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ABSTRACT OF DISSERTATION 

 

 

EFFECTS OF MAMMALIAN TARGET OF RAPAMYCIN 

INHIBITION ON CIRCUITRY CHANGES IN THE DENTATE 

GYRUS OF MICE AFTER FOCAL BRAIN INJURY 

 

 Post-traumatic epilepsy is a common outcome of severe traumatic brain injury 
(TBI). The development of spontaneous seizures after traumatic brain injury generally 
follows a latent period of little to no symptoms. The series of events occurring in this 
latent period are not well understood. Additionally, there is no current treatment to 
prevent the development of epilepsy after TBI (i.e. antiepileptogenics). One cell signaling 
pathway activated in models of TBI and in models of epilepsy is the mammalian target of 
rapamycin (mTOR). mTOR activity is sustained for weeks after the initial insult in 
models of TBI, and the inhibition of mTOR using rapamycin has shown promising pre-
clinical outcomes in rodent models. This makes rapamycin an ideal therapeutic to test 
various outcomes associated with epileptogenesis after TBI. The results from this study 
suggest that rapamycin treatment after controlled cortical impact reduces aberrant axonal 
sprouting of ipsilateral dentate granule cells, prevents increased neurogenesis in the 
subgranular zone, and differentially alters phasic and tonic inhibition in dentate granule 
cells. However, rapamycin treatment did not prevent all forms of axon sprouting in the 
dentate gyrus or cell loss in selected regions of the hippocampus. Collectively these 
results support a role of mTOR activity in both excitatory and inhibitory plasticity in the 
mouse dentate gyrus after TBI.  

KEYWORDS: Traumatic Brain Injury, Epilepsy, Mammalian Target of Rapamycin 
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Chapter 1 

Introduction 

1.1 Historical perspective 

 Epilepsy is a disorder which has been qualitatively described dating back to the 

Babylonian empire around 700 BC in the Sakkiku text (York III, 2005). Although the 

concept of the brain had anatomically been described in 1700 BC by the ancient 

Egyptians in the Edwin Smith Surgical Papyrus (Hughes, 1988), the association of 

epilepsy as a brain disorder was not made until 400 BC by Hippocrates, a Greek 

physician (Magiorkinis et al., 2010). At the time of the initial description of epilepsy, the 

disorder was more commonly attributed to demonic or ghostly possession, in large part 

due to the nature of physical uncontrollable convulsions and non-recollection of the 

events in the patients after their seizures (York III, 2005). At the turn of the 18th and 19th 

centuries there was a shift in mindset regarding epilepsy as a spiritual or demonic 

possession disorder to a medical disorder associated with the brain (Magiorkinis et al., 

2010;Sidiropoulou et al., 2010). One of the most prominent physicians associated with 

this shift in mindset is John Hughlings Jackson, whose insights have been credited as the 

beginnings of modern epileptology. The most common medical practice during this 

period for the treatment of seizures was the use of surgical procedures, and it was not 

until the early 1900’s that pharmaceutical therapies were discovered and used to treat 

patients with epilepsy (Hauptmann, 1912;Magiorkinis et al., 2014). Seizure medications 

were developed as anticonvulsants and to this day all seizure medications, while 

improved in tolerability and safety for the patient can only be classified as 

anticonvulsants. Although surgical procedures are available in some cases for patients 
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with epilepsy, this treatment strategy is considered a last resort due to the damage caused 

during tissue resection. The complete lack of treatments that block or reverse the 

development of epilepsy continues to be the most glaring need in the field of epilepsy 

therapeutics. 

1.2 Clinical perspective 

 Epilepsy is defined by the International League Against Epilepsy (ILAE) as the 

occurrence of two unprovoked seizures more than 24 hours apart. Today, epilepsy is the 

4th most common neurological disorder, affecting ~2.2 million people in the United States 

of America. Epilepsy is now classified as a spectrum of seizure disorders (Jensen, 2011) 

commonly divided into two classes, idiopathic and symptomatic (Mody et al., 1992b). 

The Commission on Classification and Terminology of the ILAE defines idiopathic 

epilepsy as a seizure syndrome in which there is no known cause, but has been generally 

linked with genetic disorders; while symptomatic epilepsy, a seizure syndrome in which 

the cause is known, is generally caused by a physical or environmental insult to the brain 

in a previously healthy patient. In many cases of symptomatic epilepsy there is a latent 

period, typically months to years, following the initial insult to the brain and prior to the 

development of spontaneous seizures in which potential remodeling of the brain could be 

responsible for increased spontaneous seizures. Epileptogenesis is defined as the cascade 

of events from the initial insult to development of spontaneous seizures and epilepsy. The 

neurological processes during this latent period prior to seizure generation are still not 

well understood and their identification is critical in our understanding of epileptogenesis 

following brain injury.  
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The overarching problem with all of the current treatment strategies for patients 

with epilepsy is that none of the treatments available prevent or reverse the development 

of epilepsy in these patients. All of our current medications for epilepsy patients could 

therefore be categorized as anticonvulsants, with no current treatment which could be 

considered an antiepileptogenic. This is a serious concern in particular for patients which 

acquire epilepsy as a result of some form of brain trauma. These patients will have to 

continue anticonvulsant therapy, assuming they are not part of the ~30% of patients with 

acquired epilepsy which is resistant to seizure medication, for the rest of their lives. 

Most of the trials done in humans to test antiepileptogenic effects of various 

pharmacological agents have been done using anticonvulsant seizure medications 

developed before the 1980’s (Temkin et al., 2009). Additionally, many of these first trials 

were performed with no experimental models of posttraumatic epilepsy (PTE) available, 

and therefore were done with little or no guidance from the basic science perspective. 

The drugs that have been used in attempting to treat PTE include phenytoin, 

phenobarbital, carbamazepine, and valproate. The first attempt at an antiepileptogenic 

trial was performed in the 1940’s using phenytoin (Hoff and Hoff, 1947). This initial 

study reported that phenytoin treatment reduced development of seizures to 6% of 

patients compared to the 51% of patients which developed seizures without treatment. 

However this study had many flaws in its design, such as lack of proper controls and 

biased treatment groups. Therefore, studies using more rigorous designs and current 

standards for clinical trials, such as random assignment to treatment, followed up this 

work. These trials determined that phenytoin treatment following traumatic brain injury 

(TBI) reduced the early seizure development (<1 week post-injury), but did not affect 
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development of late seizures (McQueen et al., 1983;Young et al., 1983;Temkin et al., 

1990;Temkin et al., 1998). The use of phenobarbital, the first seizure medication, as an 

antiepileptogenic did not result in positive outcomes (Manaka, 1992;Temkin et al., 1998). 

Combining phenytoin and phenobarbital in some reports were encouraging, but sample 

sizes for these studies were small and therefore it is unclear if these results are 

meaningful or not (Popek and Musil, 1969;Penry and Newmark, 1979;Temkin et al., 

1995). The use of carbamazepine in one study demonstrated similar results as phenytoin 

treatment alone, with a reduction in early seizures but no effect on late seizures (Glotzner 

et al., 1983). Similarly, valproate treatment as an antiepileptogenic therapy showed no 

positive effects on late seizures (Temkin et al., 1999). Magnesium, though not a common 

treatment strategy for patients with seizure disorders, was also used in a clinical trial for 

TBI patients. Unfortunately, there was no effect on seizure frequency in patients which 

received magnesium treatment in either the early or late seizure development (Temkin et 

al., 2007). The lack of positive results from previous human trials on potential 

antiepileptogenic treatments further underscores the point that antiepileptogenic therapies 

are in desperate need. Additionally the development of animal models of PTE in the last 

20 years has given researchers tools to begin investigation of potential antiepileptogenic 

treatment strategies which can benefit future clinical trials in humans. 

The recent development of rodent models of PTE has allowed the potential to 

begin testing of therapeutic strategies for the possible mechanisms underlying the 

development of PTE.  Although recent pre-clinical trials involving potential antiepileptic 

drugs are currently underway, none have proven effective yet. Therefore, the primary 

course of treatment for patients with epilepsy continues to be a regimen of broad 
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spectrum anticonvulsants such as levetiracetam and gabapentin. The exact mechanism of 

action for levetiracetam is not known, but this drug does interact with synaptic binding 

proteins involved in exocytosis in the rat brain and is thought to be part of its 

anticonvulsant effects (Abou-Khalil, 2008). The mechanism of action for gabapentin is 

thought to involve increased production of GABA in neurons based on spectroscopy 

studies in human and rat tissue indicating increased GABA synthesis, although the exact 

process by which this occurs remains unclear (Taylor, 1997). These drugs in general are 

used as anticonvulsants, but neither address the underlying mechanisms of action related 

to epileptogenesis in patients with symptomatic epilepsies. Consequently, most patients 

must stay on these drugs for the rest of their lives, and generally need increased dosage 

over time due to reduced drug efficacy (Löscher and Schmidt, 2006). Additionally, these 

drugs can cause a multitude of side effects ranging from loss of appetite to severe 

depression. The lack of reversion from disease state and potential for severe side effects 

with current pharmacologic treatment strategies again underscores the importance of 

research for antiepileptogenic therapies.  

There are data to support focusing on the temporal lobe structures for temporal 

lobe epilepsy (TLE) and PTE (Caveness et al., 1979;Cronin et al., 1992;Buckmaster and 

Schwartzkroin, 1994;Annegers et al., 1998;Diaz-Arrastia et al., 2000;Englander et al., 

2003;Winokur et al., 2004;Epsztein et al., 2005). Identifying the region(s) of maladaptive 

neuronal reorganization may be fundamental to our treatment of TBI and seizure 

development. In the human patient population, seizure foci are characterized based on 

their location in partial seizures, but there are also complex/global seizure syndromes. 

Most typical foci after TBI involve either cortical or temporal lobe structures (Diaz-
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Arrastia et al., 2000;Hudak et al., 2004). Temporal lobe structures include the amygdala, 

auditory cortex, entorhinal cortex, and hippocampus. Of structures within the temporal 

lobe, the hippocampus is one of the most effected regions in both the TBI animal models 

and PTE patient population (Newcomb et al., 1997;Annegers et al., 1998;Englander et al., 

2003;Hudak et al., 2004;Hall et al., 2005;Saatman et al., 2006). In patients with TLE, 

several structural and functional changes have been observed in human resected tissue, 

which has given basic scientists points of emphasis to focus on in modeling this disease 

as well as areas of focus for therapeutic targeting. Some of the noted changes in 

hippocampal structure and function in TLE patients are regional cell loss (i.e. hilus, CA3, 

and CA1), axon sprouting of dentate granule cells back into dendritic field of neighboring 

dentate granule cells (i.e. mossy fiber sprouting), and imbalanced excitatory and 

inhibitory circuitry (de Lanerolle et al., 1989;Sutula et al., 1989;Lehmann et al., 2000). 

Ideal models of TLE and PTE should have these features in order to test effects of 

antiepileptogenic therapy strategies and to help delineate causal features of epilepsy 

versus correlative features.  

One theory of epileptogenesis postulates that the reorganization of neuronal 

circuitry within specific brain regions is central to the development of the disease. 

Several classical examples of reorganization for this theory have been cell loss, synaptic 

reorganization, axonal sprouting, and neurogenesis as contributing factors to the 

epileptogenic process. According to the Epilepsy Foundation, approximately 1% of the 

population has epilepsy (i.e. 65 million people worldwide), of which 30-40% are patients 

with acquired epilepsy. In a population study of acquired epilepsy patients, a group out of 

Rochester demonstrated that 6% of acquired epilepsy is due to traumatic brain injury (i.e. 
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PTE), which was the second highest of the known causes category (Hauser et al., 1993). 

Additionally, ~30% of these epilepsy patients are unresponsive to current medical 

interventions. This dissertation focuses on PTE among all of the epilepsies because it is a 

prominent source of acquired epilepsy and comprises a significant portion of the drug-

resistant epilepsy population (Caveness et al., 1979;Annegers et al., 1998;Semah et al., 

1998;Englander et al., 2003;Chepreganova-Changovska et al., 2014). It may be possible 

to block the epileptogenetic process in symptomatic epilepsy by giving appropriately 

timed treatment, if the precipitating event is known, such as in the case of individuals 

who suffer TBI. The focus of this dissertation is on how one intracellular cell signaling 

pathway, the mammalian target of rapamycin (mTOR) pathway, regulates these cell 

circuitry changes in the hippocampus following brain insult. mTOR signaling was 

selected for these studies because it has a demonstrated role in excitatory synaptic 

reorganization after brain insult and is currently being considered as an antiepileptogenic 

treatment for tuberous sclerosis and PTE (Zeng et al., 2008;Buckmaster et al., 2009;Zeng 

et al., 2009;Guo et al., 2013;Heng et al., 2013). 

1.3 Basic Science Perspective 

 1.3.1 Modeling PTE in animals 

 The use of animal models for epilepsy syndromes has advanced the collective 

understanding of cellular mechanisms associated with the development of epilepsy. 

