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ABSTRACT OF THESIS 

 

 

CORN GRAIN YIELD COMPONENTS AND NUTRIENT ACCUMULATION IN 
RESPONSE TO NITROGEN, PLANT DENSITY AND HYBRID 

 

 

Modern maize hybrids exhibit higher yields, increased biomass production, stress 
tolerance and greater nitrogen (N) use efficiency. Increased biomass accumulation can 
influence nutrient uptake and lead to increased nutrient removal. Hybrids were tested at 
seeding rates (SR) of 74000 (low) and 148000 (supraoptimal) plants ha-1 and at N rates of 
0 (deficient) and 390 (non-limiting) kg N ha-1. Plants were sampled at V7, V14, R3, R5 
and R6 and separated into vegetative and reproductive fractions for determination of dry 
matter and N accumulation. Grain yield was harvested at R6. 
The high SR and high N treatment combination resulted in greatest biomass accumulation, 
crop growth rates, and N accumulation per hectare in both vegetative and grain tissues. 
The high SR and high N combination maximized grain yield at 20.6 Mg ha-1, essentially 
through an increase in kernels ha-1. High SR decreased kernel weight, even with high N. 
At the higher plant densities resulting from the high SR, however, average utilization of 
available N was enhanced. The results have implications for improved management 
practices under high input systems and providing insight to growers who incorporate 
variable seed and N rates. 

 
 
KEYWORDS: nitrogen rates, plant density, maize, nutrient uptake, grain yield, yield 
components. 
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Chapter 1. Literature Review 

 
 
1. Introduction 
 

Maize (Zea mays L.) grain yields have exhibited steady increments since hybrids 

were introduced in the 1930s to 1940s in the U.S. (Duvick, 2005). Past growing trends 

resulted mainly from the application of simultaneous efforts; genetic gain achieved by 

plant breeding and improved management practices by producers (Tollenaar and Lee, 

2002). Amongst the numerous management practices adopted by farmers to complement 

the genetic improvement of corn plants; the use of inorganic N fertilizers and higher plant 

populations were the most decisive factors. Such changes introduced the concept of high 

input systems, in which maize’s strong dependence on plant density and N availability 

were emphasized (Egli, 2008: Sangoi, 2001). Modern corn hybrids exhibit lower lodging 

and higher tolerance to stresses. Consequently, they demand higher seeding rates than 

their predecessors to maximize yields (Reeves and Cox, 2013). Higher plant populations 

in maize can be achieved by decreasing row spacing and thus creating a more equidistant 

plant distribution within the plant community. As a result, the amount of solar radiation 

that is intercepted by the crop canopy can be increased earlier in the season (Andrade et 

al., 2002), particularly under high yielding environments.  

By increasing plant densities in corn, one of the two major yield determining 

components; kernel number per unit area, is directly affected. This is a direct 

consequence of more ears per area being achieved when establishing higher seeding rates 

(Egli, 2015). Following this reasoning process, supraoptimal plant populations and ultra-

high N rate treatments are thus expected to promote higher yields under irrigated 
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production systems when compared to low plant densities, all other factors kept equal. 

Also, the higher levels of N fertilizer applied are expected to be sufficient for kernel 

weight development under increased plant population densities.  

In view of a constant upward trend in maize plant populations in the last decades 

(Egli, 2015), it is vital to investigate physiological responses of corn in response to higher 

plant densities and how yield components might be influenced by the combined 

application of non-limiting N fertilizer. In this sense, evaluating crop biomass production 

and nutrient accumulation dynamics both per plant and at a community level will provide 

evidence to better understand grain nitrogen removal at harvest and the potential effect on 

kernel mass under contrasting nutritional scenarios. 

 

1.1. Which key factors contributed to higher maize grain yields? 
 

1.1.1. Higher Populations and Narrow Rows 
 

Increased plant population density in maize production is the agronomic 

management tool that most contributed to maize grain yield increase in the past decades 

in the United States (Tokatlidis and Koutroubas, 2004; Egli, 2015). According to Egli 

(2015), the upward trend in plant density has been uninterrupted since the 1930s and has 

quadrupled during the so called ‘hybrid era’, increasing from 30,000 to approximately 

75,000 plants ha-1 by the year 2000.  However, after carefully examining the literature 

and comparing hybrids from different periods, the author also concluded that kernels per 

ear and number of ears per plant showed no increase as decades went by. Differences in 

maize grain yield are determined for the most part by kernel number per unit area 

(Maddonni et al. 2006; D’Andrea et al. 2008; Egli 2015; Andrade et al. 2000). 
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Consequently, the need to increase plant densities was imminent, turning maize into a 

highly population dependent crop. As a result, maximization of grain yield per unit area 

has been lately attributed almost exclusively to planting at greater densities (Raymond et 

al. 2009).  

Improved modern hybrids exhibit higher tolerance to increasing seeding rates and 

other biotic stresses such as insect feeding and pathogen infection (Bender et al. 2013b). 

Also, much of the acquired ability to withstand and succeed at higher plant populations is 

due to greater efficiency to capture and use available resources such as water, solar 

radiation and nutrients (Boomsma et al. 2009; Raymond et al. 2009). All these advances 

found in today’s commercial corn hybrids have been for the most part accomplished as a 

result of breeding efforts focusing on grain yield and improved morphophysiological 

characteristics. Because selection processes have been conducted in a wide range of 

production environments, the optimal plant population density to obtain maximum grain 

yield has increased in current production systems (Boomsma et al. 2009; Tokatlidis and 

Koutroubas, 2004).  

In the field, planting higher population densities can be accomplished by an 

agronomic practice that enables a more equidistant spatial arrangement by reducing the 

distance between rows and at the same time increasing the space between plants within 

the row (Nielsen, 1988). This particular distribution of a plant community increases the 

amount of solar radiation that is intercepted by the canopy (Andrade et al. 2002; Porter et 

al. 1997; Barbieri et al. 2008). Greater light interception can be accomplished due to two 

major factors. The architecture of modern genotypes presents leaves that are more erect 

compared to plants from other hybrid eras (Bruns and Abbas, 2005). This allows for plant 
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canopies to better withstand higher plant populations and at the same time permits solar 

light to enter through the canopy more efficiently, improving total crop light interception 

on an area basis (Barbieri et al. 2008; Bruns and Abbas, 2005). On the other hand, 

competition among plants in the same row is diminished using narrower rows (Porter et 

al. 1997). As a consequence of less plant-to-plant rivalry for available resources and 

increases in radiation interception, crop growth rate and thus biomass production are 

expected to improve (Andrade et al., 2002; Bullock et al., 1988; Shapiro and Wortmann, 

2006; Farnham, 2001). In this sense, Bullock et al., (1988) came to the conclusion that 

growth rate during the early growth stages of the crop was higher when plants were 

distributed equally distant from each other (narrow rows are usually 38-cm wide) across 

the field as opposed to a conventional 76-cm row width arrangement.  

A direct association has been established between the quantity of photosynthetically 

active radiation intercepted (IPAR, MJ m-2) by the canopy and the crop growth rate 

(Andrade et al, 2002). Since the production of aerial dry matter is highly related to the 

amount of IPAR, (and hence to the crop growth rate) (Otegui, et al. 1995) there is 

sufficient research evidence demonstrating that planting corn in narrow rows increases 

grain yields (Porter et al, 1997; Van Roekel and Coulter, 2012; Crozier et al, 2014; 

Andrade et al. 2002; Shapiro and Wortmann, 2006; Bullock et al. 1988; Barbieri et al; 

2008; Nielsen, 1988).  

In a review conducted by Boomsma et al. (2009), plant population densities up to 

104,000 plants ha-1 were tested in combination with nitrogen rates as high as 330 kg N 

ha⁻¹. The authors observed an increase in grain yield per unit area for each seeding rate 

when 165 kg N ha-1 were first applied. However, they found that the highest N rate 
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treatment was required in order for the supraoptimal plant density to maximize grain 

yield per area. These findings would suggest that even higher seeding rates could be 

planted to additionally increase grain yields per area if nitrogen availability was not a 

limiting factor. Maddonni et al. (2006), when analyzing plant population densities as high 

as 120,000 plants ha-1 and a range of row spacings that went from 35 cm to 100 cm, 

reported highest grain yields when plant densities exceeded or equaled 90,000 plants ha⁻¹. 

In this study, 200 kg N ha-1 as urea were applied and furthermore considered a non-

limiting N fertilizer rate. 

On the other hand, research conducted by Ciampitti et al. (2013) using plant 

densities up to 104,000 plants ha-1 but a high N rate treatment of 224 kg N ha-1, 

determined that grain yield response to nitrogen application (224 vs. 0 kg N ha-1) was 

greater for medium (79,000 plants ha-1) and high plant populations when compared 

against the low population density (54,000 plants ha-1). In this case, differences in grain 

yield between medium and high plant densities could be potentially achieved under 

higher N rate treatments. These results are consistent with findings previously described 

by Boomsma et al. (2009) and Maddonni et al. (2006), in which they highlight the 

dependency of higher plant densities of maize on the amount of N applied in order to 

maximize grain yields.  

Results from Raymond et al. (2009) agree with precedent examples. While testing 

plant densities up to 86,000 plants ha-1 applying an average of 257 kg N ha-1 under 

irrigated conditions, highest plant densities provided the greatest grain yields. The 

authors finally suggested that seeding rates recommended to producers should be 

increased based on grain yields showing no plateaus. In this regard, Egli (2015) explains 
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how plant densities in corn production are destined to keep increasing in future years if 

kernels per ear and number of ears per plant remain unchanged. Interestingly, the 2016 

National Corn Yield Contest reported highest grain yields that were obtained with 

128,300 plants ha-1 under irrigation (National Corn Growers Association, 2016; Egli, 

2015). Future populations are expected to be as high as 200,000 plants ha-1 if kernel 

number per plant and size remain constant (Egli, 2015). 

Yield increases under narrow rows were associated with increases in solar radiation 

interception during the critical period for kernel set (Andrade et al., 2002; Barbieri et al., 

2008). Barbieri et al. (2008) also attributed an increased N uptake to using narrow rows, 

an effect that can be explained partially by increased root length and a decline in plant to 

plant competition. The authors also analyzed the possibility of an increase in nitrogen use 

efficiency (NUE) as a result of improved N absorption during the earlier growth stages of 

the crop when planted under an equidistant distribution pattern. 

In this sense, decreasing row spacing at high populations and guaranteeing sufficient 

N and water, would accelerate canopy closure by the plant community and increase the 

amount of light intercepted by the crop. Intensified management practices through the 

implementation of high input systems seem necessary to reach maximum yields in the 

future. Implementing 38-cm rows and ultra-high plant population densities in Kentucky 

can impact the way farmers produce corn in the next decades. 

1.1.2. Nitrogen Fertilizer Use 

In general terms, crop productivity has improved during the last hundred years due 

to a parallel increase in the use of nitrogen fertilizer (Massignam et al., 2009). Nitrogen is 

considered as one of the most grain yield limiting macronutrients in maize production 
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(Cirilo et al., 2009) and is highly associated with the photosynthetic process since up to 

60% of N in leaves is linked to chloroplasts (Boomsma et al., 2009). 

 

 According to Smith et al. (2014), fertilizer used by U.S. farmers in the 1920s was 

approximately 6.6 million tons yr‐1 and that amount increased to approximately 32.4 

million tons yr-1 in the 1960s. Nitrogen fertilizer use on maize crops in the United States 

averaged 58 kg N ha-1 in 1964 and rose to 157 kg N ha-1 in 1985. Since that period, usage 

of nitrogen fertilizer has become stable at an average of 145 to 150 kg N ha-1 (Duvick, 

2005). This is consistent with data presented by Smith et al. (2014) regarding Iowa maize 

N fertilizer usage. In 2016, U.S. corn producers applied N at an average of 163 kg N ha-1 

(USDA-ERS, 2017).  

According to Duvick (2005), the increment of plant population density in maize 

after World War II (1939-1945) followed a close trend with the rising amount of N 

fertilizer applied. Both higher plant populations and increased N fertilizer usage 

definitely shaped the constant increase experienced by corn grain yields in the past 

decades (Egli, 2008). This could be evidence that the even higher plant densities required 

in the future to sustain yield increases will therefore involve further intensified agronomic 

practices (e.g., higher N fertilizer rates, narrower rows, etc.; Egli, 2015). In this sense, to 

maximize yield under irrigated maize production, increasing plant densities may possibly 

demand higher applications of N fertilizer compared to current N rates being used. 

In a review conducted by Boomsma et al. (2009), research including hybrids from 

the 1970s and 1990s found the latter to be more responsive to N applications. This greater 

response triggered an increased N fertilizer rate application amongst corn producers in 
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the years that followed. Crozier et al. (2014) observed increased yields using narrow rows 

and sidedress N application compared to wider rows when evaluating nitrogen fertilizer 

response in different regions of North Carolina. Moreover, a 35% grain yield increase 

above the 0 N treatment (or control) took place when 224 kg N ha-1 were applied. 

However, yields plateaued at 179 kg N ha-1, since no significant differences were 

observed between these two highest and consecutive N rates. The same was observed for 

yield components. Individual kernel mass experienced a 12% increase above control N 

treatments, but exhibited a maximum increase at 179 kg N ha-1, as no significant 

differences were observed when the higher N rate was applied. On the other hand, kernel 

number components (rows ear-1 and kernels row-1) plateaued at even lower N rates 

applied (134 kg N ha-1). Similar results have been reported by Ciampitti et al. (2013), 

with grain yield per unit area improving as the N treatment was increased when averaged 

across plant densities and hybrids, but observing yields reaching maximum values at 

medium plant populations of 79,000 plants ha‐1.  

This information contributes to the notion that greater N fertilizer rates might be 

required if future maize yields are to be maximized under uninterrupted increases in plant 

populations. This holds true principally since modern commercial corn hybrids present a 

higher potential for total biomass production. Increases in biomass yield are intensified 

by the combined effect of narrow rows and higher plant populations, which magnifies the 

demand for N (Shapiro and Wortmann, 2006). Consistent with this approach, Barbieri et 

al., (2008) observed higher total dry matter, grain yield and N accumulation with reduced 

row spacing and increased N rates (0 to 180 kg N ha‐1).  
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The intensification of input levels through management practices in high yielding 

environments might be determinant in the years to come for corn production. Moreover, 

the importance of evaluating the interactive effects of plant population densities and N 

rates among hybrids and their influence on grain yield and grain yield components seems 

vital.  

 
1.1.3. Improved Nitrogen Use Efficiency in Modern Maize Hybrids 

Modern corn hybrids, according to some researchers, are more efficient at taking up 

and using N (Ciampitti and Vyn, 2011; Crozier et al., 2014; Bender et al., 2013; Ciampitti 

and Vyn, 2012; Duvick 2005; Modhej et al., 2014; Below et al, 2007). According to 

Below et al. (2007) this could be a side effect resulting from genetic breeding programs 

focusing mainly on increasing grain yield throughout the years. Grain yield improvement 

has been achieved principally due to increased stress tolerance in plants, translating in 

better use of available N. Evaluation of NUE is important to better understand whether 

grain yield variations are due mainly to improved genetics, agronomic practices such as 

variable N rate levels and plant densities, or interactions between these parameters. 

Modhej et al. (2014) observed across different N levels (ranging from 0 to 260 kg N 

ha‐1) that hybrids with greater yield also had greater NUE at every N rate tested. In their 

study, the newest hybrid had the highest yield and NUE. McCullough et al. (1994) 

reported similar results when comparing hybrids that spanned 30 years in Canada, where 

the newest hybrid had the greatest NUE, even at the lower N supply. They attributed the 

higher NUE to higher N uptake among other factors. Not all studies observed highest N 

uptake and use efficiency in the same hybrid. When analyzing N rates from 0 to >300 kg 

N ha-1 of 55 commercial hybrids grown at 79,000 plants ha-1 in Illinois, Below et al. 
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(2007) observed an average NUE of 21.6 kg grain kg N-1 ranging from 6 to 42 kg grain 

kg N-1. However, no hybrid tested displayed highest efficiency in both N utilization and 

N uptake, suggesting these parameters can still be improved, either by modifying 

agronomic management techniques or further improving plants by breeding efforts. 

Studies evaluating the effects of plant density and sidedress N rates on maize NUE 

in Indiana concluded that combining an intermediate N rate of 165 kg N ha-1 and the 

highest plant density tested (104,000 plants ha-1) resulted in the highest increase in NUE. 

Nonetheless, the NUE of 26.3 kg grain kg applied N-1 obtained in this case did not 

correspond with maximum grain yield, which was reached when applying 330 kg N ha-1 

(Ciampitti and Vyn, 2011). Ciampitti et al. (2012) confirmed this observation again and 

detected a minimal association between N uptake and NUE. These results could be 

implying that greater use of applied N by the crop is not always linked to highest grain 

yields. Therefore, research should focus on investigating the influence of plant density 

and N treatments on N uptake efficiency to better comprehend NUE of improved maize 

hybrids.  

1.2. Yield Components 
 

In cereal crops, grain yield is determined by the number of grains per unit area and by 

the weight of each grain (Borras and Otegui, 2001). Grain number per hectare in maize is 

a function of plants per hectare, ears per plant, rows per ear and kernels per row (Crozier 

et al., 2014).  

The potential size of a corn ear is influenced by the number of rows per ear and the 

amount of kernels per row (ear length). Rows per ear is commonly determined between 

growth stages V6 and V12 (Crozier et al., 2014). Hybrid genetics greatly influence rows 
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per ear, but environmental factors can affect row number (Abendroth et al., 2011; 

Nielsen, 2003). Nitrogen deficiency before V8 reduced row number per ear (Elmore and 

Abendroth, 2006; Subedi and Ma, 2005) and was irreversible (Subedi and Ma, 2005). 

These findings strongly highlight the impact stresses could impose on row number and 

kernel determination when taking place early in the growing season.  

Kernels per row combined with rows per ear determines total kernels per ear. 

Potential kernel number per row begins to set at V6 to V7 and development continues 

until V15 or V16, approximately one week before R1 (Abendroth et al., 2011; Crozier et 

al., 2014). Each ear is estimated to have a maximum of 700 to 1000 potential ovules or 

kernels. This parameter depends on the hybrid’s genetics but can be strongly affected by 

environmental stresses. Environmental conditions taking place during vegetative stages 

and silking (R1) will affect the potential kernels to be formed. Adverse environmental 

conditions happening during or after R1 might reduce number of kernels produced 

(Andrade et al., 1999; Elmore and Abendroth, 2006; Abendroth et al., 2011). Ear 

development can stop completely and lead to abortion of that ear if growing conditions 

are not favorable (Andrade et al., 1999). In consequence, ear length is expected to change 

more frequently from year to year as it is more dependent on each growing season’s 

available resources than is the number of rows per ear. 

Rows per ear and kernels per row increased 3 and 19 percent, respectively, when 

comparing 224 kg N ha-1 to 0 N and with plant densities up to 90,000 plants ha-1 (Crozier 

et al., 2014). However, no significant differences were observed for rows per ear and 

kernels per row between 134 and 224 kg N ha-1. 
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Generally, 400 to 600 kernels per ear are expected at harvest under growing 

conditions without stress (Nielsen, 2003; Abendroth et al., 2011). The actual number of 

kernels per ear is a significant factor when analyzing potential grain yield in maize. 

Kernel mass is the other major component affecting maize grain yield and is 

determined once potential kernel number is set. Seed mass begins development after 

ovary fertilization takes place. 

 
1.2.1. Kernel Number 

 
Seed number is considered the main yield component of cereals and other crops, and 

is highly dependent on genotype, growing conditions and agronomic management factors 

(Vega et al., 2001). In maize, grain yield increments are predominantly associated with 

higher final kernel number and high correlation coefficients have been found between 

seed number and yield (Echarte et al., 2013; Carcova et al., 2003). Seed number depends 

on the establishment of potential kernels and most important of all, seed set. Spikelets 

generated as potential kernels always exceed the actual number of kernels set by the 

plant. In this sense, some researchers have pointed out the importance of improving the 

survival of these potential structures rather than the importance of continued work to 

increase their number. Consequently, studies have been focused on investigating factors 

that may cause potential kernels to abort, decreasing harvestable kernels at maturity 

(Carcova et al., 2003; Cirilo and Andrade, 1994; Otegui, 1997). In this regard, Cirilo and 

Andrade (1994) reported no changes in potential number of spikelets generated per ear at 

flowering when testing different sowing dates in Argentina and attributed final kernel 

number per ear to differences in kernel abortion. Moreover, the authors associated the 
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decrease in kernel set to reductions in crop growth rate after silking. Otegui (1997) 

reported barrenness when using 160,000 plants ha-1 and observed spikelet abortion in all 

uppermost ears after silking, at both 80,000 and 160,000 plants ha-1, all other resources 

unrestricted.  

In maize, kernel number susceptibility to stresses was found to be highest during the 

period bracketing silking. As a consequence, environmental conditions and the 

physiological status of the crop during this period become vital for kernel set (Andrade et 

al., 1999; Andrade et al., 2000). The number of kernels that are established is highly 

reliant on photosynthate supply and this could help explain the documented association 

that exists between kernel number and plant growth rate during the critical period for 

kernel set (Echarte et el., 2013; Andrade et al.,1999).  

A review by Echarte et al. (2013) concentrated on understanding the different 

mechanisms involved in the generation of grain yield in modern versus older maize 

hybrids reported that newer genotypes set more kernels per unit plant growth rate during 

the critical period for kernel set, as compared to the older hybrids. The first reason 

proposed was that newer hybrids exhibit a lower plant growth rate threshold for kernel set 

during the period bracketing silking. A second explanation would suggest that newer 

hybrids exhibit a higher potential kernel number when the availability of resources per 

plant increases compared to older genotypes.  

When analyzing genotypic yield differences among Argentinean maize hybrids in 

response to plant populations, Hernandez et al. (2014) found that kernel number per plant 

was significantly associated with accumulated ear biomass. Also, a high correlation was 

obtained between the accumulated ear biomass and plant growth rate. A possible 
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explanation proposed by the authors describes how the establishment of kernels is subject 

to the accumulation of biomass in the ear around the period of anthesis in corn and also 

depends on how efficient the reproductive structure is in using this biomass to set kernels. 

Under the stress generated at high plant densities (160,000 plants ha-1), the authors found 

that genotypes differed in the amount of barrenness exhibited (Echarte et al., 2013). In 

this way, some hybrids showed greater plant growth rates when seeded at high stand 

densities and differences were also detected in the base plant growth rate needed for ear 

biomass accumulation. 

Another important parameter that can affect kernel number set during the period that 

goes from 10 days before until 15 days after anthesis is the interval existing between 

pollen shed and silk emergence, commonly known as the anthesis-silking interval (ASI). 

Silk emergence can experience a delay when maize is planted at higher densities, 

resulting in an increased ASI and thus a decrease in pollination. This parameter is 

associated with barrenness, and the longer ASI observed at higher plant populations 

resulted in increased barrenness (Edmeades et al., 2000). Unfavorable growing conditions 

around silking might increase kernel number loss by floral asynchrony, lack of pollen or 

reduced pollen viability and a decline in silk receptivity (Anderson et al., 2004; Bassetti 

and Westgate, 1994). Deficient nitrogen supply can also delay flowering and silk growth 

in maize. Grain yield can then be limited because of a negative impact on pollination. 

Research done by Lemcoff and Loomis (1994) concluded that N deficiency reduces the 

final number of kernels and attributed these results to a decline in distal silk emergence. 

Interesting is the fact that kernel abortion was found to be more density dependent.  
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A study conducted by D’Andrea et al. (2008) evaluated hybrid kernel number at 

very contrasting N rates (0 and 400 kg N ha-1) and observed differences amongst 

genotypes in their kernel number per plant response to plant growth rate during the 

critical period for kernel set. Findings showed a more stable N concentration in the ear 

compared to that of the vegetative component, suggesting that N supply influenced 

biomass partitioning between vegetative and reproductive fractions and that the ear is a 

priority sink. 

Previous research on kernel number per ear and per area has been conducted in the 

United States and other grain producing countries, but none have included ultra-high 

plant population densities combined with non-limiting N rates and irrigation in an effort 

to evaluate high- yielding hybrids in a high input system.  

 
1.2.2. Kernel Weight 

 
Kernel weight is the second component of grain yield. Given that sink size has been 

determined earlier in the season, kernel weight is then considered less influential but a 

more stable component (Borras and Otegui, 2001; Egli, 1998).  

