

University of Kentucky UKnowledge

Forage News

Plant and Soil Sciences

5-1-2002

Forage News [2002-05]

Department of Plant and Soil Sciences, University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/forage_news

Part of the Plant Sciences Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Department of Plant and Soil Sciences, University of Kentucky, "Forage News [2002-05]" (2002). *Forage News*. 190.

https://uknowledge.uky.edu/forage_news/190

This Newsletter is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Forage News by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

May 2002

Garry D. Lacefield and Jimmy C. Henning, Extension Forage Specialists ! Christi Forsythe, Secretary

KENTUCKY GRAZING SCHOOL SETS RECORD

The Spring Kentucky Grazing School was held in Lincoln County, April 17 & 18. Local arrangements chairman, Dan Grigson and his staff, did an excellent job in hosting the school. Fifty people attended the two-day school setting a new attendance record. Our THANKS to all who made the school such a success.

How Much Can You Afford to Pay for a Hay Barn?

The following figure provides breakeven cost for barn construction at various hay loss levels, costs/square foot, and hay value:

Breakeven barn cost for various levels of storage loss and varying hay value at harvest. (Inputs other than storage loss and hay value are not included.)

Note: This analysis includes the following assumptions: in-barn stacking height of 3 bales, 10-year barn life, and barn construction cost of \$7.50/sq.ft.

(SOURCE: Forage Crop Pocket Guide, D.M. Ball, C.S. Hoveland and G.D. Lacefield published by Potash & Phosphate Institute/Foundation for Agronomic Research, Second Printing, March 2000)

23RD KENTUCKY ALFALFA CONFERENCE SET FOR FEBRUARY 20, 2003

The 23rd Kentucky Alfalfa Conference has been set for February 20, 2003. It will be held at the remodeled Cave City Convention Center. With the extra room, we will be able to expand the trade show and have afternoon breakout sessions. Mark your calendar for Thursday, February 20, 2003 and plan to join us in Cave City.

STOCKPILED TALL FESCUE PROVIDES LOWER COST WINTERING SYSTEM FOR FALL CALVING COWS

Stockpiled tall fescue dominant pastures have been shown to provide low cost opportunity for wintering dry, pregnant spring calving cows. There has been some question whether stockpiled pasture would provide adequate nutrition for lactating cows during the winter months. The first year of this study has clearly shown the adequacy of the diet. The primary input cost for stockpiled pasture is nitrogen fertilizer.

The table below shows results of work conducted by Jim Gerrish and his staff at the University of Missouri Forage Systems Research Center. It confirms the important role for stockpiling.

	Stockpiled pasture	Нау
Forage cost	\$22.33/acre	\$56.00/ton
Days on pasture	125	
Cost per day on pasture	\$0.29	
Days on hay	22	147
Cost per day on hay	\$1.23	\$1.23
Wintering cost per cow	\$63.31	\$180.81
Wintering cost/cow/day	\$0.43	\$1.23
Cost per lb of calf gain	\$0.188	\$0.609*

*Does not include creep feed cost which was about 6.5 ¢/lb of gain

SOURCE:Gerrish, Jim. 2002. Forage System Update, Vol. 11, #2.

Educational programs of the Kentucky Cooperative Extension Service serve all people regardless of race, color, age, sex, religion, disability, or national origin UNIVERSITY OF KENTUCKY, KENTUCKY STATE UNIVERSITY, U. S. DEPARTMENT OF AGRICULTURE, AND KENTUCKY COUNTIES, COOPERATING

FIRST HAY CUT APPROACHING

As we approach our first hay harvest for this growing season, many decisions will be made that impact yield and quality. Of all the controllable factors, stage of plant maturity when harvested will have the greatest impact on hay quality. Consider the following:

Table 1. Effect of Stage of Harvest of Fescue Hay on Quality and Animal Gain.*					
Stage of Harvest	Dry Matter Intake Ib/day	Percent Digesti- bility	Percent Protein	lb of Hay Fed per Ib Gain	lb of Gain per day
Late boot to head, cut May 3	13.0	68	13.8	10.1	1.39
Early bloom stage, May 14	11.7	66	10.2	13.5	.97
Early milk stage–seed forming, May 25	8.6	56	7.6	22.5	.42
*Holatoin hoifara wara usad, avaraga waight: 500 pounda					

SOURCE: Personal Communication, Monty Montgomery, University of Tennessee.

Table 2. The Effect of Alfalfa Hay Quality on Performance of Beef Steers.*			
	Good	Fair	Poor
Crude Protein	18.7	15.9	13.7
Crude Fiber	29.4	35.4	46.7
Animal Performance Hay Consumed, Ib/day	17.1	16.5	13.8
Gain, Ib/day	1.85	1.49	-0.06

*550 lb beef steers

SOURCE: A.S. Mohammed et al., 1967. Tennessee Farm and Home Science Progress Report 61. Pages 10-13. University of Tennessee Agricultural Experiment Station, Knoxville.

Table 3. Effect of stage of harvest of orchardgrass on protein and average daily gain of dairy heifers.			
Stage of Harvest	Protein (%)	Average daily gain per animal (Ib)	
Boot	18	2.0	
Full head	12	1.4	
Milk	9	0.4	
SOURCE: University of Tenr	nessee		

Table 4. The effect of cutting intervals on the daily dry matter intake per			
animal, digestibility, and daily gain per animal on Coastal bermuda hay.			

Cutting Interval	Daily dry matter intake per animal (Ib)	Percent digestibility (%)	Average daily gain per animal (lb)
4 weeks	11.8	55	1.2
8 weeks	9.3	53	0.9
13 weeks	9.5	45	0.0
SOURCE: Georgia Ag. Research			

Table 5. Recommended Stages to Harvest Variety Forage Crops.			
Plant Species	Time of Harvest		
Alfalfa	Late bud to first flower for first cutting, first flower to 1/10 bloom for second and later cuttings.		
Bluegrass, Orchardgrass, Tall Fescue, or Timothy	Boot ¹ to early head stage for first cut, aftermath cuts at 4- to 6-week intervals.		
Red Clover or Crimson Clover	First flower to 1/10 bloom.		
Oats, Barley, or Wheat	Boot to early head stage.		
Rye and Triticale	Boot stage or before.		
Soybeans	Mid- to full-bloom and before bottom leaves begin to fall.		
Annual Lespedeza	Early bloom and before bottom leaves begin to fall.		
Ladino Clover or White Clover	Cut at correct stage for companion plant.		
Sudangrass, Sorghum Hybrids, Pearl Millet, and Johnsongrass	40-inch height or early boot stage, whichever comes first.		
Bermudagrass	Cut when height is 15 to 18 inches.		
Caucasian Bluestem, Big Bluestem, Indiangrass, and Switchgrass	Boot to early head stage.		
¹ Root is stage of growth of a s	trace just prior to southoad omorganes. This		

¹Boot is stage of growth of a grass just prior to seedhead emergence. This stage can be identified by the presence of an enlarged or swollen area near the top of the main stem.

UPCOMING EVENTS

JUL 14-16	American Fora	age & Grassland Conference	,
JUL 18	UK All Commo	dity Field Day, Princeton	
2003 FEB 20	23 rd Kentucky /	Alfalfa Conference, Cave City	
Corry D I	optiald		
Garry D. I		Jimmy C. Henning	J
Garry D. Lace	əfield	Jimmy C. Henning	J
Extension Forage Specialists			

May 2002