tag 

Immobilized metal-affinity chromatography (IMAC), described by Porath et al in 1975, is 

a technique based on the interaction between transition metal ions (Ni2+, Zn2+, Cu2+, Co2+) 

chelated on solid support and the side chain of specific amino acid.38 Histidine exhibits the 

strongest interaction with immobilized metal ion matrices.30 Histidine tagged protein binds 

to the chelating matrices at neutral or slightly alkaline pH, then contaminant molecules can 

be  washed away by buffer containing modest concentration of  imidazole (~50 mM), 

elution of his-tagged protein can be easily achieved by either decreasing the pH (pH 4-5) 

or adding imidazole (> 250 mM).38 In 1987, Hochuli developed a nitrilotriacetic acid (NTA) 

adsorbent for metal chelate chromatography, the purification method with histidine tag was 

further improved. The NTA ligand is quadridentate and is suitable for metal ions with 

coordination number of six, leaving the two remaining valencies for reversible binding of 

biomolecules.39 A model protein mouse dihydrofolate reductase was fused with a poly-

histidine peptide and expressed in E. coli, and the fusion protein was successfully purified 

through Ni-NTA.40 Besides washing with low concentration of imidazole, EDTA at low 

concentration of about 0.5 mM was used to remove non-specifically bounds proteins.41 

Imidazole can affect NMR experiments, competition studies, or crystallographic trials, as 

well as leading to protein aggregations, and thus is normally removed through dialysis. A 

method with two-step purification that removes hexahistidine tag with a thrombin cleavage 

site has been established.42 Histidine tag can be placed on either C- or N-terminus based 

on individual protein, but it may have negative impact on protein structures and activities. 
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The biochemical properties of the protein might be altered due to the presence of histidine-

tag43, and C-terminally tagged l-lactate dehydrogenase (LDH) displayed lower activity 

than wild type enzyme.44 Nevertheless, purification through histidine tag with affinity 

column is still the most popular method. 

Strep-tag 

Strep-tag is a nine amino acid peptide (AWRHPQFGG) which is developed for purification 

with streptavidin columns.45 Strep-tag was originally selected from a library of peptides to 

specifically bind to the core part of streptavidin. Streptavidin or avidin can tightly and 

specifically bind to biotin, together with its high intrinsic stability and low nonspecific 

interaction, streptavidin or other engineered versions have been broadly used for 

purification as well as detection method.46 Strep-tagged protein reversibly binds to the 

same pocket where natural ligand D-biotin is complexed on the streptavidin immobilized 

affinity column, and can be eluted  competitively  using D-biotin or a suitable derivative 

with less strong affinity, such as D-desthiobiotin.47 Over the years, both strep-tag and its 

interaction partner streptavidin have been improved. The optimized strep-tag II is an 

octapeptide (WSHPQFEK), which has more flexible attachment site. And the streptavidin 

variant with higher binding capacity named Strep-Tactin has also been developed. Another 

advantage of Strep-tag II is that it does not affect protein folding nor interfere protein 

function.47 The use of Strep-tag can be applied both under denaturing condition like 

western blot and native state as ELISA.48 Recombinant proteins with strep-tag has been 

purified and crystalized.49 
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FLAG-tag 

Flag-tag, consist of eight amino acid DYKDDDDK, can be added to a protein for 

immunoaffinity chromatography. It is based on a calcium-dependent antibody binding, 

which recognizes the first three amino acids of this peptide segment. Bound flag-tagged 

protein can be eluted with EDTA or low pH ~3.0.50, 51 Flag tag can be placed on either end 

of the protein. It is found that a shorter version of the flag tag with four peptide (DYKD) 

binds with the antibody M1 with the same affinity.52 Another monoclonal antibody (anti-

FLAG M2) was found to bind with flag peptide on either C- or N-terminal flag fused 

protein without calcium dependent. Therefore, target protein can only be eluted with lower 

pH or competition with free flag peptide.53 The purity of proteins purified via flag tag  about 

90%.54 One disadvantage of the system compared with Ni2+-NTA or Strep-Tactin is that 

the monoclonal antibody matrix is not as stable as other resins.30 Flag tag can be used in 

purification and detection, crystalized flag-fused protein has similar structure as untagged 

protein.55 

c-myc-tag 

The murin anti-c-myc antibody 9E10 was developed for binding with an antibody epitope 

of ten amino acids (EQKLISEEDL) which is called c-myc-tag.56 It can be fused at N- or 

C-terminus of proteins. C-myc-tag is mainly used for detection such as western blot assay, 

immunoprecipitation, and flow cytometry,57 although it can also be used for purification. 

A fragment of insulin-like growth factor-1 has been overexpressed in mammalian cells and 

purified via the c-myc-tag, then eluted at low pH ~3.0. The purified protein has been 

crystalized.58 
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S-tag 

When pancreatic ribonuclease A (RNase A) is digested into two fragments,  the 15-amino 

acid S-tag and 103-amino-acid S-protein still bind together tightly.59 S-tag contains 

KETAAAKFERGHMDS, which bind with S-protein with kd of ~0.1 M.60 There are four 

cationic, three anionic, three charged polar amino acids in S-tag, and this composition 

makes the S-tag highly soluble. The tag can be fused to either N- or C-terminus of a protein. 

S-tagged protein bound to  S-protein-sepharose column can be eluted by low pH ~2.0.61 

This system is useful in the development of assays with high sensitivity.62 

Glutathione S-transferase-tag 

Glutathione S-transferase (GST) belongs to a family of enzymes that detoxicate 

electrophiles by glutathione conjugation.63 The interaction between GST and its substrate 

glutathione has been applied in both detection and  immunoassay.64,65 Single step 

purification of peptides fusions with glutathione S-transferase has been described by Smith 

and Johnson in 1988.66 The 26 kDa GST, when fused to protein of interest,  has been shown 

to improve solubility and stability of the protein. The fusion protein binds tightly to 

glutathione-agarose, and can be competitively eluted with reduced glutathione. However, 

the use of reduced glutathione might affect target proteins contains disulfide bond.67 Also, 

the purification need to be performed under non-denatured conditions since the binding 

site of GST would be destroyed by the denaturing reagents. The system has high 

purification efficiency but may lead to dimerization of the target protein and may interfere 

protein functions.68 The GST domain can be cleaved from the fusion protein by engineering 

the protease factor X cutting site between the tag and the protein of interest.66 Normally, 

GST tag is removed before further studies  such as NMR, crystallography. Successful 
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studies of protein-protein interactions,69 DNA-protein interactions and directional 

immobilization have been developed with GST assay.70 

Cellulose-binding domain 

More than one hundred of cellulose-binding domain (CBD) sequences have been classified 

into more than 10 families. The CBDs are derived from cellulases, xylanases and other 

hydrolases, and they can be placed at N- or C- terminus, or the internal, of target proteins.71 

Family I CBD binds reversibly with crystalline cellulose and is used for purification in 

affinity chromatography. In this condition, hydrogen bond formation and van der Waals 

interaction are the main driving forces for binding. The fusion protein binds with cellulose 

column in the presence of ammonium sulfate and can be eluted with pure water.72 In 

contrast, Family II and III CBDs can be eluted with ethylene glycol.73 Some CBD fusion 

proteins have been irreversibly immobilized on the cellulose materials and used as 

immobilized  enzymes.74 

Calmodulin-binding peptide 

The purification of fusion protein containing Calmodulin-binding peptide(CBP) was first 

described in 1992. This peptide was derived from the C-terminus of skeletal muscle myosin 

light-chain kinase that binds calmodulin with nanomolar affinity.75 The calmodulin binding 

protein can be purified by one-step affinity chromatography on calmodulin-agarose. The 

interaction between calmodulin and CBP is Ca2+ dependent, the tight binding allows more 

stringent washing condition to ensure high purity of the fusion protein. The fusion protein 

can be eluted with EDTA/EGTA.76 The system can be used to purify fusion protein 

expressed in E. coli but not in eukaryotic cells, in which many endogenous proteins interact 
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with calmodulin in a calcium-dependent manner.77 CBP can be located on N- or C-terminal. 

However, N-terminal tag may reduce the efficiency of translation, while tag at the C-

terminus normally shows higher expression levels.78 

Maltose-binding protein 

Maltose-binding protein (MBP) is encoded by the malE gene of E. coli K12.79 The mature 

MBP has 370 amino acid residues and is around 40 kDa, and it specifically binds with 

maltose and maltodextrins with a Kd around 1 M.80 Fusion protein with MBP tag has been 

purified by one-step affinity chromatography on cross-linked amylose. After binding, 

fusion protein can be eluted with maltose.81 Buffer conditions for elution can be in the pH 

range from 7.0 to 8.5, and denaturing reagent cannot be used.30 The MBP can be located 

on N- or C-terminal. It is found that MBP can function as a molecular chaperone, 

facilitating the solubilizing and promoting proper folding of the fusion protein.82 MBP has 

been widely used for affinity purification. A ten asparagine residues linker between the 

target protein and MBP improves the binding affinity in this system. The MBP tag can be 

easily cleaved with site-specific protease.30 

Other tags 

Beside all the tags described above, there are several other tags. A 13 amino acids biotag 

can be used, which lead to in vivo biotinylation in E. coli, for detection, immobilization 

and purification.83 Affinity purification using the native interaction of staphylococcal 

protein A with immunoglobulin G (IgG) has been reported.84 Intein from the 

Saccharomyces cerevisiae VMA1 gene has been used as chitin-binding domain, which 
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binds to chitin resin.32 Avitag, PinPoint Xa protein purification system used for 

purification85, 86, and T7 tag, HA (hemaglutinin A) tag can be used for detection.87 

 

Table 1.1 Sequence and ligand of protein functional tag 

Tag  Sequence  Matrix / ligand Elution 

condition 

Poly-arginine  RRRRRR Cation exchange resin Gradient 

NaCl at 

alkaline 

pH>8.0 

Poly-histdine HHHHHH Ni-NTA Imidazole > 

250 mM or 

low pH 

Strep-tag WRHPQFGG streptavidin/avidin Biotin or 

desthiobiotin 

Strep-tag II WSHPQFEK streptavidin/avidin Biotin or 

desthiobiotin 

Flag-tag  DYKDDDDK  monoclonalAbM1,M2 EDTA, low 

pH 

c-myc-tag EQKLISEEDL monoclonal Ab 9E10 Low pH 

S-tag KETAAAKFERGH

MDS 

S-protein 

(S fragment of RNaseA) 

low pH 
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Table 1.1 (continued) 

 

Glutathione S-

transferase-tag 

26 kDa protein 

domain 

glutathione-Sepharose Reduced 

glutathione 

Cellulose-

binding domain 

Varies  Cellulose  ethylene 

glycol  

Calmodulin-

binding peptide 

KRRWKKNFIAVS

AANRFKKISSSG

AL 

calmodulin EGTA 

Maltose-binding 

protein 

40 kDa protein 

domain 

cross-linked amylose maltose 

 

 

1.4 Special protein tag facilitated protein degradation 

In bacteria, translation involving damaged mRNA lacking the stop codon leads to stalled 

ribosomes, which are rescued by the transfer-messenger RNA (tmRNA) system.88-90 The 

tmRNA, also known as 10Sa RNA or ssrA RNA, is a highly conserved bacteria molecule 

that has properties of both tRNA and mRNA.91 The secondary structure of tmRNA is 

depicted in Figure 1.1.88 
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Figure 1.1 Proposed secondary structure of E. coli tmRNA. 88 Reprinted (adapted) with 

permission from ref 88. Copyright (2007) American Chemical Society. 

 

 

The 3’ and 5’ ends of tmRNA form a tRNA-like domain, including a D-loop, a T-arm and 

an amino acid acceptor stem. Unlike tRNA, instead of the anticodon stem, the tRNA-like 

domain is followed by a long stem and then connected with a mRNA-like domain. After 

that, three pseudoknots (PK2-4) link mRNA-like domain to the 3’ end.92, 93 The tRNA-like 
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domain is recognized by alanyl-tRNA synthetase so as to transfer alanine to the nascent 

protein, and thus the stalled mRNA is released.91, 94 Alter the tRNAala-like domain to 

tRNAhis-like domain would lead to the incorporate of histidine at the first amino acid of 

the 11-amino acid peptide coded by tmRNA.95 The mRNA-like domain was found by Tu 

et al. when their effort of expressing interleukin-6 (IL-6) in E. coli resulted in a collection 

of IL-6 fragments.96 All truncated fragment of IL-6 were found to be tagged with an 11-

amino acid peptide, AANDENYALAA. The last 10 amino acids were encoded by the 

mRNA-like domain. The C-terminal tagged proteins become substrates for cellular 

proteases. The process of tmRNA mediated protein degradation and ribosome rescue is 

depicted in Figure 1.2.  In E. coli, at least four proteases, Tsp, FtsH, ClpXP, and ClpAP, 

degrade the C-terminal tagged polypeptide.89, 97-99 

Tsp, also called Prc, is a tail-specific periplasmic protease that recognize protein with non-

polar C-terminal residues. It has been shown to degrade a variant of N-terminal domain of 

 repressor with the non-polar C-terminal tag of WVAAA, but not polar C-terminal 

sequence RSEYE.100 Also, Tsp is found to be more effective to degrade substrates that are 

not stable, and a peptide substrate is preferred than a protein substrate for cleavage.101 The 

C-terminal residues of ssrA (YALAA) is similar to that of Tsp recognizing C-terminal tag 

(WVAAA). A periplasmic protein (cytochrome b562) was constructed with ssrA tag, and 

subsequently degraded by Tsp in vivo. This supports the hypothesis that Tsp degrade the 

ssrA tagged periplasmic protein.97 Tsp degraded  repressor (a cytoplasmic protein) with 

nonpolar C-terminal tag in vitro, but not in vivo, which indicates that at least one additional 

protease also works for C-terminal specific proteolysis. 102 
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Figure 1.2 Trans-translation model of tmRNA.88 (a) tmRNA charged with alanine enter 

the A site of stalled ribosome, (b) transfer tmRNA to the nascent chain (c) release of the 

faulty mRNA and replace with open reading frame on the tmRNA (d) translate the 

tmRNA until the stop codon is reached (e) the tagged protein is released and degraded by 

specific proteases. Reprinted (adapted) with permission from ref 88. Copyright (2007) 

American Chemical Society. 