Differences in kernel growth rate during the effective grain filling period are under 

genetic control and are connected to the amount of endospermic cells generated during 

the lag phase. On the other hand, a stressful environment characterized by factors such as 

drought, limited assimilate availability and high temperatures can affect seed fill duration 

considerably and thus the final kernel size that is achieved (Egli, 1998; Borras and 

Otegui, 2001; Eichenberger et al., 2015).  

At higher plant densities, Poneleit and Egli (1979) found that yield per plant basis 

was reduced by 20%, with 6% from decreased kernel weight and 14% as a result of a 
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decline in kernel number. Thus, kernel number is the greater factor in determining per 

plant yield. Lamm and Trooien (2001) reported that when studying the effects of 

increased maize populations, the decrease observed in kernel weight was usually 

compensated by more kernels per area. Similarly, research conducted in Iowa 

investigating kernel filling changes when selecting for grain yield detected a reduction in 

final kernel mass at high plant densities in selected stands, concluding that increases in 

grain yield were mainly due to a different yield component (Eichenberger et al., 2015).  

In general, preceding studies have detected lower kernel mass at higher maize plant 

densities. Also, increasing levels of N fertilizer in several research efforts have indicated 

that final kernel weight plateaued at intermediate N rates (Crozier et al., 2014; Ciampitti 

et al., 2013). Higher seeding rates also reduced N removal in the harvested grain and this 

may impact grain N concentrations (Bender et al., 2013; Ahmadi et al., 1993).  

1.3. Nutrient Uptake and Accumulation 

Nutrients are essential for plant growth. Specifically, in maize production, certain 

nutrients are required in greater quantities. Macronutrients such as nitrogen (N), 

phosphorus (P) and potassium (K) are accumulated in higher amounts in plant tissues, 

hence their importance to crop nutrition (Bender et al., 2013b; Abendroth et al, 2011; 

Havlin et al., 2014). In addition, N and P partitioning to maize grain is significantly 

higher than that for K. Nutrient uptake and partitioning dynamics in maize are associated 

with biomass production and grain yield (Setiyono et al., 2010). Furthermore, variations 

in nutrient availability and plant density have a direct impact on both aboveground dry 

matter and yield. Subsequently, as maize seeding rates have increased, and as maize 

yields are expected to continue an upward trend into the future (Smith et al., 2014), 
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research effort focused on nutrient uptake and removal of high input-yielding maize 

production systems is vital. 

1.3.1. Nitrogen 

Nutrient acquisition at the root surface is predominantly accomplished by mass- flow, 

diffusion and root interception processes (Barber, 1962; Bender et al., 2013b). In the case 

of N, approximately 79% of this macronutrient reaches the root surface by mass- flow. 

Mass- flow of soil nutrients to the roots greatly depends on water uptake by plants and 

the nutrient concentration in the soil solution (Havlin et al., 2014). In moist soil, this 

mechanism can provide the nutrient to the root surface more quickly than diffusion, 

which requires a concentration gradient in the soil solution.  

Nitrogen can be present in the environment as one of several forms. However, only 

nitrate (NO3
-) and ammonium (NH4

+) are available for the plant to absorb (Jones et al., 

2013; Havlin et al., 2014). Most plants exhibit improved growth when both NO3
- and 

NH4
+ are absorbed. Nevertheless, NO3

- must be reduced to NH4
+ before utilization by 

plants, a process that involves energy costs to the plant. 

The sum of nutrient accumulation in each plant component (stem, leaf, grain, etc.) 

gives total plant nutrient uptake. Depending on the nutrient evaluated, the uptake pattern 

can vary throughout the growing season and is usually associated with specific vegetative 

and reproductive developmental stages (Abendroth et al., 2011; Bender et al., 2013a). 

Total N uptake can be described by an S-shaped response curve. Two main periods of N 

accumulation were identified by Karlen et al., (1988) at high maize yield levels; the first 

occurring at vegetative stages V12 through V18 as yield potential is being set, and a 

second period during grain filling while grain yield is determined. At VT/R1, when 
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pollination occurs in maize, a lag phase is observed in which N uptake by the plant is 

minimal.  

Bender et al. (2013b) confirmed that approximately two-thirds of N uptake takes 

place during vegetative growth stages. In this regard, maximum nutrient uptake rates 

were observed by Bender (2012) during the period bracketing V10 to V14, during which 

8.8 kg N were assimilated per hectare per day. These results highlight the importance of 

N application and availability during maize vegetative stages. The author also reported 

that a total of 286 kg N ha-1 was required to produce a 12 Mg grain ha-1 yield, with 166 

kg N ha-1 removed in the grain at maturity. Consequently, about 58% of total N 

accumulation was contained in the grain in this study. Abendroth et al., (2011), on the 

other hand, reported a 0.67 nitrogen harvest index at R6. 

Nutrient mobility within the plant influences the amount of nutrient partitioning to the 

grain. Nitrogen is highly mobile once assimilated by the plant and can be remobilized to 

grain quickly during the grain filling period (Bender et al, 2013a). Nitrogen 

remobilization from vegetative to reproductive organs may lead to deficiency symptoms 

in older leaves, located lower on the plant. Yellowing and chlorosis usually appear first 

on these leaves, which, with extreme N deficiency, can undergo senescence. Necrotic leaf 

tips are observed first, followed by necrosis along the midrib (representative V-shaped 

pattern) until the whole leaf turns brown and dies. These symptoms result from the loss of 

leaf chloroplast proteins. Newer leaves located in the uppermost part of the plant remain 

green due to the mobility of N within the plant (Havlin et al., 2014). 

 

 



 

19 
 

1.3.2. Phosphorus and Potassium 

Phosphorus and K are primarily delivered to the roots by diffusion, given the 

immobile nature of both these nutrients in the soil system. Approximately 93 and 80% of 

P and K uptake, respectively, results from diffusion (Bender et al., 2013b). Diffusion 

through the soil solution takes place due to the concentration gradient created by root 

nutrient absorption. The nutrient ion moves from high nutrient concentration areas to a 

lower concentration area (the root surface). Diffusion is a slower process than mass- flow 

(Havlin et al., 2014).  

Similarly to N uptake, K accumulation takes place largely during vegetative growth. 

In contrast, a significant amount of P uptake occurs during maize grain filling (50% up-

take by pollination). In this regard, past studies have reported that practically 90% of total 

K uptake in maize occurs before R2 and that the P uptake rate is continuous from V6 to 

maturity (Bender et al., 2013a). About 1.0 and 5.1 kg ha-1 of P and K, respectively, are 

accumulated daily by the crop between V10 and V14 (Bender, 2012). A total of 49.8 and 

168.3 kg of P and K ha-1, respectively, were required for a 12 Mg ha-1 maize yield. 

However, 39.8 and 55.6 kg of P and K ha-1 were removed with grain harvest. As such, P 

exhibits a comparatively higher harvest index, and approximately 80% of this element 

was partitioned to the grain, demonstrating the high plant mobility of this nutrient. 

Conversely, K exhibited a low harvest index (0.33), as indicated by previous research 

(Karlen et al., 1988; Bender et al., 2013a; Bender, 2012; Abendroth et al., 2011; Setiyono 

et al., 2010). That K tends to be stored in stalk and leaves during the vegetative period 

and to be absorbed in quantities above those required by the crop (luxury consumption) 

are possible explanations for the low partitioning of K towards grain. Potassium is also 
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highly mobile within the plant, leading to greater variation in K accumulation amongst 

the various plant component parts (Abendroth et al., 2011).  

Phosphorus and K uptake by plants interact with soil N availability. According to 

Havlin et al. (2014), N benefits P uptake by increasing root growth (mass) as well as soil 

P solubility and availability. Similarly, Johnston and Milford (2012) found that an 

increased supply in N led to higher stalk N and K accumulations, until R1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 
 

Chapter 2 

 

2. Materials and Methods 

2.1. Study Design and Treatments 

Field research was conducted at the University of Kentucky Research Farm 

(Spindletop Farm) in Lexington, Fayette County, Kentucky, (38˚01’47’’N, 84˚29’41’’W) 

in 2015 and 2016 (LEX2015 and LEX2016, respectively) on a Lowell-Bluegrass (fine, 

mixed, active, mesic Typic Hapludalfs) silt loam. In 2016, field research was conducted 

at a private farm in Hardin County near Glendale, Kentucky (37˚ 26’34.4” N, 85˚ 

55’30.3W”) (HAR2016) on a Crider (fine-silty, mixed, active, mesic Typic Paleudalfs) 

silt loam (Table 3.1). At LEX2015 and LEX2016, four replications were planted for grain 

yield and three replications were planted for destructive samples. At HAR2016, four 

replications were planted for both yield and destructive harvest. Each plot for both grain 

harvest and destructive sampling was 12 38-cm rows by 8.2 m long. A 0.9 m border was 

placed between ends of each plot. Machine harvest occurred in rows 2, 3, 4 and 5 while 

destructive sampling occurred in rows 8, 9, 10 and 11. The remaining rows served as 

borders to ensure uniform light interception among all sampled rows. 

Treatments were arranged in a randomized complete block design arranged as a split-

split-plot, containing three main treatment factors. Two N rates (0 kg N ha⁻¹ [Zero N] and 

390 kg N ha⁻¹ [High N]) were assigned to the main plot, two maize hybrids (AgriGold 

A6499 and A6517; 112 days (d) and 113 d comparative relative maturity, respectively) as 

subplots, and two seeding rates (SR) as sub-subplots (Low, at 74,000 plants ha⁻¹ and 

High, at 148,000 plants ha⁻¹). The same two hybrids were planted in all environments, 
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but in 2016 four maize hybrids were added, both at LEX2016 and HAR2016. Dekalb 

DKC62-78RIB and DKC67-72RIB, with 112 d and 117 d relative maturities, 

respectively, and Pioneer P0339AM and P2089AM, with 103 d and 120 d relative 

maturities, respectively.  

2.2. Planting  

Corn seeds were planted 8 May, 26 April and 18 April at LEX2015, LEX2016 and 

HAR2016, respectively, with no prior tillage (no-tillage) following soybean (Glycine max 

L. (Merr.), a common rotation in Kentucky. These planting dates are optimal planting for 

central Kentucky, falling between April 15 and May 15 (Bitzer, 2001).  

A Wintersteiger pneumatic planter (Salt Lake City, UT) with a slotted disc system 

and cone seed delivery, attached to a Case IH Puma 130 (Basildon, England) using a GPS 

RTK guidance system (Trimble; Sunnyvale, California), was used to establish the studies. 

To accommodate the extremely high seed population, seeds were placed into 38-cm rows 

at a targeted depth of 5 cm.  

Stands were assessed at growth stage V3 (Abendroth et al., 2011) along the two 

center rows of each plot. On average, final plant populations were 10% less than targeted 

seeding rates. Uniformity of final stands at each seeding rate was successfully achieved in 

all environments. 

2.3. Nitrogen Application 

The objective of the chosen N rates (0 and 390 kg N ha-1) was to cause limiting and 

non-limiting N conditions. Nitrogen fertilizer as urea (CO(NH2)2), grade 46-0-0, was 

applied broadcast at V3 in a single dose. Since the soils were well-drained, University of 
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Kentucky guidelines allow for a single application (AGR-1, 2015). However, the rate of 

390 kg N ha⁻¹ is considerably in excess of recommendation (196 to 224 kg N ha-1). 

Surface applications of urea are subject to ammonia (NH3) volatilization, but rainfall 

events occurring after application, at all three environments, likely reduced volatilization 

losses (Jones et al., 2013 and Murdock, 2001). Soil pH and cation exchange capacity 

values for these soils likely further decreased risks of volatilization (Murdock, 2001; 

Jones et al., 2013 and Stewart, 2008).  

2.4. Management 

In order to avoid moisture stress, irrigation at LEX2015 and LEX2016 was delivered 

via drip tape and by center pivot in HAR2016. Weed control each growing season in 

Lexington started with a pre-plant burn down herbicide application which included 

potassium salt of glyphosate: N- (phosphonometyl) glycine (approximately 1150 mL ai 

ha⁻¹). Three weeks after planting LEX2015, atrazine (494 mL ai ha⁻¹) and topramezone: 

(3-(4,5-dihydro-isoxazol-3-yl)-4-methanesulfonyl-2-methylphenyl) -(5-hydroxyl-

1methyl-1H-pyrazol-4-yl) methanone (0.614 mL ai ha⁻¹), dimethenamid-P: (S)-2-chloro-

N-[(1-methyl-2-methoxy) ethyl]- N-(2,4-dimethyl-thien-3-yl)-acetamide (30.8 mL ai ha-

1) and glyphosate were applied.   

At LEX2016, three weeks after planting, the herbicide application consisted of 

glyphosate (2267 mL ai ha⁻¹), followed by an application of S-metolachlor: (RS)-2-Chloro-

N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl) acetamide (277 mL ai ha⁻¹), 

atrazine (271 mL ai ha⁻¹) and mesotrione: 2-[4-(Methylsulfonyl)-2-nitrobenzoyl] 

cyclohexane-1,3-dione (4.37 mL ai ha⁻¹) four weeks after planting. 
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At HAR2016, glyphosate (641 mL ai ha⁻¹) was applied eight weeks after planting as a 

directed spray and again as a directed spray at the VT/R1 stage, which corresponded to ten 

wk after planting. Weeds were not competitive with corn at any environment. 

No insect or disease pressure justified foliar insecticide or fungicide treatments. 

However, some grey leaf spot (caused by Cercospora zeae-maydis) was observed at 

HAR2016 towards the end of the growing season (R5 growth stage). By then, a fungicide 

application would not have protected yield. 

2.5. Climate  

Data provided by Midwestern Regional Climate Center’s stations throughout the state 

of Kentucky were used to obtain climate records for the different environments under 

study. For LEX2015 and LEX2016, the Lexington Bluegrass Airport station 

(USW00093820) was used. The Hodgenville-Lincoln Kentucky station (USC00153929) 

was used for HAR2016.  This source of information was preferred primarily because a 

complete set of data for temperature and precipitation was provided and the stations were 

close to the study sites.  

Daily, monthly and historic averages were used to describe climate trends. Growing 

degree days (GDDs) were computed using a base temperature of 10˚C as defined by Loecke 

et al. (2004): 

GDD = [(Tmax + Tmin)/2] – TB, 

where Tmax is the daily maximum air temperature, Tmin is the daily minimum air 

temperature, and TB is equal to 10˚C for corn because 10˚C represents the base 

temperature required physiologically by the crop to guarantee growth.  
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2.6. Soil Sampling for Nitrogen  

At least 15 soil cores for pH, CEC and nutrient analysis were taken pre-plant to a 10- 

cm depth and mixed together to create a composite sample for each environment (Murdock, 

2011). These soil samples were sent to the University of Kentucky Regulatory Services 

Soil Testing Laboratory for analysis. 

Soil samples for NO3
- analysis were collected pre-plant at the 0 to 15 and 15 to 30 cm 

depth increments. Samples were left to air dry for a week and were crushed using a 2 mm 

sieve. 

Determination of soil nitrate and ammonium (NO3
_N and NH4

+-N) was done at the 

University of Kentucky Soil and Plant Analysis Research Laboratory. Approximately 10 g 

soil from each sample were added to a plastic centrifuge tube. Subsequently, 25 mL of a 

1M potassium chloride (KCl) solution was added to each tube. The tubes were later placed 

on a shaker for 1 h and then left to settle for 1 h. Using a pipette, 1 mL of extract solution 

was removed from each tube, placed into a cluster tube, and the cluster tubes were then 

placed in a centrifuge for 27 minutes at 3700 revolutions per minute. Extracts were run on 

a microplate reader for NO3
_N and NH4

+-N determination using known standards that were 

prepared in 1M KCl to match the matrix of the samples. 

The amount of total inorganic N in the soils was calculated by adding the NO3
_N and 

NH4
+-N values obtained from the analyses (Table 4.1). 

Soil samples from both 2016 environments were immediately placed in refrigerated 

storage but were accidentally removed early. Consequently, total N values from 2016 are 
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considerably higher when compared to 2015 due to mineralization and nitrification 

processes that were favored by increased temperature and time prior to extraction. 

2.7. Combine Harvest 

Grain harvest was completed using a Wintersteiger plot combine (Wintersteiger AG, 

Ried, Austria) equipped with a Harvest Master weight bucket system with moisture sensor 

(Juniper Systems, UT). At all environments, the center four rows of each plot (12.5 m2) 

were harvested to obtain grain weight.  

2.8. Plot Ear Harvest  

At maturity (growth stage R6), plants were hand harvested from each of the plots 

designated for destructive sampling in LEX2015. Plants and ears from 3 m of the second 

row were collected and counted. Whole plant biomass was weighed and then ears were 

separated from the fodder (stem and leaf) portion and weighed. At LEX2016, plants and 

ears were collected from 1,5 m of row. At HAR2016, ears were collected from 1,5 m of 

row. 

Ear samples were dried at 60 ˚C to a constant weight and weighed dry biomass 

determined.  

Fodder (stem and leaf), husk and cob sample processing procedures will be fully 

described when addressing plant biomass and nutrient uptake measurements. 

2.9. Post - Harvest Measurements 

2.9.1. Kernel Number and Kernel Mass 

Once dried, three maize ears were subsampled for kernel row number and kernel 

number per row. An electric sheller separated grain from cob. Kernel weight was 
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determined by selecting 250 kernels with an electronic seed counter, weighing these, and 

adjusting the mass to a 1000 kernel basis (Crozier et al., 2014). 

2.9.2. Ear Length and Tip-Back Length 

Ear length and tip-back were measured on the three maize ears at LEX2016 and 

HAR2016. The term “tip-back” generally is used to describe the lack of kernels present at 

the terminal end of the cob (the tip). Field stress conditions during the critical period for 

kernel set (± 15 days around R1), such as N deficiency and/or high plant population, 

could cause greater tip-back (Nafziger, 2016). Tip-back length was measured as the 

distance from the last visible kernel to the tip of each ear.   

2.9.3. Harvest Index 

Harvest index for each plot, in all environments, was calculated as the weight ratio of 

grain dry matter to total aboveground plant dry matter (Ciampitti and Vyn, 2011). 

 

2.10. Aboveground Plant Biomass and Nutrient Uptake 

At LEX2015 and LEX2016, five consecutive plants from either the third or fourth row 

were collected from each plot designated for the destructive samplings. Plants were cut at 

ground level. Plant density was well represented for each treatment. 

Whole plant harvest at LEX2015 and LEX2016 was conducted at V7, V14, R3, R5 

and R6. Once the five plants were weighed, separated into vegetative (stem and leaf) and 

reproductive (ears and husks) fractions and fodder parts were coarsely subdivided to 

obtain a subsample, all was dried to a constant moisture at 60 ˚C (Ciampitti and Vyn, 

2011). At V7 and V14, vegetative material consisted of stems and leaves. At R3, plant 
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material was separated into stem plus leaves and a reproductive fraction comprised of 

kernels plus cob and husks. At R5 and R6, grain was separated from the cob and the 

reproductive fraction included grain, cob and husk as separate components. All fractions, 

at all growth stages, were weighed for dry biomass. In order to obtain the amount of each 

nutrient (N, P, K) that each fraction contained, the nutrient concentration in that fraction 

was multiplied by the dry matter weight.  

For LEX2015 and LEX2016, plant N, P, and K uptake per hectare were calculated, 

taking under consideration individual tissue dry matter weights, nutrient concentrations, 

and plant population density. Likewise, the same procedure was conducted for cob, husk 

and grain nutrient uptake (Crozier et al. 2014). 

2.11. Nutrient Analyses 

To determine nutrient content in plant tissue, dried vegetative and reproductive 

samples were ground using a Wiley Mill (Thomas Scientific, Swedesboro, NJ). Fodder 

and grain samples were passed through a Udy Mill (Fort Collins, CO) equipped with a 

0.5- mm sieve.  

Nitrogen and P analyses for fodder and grain were conducted using a micro- Kjeldahl 

digestion method. To prepare the samples for the digestion, 100 mg of dried material was 

weighed into 25x200 Pyrex glass tubes. The digestion procedure consisted of adding 

concentrated sulfuric acid and potassium sulfate to samples and heating on a block 

digester (Bradstreet, 1965).  

Next, simultaneous colorimetric determination of total N and P was done using a dual 

Technicon System II Auto-analyzer. The method used for N was developed by Chaney 
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and Marbach (1962) and a procedure based on the method of Fiske and Subbarow (1925) 

was used for P. In both cases, standards were prepared for calibration in order to 

minimize errors. 

Potassium grain analyses were conducted weighting 250 mg of sample material into 50 

ml flasks. Samples were then placed in a muffle furnace (Thermolyne 30400) and 2 mL 

of concentrated HCl (12.1 N) were added. After dilution of the samples by adding 23 mL 

of water, a final 1N HCl solution was obtained. Next, dilutions (1:20) and standards were 

made and samples run on an atomic absorption spectrometer (SpectrAA 50B).  

Phosphorus and potassium values are reported as P and K, respectively. 

 

2.12. Nitrogen Deficiency Rating 

For LEX2015, nitrogen deficiency ratings were recorded at R5. For LEX2016, ratings 

were done at R1, R3 and R5 and at R3 and R5 for HAR2016. 

Nitrogen deficiency can be observed in the field mainly in the lower leaves of the 

crop canopy, visible as a “V” shaped yellowing coloration (Murdock, 2001). This 

symptom starts at the leaf tip and travels along the midrib towards the stem on the plant. 

Visual symptoms were evaluated on five tagged plants located in the fourth row of each 

plot designated for non-destructive sampling.  The dominant ear leaf was designated as 

“0” and each leaf below was given a negative number (i.e. -1 for the first leaf below the 

dominant ear leaf) while leaves above the dominant ear leaf were denoted with positive 

values.  

2.13. Nitrogen Indices 

2.13.1. Nitrogen Harvest Index (NHI) 
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The NHI (Sinclair, 1998), is used to help explain nitrogen partitioning in the plant 

and can be expressed as the ratio between nitrogen accumulated in grain and the total N 

accumulated at plant maturity (Bender et al., 2013; Cirilo et al., 2009; Boomsma et al., 

2009). This parameter was determined for LEX2015 and 2016.  

2.13.2. Nitrogen Internal Efficiency (NIE) 

The NIE was calculated for LEX2015 and LEX2016 as the portion of the grain yield 

response attributable to N uptake. NIE was calculated as follows (Ciampitti and Vyn, 

2011): 

NIE = (GYfert. – GYunfert.) / (Nuptfert. – Nuptunfert.), 

where GYfert. is the grain yield (15.5% moisture basis) of a plot fertilized with 390N and 

GYunfert. refers to the grain yield of a plot receiving 0N. Nuptfert. is N uptake 

corresponding to the fertilized plot and Nuptunfert. is N uptake for the unfertilized plot. 

 

2.14. Statistical Data Analyses 

2.14.1. Grain Yield and Yield Components 

The analysis of variance (ANOVA) was completed using a linear additive model that 

tested environment, replication (block), N rate, hybrid, seeding rate and all interactions 

using a PROC GLM statement in SAS 9.4 (SAS Institute Inc., 2013). The treatment 

factors (N rate, hybrid and SR) and the environments (site- year) were considered fixed in 

the analysis, and replications were considered random. Each environment contains 

intrinsic characteristics such as soil type, climate, etc., which makes possible an 

evaluation of the effect of environment on crop response to the applied treatments. When 
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treatment effects were significant at P ≤ 0.10, the least-squares means (LSMEANS) were 

tested. 

The analysis first included all three environments (LEX2015, LEX2016 and 

HAR2016), but included only the two hybrids common to all environments (A6499 and 

A6517). Since environment interactions with main factors were significant (p ≤ 0.10), 

each environment was analyzed separately. All hybrids in each environment were 

analyzed. The same linear model was used, without environment as a source of variation.  

2.14.2. Nutrient Uptake 

A repeated measures statement was used to analyze nutrient uptake since biomass 

harvests and measurements were taken with time, though at different growth stages. To 

test the ANOVA (α ≤ 0.10), the linear additive model included environment, time 

(growth stage), replication (block), N rate, hybrid, seeding rate and all the interactions 

using a PROC MIXED statement in SAS 9.4 (SAS Institute Inc., 2013). When treatment 

effects were significant, the least-squares means (LSMEANS) were tested using the 

PROC GLIMMIX statement.  

Whole-plant biomass was sampled in both LEX2015 and LEX2016. These 

measurements included stem and leaf, grain, husk and cob fractions. The stem and leaf 

nutrient uptake analysis was conducted over all growth stages. In the case of grain 

accumulation, the analysis included only R5 and R6 stages. Since at R3 grain plus cob 

were analyzed together for nutrient uptake (grains were not separated from the cob), this 

stage was statistically analyzed by itself (Ciampitti et al., 2013). As for husk, the analysis 

was performed for the R5 stage in 2015 and a repeated measures statement was used for 
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2016, where R3, R5 and R6 stages were included in the analysis. Similarly, cob nutrient 

uptake was analyzed for R5 in 2015 and for R5 and R6 in 2016. 