Additionally the development of these animal models can contribute to the identification 

of different therapeutic strategies for various seizure disorders. This section discusses 

frameworks for evaluating animal models of disease, reviews the 2 major animal models 
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of PTE, and discusses the types of cell biology changes observed in models of TLE in 

order to both support a role for temporal structures in epilepsy and discuss several 

candidate cellular mechanisms of epilepsy. 

  There are several important considerations for modeling human disease in 

animals, including types of epilepsy such as PTE. Some of the considerations for use of 

animal models for human disease include construct, face and predictive validity (Willner, 

1984).Construct validity is the ability to reproduce cellular features or mechanisms of the 

human condition. Face validity is assessed by the similarity to behavioral outcomes of the 

model to the human condition. Predictive validity is assessed by the ability of the model 

to mimic clinical outcomes and potency of therapeutic interventions. Animal models to 

induce experimental seizures include administration of chemical convulsants, mechanical 

injury, and electrical stimulation. This dissertation focuses on PTE so has avoided use of 

the chemical convulsant and electrical stimulation approaches to seizure generation. 

Three of the most commonly used mechanical injury models used for modeling TBI are 

fluid percussion injury (FPI), weight drop, and controlled cortical impact (CCI). 

However, of these models only FPI and CCI have demonstrated occurrence of 

spontaneous seizure generation (i.e. PTE) following a latent period after injury 

(D'Ambrosio et al., 2004;D'Ambrosio et al., 2005;Kharatishvili et al., 2006;D'Ambrosio 

et al., 2009;Hunt et al., 2009;Statler et al., 2009;Bolkvadze and Pitkanen, 2012;Guo et al., 

2013;Kelly et al., 2015). This dissertation used the CCI model, as opposed to the FPI 

model, for several reasons. The main reasons for selecting CCI were: shorter latency to 

seizure generation, better injury severity management, and better reproducibility of focal 

injury. These are discussed in detail in the following sections. These sections are 
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followed by more complete descriptions of the most studied cell circuitry mechanisms of 

epilepsy. 

 1.3.2 Fluid percussion injury 

 FPI is a diffuse neuronal injury during which a craniotomy is made and saline 

fluid is injected from a device pressurized by the strike of a hammer swung on a 

pendulum, and was initially developed for cats and rabbits (Hayes et al., 

1987;Stalhammar et al., 1987). This is one of the most well characterized brain injury 

models and demonstrates many of the hallmark features of TBI in human patients such as 

neuron loss, diffuse axonal injury, and cognitive impairment (Cortez et al., 

1989;Lowenstein et al., 1992;Hicks et al., 1993;Rink et al., 1995;Bramlett et al., 

1997;Hicks et al., 1997;Saatman et al., 1997;Conti et al., 1998;Pierce et al., 

1998;Saatman et al., 1998;Knoblach and Faden, 2002). This injury has been most 

commonly done either as a midline FPI (Dixon et al., 1987;McIntosh et al., 1987) or a 

lateral FPI (i.e. injury focal to one hemisphere) (McIntosh et al., 1989). The use of FPI as 

an injury model for PTE has primarily focused on the lateral FPI method. Additionally, 

the use of lateral FPI as a model of PTE has generally involved a severe injury model in 

which the pressure of fluid injected into the epidural space creates a focal lesion at the 

site of injection. This has commonly led to the interpretation of this injury model being 

one of focal and diffuse injury. Using this severe lateral FPI model, rats (up to 50%) and 

mice (3%) have demonstrated spontaneous seizures by 12 months following injury 

(D'Ambrosio et al., 2004;D'Ambrosio et al., 2005;Kharatishvili et al., 2006;D'Ambrosio 

et al., 2009;Bolkvadze and Pitkanen, 2012).  
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However, the seizures generated using this model are generally low in frequency 

and latency to the first seizure generation is 6-7 months, making this model very labor 

intensive. The prolonged latency between the initial injury and seizure generation makes 

this model of TBI difficult to determine cellular mechanisms associated with 

epileptogenesis. Spontaneous seizure development in the FPI model of TBI with less 

severe impact forces (impact forces from 2-2.2 atmospheres (atm)) has not been 

demonstrated currently (Kharatishvili et al., 2006;Echegoyen et al., 2009;Gurkoff et al., 

2009). Subtle behavioral changes associated with brief electrographic abnormalities have 

been defined as a new category of seizure in recent work using a variation of lateral fluid 

percussion injury (D'Ambrosio et al., 2004;D'Ambrosio et al., 2005;D'Ambrosio et al., 

2009). This new category of seizures, however, is largely debated, and has even been 

noted in non-injured animals (Pearce et al., 2014;Rodgers et al., 2015). FPI injury with 

greater impact forces (>3 atm) in rodents does result in spontaneous seizure development 

(Kharatishvili et al., 2006;Bolkvadze and Pitkanen, 2012). The variability in fluid 

pressures used for the injury severity makes comparison of studies difficult. As 

previously mentioned, the forces necessary to generate spontaneous seizures after FPI 

generally result in both a focal lesion in the cortex as well as a diffuse injury. The 

combination of a focal and diffuse injury in the severe FPI injury makes interpretation of 

the cause of epileptogenesis difficult in this model. Due to these concerns with modeling, 

FPI injury was not used to model PTE in this dissertation. 

 1.3.3 Controlled cortical impact 

 The use of controlled cortical impact to model TBI was originally developed for 

ferrets (Lighthall, 1988), and has since been modified for both rats and mice (Dixon et 
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al., 1991;Smith et al., 1995;Scheff et al., 1997;Hall et al., 2005). This injury model uses a 

computer controlled pneumatically driven impactor, which can be adjusted for impact 

depth, velocity, and dwell time. A craniotomy is performed so as to leave to underlying 

dura intact and the resulting cortical compression creates a contusion injury without 

lacerating the dura. The ability to modify injury parameters such as injury depth, velocity 

and dwell time allow for a consistent and reproducible injury which can also be scaled for 

different injury severities and different animal models. The use of this injury model has 

generated both electrographically measured and observed spontaneous behavioral 

seizures in mice and rats following a latent period after injury in a subset of rodents 

ranging from 20-50% (Hunt et al., 2009;Statler et al., 2009;Bolkvadze and Pitkanen, 

2012;Guo et al., 2013;Butler et al., 2015;Kelly et al., 2015). Additionally the seizures 

generated in this model occur at a shorter latency compared to FPI models, ~8 weeks in 

CCI compared to 6-7 months in FPI. However, there are strain differences in PTE 

development latency for this model (Hunt et al., 2009;Bolkvadze and Pitkanen, 2012). 

The rodents which undergo epileptogenesis in this model also demonstrate many of the 

hallmark cell circuitry changes associated with established models of TLE such as 

regional cell loss, hyperexcitability of dentate granule cells, synaptic and tonic inhibitory 

plasticity of dentate granule cells, and axon sprouting in the ipsilateral hemisphere after 

CCI injury. Additionally, use of isoflurane for anesthesia in the CCI model, as was used 

in this work, can have neuroprotective outcomes in this TBI model compared to another 

anesthetic (fentanyl; (Statler et al., 2006). However, in this study all mice were equally 

treated with isoflurane, therefore changes in cell loss or neuroprotection from use of 

isoflurane should be equivalent across experimental groups. As a result, these reported 
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cell circuitry changes can be evaluated with CCI in the context of drug development. 

These circuitry changes are described below. 

1.4 Candidate cell circuit mechanisms of PTE 

Within the hippocampus, the dentate gyrus is an important site of excitability 

regulation and one of the most well understood circuits involved in seizures and epilepsy 

(Danscher et al., 1975;Heinemann et al., 1991;Franck et al., 1995). The hippocampus is 

comprised of a tri-synaptic circuit (Andersen et al., 1971;Lothman et al., 1991;Freund 

and Buzsaki, 1996). Information is sent from perforant path inputs of the entorhinal 

cortex to the dendrites of dentate granule cells. Dentate granule cells, through mossy fiber 

inputs, synapse onto CA3 pyramidal neurons, which in turn synapse onto CA1 pyramidal 

neurons. CA1 neurons then project back to the entorhinal cortex in addition to non-

hippocampal targets (Franck et al., 1995). The hippocampus maintains a delicate balance 

of excitation and inhibition for appropriate information processing. It has been theorized 

that the dentate granule cells play a critical role in preserving this balance by acting as a 

“dentate gate” (Heinemann et al., 1991). The “dentate gate” theory is derived from both 

the physiology and input to dentate granule cells. For example, the resting membrane 

potential of dentate granule cells is hyperpolarized (~-70mV) compared to many of the 

other cell types in the hippocampus and throughout the brain (Cronin et al., 1992;Mody et 

al., 1992a;Mody et al., 1992b;Staley and Mody, 1992;Staley et al., 1992). This 

hyperpolarized resting membrane potential requires greater depolarizing currents to reach 

action potential threshold. Additionally, there are multiple inhibitory inputs to dentate 

granule cells largely arising from inhibitory interneurons in the hilus of the dentate gyrus, 

which are believed to also contribute to the “dentate gate”. Many of these inhibitory 
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neurons are activated by either dentate granule cells or perforant path inputs causing a 

feedback inhibitory circuit onto dentate granule cells (Zipp et al., 1989;Han et al., 1993).  

Hilar inhibitory interneurons are divided into several classes of cell types 

synapsing at dendritic, somatic, and axonic locations of dentate granule cells. This means 

under normal conditions inhibitory synapses on dentate granule cells are located along 

the entirety of their somatodendritic axis. Some of the more prominent hilar inhibitory 

interneurons are basket cells and hilar perforant path associated (HIPP) cells. Basket cells 

are mostly located along the border between the subgranular zone of the dentate granule 

cells and the hilus (Houser, 2007). These neurons provide somatic inhibition of dentate 

granule cells and based on the positioning of their apical dendrites receive synaptic input 

from dentate granule cells and potentially perforant path input from the entorhinal cortex 

(Zipp et al., 1989;Blasco-Ibanez et al., 2000). Basket cells project to neighboring dentate 

granule cells in somatic regions (Han et al., 1993). Input from dentate granule cells onto 

basket cells provides feedback inhibition onto neighboring dentate granule cells, while 

perforant path input onto basket cells provides a mechanism for feed forward inhibition 

of dentate granule cells. The HIPP cells have cell bodies located in the hilus and receive 

the majority of synaptic input from dentate granule cells (Halasy and Somogyi, 1993;Han 

et al., 1993). These neurons project and synapse into the outer two-thirds of the inner 

molecular layer of the dentate gryus, the dendritic field of dentate granule cells. One 

subset of the HIPP neurons is the somatostatin-positive hilar neurons which have been 

noted to project onto dentate granule cell dendrites directly across from entorhinal cortex 

excitatory inputs (Buckmaster et al., 1994). Due to the placement of these inhibitory 

synapses from somatostatin-positive hilar interneurons onto dentate granule cells and 
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activation of these hilar inhibitory interneurons by dentate granule cells, somatostatin-

positive hilar interneurons are believed to provide feedback inhibition to dentate granule 

cells and shunt potential burst firing from the entorhinal cortex onto dentate granule cells. 

This role is potentially important to preventing over-excitation of dentate granule cells in 

normal physiology. Figure 1.1 gives a general representation of the local dentate gyrus 

circuitry highlighting the primary cell groups discussed in this dissertation; dentate 

granule cells, hilar inhibitory interneurons, and CA3 pyramidal neurons. 
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Figure 1.1. Representation of local circuit of dentate gyrus of the hippocampus in 
normal conditions. Normal information flow involves the excitation of dentate granule 
cells from perforant path inputs of the entorhinal cortex. Dentate granule cells synapse 
onto hilar inhibitory interneurons for feedback inhibition and CA3 pyramidal neurons to 
propagate information flow through the hippocampus. 

 1.4.1 Alterations to dentate gyrus in TLE and PTE  

As previously mentioned, alterations of hippocampal structure and function have 

been observed in human resected tissue from patients with TLE and PTE, and animal 
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models of PTE should ideally capture these cell circuitry changes associated with PTE. 

Using the CCI model of TBI in rodents to model the development of PTE many 

hippocampal cell circuitry changes have been observed. However, it remains unclear 

which of these functions is most important to the development of seizures and epilepsy 

following TBI. Observed changes to hippocampal structure associated with the 

epileptogenic process include: regional cell loss (Anderson et al., 2005;Guo et al., 2013), 

enhanced neurogenesis (Dash et al., 2001;Chirumamilla et al., 2002;Villasana et al., 

2014;Villasana et al., 2015), altered inhibitory control of dentate granule cells 

(Mtchedlishvili et al., 2010;Hunt et al., 2011;Boychuk et al., 2016), and axon sprouting 

(Hunt et al., 2009;Statler et al., 2009;Hunt et al., 2010;Hunt et al., 2012;Guo et al., 

2013;Kelly et al., 2015). Many of these changes relate to the common theory of epilepsy, 

that a brain region such as the dentate gyrus/hippocampus following an insult becomes 

the center of imbalanced excitation and inhibition (Cronin et al., 1992;Buckmaster and 

Schwartzkroin, 1994;Dudek and Spitz, 1997;McCormick and Contreras, 

2001;Buckmaster et al., 2002;Nadler, 2003;Hunt et al., 2009; 2010;Hunt et al., 2012;Hunt 

et al., 2013a). These mechanisms were the focus of this dissertation work and are 

discussed in more detail below. 
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Figure 1.2: Representative image of altered local dentate gyrus circuit of 
hippocampus after TBI. This illustration demonstrates cell loss in hilus as well as 
axonal plasticity of both dentate granule cells and CA3 pyramidal neurons which have 
been observed in the ipsilateral hemisphere of CCI injured mice. These changes to cell 
circuitry may lead to hyperexcitability of the dentate gyrus and potentially seizure 
generation.  