 

FtsH, an essential protease, is an integral membrane protein with a ATP-binding domain 

at the cytoplasmic C-terminus.103, 104 It degrades the heat-shock transcription factor 32, 

which is involved in the gene regulation in E.coli.105 Moreover, FtsH degrades a set of 

meta-stable proteins, also some misassembled membrane proteins, as a means of the 

cellular protein quality control.106-109 SsrA tagged phage  cI repressor, a cytoplasmic 
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protein, is rapidly degraded with FtsH in vitro.99 Later, an inner-membrane protein, 

ProW1−182, tagged with ssrA tag has been  shown to be degraded by FtsH in vivo, suggest 

that FtsH plays a role in maintaining protein quality in the inner membrane.110 ClpXP and 

ClpAP are two well studied protease complexes, and both using ClpP as the protease.111, 

112 E.coli ClpP is expressed as a proenzyme,113 and it alone cannot function efficiently as a 

protease. ClpP needs to associate with its partner ATP-driven unfoldase to cleave 

polypeptides.114 ClpX and ClpA are AAA+ (ATPases associated with various cellular 

activities) family unfoldase.111 ClpX and ClpA use the energy of ATP hydrolysis to help 

unfold the substrates and feed them into the active chamber of ClpP.115, 116 Several short 

sequence motifs are recognized by both ClpX and ClpA, and the 11-amino acid (ssrA) tag 

is the best characterized recognition motif.117 The hexamer structure of ClpX is depicted 

in Figure 1.3. The N domain of each subunit is coordinated with a zinc atom,118 while the 

rest forms the AAA+ module. It is found that ClpX and ClpXΔN, which lacks the N domain, 

both form hexamer rings, and ClpXΔN binds with ClpP and supports the degradation of 

some protein substrate at a similar rate to ClpX, indicates that AAA+ domain plays the 

major function for ClpX.119,120 The N domain contribute to hexamer stability and 

recognition of adaptors, such as SspB.121 SspB improves the ClpXP degradation of ssrA 

tagged proteins by lowering KM.122 Two features of SspB help tether substrates to ClpX 

and enhance degradation. First, SspB dimer binds to the N-terminal of ssrA tag 

(AANDENY), leaving the last three amino acid (LAA) for ClpX binding.123 Second, the 

C-terminal of each SspB unit binds with ClpX and stimulate ClpXP degradation.118, 124, 125 

In the presence of SspB adaptor, degradation rate increases dramatically. For example, 

mutated C-terminal ssrA tagged substrates for weak ClpX binding were degraded around 
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100-fold faster in the presence of SspB than in the absence.126 The ClpXP degradation 

process is depicted in Figure 1.4. 121 

        

Figure 1.3 ClpX hexamer structures. Face view colored by subunit. PDB ID: 3HWS. 

 

Figure 1.4 Substrate recognition and degradation by ClpXP. First, ClpX recognizes the 

tagged protein and binds the substrate to the axial pore of ClpX. Second, ClpX unfolds the 
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substrate with the energy from ATP hydrolysis and translocates the unfolded substrate into 

ClpP champer for proteolysis. Third, ClpP cleave the substrate into small peptide 

fragments.121 Adapted with permission from ref.127 

 

Accumulation of stalled ribosome leads to many undesired consequences. There would be 

a significant decrease of translational efficiency due to the lack of ribosome for new 

mRNAs. Also, the protein products translated from defective mRNAs might be harmful to 

the cell.88 Having multiple degradation systems dealing with ssrA-tagged proteins will  

guarantee  normal translation, and thus, maintain the well-being of cells. SsrA tag serves 

as a proteolysis signal, recognized by different proteases, and enable protein quality-control 

in the cell and regulate the cell growth.91 
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Chapter II   A dual-functional tag facilitated protein labeling and immobilization  

 

2.1 Introduction 

 Proteins are functional materials created by nature to execute diverse activities in 

living organisms. The superb selectivity, specificity, and performance of proteins have 

made them highly desirable components in the creation of bio-mimetic materials. A major 

obstacle in the utilization of proteins in biotechnology is the difficulty with site-specific 

immobilization of proteins without compromising their functions. The introduction of a 

peptide tag has been a popular method to facilitate protein immobilization or detection. 

Such peptide tags include the GST tag 66, 128, strep tag 47, 129, 130, HA tag 131, 132, flag tag 50, 

52, 133, arg-tag 34, 36, c-myc-tag 56, 134, and histag 39, 135. Proteins bearing these tags can be 

captured or detected via interactions with their corresponding binding partner modules or 

antibodies. Peptide tags are usually directly encoded into the gene of the target protein, and 

thus have the advantage of being convenient and highly specific. While they are very useful 

in the purification and detection of the tagged proteins, the application of most peptide tags 

in protein immobilization and modification is limited by the noncovalent nature of the 

interaction, which suffers from drawbacks including a high off-rate and low mechanical 

resilience. Several systems have been developed to promote the formation of covalent bond 

between a residue in the peptide tag and its catcher module, including split inteins 136, the 

SpyTag/SpyCatcher 137-139, cysteine and α-chloroacetyl interaction facilitated by the coil-

coil interaction 140, the Histag and nitrilotriacetate-based arylazide photoreactive label via 

click chemistry141, 142 ，and the employment of the substrate peptide of a ligase or 

transferase, such as the LAP tag 143, the Q-tag 144, the sortagging motif 145, the formyl 

glycine tag 146, and the peptides A1 and S6 147.  
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The incorporation of non-natural amino acid is another useful technique used in the site-

specific modification of proteins. Examples include the azido- or alkyne- containing 

residues via click chemistry 148, norbornene-containing residues that react with tetrazine-

based probes 149, and p-azido-L-phenylalanine via photocatalytic reaction 150. Non-natural 

amino acids are usually incorporated into the protein of interest through the introduction 

of a dedicated orthogonal pair of tRNA and tRNA synthetase that translate a stop codon 

(typically TAG) into the specific non-natural amino acid. Recently, this method has been 

coupled with in situ biosynthesis to incorporate a sulfur-containing noncanonical amino 

acid S-allyl-l-cysteine (Sac) into E. coli proteins151.Subsequently, the non-natural amino 

acid can introduce unique chemistry to facilitate site-specific modification. Alternatively, 

if the structure of a non-natural amino acid is very similar to a natural amino acid, it could 

be incorporated metabolically by using the corresponding auxotrophic strain. In this case, 

no additional cellular machinery need to be introduced. For example, azidohomoalanine 

(AHA) can be incorporated into the sequence of proteins by Met tRNA and tRNA 

synthetase (Figure 2.1). This method has been used by several groups to label and modify 

proteins 152-162. However, labeling of the incorporated AHAs often suffers from poor 

efficiency, since Met residues usually form part of the hydrophobic core of a protein and 

have limited accessibility to reaction. Although all proteins contain Met in their amino acid 

sequence, only a small percentage of these intrinsic Met residues seemed to be available 

for labeling. One potential solution is to denature and unfold the target protein before 

labeling to improve the accessibility of the AHA residues148, 163  .This approach is very 

useful in the detection of a target protein, but not suitable for applications that demand 
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active protein. Otherwise Met can be introduced at the surface of the protein via site-

directed mutagenesis157. Here we take advantage of the convenience of metabolic 

incorporation and address the issue of limited accessibility through the genetic introduction 

of a methionine-containing tag. To avoid the formation of a hydrophobic patch which may 

potentially affect protein folding, we inserted polar residues (histidine or serine) between 

neighboring methionine residues.  The tag has two functions: histidine in the tag can 

facilitate protein purification via the conventional metal affinity chromatography, while 

methionine (or rather, their replacement by AHA) can be used in covalent labeling. The 

performance of the tags was evaluated using two model proteins, superfolder Green 

Fluorescent Protein (sfGFP) and an inorganic pyrophosphatase from Staphylococcus 

aureus, PpaC164. sfGFP was chosen due to its intrinsic fluorescence, while PpaC was 

chosen since its enzymatic activity can be conveniently measured using a colorimetric 

assay. Using these two model proteins, we demonstrated that the incorporation of the tag 

did not compromise protein function, and the tag could facilitate both protein purification 

and modification. We expect the dual-functional His-AHA tag to be useful in general for 

various biotechnological applications. 

 

2.2 Materials and methods  

2.2.1 Plasmid construction  

Plasmids pET22-sfGFP and pET22-PpaC were created in earlier studies164, 165. C-terminal 

tags were introduced via the fast cloning method using pET22-sfGFP or pET22-PpaC as 

the template and primers as listed in Table 2.1166. All coding sequences were confirmed 

through DNA sequencing. 
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2.2.2 AHA incorporated into target protein  

For protein expression, the corresponding plasmid was transformed into E. coli strain 

DL41(DE3). Single colonies were first cultured at 37 oC in M9 medium containing 

ampicillin (100 mg/L) overnight, and then the Met-starved overnight culture was used to 

inoculate 30 mL of fresh M9 medium containing 19 essential amino acids (each at 40 

µg/mL without Met) and 50 ug/mL AHA with 10-fold dilution. The cells were grown at 

37oC with shaking at 250 rpm until its absorbance at 600 nm (OD 600 nm) reached 0.8, 

and then was induced with 1 mM isopropyl-D-thiogalactopyranoside (IPTG). After 

overnight expression, the cells were harvested by centrifugation at 9,800 ×g for 10 min. 

Cell pellet was stored at -80 oC. Control proteins with normal Met in the tag were expressed 

the same as described except replacing 50 ug/ml AHA with 40 ug/ml methionine in the 

culture medium.  

 

2.2.3 Protein purification 

For purification, the cell pellet was resuspended in 30 mL lysis buffer (50 mM HEPES, 

200 mM NaCl, pH 7.5 for PpaC, or 20 mM phosphate, 200 mM NaCl, pH 7.5 for sfGFP). 

The protease inhibitor PMSF stocked in 95% ethanol was added freshly to a final 

concentration of 0.5 mM. Cells were lysed through sonication and then centrifuged at 

15,300 ×g, 4 oC for 20 minutes. The supernatant was collected and incubated with Ni-NTA 

agarose beads (Qiagen) for 40 min at 4 oC with shaking. The resins were then loaded into 

an empty column, drained, and washed with the corresponding lysis buffer supplemented 

with 40 mM imidazole. Finally, proteins were eluted using the corresponding lysis buffer 
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supplemented with 500 mM imidazole. After purification, imidazole in the samples was 

removed by dialysis against the lysis buffer.    

 

2.2.4 Bacteria growth curve  

DL41(DE3) strain was cultured in M9 medium supplemented with 20 amino acids 

overnight. The next morning, the overnight culture was used to inoculate three cultures of 

M9 medium supplemented either with 19 amino acids (each at 40 µg/mL, no Met) plus 

AHA (50 µg/mL), with 19 amino acids (each at 40 µg/mL, no Met), or with all 20 amino 

acids (each at 40 µg/mL). Cell growth was measured by monitoring the absorbance of the 

cell cultures at 600 nm (OD 600 nm) at the indicated time. 

 

2.2.5 Protein biotinylation via click chemistry 

The reactivity of AHA residues in the structure of sfGFP and PpaC was examined through 

their reaction with PEG4 carboxamide-propargyl biotin (biotin alkyne). To initiate the 

reaction, biotin-alkyne (50 µM), Tris[(1-benzyl-1H-1,2,3-triazol-4-yl) methyl] amine 

(TBTA, 600 µM), and CuBr (600 µM) were added into purified protein sample in HEPES 

buffer. The reaction mixture was incubated at room temperature with shaking for 5 min for 

sfGFP constructs and 1 hour for PpaC constructs, and then analyzed using anti-biotin 

Western blot. 
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2.2.6 Protein immobilization to alkyne agarose resin 

Alkyne agarose resins were purchased from Jena Bioscience. The alkyne agarose beads 

were first washed with 10 bed volumes of HEPES buffer (20 mM HEPES, 200 mM NaCl, 

pH 7.5) three times and then resuspended in two bed volume of HEPES buffer containing 

the indicated protein. TBTA was added to a final concentration of 600 µM followed by 

mixing using pipette tip. CuBr was then added to a final concentration of 200 µM. The 

reaction mixture was mixed thoroughly using pipette tip and incubated at room temperature 

for 2 hours. Finally, the beads were washed using 10 bed volume of HEPES buffer via 

centrifugation for three times.  

 

2.2.7 Gel electrophoresis and Western Blot 

SDS-PAGE was conducted using 20% Tris-glycine gel. For Western blot, proteins were 

transferred to PVDF membrane after SDS-PAGE using semi-dry blotter (Denville, 

Holliston, MA) and detected using a monoclonal anti-biotin antibody-alkaline phosphatase 

conjugate. 

 

2.2.8 Fluorescence spectroscopy 

Fluorescence emission spectra of fluorescein were collected using a Perkin-Elmer LS-55 

fluorescence spectrometer (PerkinElmer, Waltham, MA) at 20 °C and excitation 

wavelength at 485 nm. 