At HAR2016, on the other hand, only grain samples were harvested at R6 and 

therefore just grain nutrient removal analysis was conducted for this environment. When 

applicable, the nutrient accumulation analysis was first done comparing environments, 

including only the two hybrids that all environments have in common (A6499 and 

A6517). If environment or environment by main factor interactions were significant (p ≤ 

0.10), each environment was then analyzed separately. In this case, the four hybrids 

(DKC62-78RIB, DKC67-72RIB, P0339AM and P2089AM) added to the studies in 2016 

were included in the statistical analysis. The same linear model was used, without 

environment as a source of variation. If, on the contrary, no significant differences were 

observed between environments, then statistical analyses were performed across 

environments, only including hybrids A6499 and A6517. To test the other four hybrids, a 

different statistical analysis was conducted for that environment including all hybrids (n = 

6).    

2.14.3. Crop Growth Rate 

An analysis of covariance was completed using a PROC MIXED statement in 

SAS 9.4 (SAS Institute Inc., 2013). Crop growth rate (CGR) was determined as the slope 

of the linear regression between aboveground biomass and days after planting (DAP). 
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Chapter 3 

 

3. Grain Yield and Yield Components 

3.1. Objectives 

Corn grain yield is greatly associated with the level of N that is available for the crop, 

as well as plant population. In this study, the N treatments were to cause N to be either 

limiting or non-limiting. In addition, plant population treatments were such that plant 

density was either suboptimal (Low SR) or supraoptimal (High SR). The following 

hypotheses were formulated: 

 
a. Grain yield per hectare will be higher for all hybrids when combining the High N 

rate and the High SR. 

b. High SR will increase kernel number per hectare and decrease kernel number per 

ear, however, High N will offset the effect of High SR. 

c. Kernel weight will be greater with the High N rate, and will decrease marginally 

with the High SR as compared to the Low SR.  

 

3.2. Results 

3.2.1. Weather Conditions 

The LEX2015 monthly temperatures were near average in April, warmer than 

average in May, near average in June and July, and below average for August. Lexington 

rainfall was above average in April, June and July and below average the other months of 

the growing season (Figure 3.1A, 3.1B). Growing degree days (˚C) for LEX2015 from 

April to August numbered 1656. 
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The LEX2016 temperatures were below average for May and above average for all 

other months of the growing season. The LEX2016 rainfall was above average in May 

and August and below average for all other months of the growing season.  

The HAR2016 temperatures were below average for May and above average for all 

other months. The HAR2016 rainfall was above average in April, May, July and August 

(Figure 3.1C, 3.1D). June was below average for rainfall and there was a gap in 

meaningful rain for the last two weeks of June, disrupted by about 13 cm occurring over 

a week (Midwestern Regional Climate Center, 2017). 

Growing degree days (C˚) for LEX2016 and HAR2016 from April to August were 

1771 and 1725 C˚, respectively. 

3.2.2. Grain Yield 

There were numerous and inconsistent interactions between N rate and seeding rate 

effects on yield and yield components. The two hybrids were consistent across all three 

environments and the three-way interactions of N rate, seeding rate and hybrid and 

environment, N rate and seeding rate were significant (p = 0.0104 and p = 0.0186, 

respectively; Table A.1, Appendix). Because of these interactions, all six hybrids were 

analyzed for both 2016 environments, where the three-way interactions of N rate, seeding 

rate and hybrid (p = 0.0079) and environment, N rate and seeding rate (p = 0 .0928) were 

significant (Table A.2, Appendix). Since these interactions were significant, N and 

seeding rate effects on grain yield were analyzed by environment. 

At LEX2015, mean yields were 9.8 and 17.5 mg ha-1 for the Zero and High N rates, 

respectively. Mean yields for the Zero and High N rates at LEX2016 were 7.2 and 18.0 

Mg ha-1 and 6.9 and 12.5 Mg ha-1 at HAR2016, respectively.  
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For LEX2015 a significant interaction of N rate by seeding rate by hybrid occurred (p 

= 0.0781) (Table 3.2). The High N rate increased grain yield in all seeding rate by hybrid 

comparisons (Table 3.3). At the Zero N rate, the High SR reduced A6499 yield. The 

converse occurred at the High N rate where High SR increased yields (Table 3.3). 

At LEX2016, a significant three-way N rate by seeding rate by hybrid interaction 

occurred (p = 0.0576). The High N rate increased yield of all hybrid by seeding rate 

combinations (Table 3.3).  

 Grain yield at HAR2016 was affected by two-way interactions, including N rate by 

seeding rate (p < 0.0001) and hybrid by seeding rate (p = 0.0027; Table 3.2). When N 

was limiting, High SR reduced yield by 34%, but, when N was non-limiting, High SR 

increased yield by 15%. The High SR increased grain yield for two hybrids (A6517, 

DKC62-78), decreased yield for hybrid P20892 and had no effect on the other three 

hybrids when averaged across N rate (Table 3.3). 

As indicated earlier for the other two environments, grain yield increased with the 

High N rate treatment (Table 3.3). The main effect of seeding rate was not significant (p 

= 0.2233), but as previously observed in LEX2016, the High SR resulted in increased 

grain yield at the High N rate (significant N rate by SR interaction, p < 0.0001: Tables 3.2 

and 3.3). Alternatively, the High SR reduced yields at the Zero N rate.  

 

3.2.3. Grain Yield Components 

3.2.3.1. Kernel Number 

When analyzing the two hybrids across all three environments, all parameters 

involved in the determination of the kernel number component (rows ear⁻¹, kernels row⁻¹, 
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kernels ear⁻¹ and kernels ha⁻¹) exhibited a significant environment by hybrid two-way 

interaction (Table A.1). When analyzing the six hybrids across the two 2016 

environments, other interactions occurred, usually involving environment by hybrid 

(kernels ha-1, p = 0.0554; and kernels row-1, p = 0.0055) or environment by N rate 

(kernels ha-1, p = 0.0008; rows ear-1, p=0.0434; and kernels row-1, p = 0.0260) or 

environment by seed rate (kernels ha-1, p = 0.0515; and rows ear-1, p = 0.0270) (Table 

A.2). 

Because of these interactions, each environment was analyzed separately for yield 

components.  

The High N rate increased A6517 kernels ha-1 by 89 % at LEX2015. At the Zero N 

rate, SR had no effect on kernels ha-1, while at the High N, the High SR increased kernels 

ha-1 by 20%, on average (Table 3.3). At HAR2016, the High N rate increased kernels ha-1 

in 5 out of 6 hybrids at the High SR. 

When differences were significant, the High SR increased kernels ha-1 at the High N 

rate in all three environments. In two environments, the High SR at the Zero N rate 

reduced kernels ha-1 (Table A.4). These results suggest that N rate was more influential 

on kernels ha-1 than seeding rate, for the kernel number parameters evaluated. 

Mean kernels ear-1 for the Zero and High N rates were 473 and 627, 425 and 691, and 

449 and 603 for LEX2015, LEX2016 and HAR2016, respectively. The High N rate 

increased kernels ear-1 for 21 of 28 hybrid by seeding rate combinations (across all three 

environments). In the remaining seven combinations, kernels ear-1 was numerically 

higher with the High N rate (Table A.3). The High SR reduced kernels ear-1 in 19 

combinations. Kernels ear-1 was numerically lower for the High SR in the remaining 
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comparisons (Table A.3). The highest kernels ear-1 values were observed at LEX2016 for 

P2089, High N rate, Low SR (895) and A6517, High N rate, Low SR (855).  

Mean kernels row-1 for the Zero and High N rate treatments were 31.6 and 39.3, 28.2 

and 40.6, and 29.9 and 37.7 for LEX2015, LEX2016 and HAR2016, respectively. The 

High N rate increased kernels row-1 in 19 hybrid by seeding rate combinations, with 

higher numerical kernels row-1 values for the remaining 9 combinations (Table A.3). The 

High SR reduced kernels row-1 in 20 hybrid by N rate combinations, with lower 

numerical kernels row-1 values for the remaining combinations (Table A.4). 

Mean kernel rows ear-1 for the Zero and High N rate treatments were 15.0 and 15.8, 

14.6 and 16.8 and 14.9 and 16.0 for LEX2015, LEX2016 and HAR2016, respectively.  

The high N rate increased kernel rows ear-1 in only nine hybrid by seeding rate 

combinations. The High SR decreased kernel rows ear-1 in only eight hybrid by N rate 

combinations (Table A.3). 

In 2016, both at Lexington and Hardin, ear length decreased as actual plant 

population increased, regardless the N rate (Figure 3.2A, 3.2B). In both environments, the 

High N rate increased ear length. At LEX2016, ear length regression slopes declined 

equally as plant populations increased (Figure 3.2A). However, at HAR2016, ear length 

declined more rapidly at the Zero N rate as plant population increased (Figure 3.2B).  

Predicted ear lengths both at LEX2016 and HAR2016 for significant regressions were 

longer at 74000 plants ha⁻¹ target population when analyzing each hybrid across N rate 

treatments. Ear length ranged from 17.8 to 20.2 at LEX2016 and from 16.8 to 20.5 cm at 

HAR2016 (Table 3.4). At high target populations, predicted ear length values at 

LEX2016 and HAR2016 ranged from 12.4 to 14.6 cm and 11.3 to 15.1 cm, respectively.  
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Hybrid P2089AM produced the longest predicted ear length at both LEX2016 and 

HAR2016 for the Low population. P2089AM also had the longest ear at 148,000 plants 

ha⁻¹ at HAR2016.  

Actual plant population had no significant effect on tip-back, at either N rate, in 2016 

(Figure 3.2C, Figure 3.2D). At LEX2016, actual plant population density did not 

influence tip-back. At HAR2016, hybrids A6499, DKC67-72, P0339AM, and P2089AM 

all had greater tip-back as plant density increased (Table 3.5). Overall, predicted tip-back 

increased 0.4 cm on average across hybrids as target plant densities increased from 

74,000 to 148,000 plants ha⁻¹. 

3.2.3.2. Kernel Weight 

Average thousand kernel weights for the Zero and High N rates were 244 and 328 g, 

258 and 312 g, and 278 and 288 g for LEX2015, LEX2016 and HAR2016, respectively 

(Table 3.3). On average, the High N rate increased kernel mass by 35% at LEX2015, as 

compared to the Zero N rate. At LEX2016 and for all hybrids, the High N rate and High 

SR treatment combination decreased kernel mass by 27%, on average, as compared to the 

Low SR. On average, the High N rate and High SR decreased kernel mass by 19% at 

HAR2016. In addition, High SR decreased kernel mass for five out of the six hybrids 

when averaged across N rates (Table 3.3). The High N rate did not overcome the High 

SR effect on reduced kernel mass. Thus, N availability does not appear to be the factor 

limiting seed size at high plant densities.   

 

3.2.4. Biomass 
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Stem and leaf (aboveground vegetative material) biomass was evaluated over time 

with biomass harvests at V7, V14, R3, R5 and R6. Vegetative biomass was significantly 

affected by environment (p < 0.0001) when comparing LEX2015 and LEX2016 (Table 

3.6). Therefore, each environment was independently statistically evaluated.  

At LEX2015, leaf and stem biomass reached maximum levels at R3 and maintained 

those dry matter yields through R6 (Tables 3.11 and 3.12). The High N rate increased 

stem and leaf biomass from V14 through R6, but not at V7 (p = 0.5113; Table 3.11). 

Hybrid leaf and stem biomass responded differently to seeding rate. The High SR 

increased A6499 leaf and stem biomass at V7 and V14, but not at any reproductive 

growth stage (Table 3.12). The High SR had no effect on A6517 leaf and stem biomass.  

At LEX2016, statistical analysis of stem and leaf biomass found three way 

interactions between N rate, hybrid and sampling time (p = 0.0088) and N rate, seeding 

rate and sampling time (p < 0.0001; Table 3.6). In most N and seeding rate treatment 

combinations, vegetative biomass was highest at the R3 stage, followed by the R5 stage, 

in most cases (data not shown). For both N rates, from growth stages V7 to R5, the High 

SR increased stem and leaf dry matter (Table 3.13). The High N rate increased stem and 

leaf biomass at all growth stages and seeding rates, except for the Low SR at V7 (Table 

3.13). Thus, N supply at early developmental stages did not affect stem and leaf biomass 

at low plant densities. Stem and leaf biomass was maximized at R3 for all hybrids, at 

both N rates, though with an average difference of 4.4 Mg ha-1 in favor of the 390 kg N 

ha-1 rate (Table 3.14). Also, significant differences in stem and leaf biomass due to 

hybrids were observed at R3 and R5 at Zero N, but when the High N rate was applied, 

hybrid differences were only observed at R6. The High N rate increased stem and leaf 
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biomass at V14 for DKC62-78, DKC67-72 and P0339 and at R3 and R5 for all hybrids. 

At the R5 stage, the High N rate increased stem and leaf biomass by an average of 3.0 

Mg ha-1 (Table 3.14). At V7, DKC62-78 was the only hybrid that increased stem and leaf 

dry matter with the High N rate, suggesting a higher crop growth rate for this hybrid. 

Grain biomass at R6, for the two hybrids common to all three environments, revealed 

no interactions between environment and any of the main effects (Table 3.7). Both the 

High N and High SR treatments increased shelled grain biomass (Table 3.15). When 

analyzing the six hybrids across both 2016 environments, both LEX2016 and HAR 2016 

exhibited a significant N rate by seeding rate interaction (p < 0.0001). Increasing seeding 

rates at the High N rate treatment improved grain dry matter at both locations by an 

average 3.6 Mg ha -1 (Table 3.16). With Zero N, grain biomass was not affected by 

seeding rate. 

Cob biomass was increased by the High N rate and the High SR for both 2016 

environments, with maximum cob biomass reaching 1.3 Mg ha-1 at the highest plant 

densities (Table 3.17). 

The High N rate increased husk biomass by 100 % (Table 3.18). Husk biomass 

differed for each hybrid, with A6517 producing the most (1.2 Mg ha-1) and P2089 

producing the least (0.5 Mg ha-1). 

3.2.5. Grain Harvest Index 

Grain harvest index was calculated and statistically analyzed comparing 

LEX2015 and LEX2016 (Table 3.10). The environment effect on this parameter was 

significant and LEX2015 and LEX2016 were statistically analyzed separately. In 2015, a 

significant N rate by hybrid interaction (p = 0.0519) resulted in higher harvest index with 
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the High N rate on both hybrids. However, no significant differences were observed 

between the High and Zero N rates for A6499 (Figure 3.3A).  

In LEX2016, the significant N rate by hybrid interaction (p = 0.0011) resulted in 

significantly higher harvest index values when the High N rate was applied to all the 

hybrids under study (Figure 3.3B). In this regard, hybrid P0339AM exhibited the highest 

harvest index value of 0.70 (the range, due to hybrid, was from 0.62 to 0.70). Increasing 

the seeding rates in this environment significantly improved harvest index (0.67) at the 

High N rate (p = 0.0003). On the other hand, the High SR produced a significant decrease 

in harvest index at the Zero N rate (0.53; Figure 3.3C).  

 

3.2.6. Stalk Weakness 

Stalk weakness at LEX2016 (Figure 3.4) was significantly increased by the effect 

of actual plant population density at the High N rate treatment (p = 0.0004). In contrast, 

increasing measured plant populations did not significantly affect stalk weakness at the 

Zero N rate treatment (p = 0.1347). Overall, in all environments, combine harvest was 

conducted without lodging issues 
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Table 3.1. Nitrogen rate, seeding rate, hybrid, and soil type, taxonomic classification and properties for each environment. 
     

Environment (latitude, 
longitude) 

N Rate 
(kg N ha⁻¹) 

Seeding 
Rate 
(seeds ha⁻¹) 

Hybrids 
Soil 
Type 

Soil Taxonomy 
Classification 

Properties 

Lexington2015  
(38˚12’96’’N, 
84˚49’13’’W) 

0  
390   

74000 
148000 

AgriGold 
A6499STXRIB 
AgriGold 
A6517VT3PRIB 

Lowell-
Bluegrass silt 
loam,  
2-6 % slope 

fine, mixed, 
active, 
mesic Typic 
Hapludalfs 

well 
drained 
low runoff 

 Lexington2016 
(38˚12’86’’N, 
84˚49’12’’W) 
  
  

 0  
390  
  
  

74000 
148000 
  
  

AgriGold 
A6499STXRIB 
AgriGold 
A6517VT3PRIB 
DeKalb DKC62-78RIB  
DeKalb DKC67-72RIB 
Pioneer P0339AM 
Pioneer P2089AM 

Lowell-
Bluegrass silt 
loam,  
2-6 % slope 
  
  
  
  

fine, mixed, 
active, 
mesic Typic 
Hapludalfs 
  
  
  
  

well 
drained 
low runoff 
  
  
  
  

Hardin2016 
(37˚61’67’’N, 
85˚92’03’’W) 
  
  

 0  
390  
  
  

74000 
148000 
  
  

AgriGold 
A6499STXRIB 
AgriGold 
A6517VT3PRIB 
DeKalb DKC62-78RIB  
DeKalb DKC67-72RIB 
Pioneer P0339AM 
Pioneer P2089AM 

Crider silt 
loam,  
2-6 % slope 
  
  
  
  

fine-silty, 
mixed, active,  
mesic Typic 
Paleudalfs 
  
  
  
  

well 
drained 
low runoff 
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Table 3.2. ANOVA table summarizing sources of variation for each environment. 

Environment 
Source of  Grain  Rows Kernels Kernels Kernels Kernel Ear Tip Back 
variation Yield Ear⁻¹ Row⁻¹ Ear⁻¹ Ha⁻¹ Weight Length ꝉ Length ꝉ 

 --------------------------------------------------------------p – value------------------------------------------------------------ 
  ANOVA <0.0001 0.1253 0.0703 0.1584 0.0069 0.2797 - - 
  N 0.0004 0.5000 0.1535 0.0276 0.0727 0.0789 - - 
  Hyb 0.9791 1.0000 0.8075 0.9113 0.8319 0.9208 - - 
Lexington N*Hyb 0.3134 0.1056 0.0927 0.1738 0.8878 0.3910 - - 
2015 Pop 0.6646 0.2746 0.0082 0.0233 0.0013 0.5911 - - 
  N*Pop 0.3032 1.0000 0.1210 0.2826 0.0061 0.8412 - - 
  Hyb*Pop 0.8726 0.5614 0.9455 0.9691 0.3333 0.5700 - - 
  N*Hyb*Pop 0.0781 0.5614 0.6374 0.5461 0.0232 0.2770 - - 
  ANOVA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
  N 0.0001 0.0217 0.0177 0.0191 0.0033 0.0143 0.0161 0.0581 
  Hyb <0.0001 0.0001 0.2126 0.0152 0.2566 0.0384 0.2040 <0.0001 
Lexington N*Hyb 0.0260 0.7190 0.3220 0.4186 0.7793 0.0590 0.4036 0.0628 
2016 Pop 0.1553 <0.0001 <0.0001 <0.0001 0.0615 <0.0001 <0.0001 0.0286 
  N*Pop <0.0001 0.0020 0.1609 0.1389 0.0023 <0.0001 0.6310 0.0364 
  Hyb*Pop 0.0089 0.0232 0.1847 0.0624 0.5368 0.6668 0.3479 0.2897 
  N*Hyb*Pop 0.0576 0.0135 0.7294 0.1782 0.4748 0.0753 0.7338 0.2671 
  ANOVA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0003 
  N 0.0017 0.0444 0.0004 0.0003 0.0025 0.1609 0.0003 0.0955 
  Hyb 0.0035 <0.0001 <0.0001 <0.0001 <0.0001 0.0098 <0.0001 <0.0001 
Hardin N*Hyb 0.5566 0.0420 0.2137 0.1045 0.0260 0.1812 0.4143 0.2436 
2016 Pop 0.2233 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0161 
  N*Pop <0.0001 0.0080 0.0006 0.0028 <0.0001 0.0018 0.0020 0.0211 
  Hyb*Pop 0.0027 0.0039 0.7445 0.1948 0.1900 0.0002 0.1036 0.0002 
  N*Hyb*Pop 0.7220 0.0534 0.1938 0.5610 0.0588 0.1291 0.1505 0.0469 
ꝉ Lexington 2016 and Hardin 2016 data for this parameter.             
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           Table 3.3. Seeding rate effect on Grain Yield, Kernels Ha⁻¹ and 1000 Kernel Weight, within environment, hybrid and N rate. 

Environment Hybrid 
N rate 
(kg/ha) 

Seeding rate (seeds/ha) 
p-value† 

Seeding rate (seeds/ha) 
p-value† 

Seeding rate (seeds/ha) 
p-

value† 
74000 148000 74000 148000 74000 148000 

      Yield (Mg/Ha)  10⁶ Kernels Ha⁻¹   1000 Kernel Wt. (g)  
Lexington  A6499 0 10.3 b‡  8.9 B 0.0290 37.0 a 47.0 A 0.3440 247   264     

2015   390 16.9 a 18.5 A 0.0781 49.0 a 66.5 A 0.1602 326   304     
  A6517 0 9.4 b 10.4 B 0.4372 42.0 a 42.5 B 0.7952 255   208     
    390 17.3 a 17.2 A 0.9566 41.0 a 77.5 A 0.0261 338   344     
  

Mean 
0 9.8   9.6     39.5   44.8     251   236   0.6660 

  390 17.1   17.9     45.0   72.0     332   324   0.7997 
  A6499 0 8.2 b 6.7 B 0.2166 41.0   45.0     263 b 263 A 1.0000 

Lexington   390 15.2 a 19.1 A 0.0157 64.0   84.3     343 a 279 A 0.0073 
2016 A6517 0 7.6 b 7.0 B 0.0809 59.0   63.3     270 b 246 A 0.0809 

    390 17.7 a 20.6 A 0.0045 79.0   88.3     325 a 270 A 0.0488 
  DKC62-78 0 8.1 b 6.8 B 0.0113 39.3   36.0     270 b 264 A 0.6401 
    390 15.7 a 18.7 A 0.0104 69.3   80.6     381 a 284 A 0.0247 
   DKC67-72 0 9.7 b 6.6 B 0.0205 50.0   39.6     255 b 270 A 0.5304 
    390 17.5 a 19.8 A 0.0774 66.3   99.3     348 a 279 A 0.0644 
  P0339 0 7.0 b 4.0 B 0.0320 42.3   30.3     256 b 247 B 0.5905 
    390 14.5 a 18.6 A 0.0233 73.0   77.3     322 a 258 A 0.0759 
  P2089 0 8.8 b 6.0 B 0.0313 41.6   35.3     233 b 253 A 0.3306 
    390 19.3 a 19.1 A 0.8481 77.0   86.3     381 a 278 A 0.0360 
  

Mean 
0 8.3   6.2     45.5 b 41.6 B 0.3388 258   257     

  390 16.7   19.3     71.4 a 86.0 A 0.0020 350   275     
  A6499 0 8.5  6.0   0.8081 58.0 a 53.5 B 0.5045 291  276  0.0085  

Hardin   390 11.7  13.8    60.2 a 71.7 A 0.2077 309  265    
2016 A6517 0 7.9  7.5   0.0403 43.5 a 55.7 B 0.1038 265  228   0.0025 

    390 12.1  14.7    50.7 a 68.5 A 0.0350 298  267    
  DKC62-78 0 7.8  7.3   0.0239 37.5 b 48.2 B 0.1235 296  290  0.0496  
    390 10.2  13.2    54.0 a 67.2 A 0.0207 317  291    
  DKC67-72 0 7.3  5.2   0.2958 45.0 a 47.5 B 0.5240 301  269   0.0039 
    390 12.5  13.0    44.7 a 74.2 A 0.0126 353  250    
  P0339 0 7.2  3.5   0.3751 42.2 a 30.0 B 0.0641 286  284   0.3915 
    390 10.3  12.5    50.6 a 75.6 A 0.0549 282  271    
  P2089 0 8.7  5.8  0.0513  47.2 a 52.0 B 0.6676 304  251   0.0003 
    390 13.4  13.0    57.7 a 84.0 A 0.0307 322  239    
  

Mean 
0 7.9 b  5.9 B  <.0001 45.6   47.8     291  b 266 A  0.0001 

  390 11.7 a  13.4 A  0.0002 53.0   73.5     314  a 264 A  <.0001 
† Means in the same row with a p-value ≤ 0.10 are significantly different. 
 ‡ Means are compared within each seeding rate.                    
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Table 3.4. Predicted ear length response to actual plant population density for each hybrid.     