1.4.2 Cell loss 

Following TBI, regional and selective cell loss is observed in the cortex and 

hippocampus of the injured hemisphere (Lowenstein et al., 1992;Hicks et al., 1993;Smith 
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et al., 1995;Anderson et al., 2005;Saatman et al., 2006). Regions of hippocampal cell loss 

following TBI injury include the dentate gyrus, CA3 pyramidal cell layer, and CA1 

pyramidal cell layer. Cell death can be broken down into two phases after TBI (Werner 

and Engelhard, 2007). The first phase occurs in the minutes and hours after injury due to 

the mechanical forces of the injury causing death of cells, generally leading to necrosis. 

Necrotic cell death is different than programmed cell death (i.e. apoptosis) and can be 

characterized by loss of membrane integrity, early organelle damage, cell swelling, 

mitochondrial swelling, and cell lysis (Graham et al., 2006). In the CCI injury model, the 

primary region affected by this form of cell death is in the cortex due to the compression 

forces generated by the CCI device (Pleasant et al., 2011). The injury depth of most CCI-

induced models of PTE, including the one used in this dissertation, does not reach the 

subcortical structures such as the hippocampus, but one report used a more severe CCI 

injury with increased injury depths, which affected hippocampal integrity (Mtchedlishvili 

et al., 2010). The secondary phase of cell death following injury is generally due to a 

cascade of cellular signaling factors associated with delayed tissue damage and often 

involves apoptosis (i.e. programmed cell death) of damaged neurons in the surrounding 

tissue, such as the hippocampus. This cell death is on the order of days to weeks 

following injury due to extracellular signaling which activates apoptosis in the 

surrounding damaged tissue.  

In addition to cell death in the dentate granule cell layer, one of the most common 

features of both seizures and TBI is the loss of neurons in the hilus of the dentate gyrus 

(Lowenstein et al., 1992;Smith et al., 1995;Buckmaster and Dudek, 1997b). This cell loss 

generally peaks within the first three days after injury and gradually diminishes over the 
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following days until 7 days post-injury (Anderson et al., 2005). The neurons in this area 

of the hippocampus are prominently GABAergic interneurons and tend to form either 

somatic or dendritic inhibitory connections to dentate granule cells. One subset of hilar 

GABAergic interneurons is the somatostatin positive neuron. As previously mentioned, 

the cell bodies of somatostatin-positive interneurons are predominately in the hilus of the 

dentate gyrus and project axons into the outer two-thirds of the molecular layer of the 

dentate gyrus where dendrites of dentate granule cells reside (Bakst et al., 1986;Katona et 

al., 1999). The development of the FVB-TgN(GadGFP)45704Swn/J (i.e. GIN) mice 

(Oliva et al., 2000) created a model system in which this subset of somatostatin-positive 

interneurons produce enhanced green fluorescent protein (eGFP) so they could be 

selectively studied. Using these GIN mice and Sprague-Dawley rats, somatostatin-

positive neurons have indeed been shown to be lost after pilocarpine-induced status 

epilepticus and TBI (Lowenstein et al., 1992;Buckmaster and Dudek, 1997b;Buckmaster 

and Wen, 2011). As stated previously, the synaptic connections of these hilar inhibitory 

interneurons are unique, and this has given rise to the hypothesis that these neurons could 

directly inhibit excitatory synaptic input onto dentate granule cells from perforant path 

projections of the entorhinal cortex. If this hypothesis is correct, the loss of these 

somatostin-positive interneurons in both models of TLE and TBI would dramatically 

alter the balance of excitatory and inhibitory input to dentate granule cells. Therefore, the 

loss of these neurons could be part of the epileptogenic process of PTE.  

Cell loss is common to other regions of the hippocampus as well. Pyramidal 

neurons in both the CA3 and CA1 regions of the hippocampus are commonly lost in the 

ipsilateral hemisphere following TBI (Hicks et al., 1993;Smith et al., 1995;Saatman et al., 
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2006). Most of the research on TBI and epilepsy has been performed with a tri-synaptic 

circuit understanding of hippocampal function. While this view of hippocampal circuitry 

and function is accurate, it is not the only circuit in the hippocampus. CA3 pyramidal 

neurons are likely part of another circuit in the hippocampus due to the excitatory input 

received by CA3 neurons from areas outside of the dentate gyrus and projection onto 

various neurons aside from CA1 pyramidal neurons, such as hilar inhibitory interneurons, 

mossy cells, and other regions outside the hippocampus. It remains unclear what effect 

cell loss in the CA3 region has on hippocampal circuitry, or if cell loss in this region 

contributes to the epileptogenesis process following TBI. This region is also prone to 

axon sprouting in the ipsilateral hemisphere, similar to dentate granule cells, which is 

discussed in later sections.  

In the CA1 region both pyramidal neurons and inhibitory interneurons are lost 

following TBI and seizures (Hicks et al., 1993;Smith et al., 1995;Houser and Esclapez, 

1996;Saatman et al., 2006;Peng et al., 2013). The loss of pyramidal neurons could impact 

the output of the tri-synaptic circuit of the hippocampus. Loss of inhibitory interneurons 

could also impact the excitatory and inhibitory balance of this region as well. 

Interestingly, there is evidence from the pilocarpine induced status epilepticus model of 

TLE that some of the surviving interneurons in the CA1 region sprout into the dentate 

gyrus (Peng et al., 2013). It is unclear what role this sprouting has in hippocampal 

remodeling or if this feature is even an effect of TBI or epileptogenesis. However, this 

data indicates modification of the hippocampus is not restricted to the dentate gyrus and 

changes in other regions could also contribute to the process of epileptogenesis. 
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1.4.3 Targeting cell loss as antiepileptogenic therapy 

Reduction of cell loss following TBI has been a staple of targeted therapeutic 

strategies in the TBI field. Using the search words traumatic brain injury and 

neuroprotection in Pubmed, 1533 studies related to these topics have been performed 

over the last 20 years. Due to cell loss in epilepsy and TBI, neuroprotection is also a 

common treatment strategy for PTE. Most studies on therapeutic strategies following TBI 

have targeted the secondary/delayed tissue damage phase. These studies have generally 

attempted to enhance neuroprotection through the use of pharmacological treatment 

strategies including: 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, 

progesterone, allopregnanolone, erythropoietin, simvastatin, atorvastatin, and 

cyclosporine A (Zacco et al., 2003;Djebaili et al., 2005;Lu et al., 2007;Wang et al., 

2007;Mazzeo et al., 2009). However, none of these potential pharmacological treatments 

have been proven effective in humans yet.  

Another pharmacological treatment which has shown promise as an 

antiepileptogenic therapy and appears to function through neuroprotection is 

levetiracetam. Levetiracetam is a seizure medication which is commonly used for the 

treatment of partial onset and generalized seizures. The use of levetiracetam in a closed 

head injury and stroke model has shown neuroprotective properties of this drug (Wang et 

al., 2006;Zou et al., 2013). Although neither of these studies investigated seizure 

development, studies using chemical convulsant and electrical kindling models of status 

epilepticus have demonstrated potential for levetiracetam having anticonvulsant and/or 

antiepileptogenic properties (Loscher et al., 1998;Sugaya et al., 2010;Shetty, 2013). 

However, levetriacetam’s effect on spontaneous seizures is controversial in the chemical 
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convulsant models of status epilepticus (Yan et al., 2005;Brandt et al., 2007), and it is 

unclear what the primary mechanism of action is for levetriacetam (Oliveira et al., 

2007;Matveeva et al., 2008;Surges et al., 2008;Christensen et al., 2010;Kim et al., 2010). 

Further testing of this drug using a known PTE animal model and the effects of 

levetriacetam on spontaneous seizure development in the latent phase are necessary 

information to determine the potential of this drug as an antiepileptogenic. 

Due to the lack of positive results in human testing of many pharmacological 

treatment strategies for neuroprotection after TBI, alternative therapies could prove 

useful. One alternative to pharmacological treatment strategies is the use of hypothermia 

after TBI for neuroprotection. The clinical use of hypothermia in TBI patients has 

resulted in a variety of outcomes likely due to variability in hypothermia parameters, 

experimental design, and small sample sizes for some studies (Clifton et al., 1993;Taft et 

al., 1993;Marion et al., 1997;Clifton et al., 2001). The use of hypothermia has 

demonstrated some potential as an antiepileptogenic strategy in an experimental animal 

model of TBI (Atkins et al., 2010). Blowing cool air on the exposed brain to reduce 

temperature to 33-33.6oC resulted in a reduction of seizure susceptibility to PTZ-induced 

seizures 12 weeks after FPI injury (Atkins et al., 2010). Although this does not confirm 

hypothermia as an antiepileptogenic treatment option, it does demonstrate the potential 

for use of this treatment.  
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1.4.4 Neurogenesis 

 
Figure 1.3. Representation of neurogenesis progression in subgranular zone of 
hippocampus. This illustration demonstrates morphological changes in dendrite and 
axon formation from progenitor neurons to mature neurons in the subgranular zone. It 
also depicts some of the signaling proteins expressed by the neurons at various points in 
development and approximate timeframe of these changes.  
 

Two regions of the brain, the subventricular and subgranular zones, contain 

progenitor neurons which can differentiate into newborn neurons during adulthood 

(Altman and Das, 1965b;a;Gueneau et al., 1982;Eckenhoff and Rakic, 1988). The role of 
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these newborn neurons in the adult brain is still unclear in normal conditions, but in 

injury states such as seizures and TBI production of newborn neurons from the 

subgranular zone increases in the injured hemisphere relative to controls (Parent et al., 

1998;Dash et al., 2001;Chirumamilla et al., 2002;Kron et al., 2010;Villasana et al., 

2014;Villasana et al., 2015). Neurogenesis in the subgranular zone mimics the neurogenic 

process in the subventricular zone and neurogenesis during embryonic development. In 

the adult mammalian brain these neural progenitors are asymmetric self-renewing stem 

cells, which will divide into a cell that is fated to either become a postmitotc neuron or 

glia and the other cell will maintain the ability to self-renew. However, there are some 

distinctions between these different processes of neurogenesis.  

In the subgranular zone, proliferating neuronal stem cells can be divided into two 

classes; type 1 and type 2 cells (Zhao et al., 2008). Type 1 neuronal stem cells 

morphologically resemble the radial glial cells, present during embryonic development, 

containing a single radial process with a ramified structure at its end (Kempermann et al., 

2004). These type 1 neuronal stem cells express GFAP, Nestin, Blbp, and Sox2 (Duan et 

al., 2008). Type 2 neuronal stem cells do not exhibit the radial process of type 1 neuronal 

stem cells and are most commonly labeled with GFAP and Sox2 (Duan et al., 2008). Cell 

ablation studies have suggested a relationship of these two neuronal stem cell populations 

with mitotic activity levels. The acute ablation of dividing cells using antimitotic drugs or 

genetic manipulation resulted in suppression of neurogenesis. However, in the 

subgranular zone GFAP-positive neurons survived, and after the transient suppression of 

neurogenesis, new granule neurons were produced (Seri et al., 2004). These results 

suggest that neuronal stem cells contain both actively dividing neurons (i.e. type 2 
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neuronal stem cells) and infrequently dividing neurons(i.e. type 1 neuronal stem cells). 

The infrequently dividing neurons survive use of antimitotic drugs and are capable of 

repopulating the cells lost after cessation of ablation experiments. Both extrinsic and 

intrinsic cues assist in fating newly generated cells from the neuronal progenitors into 

either granule neurons or astrocytes in the hippocampus. Newly generated cells fated to 

become granule neurons express doublecortin (DCX), PSA-NCAM, and TuJ1 

(Kempermann et al., 2004;Duan et al., 2008;Suh et al., 2009). Having been fated for 

granule neurons, these cells will begin developing apical and basal dendrites and an axon. 

In rodents the basal dendrites are lost during development into mature granule neurons 

and the axon will project and synapse onto CA3 pyramidal neurons. Mature dentate 

granule neurons express NeuN. 