Fluorescent image of the sfGFP immobilized alkyne beads was taken using Eclipse Ti-S 

fluorescence microscope (Nikon, Melville, NY).  
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2.2.9 Pyrophosphatase activity assay  

The PPase activity was measured in Tris buffer using Mn pyrophosphate as the substrate 

as described 167.  Stock solutions of MnCl2 and sodium pyrophosphate were mixed at a 1:1 

molar ratio at 0.5 mM right before the analysis (mixing equal volume of 1.0 mM MnCl2 

and 1.0 mM sodium pyrophosphate) and diluted to the indicated substrate concentration 

for the activity measurement. At neutral pH, pyrophosphate is not fully deprotonated. The 

major species is MnH2PPi (MnPPi), which was considered the substrate for 

pyrophosphatase 168. A stock solution of malachite green (0.12%, w/v) was made by 

dissolving the dye in 3 M sulfuric acid. A working solution was always made fresh by 

adding one volume of 7.5% (w/v) sodium molybdate into four volumes of the malachite 

green stock solution followed by the addition of Tween 20 to a final concentration of 0.2% 

(v/v).  This solution is used to both terminate the enzyme reaction and initiate the 

colorimetric reaction to determine the concentration of phosphate. For activity 

measurement, PpaC was added into a freshly prepared reaction mixture containing the 

indicated concentration of MnPPi, in a reaction buffer (25 mM Tris-Cl, 50 mM NaCl, pH 

7.0) at room temperature for 5 min. To stop the enzymatic reaction and determine the 

phosphate concentration of a sample, one volume of the working solution was mixed with 

four volumes of the enzymatic reaction mixture to be analyzed. For immobilized PpaC, the 

reaction mixture was subjected to a quick centrifugation and the supernatant was collected 

for analysis. The mixture was incubated for 5 min for the color to develop, and the 

absorbance at 630 nm was measured. We have experimented with the conditions and 

confirmed that under these conditions, the product phosphate accumulation over time was 
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linear.  Therefore, the absorbance at 630 nm, after correction for background, directly 

correlates with the rate of hydrolysis. The Michaelis-Menten constant KM and specific 

enzymatic activity were determined through fitting the measured values with SigmaPlot.  

 

2.3 Results and discussion 

2.3.1 Incorporation of AHA into the target proteins 

Expression of AHA-containing proteins was performed using a Met auxotrophic strain, 

DL41(DE3).  DL41(DE3) could not grow in the absence of Met (Figure 2.3). The 

replacement of Met by AHA slowed down the growth of the strain and increased the 

doubling time at the exponential growth phase from 1 hour to 2 hours, but the two cultures 

grew to similar densities at saturation. This result indicates that AHA can be used 

effectively as a replacement of Met in the synthesis of proteins and support bacteria cell 

growth. To further confirm that AHA was incorporated to replace Met, we submitted AHA-

containing PpaC-H6G3M4 for mass spectroscopy peptide fingerprinting analysis. There 

are 13 Met in the protein, including four in the tag. Among them peptides containing AHA-

replaced Met1, Met125, or M142 were not detected. Peptides containing AHA replacement 

for all other 10 Met residues were identified, indicating that these residues were at least 

partially replaced by AHA. 

 

2.3.2 Incorporation of a dual functional tag at the C-terminus of sfGFP 

The intrinsic fluorescence of sfGFP makes it a popular model protein in studies involving 

protein modification, including ones using the azido-alkyne based click chemistry 169. The 
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polyhistidine tag has been used extensively in the purification of sfGFP 170. Here we have 

tested two different tag designs, with the addition of two or four Met residues (Figure 2.2, 

Table 2.1). To avoid the potential creation of a hydrophobic patch, we juxtaposed Met with 

His. For protein expression, E. coli strain DL41(DE3) containing plasmid sfGFP-H6, 

sfGFP-H7M2, or sfGFP-H6M4 were grown in the M9 medium supplemented with 20 

essential amino acid as described in the Materials and Methods. As shown in Figure 2.2 B, 

the different tags did not affect the expression level of the protein. The two proteins 

containing Met residues in the tag can be purified similarly as that of the histagged sfGFP, 

with similar yield and purity.  

 

Figure 2.1 Structure of Met and AHA. 
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Figure 2.2 Structure of tagged sfGFP and expression of sfGFP mutants. A. Structure of 

sfGFP with the sidechain of the three intrinsic Met residues highlighted with ball-and-stick 

model. The location of the C-terminal tag is shown. B. Cell lysate of DL41(DE3) 

transformed with the corresponding plasmids (for sfGFP) before or after IPTG induction. 

Molecular weight of bands in the marker, from top to bottom, are 130, 100, 70, 55, 40, 35, 

25, and 15kD, respectively. 

 

To examine the potential effect of the tag and the replacement of Met by AHA on protein 

structure, we measured the fluorescence spectra of the three proteins, sfGFP-H6, sfGFP-

H7M2, and sfGFP-H6M4, containing Met or AHA. After expression and purification, the 

fluorescence spectra of the protein samples were collected (Figure 2.4). Six protein samples 

were examined, including the three different constructs of sfGFP expressed in the presence 

of either Met or AHA. The wavelength of the emission peak was not affected by the 
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addition of the tags or the incorporation of AHA. For each construct, the replacement of 

Met by AHA did not affect the fluorescence intensity. The fluorescence intensity of sfGFP-

H6M4 was approximately 10% lower than that of sfGFP-H6 and sfGFP-H7M2 (data 

collected from 10 repeats). 

 

Figure 2.3 DL41(DE3) growth curve. DL41(DE3) cultured in the M9 medium 

supplemented with different amino acids: 19 amino acids (no Met) (squares), all 20 amino 

acids (circles), and 19 amino acids (no Met) plus AHA (triangles). 
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Figure 2.4 Fluorescence spectra of sfGFP-H6 containing Met (red) or AHA (magenta); 

sfGFP-H7M2 containing Met (grey) or AHA (black); sfGFP-H6M4 containing Met (blue) 

or AHA (dark blue).   

 

Next, we examined the effect of the Met-containing tag in promoting the efficiency of click 

chemistry reaction. Purified sfGFP bearing H6, H7M2 or H6M4 tag was subjected to 

labeling using biotin-alkyne followed by detection using anti-biotin Western blot. As 

shown in Figure 2.5, the level of labeling of sfGFP-H6M4 was significantly better than that 

of the sfGFP- H7M2, which was also better than that of the sfGFP-H6. The relative levels 

of labeling of H6M4 and H7M2 were approximately ten- and three-fold, respectively, to 

the level of sfGFP-H6. There are three intrinsic Met in sfGFP, as highlighted in Figure 2.2. 

The side chain of these Met residues are likely involved in hydrophobic interactions in the 
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native structure of sfGFP. Therefore, when AHAs replace these Mets, their side chains are 

likely having limited accessibility for reaction.  

 

To demonstrate the usefulness of the tag in facilitating immobilization, we expressed 

sfGFP-H6M4 in the presence of AHA or Met, and incubated alkyne agarose resin with 

purified proteins for immobilization using click chemistry. After immobilization and 

washing, images were taken of the modified resin under normal white light or blue light 

(Figure 2.6 A & 2.6 B). It is clear that the reaction with the alkyne agarose resin depends 

on the presence of AHA in the protein. The immobilization of AHA-containing sfGFP-

H6M4 is highly specific. AHA-containing sfGFP-H6M4 readily attached to the alkyne 

beads, while no binding could be detected for sfGFP-H6M4 expressed in the absence of 

AHA.        

 

Figure 2.5 Labeling of three AHA-containing sfGFP with biotin alkyne. Commassie blue 

stain (CB) and anti-biotin Western blot (WB) analysis of three AHA-containing sfGFP 

constructs reacted with biotin alkyne. 
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Figure 2.6 Fluorescence image of sfGFP-H6M4 binding on alkyne agarose resin. Agarose 

resin were monitored under white light, while bounded sfGFP were identified under blue 

light. A. Alkyne agarose resin incubated with sfGFP-H6M4 expressed with Met, and then 

imaged using normal white light (left) or blue light (right).  B. Alkyne agarose resin clicked 

with sfGFP-H6M4 expressed with AHA, and then imaged using normal white light (left) 

or blue light (right). 

 

2.3.3 Addition of the GS3M4 tag to a pyrophosphotase PpaC 

We used a pyrophosphotase PpaC as a model enzyme to further examine the performance 

of the methionine-containing tag. Here we added an octapeptide ‘GMSMSMSM’ after the 

histag at the C-terminal of PpaC (Table 2.1). PpaC is a good model enzyme because the 
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protein can be expressed and purified at high yield, and its catalytic activity can be 

measured using a convenient colorimetric assay. We have previously determined the 

crystal structure of PpaC-H6 164. It exists as a dimer and each subunit contains 9 intrinsic 

Met residues (Figure 2.7 A). Similar as sf-GFP, this Met-containing tag would not affect 

the expression of PpaC either (Figure 2.7 B). 

 

To examine the effect of the tag and the incorporation of AHA on the catalytic activity of 

PpaC, we first compared the catalytic activity of PpaC-H6 and PpaC-H6GS3M4 expressed 

in DL41(DE3) grown in the presence of Met (Figure 2.7 C, black and red). The fit to the 

Michaelis-Menten equation yielded the KM and kcat of 44 ± 9 µM and 887 ± 97 µmol·min-

1·mg-1, respectively, for PpaC-H6GS3M4, which are not significantly different from the 

KM and kcat of PpaC-H6 (52 ± 15 µM and 897 ± 98 µmol·min-1·mg-1, respectively).  Next, 

we compared the KM and kcat of PpaC-H6GS3M4 expressed with AHA (Figure 2.7 C, red 

and blue). The KM and kcat of the protein expressed from cells grown in the presence of 

AHA are 43 ± 11 µM and 1050 ± 101 µmol·min-1·mg-1. The KM and kcat differences 

between the AHA-containing PpaC and non-AHA-containing PpaC are not statistically 

significant.  

 

To compare the level of labeling of PpaC-H6 and PpaC-H6GS3M4, we expressed the two 

proteins in the presence of AHA as described. Although each PpaC subunit contains 9 

intrinsic Met, the level of labeling of PpaC-H6 was much lower than the level of labeling 

of PpaC-H6GS3M4 (Figure 2.7 D). While similar amounts of proteins were used in the 
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experiment, the band intensity of PpaC-H6GS3M4 in the anti-biotin Western-blot was 

approximately four times the band intensity of PpaC-H6. In spite of the abundance of the 

intrinsic Met in the protein, the addition of a AHA(methionine) tag greatly improved the 

efficiency of modification. 

  

Finally, we examined the usefulness of the methionine-containing tag in the 

immobilization of PpaC. PpaC-H6GS3M4 expressed in the presence of Met or AHA were 

incubated with alkyne agarose resin for immobilization as described in Materials and 

Methods. After immobilization, the resin was washed to remove free protein and the 

pyrophosphatase activity of protein attached to the resin was measured (Figure 2.7 E). For 

control, the alkyne agarose resin was incubated in the presence of Bovine serum albumin 

(BSA). The activity of immobilized PpaC-H6GS3M4 were measured as described in 

Materials and Methods. Without AHA, there was a low level of adsorption of PpaC-

H6GS3M4 to the agarose resin, leading to a low level of activity. When AHA was 

incorporated into the structure of PpaC, the level of activity was increased approximately 

eight-fold, indicting more efficient immobilization. The control sample with BSA 

displayed no detectable activity.  
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Figure 2.7 Structure, catalytic activity, and labeling of PpaC. A. Ribbon diagram of the 

structure of PpaC-H6 (created from 4RPA.pdb). The two subunits in the dimer are color-

coded. Methionines in the structure are highlighted in yellow ball-and-stick models. B. Cell 

lysate of DL41(DE3) transformed with the corresponding plasmids (for PpaC) before or 

after IPTG induction.  C. Michaelis-Menten plot of PpaC-H6 (black), PpaC-H6GS3M4 

(red), and PpaC-H6GS3M4 containing AHA (blue). Each experiment was repeated three 

times. The average value and standard deviations are shown. Data was fitted using the 

Michaelis-Menten equation to determine KM and kcat. D. Commassie blue stain (CB) and 
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anti-biotin Western blot (WB) analysis of AHA-containing PpaC-H6 and PpaC-H6GS3M4 

with biotin alkyne. E. Activity of PpaC immobilized on alkyne agarose resin. Each 

experiment was repeated three times. The average value and standard deviations are shown. 