Environment  Hybrid Equation R² p-value† 
Target Population (plants ha-¹) 

74000 148000 
Predicted Ear Length (cm) 

  A6499 y = -0.00005481x + 21.84628 0.25 0.0947 17.8 13.7 
   A6517 y = -0.00006550x + 24.31595 0.38 0.0316 19.5 14.6 
Lexington DKC62-78 y = -0.00003857x + 20.72138 0.10 0.2978 17.9 15.0 
2016 DKC67-72 y = -0.00006244x + 23.40097 0.41 0.0244 18.8 14.2 
  P0339AM y = -0.00007215x + 23.29136 0.40 0.0264 18.0 12.6 
  P2089AM y = -0.00010475x + 27.94240 0.62 0.0022 20.2 12.4 
            
  A6499 y = -0.00006195x + 22.91810 0.61 0.0003 18.3 13.7 
   A6517 y = -0.00005298x + 20.73572 0.54 0.0011 16.8 12.9 
Hardin DKC62-78 y = -0.00004788x + 20.96211 0.39 0.0086 17.4 13.9 
2016 DKC67-72 y = -0.00005691x + 22.26689 0.50 0.0020 18.1 13.8 
  P0339AM y = -0.00007644x + 22.61475 0.50 0.0041 17.0 11.3 
  P2089AM y = -0.00007292x + 25.92270 0.49 0.0025 20.5 15.1 
† Significant values (p ≤ 0.10) are highlighted. 
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Table 3.5. Predicted tip-back response to actual plant population density for each hybrid in Lexington and Hardin 2016. 

Environment  Hybrid Equation R² 
p-

value † 

Target Population (plants ha⁻¹) 
74000 148000 
Predicted Tip Back (cm) 

  A6499 y = 0.00000426x + 0.43344 0.10 0.3231 0.7 1.1 
   A6517 y = 0.00000551x + 0.16866 0.12 0.2686 0.6 1.0 
Lexington DKC62-78 y = -0.00000118x + 0.85889 0.01 0.8021 0.8 0.7 
2016 DKC67-72 y = 0.00000533x -0.15070 0.21 0.1389 0.2 0.6 
  P0339AM y = -0.0000001155x + 1.43591 0.00 0.9867 1.4 1.4 
  P2089AM y = 0.00001081x + 1.16857 0.15 0.2164 2.0 2.8 
            
  A6499 y = 0.00000540x - 0.08140 0.35 0.0155 0.3 0.7 
   A6517 y = -0.00000213x + 0.63883 0.14 0.1462 0.5 0.3 
Hardin DKC62-78 y = 0.00000210x + 0.12422 0.09 0.2517 0.3 0.4 
2016 DKC67-72 y = 0.00000346x - 0.17364 0.38 0.0107 0.1 0.3 
  P0339AM y = -0.00000498x + 1.19791 0.20 0.0999 0.8 0.5 
  P2089AM y = 0.00000650x + 0.11772 0.28 0.0333 0.6 1.1 

† Significant values (p ≤ 0.10) are highlighted. 
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Table 3.6. ANOVA table for stem and leaf biomass summarizing sources of variation for 
each environment. 

Source of  stem & leaf 
Environment 

Source of  stem & leaf   

variation biomass ha⁻¹ variation biomass ha⁻¹   
 p-value   p-value 

env <0.0001 ꝉ   n 0.0110 ‡   
n 0.0003   hyb 0.5401   
env*n 0.0323   n*hyb 0.6342   
hyb 0.5893   pop 0.1490   
env*hyb 0.3048   n*pop 0.1232   
n*hyb 0.6844   hyb*pop 0.6134   
env*n*hyb 0.5708 Lexington n*hyb*pop 0.7324   
pop 0.0002 2015 time <0.0001   
env*pop 0.1758   n*time 0.0028   
n*pop 0.0195   hyb*time 0.3834   
env*n*pop 0.4958   n*hyb*time 0.4352   
hyb*pop 0.8237   pop*time 0.6533   
env*hyb*pop 0.4697   n*pop*time 0.5050   
n*hyb*pop 0.9918   hyb*pop*time 0.0090   
env*n*hyb*pop 0.5312   n*hyb*pop*time 0.1692   
time <0.0001         
env*time <0.0001   n <0.0001 §   
n*time <0.0001   hyb 0.0819   
env*n*time <0.0001   n*hyb 0.6382   
hyb*time 0.4575   pop <0.0001   
env*hyb*time 0.2498   n*pop <0.0001   
n*hyb*time 0.0984   hyb*pop 0.3683   
env*n*hyb*time 0.9199 Lexington n*hyb*pop 0.3444   
pop*time 0.0540 2016 time <0.0001   
env*pop*time 0.4080  n*time <0.0001   
n*pop*time 0.1954   hyb*time 0.0002   
env*n*pop*time 0.7444   n*hyb*time 0.0088   
hyb*pop*time 0.0039   pop*time <0.0001   
env*hyb*pop*time 0.0718   n*pop*time <0.0001   
n*hyb*pop*time 0.1062   hyb*pop*time 0.9959   
env*n*hyb*pop*time 0.5348   n*hyb*pop*time 0.9873   
ꝉ ANOVA table for Lexington 2015 and Lexington 2016. AgriGold A6499STXRIB and AgriGold  
A6517VT3PRIB are included in the analysis since all environments test these hybrids. 

‡ ANOVA table for Lexington 2015.     
§ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis. 
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Table 3.7. ANOVA table for grain biomass summarizing sources of variation. 
      

 
2 hybrids, 3 

environments 
6 hybrids, 2 

environments 
Source of  Grain Grain 
variation biomass ha⁻¹ biomass ha⁻¹ 
 p-value p-value 
env 0.5750 † 0.5558 ‡ 
n 0.0002 <0.0001 
env*n 0.5053 0.0107 
hyb 0.0002 0.1454 
env*hyb 0.5053 0.0740 
n*hyb 0.0002 0.9010 
env*n*hyb 0.5053 0.2238 
pop 0.0002 <0.0001 
env*pop 0.3386 0.6599 
n*pop 0.0055 <0.0001 
env*n*pop 0.4920 0.7275 
hyb*pop 0.2439 0.1602 
env*hyb*pop 0.8532 0.9785 
n*hyb*pop 0.9620 0.5955 
env*n*hyb*pop 0.9933 0.8151 
† ANOVA table for all environments. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB  
are included in the analysis since all environments share these hybrids. 

‡ ANOVA table for Lexington and Hardin 2016. All 6 hybrids are included in the analysis.   
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Table 3.8. ANOVA table for cob biomass summarizing sources of variation. 
Source of  Cob 

Environment 
Source of  Cob 

variation biomass ha⁻¹ variation biomass ha⁻¹ 
 p-value   p-value 
env 0.5601 ꝉ   n 0.0057 ‡ 
n <0.0001   hyb 0.3180 
env*n 0.0075   n*hyb 0.3961 
hyb 0.9790 Lexington pop 0.0330 
env*hyb 0.1157 2016 n*pop 0.4452 
n*hyb 0.4729   hyb*pop 0.1427 
env*n*hyb 0.7583   n*hyb*pop 0.2437 
pop 0.0016       
env*pop 0.3685   n 0.006 § 
n*pop 0.3640   hyb 0.4671 
env*n*pop 0.9081   n*hyb 0.7258 
hyb*pop 0.3346 Hardin pop 0.0126 
env*hyb*pop 0.7041 2016 n*pop 0.5198 
n*hyb*pop 0.1399   hyb*pop 0.6350 
env*n*hyb*pop 0.6299   n*hyb*pop 0.2874 

ꝉ ANOVA table comparing Lexington and Hardin 2016. All 6 hybrids are included in the analysis. 

‡ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis. 

§ ANOVA table for Hardin 2016. All 6 hybrids are included in the analysis. 
 
 

Table 3.9. ANOVA table for husk biomass summarizing 
sources of variation for the LEX2016 environment. 
Source of Husk 
variation biomass ha⁻¹ 
 p-value 
n 0.0145 ꝉ 
hyb <0.0001 
n*hyb 0.1655 
pop 0.7231 
n*pop 0.3913 
hyb*pop 0.4478 
n*hyb*pop 0.8492 

 
ꝉ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis.
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Table 3.10. ANOVA table for grain harvest index summarizing sources of variation 
for each environment. 
 
Source of  Grain  

Environment 
Source of  Grain  

variation harvest index variation 
harvest 
index 

 p-value   p-value 
env 0.0070 ꝉ   n 0.1756 ‡ 
n 0.0018   hyb 0.1794 
env*n 0.1437   n*hyb 0.0519 
hyb 0.3579 Lexington pop 0.4717 
env*hyb 0.0236 2015 n*pop 0.1218 
n*hyb 0.2895   hyb*pop 0.8815 
env*n*hyb 0.0015   n*hyb*pop 0.9603 
pop 0.9309       
env*pop 0.1787   n 0.0040 § 
n*pop 0.0400   hyb 0.0299 
env*n*pop 0.1687   n*hyb 0.0011 
hyb*pop 0.3931 Lexington pop 0.4721 
env*hyb*pop 0.6593 2016 n*pop 0.0003 
n*hyb*pop 0.9309   hyb*pop 0.3080 
env*n*hyb*pop 0.8734   n*hyb*pop 0.3327 
ꝉ ANOVA table comparing Lexington 2015 and Lexington 2016. AgriGold  
A6499STXRIB and AgriGold A6517VT3PRIB are included in the analysis since all environments test  
these hybrids. 

‡ ANOVA table for Lexington 2015.        
§ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis. 
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Table 3.11. Growth stage effect on stem and leaf dry matter per hectare, within  
N rate, for LEX2015. 
LEX2015 Growth stage 

V7 V14 R3 R5 R6 
N rate Stem + Leaf Dry Matter (Mg ha⁻¹) 
(kg N ha⁻¹) 
0 1.9 C† 5.2 B 9.7 A 9.1 A 9.0 A
390 1.8 C 7.7 B 12.2 A 12.9 A 12.7 A
p-value 0.5113  0.0189  0.0115  0.0311  0.0176  
† Stem & leaf dry matter separated by N rate, for each growth stage. Means in the same row with 
different letters are significantly different (p ≤ 0.10). 

‡ Means in the same column with a p-value ≤ 0.10 are significantly different.  

 
 
 
Table 3.12. Seeding rate and growth stage effect on stem and leaf dry matter per  
hectare, within hybrid, for LEX2015. 
LEX2015 Growth stage 

V7 V14 R3 R5 R6 
Hybrid Seed rate                    
  (seeds ha-1) Stem + Leaf Dry Matter (Mg ha⁻¹) 
A6499 74000 1.6 C† 7.4 B 10.7 A 10.6 A 10.4 A

148000 2.2 C 5.4 B 12.5 A 11.6 A 11.4 A
  p-value 0.0132  0.0943  0.1686  0.6526  1.0000  
              
A6517 74000 1.5 C 5.2 B 9.9 A 11.0 A 10.3 A

148000 2.0 C 7.7 B 10.6 A 10.9 A 11.1 A
  p-value ‡ 0.1317  0.112  0.4102  0.9779  0.6622  
† Stem & leaf dry matter separated by hybrid, for each seeding rate and growth stage. Means in 
the same row within seeding rate with different letters are significantly different (p ≤ 0.10). 

‡ Means in the same column within hybrid and growth stage with a p-value ≤ 0.10 are 
significantly different. 
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Table 3.13. Nitrogen rate, seeding rate and growth stage effects on stem and leaf dry matter per hectare, for LEX2016. 
LEX 
2016 

Growth stage 
V7 V14 R3 R5 R6 

  Stem + Leaf Dry Matter (Mg ha⁻¹) 
SR / N 
rate 

74000 148000 74000 148000 74000 148000 74000 148000 74000 148000 

0  0.83 B ꝉ 1.17 A 3.62 B 4.20 A 5.83 B 6.87 A 4.68 B 5.59 A 4.36 A 4.99 A 
                                          

390  0.88 b 1.65 a 5.31 b 7.34 a 9.06 b 12.38 a 7.22 b 8.84 a 5.95 a 6.19 a 
 
p-value ‡ 0.5465  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001  0.0016  0.0003  <.0001   
ꝉ Stem & leaf dry matter separated by N rate and growth stage for each seeding rate. The N rate by seeding rate by growth stage interaction was significant (p 
= 0.0013). Means are compared within each N rate and growth stage. Means in the same row with different letters are significantly different (p ≤ 0.10).  
‡ Means in the same column within growth stage and seed rate with a p-value ≤ 0.10 are significantly different. 
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Table 3.14. Hybrid and growth stage effects on stem and leaf dry matter per hectare, within N rate, for LEX2016.     

LEX2016 
Hybrid   

A6499 A6517 DKC62-78 DKC67-72 P0339 P2089 p-value ‡ 
N rate  Growth 

Stem + Leaf Dry Matter (Mg ha⁻¹) 
(Kg N Ha⁻¹) stage 

0  

V7 1.2 Dꝉ 1.0 D 0.9 D 1.0 C 0.9 D 1.0 C ns* 
V14 4.4 C 4.4 C 3.4 C 4.5 B 3.0 C 3.8 B ns 
R3 7.4 A 6.9 A 5.6 A 6.7 A 5.3 A 6.2 A 0.0861 
R5 5.9 B 5.2 BC 4.5 B 5.2 B 4.3 B 5.7 A 0.0107 
R6 5.0 C 6.1 AB 3.8 BC 4.6 B 4.1 B 4.4 B ns 

                              
                              

390  

V7 1.3 D 1.0 D 1.2 D 1.4 D 1.5 D 1.2 C ns 
V14 6.3 C 5.5 C 6.7 BC 6.5 C 6.5 B 6.5 B ns 
R3 11.1 A 11.8 A 10.8 A 10.2 A 9.1 A 11.4 A ns 
R5 8.5 B 8.9 B 7.4 B 8.6 B 7.0 B 7.9 B ns 
R6 5.9 C 6.4 C 5.8 C 7.2 C 4.2 C 6.9 B 0.0038 

                              
    p-value §   
  V7 ns   ns   0.0703   ns   ns   ns     

0  V14 ns   ns   0.0148   0.0100   <.0001   ns     
vs. R3 0.0216   <.0001   0.0023   0.0163   <.0001   0.0647     
390  R5 0.0046   0.0003   0.0035   0.0010   0.0355   0.0627     

  R6 ns   ns   ns   0.0041   ns   0.0588     
ꝉ Stem & leaf dry matter separated by N rate for each growth stage and hybrid. For both N treatments, the growth stage by hybrid interaction was significant, 
therefore, means are compared within each hybrid. Means in the same column with different letters are significantly different (p ≤ 0.10). 
‡ Means in the same row within N rate and growth stage with a p-value ≤ 0.10 are significantly different.  
* ns = not significant at the α = 0.10 significance level.  
§ Means comparison among N rate treatments within hybrid for each growth stage with a p-value ≤ 0.10 are significantly different.  
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Table 3.15. Nitrogen and seeding rate effects on grain dry matter per hectare across two 
hybrids and three environments. 

All Environments 
Seeding rate (seeds ha⁻¹) 

74000 148000 

N rate 
Grain Dry Matter (Mg ha⁻¹) 

(kg N ha⁻¹) 
0  9.2 ns* 9.9   
          

390  14.1 B ꝉ 18.0 A
†N rate by seeding rate interaction for grain dry matter was significant. Means in the same row within N 
rate with different letters are significantly different (p ≤ 0.10). 
* ns = not significant (p ≤ 0.10). 
Note: Hybrids A6499 and A6517 were used in this analysis since planted in 2015 and 2016. 

 
Table 3.16. N and seeding rate effects on grain dry matter per hectare for LEX2016 and 
HAR2016. 

LEX2016-HAR2016 
Seeding rate (seeds ha⁻¹) 

74000 148000 

N rate 
Grain Dry Matter (Mg ha⁻¹) 

(kg N ha⁻¹) 
0  8.3 ns* 8.5   
          

390  13.7 B ꝉ 17.3 A 
† For LEX2016 and HAR2016, N rate by seeding rate interaction for grain dry matter was 
significant. Means in the same row within N rate with different letters are significantly different (p ≤ 
0.10). 

* ns = not significant (p ≤ 0.10). 
Note: All six hybrids used in the analysis. 

 
 
Table 3.17. N and seeding rate effects on cob dry matter per hectare across hybrids for  
LEX2016 and HAR2016. 

Environment  
N rate (kg N ha⁻¹) Seed rate (seeds ha⁻¹) 
0  390  74000 148000 

Cob Dry Matter (Mg ha⁻¹) 
                 
LEX2016 0.9 B † 1.6 A 1.2 B † 1.3 A 
                 
HAR2016 1.0 B 1.4 A 1.1 B 1.3 A 

†ꝉ N rate and seeding rate effect for cob dry matter was significant. Means in the same  
row within environment with different letters are significantly different (p ≤ 0.10). 
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Table 3.18. N rate and hybrid effects on husk dry matter per hectare across seeding rates, 
for LEX2016. 

LEX2016 Hybrid 
A6499 A651

7 
DKC62-

78 
DKC67

-72 
P0339 P2089 Mean 

NR (kg N ha-1)                             
 Husk Dry Matter (Mg ha⁻¹) 
0  0.5  0.8  0.5  0.6  0.4   0.4    0.5 B† 
390  1.0  1.2  1.1  1.1  0.8   0.6   1.0 A 
Mean 0.8 B‡ 1.0 A 0.8 B 0.9 B 0.6 C 0.5 D   

† For LEX2016, N rate effect for husk dry matter was significant. Means in the same column with different 
letters are significantly different (p ≤ 0.10). 
‡ Hybrid effect for husk dry matter was significant. Means in the same row with different letters are 
significantly different (p ≤ 0.10). 
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Figure 3.1: Monthly average temperature (A), precipitation (B) for Lexington 2015, Lexington 2016 and the past 30 years. Monthly 
average temperature (C), precipitation (D) for Hardin 2016 and the past 30 years. 
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Figure 3.2. Mean ear length (cm) at 0 or 390 kg N ha-1 as a function of actual plant population density for Lexington 2016 (A) and Hardin 2016 
(B). Mean tip back length (cm) at 0 or 390 kg N ha-1 as a function of actual plant population density for Lexington 2016 (C) and Hardin 2016 (D). 
Means are for each hybrid (A6499, A6517, DKC62-78RIB, DKC67-72RIB, P0339AM and P2089AM). 
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Figure 3.3. Grain harvest index at Lexington 2015 (A) was significantly affected by a N rate by 
hybrid interaction (p = 0.0519). Grain harvest index at Lexington 2016 (B) was significantly 
affected by a N rate by hybrid interaction (p = 0.0011) and by a N rate by seeding rate interaction 
(C; p = 0.0003). Means overtopped by different letters are significantly different (p ≤ 0.10). 
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Figure 3.4. Stalk weakness rating at 0 or 390 kg N ha-1 as a function of actual plant 
population density for Lexington 2016. Means are for each hybrid (A6499, A6517, 
DKC62-78RIB, DKC67-72RIB, P0339AM and P2089AM). Stalk weakness was rated on 
a 0-5 scale, with 0 representing unbreakable stalks when applying pressure up to a 30˚ 
angle, and 5 representing breakable stalks with that same pressure.
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3.3. Discussion 

 
3.3.1. Grain Yield Responsiveness 

 
The 390 kg N ha-1 treatment increased grain yield within each environment, for 

both seeding rates and all hybrids tested. In LEX2015, grain yield from the High N 

treatment was 81% above the Zero N treatment when averaged across seeding rates and 

hybrids (relative increase was calculated as the difference between the mean of all 

treatments with the High N rate and the mean with the Zero N rate treatments and 

expressed as a percentage of the lowest N rate (Crozier et al., 2014)). At LEX2016 and 

HAR2016, grain yield from the High N treatment was 149% and 82% above the Zero N 

treatment, respectively. These general results exceeded and are consistent with the 

findings of Crozier et al., (2014) in North Carolina and Ciampitti et al. (2011) in 

Indiana. 

In addition to these results, Massignam et al., (2009) observed maize grain yield to 

be highly responsive to N supply, obtaining an average of 2.1 to 12.5 Mg ha-1 with N 

rate treatments ranging from 0 to 300 kg N ha-1 and a seeding rate of approximately 

70,000 plants ha-1. The authors attributed differences in grain yield response to 

differences in dry matter production among treatments. In view of these findings, 

higher seeding rates would therefore be expected to improve maize biomass production 

and thus grain yield, provided N conditions were non-limiting. Results from this 

research support this hypothesis. Grain yield at 148,000 plants ha-1 averaged 17.9, 19.3 

and 13.4 Mg ha-1 at LEX2015, LEX2016 and HAR2016, respectively, when supplied 

with 390 kg N ha-1, greatly exceeding grain yield values reported by Massignam et al. 

(2009). 



 

61 
 

In effect, both N rate and seeding rate strongly impacted maize grain yield in all 

Kentucky environments studied. Increasing plant population improved grain yield by 

1.6 Mg ha-1 at the High N rate, with hybrid A6499, at LEX2015. The High SR, at the 

High N rate, in LEX2016 increased maize yield by an average of 3.2 Mg ha-1 (ranging 

from 2.3 to 4.1 Mg ha-1) for five of the six hybrids tested. Maximum grain yield 

production (20.6 Mg ha-1) was obtained in this environment when combining the 

highest N and seeding rate. 

At HAR2016, the High SR and N rate combination increased yields by 2.5 Mg ha-1 

for four of six hybrids in this lower-yielding (ranging from 12.5 to 14.7 Mg ha-1) 

environment. The lower yields at HAR2016 can be explained in part by some external 

abiotic/biotic factors that occurred during the growing season. The corn suffered early 

water deficit prior to V9 (Abendroth et al., 2011), with leaf rolling occurring in most 

plots and being more severe in the High SR, High N rate plots. According to Duvick 

(2005), newer commercial hybrids expressed greater leaf rolling when compared under 

different drought stress management scenarios at several growth stages. Barker et al., 

(2005) also suggested that elite corn hybrids can utilize leaf rolling to reduce light 

interception and water use. During vegetative growth stages, maize plants are 

somewhat tolerant of stresses. However, cell expansion depends on how turgid the 

plant is and therefore some of the effects that might develop as a result could be 

reductions in leaf area and plant height (Barker et al.,2005) by R1. As a consequence, 

reductions in plant biomass can take place because less solar radiation can be 

intercepted. Also important to consider is the fact that the soil at HAR2016 is a Crider 

silt loam, with moderate (about 7.6 inches) available water storage in the profile (Web 
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Soil Survey, 2016). Lastly, another factor that could have contributed to the general 

lower yield values observed for HAR2016 is the late disease pressure that the plots 

experienced around R5 (kernel dent, Abendroth et al., 2011). After the dry weather, 

abundant rainfall later in July generated favorable conditions for some corn foliar 

diseases. At HAR2016 gray leaf spot (Cercospora zeae-maydis) was mostly observed 

and, in hindsight, a foliar fungicide should have been applied. Gray leaf spot is one of 

the most common foliar diseases of corn each season (Bradley, 2016). 

Ciampitti et al., (2013) found an improvement in grain yield response to nitrogen 

(224 vs. 0 kg N ha-1) at 79,000 and 104,000 seeds ha-1, compared with a lower seeding 

rate (54,000 seeds ha-1). However, maximum grain yield of 13 Mg ha-1 occurred at the 

intermediate seeding rate of 79,000 seeds ha-1. A recent meta-data analysis by Assefa et 

al., (2016), including several U.S. states, concluded that grain yield showed a persistent 

upward trend (>13 Mg ha-1) to increasing plant densities (up to 123,500 plants ha-1).  

Woli et al., (2016) observed that the grain yield response to N supply for hybrids circa 

2000 exhibited a steady increase with no signs of a plateau (with 228 kg N ha-1 and 

84,000 plants ha-1).  

These results, along with the findings from other current research, suggest 

opportunities exist for further grain yield improvement through increased plant 

densities, provided high yielding environments and hybrids are used.  

 

3.3.2. Grain Yield Components 
 

 
The High SR generally decreased kernels ear-1 compared with the Low SR. 

Reduction in kernels ear-1 was less dramatic at the High N rate than at the Zero N rate.  