The role of newborn neurons in normal physiology continues to be poorly 

understood. Based on ablation studies, one of the more prominent theories associated 

with newborn neurons in the hippocampus is that these neurons contribute to learning and 

memory (van Praag et al., 2002;Doetsch and Hen, 2005;Ming and Song, 2005;Aimone et 

al., 2006). However, recent evidence suggests that increased production of newborn 

neurons correlates to epilepsy generation (Pun et al., 2012;Hester and Danzer, 

2013;LaSarge et al., 2015). In fact, using a genetic mouse model to promote increased 

neurogenesis in ~5-10% of genetically targeted dentate granule cells was sufficient to 

promote behavioral seizures after a latent period (LaSarge et al., 2015).  
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1.4.5 Targeting neurogenesis for antiepileptogenic therapy 

 Neurogenesis continues to be one of the least understood forms of experience 

dependent plasticity events in the brain. Due to this lack of knowledge, little is known 

about the potential of this mechanism for antiepileptogenic therapy. In disease states such 

as TBI and epilepsy, rodent models have exhibited increased production of newborn 

neurons at 2 weeks after the initial insult (Parent et al., 1997;Parent et al., 1998;Dash et 

al., 2001;Chirumamilla et al., 2002;Kron et al., 2010;Villasana et al., 2014;Butler et al., 

2015;Villasana et al., 2015). This increase in production is theorized as a mechanism for 

endogenous cell replacement in this region, and TBI literature supports a hypothesis that 

increased newborn neurons after TBI leads to improved cognition (Lu et al., 2005;Sun et 

al., 2009;Xiong et al., 2012;Carlson et al., 2014). However, the production of newborn 

neurons is also increased in models of epilepsy (Pun et al., 2012;Hester and Danzer, 

2013;LaSarge et al., 2015). Considering the relationship of PTE as a consequence of a 

significant portion of the TBI population, targeting neurogenesis as an antiepileptogenic 

treatment strategy is of particular interest. However before neurogenesis is targeted for 

antiepileptogenic therapies, much needs to be clarified in regard to the relationship of 

neurogenesis to improved cognitive recovery and potential mechanism of epileptogenesis 

after TBI. Currently, a report claims that newborn neurons in the ipsilateral hemisphere 

of CCI injured mice will integrate normally compared to age-matched cotnrols (Villasana 

et al., 2015). However, this study was done at a time (4 weeks post-injury) when cellular 

circuit changes have not been noted. The newly born ipsilateral dentate granule cells did 

display abnormal dendritic morphology, so further studies of changes to newborn dentate 



27 
 

granule cell function and connectivity are required to assess the contribution of this 

process in epileptogenesis. 

 

1.4.6 GABAergic plasticity of dentate granule cells 

 

Figure 1.4. Representation of a GABAergic synapse. In the synaptic cleft region there 
is a high concentration of GABA (yellow circles) neurotransmission from the pre-
synaptic terminal. GABAAR’s comprised of α1βxγ subunits tend to be located in regions 
of the post-synaptic cleft. “Spill-over” represented by the GABA which leaves the 
synaptic cleft area is responsible for the tonic inhibition of neurons. Tonic inhibition due 
to this “spill-over” of GABA is generated by extrasynaptic GABAAR’s generally 
comprised of α4βxδ subunit containing receptors in dentate granule cells. 
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GABAergic inhibition in dentate granule cells, as well as many other cell types, 

occurs through two different mechanisms using γ-aminobutyric acid type A receptors 

(GABAARs). These ligand-gated chloride channels are found at both the synaptic cleft of 

inhibitory synapses as well as in the extrasynaptic space on the dendrites and soma of 

neurons (Nusser et al., 1998;Mody, 2001;Farrant and Nusser, 2005;Glykys et al., 2008). 

At the synaptic cleft, GABAARs are responsible for the phasic inhibition of dentate 

granule cells in response to neurotransmission of GABA from the pre-synaptic terminal 

(Wall and Usowicz, 1997). During the synaptic release of GABA not all of the GABA is 

bound to the post-synaptic GABAARs, some spills out of the synaptic cleft and some is 

taken up into the pre-synaptic neuron by GABA transporters or cleared by uptake into 

other cells. The “spill-over” of GABA into the extrasynaptic space is what activates tonic 

inhibition through GABAARs and provides a steady state of inhibition for dentate granule 

cells (Rossi and Hamann, 1998). In dentate granule cells, phasic inhibition is a transient 

response relative to the tonic inhibition of dentate granule cells which provides a steady 

state of inhibition to these neurons (Mtchedlishvili and Kapur, 2006). GABAARs which 

respond to synaptic GABA neurotransmission are formed by heterologous pentameric 

subunit combinations which contains 2 alpha 1, 2 beta, and a gamma subunit such as; 

2α12βxγ, and tonic inhibition is generally contributed to GABAARs with a subunit 

combination as such; 2 alpha 4, 2 beta and delta subunit, in this arrangement 2α42βxδ  

(Mody, 2001;Wei et al., 2003;Semyanov et al., 2004;Farrant and Nusser, 

2005;Mtchedlishvili and Kapur, 2006;Glykys and Mody, 2007b;a). Changes to either the 

arrangement or location of these receptors could have significant consequences to 

inhibition of dentate granule cells.  
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In both TLE and PTE animal models, changes in both phasic and tonic inhibition 

of dentate granule cells have been reported. Most inhibitory signaling received by dentate 

granule cells is mediated by GABAARs (Staley and Mody, 1992). Following pilocarpine 

induced status epilepticus, spontaneous inhibitory postsynaptic current (sIPSC) frequency 

of dentate granule cells is reduced and this is primarily attributed to the loss of hilar 

interneurons in this model (Buckmaster et al., 1994;Buckmaster and Dudek, 

1997b;Buckmaster and Wen, 2011). Similarly, within the CCI model of PTE, an animal 

model which also results in hilar interneuron loss in the ipsilateral hemisphere (Hicks et 

al., 1993;Smith et al., 1995;Saatman et al., 2006), results in a reduction of sIPSC 

frequency in the ipsilateral dentate granule cells, but no change in contralateral dentate 

granule cells compared to control (Hunt et al., 2011;Boychuk et al., 2016).  

Changes to GABAAR subunit composition and function have been reported in 

both TLE and TBI animal models. In TLE animal models, changes in the GABAARs 

subunit composition of dentate granule cells have been observed using mRNA expression 

and Western blot expression. In the hippocampus of pilocarpine-induced status 

epilepticus mice a reduction in α1 and δ subunit containing GABAARs and an increase of 

α4 subunit containing GABAARs following pilocarpine-induced status epilepticus has 

been reported (Brooks-Kayal et al., 1998;Peng et al., 2004;Zhang et al., 2007;Zhan and 

Nadler, 2009).  

Use of zinc blockade and zolpidem to augment GABAARs targets GABAARs 

containing α1 subunits. Whole cell recordings from dentate granule cells after 

pilocarpine-induced status epilepticus using these techniques suggests reduction of α1 
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subunit-containing synaptic GABAARs in these neurons (Brooks-Kayal et al., 1998). The 

results of these electrophysiology measures correlate to mRNA expression studies of α1 

subunit-containing synaptic GABAARs in these neurons as well (Brooks-Kayal et al., 

1998;Zhang et al., 2007). Additionally, similar changes have been observed in dentate 

granule cells from resected tissue of human patients with intractable TLE, suggesting this 

mechanism could be important to the process of epileptogenesis or medical intractability 

of epilepsy (Brooks-Kayal et al., 1999). Injection of an adeno-assoicated virus containing 

the expression code for α1 subunit-containing GABAARs before pilocarpine-induced 

status epilepticus in mice increased expression of α1 subunit containing GABAARs in the 

dentate gyrus and reduced spontaneous seizure development by 61% (Raol et al., 2006). 

This report supports the role of α1 subunit containing GABAARs in reduced synaptic 

inhibition of dentate granule cells in animal models of TLE (Kobayashi and Buckmaster, 

2003;Shao and Dudek, 2005) and the potential of targeting synaptic inhibition of dentate 

granule cells for antiepileptic therapy. 

In addition to reduced α1 subunit containing GABAARs, increased expression of 

α4 subunit containing GABAARs has been reported in animal models of TLE (Roberts et 

al., 2005). Some have suggested that this increase in α4 subunit containing GABAAR’s is 

also associated with a rearrangement of the subunit combination of GABAARs (Lund et 

al., 2008). Additionally, there is a report of α4 subunit containing GABAARs migrating 

from extrasynaptic locations to more synaptic or perisynaptic locations on dentate 

granule cell membranes of pilocarpine-induced status epilepticus mice (Zhang et al., 

2007). The rearrangement of GABAAR subunits or location could confer changes in 

kinetic and pharmacological properties of these receptors in disease states (Brooks-Kayal 
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et al., 2009). Although much work has been done using animal models of TLE, less is 

known about GABAAR changes in animal models of TBI or PTE. 

Alterations in GABAAR expression and function in models of head injury have 

been less uniform compared to animal models of TLE, likely due to variation in head 

injury models used. Focusing on the α1 and α4 subunits in the fluid percussion injury 

model, it has been shown in the ipsilateral hemisphere of FPI injured rats that mRNA 

expression of α1 subunits is reduced in the hippocampus at 24 hours, 48 hours, and 1 

week post-injury (Raible et al., 2012). Expression of α4 subunits in the ipsilateral 

hemisphere of FPI injured rats was increased 24 hours after injury (Raible et al., 2012), 

not different than controls at 48 hours post-inury, and reduced relative to controls 1 week 

post-injury (Raible et al., 2012). Additionally, other studies demonstrated that most 

expression changes in GABAARs which occur within the first week after injury return to 

control levels in the months following injury (Pavlov et al., 2011;Drexel et al., 2015). 

These studies used a mean fluid pressure of 3.38 atm to induce injury. It is unclear what 

this return to baseline in GABAAR expression and function mean to the process of 

epileptogenesis in the FPI model, but it is important to remember that this model of TBI 

does not generally result in spontaneous seizures unless a severe (>3 atm pressure) injury 

is used (D'Ambrosio et al., 2004;D'Ambrosio et al., 2005;Kharatishvili et al., 

2006;D'Ambrosio et al., 2009;Bolkvadze and Pitkanen, 2012). This reversion of 

GABAAR expression and function may be part of the explaination for why this brain 

injury model does not coincide with spontaneous seizure generation.  

Alternatively, the controlled cortical impact (CCI) model of brain injury is a 

contusion injury model which is designed to have a focal non-penetrating brain injury 
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and results in seizure generation in 35-50% of the injured mice (Hunt et al., 2009;Statler 

et al., 2009;Guo et al., 2013;Kelly et al., 2015). Studies using this model of head injury 

have also noted varied results in regards to GABAAR expression and function 

(Mtchedlishvili et al., 2010;Raible et al., 2015;Boychuk et al., 2016). In two of these 

studies a greater injury severity was used (>1mm injury depth), which resulted in 

extensive damage to the ipsilateral hippocampus (Mtchedlishvili et al., 2010;Raible et al., 

2015). In a previous study, a severe CCI injury was given to mice in which the ipsilateral 

hemisphere of the hippocampus was unsuitable for whole cell patch clamp recordings of 

ipsilateral dentate granule cells (Mtchedlishvili et al., 2010). The dentate granule cells in 

the contralateral hemisphere of CCI injured mice exhibited increased tonic GABAAR 

mediated inhibition. However, this study left a large knowledge gap for what changes 

GABAAR occur in the ipsilateral dentate granule cells of mice after CCI injury. Another 

study using a CCI injury model, in which the ipsilateral hippocampus remained 

structurally intact, was also done (Boychuk et al., 2016). In this study, ipsilateral dentate 

granule cells from CCI injured mice exhibited reduced 4,5,6,7-tetrahydroisoxazolo(5,4-

c)pyridin-3-ol (THIP)-mediated current amplitude at both 1-2 and 8-13 weeks post-injury 

compared to sham control and contralateral dentate granule cells. This reduced THIP-

mediated tonic inhibition in ipsilateral dentate granule cells was not correlated to altered 

resting tonic GABAAR mediated currents or mRNA expression of GABAAR subunits 

associated with THIP-mediated inhibitory currents. These results are different from FPI 

injury models in which GABAAR expression and function have been noted to be 

transient. Additionally, the underlying mechanism for the changes noted in GABAAR 

function of ipsilateral dentate granule cells after CCI does not appear to correlate to 
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expression changes. This leaves the possibility of changes such as post-transcriptional 

modification could be responsible for the observed reduction in THIP-mediated tonic 

inhibition of ipsilateral dentate granule cells after CCI injury.  