2.4 Conclusion  

In summary, we have shown that AHA-containing tags introduced at the C-terminus of two 

model proteins significantly increased the efficiency of the click chemistry reaction. The 

design of the tag is flexible. We tested three sequences, with two, three, or four extra Met 

in the tag respectively. All of them increased the level of labeling when the AHA-

containing version of the respective protein was reacted with biotin alkyne. When 

combined with a polyhistidine tag, the histidine-AHA tag can facilitate both noncovalent 

interaction such as metal affinity purification and covalent binding via reaction with the 

alkyne functional group. We avoided the incorporation of multiple Met/AHA residues in a 

continuous stretch to avoid the potential problem with creating a hydrophobic patch, which 

may interfere with protein folding or non-specific interactions. Other than that, the design 

of the tag is really very flexible. The versatility of the tag design makes the concept broadly 

useful in the development of strategies to label and modify various proteins, and 

immobilize proteins onto diverse alkyne functionalized supporting matrices. A limitation 

of this method is the compatibility of the tag with specific protein structures. While in most 

cases a short peptide tag as described in this study is not expected to drastically affect the 

structure and function of the protein of interest, there is always a possibility that certain 

proteins cannot tolerate such modifications. Also, some proteins may not like being zapped 

with the click reaction components.      
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Table 2.1 Primer and tag sequences 

Construct Primers Tag sequence 

sfGFP-H7M2 5’-atg cac atg tgagatccggctgctaacaa-3’ 

5’-ggatctcacatgtgcatgtggtggtggtggtggtg-3’ 

HHHHHHMHM 

sfGFP-H6M4 5’-catatgcacatgcacatgcatcactaaccggctgctaacaaagc-3’ 

5’-gcatgtgcatgtgcatatgcatgtgggatcctttgtagag-3’ 

HMHMHMHMHH 

PpaC-

H6GS3M4 

5’-gcatgagcatgagcatgtgataatgagatccggctgc-3’ 

5’-gctcatgctcatgctcatgccatgatggtggtggtggtgctcgag-3’ 

HHHHHHGMSMSMSM 
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Chapter III   Impairment of S. aureus PpaC activity by metal ion binding and dimer 

dissociation 

 

3.1 Introduction 

Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of inorganic pyrophosphate. It 

provides a thermodynamic pull for many biosynthetic reactions and is an essential enzyme 

in all domains of life 171-173. Soluble inorganic PPases comprise two families, which are 

distinct in both amino acid sequence and structure 174-178.  Family I PPases occur in both 

prokaryotic and eukaryotic cells, whereas family II PPases occur almost exclusively in 

bacteria and have no homologue in multicellular eukaryotes 179.  Monomers of family I 

PPases have a simple cup-like single-domain structure, while monomers of family II 

PPases consists of two domains, with the active site at the domain interface. The catalytic 

site in family I PPases is a preformed structure and catalysis does not involve significant 

conformational change in the enzyme. In family II PPases, the C-terminal domain contains 

the high affinity substrate-binding site while the N-terminal domain contains the 

nucleophile-coordinating metal cations. Substrate binding to the C-terminal domain 

switches the enzyme from an open state to a closed state, which is required for catalysis 

180-183. Metal ion cofactor specificities of family I and II PPases for activity are also 

different. Family I PPases use Mg2+, while family II PPases prefer Mn2+.  

 

Staphylococcus aureus (SA) PpaC was first identified as a family II PPase based on 

sequence homology 184. We recently determined its Mn2+-complexed structure by X-ray 

crystallography at 2.1 Å resolution 164. The crystal structure and size-exclusion 

chromatography showed that SA PpaC, similarly to other characterized family II PPases, 
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is a dimer 179. The active site, which is located at the interface between the N-terminal and 

C-terminal domains, contains two Mn2+ binding sites, each half-occupied, which indicates 

that in the absence of the substrate one or the other, but not both of active sites can be 

occupied, with equal probabilities. In our structure, the two domains of SA PpaC form a 

closed active site, despite the absence of the substrate or products in the active site.   

 

An important and yet unanswered question about the mechanism of family II PPases is the 

functional relevance of dimerization, as the active site is not at the dimer interface. To 

investigate if monomeric PpaC is functional, we created point mutations at the dimer 

interface. These mutations are not directly involved in the structure or formation of the 

active site, and thus should not directly affect the interaction and binding with substrate. 

We characterized the structure and activity of the mutants, as well as investigated the 

inhibitory effect of metal ions on SA PpaC. 

 

3.2 Materials and methods  

3.2.1 Cloning and mutagenesis 

Plasmid pET22-PpaC for SA PpaC expression was constructed in a previous study 164.  A 

vector-derived his6-tag was introduced at the C-terminus of PpaC to facilitate purification 

via immobilized metal ion affinity chromatography (IMAC).  Site directed mutagenesis 

was conducted using the QuikChange mutagenesis kit following the manufacturer’s 

instructions (Agilent Technologies). DNA sequences were confirmed by sequencing. 
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3.2.2 Expression and purification  

Plasmids encoding wild-type or mutant PpaC were transformed into E. coli strain ER2566 

(ATCC) for expression.  Cells were first cultured overnight at 37 ℃ in LB broth containing 

100 mg/L ampicillin, which was then used to inoculate fresh LB-ampicillin media at a 50-

fold dilution.  The culture was incubated with shaking at 250 rpm at 37 ℃ until the 

absorbance at 600 nm reached 0.6, which usually took ~2.5 h. IPTG was added to a final 

concentration of 1 mM, and the culture was incubated for an additional 4 h. Cells were 

harvested by centrifugation at 6000×g for 10 min at 4 oC and re-suspended in 30 mL of 

lysis buffer (30 mM Tris-Cl, 0.3 M NaCl, 2 mM β-mercaptoethanol, 0.5 mM PMSF, pH 

8.0).  The cell suspension was sonicated to rupture the cells.  The supernatant was collected 

after centrifugation at 10,000×g for 10 min at 4oC and imidazole was added to a final 

concentration of 7.5 mM.  The solution was loaded onto a Ni-NTA (Qiagen) column 

equilibrated with the same buffer.  The column was washed with 10 bed volumes of the 

lysis buffer supplemented with 40 mM imidazole.  SA PpaC was eluted with lysis buffer 

containing 0.5 M imidazole.  Purity of SA PpaC was examined by SDS-PAGE on a 12% 

Tris-Cl polyacrylamide gel after Coomassie blue stain. Imidazole was removed via dialysis 

using a membrane with 3.5 kD molecular weight cutoff.  Protein samples were dialyzed 

for 2 days at 4℃ against the 100-fold larger volume of buffer A (30 mM Tris and 0.1 M 

NaCl, pH 7.5), with two buffer changes. To remove metal ions, purified SA PpaC was 

incubated with 10 mM EDTA for 2 h at room temperature, and then dialyzed against buffer 

A as described above.  
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3.2.3 Pyrophosphatase activity assay  

The PPase activity was measured using Mn pyrophosphate as the substrate as described 167.  

Stock solutions of MnCl2 and sodium pyrophosphate were mixed at a 1:1 molar ratio at 0.5 

mM right before the analysis (mixing equal volume of 1.0 mM MnCl2 and 1.0 mM sodium 

pyrophosphate) and diluted to the indicated substrate concentration for the activity 

measurement. At neutral pH, pyrophosphate is not fully deprotonated. The major species 

is MnH2PPi (MnPPi), which was considered the substrate for pyrophosphatase 168. A stock 

solution of malachite green (0.12%, w/v) was made by dissolving the dye in 3 M sulfuric 

acid. A working solution was always made fresh by adding one volume of 7.5% (w/v) 

ammonium molybdate into four volumes of the malachite green stock solution followed by 

the addition of Tween 20 to a final concentration of 0.2% (v/v).  For activity measurement, 

purified SA PpaC was added into a freshly prepared reaction mixture containing the 

indicated concentration of MnPPi, in a reaction buffer (25 mM Tris-Cl, 50 mM NaCl, pH 

7.0) at room temperature for 5 min. For the metal cofactor effect experiments, sodium PPi 

was used as the substrate. To stop the enzymatic reaction and determine the phosphate 

concentration of a sample, one volume of the working solution was mixed with four 

volumes of the enzymatic reaction mixture to be analyzed. The mixture was incubated for 

5 min for the color to develop, and the absorbance at 630 nm was measured in a 1 cm 

pathlength cuvette on a BIOMATE 3" UV/vis spectrophotometer (Thermo Scientific). We 

have experimented with the conditions and confirmed that under these conditions, the 

product accumulation over time was linear.  Therefore, the absorbance at 630 nm, after 

correction for background, directly correlates with the rate of hydrolysis. To obtain relative 

activities, the absorbance of the sample containing Mn2+ was designated as 1 and used to 
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normalize the absorbance of other samples. The Michaelis-Menten constant KM and 

specific enzymatic activity were determined using a nonlinear fit of the measured values 

with SigmaPlot. The inhibition constant KI was obtained from fitting the measured values 

using: 𝑣 =
𝑉𝑚𝑎𝑥[𝑠]

𝐾𝑀(1+
[𝐼]

𝐾𝐼
)+[𝑠]

 , [s] and [I] are the concentrations of the substrate and inhibitor, 

respectively. 

 

3.2.4 Circular Dichroism (CD) spectroscopy  

CD experiments were performed using a JASCO J-815 CD spectrometer with a Peltier 

temperature controller. Blank scans were collected from dialysis buffer and subtracted 

from the spectra containing enzyme. Cuvettes of 1 mm pathlength were used for far UV 

scans in the wavelength range of 190-250 nm. Thermal denaturation was measured by 

monitoring the ellipticity at 222 nm with the increase of temperature at 2.0 deg/min and 

recorded every 4℃ with 8 s equilibration time.  

 

3.2.5 Gel electrophoresis and size exclusion chromatography 

SDS-PAGE analysis was performed using a 12% Tris-glycine gel with a Mini-Protean 

Tetra Cell system (Bio-Rad Laboratories, Inc.), at 200 V and room temperature until the 

dye front migrated out of the gel.  Native gel electrophoresis was conducted similarly 

except that SDS was not added into the gel or running buffer. Size exclusion 

chromatography was performed using a Bio-Sil SEC 250 gel filtration column on a Bio-

Rad Duo Flow HPLC system, using buffer A as the mobile phase.   
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3.3 Results and discussion 

3.3.1 Effect of metal binding on activity  

Family II PPases are reported to prefer Mn2+ as a co-factor at their active site 179. Therefore, 

we first measured the steady-state kinetics of PPi hydrolysis by SA PpaC in the presence 

of Mn2+ by monitoring the phosphate production with the malachite green assay (Figure 

3.1 A). Metal ions co-purified with SA PpaC were first removed by a treatment with EDTA 

as described above, and then Mn2+ was added to the concentrated SA PpaC at a final 

concentration of 1 mM. The pre-incubation with Mn2+ was critical for the catalytic activity 

of SA PpaC. When EDTA-treated SA PpaC was used directly in the activity assay using 

MnPPi as the substrate, the observed activity was less than 0.1% of the activity of the Mn2+ 

pre-incubated sample. For the assay, the protein sample was diluted ~104–fold into the 

reaction mixture; therefore, the residual amount of free Mn2+ originated from the protein 

solution was negligible compared to the final concentration of Mn2+ in the reaction mixture. 

The fit to the Michaelis-Menten equation yielded the KM and kcat of 29±6 µM and 740±40 

µmol·min-1·mg-1, respectively.     
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Figure 3.1 Catalytic activity of SA PpaC. A. Michaelis-Menten plot of SA PpaC 

containing Mn2+. The experiment was repeated six times. The average value and standard 

deviations are shown. Data was fitted using the Michaelis-Menten equation to determine 

KM and kcat. B. Relative activity of SA PpaC in the presence of different divalent cations. 

Mn2+ is the preferred metal ion for catalytic activity.  

 

To determine the preference of metal cofactor, EDTA-treated PpaC sample was first 

diluted into buffer A supplemented with the indicated metal ions and incubated for 20 min. 

The corresponding metal ions were also added to the reaction mixture at a final 

concentration of 1.0 mM each before the addition of the appropriate amount of PpaC. The 

activity was then measured as described in Materials and Methods. As shown in Figure 3.1 

B, while several metal ions could support activity, Mn2+ was the most effective, followed 

by Co2+. This finding is consistent with the previously reported metal preference of family 

II PPases from other bacteria 182.  

 

3.3.2 Effect of metal ion binding on protein stability 

The thermal denaturation of SA PpaC was monitored in the absence/presence of Mn2+ to 

assess the effect of metal binding on protein stability (Figure 3.2 A). Ellipticity at 222 nm 

was recorded using CD during heating. Interestingly, the protein unfolding profiles differed 

significantly.  Both the transition temperatures and the final unfolded states were different. 

In the presence of Mn2+, PpaC displayed an unfolding curve with two transitions, a low 

temperature change initiated at 20 oC, and a high temperature change initiated at 50 oC.  By 
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contrast, in the absence of metal ions, the ellipticity at 222 nm initially increased with the 

rise in temperature and then decreased, producing a bell-shaped profile. The unfolding of 

SA PpaC is clearly not cooperative, which is drastically different from the unfolding 

process of a close homologue Bacillus subtilis (BS) PpaC 185. Metal-free BS PpaC unfolds 

cooperatively with a transition temperature at ~50 oC, while the presence of Mn2+ leads to 

an increase of transition temperature to above 70 oC. Considering the high levels of 

similarity between the overall structures of the two proteins, we speculate that the 

difference in the unfolding behavior originates from the difference in tertiary structure 

packing and mode of interaction with Mn2+.    

 

 

 

Figure 3.2 The presence of bound Mn2+ affects the thermal denaturation of PpaC. A. Mean 

residue ellipticity monitored at 222 nm upon heating in the absence of metal ions (black 

diamonds) or in the presence of 1.0 mM Mn2+ (open triangles). B. Wavelength scans 

performed in the absence (left) or presence (right) of 1.0 mM Mn2+, at 8oC (blue), 28oC 

(cyan), 48oC (green), 68oC (orange), and 88oC (red). 
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To assign the signal to changes in secondary structure, we collected wavelength scans of 

PpaC in the absence or presence of 1.0 mM Mn2+ at five temperatures, 8, 28, 48, 68, and 

88 oC (Figure 3.2 B). With or without Mn2+, the spectra were similar at 8 and 28 oC. The 

two negative peaks at 208 and 222 nm suggest a high content of α-helical structure. The 

enzyme structures in the absence and presence of the metal ion began to deviate from each 

other starting from 28 oC. In the presence of Mn2+, PpaC steadily lost its secondary 

structure with increasing temperature, as signaled by the decrease of the negative peak. In 

the absence of the metal ion, the secondary structure content initially decreased as well, 

reaching a minimum level between 48 to 68 oC, upon which it underwent a structural 

transition into a mainly β-sheet structure. Thus, rather than increasing protein stability by 

increasing the melting temperature, metal ion binding seemed to help prevent the 

misfolding of SA PpaC into an alternative, potentially aggregation-prone conformation 

rich in β-sheet secondary structure.         