 

63 
 

In general, the High N rate increased kernels ear-1 in all environments when 

analyzed across seeding rates and hybrids. At LEX2015, the High N rate increased 

kernels ear-1 by 32%, on average, when compared to the Zero N treatment. In 2016, 

kernels ear-1 increased an average of 62 and 34% at LEX2016 and HAR2016, 

respectively, when supplied with the High N rate. More interestingly, in the 2016 

environments the combined effect of N and seeding rates strongly impacted the number 

of kernels ear-1. The High SR and Zero N rate decreased kernels ear-1 by 83 and 69% at 

LEX2016 and HAR2016, respectively, compared with the Low SR at Zero N. In 

contrast, at the High N rate, the High SR reduced kernel number ear-1 by 35 and 28% at 

LEX2016 and HAR2016, respectively. Clearly, the resulting N deficiency delivered by 

the Zero N treatment together with increased plant competition in the higher density 

treatments (Andrade et al., 2002) severely reduced the number of kernels ear-1. 

Particularly stressful conditions during the silking period can greatly reduce kernel 

number per ear (Abendroth et al., 2011).  

As described by Amanullah et al. (2016), the increased kernel number ear-1 when 

higher N rates are applied to maize might be partially explained by an extended 

growing period and thus more photosynthate is available to be partitioned to the kernel 

during reproductive growth. Since assimilates from photosynthesis produced during 

maize vegetative stages are essential for kernel development, a strong association 

between kernel number per plant (uppermost ear) and plant growth rate during the 

critical period for kernel set was proposed by several researchers (Echarte et al., 2013; 

Vega et al., 2001; Andrade et al., 1999; Tollenaar et al., 1992). In this regard, plant 

population density directly impacts the amount of dry matter per plant that can 
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potentially be partitioned to reproductive structures (Andrade et al., 1999). Ultra-high 

plant densities decrease plant growth rate as resources per plant decline and, therefore, 

less assimilate is partitioned to the developing ear. In the present study, the High N 

treatment apparently mitigated, to some extent, the reduction in kernel number ear-1 

produced by supraoptimal plant densities. However, intra-plant competition still 

reduced growth rate per plant and consequently limited dry matter distribution to the 

ear.  

Kernels per ear is a function of rows ear-1 and kernels row-1. Kernels row-1 was 

affected by N rate and seeding rate more than rows ear-1.  

Rows per ear significantly declined only at the Zero N rate and High SR, in most 

comparisons about 3 rows ear-1, on average. However, the high N rate kept the number 

of rows ear-1 from decreasing at supraoptimal plant densities. Rows per ear increased 

with N rate and was maximized at 134 kg N ha-1 in North Carolina (Crozier et al., 

2014).   

The High N rate increased kernels row-1 by 24, 44 and 26% at LEX2015, LEX2016 

and HAR2016, respectively. On the other hand, High SR decreased kernels row-1 by 32 

and 17% at the Zero and High N rates, respectively, at HAR2016. High SR also 

reduced kernels row-1 at LEX2016. Kernels row-1 decreased when plant densities 

increased from 55,000 to 95,000 plants ha-1 in Argentina and France (Otegui and 

Bonhomme, 1998).  

The smaller reduction in the number of kernels per row at High SR with the higher 

N rate can be partly explained by an increment in the number of potential kernels per 

ear (Echarte et al., 2013). However, doubling the seeding rate to 148,000 seeds ha-1 
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increased plant competition to a point where greater N availability was not sufficient to 

guarantee assimilate distribution to all potential kernels in each ear. These outcomes 

were also observed as a function of higher actual plant populations, as ear length was 

reduced at both Zero and High N rates. The High N rate, however, did increase ear 

length. 

In sum, the number of kernels per row was the component that most influenced 

kernel number per ear. Nitrogen deficiency possibly reduced kernels row-1 by 

negatively impacting potential kernel number per row. The High N rate was intended to 

be non-limiting to yield and did increase kernels row-1. However, the High SR still 

reduced kernels row-1, implying that either N or another factor was limiting potential 

kernel number. Our hypothesis was that the High N rate would increase kernels ear-1 at 

High SR and these observations did not support our original hypothesis.  

While kernels ear-1 decreased at High SR, kernels ha-1 increased with the High SR 

and High N rate treatment combination. However, at Zero N rate, kernels ha-1 was not 

significantly different at either SR. Effectively, the proposed hypothesis was confirmed, 

as supraoptimal plant densities increased kernel number per unit area when applying 

non-limiting N.  

When comparing seeding rate effects, kernel mass declined by an average of 21% at 

LEX2016 with the High SR and High N rate treatment combination. However, kernel 

mass was not significantly different by seeding rate at the Zero N rate. In HAR2016, 

kernel mass declined 9 and 16% with the High SR at Zero and High N rates, 

respectively. When comparing N rate effects, High N increased kernel mass at the Low 
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SR in most comparisons. However, at the High SR, the High N rate increased kernel 

mass only for hybrid P0339. 

These findings generally confirmed our hypothesis that the higher N rate would 

increase kernel weight and a minor decline would occur as seeding rates doubled.  

A reasonable argument to explain the decline in kernel mass with the High SR and 

High N rate treatment combination would be based on the observation that a greater 

number of kernels per unit area was observed with this treatment combination. Thus, 

the decrease in kernel weight was a consequence of a compensatory mechanism to a 

higher kernel number under the High SR. Evidently, the increased grain yield at the 

higher SR and N rate was mainly the result of increased kernel number per hectare. 

Final kernel mass adjusted in order to make up for kernel number improvement.  

Maize kernel size is influenced by growth rate and filling period duration. When 

maize is planted at higher densities, kernel mass can be decreased (Lemcoff and 

Loomis, 1986; Poneleit and Egli, 1979).  

Kernel growth rate is strongly related to both the number of endospermic cells and 

the amount of starch granules that are formed during the lag phase (Capitanio et al., 

1983). As a result, the sink capacity (or strength) of each grain is determined at this 

point. These formative structures influence photosynthate partitioning to the developing 

kernel. Kernel growth rate explained most of the differences found in kernel weight 

among hybrids released in different decades (Echarte et al., 2013), suggesting that this 

component is related to genetic information and is highly associated to the potential 

kernel size established during the lag phase.  
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If positive increments in maize grain yield continue to be highly associated with 

increasing plant densities in the next decades, improvement in kernel size via breeding 

techniques that focus mainly on kernel sink capacity could be a decisive factor in 

maintaining those positive yield increments.  

 

3.3.3. Biomass 

Stem and leaf biomass was influenced by environment when comparing LEX2015 

and LEX2016. At both these environments, treatment effects on stem and leaf dry 

matter interacted with growth stage. The High N rate increased stem and leaf biomass 

at all growth stages studied, except V7 in 2015. This observation would suggest that at 

early stages soil N was sufficient to sustain biomass accumulation in the Zero N 

treatment. The highest dry matter difference was observed at V14, with the High N rate 

giving a 48% increase in stem and leaf biomass above the Zero N rate. Stem and leaf 

biomass was maximized at R3 in both N treatments. Furthermore, R6 fodder biomass 

was found to be 41% greater with High N. These findings agree with those of Ciampitti 

and Vyn (2011), who observed increased stover biomass during reproductive stages in 

response to applied N. Hybrid marginally influenced stem and leaf biomass from V7 to 

V14, and interacted with seeding rate. Increased seeding rates increased dry stem and 

leaf biomass at these two growth stages for hybrid A6499.  

At LEX2016, stem and leaf biomass increased with increased plant density at 

growth stages V7, V14, R3 and R5 at both N rates. At physiological maturity, no 

variation in biomass due to hybrid was observed at the higher plant density, within an N 

rate. These results would indicate significant remobilization to reproductive structures 
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that minimized the influence of increased plant density on early dry stem and leaf 

biomass by the end of the growing season. On the other hand, the High N rate increased 

stem and leaf biomass accumulation at every growth stage and seeding rate, and the 

only exception was observed at V7 with Low SR. Once more, available soil N was 

apparently sufficient to achieve similar plant growth at early developmental stages 

when seeded at the lower seeding rate. Similar results were obtained by Barbieri et al. 

(2013) in Argentina, where they observed an increase in aboveground dry matter 

accumulation at most post-anthesis phenological stages in response to N application 

and no variation in biomass at early vegetative stages.  

Dry stem and leaf biomass was maximized at R3 for both N and both seeding rates, 

declining at R5 and R6. This decline in dry matter can be primarily due to reallocation 

of N and other nutrients from stem and leaves to reproductive structures as kernel 

development becomes the priority (Abendroth et al., 2011). Also, at these late growth 

stages leaf senescence progresses and the process can be accelerated by higher plant 

densities (Abendroth et al., 2011; Borrás et al., 2003).  

Stem and leaf biomass was also maximized at R3 for each hybrid, at both Zero and 

High N rates. All hybrids exhibited a response to applied N at growth stages R3 and 

R5. The High N treatment increased dry stem and leaf biomass by an average of 70% 

above the Zero N rate at R3 and by 58% at the R5 growth stage. By physiological 

maturity, the majority of the hybrids exhibited no differences in stem and leaf dry 

matter due to the N treatments.  
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Overall, stem and leaf biomass increased with the High N rate and the High SR. 

Increases in both these treatment factors caused a greater canopy growth and thus 

increased plant biomass accumulation (Ciampitti et al., 2013; Yan et al., 2016). 

Grain biomass increased in the High N rate and High SR treatment combination, in 

all environments. The High SR increased dry grain biomass by 24 and 27% at 

LEX2016 and HAR2016, respectively, at the High N rate. Seeding rate did not affect 

grain biomass at the Zero N rate. When comparing N rates, the High N rate increased 

grain biomass by 132 and 81% in LEX2016 and HAR2016, respectively, at the High 

SR. As observed by Ciampitti et al. (2013), grain biomass responded in greater measure 

to N supply when compared to stem and leaf biomass.  

Cob and husk dry matter at maturity increased with the High N treatment. In 

LEX2016 and HAR2016, dry cob biomass ha-1 increased 78 and 40%, respectively. 

Husk biomass doubled when the High N rate was applied. On the other hand, increased 

seeding rate increased cob biomass by 8 and 18% in the two environments, 

respectively, regardless the N treatment. However, grain biomass was more responsive 

than these two fractions to supplied N.  

 

3.3.4. Grain Harvest Index 

The harvest index of modern hybrids has increased over the decades (Sinclair, 

1998). In addition, N supply is strongly associated with maize grain yield and thus 

grain harvest index. Non-limiting N increased grain harvest index in all hybrids tested 

at LEX2015 and LEX2016. Furthermore, the harvest index response to N was higher 

with increased plant density in 2016. A maximum grain HI of 0.67 was observed for the 
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High N and High SR treatment combination. Apparently, the higher stem and leaf 

biomass obtained during the vegetative growth and up to R5 with increased plant 

density and N rate contributed to kernel biomass accumulation by physiological 

maturity. Also, modern hybrids exhibit longer seed filling periods (Echarte et al., 2013; 

Duvick, 2005). A longer seed filling period with the non-limiting N treatment could 

have positively impacted grain dry matter.  

On the contrary, the High SR and Zero N treatment combination exhibited the 

lowest grain harvest index (0.53). A decrease of 26% in grain harvest index was 

observed in LEX2016 when comparing High SR and High N with High SR and Zero N. 

Several studies reported comparable results (Ciampitti et al., 2013; Ciampitti and Vyn, 

2011; Sangoi, 2000; Massignam et al., 2009).  

 

3.3.5. Stalk Weakness 

Modern hybrids show more resistance to stalk lodging. The breeding of more 

stress tolerant maize hybrids has allowed seeding rates to increase in the last decade so 

as to maximize grain yield (Reeves and Cox, 2013; Duvick, 2005).  

At LEX2016, stalk weakness at maturity increased with increased SR, regardless of 

hybrid, when the High N rate was applied. However, weaker stalks as a result of 

increased plant population did not impose combine harvest limitations at any of the 

environments studied. As observed by Stanger and Lauer (2006), newer hybrids (Bt 

hybrids) require higher plant densities to maximize grain yield since they exhibit 

reduced stalk lodging.  
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3.4. Summary 

High input production systems have accompanied increases in grain yield in past 

decades and will still be vital if maximization of crop yields remains the main objective 

in the future. Maize grain yield is not the exception.  

Grain yield increases in maize in response to higher plant densities has been the 

focus of several research studies in recent years (Tokatlidis and Koutroubas, 2004; 

(Maddonni et al. 2006; Boomsma et al. 2009; Raymond et al. 2009; Barbieri et al. 

2008; Ciampitti et al. 2013; Lamm and Trooien, 2001). However, few of these have 

investigated the combined effect of seeding rates up to 148,000 ha-1 and non-limiting N 

on potential yield.  

Results from this research corroborate our main hypothesis. Intensified inputs have 

increased maize grain yield, essentially through increased number of kernels per ha-1. 

However, kernels per ear and kernel size restricted further yield increases. 

Maize plant densities will follow the current upward trend if grain yield components 

show no variation (Egli, 2015; Assefa et al., 2016). Future breeding developments 

should focus on kernel mass and kernels per ear. 
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Chapter 4 

 
4. Nutrient Uptake and Accumulation 

4.1. Objectives 

Increased biomass accumulation and grain yield in modern maize hybrids may drive 

more nutrient uptake and removal. The primary objective was to investigate how Low 

and high plant densities, combined with zero and non-limiting N rates, affect nutrient 

accumulation throughout the growing season. In addition, we want to understand if 

these treatment combinations also produce differences in kernel nutrient removal. 

Specific hypotheses were: 

 

a) Stem and leaf N uptake will increase when combining the High N rate and High SR. 

b) Grain N removal per hectare will increase at High SR and High N rate. Phosphorus and 

potassium removal will be increased with increments in N removal. Grain N 

accumulation per plant is expected to decrease with High SR. However, this parameter 

will increase with the application of the non-limiting N rate. 

c) Cob and husk nutrient accumulation will mirror grain N accumulation. 

d) High SR combined with the limiting N rate, will cause nitrogen deficiency to occur 

higher on the corn plant, closer to the ear leaf. 

 

4.2. Results 

4.2.1. Stem and Leaf Nitrogen Accumulation 

 



 

73 
 

Total inorganic soil N (NH4-N and NO3-N) was below 10 ppm at LEX2015 and 

was lower than 48 ppm at LEX2016 and HAR2016 (Table 4.1). Overall, at all 

environments, the first 15 cm of soil contained the highest quantity of available N. 

Stem and leaf N uptake per hectare was significantly affected by environment (p < 

0.0001). Therefore, LEX2015 and LEX2016 were analyzed separately (Table 4.2).  

At LEX2015, a significant three-way interaction of hybrid, seeding rate and 

growth stage occurred (p = 0.0329) for stem and leaf N. Hybrid interactions were of 

magnitude, not of response; therefore, the two-way interactions of N rate and seeding 

rate (p = 0.0362) and N rate by growth stage (p < 0.0001) were evaluated.  

At LEX2016, stem and leaf N uptake was significantly affected by the three-way 

N rate by seeding rate by growth stage (p < 0.0001) and hybrid by N rate by growth 

stage (p = 0.0089) interactions. Once again, hybrid interactions were of magnitude, not 

of response. Focus was placed on the interactions between N rate, seeding rate and 

growth stage on stem and leaf N accumulation. 

As expected, N application significantly increased stem and leaf N uptake at all 

growth stages in both LEX2015 and LEX2016 trials. On average, across seeding rates, 

the High N treatment increased stem and leaf N accumulation by 52, 139, 146, 190 and 

167 % at V7, V14, R3, R5 and R6, respectively when compared to the Zero N rate in 

the LEX2015 trial (Table 4.13). 

In the LEX2016 trial, the High N rate caused greater accumulation of N in stem 

and leaf biomass at both seeding rates when compared to the Zero N treatment (Table 

4.14). On average, N stem and leaf uptake was 111, 261, 405, 312 and 157 % higher at 
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V7, V14, R3, R5 and R6, respectively, with Low SR. On the other hand, High SR and 

High N increased stem and leaf N uptake by 274, 450, 603, 473 and 107 % at V7, V14, 

R3, R5 and R6, respectively. The magnitude of the increments in stem and leaf N 

uptake above the Zero N treatment were greater for the High SR when compared to the 

Low SR. The trend was consistent until physiological maturity.  

When compared with Low SR, higher plant population densities increased N 

accumulation in fodder biomass by 92% at V7, 42% at V14 and 27% at R3 when 

supplied with 390 kg N ha-1 in the LEX2016 trial (Table 4.14). At the R5 growth stage, 

however, no significant differences in stem and leaf N uptake were observed due to 

seeding rate. Moreover, at R6, a 20% decrease in accumulated stem and leaf biomass N 

was detected when comparing High to Low SR.  

Maize stem and leaf N uptake exhibited maximum values at the V14 and R3 

growth stages (the period bracketing silking), followed by a gradual decline at later 

growth stages. Overall, this trend was observed in both environments, for both levels of 

N and both seeding rates. Also, most hybrids presented the same N accumulation 

pattern (Table 4.13, 4.14). 

4.2.2. Husk and Cob Nitrogen Uptake 

Husk N uptake was analyzed at R5 in the LEX2015 trial and at R3, R5 and R6 in the 

LEX2016 trial (Table 4.3). 

In the LEX2015 trial, husk N accumulation was significantly affected by a three-

way N rate, hybrid and seeding rate interaction (p = 0.0255). The High N treatment 

increased husk N uptake by 140% at Low SR of A6499. However, no significant 
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differences in accumulated husk N were observed among seeding rates for A6517 

(Table 4.15). 

For LEX2016, several interactions between N rate and seeding rate on stem and 

leaf N accumulation occurred. We focused on the significant two-way seeding rate by 

growth stage (p = 0.0213) interaction (Table 4.3). In this interaction, High SR 

decreased N accumulation in husk biomass at R3 by 15% compared with Low SR. As 

the growing season progressed, differences among seeding rates disappeared and no 

significant seeding rate effect on husk N uptake was observed at R5 and R6.  

Cob N accumulation was evaluated at R5 in LEX2015 and at R5 and R6 in 

LEX2016 (Table 4.4). Main treatment factors and their interactions on cob N 

accumulation were not significant in LEX2015.  

In the LEX2016 experiment, however, numerous interactions concerning all 

treatment factors affected cob N accumulation. Nonetheless, given its importance, the 

two-way seeding rate by growth stage interaction (p = 0.0813) was further explored. In 

this environment, as seeding rate increased, a 24% rise was observed in cob N uptake at 

R5. Similarly, at physiological maturity, High SR increased cob N accumulation by 

35% when compared to Low SR (Table 4.16). 

4.2.3. Cob + Grain N Uptake at R3 

At R3, the cob fraction and developing grain component were analyzed together 

for N uptake in both Lexington environments. Since environment significantly 

interacted with N rate, hybrid and seeding rate (p = 0.0936), N and seeding rate effects 

on cob plus grain N uptake at R3 were analyzed by environment (Table 4.5). 
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A three-way N rate, hybrid and seeding rate interaction (p = 0.0293) significantly 

affected N accumulation in the cob plus grain component at R3 in LEX2015.  

The High N increased N accumulation in cob plus grain at both seeding rates 

when compared with Zero N. High N increased cob plus grain N uptake by 50 and 85% 

at 74000 and 148000 seeds ha-1, respectively (Table 4.17). Within the high N treatment, 

N cob plus grain uptake was higher at lower seeding rates for hybrid A6499, while no 

differences were observed among plant densities for hybrid A6517. 

At LEX2016, cob plus grain N accumulation was significantly affected by a two-

way N rate by seeding rate interaction (p < 0.0001) (Table 4.5). The High N, High SR 

treatment increased cob plus grain N uptake at R3 by 13% compared with the High N, 

Low SR (Table 4.18). 

4.2.4. Grain Nutrient Removal 

Grain N uptake at maturity varied significantly by environment (Table 4.6). At 

LEX2015, High N increased grain N content by 157% compared with Zero N (p = 

0.0423; Table 4.19).  

At LEX2016, significant effects of N rate (p = 0.0017) and seeding rate (p = 

0.0258) were observed on N removal by the grain (Table 4.19). The 390 kg N ha-1 rate 

increased N removed with grain by 196% when contrasted with Zero N. In addition, the 

greater plant density improved grain N uptake by 11% (Table 4.19). 

Grain N uptake at HAR2016 was significantly affected by a two-way N rate by 

seeding rate interaction (p = 0.0010) (Table 4.6). At the Zero N rate, the higher seeding 

rate did not improve grain N accumulation. Conversely, when the higher N rate was 



 

77 
 

applied, the High SR increased N uptake in the grain at maturity by 20% when 

compared with Low SR (Table 4.19). 

As expected, grain P uptake increased linearly with increasing grain N 

accumulation for each environment (Figure 4.1A). In the same way, grain K uptake 

also exhibited a positive linear association with grain N accumulation (Figure 4.1B). 

All environments exhibited the same tendency. 

Evidently, the amount of soil N that is available, together with the uptake and 

accumulation of this element by the crop, strongly influence P and K accumulation by 

maize plant communities. 

When analyzed on a per plant basis, N grain content was significantly influenced 

by environment (p = 0.0028) (Table 4.7).  

Grain N uptake per plant at LEX2015 was significantly affected by N rate (p = 

0.0538) and seeding rate (p = 0.0014). The High N rate increased grain N accumulation 

per plant by 158% above that observed with the Zero N rate (Table 4.19). On the other 

hand, High SR negatively impacted grain N per plant, decreasing this parameter by 

92% in comparison to the Low SR.  

Grain N accumulation per plant at LEX2016 decreased with High SR regardless 

the N rate, in response to a significant N rate by seeding rate interaction (p < 0.0001). 

High SR decreased grain N accumulation per plant by 86% at the High N rate (Table 

4.20).  

Nitrogen rate (p = 0.0021) and seeding rate (p < 0.0001) also significantly 

influenced grain N removed per plant at HAR2016 (Table 4.7). In this trial, grain N at 
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the High N rate was 58% above that at the Zero N rate. In addition, the increase in 

seeding rate led to an 88% decline in grain N accumulation per plant (Table 4.20). 

As anticipated, grain N accumulation per plant decreased with the High SR, in all 

environments. However, the application of the High N rate led to an increase in this 

parameter, as expected. 

4.2.5. Whole Plant N Uptake  

Total N uptake per hectare was analyzed for both Lexington environments. In this 

way, environment had a significant effect on whole plant N accumulation (p = 0.0043) 

(Table 4.8).  

At both LEX2015 and LEX2016, total N accumulation in aboveground biomass 

was significantly affected by the two-way interaction of N rate by seeding rate (p = 

0.0481 and p < 0.0001, respectively) and also the N rate by growth stage (p < 0.0001 

and p < 0.0001. respectively) interaction.  

Even with these interactions, similar responses to nitrogen uptake occurred, where 

the highest N accumulations were mostly at R5 and R6 (Tables 4.21 and 4.22). 

Specifically, whole plant N accumulation at LEX2015 was greatest at R3, R5 and R6 

for the Zero N rate and at R5 and R6 when the High N rate was applied. At LEX2016, 

similar results were obtained with the High N rate, with maximum total N accumulation 

at R5 and R6 (Table 4.22).  

The High N rate increased whole plant N uptake at maturity by 160 and 176% 

above the Zero N rate when averaged across seeding rates at LEX2015 and LEX2016, 

respectively.  
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On the other hand, when averaged across growth stages, whole plant N 

accumulation at 148,000 plants ha-1 was 17% higher when compared to the Low SR at 

LEX2016. No differences were observed among seeding rates at LEX2015 within the 

High N rate (Table 4.21, 4.22). 

At maturity and within the High N rate, total N accumulation averaged 279 and 

247 kg N ha-1 at LEX2015 and LEX2016, respectively (Table 4.21, 4.22). Average 

grain yields were 17 and 18 Mg ha-1, respectively (data shown in Chapter 3). 

4.2.6. Nitrogen Deficiency Rating 

Nitrogen deficiency in maize plants was observed progressing closer to the ear 

leaf with High SR and Zero N supply in all environments. 

Environment significantly affected N deficiency ratings (p = 0.0493). At 

LEX2015, N rate (p = 0.0073) and seeding rate (p = 0.0090) treatments significantly 

influenced this parameter. Nitrogen deficiency was observed to be 198% closer to the 

ear leaf when N was limiting, compared to the High N rate (Figure 4.2B). High SR, 

similarly, led to N deficiency being detected 70% closer to the ear leaf when compared 

to Low SR (Figure 4.2A). 

A three-way N rate by seeding rate by hybrid interaction (p = 0.0036) significantly 

affected visible N deficiency at LEX2016 (Table 4.23). At Zero N, the High SR 

resulted in a 43% higher progression of N deficiency towards the ear leaf than the Low 

SR. At High SR, the Zero N caused N deficiency to progress 112% higher on the plants 

compared with High N.  
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Nitrogen deficiency was also detected higher on the plant in HAR2016 at the High 

SR and Zero N (p < 0.0001). As expected, this treatment combination caused N 

deficiency to advance significantly higher on maize plants (30%), as opposed to High 

SR at the High N rate (Figure 4.2C). 
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Table 4.1. Soil nitrogen concentrations (ppm) for each environment expressed  

as NH4-N (ammonium-N), NO3-N (nitrate-N) and total inorganic N. 
 