1.4.7 Targeting GABAergic plasticity as antiepileptogenic therapy 

Following TBI, changes in GABAAR function and expression have been 

observed. However it is unclear what underlying mechanisms are responsible for these 

changes and their relation to epilepsy. Due to the mRNA expression changes observed in 

the pilocarpine model of TLE, investigation into the underlying mechanisms of GABAAR 

changes in disease have focused on gene regulation. The cAMP response element binding 

protein (CREB) and inducible cAMP early repressor (ICER) proteins have been 

implicated as mediators of α1 subunit containing GABAAR expression (Hu et al., 

2008;Lund et al., 2008). The activation of this cell signaling pathway promotes 

phosphorylation of janus kinase (Jak)/ signal transducer and activator of transcription 

(STAT). This is believed to cause reduction in α1 subunit transcription and increase α4 

subunit transcription (Brooks-Kayal et al., 2009). For this reason targeting the Jak/STAT 

signaling pathway has been proposed as a mechanism for antiepileptogenic therapies. The 

use of a STAT3 inhibitor in the pilocarpine-induced status epilepticus model 

demonstrated potential for antiepileptogenic properties of inhibition of this cell signaling 

pathway (Grabenstatter et al., 2014). Currently in models of PTE it is only known that 

Jak/STAT3 activation after FPI and CCI injury is increased in the ipsilateral hemisphere 

of injured rodents, and use of a STAT3 inhibitor after CCI injury rescued the decrease in 

α1 subunit expression and vestibular motor function (Raible et al., 2012;Raible et al., 

2015). This increased activation is correlated to modulation of GABA receptor subunits, 
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but no work has currently demonstrated potential antiepileptogenic of the STAT3 

inhibitor use in these models of PTE.  

1.4.8 Axonal sprouting 

In cases of brain insult, many neuron populations in the hippocampus have been 

observed to sprout aberrant axons (Steward et al., 1973; 1974;Steward et al., 

1976;Steward and Messenheimer, 1978;Nadler et al., 1980;Nadler et al., 1981;Staubli et 

al., 1984;Steward, 1992;Smith and Dudek, 1997; 2001; 2002;Hunt et al., 2009). This 

aberrant sprouting of surviving neurons can be either adaptive or maladaptive. One of the 

most prominent features associated with epilepsy development in the hippocampus of 

human resected tissue is the aberrant sprouting of mossy fibers. One common histological 

assessment of mossy fiber sprouting is the use of Timm staining to semi-quantitatively 

measure axonal sprouting of dentate granule cells. Timm stain is a derivative of silver 

staining techniques (Timm, 1958;Danscher et al., 1985) that selectively targets the mossy 

fibers of dentate granule cells due to the high levels of zinc in these axons (Crawford and 

Connor, 1972;Danscher et al., 1975;Hesse, 1979;Frederickson et al., 1981). A semi-

quantitative score can be given to the degree of sprouting back into the dentate granule 

cell and inner molecular layers of the dentate gyrus (Buckmaster and Schwartzkroin, 

1994;Buckmaster and Dudek, 1997b;a;Dudek and Spitz, 1997;Sutula et al., 

1998;Buckmaster et al., 2002;Winokur et al., 2004;Hunt et al., 2009;Buckmaster, 

2012;Guo et al., 2013). The aberrant axon sprouting of dentate granule cells causes 

excitatory synapses to form back on the dendrites of other dentate granule cells 

(Yamawaki et al., 2015). This sprouting of mossy fibers back into the inner molecular 

layer of the dentate gyrus onto dendrites of neighboring dentate granule cells likely 
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disrupts normal information flow and forms recurrent excitatory circuits in the 

hippocampus (Tauck and Nadler, 1985;Cronin et al., 1992). The use of Timm stain to 

assess the anatomical feature of aberrant sprouting of dentate granule cells does not 

address functional changes to the dentate gyrus. To assess the possibility of functional 

hyperexcitability in the hippocampus of these injured mice, electrophysiology techniques 

have been used.  

Functional recurrent excitation in dentate granule cells has been observed in 

models of PTE (Hunt et al., 2009; 2010). For example, antidromic stimulation of the 

hilus, to activate a population response of dentate granule cells, has demonstrated an 

increased probability of dentate granule cells from the ipsilateral hemisphere of CCI-

injured mice to fire secondary depolarizations compared to controls (Hunt et al., 2009). 

This recurrent excitation of ipsilateral dentate granule cells is also observed using whole 

cell patch clamp recording techniques when the extracellular environment is perturbed to 

“unmask” recurrent excitation (Hunt et al., 2010). This increase in excitation of ipsilateral 

dentate granule cells from CCI injured mice also coincides with a reduction in 

spontaneous inhibitory post-synaptic currents (sIPSCs) compared to controls (Hunt et al., 

2011;Boychuk et al., 2016). Combined these results indicate a shift towards greater 

excitatory and less inhibitory signaling in mouse models of brain insult and this 

imbalance is similar to an established chemoconvulsant model of TLE in which mice 

have overt spontaneous seizures. However, the relationship of aberrant axonal sprouting 

of dentate granule cells and seizure development is not well understood since near 

removal of this axonal sprouting does not always prevent seizure expression in a mouse 

models of acquired epilepsy (Heng et al., 2013).This has led to controversy over the role 
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of mossy fiber sprouting in the process of epileptogenesis and the use of drugs to target 

this cell circuitry change.  

Moreover, dentate granule cells also synapse onto inhibitory interneurons in the 

hilus and mossy fiber sprouting can change the connectivity of dentate granule cells with 

hilar interneurons. In models of TBI, surviving hilar inhibitory interneurons have been 

shown to fire more action potentials and receive more excitatory input (Halabisky et al., 

2010;Hunt et al., 2011). This increase in excitation of surviving hilar inhibitory 

interneurons is believed to be a compensation for reduced inhibition in the ipsilateral 

hippocampus. However, increased excitatory drive from mossy fibers, or axon sprouting 

from other cell types, could lead to an increased probability of hilar interneurons entering 

a state of transient inactivation due to over-excitation (Hunt et al., 2011). Theoretically a 

prolonged inability to inhibit dentate granule cells would be detrimental to inhibition of 

recurrent activation of the hippocampus and potentially lead to seizure generation (Hunt 

et al., 2011).  

Dentate granule cells are not the only neuron population of the hippocampus that 

has exhibited aberrant sprouting of axons. CA3 pyramidal neurons typically project to 

CA1 pyramidal neurons in the tri-synaptic circuit. However, on rare occasions these 

neurons will project back into the hilus onto GABAergic hilar interneurons and excitatory 

mossy cells (Scharfman, 1993;Scharfman, 1994;Scharfman, 2007). In animal models of 

TLE and PTE, CA3 pyramidal projections back into the hilus onto GABAergic hilar 

interneurons are increased compared to controls (Halabisky et al., 2010;Hunt et al., 

2011;Zhang et al., 2012). In addition to this “backprojection” of CA3 pyramidal neurons, 

axon sprouting of CA1 pyramidal neurons and GABAergic interneurons in the CA1 
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region has also been reported in models of epilepsy (Perez et al., 1996;Smith and Dudek, 

1997;Esclapez et al., 1999;Smith and Dudek, 2001; 2002;Peng et al., 2013). It remains 

unclear what extrinsic or intrinsic cell signaling regulates this form of axon sprouting in 

models of epilepsy. The role of these aberrant axon sprouting events to the progression of 

epileptogenesis is also not understood. 

1.4.9 Targeting axon sprouting for antiepileptogenic therapy 

Targeting of aberrant mossy fiber sprouting as a treatment for various epilepsy 

syndromes is the most studied target for epileptogenesis. Studies in kindling (Rashid et 

al., 1995;Van der Zee et al., 1995;Sutula et al., 1996), chemical convulsants (Longo and 

Mello, 1997;Muller-Schwarze et al., 1999;Pitkanen et al., 1999;Buckmaster et al., 

2009;Zeng et al., 2009;Paradiso et al., 2011;Heng et al., 2013), and PTE (Guo et al., 

2013) models of epilepsy have found positive or negative associations for reduction of 

mossy fiber sprouting and various drug treatments. Of the successful treatment options 

from animal studies, most have either not been successful in preventing epileptogenesis 

in humans or are have yet to enter/complete clinical trials. The lack of success from the 

therapeutic targets of these studies in humans, combined with a lack of direct correlation 

for mossy fiber sprouting and spontaneous seizure generation, has thrown into question 

the role this form of axon sprouting plays in the epileptogenic process. Other forms of 

axon sprouting, such as backprojections from CA3 pyramidal neurons or spouting of 

CA1 pyramidal cells and interneurons, are less understood in regard to their role in 

epileptogenesis. For this reason these forms of axon sprouting have not yet been targeted 

for antiepileptogenic therapies.  
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 1.4.10 Other targets for antiepileptogenic therapy 

Following TBI insult there is an upregulation of immune responses in the brain 

(Morganti-Kossmann et al., 2001;Lucas et al., 2006). These responses are mediated by 

many cell types; neurons, astrocytes, and glia. Additionally, a breakdown in the blood 

brain barrier after brain injury could contribute to peripheral immune signaling molecules 

or cells crossing into nervous tissue previously not activated by such signaling. Cytokines 

such as IL-1β, IL-6, tumor necrosis factor α, and cyclooxygenase-2 have all been shown 

to be upregulated in animal models of TBI and these pro-inflammatory factors also 

contribute to blood brain barrier breakdown. The correlation of these pro-inflammatory 

factors with potential epileptogenic processes has created a desire to test therapeutic 

strategies that inhibit upregulation of inflammatory signaling following TBI as an 

antiepileptogenic therapy. One of the preclinical trails done to assess an anti-

inflammatory treatment was the use of Minozac, a suppressor of pro-inflammatory 

cytokine upregulation, in a closed head TBI model (Chrzaszcz et al., 2010). This study 

was performed in a model which has not been demonstrated to develop spontaneous 

seizures (weight drop closed head injury), and the measurements were made prior to 

spontaneous seizure generation in other PTE models (7 days post-injury). However, the 

administration of Minozac 3 or 6 hours after injury reduced susceptibility of mice to 

electrical stimulation induced seizures compared to sham treated mice. The use of this 

treatment strategy and testing of seizure susceptibility following treatment suggests 

potential of this drug, but it is currently unclear if the effects are simply anticonvulsant 

versus antiepileptogenic. Anticonvulsants reduce the number of spontaneous seizures, 

through broad effects on brain excitability, without addressing the underlying 
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mechanism(s) responsible for the development of spontaneous seizures. 

Antiepileptogenic effects, in contrast, target the exact mechanism(s) responsible for the 

expression of seizures. Thus, anticonvulsants are designed to reduce the symptoms of 

epilepsy whereas antiepileptogenic treatments are designed to reduce or cure the epilepsy 

itself.  

Additionally, a recent study of TBI patients, of which ~16% developed PTE, was 

used to assess the correlation of IL-1β concentration in both the serum and central 

nervous system and genetic variations as biomarkers for PTE (Diamond et al., 2015). 

This study demonstrated that both a high ratio of central nervous system to serum ratio of 

IL-1β concentration and a single nucleotide polymorphism of the IL-1β gene correlated 

to development of PTE. One of the more interesting points of this study was that all TBI 

patients demonstrated high levels of IL-1β in the central nervous system, but patients 

which developed PTE showed lower serum levels of IL-1β, contributing to the overall 

effect of the higher ratio in these patients. These data would suggest that transport of IL-

1β into the brain could be a mechanism to target for antiepileptogenic therapies. 

Combined, these studies demonstrate promise for intervention of inflammatory processes 

following TBI as a therapeutic for PTE, but little is currently understood on which 

inflammatory processes are critical for epileptogenesis. Therefore a better understanding 

of these mechanisms is necessary. The following demonstrates our knowledge of mTOR 

signaling in models of epilepsy and gaps in our understanding of the mechanisms of 

action associated with mTOR.  
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1.5 Targeting mTOR for antiepileptogenic therapy 

Although the exact causes remain unknown, the alterations in the hippocampus 

discussed above are thought to occur through a multitude of extra- and intracellular 

signals activated within the first few hours to days following the initial insult. The exact 

activation period for these different signaling molecules varies, but generally there is a 

large peak of activity in the first hours to days after injury with a decay over the 

following days and weeks after the initial injury. Targeting of these cell signaling 

pathways for therapeutic strategies has become a hotbed of interest in the development of 

antiepileptic therapies. Cell signaling pathways which demonstrate increased activity in 

the initial days and weeks following brain injury and have roles in mechanisms 

associated with epileptogenesis or other models of epilepsy are of particular interest in 

the study of PTE. Potential extracellular signals include stress and growth hormones and 

inflammatory cytokines permeating the blood brain barrier (Robertson et al., 

1984;McClain et al., 1986;McClain et al., 1987;Young et al., 1988;Chiolero et al., 

1989;Goodman et al., 1990;Hadfield et al., 1992). One particularly intriguing 

intracellular cell signaling pathway which has roles in cell death, growth, and 

proliferation is mTOR.  
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Figure 1.5. mTOR signaling pathway schematic. This illustration demonstrates some 
of the primary upstream activators of mTOR signaling such as growth factors, nutrients 
and cytokines, which result in downstream activities of cell growth, protein synthesis, 
and cell proliferation. Two of the endogenous inhibitors of mTOR activity are PTEN and 
rapamycin and are also depicted. 

mTOR is a serine/threonine kinase involved in many cellular activities associated 

with nutrient recognition, cell growth/ proliferation, and cell death (Nave et al., 1999). 