 

3.3.3 PpaC mutations that disrupt the dimer interface 

Family II PPases function as homodimers. Binding to metal ion cofactors has been shown 

to strongly favor dimerization, accompanied by the acquisition of catalytic activity 185, 186. 

However, it remains unclear if monomers are active. Metal binding is known to be required 

for catalytic function. Because metal binding strongly promotes dimerization of the wild-

type family II PPases, it has not been possible to separate the two processes. To assess if 

the dimerization can be decoupled from metal binding and/or enzymatic activity, we 

designed and constructed three mutants. A PpaC monomer contains two globular domains, 

a N-terminal domain (NT) and a C-terminal domain (CT) connected by a linker, with the 
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active site at the domain interface (Figure 3.3 A). Two monomers in a PpaC dimer interact 

via a hairpin loop involving a β-strand from the N-terminal domain of each monomer. The 

sequence of this hairpin, especially residues R99 to P115, is highly conserved (Figure 3.3 

B). Since this region is not involved in the active site, we speculate that replacement of 

some of these residues may decrease dimer stability without affecting the overall protein 

structure including the active site. We identified three residues to mutate, R99, E104, and 

Y111 (Figure 3.3 C). R99 and E104 may potentially form an inter-subunit salt bridge. Y111 

is engaged in hydrophobic interactions with I100, Y111, and A113 from the neighboring 

subunit. We created three single mutations, Y111S, R99M, and E104Q, aiming at 

disrupting dimerization.  

 

Figure 3.3 Structure and sequence of PpaC. A. Crystal structural of SA PpaC dimer 

complexed with Mn2+ (PDB ID: 4RPA 164). The two monomers are color coded, with Mn2+ 

ions illustrated as yellow spheres. The NT domains in the two subunits are red and light 

blue, while the CT domains are orange and dark blue. The short linker between the domains 

is green. B. Sequence alignment of family II PPases from S. aureus (SA), B. subtilis (BS), 

Streptococcus mutans (SM), Archaeoglobus fulgidus (AF) and Methanocaldococcus 
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jannaschii (MJ). Identical, highly conserved, and semi-conserved residues are marked by 

asterisks, colons, and dots, respectively. C. A zoomed-in view of the hairpin loops that 

form the dimer interface. The side chains of residues R99, I100, E104, T105, and Y111 are 

highlighted. 

 

The catalytic activities of the three mutants were compared in the presence of five different 

metal ions.  Y111S and R99M were completely inactive, while E104Q was largely active 

(Figure 3.4 A). To further verify the effect of mutations on the structure of PpaC, we 

expressed and purified the mutants for further characterization. Native gel electrophoresis 

was used to determine the oligomeric state of the proteins. For wild type and E104Q PpaC, 

a strong dimer band could be observed together with a weak monomer band (Figure 3.4 B). 

For the functionless mutants, the dimer band was much weaker and the monomer band 

became dominant. These results indicate that Y111S and R99M mutations weakened the 

dimerization. This conclusion was further confirmed by the size exclusion chromatography 

experiment, in which the mutants eluted mainly as monomers, while the wild type PpaC 

eluted as a dimer in equilibrium with a smaller population of monomer (Figure 3.4 C).  

Finally, the CD spectra of Y111S and R99M were compared with that of the wild type 

PpaC. The overall structures of the mutants were very similar to that of the wild type 

protein, confirming that the loss of activity was not due to global unfolding of the structure 

of the enzyme (Figure 3.4 D).   
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Figure 3.4 SA PpaC mutants disrupted the dimer interface. A. Metal ion effect on the 

relative activity of wild type (1), E104Q (2), Y111S (3), and R99M (4) in the presence of 

1.0 mM of the indicated metal ions.  B. Native gel electrophoresis analysis of purified PpaC 

constructs.  Wild type PpaC and E104Q migrated mainly as dimers, while Y111S and 

R99M migrated mainly as monomers.  C. SEC traces of wild type SA PpaC (black 

continuous) and two mutants Y111S (grey continuous) and R99M (black dashed). 

Retention times of molecular weight standards are marked at the top of the plot. D. Far UV 

CD spectra show that the secondary structures of Y111S (blue) and R99M (red) are highly 

similar to that of the wild type PpaC (black). 
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3.3.4 Inhibitory effect of Mn2+ and Mg2+ 

When optimizing the condition for enzyme activity assay, we noticed that while Mn2+ was 

critical for PpaC activity, extra free Mn2+ (supplied in the form of MnCl2) was inhibitory 

(Figure 3.5 A). To investigate the mechanism of inhibition, we measured the catalytic 

activity of the protein as a function of Mn2+ concentration (Figure 3.5 B). As described in 

the Materials and Methods, MnCl2 and sodium pyrophosphate were mixed at a 1:1 molar 

ratio to make a 0.5 mM solution, which was then subjected to a serial two-fold dilution and 

used as the substrate. Enzyme activity was measured with the addition of extra MnCl2 at 

the indicated concentrations (80, 120, and 160 uM). The Lineweaver-Burk plots measured 

in the presence of different MnCl2 concentrations had very similar y-intercepts, indicating 

that the mechanism of inhibition is competitive (Figure 3.5 D). The inhibition constant KI 

was determined to be 15±5 µM. Similarly, we found that Mg2+ was also a competitive 

inhibitor at higher concentration (Figure 3.5 A, 3.5 C, and 3.5 E). The KI was determined 

to be 48±10 μM. However, at lower concentration, Mg2+ modestly stimulated the catalysis.         
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Figure 3.5 Mn2+ and Mg2+ are competitive inhibitors of SA PpaC activities. A. 

Pyrophosphatase activity measured with 0.25 mM MnPPi as the substrate, in the presence 
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of MgCl2 (squares) or extra MnCl2 (diamonds). B. Pyrophosphatase activity measured in 

the presence of increasing concentrations of MnCl2 (circles, 0.16 mM; triangles, 0.12 mM; 

squares, 0.08 mM; diamonds, no MnCl2). Curves are fitting of the data using the Michaelis-

Menten equation as described in Materials and Methods. C. PpaC activity measured in the 

presence of increasing concentrations of MgCl2 (circles, 1 mM; triangles, 0.5 mM; squares, 

0.125 mM; diamonds, no Mg2+). Curves are fitting of the data using the Michaelis-Menten 

equation as described in materials and methods. D. Lineweaver-Burk plots revealing that 

Mn2+ functioned as a competitive inhibitor.  The same markers are used for the 

corresponding concentrations as in B. E. Lineweaver-Burk plots revealing that Mg2+ also 

functioned as a competitive inhibitor.  The same markers are used for the corresponding 

concentration as in C. All experiments were repeated six times. The average value and 

standard deviations are shown.  

3.4 Conclusion  

In summary, we have characterized a family II inorganic pyrophosphatase from S. aureus.  

One unanswered question about the function of family II inorganic PPase is the functional 

relevance of dimerization. Since Mn2+ binding, which is indispensable for catalytic activity, 

drives dimerization, it has not been possible to investigate the activity of monomeric PpaC. 

Using site-directed mutagenesis, we found that monomeric mutants containing single 

residue replacements at the dimer interface were completely inactive, indicated that 

dimerization is essential for the catalytic activity in the SA PpaC and likely for other family 

II PPases. In a previous study Halonen et al. found that mutations of H97 and H98 residues 

in BS PpaC, which are located at the subunit interface, greatly destabilized the BS PpaC 

dimer 185. H97 and H98 are conserved in SA PpaC and are involved in Mn2+ binding.  
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Mutation of R99 may have disrupted the local structure of the Mn2+ binding site as well 

and impaired the function of SA PpaC from both aspects of dimerization and metal ion 

binding.  

 

Metal ion binding to family II inorganic PPases has been the subject of several studies 180-

183, 185-187.  Family II inorganic PPases from different organisms have been reported in 

different studies to bind 2 to 4 metal ions, depending on the presence or absence of a 

substrate analog. One interesting observation in our previous study is the low Mn2+ to SA 

PpaC stoichiometry.  In the absence of substrate, the wild type SA PpaC bound to one Mn2+ 

per subunit, which occupies one of two closely positioned sites at the substrate binding 

pocket 164. This result is consistent with a previous study using solution equilibrium dialysis, 

which indicates that in the absence of substrate, family II PPases have one high affinity site 

for Mn2+ per monomer with a Kd in the nM range 186. In the current study we found that 

Mn2+ functions as both a critical active-site co-factor and a competitive inhibitor, with 

similar apparent affinities (KM ~30 µM and KI ~15 µM). In addition, we discovered that 

EDTA-treated SA PpaC needs to be incubated with Mn2+ to function properly. Therefore, 

there needs to be a Mn2+ at the active site before the binding of the substrate. These 

observations prompt us to speculate that the two half-occupied sites in the apo-PpaC crystal 

structure might both be occupied in the substrate-bound enzyme, one by a Mn2+ that enters 

the site during the pre-incubation, and the other by a Mn2+ that enters as the MnPPi complex. 

In the presence of excess free Mn2+, Mn2+ may compete with MnPPi to bind at the second 

site. In the case of Mg2+, the inhibitory effect at high Mg2+ concentration could indicate the 

displacement of Mn2+ by Mg2+ from the active site, consistent with the observed 
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competitive inhibition mechanism. The modest and yet significant enhancement of activity 

at lower Mg2+ concentration is more difficult to speculate. It is possible that an additional 

metal binding site exists in the structure of the substrate-bound SA PpaC, as documented 

before in the case of BS PpaC 182. Occupation of this site by Mg2+ accelerates the hydrolysis 

of PPi at the active site.  

 

While manganese is known as an essential element, the physiological functions of Mn2+ 

remains poorly understood. With the discovery of an increasing number of Mn2+-dependent 

enzymes and the abundance of Mn2+-specific membrane transporters, the cellular function 

of manganese is attracting increasing research attention 188. Many bacteria can vary 

cytoplasmic Mn2+ level over several logs of concentration, which make controlling Mn2+ 

concentration an appealing mechanism for activity regulation 188. PPases play important 

roles in cellular metabolism and biosynthesis of macromolecules. The sensitivity of PpaC 

to the level of free Mn2+ might represent such an example of regulation. Maximum catalytic 

activity is only achieved in a narrow window of Mn2+ concentration. 
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Chapter IV   Structure effect on the degradation of MscS with ClpXP system 

 

4.1 Introduction 

Protein degradation is an important housekeeping mechanism for all cells. It removes 

damaged or excessive proteins in response to cellular condition and maintains protein 

homeostasis in the living cell. Complete degradation of protein substrates requires energy, 

which is necessary to unfold protein structures so they can fit into the active site of the 

proteases. The major class of proteases belong to the ATPases Associated with diverse 

cellular Activities (AAA+) family, which derive energy from ATP hydrolysis to unfold 

protein substrates.189-191 Several types of AAA+ proteases have been discovered in bacteria, 

including ClpXP, ClpAP, ClpCP, HslUV, Lon and FtsH.192 Lon and FtsH contain both the 

ATP-driven unfolding module and the proteolytic site in the same chamber.192, 193 The rest 

are complexes of two proteins: an ATPase that unfolds the substrate (unfoldase) ClpX, 

ClpA, and HslU, and a peptidase that cleaves unfolded substrate ClpP or HslV.189, 194 In 

this study, we focused on the degradation of a membrane protein substrate by ClpXP and 

SspB.  Protein adaptor SspB enhances the binding and delivery of ssrA tagged protein for 

ClpXP degradation.122, 195  

The C-terminal ssrA tag is an 11 amino acids sequence (AANDENYALAA in E. coli) that 

is recognized by the ClpXP complex as a signal for degradation. During protein synthesis, 

a truncated mRNA lacking the stop codon leads to the formation of a nonstop complex 

containing the mRNA, ribosome, and peptidyl-tRNA. Cells resolve this issue via a trans-

translation process, in which the nonstop translation complex is released and the protein 

product is labeled with the ssrA tag at the C-terminus as a marker for degradation 98, 122, 196, 



 57 

197. ClpXP is one of the major players in the degradation of ssrA tagged soluble protein 

substrates. However, the degradation of ssrA tagged membrane protein has not been 

studied until recently. We found that ssrA tagged membrane protein AcrB could be 

degraded by ClpXP.198 Shortly after, Sauer and co-workers reported that when they add the 

ssrA tag to a membrane protein fragment that contains the first three transmembrane helices 

of ProW, it could be completely degraded as well. However, FtsH, but not ClpXP, is 

responsible for the degradation110.  Up to now these are the only ssrA tagged membrane 

protein substrates studied. Clearly, studies of the degradation of more membrane protein 

substrates are necessary to elucidate the mechanism of degradation and specificity. Here, 

we investigated the degradation of ssrA tagged MscS, aiming to investigate structure 

effects on the degradation of ssrA tagged membrane proteins by ClpXP proteases.  

MscS is the mechanosensitive channel of small conductance. MscS directly responds to 

changes in membrane tension by opening nanoscale protein pores and allowing solutes to 

flow across the cell membrane in response to membrane tension 199. Crystal structure of 

MscS from E. coli reveals a symmetric heptamer structure (Figure 4.1 A and 4.1 B) 200, 201. 

It contains three transmembrane helices (THs), with the NT in the periplasm. After TH3, 

there is a large cytoplasmic domain. We cloned MscS with a CT ssrA tag. In addition, we 

added a histag followed by a flag tag at the NT of the protein, and flag tag is used as a 

marker for detection during degradation. Since degradation initiated by the ssrA tag is 

progressive, by putting the flag tag at the NT we can detect all partially degraded fragments 

if they exist. We found that the ClpXP complex can degrade ssrA tagged MscS both in E. 

coli cells and under reconstituted conditions in detergent solubilized state, but the presence 

of a periplasmic inter-subunit disulfide bond prevented complete degradation.  Presence of 
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SspB is not essential, but greatly accelerated degradation. Finally, we developed a 

fluorescence polarization based method and quantitatively revealed the contribution from 

SspB, and the hampering effect of the disulfide bond.  