 Soil N concentrations (ppm) 
Environment NH4

+-N NO3
--N Total N 

LEX2015    
0-15 cm 3.74 5.90 9.64 
15-30 cm 2.74 5.09 7.83 
LEX2016     
0-15 cm 0.72 46.88 47.61 
15-30 cm 0.51 21.52 22.03 
HAR2016       
0-15 cm 0.72 45.39 46.10 
15-30 cm 0.47 18.85 19.32 
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Table 4.2. ANOVA table for stem and leaf N uptake.  
Source of  stem & leaf 

Environment 
Source of  stem & leaf 

variation 
N uptake 

ha⁻¹ variation N uptake ha⁻¹ 
 p-value   p-value 
env <0.0001ꝉ   n <0.0001‡ 
n <0.0001   hyb 0.9145 
env*n 0.8669   n*hyb 0.5313 
hyb 0.6966   pop 0.8931 
env*hyb 0.4519   n*pop 0.0362 
n*hyb 0.2789   hyb*pop 0.2667 
env*n*hyb 0.9271 Lexington n*hyb*pop 0.7988 
pop 0.0946 2015 time <0.0001 
env*pop 0.1673   n*time <0.0001 
n*pop 0.0001   hyb*time 0.9496 
env*n*pop 0.6149   n*hyb*time 0.9337 
hyb*pop 0.4684   pop*time 0.7328 
env*hyb*pop 0.1009   n*pop*time 0.2831 
n*hyb*pop 0.4330   hyb*pop*time 0.0329 
env*n*hyb*pop 0.2025   n*hyb*pop*time 0.7373 

     
time <0.0001       
env*time 0.0002   n <0.0001§ 
n*time <0.0001   hyb 0.0466 
env*n*time 0.1356   n*hyb 0.1413 
hyb*time 0.4768   pop <0.0001 
env*hyb*time 0.8013   n*pop <0.0001 
n*hyb*time 0.2608   hyb*pop 0.9336 
env*n*hyb*time 0.2863 Lexington n*hyb*pop 0.3567 
pop*time 0.1917 2016 time <0.0001 
env*pop*time 0.8533  n*time <0.0001 
n*pop*time 0.0130   hyb*time 0.2177 
env*n*pop*time 0.8024   n*hyb*time 0.0089 
hyb*pop*time 0.0261   pop*time <0.0001 
env*hyb*pop*time 0.0253   n*pop*time <0.0001 
n*hyb*pop*time 0.7659   hyb*pop*time 0.9955 
env*n*hyb*pop*time 0.7292   n*hyb*pop*time 0.9991 
ꝉ ANOVA table for LEX2015 and LEX2016. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis since all environments test these hybrids. 

‡ ANOVA table for LEX2015.       

§ ANOVA table for LEX2016. All 6 hybrids are included in the analysis.   
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Table 4.3. ANOVA table for husk N uptake at R5 for LEX2015  
and at R3, R5 and R6 at LEX2016.  

Environment 
Source of   R5 husk  
variation N uptake ha⁻¹ 

  p-value 
  n 0.1207ꝉ 
  hyb 0.2454 
  n*hyb 0.2175 

Lexington pop 0.0056 
2015 n*pop 0.1190 

  hyb*pop 0.0153 
  n*hyb*pop 0.0255 
      
  Source of  R3, R5 and R6 husk 

  variation N uptake ha⁻¹ 
  p-value 
  n <0.0001‡ 
  hyb <0.0001 
  n*hyb 0.0088 
 pop 0.2892 
 n*pop 0.2368 
  hyb*pop 0.4041 
  n*hyb*pop 0.5592 

Lexington time <0.0001 
2016 n*time <0.0001 

  hyb*time 0.0960 
  n*hyb*time 0.0860 
  pop*time 0.0213 
  n*pop*time 0.7615 
  hyb*pop*time 0.9792 
  n*hyb*pop*time 0.9556 
ꝉ ANOVA table for LEX2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included in 
the analysis. 
‡ ANOVA table for LEX2016. All 6 hybrids are included in the analysis. 
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Table 4.4. ANOVA table for cob N uptake at R5 for LEX2015 and at R5 and R6 for 
LEX2016.  

Environment 
Source of   R5 cob  
variation N uptake ha⁻¹ 

  p-value 
  n 0.2658 ꝉ 
  hyb 0.8340 
  n*hyb 0.4335 

Lexington pop 0.4395 
2015 n*pop 0.8706 

  hyb*pop 0.5492 
  n*hyb*pop 0.7109 
     
  Source of   R5 and R6 cob  

  variation N uptake ha⁻¹ 
  p-value 
  n <0.0001 ‡  
  hyb 0.0150 
  n*hyb 0.8458 
 pop <0.0001 
 n*pop <0.0001 
  hyb*pop 0.0662 

Lexington n*hyb*pop 0.0704 
2016 time <0.0001 

  n*time 0.9053 
  hyb*time 0.3024 
  n*hyb*time 0.0184 
  pop*time 0.0813 
  n*pop*time 0.1633 
  hyb*pop*time 0.6460 
  n*hyb*pop*time 0.7275 
ꝉ ANOVA table for LEX2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included 
in the analysis. 

‡ ANOVA table for LEX2016. All 6 hybrids are included in the analysis. 
 

 
 
 
 
 
 
 
 
 
 



 

85 
 

Table 4.5. ANOVA table for cob plus grain N uptake at R3.  
Source of  cob + grain 

Environment 
Source of  cob + grain 

variation N uptake ha⁻¹ variation N uptake ha⁻¹ 
 p-value   p-value 
env 0.3882 ꝉ   n 0.0929 ‡  
n 0.0058   hyb 0.2610 
env*n 0.0933   n*hyb 0.2070 
hyb 0.7259 Lexington pop 0.0049 
env*hyb 0.2798 2015 n*pop 0.5691 
n*hyb 0.6623   hyb*pop 0.1231 
env*n*hyb 0.4064   n*hyb*pop 0.0293 
pop 0.3143       
env*pop 0.0124   n 0.0190 § 
n*pop <0.0001   hyb 0.2906 
env*n*pop 0.0355   n*hyb 0.3120 
hyb*pop 0.7371 Lexington pop 0.7214 
env*hyb*pop 0.1977 2016 n*pop <0.0001 
n*hyb*pop 0.7539   hyb*pop 0.1178 
env*n*hyb*pop 0.0936   n*hyb*pop 0.6107 
ꝉ ANOVA table comparing LEX2015 and 2016. AgriGold A6499STXRIB and AgriGold 
A6517VT3PRIB are included in the analysis since all environments test these hybrids. 
‡ ANOVA table for LEX2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included in 
the analysis. 

§ ANOVA table for LEX2016. All 6 hybrids are included in the analysis. 
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Table 4.6. ANOVA table for grain N uptake at maturity.  
Source of  grain 

Environment 
Source of  grain 

variation N uptake ha⁻¹ variation N uptake ha⁻¹ 
 p-value   p-value 
env 0.0588 ꝉ   n 0.0423 ‡  
n <0.0001   hyb 0.4906 
env*n 0.0685   n*hyb 0.7073 
hyb 0.5445 Lexington pop 0.9639 
env*hyb 0.0548 2015 n*pop 0.1510 
n*hyb 0.8925   hyb*pop 0.6156 
env*n*hyb 0.2272   n*hyb*pop 0.7550 
pop 0.0036       
env*pop 0.1352   n 0.0017 § 
n*pop 0.0285   hyb 0.0622 
env*n*pop 0.7690 Lexington n*hyb 0.6611 
hyb*pop 0.2717 2016 pop 0.0258 
env*hyb*pop 0.8988  n*pop 0.2031 
n*hyb*pop 0.8696   hyb*pop 0.3330 
env*n*hyb*pop 0.9462   n*hyb*pop 0.9939 
          
      n 0.0024 ¶ 
      hyb 0.1072 
    Hardin n*hyb 0.6523 
    2016 pop 0.0083 
      n*pop 0.0010 
      hyb*pop 0.5492 
      n*hyb*pop 0.1165 
ꝉ ANOVA table for all environments. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis since all environments share these hybrids. 
‡ ANOVA table for LEX2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included in 
the analysis. 

§ ANOVA table for LEX2016. All 6 hybrids are included in the analysis.   

¶ ANOVA table for HAR2016. All 6 hybrids are included in the analysis.   
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Table 4.7. ANOVA table for grain N uptake per plant at maturity.  
Source of  grain N 

Environment 
Source of  grain N 

variation uptake plant⁻¹ variation  uptake plant⁻¹ 
 p-value   p-value 
env 0.0028 ꝉ   n 0.0538 ‡ 
n <0.0001   hyb 0.3992 
env*n 0.1156   n*hyb 0.8632 
hyb 0.1606 Lexington pop 0.0014 
env*hyb 0.0117 2015 n*pop 0.1117 
n*hyb 0.6405   hyb*pop 0.9922 
env*n*hyb 0.4938   n*hyb*pop 0.7050 
pop <0.0001       
env*pop 0.8192   n 0.0010 § 
n*pop 0.0825   hyb 0.0436 
env*n*pop 0.2156 Lexington n*hyb 0.3609 
hyb*pop 0.7349 2016 pop <0.0001 
env*hyb*pop 0.0286  n*pop <0.0001 
n*hyb*pop 0.6916   hyb*pop 0.4934 
env*n*hyb*pop 0.5859   n*hyb*pop 0.4054 

          
      n 0.0021 ¶ 
      hyb 0.0016 
    Hardin n*hyb 0.3081 
    2016 pop <0.0001 
      n*pop 0.2792 
      hyb*pop 0.0142 
      n*hyb*pop 0.1363 
ꝉ ANOVA table for all environments. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis since all environments share these hybrids. 
‡ ANOVA table for LEX2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included 
in the analysis. 

§ ANOVA table for LEX2016. All 6 hybrids are included in the analysis. 

¶ ANOVA table for HAR2016. All 6 hybrids are included in the analysis. 
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Table 4.8. ANOVA table for whole plant N uptake.  
Source of  whole plant 

Environment 
Source of  whole plant 

variation N uptake ha⁻¹ variation N uptake ha⁻¹ 
 p-value   p-value 
env 0.0043ꝉ   n 0.0002‡ 

n <0.0001   hyb 0.6197 

env*n 0.2502   n*hyb 0.8641 

hyb 0.5102   pop 0.6560 

env*hyb 0.1329   n*pop 0.0481 

n*hyb 0.8892   hyb*pop 0.3067 

env*n*hyb 0.8839 Lexington n*hyb*pop 0.4732 

pop 0.3099 2015 time <0.0001 

env*pop 0.1037   n*time <0.0001 

n*pop 0.0052   hyb*time 0.9934 

env*n*pop 0.8470   n*hyb*time 0.9590 

hyb*pop 0.4818   pop*time 0.4516 

env*hyb*pop 0.4240   n*pop*time 0.5823 

n*hyb*pop 0.8646   hyb*pop*time 0.1368 

env*n*hyb*pop 0.2309   n*hyb*pop*time 0.4949 

time <0.0001       
env*time 0.2032   n <0.0001§ 

n*time <0.0001   hyb 0.0394 

env*n*time 0.0934   n*hyb 0.4667 

hyb*time 0.2556   pop 0.0004 

env*hyb*time 0.2439   n*pop <0.0001 

n*hyb*time 0.4935   hyb*pop 0.9561 

env*n*hyb*time 0.2860 Lexington n*hyb*pop 0.6976 

pop*time 0.3809 2016 time <0.0001 

env*pop*time 0.8436  n*time <0.0001 

n*pop*time 0.6955   hyb*time 0.0030 

env*n*pop*time 0.8413   n*hyb*time 0.0665 

hyb*pop*time 0.4729   pop*time 0.1403 

env*hyb*pop*time 0.4211   n*pop*time 0.1380 

n*hyb*pop*time 0.9180   hyb*pop*time 0.9945 

env*n*hyb*pop*time 0.5923   n*hyb*pop*time 0.9928 

ꝉ ANOVA table for LEX2015 and 2016. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB 
are included in the analysis since all environments test these hybrids. 
‡ ANOVA table for LEX2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included 
in the analysis. 

§ ANOVA table for LEX2016. All 6 hybrids are included in the analysis.   
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Table 4.9. ANOVA table for nitrogen harvest index (NHI).  
Source of  

NHI Environment 
Source of  

NHI 
variation variation 
 p-value   p-value 
env 0.0168 ꝉ   n 0.8179‡ 
n 0.0403   hyb 0.6322 
env*n 0.0401   n*hyb 0.5829 
hyb 0.6838 Lexington pop 0.9695 
env*hyb 0.4544 2015 n*pop 0.6774 
n*hyb 0.7796   hyb*pop 0.4823 
env*n*hyb 0.3160   n*hyb*pop 0.6774 
pop 0.1687       
env*pop 0.2834   n 0.0316§ 
n*pop 0.7534   hyb 0.2517 
env*n*pop 0.5993 Lexington n*hyb 0.0034 
hyb*pop 0.3538 2016 pop 0.0655 
env*hyb*pop 0.5610  n*pop 0.1506 
n*hyb*pop 0.2350   hyb*pop 0.5571 
env*n*hyb*pop 0.0933   n*hyb*pop 0.2360 
ꝉ ANOVA table for all environments. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis since all environments share these hybrids. 
‡ ANOVA table for Lexington 2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis. 

§ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis. 
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Table 4.10. ANOVA table for crop growth rate (CGR).  

Environment  
Source of CGR 

variation (g m⁻² day⁻¹) 
  p-value 

  n 0.0027 ꝉ 

  hyb 0.5855 

Lexington n*hyb 0.6329 

2015 pop 0.8773 

  n*pop 0.0180 

  hyb*pop 0.6600 

  n*hyb*pop 0.1450 

      

  n <0.0001‡ 

  hyb 0.0166 

Lexington  n*hyb 0.7093 

2016 pop 0.0145 

  n*pop 0.0950 

  hyb*pop 0.6606 

  n*hyb*pop 0.7875 
ꝉ ANOVa table for Lexington 2015. AgriGold A6499STXRIB and AgriGold 
A6517VT3PRIB are included in the analysis. 

‡ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

91 
 

Table 4.11. ANOVA table for N deficiency rating. 
Source of  N deficiency

Environment 
Source of  N deficiency 

variation rating variation rating 
 p-value   p-value 
env 0.0493 ꝉ   n 0.0073‡ 
n <0.0001   hyb 0.3962 
env*n 0.0093   n*hyb 0.2078 
hyb 0.6302 Lexington pop 0.0090 
env*hyb 0.1598 2015 n*pop 0.3663 
n*hyb 0.9795   hyb*pop 0.8877 
env*n*hyb 0.0714   n*hyb*pop 0.3268 
pop <0.0001       
env*pop 0.1497   n 0.0150§ 
n*pop 0.0828   hyb 0.0548 
env*n*pop 0.8515 Lexington n*hyb 0.1082 
hyb*pop 0.3710 2016 pop <0.0001 
env*hyb*pop 0.9214  n*pop 0.0047 
n*hyb*pop 0.7058   hyb*pop 0.5875 
env*n*hyb*pop 0.1874   n*hyb*pop 0.0036 

          
      n 0.0047¶ 
      hyb <0.0001 
    Hardin n*hyb 0.0002 
    2016 pop <0.0001 
      n*pop <0.0001 
      hyb*pop 0.0465 
      n*hyb*pop 0.6805 
ꝉ ANOVA table for all environments. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis since all environments share these hybrids. 
‡ ANOVA table for Lexington 2015. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are 
included in the analysis. 

§ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis. 

¶ ANOVA table for Hardin 2016. All 6 hybrids are included in the analysis. 
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Table 4.12. ANOVA table for nitrogen internal efficiency (NIE) for LEX2015 and LEX2016. 
Source of  NIE    Source of  NIE 
variation (kg grain kg⁻¹ N uptake) Environment variation (kg grain kg⁻¹ N uptake)
  p-value      p-value 
env 0.6549 ꝉ Lexington hyb 0.0360‡  
hyb 0.1047 2016 pop 0.0016 
env*hyb 0.4548    hyb*pop 0.5000 
pop 0.0364         

env*pop 0.0449         

hyb*pop 0.9938         

env*hyb*pop 0.5951         
ꝉ ANOVA table for LEX2015 and LEX2016. AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included in the  
analysis since all environments share these hybrids. 
‡ ANOVA table for Lexington 2016. All 6 hybrids are included in the analysis. 
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Table 4.13. Seeding rate and growth stage effects on stem and leaf N uptake per hectare, within N rate, for LEX2015. 

LEX2015 
seeding rate (seeds ha⁻¹) Mean     

74000 148000 
by growth stage 

p-value‡ 
  

N rate  Growth  
N uptake stem + leaf (kg N ha⁻¹) 

(kg N ha⁻¹) Stage 

0  

V7 36.5 B ꝉ 37.5 B 37.0   ns* b§ 
V14 88.2 A 53.7 A 70.9   0.0046 b 
R3 75.9 A 65.7 A 70.8   ns b 
R5 38.3 B 25.1 B 31.7   ns b 
R6 32.1 B 25.5 B 28.8   ns b 

                   

390  

V7 49.6   63.3   56.4 C ꝉ ns a 

V14 153.0   186.3   169.7 A ns a 

R3 159.4   188.3   173.9 A ns a 

R5 94.4   89.6   92.0 B ns a 

R6 76.7   77.0   76.9 BC ns a 
ꝉ For the low N rate, the growth stage x seeding rate interaction was significant, therefore, means are compared within each seeding rate. Means in the same 
column with different letters are significantly different (p≤0.10). Within the high N rate, seeding rate did not interact with growth stage and means comparisons 
are for each growth stage averaged across seed rate. Means in the same column with different letters are significantly different (p≤0.10).  
‡ Means in the same row within N rate and growth stage with a p value ≤ 0.10 are significantly different.  
*ns = not significant at an α = 0.10 significance level. 
§ Mean comparison for N rate effect at each growth stage. Means at each growth stage with different letters are significantly different (p < 0.0001). 
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Table 4.14. Seeding rate and growth stage effects on stem and leaf N uptake per hectare, within N rate, for LEX2016. 

LEX2016 
seeding rate (seeds ha⁻¹) Mean   

74000   148000   by growth stage p-value‡ 
N rate  Growth  

N uptake stem + leaf (kg N ha⁻¹) 
(kg N ha⁻¹) Stage 

0  

V7 13.6   14.7   14.1 D ꝉ ns* 
V14 32.3   30.1   31.2 A ns 
R3 21.8   19.8   20.8 B ns 
R5 18.6   13.9   16.2 CD 0.0171 
R6 18.2   18.1   18.1 CB ns 

                  

390  

V7 28.7 D ꝉ 55.0 D 41.9   <0.0001 
V14 116.8 A 165.6 A 141.2   <0.0001 
R3 110.0 A 139.1 B 124.6   0.0030 
R5 76.7 B 79.7 C 78.2   ns 
R6 46.8 C 37.5 E 42.2   0.0199 

                  
    p-value §         
  V7 0.0252   0.0127         

0   V14 0.0008   <0.0001         
vs. R3 0.0130   <0.0001         
390  R5 <0.0001   <0.0001         

  R6 <0.0001   <0.0001         
ꝉ For the low N rate, seeding rate did not interact with growth stage (p = 0.6304) and mean comparisons are for each growth stage averaged across 
seeding rate. Means in the same column with different letters are significantly different (p ≤ 0.10). Within the high N rate, the growth stage x seeding rate 
interaction was significant (p<.0001), therefore, means are compared within each seeding rate. Means in the same column with different letters are 
significantly different (p≤0.10). 
‡ Means in the same row within N rate and growth stage with a p value ≤ 0.10 are significantly different.  
*ns = not significant at a α=0.10 significance level.  
§ Means comparison among N rate treatments within seeding rate for each growth stage with a p-value ≤ 0.10 are significantly different.  
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Table 4.15. Seeding rate and hybrid effects on R5 husk and cob N uptake per hectare, within N rate. 

LEX2015 
Hybrid Mean Hybrid Mean 

A6499 A6517 by seeding rate A6499 A6517 
by seeding 

rate 

N rate seeding rate 
husk N uptake (kg N ha⁻¹) cob n uptake (kg N ha⁻¹)  

(kg N ha⁻¹) (seeds ha⁻¹) 

0  
74000 2.8 ns* 2.7 ns 2.8 ns 8.1 ‡  5.9 5.9 

148000 1.6   1.9   1.8   9.1 8.2 8.6 

Mean 2.2   2.3       9.1 7.1   
                      

390  
74000 7.4 A ꝉ 3.8 A 5.6   13.8 12.2 13.0 

148000 3.1 B 3.8 A 3.4   13.8 17.3 15.5 

Mean 5.2   3.8       13.8 14.7   
ꝉ N rate x seeding rate x hybrid interaction for husk N uptake was significant (p = 0.0255) for LEX2015. Means in the same column within N rate and hybrid with 
different letters are significantly different (p ≤ 0.10). 
‡ Cob N uptake at R5 means separation for main effects and interactions were not significant (p ≤ 0.10). 
* ns = not significant (p ≤ 0.10). 
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Table 4.16. Seeding rate effect on husk and cob N accumulations with growth stage. 

LEX2016 
seeding rate (seeds ha⁻¹) seeding rate (seeds ha⁻¹) 

74000 148000 74000 148000 

Growth 
husk N uptake (kg N ha⁻¹)  cob N uptake (kg N ha⁻¹)  

Stage 

R3 9.0 A ꝉ 7.8 B −   −   

                  
R5 2.8 A 2.7 A 3.5 B ‡  4.3 A 

                  
R6 2.5 A 3.1 A 4.7 B 6.3 A 

ꝉ Seeding rate x growth stage interaction for husk N uptake was significant (p = 0.0213) for LEX2016. Means in 
the same row within growth stage with different letters are significantly different (p ≤ 0.10). 
‡ Seeding rate x growth stage interaction for cob N uptake was significant (p = 0.0813). Means in the same row 
within a growth stage with different letters are significantly different (p ≤ 0.10). 

 

Table 4.17. Seeding rate and hybrid effects on grain plus cob N accumulation per hectare at R3, within N rate. 

LEX2015 
Hybrid Mean 

A6499 A6517 by seeding rate 
N rate seeding rate N uptake grain + cob 

 (kg N ha⁻¹) (kg N ha⁻¹) (seeds ha⁻¹) 

0  
74000 19.9  22.5   21.2 A ꝉ 

148000 14.4   14.0   14.2 B 
Mean 17.1   18.2       

                

390  
74000 41.0 A‡  22.6 A 31.8   

148000 29.6 B 22.9 A 26.2   
Mean 35.3   22.7       

ꝉ N rate x seeding rate x hybrid interaction for grain + cob N uptake was significant at LEX2015. Means in the same column within N rate 
and seeding rate with different letters are significantly different (p ≤ 0.10). 
‡ Means in the same column within N rate and hybrid with different letters are significantly different (p ≤ 0.10). 
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Table 4.18. Seeding rate effect on grain plus cob N uptake per hectare at R3 within N rate. 

LEX2016 
seeding rate (seeds ha⁻¹) 

74000 148000 
N rate 

grain + cob N uptake (kg N ha⁻¹) 
(kg N ha⁻¹) 

0  18.6 A ꝉ 11.8 B 
          

390  48.6 B 54.8 A 
ꝉ N rate x seeding rate interaction for grain plus cob N uptake was significant at LEX2016. Means in the same row 
within N rate with different letters are significantly different ( p≤ 0.10). 