Generally growth hormones or other nutrition factors activate external membrane bound 

receptors, which then signal downstream through mTOR to activate protein synthesis for 

cellular responses associated with cell growth/proliferation and cell death. Although the 
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brain only comprises ~2% of the total body mass, it is responsible for 20% of energy 

expenditure in humans (Sokoloff et al., 1955;Sokoloff, 1999;Raichle and Gusnard, 2002). 

Therefore, cell signaling pathways associated with nutrition or energy expenditure are 

extremely important in normal brain function. Additionally, after insults to the brain these 

signals are often thought to play a large role in the remodeling process. In both animal 

models of TLE and TBI, mTOR activity, measured by phosphorylated S6 (pS6) 

expression, increases following the initial insult (Buckmaster et al., 2009;Zeng et al., 

2009;Guo et al., 2013). However, the time period for this elevated activity appears to be 

model specific. For example, the pilocarpine model of TLE demonstrates increased 

mTOR activity over the course of 10 weeks (Huang et al., 2010), while the controlled 

cortical impact model of TBI has an increase in mTOR activity for only 4 weeks in the 

ipsilateral hemisphere following brain injury (Guo et al., 2013). These two experimental 

models share similar pathology related cell circuitry changes including; axonal sprouting, 

cell death, and increased cellular proliferation (Lowenstein et al., 1992;Hicks et al., 

1993;Smith et al., 1995;Buckmaster et al., 2002;Winokur et al., 2004;Saatman et al., 

2006;Hunt et al., 2009; 2010; 2011;Hunt et al., 2012;Guo et al., 2013). The development 

of these cell circuitry changes has been associated with an increase in mTOR activation. 

However, the exact contribution of mTOR activation to these cell circuit changes in 

disease models and the potential seizure development is unknown or controversial.  

The use of an inhibitor of mTOR signaling, rapamycin has been studied in models 

of both TLE and TBI to assess the contribution of mTOR activity to some of the cell 

circuit changes associated with these disease states (Buckmaster et al., 2009;Zeng et al., 

2009;Buckmaster and Wen, 2011;Guo et al., 2013;Heng et al., 2013). However, the 
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previous studies on rapamycin’s epileptogenic effects have been primarily limited to 

histological analysis of anatomical axon sprouting and correlation with seizure frequency 

(Zeng et al., 2008;Zeng et al., 2009;Guo et al., 2013;Heng et al., 2013). A direct 

correlation between mossy fiber sprouting and spontaneous seizure development is not 

well established, and has therefore become an issue of controversy over the years 

(Buckmaster and Dudek, 1997b;Buckmaster et al., 2009;Buckmaster, 2012;Heng et al., 

2013). In addition, the removal of rapamycin treatment in both TLE and PTE animal 

models resulted in the reemergence of aberrant mossy fiber sprouting and increased 

seizure frequency (Buckmaster et al., 2009;Guo et al., 2013). Even at high doses of 

rapamycin treatment (10 mg/kg) in the pilocarpine induced status epilepticus model, mice 

given rapamycin treatment after pilocarpine exhibited Timm staining similar to controls 

on average, but seizure frequency was no different (Heng et al., 2013). These data could 

be interpreted in a manner that mTOR inhibition does not prevent the development of 

epilepsy, but rather pauses some of the cascade of events leading to epilepsy following 

injury. This information would also suggest that mTOR activation in models of TLE and 

PTE is not only associated with the aberrant sprouting of mossy fibers from dentate 

granule cells, but could also be associated with many other processes involved in 

epileptogenesis. Due to the lack of investigation into the effects of mTOR inhibition on 

mechanisms, other than mossy fiber sprouting, that are associated with epileptogenesis, 

we currently have an incomplete understanding of how mTOR activity contributes to 

epileptogenesis. For this reason, the focus of this dissertation was to determine possible 

mechanisms of action for rapamycin treatment on cell circuitry changes, other than 
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mossy fiber sprouting of dentate granule cells, associated with epileptogenesis in a model 

of PTE. 

The focus of previous research on the effects of mTOR inhibition on aberrant 

axon sprouting and associated seizure expression presents an opportunity to investigate 

other mechanisms associated with epileptogenesis that could be affected by mTOR 

inhibition. mTOR activity has been demonstrated to be involved in cell death through 

both apoptotic and necrotic signaling in the hippocampus (Corradetti and Guan, 

2006;Carloni et al., 2008;Guo et al., 2013;Tanaka et al., 2013). Two strategies previously 

used to measure cell death in TLE and PTE models are 1) histological stains to measure 

overall cell death in the dentate granule cell layer and hilus and 2) a transgenic mouse 

model to identify and count eGFP-positive hilar inhibitory neurons. Using rapamycin has 

resulted in mixed reports depending on area measured, model used, and staining 

technique (Guo et al., 2013;Tanaka et al., 2013). The use of Cresyl violet stain, a stain 

which tags ribosomal RNAs (Alvarez-Buylla et al., 1990), and Fluoro-Jade B, an anionic 

fluorescein derivative used to stain neurons undergoing degeneration (Schmued and 

Hopkins, 2000), has demonstrated extensive cell loss in the ipsilateral hippocampus after 

CCI injury (Hicks et al., 1993;Smith et al., 1995;Anderson et al., 2005;Saatman et al., 

2006). However, these stains do not differentiate this cell loss into subtypes of neurons 

which could be more susceptible to injury versus other subtypes which may not be 

susceptible to injury. Since the hippocampus is comprised of many different cell types 

such as: dentate granule cells, hilar inhibitory interneurons, molecular layer perforant 

path-associated inhibitory interneurons, excitatory mossy cells, CA3 pyramidal neurons, 
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and CA1 pyramidal neurons, cellular subtype distinctions may prove important in our 

understanding of which neuron populations are most affected by injury.  

The development of transgenic mice has made it possible to begin selectively 

examining some of these neuronal subtypes.  In particular, FVB-Tg(GadGFP)4570Swn/J 

(i.e. GIN) mice, which express enhanced green fluorescent protein (eGFP) in 

somatostatin-positive neurons, have allowed the selective study of a subtype of inhibitory 

interneurons in the hilus during normal physiology and in disease states (Oliva et al., 

2000). To date, only one study has investigated the effect of rapamycin treatment on 

these hilar interneurons in a model of epilepsy (Buckmaster and Wen, 2011). Rapamycin 

treatment in mice given pilocarpine induced status epilepticus did not alter cell loss of 

eGFP-positive hilar interneurons. However, rapamycin treatment did reduce soma size 

and the axon sprouting of surviving eGFP-positive hilar interneurons relative to vehicle 

treated status epilepticus mice (Buckmaster and Wen, 2011). Aside from these 

histological assessments, no electrophysiological assessments of rapamycin’s effect on 

these eGFP-positive neurons in TLE mice have been made. This gap in knowledge 

presented an opportunity to investigate the effects of rapamycin treatment on inhibitory 

circuitry after CCI injury.  

After both pilocarpine induced status epilepticus and the CCI model of PTE, 

surviving hilar eGFP-positive neurons exhibited increased sEPSCs and action potential 

firing (Halabisky et al., 2010;Hunt et al., 2011). Using UV light activation, caged 

glutamate was released in areas of dentate granule cells and CA3 pyramids, and 

ipsilateral eGFP-positive hilar inhibitory interneurons demonstrated increased 

responsiveness to uncaging of glutamate in both dentate granule cells and CA3 pyramid 
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regions compared to controls (Hunt et al., 2011). These studies demonstrate axon 

sprouting from both dentate granule cells and CA3 pyramidal neurons onto surviving 

hilar inhibitory interneurons in animal models of TLE and PTE. Due to the reduction of 

mossy fiber sprouting in several animal models of epilepsy treated with rapamycin, it 

would be predicted that rapamycin could also affect the excitatory sprouting onto 

surviving eGFP-positive hilar interneurons in the ipsilateral hemisphere. However, this 

potential effect of rapamycin has yet to be tested.   

mTOR activation can occur through a diverse range of extracellular signals 

including growth factors, cell stress, cytokines, amino acids, and mitogens. One of the 

most well-characterized upstream activation pathways of mTOR signaling is the insulin 

pathway (Foster and Fingar, 2010;Sengupta et al., 2010;Magnuson et al., 2012). The 

activation of the insulin pathway has also been associated with neurogenesis in the 

hippocampus after TBI. Insulin signaling itself has a wide range of effects on neurons 

including energy homeostasis, reproductive endocrinology, and neuronal survival (Plum 

et al., 2005). Using transgenic mice that conditionally express astrocyte-specific human 

insulin-like growth factor 1, a study demonstrated that after CCI injury these transgenic 

mice exhibited increased neuronal differentiation in the ipsilateral hemisphere compared 

to wild-type littermates 10 days post-injury (Carlson et al., 2014). Interestingly, 

activation of mTOR signaling, using a mouse model in which phosphatase and tensin 

homolog (PTEN) is knocked out of dentate granule cells, results in increased 

neurogenesis, aberrant cell migration, and spontaneous seizures (Sunnen et al., 

2011;Hester and Danzer, 2013;LaSarge et al., 2015). This data would suggest that mTOR 

activation could play a role in neurogenesis after TBI, but this has yet to be tested. 
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The contribution of mTOR activation to aberrant excitatory axon sprouting of 

dentate granule cells has been studied at length (Buckmaster et al., 2009;Zeng et al., 

2009;Guo et al., 2013;Heng et al., 2013). However, changes to inhibitory circuitry of the 

dentate gyrus have been observed after CCI injury (Hunt et al., 2011;Boychuk et al., 

2016), but no experiments have tested the possibility of mTOR signaling contributing to 

these function changes. mTOR blockade in a mouse model of pilocarpine induced status 

epilepticus reduced hilar interneuron axon sprouting and soma size (Buckmaster and 

Wen, 2011). Additionally, phosphorylation of Akt altered translocation of GABAAR’s to 

the cell membrane of cultured neurons (Wang et al., 2003). This data would suggest a 

potential role of mTOR activity in GABAergic inhibition of dentate granule cells.  

Considering our general lack of knowledge on the effects of mTOR inhibition in 

TLE and PTE models outside of dentate granule cell axon sprouting, it is important to 

examine other aspects of mTOR modulation in the hippocampal circuitry. Previous 

studies have already demonstrated many effects of CCI injury associated with 

epileptogenesis in this model including: enhanced neurogenesis, reduced synaptic 

inhibition of ipsilateral dentate granule cells, reduced THIP induced tonic GABAAR 

mediated currents in ipsilateral dentate granule, enhanced excitatory drive of surviving 

ipsilateral eGFP-positive hilar interneurons, and increased axon sprouting of ipsilateral 

CA3 pyramidal neurons onto eGFP-positive hilar interneurons. This all establishes a 

foundation to investigate the effects of rapamycin treatment after CCI injury on a variety 

of cell circuitry changes associated with epileptogenesis.  
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1.6 Study aims and significance 

This study will focus on the role of mTOR signaling in epileptogenesis in the CCI 

model of PTE. In order to avoid some of the confounds associated with reemergence of 

phenotypes associated with seizures and epilepsy following cessation of mTOR 

inhibition, the use of rapamycin as an mTOR inhibitor will be given daily throughout the 

entirety of the experiment in all studies. Although synaptic reorganization of dentate 

granule cells in models of TLE and PTE has been a focus of previous work, it is not the 

only mechanism by which epilepsy and seizures could develop. A broader scope of 

investigation into different mechanisms of mTOR activity following CCI injury will help 

dissect areas of interest or therapeutic targets for future studies, as well as increase our 

knowledge of how mTOR signaling is involved in remodeling of the hippocampus 

following brain injury. 

 The specific aims of this project are as follows: 

1. Does mTOR inhibition following CCI injury modify injury-induced cell death or 

neurogenesis in the dentate gyrus? Cell death is one of the most common features of 

TBI and seizures, however it remains controversial what role mTOR signaling plays in 

the regulation of this process after CCI injury. Increased neurogenesis has been exhibited 

in models of TLE, and could be part of epileptogenic process in PTE. Using doublecortin 

(DCX) to label immature neurons, neurogenesis was measured to assess injury-induced 

effect on neurogenesis and the effect of mTOR inhibition on this injury-induced change. 

2. Does mTOR inhibition after CCI injury reduce functional recurrent excitation in 

dentate granule cells and seizure expression? Electrophysiology in both models of 
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TLE and PTE indicate increased recurrent excitation of dentate granule cells and mTOR 

inhibition has been noted to histologically reduce indices of this recurrent excitation. 

However no studies have assessed the functional implications of mTOR inhibition in the 

synaptic reorganization of dentate granule cells. sEPSC frequency of dentate granule 

cells, as well as extracellular population responses of dentate granule cells to hilar 

stimulation, were measured to assess the effect of rapamycin treatment after CCI injury 

on recurrent excitatory in the ipsilateral hemisphere of CCI injured mice. 