 

4.2 Material and Method  

4.2.1 Plasmid construction  

Plasmid pET28-MscS encoding E. coli MscS bearing a NT histag was purchased from 

AddGene (Cambridge, MA). A flag tag was introduced at the N terminus right after the 

first Met, and the ssrA sequence was introduced at the C terminus, both using the fast 

cloning method 202. The Quikchange Site Directed Mutagenesis kit (Agilent Genomics) 

was used to introduce point mutations including S9C, R128C, and A286C using the primer 

indicated in Table 4.1. All MscS constructs in this study contain the NT flag tag for 

detection and NT histag for purification. Plasmids and strains for expression of ClpX, ClpP, 

and SspB have been described in an earlier study198.   
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 Table 4.1 Primer design for MscS mutants 

 

 

 

4.2.2 Protein expression and purification 

The ssrA tagged proteins were expressed in the ClpX knockout strain DL41ΔclpX(DE3). 

The corresponding plasmid was transformed into DL41ΔclpX(DE3), and a single colony 

was used to inoculate the overnight cell culture into 300 ml LB medium with 50 µg/ml 

Kanamycin. Cells were cultured at 37oC with shaking until absorbance at 600 nm reached 

0.8, then induced with 1 mM IPTG for 4 hours. Cells were harvested by centrifugation, and 

the cell pellet was stored at -80°C overnight. 

To purify MscS, cell pellet was resuspended in 30 ml HEPES buffer (50 mM HEPES, 0.2 

M NaCl, pH 7.5) with 0.5 mM phenylmethanesulfonylfluoride (PMSF). The supernatant 

was removed and membrane pellet was resuspended in HEPES buffer with 2% Triton X-

100. Fluorescein-5-maleimide, used for labeling with cysteine, was added to a final 

concentration of 1 mM when labeling was required. The mixture was incubated at 4°C with 

Mutant  Primer forward Primer reverse  

S9C gaagatttgaatgttgtcgattgcataaacggcgcgg

gaagc 

gcttcccgcgccgtttatgcaatcgacaacatt

caaatcttc 

R128C gtgttacttgtcatgttctgcccgttccgtgccggag ctccggcacggaacgggcagaacatgacaa

gtaacac 

A286C gtgaaagaagacaaagcttgcgcggccaacgatg

aaaac 

gttttcatcgttggccgcgcaagctttgtcttctt

tcac 
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shaking for 2 hours, followed by centrifugation at 10,000 rpm at 4°C for 20 minutes. The 

supernatant containing solubilized membrane proteins was mixed with Ni-NTA agarose 

resin (Qiagen Inc., Valencia, CA) for 40 min at 4°C. The protein-Ni-NTA suspension was 

packed in an empty column and washed with 20 column volumes of HEPES buffer 

containing 0.3% DDM (n-Dodecyl β-D-maltoside) and 40 mM imidazole. Finally, MscS 

was eluted using HEPES buffer with 0.3% DDM and 500 mM imidazole. Imidazole in the 

elution buffer was removed by dialysis in HEPES buffer containing 0.3% DDM overnight. 

For FITC-MLM labeled samples, ratio of labeling was calculated using absorbance at 280 

nm and 490 nm, respectively, for protein and fluorescein, with extinction coefficient of 

27,310 M-1cm-1and 68,000 M-1cm-1.  The level of labeling is normally ~60%. 

 

The expression and purification of proteases have been conducted as described with minor 

modifications 198.  Briefly, to express proteases ClpX, ClpP and SspB, BL21(DE3) cells 

containing the respective plasmid were cultured overnight. The overnight culture was used 

to inoculate 300 ml LB medium with proper antibiotics (ClpX and SspB are in pET28 

vector with kanamycin resistance, and ClpP is in pQE70 vector with ampicillin resistance). 

ClpX was expressed at 28°C and induced when OD 600 nm reached 0.5 to 0.6 using 0.1 

mM IPTG, followed by incubation for 5 hours. ClpP and SspB were expressed at 37°C and 

induced when OD 600 nm reached 0.6 to 0.8 with 0.5 mM IPTG followed by incubation 

for 3 hours. Cells were harvested by centrifugation at 15,300 ×g and stored at -80°C 

overnight. 

For purification, the cell pellet was re-suspended in 30 ml lysis buffer (50 mM Tris-Cl, 100 

mM KCl, 2 mM MgCl2, 0.015% Triton, 10% glycerol, freshly add 0.15 g DTT to 100 ml 



 61 

of lysis buffer, pH7.5). Cells were lysed using sonication (Sonicator FB120, Pittsbrugh PA) 

in an ice-water bath for 10 min with amplitude of 75% and 5s on/ 5s off cycle. The cell 

lysate was centrifuged at 15,300 ×g, 4°C for 20 min. Supernatant was incubated with Ni-

NTA resin for 40 min at 4°C. Resins were loaded into an empty column and drained, 

followed by wash with 30 column volume of dialysis buffer (300 mM KCl, 50 mM Tris 

HCl, 2 mM MgCl2, 0.015% Triton, 30 % glycerol, 10 mM DTT, pH7.5) with 50 mM 

imidazole.  Protein was eluded with dialysis buffer containing 500 mM imidazole. Finally, 

imidazole was removed through dialysis in dialysis buffer at 4°C overnight. 

 

4.2.3 Degradation in cells 

The proper plasmid was transformed into the indicated strain of E. coli cells. Cell cultures 

were induced at OD600 of ~0.8 with 1 mM IPTG and cultured for an additional 4 hours. 

To prepare samples for immunoblotting analysis, cell pellet was sonicated in dialysis buffer 

and centrifuged to collect membrane vesicles. The membrane vesicles were dissolved in 

SDS loading dye and analyzed using SDS PAGE followed by immunoblotting using an 

anti-flag tag antibody.  

For stepwise degradation, pET28-MscS-ssrA and pBAD33-ClpX were co-transformed into 

DL41ΔclpX(DE3). Cells were cultured in LB medium until OD600 reached 0.8, and 

induced with 1 mM IPTG for 2 hours. To induce the expression of ClpX, IPTG was first 

removed by changing the cells into fresh medium, and arabinose was added to 0.2% (w/v).  

At the indicated time, aliquots of cell culture were withdrawn and centrifuged to collect 

cells. Cell pellets were treated as described above and analyzed using anti-flag 

immunoblotting.  
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4.2.4 Degradation in reconstituted system 

Degradation in vitro was performed following published protocols at 30oC using the PD 

buffer (25 mM HEPES-KOH, pH7.6, 200 mM KCl, 10 mM MgCl2, 10% glycerol, 2 mM 

DTT, 5 mM ATP, 16 mM creatine phosphate, and 0.032 mg/mL creatine kinase) 

supplement with 0.03% DDM 198. The purified protein was mixed with the ratio of (MscS-

ssrA)1:(ClpX)6:(ClpP)14: (SspB)2 = 1:3:6:3 unless otherwise noted. For the immunoblotting 

analysis, aliquots of samples were taken at the indicated time and put on ice. SDS loading 

dye was immediately added to fully stop the reaction. For FP assay, the indicated substrate 

was first added in PD buffer and incubated at 30°C for 2 min. The FP was then monitored 

at ex/em wavelengths of 490 and 520 nm until the reading stabilized, then proteases 

mixture of ClpXP with/without SspB (pre-incubated at 30oC) was added to initiate the 

degradation reaction. The degradation assay was monitored by fluorescence polarization 

using fluorescence spectrometer (PerkinElmer, Inc., Waltham, MA).  

For the binding experiment, substrate was mixed with PD buffer and incubated at 30°C for 

2 min. The ratio of ClpX to SspB was 1: 1, and kept constant. The ratio of substrate to 

ClpX varied from 3:1, 1:1, 1:3, to 1:10 while the concentration of the substrate was kept 

constant. Binding was monitored by fluorescence polarization at the excitation and 

emission wavelengths of 490 and 520 nm, respectively.   

For quantitative measurement of degradation, to convert FP values into actual 

concentration of degraded MscS, we first established a calibration curve 203. We obtained 

a commercial peptide corresponding to the last eight residues of MscS (RVKEDKAA) 

bearing a N-terminal FITC from Genscript. This peptide mimics the product of ClpXP 
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digestion, which lead to small peptide of 8-10 residues204. Concentration of FITC-

RVKEDKAA and FITC-labeled full length MscS-R128C were measured using the 

absorbance of FITC at 490 nm with extinction coefficient of 68,000 (M-1 cm-1). They were 

then mixed at different molar ratios and the FP signal was recorded and plotted against the 

percentage of FITC-peptide fragment in the buffer, mimicking different stages of 

degradation.  

 

Figure 4.1 Crystal structure and expression of MscS-ssrA. A. Crystal structure of MscS 

created from 2oau.pdb 201. Yellow frame marked the location of the cell membrane. B. 

Topology model of MscS. A flag tag was introduced the NT, and a histag followed by a 

ssrA tag were introduced at the CT. C. Anti-flag immunoblotting of MscS and MscS-ssrA 

in indicated cells. Introduction of CT ssrA tag lead to MscS degradation in E. coli. Removal 

of ClpX from the genome aborted the degradation. 1) MscS in DL41(DE3) 2) MscS in 

DL41ΔClpX (DE3) 3) MscS-ssrA in DL41(DE3) d) MscS-ssrA in DL41(DE3) ΔClpX. 

From top to bottom, bands in the molecular weight markers are 95, 72(red), 55, 43, 34, 26, 

and 17 KD. 
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4.3 Result and discussion  

4.3.1 The ssrA tag can facilitate degradation of full length MscS 

To investigate if the ssrA-tag could facilitate the degradation of MscS, we genetically 

introduced the ssrA-tag after a histag at the C-terminus of MscS to create MscS-ssrA.  

MscS -ssrA was completely degraded in DL41(DE3), as revealed by the lack of detectable 

band in the anti-flag immunoblotting analysis (Figure 4.1 C). While the control construct, 

MscS, displayed a clear band. In the clpX knockout strain, both the control construct and 

the ssrA-tagged construct expressed at similar levels, indicating that the removal of ClpX 

in the cells is responsible for the lack of degradation of SsrA-tagged MscS. MscS-ssrA 

migrated slightly slower than MscS due to the presence of the extra 11 residues in the ssrA 

tag. This result indicate that MscS-ssrA can be fully degraded in E. coli cells, and ClpX 

plays a critical role in this process. 

 

4.3.2 MscS is membrane integrated 

We do not expect the presence of the flag tag and the ssrA tag to affect membrane 

integration of MscS. To confirm this speculation, we fractionated DL41∆clpX(DE3) cells 

expressing MscS-ssrA into membrane fraction and soluble fraction, and detected the 

presence of MscS-ssrA in the fractions. As shown in Figure 4.2 A, the protein exists 

predominantly in membrane vesicles. Little could be detected in the soluble fraction. To 

demonstrate that ClpX and its partners could degrade membrane integrated MscS, we co-

transformed pET28-MscS-ssrA and pBAD33-ClpX into DL41∆clpX(DE3). The 
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expression of MscS-ssrA was first induced using IPTG. After 2 hours, expression of ClpX 

was induced using arabinose. As shown in Figure 4.2 B, MscS-ssrA was expressed in the 

∆ClpX strain before ClpX expression. After the induction of the expression of ClpX, the 

protein disappears within 30 min. ClpX is clearly required for the degradation of MscS-

ssrA.   

 

Figure 4.2 Expression of MscS-ssrA. A. MscS-ssrA is present in the membrane vesicles 

(lane 1), not in cytosol (lane 2). From top to bottom, bands in the molecular weight markers 

are 95, 72(red), 55, 43, 34, and 26 kD. B. MscS-ssrA expressed after IPTG induction for 2 

hours (lane 1), and then induced with 0.2% arabinose for 30 min (lane 2) and 1 hour (lane 

3).   

4.3.3 Detergent solubilized MscS-ssrA can be degraded using purified ClpXP 

To further investigate the mechanism of degradation, we expressed and purified MscS- 

ssrA in the detergent solubilized state and examined its degradation using purified ClpX 

and ClpP (Figure 4.3). In addition, we examined the effect of SspB, a known chaperone 

that enhances the interaction between ssrA tagged soluble protein substrate with ClpX. As 
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shown in Figure 4.3 A and 4.3 B, MscS could be completely degraded by ClpXP/SspB. 

The presence of SspB greatly increased the efficiency of degradation, similar to the case 

of soluble protein substrates.  

 

Figure 4.3 Degradation of detergent solubilized MscS-ssrA using ClpXP. A. Degradation 

of detergent purified MscS-ssrA using purified enzymes, at ratio of 1:2:3:1. From left, the 

samples were taken at 0. 2.5, 5, 10, 15, 20, 30, 40 min. B. Same as A. except that SspB was 

not added during the degradation process. 

 

4.3.4 Development of a fluorescent polarization assay for real-time monitoring of 

degradation 

To quantitatively monitor the degradation process, we developed a FP based method. 205, 

206. MscS does not contain Cys. We introduced a unique Cys into the sequence by site 

directly mutate R128 into C. We choose this site because it is well exposed and thus 

accessible for labeling according to the crystal structure. They are far apart in neighboring 
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subunits to avoid the potential formation of disulfide bond. And it is at the boundary 

between the transmembrane domain and cytoplasmic domain. MscS-R128C was labeled 

with fluorescein-5-maleimide. Upon digestion, the fluorescent labeled substrate becomes 

smaller, and the FP decreases with the shrinkage of the molecule until the peptide 

containing fluorescent labeled R128C was released from the protein. It has been reported 

that the ClpXP pore structure is very flexible and is able to accommodate multiple peptide 

chains simultaneously207. Therefore, we did not expect the labeling to affect degradation. 