 
Table 4.19. Nitrogen and seeding rate effects on R6 grain N accumulation. 
    seeding rate (seeds ha⁻¹)     
    74000 148000 Mean 

Environment 
N rate 

grain N uptake (kg N ha⁻¹) 
(kg N ha⁻¹) 

LEX2015 
0  83.9   66.0   75.0 Bꝉ 
390  183.3   202.3   192.8 A 
Mean 133.6  ns* 134.1       

                

LEX2016 
0  62.3   68.5   65.4 Bꝉ 
390  182.9   204.2   193.5 A 
Mean 122.6 B‡ 136.3 A     

                

HAR2016 
0  91.5 A§ 88.0 A 89.7   
390  136.6 B 163.4 A 150.0   
Mean 114.0   125.7       

ꝉ Means for the N rate effect on grain N uptake are averaged across seeding rates when the N rate by seeding rate interaction was not significant. Means in the 
same column with different letters are significantly different (  p≤ 0.10). 
‡ Means for the seeding rate effect on grain N uptake are averaged across N rates when the N rate x seeding rate interaction was not significant. Means in the 
same row with different letters are significantly different (p ≤ 0.10). 
§ N rate x seeding rate interaction for grain N uptake was significant (p = 0.0010). Means in the same row within environment and N rate with different letters 
are significantly different (p ≤ 0.10). 
*ns = not significant at the α = 0.10 significance level.                                                                    
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Table 4.20. Nitrogen and seeding rate effects on R6 grain N uptake per plant. 
    seeding rate (seeds ha⁻¹)     
    74000 148000 Mean 

Environment 
N rate 

grain N uptake (g N plant⁻¹) 
(kg N ha⁻¹) 

LEX2015 
0  1.180   0.485   0.833 B ꝉ 
390  2.738   1.555   2.147 A 
Mean 1.959 A ꝉ 1.020 B     

                

LEX2016 
0  1.007 A ‡ 0.536 B 0.772   
390  3.028 A 1.624 B 2.326   
Mean 2.018   1.080       

                

HAR2016 
0  1.415   0.648   1.032 B§ 
390  2.065   1.202   1.634 A 
Mean 1.740 A§  0.925  B     

ꝉ Means for N rate and seeding rate effects on grain N uptake when the N rate by seeding rate interaction was not significant for LEX2015. Means in the same row and column with 
different letters are significantly different (p ≤ 0.10). 
‡ The N rate by seeding rate interaction for grain N uptake was significant (p < 0.0001) for LEX2016. Means in the same row within N rate with different letters are significantly 
different (p ≤ 0.10).           
§ Means for N rate and seeding rate effects on grain N uptake when the N rate by seeding rate interaction was not significant for HAR2016. Means in the same row and column with 
different letters are significantly different (p ≤ 0.10). 
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Table 4.21. Seeding rate and growth stage effects on whole plant N uptake per hectare, within N rate, for LEX2015. 

LEX2015 
seeding rate (seeds ha⁻¹) Mean     

74000 148000 by growth stage p-value‡   
N rate  Growth  

Whole Plant N Uptake (kg N ha⁻¹) 
(kg N ha⁻¹) Stage 

0  

V7 36.5   37.5   37.0 D ꝉ ns* a § 

V14 88.2   53.7   70.9 C 0.0560 b 

R3 97.1   79.9   88.5 B ns b 

R5 123.5   87.0   105.2 A ns b 

R6 116.0   91.5   103.8 AB ns b 

  Mean 92.2 A ꝉ 69.9 B         

                    

390  

V7 49.6   63.3   56.4 D ꝉ 0.0298 a 

V14 153.0   186.3   169.7 C ns a 

R3 191.2   214.5   202.9 B ns a 

R5 252.7   237.5   245.1 A ns a 

R6 260.1   279.2   269.7 A ns a 
  Mean 181.3 ns 196.2           

ꝉ For the low N rate, seeding rate did not interact with growth stage and means comparisons are for each growth stage and seeding rate. Means in the same 
column or row with different letters are significantly different (p ≤ 0.10). Within the high N rate, seeding rate did not interact with growth stage and means 
comparisons are for each growth stage, averaged across seeding rate. Means in the same column with different letters are significantly different (p ≤ 0.10).  
‡ Means in the same row within a N rate and growth stage with a p value ≤ 0.10 are significantly different.  
*ns = not significant at the α = 0.10 significance level.  
§ Mean comparison for the N rate effect at each growth stage. Means at each growth stage with different letters are significantly different (p < 0.0001). 
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Table 4.22. Seeding rate and growth stage effects on whole plant N uptake per hectare, within N rate, for LEX2016. 

LEX2016 
seeding rate (seeds ha⁻¹) Mean     

74000 148000 by growth stage p-value‡   
N rate  Growth  

Whole Plant N Uptake (kg N ha⁻¹) 
(kg N ha⁻¹) Stage 

0  

V7 13.6   14.7   14.1 E ꝉ ns* b§ 
V14 32.3   30.1   31.2 D ns b 
R3 44.1   34.6   39.3 C 0.0039 b 
R5 70.7   60.0   65.3 B ns b 
R6 85.8   92.8   89.3 A ns b 

  Mean 49.3 ns 46.4           
                   

390  

V7 28.8   55.1   41.9 D ꝉ ns a 
V14 116.9   165.6   141.2 C ns a 
R3 172.9   206.5   189.7 B 0.0029 a 
R5 235.7   246.2   241.0 A ns a 
R6 238.7   254.3   246.5 A ns a 

  Mean 158.6 B ꝉ 185.6 A         
ꝉ For the low N rate, seeding rate did not interact with growth stage and means comparisons are for each growth stage averaged across seeding rate. Means in 
the same column with different letters are significantly different (p ≤ 0.10). Within the high N rate, seeding rate did not interact with growth stage and means 
comparisons are for each growth stage and seeding rate. Means in the same column or row with different letters are significantly different (p ≤ 0.10).  
‡ Means in the same row within N rate and growth stage with a p value ≤ 0.10 are significantly different.  
*ns = not significant at the α = 0.10 significance level.  
§ Mean comparison for N rate effect at each growth stage. Means at each growth stage with different letters are significantly different (p < 0.0001). 
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Table 4.23. Seeding rate and hybrid effects on R5 nitrogen deficiency rating, within N rate, for LEX2016.  

LEX2016 
Hybrid Mean 

A6499   A6517   
DKC62-
78RIB   

DKC67-
72RIB   P0339AM   P2089AM   

Growth 
Stage 

N 
rate 

N rate  SR 
N Deficiency Rating (Kg N 

Ha⁻¹) 
(seeds 
ha⁻¹) 

0  74000 2.47   1.67   2.07   3.13   1.33   1.47   2.02 A ꝉ b ‡ 
148000 1.53   1.13   1.47   1.80   1.33   1.20   1.41 B b 

  Mean 2.00 B ꝉ 1.40 C 1.77 CB 2.47 A 1.33 C 1.33 C       
                                  

390  74000 3.53 A ꝉ 4.53 A 4.27 A 4.20 A 4.27 A 4.47 A 4.21 ns a 
148000 3.02 A 2.87 B 3.27 B 3.40 A 1.98 B 3.40 B 2.99   a 

  Mean 3.28 ns* 3.70   3.77   3.80   3.13   3.93         
ꝉ For the low N rate, seeding rate did not interact with hybrid and means comparisons are for each seeding rate and hybrid. Means in the same column or row 
with different letters are significantly different (p ≤ 0.10). Within the high N rate, the seeding rate by hybrid interaction was significant; therefore, means are 
compared within each hybrid. Means in the same column with different letters are significantly different (p ≤ 0.10). 
‡ Mean comparison for N rate effect at each seeding rate. Means at each growth stage with different letters are significantly different (p ≤ 0.10). 
*ns = not significant at the α = 0.10 significance level. 
 
 

Table 4.24. Nitrogen rate and hybrid effects on nitrogen harvest index for LEX2016. 

LEX2016 
Hybrid 

A6499 A6517 DKC62-78RIB DKC67-72RIB P0339AM P2089AM 
N rate 

 Nitrogen Harvest Index  
(kg N ha⁻¹) 

0  0.73 B ꝉ 0.75 A 0.73 A 0.75 A 0.69 B 0.70 A 
                          

390  0.79 A 0.78 A 0.78 A 0.74 A 0.86 A 0.77 A 
ꝉ LEX2016 Nitrogen harvest index means separated by N rate for each hybrid across seeding rates. The N rate by hybrid interaction was 
significant and means are compared within each hybrid. Means in the same column with different letters are significantly different (p ≤ 0.10). 
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Table 4.25. Seeding rate effect on nitrogen harvest index for LEX2016. 
LEX2016 

seeding rate Nitrogen Harvest 

(seeds ha⁻¹) Index 

74000 0.75 B ꝉ 
      

148000 0.77 A 
ꝉ Means separation for seeding rate effect on Nitrogen Harvest Index are averaged across N rate and hybrid. Means 
in the same column with different letters are significantly different (p ≤ 0.10). 
 
 

Table 4.26. Nitrogen and seeding rate effects on crop growth rate (CGR) for LEX2015 and 
LEX2016. 
   N rate  seeding rate CGR   
   (kg N ha⁻¹) (seeds ha⁻¹) (g m⁻² day-1)   

LEX2015 

0  
74000 19.0 Cꝉ 
148000 15.7 D 

       

390  
74000 27.2 B 
148000 30.2 A 

              

LEX2016 

0  
74000 12.9 C‡  
148000 13.5 C 

       

390  
74000 23.9 B 
148000 27.0 A 

ꝉ N rate by seeding rate interaction for crop growth rate was significant (p = 0.0180) for LEX2015. Means in the 
same column with different letters are significantly different (p ≤ 0.10). 
‡ N rate by seeding rate interaction for crop growth rate was significant (p = 0.0950) for LEX2016. Means in the 
same column with different letters are significantly different (p ≤ 0.10). 
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Figure 4.1. Relationship between grain (A) P and N uptake, and (B) grain K and N uptake 
for each environment, averaged across hybrids. 
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Figure 4.2. Nitrogen deficiency rating evaluated on a scale that designated the ear leaf as 
“0” and each leaf below the ear leaf with a negative number. Different letters indicate 
significant differences between treatments (α = 0.1 significance level). (A) and (B) 
LEX2015, (C) HAR2016. 
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Figure 4.3. Seeding rate effect on nitrogen internal efficiency (NIE) expressed as kg grain 
yield per kg N uptake. Different letters indicate significant differences between 
treatments (α = 0.1 significance level). (A) LEX2015 and LEX2106 including 2 hybrids, 
(B) LEX2016 including all 6 hybrids. 
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4.3. Discussion 

4.3.1. Soil Nitrogen  

Overall, before N fertilizer application at V3, the first 15 cm of soil contained the 

highest amount of available N across all environments and its importance consists mainly 

in guaranteeing adequate N at planting. LEX2016 and HAR2016 exhibited similar total 

soil inorganic N values. 

Available soil N at LEX2015 was low (<10 ppm total) enough to observe N 

deficiency symptoms in contrasting treatment combinations across environments. 

Phosphorus and potassium soil test results (data not shown) were high at all 

experiment sites (AGR-1, 2015). 

4.3.2. Stem and Leaf N Accumulation Throughout the Growing Season 

Stem and leaf nitrogen accumulation was predominantly affected by N rate and 

seeding rate, with hybrids presenting interactions of magnitude mostly.  

As anticipated, the High N rate considerably increased stem and leaf N uptake per 

hectare, as compared with Zero N, throughout the growing season. 

Nitrogen accumulation in the stem and leaf increased gradually, exhibiting 

maximum values at the V14 and R3 growth stages and then experienced a decline as the 

season progressed. This temporal pattern was observed under both limiting and non-

limiting N rates. However, N accumulation in stem and leaf was always higher with the 

non-limiting N application. At maturity, fodder N accumulation was 167 and 133% 

greater at LEX2015 and LEX2016, respectively, with the High N, as compared to the 

Zero N rate. Other studies had similar observations on N uptake even though their 
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maximum plant densities and N rates were lower (Ciampitti et al., 2013a, Massignam et 

al., 2009) than this study. 

Furthermore, increasing plant density in combination with a non-limiting N supply 

resulted in greater stem and leaf N accumulation until R3 in LEX2016. At R5, N 

accumulation was similar for both SRs and at R6, the High SR had 20% lower stem and 

leaf N accumulation. These observations are consistent with our initial hypothesis. 

Overall, the High SR accumulated more N per hectare in stem and leaf when supplied 

with non-limiting N as compared to recommended maize plant densities.  

Ciampitti and Vyn, (2011) found similar results, where pre-silking N uptake 

increased as seeding rates increased. In addition, they found that higher plant populations 

marginally influenced post-silking N accumulation. 

The fact that High SR supplied with non-limiting N rates exhibited greater N 

accumulation in the stem and leaf component during early vegetative stages and the 

period bracketing silking (V14-R3) is greatly associated with biomass accumulation 

dynamics occurring during these developmental stages. 

Modern maize hybrids have the potential to increase dry matter production and 

therefore influence nutrient uptake and assimilation by the crop (Bender et al., 2013a). 

Furthermore, the increasing trend in past decades of planting higher maize seeding rates 

has further increased biomass accumulation for this crop (Bender et al. 2012; Boomsma 

et al. 2009; Below et al. 2007).  

Results from this research indicated an increase in biomass production from early 

vegetative stages that was maximized, on average, at the R3 growth stage. In addition, 
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High SR led to a substantial improvement in stem and leaf dry matter at both N rates 

(data shown in previous Chapter). Consistent with our results were those found by 

Bender et al. (2013a) where dry matter production rates were maximized at two identified 

periods; between growth stages V10 and V14 and also R2 and R3. 

According to Ciampitti and Vyn, (2011), the rate at which biomass accumulated was 

amongst the main factors that influenced N uptake during the vegetative period and after. 

Nitrogen availability and utilization by plants directly impacts the crop growth rate. 

Gastal and Lemaire (2002) support the thesis that if sufficient N is available in the soil for 

plants to use, then N accumulation in plant biomass will be highly related to the crop 

growth rate. Devienne-Barret et al. (2000) concurred and, in addition, when studying the 

influence of both crop growth rate and soil nitrogen concentration on N assimilation by 

crops in the absence of water stress, concluded that N accumulated in fodder can 

occasionally exceed the minimal N content required for maximum crop growth rates.  

With the non-limiting N rate, our results show that the highest crop growth rates 

were observed when using the highest plant density (Table 4.26). At both LEX2015 and 

LEX2016 the crop growth rate was 11 and 12.8% higher, respectively, for the High SR as 

compared to the Low SR. These observations would suggest that when nutrient 

availability is not a limiting factor, the potential to accumulate higher biomass in these 

hybrids, when planted at the higher seeding rate is reflected in higher crop growth rates, 

which leads eventually to increased tissue N uptake.  

In agreement with our initial prediction, the High N and High SR increased N 

accumulation in the stem and leaf fraction when contrasted with N uptake at the Low SR. 

Apparently, this treatment combination also increased the crop growth rate, thus leading 
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to improved N uptake during early vegetative stages and more importantly, during the 

critical kernel set period (V14-R3).  

Nonetheless, the increase in N accumulation was observed to be diminishing as the 

crop progressed towards the R3 growth stage. Subsequently, a decrease in stem and leaf 

content was identified at physiological maturity. The observed decline in stem and leaf N 

uptake with successive reproductive stages would indicate that N remobilization from 

vegetative organs to the developing kernels is taking place. Similar observations were 

reported by Karlen et al., (1988) when providing a non-stressful environment for maize in 

New Jersey. These authors also described a period of net loss in aboveground N 

accumulation that extended from VT to R1 and associated this observation to the lack of 

sink strength at that particular stage of development where the transition from vegetative 

to reproductive stages occurs. 

The higher N accumulation in the fodder fraction, at the High SR and with ample N 

availability, driven mainly by higher crop growth rates associated with improved biomass 

accumulation, would therefore be a crucial source of N for redistribution to the 

developing kernels. Higher grain yields observed with High SR and High N as compared 

to Low SR and High N would require a subsequent increase in N accumulation by the 

crop if higher N is expected to be harvested by the grain. 

4.3.3. Husk and Cob N Uptake Evolution 

Overall, the High SR did not increase N accumulation in the husk, as compared with 

the Low SR. A declining temporal trend in accumulated husk N was identified as 

reproductive stages progressed from R3 to maturity. These observations suggest N 

remobilization from husk tissues to the developing grain.  
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On the other hand, for the High N rate, N accumulation in the cob fraction at 

advanced reproductive stages increased 46% with the High SR, as compared to the Low 

SR, implying that the excess N was accumulating in the cob.  

Our observations were consistent with results reported by Sindelar et al. (2013), 

where cob biomass and N uptake increased with higher N rates of approximately 235 kg 

ha-1.  

Cob N accumulation in this work was largely consistent with the initial hypothesis 

that cob N accumulation would increase with the High SR and an adequate N supply. 

Cob N accumulation reflected grain N accumulation, as the High SR, along with the high 

N rate increased both cob and grain N uptake. 

4.3.4. Whole Plant N Accumulation  

Whole plant N accumulation at the R6 growth stage averaged 270 and 247 kg N ha-1 

at LEX2015 and LEX2016, respectively, at the 390 kg N ha-1.  

Whole plant N accumulation results observed in this research are comparable to 

those found in several other studies conducted in recent years. A total N uptake of 286 kg 

N ha-1 at maturity was reported by Bender et al. (2013a) when testing plant populations 

up to 84,000 plants ha-1 in Illinois. Setiyono et al. (2010) reported an average of 232 kg N 

ha-1 accumulated at maturity, with plant densities reaching 110,000 plants ha-1. Likewise, 

total N uptake at R6 in an irrigated production system was, on average, 262 kg N ha-1 

according to Djaman et al. (2013).  

On the other hand, on average, 63 and 57% of total N accumulation took place by 

V14 at LEX2015 and LEX2016, respectively, with a non-limiting N supply. These 
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observations would suggest that more than half of the N is accumulated during the 

vegetative period prior to anthesis. Post-flowering N assimilation by maize, however, is 

relatively lower and would be partitioned directly to the developing kernels (Bender et 

al., 2013b). 

Grain N accumulation in this study increased at a higher rate, relative to whole plant 

N, when compared to the findings of Abendroth et al. (2011). In this study, grain N 

accumulation at R6 with non-limiting N averaged 77 and 81% of whole plant N for Low 

and High SR, respectively. At the Zero N rate, an average of 72 and 73% of whole plant 

N was accumulated in the grain at Low and High SR, respectively. Abendroth et al., 

(2011), reported 67% of total N content was contained in the grain once R6 was reached. 

4.3.5. Grain N Removal at Harvest 

The amount of grain N removed at harvest varied amongst environments. However, 

an overall upward trend was observed in grain N accumulation with the High SR and 

non-limiting N treatment.  

Increased biomass production and yield in modern maize hybrids in recent years has 

resulted from intensified production systems, based on improved management practices. 

Our results support this tendency as the combined effect of increased SR and a non-

limiting N supply increased dry matter accumulation and grain yield, mainly through a 

greater number of kernels per ha-1. Grain N removal at harvest was likely influenced by 

both biomass and yield improvements. 
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As anticipated, a greater amount of N was partitioned to the grain at the High SR 

and at the High N rate as compared to the Low SR and High N rate treatment 

combination. 

The higher grain N removal found when combining the High SR and High N rate 

can be related to the greater whole plant N accumulated by V14 (close to silking) in this 

study. A positive association between crop N uptake at silking and remobilized N from 

vegetative organs during grain filling has been reported in recent studies (Chen et al., 

2015, Ciampitti and Vyn, 2013).  

In addition, the described differences in stem and leaf N accumulation between the 

High and Low SR within High N supply at the R3 growth stage and at later reproductive 

growth stages, can greatly explain dynamics in N remobilization towards the developing 

kernels. Similar results were observed by Ciampitti et al. (2013b), who established that N 

translocation from vegetative tissues taking place later in the growing season would 

prolong leaf photosynthetic activity and therefore benefit post silking N uptake by the 

crop.  

Based on our results, both remobilization from vegetative organs and prolonged 

post-silking N uptake post silking served as sources of grain N accumulation. Nitrogen 

uptake during the reproductive stages following silking was not sufficient to sustain the N 

demand of the developing ear and thus more N was remobilized from stem and leaf 

biomass at advanced reproductive stages. Higher plant densities resulting from the higher 

SR enhanced the translocation process and these plants exhibited lower stem and leaf N 

accumulation at maturity when compared to those in the Low SR. 
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Another way of presenting the amount of N translocated from vegetative to 

reproductive structures is the nitrogen harvest index (NHI; Fageria, 2014). Our results 

indicate that a significantly greater amount of N was partitioned to the grain with the 

High SR (NHI = 0.77) as compared to the Low SR (0.75) (Table 4.25). In addition, two 

out of the six hybrids tested in LEX2016 exhibited a higher NHI at the High N rate as 

compared to the Zero N rate (Table 4.25).  

Alternatively, grain N accumulated per plant exhibited a decline as seeding rate was 

doubled. However, the High N rate increased the amount of N in the grain but did not 

dramatically alter N uptake differences between Low and High SR as compared to the 

Zero N rate. These results can be partially explained by the fact that less kernels per plant 

were observed as plant densities increased. Nevertheless, the amount of kernels per 

hectare increased with the higher SR. 

According to our results, 202, 204 and 163 kg N ha-1 were removed by the grain at 

harvest in LEX2015, LEX2016 and HAR2016, respectively, when combining High N 

and High SR. Average grain yields for this treatment combination were 17.9, 19.3 and 

13.4 Mg ha-1 in each environment, respectively. Bender et al. (2013a), on the other hand, 

reported 166 kg N ha-1 removed by grain with an average yield of 12 Mg ha-1 at about 

84,000 plants ha-1. Consequently, our results would suggest that an average of 11.3, 10.6 

and 12.2 kg N were taken up per Mg grain yield for LEX2015, LEX2016 and HAR2016, 

respectively, at 148,000 plants ha-1. At 74,000 plants ha-1 and with the High N rate, 183, 

183 and 137 kg N ha-1 were removed by the grain at harvest in LEX2015, LEX2016 and 

HAR2016, respectively. Average yields for this treatment combination were 17.1, 16.7 

and 11.7 Mg ha-1 in each environment, respectively. 
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As a result, an average of 10.7, 10.9 and 11.7 kg N were taken up per Mg grain yield for 

LEX2015, LEX2016 and HAR2016, respectively. The average kg of N up taken per Mg 

grain yield was similar for both seeding rates. These results demonstrate the yield 

potential and stress tolerance to high populations of modern hybrids at the High N and 

High SR treatment. 

On the other hand, when evaluating the Zero N, an overall decline was observed in 

the amount of N partitioned to the grain at the High SR. Our results show that, on 

average, 66.0, 68.5 and 88.0 kg N ha-1 were removed by the grain at harvest in LEX2015, 

LEX2016 and HAR2016, respectively, when combining Zero N rate and High SR. 

Taking under consideration that average grain yields were 9.2, 6.2 and 5.9 Mg ha-1 for 

this combination at each environment, then 7.2, 11.0 and 15.0 kg N were taken up to 

produce a Mg grain yield for LEX2015, LEX2016 and HAR2016, respectively. 

Conversely, at the Low SR, 83.9, 62.3 and 91.5 kg N ha-1 were harvested by the grain at 

LEX2015, LEX2016 and HAR2016, respectively. Average grain yields were 9.8, 8.2 and 

7.9 Mg ha-1 at each environment. As a result, 8.3, 7.7 and 11.6 kg N were taken up per 

Mg of grain at each environment. These results suggest that grain N uptake was generally 

lower for the higher SR. Furthermore, an average of 21% reduction in N removed by the 

grain was observed at 148,000 plants ha-1 when N supply was limiting. These 

observations could be partially explained by the fact that soil mineral N availability at the 

High SR greatly limited N uptake by the crop (Gastal and Lemaire, 2002) and 

subsequently N removal by the grain, as compared with the Low SR. 

 Nevertheless, modern hybrids at the Zero N rate yielded greater than most hybrids 

tested in the 1950s and 1960s with adequate N, demonstrating greater improvement of 
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current hybrids to take up N in the field (Stevenson and Baldwin, 1969; Nunez and 

Kamprath, 1969). 

 At the High SR, our results show higher nitrogen utilization (NIE) as compared 

with the Low SR for maize. The trend was observed at LEX2016 when analyzing the two 

hybrids planted at all environments and also when including all six hybrids in the analysis 

(Figure 4.3A and 4.3B). These observations would suggest that increases in N uptake 

driven by higher plant densities were enough to improve NIE. Results found by Ciampitti 

and Vyn, (2011) indicate increased NIE at 79,000 plants ha-1 but not at 104,000 plants ha-

1, with 330 kg N ha-1. At LEX2015, on the other hand, NIE was similar at both the High 

and the Low SR (Figure 4.3A). In this environment, grain yield and N uptake at the Zero 

N rate were greater than at LEX2016, on average. These observations could be largely 

explained by the greater P and K whole plant uptake observed at LEX2015 at the Zero N 

rate. Also, these results would suggest that the crop’s ability to convert N taken up into 

grain N with the High N rate was reduced in this environment, thus contributing to the 

similarities observed in NIE with both SR.  