3. Does mTOR inhibition after CCI injury modulate phasic or tonic inhibition of 

dentate granule cells? Synaptic inhibition of dentate granule cells in models of TLE and 

PTE is reduced. Tonic inhibition of dentate granule cells also largely contributes to 

inhibition of dentate granule cells, but reports of altered tonic inhibition of dentate 

granule cells has varied across animal models used. It is unknown if mTOR plays a role 

in these mechanisms of phasic and tonic inhibition. Therefore, using whole cell patch-

clamp electrophysiology measures of sIPSC frequency and inducible tonic GABAA 

receptor mediated currents were made to assess the role of mTOR in the inhibition of 

dentate granule cells following CCI injury. 

4. Does mTOR inhibition reduce excitatory synaptic plasticity from dentate granule 

cells and CA3 pyramidal neurons onto a subset of surviving hilar inhibitory 

neurons? Mouse models of both TLE and PTE exhibit increased excitatory responses in 

eGFP-positive hilar interneurons, which are extensively lost following insult, to 

stimulation of both dentate granule cells and CA3 pyramidal neurons. This suggests that 

dentate granule cell sprouting is not the only form of axon sprouting associated with the 

epileptogenic process. Although the role of mTOR in axon sprouting of dentate granule 
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cells has been explored rigorously using histology and electrophysiology techniques, no 

one has investigated if rapamycin is preferential to axon sprouting of one cell type or a 

general suppressant of axon sprouting. Using GIN mice, eGFP-positive neurons in the 

hilus will be selectively investigated. Whole cell and on cell recording of eGFP-positive 

hilar inhibitory interneurons will be used to measure change in excitatory synaptic input 

onto surviving eGFP-positive hilar interneurons. Additionally, using whole cell patch 

clamp recordings of these eGFP hilar interneurons, photoactivation of caged glutamate 

will be used to measure excitatory connections from both dentate granule cell and CA3 

pyramidal neuron populations. This experiment will be the first to assess the effect of 

rapamycin treatment on axon sprouting from CA3 pyramidal neurons after CCI injury. 
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Chapter 2: Materials and Methods 

 

Animals: Six to eight week old (25-32 g) male CD-1 (Harlan, Indianapolis, IN) or male 

FVB-Tg(GadGFP)4570Swn/J (GIN; Jackson Laboratory; (Oliva et al., 2000) mice were 

housed in a 14 hr light/10 hr dark cycle. Mice were housed for a minimum of 7 days prior 

to experimentation in the University of Kentucky vivarium and food and water was 

provided ad libitum. All procedures were approved by the University of Kentucky 

Animal Care and Use Committee and adhered to NIH guidelines for the care and use of 

animals. Experiments were performed on mice 3 days to 13 weeks post-injury.  Power 

analysis was performed to estimate sample sizes required to detect a significant effect for 

outcome measures assess in the following studies. 

Traumatic brain injury: Mice were subjected to severe unilateral, cortical contusion 

injury by CCI, as described previously (Scheff et al., 1997;Hunt et al., 2009; 2010; 

2011;Hunt et al., 2012). Briefly, mice were anesthetized by 2% isoflurane inhalation and 

placed in a stereotaxic frame. The skull was exposed by midline incision, and a ~5 mm 

craniotomy was made lateral to the sagittal suture and centered between bregma and 

lambda. The skull cap was removed, taking care to avoid damage to the exposed 

underlying dura. The contusion device consisted of a computer-controlled, pneumatically 

driven impactor fitted with a beveled stainless-steel tip 3 mm in diameter (Precision 

Systems and Instrumentation, Fairfax, VA). Brain injury was delivered using this device 

to compress the cortex to a depth of 1.0 mm at a velocity of 3.5 m/s and 500 ms duration. 

This brain injury model consistently produced a focal cortical lesion. Although there is no 

direct damage to the hippocampus from the injury, hippocampal evulsion usually occurs 
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(Hunt et al., 2009;Hunt et al., 2012). Sham-injured mice received anesthesia and only a 

craniotomy before closure of the incision. A qualitative postoperative health assessment 

was performed daily for 4 days after CCI and periodically thereafter. 

Rapamycin injection: Rapamycin (LC Laboratories, Woburn, MA) was dissolved in 

100% ethanol (20 mg/ml), stored at -20oC, and diluted in a vehicle solution containing 

5% Tween 80, 5% PEG 400, and 4% ethanol (all from Fisher Scientific, Pittsburgh, PA) 

dissolved in distilled, deionized water immediately before intraperitoneal (i.p.) injection 

(Guo et al., 2013;Heng et al., 2013).  Rapamycin (3 mg/kg or 10 mg/kg) or vehicle was 

injected intraperitoneal (i.p.) after mice regained consciousness following CCI injury (20-

30 min) and the treatment was continued once daily until the day of experimentation. 

Hippocampal homogenates from mice 24 hr. after injury indicated an increase in pS6 

expression levels in the ipsilateral hemisphere of CCI-injured mice with vehicle 

treatment; rapamycin treatment reduced pS6 to sham levels at this post-injury time point 

(unpublished data), similar to previous reports (Zeng et al., 2008;Buckmaster et al., 

2009;Guo et al., 2013). 

Seizure observations: As described previously (Hunt et al., 2009), mice were monitored 

for behavioral seizures by observation for 6 hrs per week beginning at 6 weeks post-

injury and ending 10 weeks post-injury. Using a modified Racine scale (Racine, 1972) 

only behavioral seizures at or above a grade 2 (i.e., prolonged freezing and wet dog 

shakes) and lasting longer than 10 seconds were counted as behavioral seizures.   

Timm staining: After the recording experiment concluded, slices were placed in 0.1 M 

sodium phosphate buffer containing 0.37% sodium sulfide (pH 7.4) for ~30 minutes 
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followed by 4% paraformaldehyde in 0.15M sodium phosphate buffer (pH=7.4) 

overnight. Slices were then equilibrated in a 30% sucrose solution in phosphate buffered 

saline (0.1M; PBS) overnight, embedded in Optimal Cutting Temperature (OCT) 

compound (Fisher Scientific), sectioned at 30 µm on a cryostat, rinsed in PBS, mounted 

on charged slides (Superfrost Plus; Fisher Scientific), and dried on a slide warmer.  

Sections were subsequently treated as in previous protocols, using Timm stain to reveal 

mossy fibers and Nissl counterstain to reveal cell bodies (Tauck and Nadler, 

1985;Shibley and Smith, 2002;Winokur et al., 2004;Hunt et al., 2009;Bhaskaran and 

Smith, 2010;Hunt et al., 2010; 2011;Hunt et al., 2012). To semi-qualitatively assess 

mossy fiber sprouting after CCI, sections at equivalent positions relative to bregma 

ipsilateral and contralateral to injury were examined and assigned Timm scores ranging 

from 0-3, with a score of 0 corresponding to little to no granular staining, 1 indicating 

moderate Timm staining through the granule cell layer, but not into the inner molecular 

layer, 2 indicating continuous staining through the granule cell layer with discontinuous 

puncta in the inner molecular layer, and 3 indicting a continuous band of staining in the 

inner molecular layer. The scorer was blinded to treatment. Using a modified scoring 

scale (Hunt et al., 2009; 2010), regions of the dentate gyrus with Timm scores >1 were 

considered to exhibit mossy fiber sprouting (Tauck and Nadler, 1985;Patrylo and Dudek, 

1998;Shibley and Smith, 2002;Hunt et al., 2009; 2010; 2011;Hunt et al., 2012). To obtain 

the Timm score for each animal, each 350 µm slice used for recording was analyzed 

using two 30 µm sections, ~180 µm apart mounted onto slides. Each blade of the dentate 

gyrus was assessed independently and the average score of the 2 blades was given for 
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each slice. The scores from each slice were then averaged per hemisphere per animal to 

obtain the Timm score for each animal. 

 Immunohistochemistry: Mice were perfused transcardially with a 0.15M sodium 

phosphate buffer followed by 4% paraformaldehyde fixative solution (0.15M sodium 

phosphate buffer) 14 days post-injury. The brain was removed and placed in fixative 

overnight and then transferred to a 30% sucrose solution in PBS until the tissue 

equilibrated. Brains were covered in OCT compound and sectioned serially at on a 

cryostat (-22 oC) at 20 µm. Sections (every 6th section in series) were rinsed in Tris-

buffered saline (TBS; pH=7.4) briefly before being mounted onto slides and incubated in 

a solution containing Triton X-100 (0.3%) and  normal goat serum (10%) in TBS for 30 

min at room temperature.  Sections were then incubated overnight at 4oC with a rabbit 

primary antibody against doublecortin (DCX; 1:5000; Abcam; Cambridge, MA) in 

blocking solution (2% normal goat serum; 0.15% Triton X-100; TBS). Sections were 

rinsed 3 times for 5 minutes in blocking solution and then incubated for 1 hr at room 

temperature in a goat anti-rabbit secondary antibody (IgG) conjugated to Alexa Flour 488 

(IgG; 1:1000; Molecular Probes; Grand Island, NY) in the same blocking solution. 

Sections were then rinsed 3 times for 5 minutes with TBS. Slides were covered with 

Vectashield mounting medium with DAPI (Vector Labs; Burlingame, CA) to image 

immunofluorescence.  

Dentate granule cell layer area: In order to measure changes in area of the dentate 

granule cell layer after CCI mice were perfused transcardially with a 0.15M sodium 

phosphate buffer followed by 4% paraformaldehyde fixative solution (0.15M sodium 

phosphate buffer) 14 days post-injury. The brain was removed, placed in fixative 
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overnight, and then transferred to a 30% sucrose solution in PBS until the tissue 

equilibrated. Brains were covered in OCT compound and sectioned serially at on a 

cryostat (-22oC) at 30 µm. Sections were stained with cresyl violet (i.e., every 6th section 

in series). Sections were imaged using a SPOT RT camera (Diagnostic Instruments; 

Sterling Heights, MI) mounted on an upright microscope (BX-40; Olympus) and dentate 

granule cell area measurements were made using ImageJ software. Images were taken at 

4x and 10x magnification to capture the entire dentate gyrus. After scaling the ImageJ 

software, the cresyl violet-stained dentate granule cell layer was traced freehand and the 

area measured. The area measurements were assessed from -1.22 to -3.52 posterior to 

bregma. Each animal received an averaged area measurement from this region of 

hippocampus which was then averaged per experimental group.  

Fluoro-Jade B (FJB) staining: Mice were perfused transcardially with a 0.15M sodium 

phosphate buffer followed by 4% paraformaldehyde fixative solution (0.15M sodium 

phosphate buffer) 3 days post-injury. The brain was removed, placed in fixative 

overnight, and then transferred to a 30% sucrose solution in PBS until the tissue 

equilibrated. Brains were covered in OCT compound and sectioned serially at on a 

cryostat (-22oC) at 30 µm. FJB protocols used were similar to those reported previously 

(Hall et al., 2008). In brief, tissue sections were mounted on slides, and treated with a 

solution of 1% NaOH in 80% ethanol for 5 min followed by 70% ethanol (2 min) and 

distilled water (2 min). Sections were then incubated in a 0.06% permanganate solution 

for 10 min on a rotating stage, rinsed in distilled water (3 min) and incubated in a 

0.0004% solution of FJB (Histo-Chem Inc., Jefferson, AR; 10 min). They were then 
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rinsed in distilled water and air dried before being placed on a 50oC slide warmer for 30 

min. They were then placed in xylene for 20 min and coverslipped in permount. 

Slice preparation: Slices used for electrophysiological studies were obtained from mice 

8-13 weeks post-CCI injury.  Mice were deeply anesthetized by isoflurane inhalation to 

effect (i.e. lack of tail pinch response) and decapitated while anesthetized. The brain was 

removed and placed in ice-cold (2-4oC) oxygenated artificial cerebrospinal fluid (ACSF) 

containing, in mM: 124 NaCl, 3 KCl, 1.3 CaCl2, 26 NaHCO3, 1.3 MgCl2, 11 glucose and 

1.4 NaH2PO4 equilibrated with 95% O2-5% CO2 (pH 7.2-7.4). Brains were blocked and 

glued to a sectioning stage, and 350 µm-thick slices were cut in the coronal or horizontal 

plane in cold, oxygenated ACSF using a vibrating microtome (Vibratome Series 1000; 

Technical Products International, St. Louis, MO). The hippocampus was isolated from 

surrounding tissue, making sure to completely remove the entorhinal cortex. Slices were 

transferred to a chamber containing oxygenated ACSF at 32-34oC, where they were 

equilibrated for at least one hour prior to recording. Slices of the septal and temporal 

hippocampus from the hemispheres ipsilateral and contralateral to CCI injury were used 

in these experiments and compared to comparable slices from sham-injured mice (i.e., 

craniotomy, but no impact injury). 