As shown in Figure 4.4, we can clearly monitor a decrease of FP value. To confirm the 

protein is indeed degraded, we also took samples at different time points and conducted 

anti-flag western blot analysis. The reduction of FP signal correlates well with the decrease 

of WB band intensity, indicating that FP could be used to monitor protein degradation. 

 

Figure 4.4 Fluorescence polarization monitor the degradation of MscS-ssrA. A. 

Monitoring of MscS-R128C-ssrA degradation using fluorescent polarization in the 
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presence (squares) or absence (circles) of SspB. In the FP was monitored at ex/em 

wavelengths of 490 and 520 nm, respectively. In the absence of ClpP (triangles), binding 

to SspB and ClpX lead to the increase of FP. B. anti-flag WB of samples before digestion 

(lane 1) or 20 min (lane 2) into digestion in the presence of SspB. 

 

4.3.5 SspB increases the rate of association of ClpX with substrate 

SspB is known to enhance degradation efficiency of ssrA tagged substrate by ClpXP. The 

fluorescence polarization method offered us an opportunity to directly monitor the effect 

of SspB on the interaction rate between ClpX and fluorescein labeled substrate. As shown 

in Figure 4.5, binding of ClpX to fluorescent labeled MscS-R128C-ssrA lead to an increase 

of fluorescent polarization value. In the absence of SspB, little binding could be observed 

at low ClpX to MscS ratios. A slow increase of FP signal could be observed when ClpX 

was in 10 fold excess of MscS. In contrast, in the presence of SspB (kept at ClpX6:SspB2= 

1:1 molar ratio), clear increase of FP could be observed for all concentrations tested. The 

initial binding rates at 10 fold excess of ClpX were increased by ~9 fold in the presence of 

SspB.  
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Figure 4.5 SspB increases ClpX association with substrate. Monitoring of ClpX and 

substrate association using fluorescent polarization, with (left) or without (right) SspB. 

Ratio of MscS-R128C-ssrA to ClpX is 3:1 (grey circles), 1:1 (black squares), 1:3 (grey 

triangles), and 1:10 (black circles). When SspB was present, it was kept at a ratio of 1:1 to 

ClpX. 

 

4.3.6 Establishment of a calibration curve to measure degradation using FP 

To convert the decrease of FP value into amounts of substrates degraded, we first 

established a calibration curve.  As discussed in methods, a commercial peptide 

corresponding to the last 8 residues of MscS, bearing a NT fluorescein tag, was used to 

mimic the product of complete degradation. Full length MscS-R128C was labeled using 

fluorescent-MLM and used as the pre-induction species. The two molecules were mixed at 

different molar ratios to mimic different stages of degradation, and the FP signal was 

measured at each ratio. The increase of FP signal was plotted against the percentage of full 

length protein in the mixture (Figure 4.6). The linearity of the plot is very good. By 
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comparing the decrease of FP to the actual measurement during the degradation experiment, 

we can obtain the percentage of full length protein in the sample, and thus calculate the 

concentration of proteins degraded.     

To quantitatively describe the degradation experiment, R128C is not the best site for 

labeling. Degradation of substrate by ClpXP occurs progressively, from the CT to the NT. 

In the process, the presence of partially degraded state affects the FP value. To eliminate 

this problem, we created a new mutant, A286C. A286 is the last residue in the structure of 

MscS, right before the ssrA tag. Therefore, it is degraded within 2 to 3 steps of degradations, 

and is released as a small fluorescein labeled peptide at the very early stage of the process. 

This construct has been created, and its degradation will continue to be studied in our lab. 

 

Figure 4.6 Calibration curve to convert change of FP into percent of full length protein left.  
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4.3.7 S9C degradation-Formation of disulfide bond did not affect degradation in vivo 

MscS S9 is on the periplasmic side of the membrane 208, 209 and the S9C mutant has been 

shown to form disulfide bond linked dimers. 210 As shown in Figure 4.7, S9C-ssrA has a 

clear dimer band. Similar as the wild type MscS, expression of S9C could only be detected 

in the ∆clpX strain, indicating that the introduction of the disulfide bond did not affect the 

degradation of the ssrA-tagged protein in cells. Without the ssrA tag, both wild type and 

S9C MscS expressed to similar levels, indicating that the mutation and formation of 

disulfide bond did not affect the expression of the protein. When samples were pre-

incubated with 10 mM DTT, the dimer band disappeared, further confirming that this high 

molecular weight band came from a disulfide linked MscS dimer.  

We examined the degradation of detergent purified MscS-S9C-ssrA. Interestingly, we 

observed the accumulation of bands corresponding to partially degraded proteins (Figure 

4.8). There is one band at a location higher than monomer MscS, with apparent molecular 

weight around 40 kD, 10 kD larger than that of the MscS monomer. We speculate that this 

correspond to a full length MscS linked to a fragment via disulfide bond. As expected, 

treatment with DTT before gel analysis eliminated this band. Next, we repeated the 

experiment with higher protease to substrate ratio, and observed that the 40kD band 

disappeared over time. When the samples were analyzed using 25% gels, a small fragment 

at ~ 20 kD could be observed. This species breaks down into smaller fragments of half of 

the size upon reduction. And this small fragment did not disappear over time even when 

we further increase the concentration of the protease complex. We speculate this 

correspond to the pieces of partially degraded proteins linked by the disulfide bond. We 
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did not observe small fragments during the degradation of wild type MscS. This result 

indicate that the presence of a disulfide bond prevented complete degradation of the bonded 

part of the protein. This is different from previous observation that ClpXP degraded 

disulfied-cross-linked dimers of soluble proteins, which indicates the pore size of protease 

should be large enough for passage of two or more peptide chains.207 the ClpXP system 

can handle disulfide-bonded soluble proteins 207. We reason that the extra energy barrier 

required by stripping away detergent from the protein prevented the degradation.  

 

Why we did not see small fragment similarly when we study the degradation in cells? There 

are two possibilities. First, the formation of the disulfide bond may not be efficient in vivo. 

Therefore, a large portion of the protein might actually exist as monomers. Second, there 

are other proteases in the cell, such as FtsH. Study have shown that FtsH is capable of 

degrading meta-stable protein substrate, including membrane proteins. Therefore, the 

MscS fragment, which does not have a well-folded stable structure, could have been 

degraded by FtsH and other proteases. 
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Figure 4.7 Degradation of MscS containing an inter-subunit disulfide bond. 1. MscS-S9C 

constructs in DL41(DE3) 2. MscS-S9C-ssrA in DL41(DE3) 3. MscS-S9C in 

DL41(DE3)ΔClpX 4. MscS-ssrA in DL41(DE3)ΔClpX.  
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Figure 4.8 Degradation of MscS-S9C in reconstituted system. A. At the low enzyme to 

substrate ratio of 1:2:3:1. DTT was left out of the PD buffer. Bottom is the same set of 

samples pretreated with 10 mM DTT to reduce disulfide bond before loading to the gel. B. 

Digestion at high enzyme to substrate ratio of 1:3:6:3. From 1 to 8, samples were taken as 

0, 2.5, 5, 10, 15, 20, 30 and 40 min into digestion. C. Higher percent gel to reveal an 

additional small band at approximately 20 kD, which under the reduction condition is 

reduced into fragments of half of the size. Even at the higher enzyme ratio, this small 

fragment cannot be further reduced. Molecular weight of bands in markers are 95. 72 (red), 

55, 43, 34, 26 kD.  
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4.3.8 Effect of substrate structure on the degradation with ClpXP 

Next, I used FP to compare the degradation rate between S9C and wild type MscS. Similar 

as shown in the western blot result, S9C was degraded slower than the wild type MscS 

(Figure 4.9).  S9C degradation measured in the presence of DTT is similar as that of the 

wild type MscS, as expected as a single point mutation is not expected to affect the 

efficiency of digestion (data not shown).  

 

Figure 4.9 Substrate structure effect on the degradation with ClpXP.  FP experiment 

reveals that MscS-R128C(grey)/S9C-ssrA(black) was degraded slower than MscS-R128C-

ssrA. After prolonged incubation, both proteins can be degraded.   

 

 

    

Copyright © Xinyi Zhang 2018 
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 Chapter V   Construction of AcrB nanodisc  

 

5.1 Introduction  

Membrane scaffold protein (MSP) is an amphipathic α-helical protein modified from the 

amino acid sequence of human apolipoprotein A-1 (apo A1)211. Apolipoprotein A1 is the 

major component of high density lipoprotein in plasma. Apo A1 has a 43 residues N- 

terminal globular domain and a 200 residues C-terminal lipid binding domain212. The C-

terminal domain of apo A1 consists of  repeated α-helix 213. MSP is based on apo A1 but 

without the globular N-terminal domain. A histidine tag is added on the N-terminal of MSP 

to facilitate the purification step214. 

 

MSP tightly wraps around the phospholipid bilayer disc to form a highly homogeneous 

monodisperse sample215. Larger membrane protein complexes require larger phospholipid 

bilayer, thus extended versions of MSP that contain one, two or three additional 22-mer 

amphiphatic helices inserted in the original MSP1 were created.211. The extended MSP 

named MSP1E1, MSP1E2 and MSP1E3 have 22, 44 and 66 amino acid added respectively 

to the original MSP1 of around 200 amino acid residues211, 216, increasing the disk diameter 

from 9 nm to 20 nm. (Figure 5.1) 
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Figure 5.1 Schematic of MSP. A. Structure of nanodisc. Orange circles are the 

hydrophobic head group of the lipid. Green and blue belts represent two copies of MSP. 

Adapted with permission from ref 215. B. The additional amino acids were inserted at 

position 55 into MSP1. Reprinted (adapted) with permission from ref 216, Copyright (2007) 

American Chemical Society. 

 

5.2 Material and methods 

5.2.1 Cloning, expression and purification of MSP1E3 

Plasmid encoding the sequence of MSP1E3 was obtained from Addgene, in which the gene 

of MSP1E3 was cloned into vector pET28. The plasmid was transformed into the 

expression host E. coli BL21 (DE3) for expression.  

For protein expression, 5 ml Luria Broth (LB) medium containing kanamycin (50 µg/ml) 

was inoculated with the indicated bacterium strain and cultured overnight, and then diluted 

into 300 ml sterilized LB medium containing 50 µg/ml kanamycin the next morning. The 

culture was incubated with shaking at 37°C until the absorbance at 600 nm reached 0.8, 



 78 

then induced by the addition of 1 mM IPTG. The temperature was lowered to 28℃ after 

induction and culture was incubated with shaking for 4 hours after induction. Cells are 

collected by centrifugation at 8000×g for 10 min, the cell can be stored at -80°C overnight. 

To purify MSP1E3, cell pellets were re-suspended into 30ml lysis buffer (phosphate buffer 

pH 7.4, 1 mM PMSF, and 1% Triton X-100). The mixture was sonicated on ice to rupture 

the cells. The cell lysate was clarified by centrifugation at 10,000 rpm for 20 min. The 

supernatant solution was loaded onto a Ni-NTA column equilibrated with the same 

phosphate buffer. The column was first washed with 15 column volumes of wash buffer 1 

(40 mM Tris/HCl, 0.3 M NaCl, 1% Triton X-100, pH 8.0), followed by the same volume 

of wash buffer 2 (40 mM Tris/HCl, 0.3 M NaCl, 50 mM cholate, 10 mM imidazole, pH 

8.0), and last washed with same volume of wash buffer 3 (40 mM Tris/HCl, 0.3 M NaCl, 

30 mM imidazole, pH 8.0). MSP1E3 was eluted with buffer 4 (40 mM Tris/HCl, 0.3 M 

NaCl, 0.5 M imidazole).  

Purity of MSP1E3 was examined by running SDS-PAGE. Imidazole was removed through 

dialysis against dialysis buffer (20 mM Tris/HCl, 0.1 M NaCl, 0.5 mM EDTA, pH 7.4), 

then purified protein was stored at 4°C. 

5.2.2 Assembly of nanodisc  

Nanodiscs self-assembled when detergents are removed from the mixture. Lipid-detergent 

mixture was prepared by adding 100mM sodium cholate solution into dried lipid film (1-

Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine, POPC) to final phospholipid 

concentration of 50 mM. When indicated, fluorescent lipid (1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl), NBD-PE) was added to a 
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ratio of NBD-PE to POPC of 2:191. MSP1E3 solution was added to cholate-solubilized 

phospholipid to the ratio of NBD-PE: POPC: MSP1E3 2: 128:1. The final concentration 

of cholate was adjusted to the range of 12 mM to 40 mM. The mixture was incubated at 

4°C for 20 min. To remove cholate, Biobeads SM-2 (Bio-Rad, Hercules, CA) was added 

to 0.5 - 0.8g per milliliter of the reconstruction mixture. The mixture was incubated with 

shaking on ice for 4 hours to yield nanodiscs.  

5.2.3 Assembly of nanodisc containing AcrB trimer 

AcrB was expressed and purified as described previously.217 MSP1E3 stock and cholate-

solubilized lipid were mixed with AcrB to give an AcrB: POPC: MSP1E3 ratio of 1:45:1. 

Self-assembly of the nanodisc was conducted as described above. AcrB-containing 

nanodiscs were analyzed using SEC as described followed. The chromatogram and SDS-

PAGE analysis of the indicated fractions were shown in Figure 5.4 and 5.5. 