4.3.6. Grain P and K Removal Relationships with Grain N Removal 

As anticipated, phosphorus (P) and potassium (K) removed with the grain at 

maturity responded to N availability. High N increased both P and K grain removal 

across all environments evaluated (data not shown). Phosphorus grain accumulation 

exhibited higher values as compared to K accumulation, mainly explained by the greater 

partitioning of P from vegetative to reproductive organs (Ciampitti et al., 2013c) and the 

fact that it is accumulated during grain fill. Ziadi et al., (2007) described a linear 
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relationship between whole plant N and P concentrations and attributed the effect of 

higher N rates on P concentrations to enhanced root growth and nutrient absorption.  

In addition, higher whole plant accumulation of P and K has been associated with 

the greater biomass, total N uptake and yield produced by higher yielding hybrids 

together with high input systems (Bender et al., 2013b; Ciampitti et al., 2013c). 

4.3.7. Nitrogen Deficiency Observed at Reproductive Growth Stages 

As a general trend, increased seeding rates lead to the development of N deficiency 

symptoms in leaves closer to the ear leaf. These observations were consistent across all 

environments evaluated.  

Given nitrogen’s high mobility within the plant once assimilated (Bender et al., 

2013a), remobilization to grain can be more dynamic if required during the grain filling 

period.  

Nutrient translocation in the developing kernel is expected to start no sooner than 

R2, once the transition from vegetative to reproductive growth occurs (Abendroth et al., 

2011; Bender et al., 2013a). At this point in the growing season, kernel development 

initiates as does grain nutrient accumulation. Subsequently, grain nutrient accumulation 

exhibits a linear increase during reproductive growth, during which N is still partitioned 

to the developing grain, until R5. 

Clearly, and as expected, High SR combined with Zero N increased visible N 

deficiency in maize plants. On average, N deficiency in these cases was observed within 

one to two leaves below the ear leaf. These observations represent N being translocated 

from leaf tissues to grain. 
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As described by Ciampitti et al. (2013b), during reproductive stages N is mostly 

remobilized from stem and older leaves lower in the plant. Nitrogen supply influences the 

process of remobilization, and, our results show that the High N rate reduced the 

progression of observable leaf N deficiency upwards towards the ear leaf. On average, 

when combining the High SR and the High N rate, three leaves below the ear leaf showed 

no sign of N deficiency. These results suggest that N is still available for translocation 

during kernel development at advanced reproductive stages in the crop grown in this 

treatment. 

4.4. Summary 

As maize seeding rates have experienced an upward trend in recent years, interest 

has focused on evaluating and thus updating nutrient assimilation, remobilization and 

removal patterns within modern maize management systems.  

Results from this research indicate greater N accumulation in the stem and leaf 

fraction when combining the high seeding rate with the high N rate. In addition, higher 

crop growth / biomass accumulation rates were associated with this treatment. 

Nitrogen internal efficiency was increased with the higher seeding rate. Similar 

results were identified for the amount of nitrogen partitioned to the grain (NHI) as plant 

densities were doubled. 

Ultimately, grain N removal was increased when the high input treatment 

combination was provided. The expected outcome can be attributed both to the N 

remobilization process as well as to the increased and sustained N uptake during 

reproductive growth stages that is characteristic of modern maize hybrids. 
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Chapter 5 

5. Conclusions 

High input management systems in conjunction with modern maize hybrids 

characterized by higher nutrient use efficiency and tolerance to diverse stresses can 

improve grain yield.  

Confirming our initial hypothesis, high maize seeding rates achieved by decreasing 

row spacing lead to an increase in grain yield when supplied with non-limiting N in 

Kentucky. Furthermore, the grain yield component that best explained yield improvement 

was kernel number ha-1. Kernels ha-1 was expected to increase at High SR combined with 

High N.  

Conversely, although expected, High SR reduced the number of kernels ear-1. 

Moreover, our hypothesis was not fully sustained since the High N rate did not improve 

kernels ear-1 at the High SR, as estimated. Kernel number per ear was most influenced by 

kernels per row. High N increased kernels row-1, still, the effect of High SR reduced this 

parameter. Therefore, potential kernel number was possibly limited by a factor other than 

N availability at extreme seeding rates.  

Kernel weight was expected to be greater with the High N rate and marginally decrease 

with High SR. Results relatively confirmed this hypothesis since kernel mass declined 

with High SR as compared with Low SR. However, the High N rate did not increase 

kernel weight, restricting further yield increases. 

Evidently, the increase in grain yield at High SR and High N was essentially a function 

of an increment in kernel number ha-1, with a final kernel weight adjustment to balance 

out such kernel number improvement. 
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Stem and leaf N content was projected to increase with the joined effect of High SR 

and high N. In effect, N accumulated in stem and leaf confirmed the initial hypothesis. 

Increasing plant densities in combination with non-limiting N supply resulted in greater 

stem and leaf N content per hectare until grain filling. 

Nitrogen deficiency, as expected, was observed closer to the ear leaf as High SR and 

limiting N were combined. Nonetheless, visible N deficiency in maize plants was 

observed within one to two leaves below the ear leaf.  

Cob N content was consistent with the initial hypothesis as it reflected grain N content 

as seeding rates increased and N rate was high. However, husk N content remobilized 

quickly from husks regardless of seed rate or N rate.  

At maturity, N accumulated in grain was estimated to increase with High SR and High 

N. Results confirmed that expectation. As anticipated, P and K grain content was 

increased with higher N accumulation. In addition, grain N content per plant, as expected, 

was reduced as seeding rates increased. High N did not increase grain N per plant at High 

SR, primarily as a result of less kernels per plant at higher densities.  

The substantial increase in seeding rates resulted in a higher N utilization (NIE), in 

comparison with low maize seeding rates. Consequently, increases in N uptake driven by 

higher plant densities were sufficient to improve NIE. 

Ultimately, High SR increased the number of kernels harvested per hectare, improved 

the crop’s nitrogen utilization and the amount of N partitioned to the grain per unit area. 

As a result, maize grain yield was increased as seeding rates were doubled from 74,000 to 

148,000 plants ha-1 and available N was non-limiting. However, a reduction in kernels 

per ear and kernel weight as seeding rates increased was still observed under the High N 
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supply, restricting additional yield increases. Subsequently, maize plant densities will 

preserve the current upward trend if such grain yield components remain inflexible under 

high input management systems of production. Likely, genetic developments should then 

focus on kernel mass and kernels per plant for future maize grain yield improvement. 
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Appendix 

 

Table A.1. ANOVA table summarizing sources of variation when comparing all environments. A α=0.10 significance level was used. 
 
Sources of  Grain  Rows Kernels Kernels Kernels Kernel Ear Tip Back 
variation Yield Ear⁻¹ Row⁻¹ Ear⁻¹ Ha⁻¹ Weight Length ꝉ Length ꝉ 
ANOVA <.0001 0.0003 <.0001 <.0001 0.0006 <.0001 <.0001 <.0001 
Env 0.0022 0.1405 0.3068 0.2299 0.1365 0.2099 0.0448 0.0006 
N <.0001 0.0116 0.0005 0.0005 0.0009 0.0003 <.0001 0.0052 
Env*N 0.0002 0.0690 0.5638 0.2417 0.1050 0.0138 0.0272 0.0185 
Hyb ‡ 0.1307 0.0213 0.2390 0.0984 0.5785 0.0887 <.0001 <.0001 
Env*Hyb 0.4416 0.0781 0.0943 0.0504 0.0842 0.4588 0.0212 <.0001 
N*Hyb 0.5113 0.1180 0.5397 0.4378 0.7082 0.0997 0.3412 0.0371 
Env*N*Hyb 0.1243 0.3941 0.2392 0.3307 0.8387 0.2519 0.3240 0.0409 
Pop 0.0099 0.0001 <.0001 <.0001 0.0003 <.0001 <.0001 0.0012 
Env*Pop 0.1480 0.1677 0.7830 0.3030 0.5522 0.3140 0.7743 0.3291 
N*Pop <.0001 1.0000 0.0291 0.1665 0.0164 0.0175 0.0068 0.0020 
Env*N*Pop 0.0186 0.2783 0.6382 0.3857 0.6721 0.0117 0.0779 0.3556 
Hyb*Pop 0.3018 0.5716 0.7646 0.8124 0.3984 0.3381 0.0206 0.0022 
Env*Hyb*Pop 0.4510 0.3230 0.9774 0.9010 0.3700 0.9260 0.9327 0.1968 
N*Hyb*Pop 0.0104 0.2626 0.8158 0.6499 0.8379 0.2185 0.3103 0.0110 
Env*N*Hyb*Pop 0.4887 0.3616 0.4514 0.2619 0.2949 0.0880 0.3968 0.8502 
ꝉ Lexington 2016 and Hardin 2016 data for this parameter.         
‡ AgriGold A6499STXRIB and AgriGold A6517VT3PRIB are included in the analysis since all environments test these hybrids. 
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Table A.2. ANOVA table summarizing sources of variation when comparing 2016 environments. A α=0.10 significance level was 
used.  
Sources of  Grain  Rows Kernels Kernels Kernels Kernel Ear Tip Back 
variation Yield Ear⁻¹ Row⁻¹ Ear⁻¹ Ha⁻¹ Weight Length ꝉ Length ꝉ 
ANOVA <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 
Env <.0001 0.1554 0.4518 0.0876 0.1050 0.6130 0.0448 0.0006 
N <.0001 0.0008 <.0001 <.0001 <.0001 0.0008 <.0001 0.0052 
Env*N <.0001 0.0434 0.0260 0.0176 0.0008 0.0039 0.0272 0.0185 
Hyb ꝉ <.0001 <.0001 0.0002 <.0001 0.0214 0.0004 <.0001 <.0001 
Env*Hyb 0.2924 0.2184 0.0055 0.0123 0.0554 0.5491 0.0212 <.0001 
N*Hyb 0.0529 0.0451 0.1950 0.0817 0.1613 0.1818 0.3412 0.0371 
Env*N*Hyb 0.5992 0.8333 0.2387 0.5425 0.9441 0.0567 0.3240 0.0409 
Pop 0.7074 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0012 
Env*Pop 0.1252 0.0270 0.8406 0.1754 0.0515 0.8817 0.7743 0.3291 
N*Pop <.0001 <.0001 0.0005 0.0021 <.0001 <.0001 0.0068 0.0020 
Env*N*Pop 0.0928 0.5334 0.2591 0.4043 0.9656 0.0001 0.0779 0.3556 
Hyb*Pop <.0001 <.0001 0.1074 0.0046 0.3258 0.0327 0.0206 0.0022 
Env*Hyb*Pop 0.4053 0.9548 0.7453 0.8367 0.3652 0.0023 0.9327 0.1968 
N*Hyb*Pop 0.0079 0.0018 0.2825 0.1873 0.0609 0.0150 0.3103 0.0110 
Env*N*Hyb*Pop 0.8450 0.1392 0.5930 0.3481 0.5712 0.4265 0.3968 0.8502 
ꝉ All 6 hybrids are included in the analysis.             
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Table A.3. N Rate effect on Grain Yield, Rows Ear⁻¹, Kernels Row⁻¹, Kernel Ear⁻¹, 10⁶ Kernels Ha⁻¹ and 1000 Kernel Weight within Environment, 
Hybrid and Seeding Rates. 

ENV. Hybrid 

SR (K 
seeds 
ha-1) 

N Rate  
(kg/ha) 

p-
value† 

N Rate 
(kg/ha) 

p-
value† 

N Rate 
(kg/ha) 

p-
value† 

N Rate 
(kg/ha) 

p-value† 

N Rate 
(kg/ha) 

p-
value† 

N Rate 
(kg/ha) 

p-
value† 

0 390 0 390 0 390 0 390 0 390 0 390 

    
  

Yield (Mg 
Ha⁻¹) Rows Ear⁻¹ 

Kernels 
Row⁻¹ Kernel Ear⁻¹ 

10⁶ Kernels 
Ha⁻¹   

1000 
Kernel Wt. 
(g) 

Lexington  
A6499 74 10.3‡ 16.9 0.0016 14.5‡ 16.5 <.0001 36.5‡ 43.0 0.1444 

532
‡ 714 0.0707 

37.0
‡ 49.0 0.3743 

247
‡ 326 0.3574 

2015   148 8.9 18.5 0.0005 14.5 16.0 0.2048 25.5 37.0 0.1881 365 595 0.1706 47.0 66.5 0.2048 265 304 0.3903 
  A6517 74 9.0 17.3 0.0672 16.0 15.5 0.7952 38.5 40.5 <.0001 609 634 0.7613 42.0 41.0 0.7048 256 338 0.1476 
    148 11.1 17.2 0.0079 15.0 15.0 1.0000 26.0 36.5 0.1488 386 564 0.0214 42.5 77.5 0.0903 208 344 0.2103 
    Mean 9.8 17.5 0.0004 15.0 15.8  0.1306 31.6 39.3 0.0114 473 627 0.0012 42.1 58.5  0.0146 244 328 0.0012 
  A6499 74 8.3 15.2 0.0062 15.3 18.3 0.1885 31.0 43.6 0.0247 474 796 0.0831 41.0 64.0 0.1099 263 343 0.0339 
Lexington   148 6.9 19.1 0.0034 15.0 16.0 0.2254 20.3 34.3 0.0938 304 551 0.0948 45.0 84.3 0.0612 263 279 0.2809 
2016 A6517 74 7.6 17.7 0.0003 17.6 19.0 0.1835 40.0 44.6 0.6084 716 855 0.4182 59.0 79.0 0.2866 270 325 0.0324 
    148 7.0 20.6 0.0002 16.0 17.6 0.1296 29.0 37.6 0.3273 477 667 0.2957 63.3 88.3 0.4100 246 270 0.3238 
  DKC62 74 8.1 15.7 0.0006 14.6 15.6 0.2254 30.6 41.3 0.0068 456 640 0.0141 39.3 69.3 0.0328 270 381 0.0033 
    148 6.8 18.7 0.0001 12.3 15.3 0.0955 22.0 36.3 0.0070 268 560 0.0047 36.0 80.7 0.0195 264 284 0.4582 
  DKC67 74 9.7 17.5 0.0001 16.3 17.0 0.1835 35.3 42.0 0.0814 579 721 0.0844 50.0 66.3 0.0768 255 348 0.0492 
    148 6.6 19.8 0.0017 12.6 16.6 0.1201 25.6 38.6 0.1333 332 640 0.1138 39.6 99.3 0.0483 270 279 0.5886 
  P0339 74 7.0 14.5 0.0009 16.6 17.3 0.4226 30.0 45.6 0.0005 494 796 0.0147 42.3 73.0 0.0341 256 322 0.005 
    148 4.0 18.6 0.0008 10.6 15.3 0.0051 21.6 36.3 0.0066 233 564 0.0040 30.3 77.3 0.0360 247 258 0.0533 
  P2089 74 8.8 19.5 0.0071 15.6 17.6 0.0742 33.0 50.3 0.0070 517 895 0.0069 41.6 77.0 0.0851 233 381 0.0218 
    148 6.0 19.1 0.0100 12.3 16.3 0.0202 20.0 36.6 0.0554 250 603 0.0304 35.3 86.3 0.0693 253 278 0.2091 
    Mean 7.2 18.0 0.0001 14.6 16.8 <.0001 28.2 40.6 <.0001 425 691  <.0001 43.6 78.7 <.0001  258 312  <.0001 
  A6499 74 8.5 11.7 0.0375 17.0 17.0 1.0000 37.0 39.5 0.3615 621 669 0.4244 58.0 60.2 0.7190 291 309 0.0377 
Hardin   148 6.0 13.8 0.0178 15.5 16.2 0.4444 24.0 32.5 0.0057 377 524 0.0166 53.5 71.7 0.0386 276 265 0.5792 
2016 A6517 74 7.9 12.1 0.0019 17.0 16.7 0.7177 33.2 41.5 0.0249 559 698 0.0328 43.5 50.7 0.1666 265 298 0.0421 
    148 7.5 14.7 0.0049 16.5 16.7 0.6376 23.2 32.0 0.0027 381 533 0.0108 55.7 68.5 0.0331 228 267 0.1381 
  DKC62 74 7.8 10.2 0.0147 15.0 15.2 0.7177 32.7 38.5 0.0743 487 600 0.1288 37.5 54.0 0.0071 296 317 0.1025 
    148 7.3 13.2 0.0070 13.5 15.2 0.0354 24.5 31.7 0.0623 330 478 0.0485 48.2 67.2 0.0845 290 291 0.9579 
  DKC67 74 7.3 12.5 0.0006 15.0 15.5 0.6638 37.2 39.2 0.3429 549 612 0.0468 45.0 44.7 0.9284 301 353 0.1159 
    148 5.2 13.0 0.0035 13.7 14.7 0.0917 23.7 35.7 0.0004 326 527 0.0027 47.5 74.2 0.0282 269 250 0.3044 
  P0339 74 7.2 10.0 0.1900 16.2 17.2 0.4226 32.0 41.3 0.0604 519 695 0.0102 42.2 49.2 0.2057 286 280 0.5417 
    148 3.5 12.6 0.0293 10.7 15.7 0.0377 21.2 34.2 0.0390 232 518 0.0347 30.0 78.0 0.0179 284 268 0.3613 
  P2089 74 8.7 13.4 0.0131 15.0 16.7 0.2126 41.7 47.0 0.1018 615 785 0.0315 47.2 57.7 0.1788 304 322 0.4667 
    148 5.8 13.0 0.0122 13.5 14.7 0.0154 28.5 39.7 0.0038 388 597 0.0001 52.0 84.0 0.0101 251 239 0.4610 
  Mean 6.9 12.5 <.0001 14.9 16.0 0.0444 29.9 37.7 <.0001 449 603  <.0001 46.7 63.3  0.0025 278 288  0.1609 
† Significant values (p≤0.10) are highlighted.    
‡ Means in the same row with a p-value ≤ 0.10 are significantly different.
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Table A.4. Seed Rate effect on Grain Yield, Rows Ear⁻¹, Kernels Row⁻¹, Kernel Ear⁻¹, 10⁶ Kernels Ha⁻¹  and 1000 Kernel 
Weight within Environment, Hybrid and N Rate. 

ENV. Hybrid 
N Rate 
(kg/ha) 

SR (K 
seeds/ha) 

p-
value† 

SR (K 
seeds/ha) 

p-
value† 

SR (K 
seeds/ha) 

p-
value† 

SR (K 
seeds/ha) 

p-
value† 

SR (K 
seeds/ha) 

p-value† 

SR (K 
seeds/ha) 

 

74 148 74 148 74 148 74 148 74 148 74 148 
p-

value† 

    
  Yield (Mg 

Ha⁻¹) Rows Ear⁻¹ 
Kernels 
Row⁻¹ Kernel Ear⁻¹ 

10⁶ Kernels 
Ha⁻¹   

1000 Kernel 
Wt. (g) 

 

Lexington  A6499 0 10.3‡ 8.9 0.0290 14.5‡ 14.5 1.0000 36.5‡ 25.5 0.1695 532‡ 365 0.2378 37.0‡ 47.0 0.3440 247‡ 264 0.8138 
2015   390 16.9 18.5 0.0781 16.5 16.0 0.5000 43.0 37.0 0.4423 714 595 0.4677 49.0 66.5 0.1602 326 304 0.6443 
  A6517 0 9.4 10.4 0.4372 16.0 15.0 0.5000 38.5 26.0 0.1738 609 386 0.2617 42.0 42.5 0.7952 255 208 0.1349 
    390 17.3 17.2 0.9566 15.5 15.0 0.5000 40.5 36.5 0.1560 634 564 0.2489 41.0 77.5 0.0261 338 344 0.9263 
    Mean 13.4 13.7   0.6056 15.6 15.1 0.2746  39.6 31.3 0.0082  622 478 0.0012 42.3 58.4 0.0148  292 280  0.5659 
  A6499 0 8.2 6.7 0.2166 15.3 15.0 0.7418 31.0 20.3 0.0395 474 304 0.1389 41.0 45.0 0.5432 263 263 1.0000 
Lexington   390 15.2 19.1 0.0157 18.3 16.0 0.1181 43.6 34.3 0.1729 796 551 0.0247 64.0 84.3 0.2051 343 279 0.0073 
2016 A6517 0 7.6 7.0 0.0809 17.6 16.0 0.1296 40.0 29.0 0.1349 716 477 0.0892 59.0 63.3 0.8391 270 246 0.0809 
    390 17.7 20.6 0.0045 19.0 17.6 0.1835 44.6 37.6 0.0067 855 667 0.0206 79.0 88.3 0.5081 325 270 0.0488 
  DKC62 0 8.1 6.8 0.0113 14.6 12.3 0.1181 30.6 22.0 0.0429 456 268 0.0174 39.3 36.0 0.6878 270 264 0.6401 
    390 15.7 18.7 0.0104 15.6 15.3 0.6667 41.3 36.3 0.0820 640 560 0.0941 69.3 80.6 0.0399 381 284 0.0247 
  DKC67 0 9.7 6.6 0.0205 16.3 12.6 0.0533 35.3 25.6 0.0713 579 332 0.0324 50.0 39.6 0.0580 255 270 0.5304 
    390 17.5 19.8 0.0774 17.0 16.6 0.6667 42.0 38.6 0.0377 721 640 0.1193 66.3 99.3 0.0512 348 279 0.0644 
  P0339 0 7.0 4.0 0.0320 16.6 10.6 <.0001 30.0 21.6 0.0110 494 233 0.0008 42.3 30.3 0.1873 256 247 0.5905 
    390 14.5 18.6 0.0233 17.3 15.3 0.1835 45.6 36.3 0.0013 796 564 0.0373 73.0 77.3 0.7115 322 258 0.0759 
  P2089 0 8.8 6.0 0.0313 15.6 12.3 0.1296 33.0 20.0 0.1215 517 250 0.0868 41.6 35.3 0.5640 233 253 0.3306 
    390 19.3 19.1 0.8481 17.6 16.3 0.0572 50.3 36.6 0.0213 895 603 0.0059 77.0 86.3 0.3899 381 278 0.0360 
    Mean  12.5  12.7  0.1785 16.7 14.7 <.0001  38.9 29.9 <.0001  662 454 <.0001  58.5 63.8 0.0615  304 266 <.0001  
  A6499 0 8.5 6.0 0.0130 17.0 15.5 0.0138 37.0 24.0 0.0221 621 377 0.0190 58.0 53.5 0.5045 291 276 0.3318 
Hardin   390 11.7 13.8 0.0426 17.0 16.2 0.3189 39.5 32.5 0.0123 669 524 0.0130 60.2 71.7 0.2077 309 265 0.0346 
2016 A6517 0 7.9 7.5 0.6763 17.0 16.5 0.1817 33.2 23.5 0.0334 559 381 0.0256 43.5 55.7 0.1038 265 228 0.0087 
    390 12.1 14.7 0.0162 16.7 16.7 1.0000 41.5 32.0 0.0016 698 533 0.0014 50.7 68.5 0.0350 298 267 0.0197 
  DKC62 0 7.8 7.3 0.4869 15.0 13.5 0.0138 32.7 24.5 0.0592 487 330 0.0486 37.5 48.2 0.1235 296 290 0.6182 
    390 10.2 13.2 0.0008 15.2 15.2 1.0000 38.5 31.7 0.0124 600 478 0.0293 54.0 67.2 0.0207 317 291 0.0304 
  DKC67 0 7.3 5.2 0.1280 15.0 13.7 0.0796 37.2 23.7 0.0002 549 326 0.0009 45.0 47.5 0.5240 301 269 0.0668 
    390 12.5 13.0 0.6947 15.5 14.7 0.5195 39.2 35.7 0.1018 612 527 0.0737 44.7 74.2 0.0126 353 250 0.0253 
  P0339 0 7.2 3.5 0.0133 16.2 10.7 0.0079 32.0 21.2 0.0159 519 232 0.0008 42.2 30.0 0.0641 286 284 0.8103 
    390 10.3 12.5 0.0629 16.6 15.6 0.4226 41.6 33.3 0.0202 684 506 0.0833 50.6 75.6 0.0549 282 271 0.3949 
  P2089 0 8.7 5.8 0.0304 15.0 13.5 0.2967 41.7 28.5 0.0130 615 388 0.0322 47.2 52.0 0.6676 304 251 0.0595 
    390 13.4 13.0 0.5827 16.7 14.7 0.0163 47.0 39.7 0.0485 785 597 0.0295 57.7 84.0 0.0307 322 239 0.0280 
    Mean  9.8 9.6   0.2233 16.1 14.7  <.0001 38.4 29.2  <.0001 616 433  <.0001 49.3 60.7  <.0001 302 265  <.0001 
† Significant values (p≤0.10) are highlighted.                                 
‡ Means in the same row with a p-value ≤ 0.10 are significantly 
different.                             
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