5.2.4 Nanodisc detection and identification 

The nanodisc sample was filtered through 0.22 µm filter and analyzed using size exclusion 

chromatography (Bio-Sil SEC 250 from Bio-rad), at a flow rate of 0.5 ml/min. The dialysis 

buffer was used as the mobile phase and absorbance of eluent was monitored at 280 nm. 

0.5 ml fractions were collected. The elution chromatogram is shown in Figure 5.3. SDS-

PAGE was used to examine the presence of MSP1E3, and fluorescence spectrometer was 

used to monitor the presence of fluorescent lipid when NBD-PE was used. The excitation 

wavelength of NBD-PE is 460 nm and emission wavelength is 535 nm. The presence of 

AcrB in the nanodisc was identified by western blot with anti-AcrB antibody. 
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5.3 Result and discussion 

5.3.1 MSP1E3 expression and purification 

MSP1E3 has the molecular weight of 32.5 kD. The protein was purified using Ni-NTA, 

then SDS-PAGE was used to check the expression and purity. On the 12% SDS-PAGE 

(Figure 5.2), a dark band at around 33 kD indicates that MSP1E3 was purified. Though the 

purity is not high, the contamination bands are not involved in the formation of nanodisc 

and were later washed away (see Figure 5.3). MSP1E3 can be expressed in sufficient 

amount, there is an identical band of MSP1E3 at 33 KD even after five fold dilution of the 

purified sample (Figure 5.2). The BL21(DE3) strain can produce MSP1E3 up to 25mg per 

liter of culture.  

                                                  

            

Figure 5.2 Expression of MSP1E3. With five fold dilution, a clear band at around 32.546 

kD, the calculated molecular weight of MSP1E3.  
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5.3.2 Formation of the Nanodiscs with fluorescent lipids 

The fluorescent nanodiscs were prepared from a ratio of MSP/POPC/NBD-PE 1:128:2. 

Nanodisc would only form with fixed number of phospholipids214, 216, 218, thus, the ratio 

between MSP and phospholipid is crucial.  Size exclusion chromatography was used to 

optimize and analyze the formation of the nanodiscs (fluorescent lipid was used as 

indicated). In Figure 5.3 A, a sharp peak shown around 20 min corresponding to the 

fluorescent nanodiscs. No peak showed up when the ratio of MSP/phospholipid varies (data 

not shown).  The vertical lines are the time points collected during elution with each 

fraction about 1 min in duration. The formation of fluorescent nanodisc was confirmed 

though fluorescence spectroscopy and SDS-PAGE. Figure 5.3 B is the fluorescent spectra 

of each fraction from A, the peak of fluorescent intensity in each fraction was used to draw 

the column diagram in Figure 5.3 D. The intensity of the peaks correlated well with the 

band intensity in Figure 5.3 C, which indicate that the fluorescent nanodiscs were formed 

since MSP1E3 and the lipid co- eluted at the same time.  
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Figure 5.3 Formation of empty nanodisc with fluorescent lipid. A. Size exclusion 

chromatogram of fluorescent nanodisc. B. Fluorescence spectroscopy of fractions as 

indicated in A. C. SDS-PAGE of the fractions as indicated in A. D. The peak intensity of 

the fluorescence spectra of each fraction as shown in B. The peak intensity of MSP in SDS-

PAGE and fluorescence emission occurred at the same fractions (4 and 5), confirming the 

formation of fluorescent nanodisc. 

5.3.3 Formation of AcrB nanodisc 

In order to insert AcrB into the nanodisc, lipids were reduced so that AcrB could self-

assemble into the lipid bilayer. The ratio of AcrB: POPC: MSP1E3 ratio is optimized to 

1:45:1. The AcrB nanodisc was constructed following the procedure from material and 
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method. There is a major peak at around 19 min elution time (Figure 5.4), which is shorter 

than empty nanodisc shown at around 20min (Figure 5.3 A). The major peak is the AcrB 

nanodisc, which is confirmed in the following discussion. The ratio is critical for the 

formation of membrane protein inserted nanodisc. No distinct peak was observed if the 

ratio changed (data not shown).      

 

 

Figure 5.4 Chromatogram of AcrB-nanodisc. The peak fraction at ~19 min was collected 

and analysis using SDS-PAGE. 

To confirm the formation of AcrB nanodisc, SDS-PAGE with silver stain was used. In 

Figure 5.5 A, two major bands showed the purified proteins used in the assembly, with 

AcrB monomer around 100kD, and MSP1E3 around 33kD. Figure 5.5 B is the silver stain 

of two nanodiscs. On the left, the distinct dark band is MSP, while, on the right, AcrB 
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nanodisc has two bands, one for AcrB and the other one for MSP. The MSP band is faint 

in the nanodisc because AcrB is much larger than MSP.   

 

 

Figure 5.5 Detection of AcrB-nanodisc. A. SDS-PAGE of purified AcrB and MSP1E3. B. 

Silver stain of AcrB-nanodisc peak fraction compared with empty nanodisc peak fraction. 

 

 

 

 

Copyright © Xinyi Zhang 2018 
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Chapter VI   Conclusion  

 

Protein engineering, using site-directed or random mutagenesis, alters the functions or 

structures of the target proteins to produce desired novel proteins. In the last 3 decades, 

protein engineering has been used in a wide range of areas, including industrial, biomedical 

and research applications.2 In this thesis, functional tags were constructed and fused onto 

target proteins. In this way, the functional tag can be used for immobilization of active 

proteins.  Also, protein modified with specific tag can help with the study of membrane 

protein degradation.  

The dual-functional tag, histidine-AHA tag, could facilitate the covalent binding of the 

target protein through AHA as well as metal affinity purification through histidine. This 

AHA incorporated dual-functional tag seems less likely to disrupt the protein structure. 

The pyrophosphatase PpaC and green fluorescent protein sfGFP were successfully tagged 

with this functional tag without diminishing of protein activities. AHA as a reactive group 

in the protein could be used for other applications such as cross-linking or labeling. And 

this tag could be applied for other proteins in general.  

The signaling peptides ssrA-tag was used to induce the degradation of soluble protein in 

E.coli. It is intriguing to know ssrA tagged membrane protein could also be degraded with 

proteases system in E.coli. The ssrA tagged membrane protein MscS was found to be 

degraded in vivo. One of the proteases system ClpXP was used for the in vitro degradation 

study of MscS, and dimer structure of MscS was found to lower down the degradation rate 

with ClpXP system. With the help of protein engineering, MscS was modified with ssrA-

tag, so that it can be used for detailed, stepwise studying of protein degradation.       
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Appendix 

 

Activity assay of membrane protein DGK 

A.1 Introduction 

Diacylglycerol kinase (DGK) in bacteria is a small membrane protein, which catalyzes the 

phosphorylation of diacylglycerol using ATP to produce phosphatidic acid and ADP.219-221 

DGK in Gram-negative bacteria is an essential enzyme, critical for cellular response to 

environmental stress.222 As a small membrane protein, DGK is a 121-residue kinase with 

a molecular weight of 13kD.221 It is a homo-trimer with each monomer contains three 

transmembrane helices and an amino-terminal amphiphilic helix.223  

DGK, being a small homo-trimer membrane protein, can be easily used as a model protein 

to study protein enzymology,224-226 membrane protein folding processes,220, 227 oligomer 

assembly,228, 229 and protein stability.221, 230   

 

A.2 Material and methods 

A.2.1 DGK expression and purification 

Gene of DGK was cloned into vector pET22 with N-terminal histag to facilitate 

purification. The plasmid was transformed into BL21(DE3) cell for expression. A single 

colony was used to start an overnight culture, which was used to inoculate 300 ml LB- 

Ampicillin medium the next morning. Cells were cultured at 37°C until OD 600 nm 

reached 0.8, and then induced with 1 mM IPTG followed by culturing for additional four 

hours. Finally, the cells were collected by centrifugation and stored at -80°C. 
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To purify DGK, the cells pellets were re-suspended in phosphate buffer (50 mM sodium 

phosphate, 0.3 M NaCl, pH 7.5) containing 1 mM PMSF. The cell suspension was 

sonicated on ice-water bath for 20 min with 5 s on/off intervals. Cell lysate was clarified 

by centrifugation at 15,300 × g, 4°C for 20 min. Cell debris was collected and re-suspended 

in phosphate buffer containing 3% OG for 2 hours. The membrane protein suspension was 

clarified by centrifugation at 15,300 × g for 30 min at 4°C. The supernatant was mixed 

with Ni-NTA beads and incubated with beads at 4°C for 1 hour. The beads were loaded 

into a column and drained, followed by washing with 15 bed volumes of phosphate buffer 

containing 1.5 % OG and 0.03M imidazole, then with 5 bed volumes of phosphate buffer 

with 0.5% DM. At last, DGK was eluted with phosphate buffer with 0.5% DM and 0.25 M 

imidazole. Imidazole was removed from protein solution by dialysis against phosphate 

buffer with 0.5% DM. 

  

A.2.2 DGK activity assay 

Assay mixture preparation  

In order to test DGK activity, reaction buffers have to be prepared as followed precisely. 

Since DGK activity assay is based on a coupling system, which involves the use of 

detergent/lipid mixed micelles to solubilize both DGK and its substrate, for example, DOG 

(1,2-dioctanoyl-sn-glycerol). Thus, steps, as described followed, for making the assay 

mixture is critical. The assay mix was prepared using 75 mM PIPES with 0.1 mM EDTA, 

and NaOH was used to adjust the pH to 6.9. Then solid DM (Decyl β-D-maltopyranoside) 

was added into the mixture to the final concentration of 21 mM (or 1%). Cardiolipin was 

added to make the final concentration of 3 mol%. Substrate DOG was mixed with the assay 
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solution described above to the final concentration of 4.5 mol%. All detergents were 

dissolved by water-bath sonication until the solution was completely clear. Other reaction 

ingredients were added at last, to the final concentrations of 3 mM ATP, 15 mM Mg 

Acetate, 1 mM PEP, and 0.2 mM DTT from stocks of each solution with concentration of 

50 mM, 1 M, 100 mM, and 100 mM respectively. The assay mix was allocated into small 

tubes for reactions. A stock NADH solution was prepared by adding NADH into the assay 

mix to the final concentration of 2.5mM. And this NADH solution was also allocated into 

small tubes to avoid contamination and multiple freeze-and-thaw process.  

Activity assay 

The NADH solution was mixed with the assay mix to make the final concentration of 

NADH to be 0.25mM. Then PK (pyruvate kinase) and LDH (lactate dehydrogenase) was 

added to final concentrations of 14 and 22 unit respectively. To initiate the reaction, DGK 

was added into the mixture and absorbance at 340 nm was observed and recorded during 

the reaction using 60S UV-Visible Spectrophotometer (Thermo Fisher Scientific, Grand 

Island, NY). 
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Table A.1 DGK assay mixture (add each of the following components by order) 

Order  Component Final concentration  Stock 

concentration  

Mixing guide 

1 PIPES 75 mM  Adjust pH to 6.9 using 

NaOH 1 EDTA 0.1 mM 100 mM 

2 DM 21 mM or (1%)   

3 Cardiolipin  0.66 mM or ( 3mol%)  Dissolve by sonication 

in water bath 

4 DOG 0.95 mM or 

(4.5mol%) 

 Dissolve by sonication 

in ice-water bath 

5 ATP 3 mM 50 mM  

6 MgAcetate 15 mM 1 M  

7 PEP 1 mM 100 mM  

8 DTT 0.2 mM 100 mM Add freshly  

Total  Assay mix   Aliquot and store at -

80°C 

 

NADH solution 2.5 mM  Add freshly in to assay mix  

from above and aliquot, 

store at -80°C, do not re-

use. 
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A.3 Result 

A.3.1 DGK expression 

DGK was purified as described in the method. The monomer has a molecular weight of 

13kD. There is a significant band in Figure 6.1. (on the right), has the molecular weight 

around 13kD, indicates that DGK can be expressed and purified at high concentration from 

the cell. N-terminal his-tag can be used for purification of DGK, while C-terminal his-tag 

lead to the inhibition of DGK expression. When his-tag was added at the C-terminus, no 

DGK was detected after purification. (data not shown) 

                                 

Figure A.1 Expression of DGK. SDS-PAGE of purified DGK with 20% gel. Lane on the 

right is elution fraction of DGK, and lane on the left is protein ladder.  

A.3.2 DGK activity 

The activity assay was conducted followong the procedure described in method. NADH 

solution was mixed with assay mixture freshly, and enzyme LDH and PK was added and 

mixed well. Absorbance at 340 nm was monitored. DGK catalyzes the phosphorylation of 

diacylglycerol (here 1,2-dioctanoyl-sn-glycerol (DOG) was used) using ATP as phosphate 

source. This process produces phosphatidic acid and ADP. The product ADP then reacts 

with (phosphoenolpyruvate) PEP, leading to the production of pyruvate using PK. As 

pyruvate was formed, NADH can react with pyruvate using LDH to produce NAD+ and 
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lactate. For every one ADP produced by DGK, one molecule of NADH is converted to 

NAD+. NADH has a strong absorbance at 340 nm, but NAD+ does not. Thus, the activity 

of DGK can be indirectly measured by monitoring the decreasing in absorbance at 340 nm. 

(Figure 6.2) 

In the reaction, DGK was used as the final concentration of 0.09 mg/ml. The decreasing in 

absorbance was recorded.  

                     

Figure A.2 Activity of DGK monitored by the consumption of NADH. Data from two 

repeats are shown. 

The activity was calculated using the formula shown below:  

∆𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒
𝑡𝑖𝑚𝑒(𝑠)

∗ 60𝑠/𝑚𝑖𝑛

6110𝑎𝑢
𝑐𝑚. 𝑀

∗ 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝐷𝐺𝐾(𝑚𝑔)

⁄

 

Through the calculation, the rate of my DGK is around 55 unit/mg. 
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