Extracellular field potential recordings: Field potential recordings were obtained from 

the granule cell layer of the dentate gyrus in horizontal slices. Slices were placed into a 

submersion type recording chamber (RC21-BW, Warner Instruments, Hamden, CT) on 

an upright, fixed stage microscope (Olympus BX50WI, Center Valley, PA) and 

continuously perfused with oxygenated, nominally Mg2+ free ACSF containing 30 µM 

bicuculline to block GABAA receptors, and unmask recurrent excitation (Winokur et al., 
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2004;Hunt et al., 2009). Extracellular recording electrodes were filled with 1 M NaCl and 

placed near the apex of the dentate granule cell layer. A concentric bipolar electrode 

made of platinum-iridium wire (125 µm, FHC Inc., Bowdoinham, ME) was used to apply 

a single stimulus to the mossy fiber pathway at 0.1 Hz.  Stimulus intensity was adjusted 

to evoke a population response of ~50% maximum amplitude after a single stimulus.  

Electrical signals were recorded using an Axopatch 200B amplifier (Axon Instruments, 

Sunnyvale, CA), low pass filtered at 2-5 kHz, digitized at 20 kHz using a 1322A Digidata 

(Axon Instruments), and analyzed on a PC computer using pClamp 10.2 (Clampfit, 

Molecular Devices, Sunnyvale, CA).  The number of population spikes following 

antidromic stimulation of mossy fibers in the hilus was measured as described previously 

(Hunt et al., 2009). 

Whole cell recordings: Coronal hippocampal slices containing the dorsal third of the 

dentate gyrus were transferred to a recording chamber on an upright, fixed-stage 

microscope equipped with infrared, differential interference contrast optics (i.e., IR-DIC; 

Olympus BX50WI), where they were perfused with continuously warmed (32-34oC) 

ACSF.  Recordings were performed from dentate granule cells, which were identified 

using DIC imaging. Recording pipettes were pulled from borosilicate glass (1.65 mm 

outer diameter, 0.45 mm inner diameter; King Precision Glass, Claremont, CA) with a P-

87 puller (Sutter Instrument, Novato, CA). The intracellular solution contained (in mM): 

130 K+- or 140 Cs+-gluconate, 1 NaCl, 5 EGTA, 10 HEPES, 1 MgCl2, 1 CaCl2, 3 KOH or 

CsOH, and 2 ATP, with an osmolarity range of 275-283 mOsm/kgH2O.  Open tip series 

resistance was 2-5 MΩ. Recordings were obtained using an Axon 200B or 700B 

amplifier (Molecular Devices), low-pass filtered at 5-6 kHz, digitized at 20 kHz with a 
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1332A Digidata or Digidata 1550A (Molecular Devices), and acquired using pClamp 

10.2 or 10.5 programs (Clampfit, Molecular Devices). Cells were voltage-clamped at -

70mV or 0mV for 5-10 min to allow equilibration of pipette and intercellular solutions 

prior to data collection, after which time whole-cell patch-clamp recordings of 

spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory 

postsynaptic currents (sIPSCs) were obtained.  All sEPSCs and sIPSCs were assessed 

over a 2-3 min period to assess frequency; amplitude was measured only from unitary 

events. Although the investigator was not blinded to experimental group for 

electrophysiological experiments, the investigator was blinded to experimental group for 

all offline data analyses. 

Pharmacology: The following agents were added to the ACSF for some experiments: 

bicuculline methiodide (30 µM; Tocris Biosciences), kynurenic acid (1mM; Sigma-

Aldrich), 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride (THIP; 

gaboxadol; 3 µM; Sigma-Aldrich), 4-Methoxy-7-nitroindolinyl-caged-L-glutamate (i.e. 

MNI-caged glutamate; 250µM; Tocris, Minneapolis, MN), and tetrodotoxin (TTX; 1µM, 

Tocris Biosciences). 

Glutamate photostimulation: Slices were perfused with MNI-caged glutamate (250µM; 

Tocris, Minneapolis, MN) added to recirculating ACSF. Brief pulses of fluorescent light 

(30ms exposure; UV filter; Chroma Technology, Bellow Falls, VT) were directed into the 

slice through the 40X microscope objective (Bhaskaran and Smith, 2010;Hunt et al., 

2010; 2011) with aperture and filter at lowest levels, which reduced the diameter of light 

stimulus to 250 µm. The objective was initially positioned to uncage glutamate directly 



59 
 

over the recorded neuron, which consistently resulted in a large inward current and APs. 

No difference in current amplitude or AP firing evoked by direct stimulation of the 

recorded cell was detected between groups. The effective radius of stimulation (~60µm) 

was determined by manually moving the focal point of the stimulus in three different 

directions away from the recorded neuron until a direct inward current after stimulation 

was no longer observed. The objective was then moved to the DG or CA3 and 

photostimulation was applied focally to stereotyped sites along the DGC layer (tips of 

upper and lower blades, apex, and a midpoint on each blade between tip and apex) and in 

the proximal CA3 region. A series of 5 stimuli were applied per stimulation site at 0.1 

Hz. For analysis, evoked excitatory post-synaptic currents (eEPSCs) were compared in 

the period 200 ms prior to and after the uncaging event to determine evoked response 

(#eEPSCs after stim - #eEPSCs pre-stim).  

Data and statistical analysis: For histological data on cell counts, area measurement, and 

aberrant axon sprouting, data is presented as mean ±SEM (where n’s=animal numbers). 

For cell density measures of FJB and DCX-positive neurons groups were compared using 

a One-way ANOVA followed by Tukey’s post hoc test or Two-way ANOVA followed 

by Bonferroni’s post hoc test for the normally distributed parametric data. To assess 

aberrant axonal sprouting measured by Timm scores a Kruskal-Wallis ANOVA with 

Dunn’s post hoc comparisons was performed, due to this outcome measure being semi-

quantitative nonparametric data. Data analysis was performed using ImageJ and 

Graphpad (La Jolla, CA).  

Electrophysiology measurements included sEPSC frequency, sEPSC amplitude, 

antidromic stimulation responses, sIPSC frequency, resting and THIP-induced tonic 
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GABAAR currents, whole cell capacitance, and evoked responses to glutamate 

photoactivation. For electrophysiology measurements data analysis was performed using 

pClamp 10.2 and 10.5 software (Molecular Devices), MiniAnalysis 6.0.3 (Synaptosoft; 

Decatur, GA) and Graphpad (La Jolla, CA) software programs. To measure sIPSC or 

sEPSC frequency, a 3 minute sample of the baseline recording was used. Only events 

with three times the amplitude of root mean squared baseline noise were included. Events 

characterized by a typical fast rise phase and exponential decay were automatically 

detected and then manually verified in MiniAnalysis. Event frequency, mean amplitude, 

whole cell capacitance, and kinetics were averaged across neurons (i.e. n= neurons) and 

groups were compared using a One Way ANOVA followed by Tukey’s post hoc tests for 

these normally distributed parametric data. Data are expressed as mean ±SEM. 

Antidromic stimulation data are expressed as percentage of slices which responded to the 

stimulation with multiple depolarization population spikes. These data were compared 

using a Chi-square test because these are nonparametric nominal data. Resting or THIP-

induced tonic current measures were made by subtracting averaged holding current 

measures from unitary events during baseline or THIP application from bicuculline 

holding current measures and normalized to whole cell capacitance. Data are expressed 

as mean ±SEM and groups were compared using a One Way ANOVA followed by 

Tukey’s post hoc tests for these normally distributed parametric data. For 

photostimulation data analysis, eEPSCs were compared in the period 200 ms prior to and 

after the uncaging event to determine evoked response (#eEPSCs after stim - #eEPSCs 

pre-stim). A series of 5 stimuli were applied per stimulation site at 0.1 Hz. The average 

response of the 5 stimuli was recorded per site. The mean glutamate photostimulation 
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evoked response for all sites of each group is reported as well as ratio of responding and 

non-responding sites. This data was compared using Kruskal-Wallis ANOVA with 

Dunn’s post hoc tests because this was nonparametric data.  

Any variation to these methods is described in an additional methods section for the 

chapter in which they were used.
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Chapter 3: Effects of rapamycin treatment on neurogenesis and synaptic 

reorganization in the dentate gyrus after controlled cortical impact injury in mice 

 

This chapter was published in Frontiers in Systems Neuroscience. Nov. 2015; 9 (163). 
Jeffery A. Boychuk and Bret N. Smith are additional authors for this paper, and this 
chapter is similar to the published manuscript. Some additions/modifications to the text 
and figures have been made for clarity of information. 

 

3.1 Introduction 

Traumatic brain injury (TBI) can result in post-traumatic epilepsy (PTE) in a 

significant proportion of moderate to severe TBI patients, and PTE accounts for about 

20% of symptomatic epilepsies (Caveness et al., 1979;Annegers et al., 1998;Englander et 

al., 2003). PTE most commonly manifests as neocortical or temporal lobe epilepsy (Diaz-

Arrastia et al., 2000;Hudak et al., 2004). Preventative therapies for PTE have been largely 

ineffective or have had varying outcomes depending on the type of epilepsy, leaving 

~30% of PTE patients intractable to medical therapies (Temkin et al., 1998;Temkin et al., 

2001;Temkin, 2009). One treatment proposed to prevent PTE in mice is the use of the 

mammalian target of rapamycin (mTOR) inhibitor rapamycin after injury (Guo et al., 

2013). Rapamycin has shown promise in reducing aberrant axonal sprouting and some 

forms of epileptogenesis, but its effectiveness in preventing seizures in models of 

acquired epilepsy has been inconsistent (Zeng et al., 2008;Buckmaster and Wen, 

2011;Guo et al., 2013;Heng et al., 2013). Studies of rapamycin effects in chemical 

convulsant models of TLE indicated that rapamycin reduced or eliminated mossy fiber 

sprouting, but did not prevent spontaneous seizures (Buckmaster and Wen, 2011;Heng et 

al., 2013). Rapamycin suppressed the development of PTE in mice after controlled 
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cortical impact (CCI) injury, but mossy fiber sprouting recurred after cessation of 

treatment (Guo et al., 2013). Although mossy fiber sprouting is a hallmark of TLE in 

animal models and in patients, its causative association with epilepsy development is still 

controversial and functional outcomes of rapamycin treatment on synaptic reorganization 

in models of acquired epilepsy are not well described. 

Expanding our understanding of how rapamycin treatment exerts its disease-

modifying effects in a model of PTE may identify key antiepileptogenic components of 

mTOR inhibition and guide future treatments and therapeutics for PTE.  The 

mechanism(s) by which mTOR inhibition may alter epileptogenesis, however, are not 

fully described. Some of the known biochemical and structural cellular effects of 

increased mTOR signaling include increased protein synthesis, cell growth, and cell 

proliferation, which may contribute to several outcomes associated with both TBI and 

TLE, including mossy fiber sprouting, recurrent excitation of dentate granule cells, and 

enhanced neurogenesis in the dentate gyrus (Buckmaster and Dudek, 1997b;Parent and 

Lowenstein, 1997;Winokur et al., 2004;Parent et al., 2006). Selective genetic 

upregulation of mTOR activity in newborn granule cells leads to an epilepsy phenotype 

(Hester and Danzer, 2013), and increased adult neurogenesis has been hypothesized to 

contribute substantially to epileptogenesis (Parent et al., 2006;Kron et al., 2010). In this 

study, we investigated cellular, electrophysiological, and disease modifying effects of 

rapamycin treatment after CCI in mice, a model of PTE (Hunt et al., 2009; 2010; 

2011;Hunt et al., 2012;Guo et al., 2013).  We tested the hypothesis that continual 

rapamycin treatment after CCI injury reduces post-injury neurogenesis, mossy fiber 



64 
 

sprouting, and synaptic reorganization in the dentate gyrus, which may correlate with 

reduced seizure expression. 

3.2 Methods 

Cell counts: FJB labeling was performed on sections from mice 3 days post-

injury. Numbers of FJB-labeled neurons were counted between -1.22 to -3.52 mm from 

bregma in the upper and lower blade of the dentate granule cell layer and the hilus at 20x 

and 40x magnification (Olympus, BX40) by an investigator blinded to animal treatment. 

For figures, representative images were taken at 4x and 10x magnification to display the 

whole dentate gyrus. FJB labeling was normalized to the area of the dentate gyrus and 

hilus obtained from sections adjacent to those used for FJB labeling. These adjacent 

sections were Nissl stained and area measurement included the dentate granule cell layer 

and the hilus inside the region outlined by a line around the outer edge of the granule cell 

layer and connecting the tips of the dentate granule cell layer with the most proximal 

point of the CA3 pyramidal cell layer using ImageJ software. For each animal, cell 

density was calculated per section and then averaged across the entire hippocampus to 

obtain an overall measure of cell density. Additionally, cell density was measured as a 

function of distance from bregma. For these measurements tissue sections were placed in 

anatomical order using a mouse brain atlas (Paxinos and Franklin, 2001) and cell density 

was averaged for each animal at each anatomical location. 

DCX-immunolabeled sections were obtained from mice perfused 14 days after 

injury. Numbers of DCX-immunolabeled dentate granule cells were counted between -

1.22 to -3.52 mm from bregma in the upper and lower blade of the dentate granule cell 
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layer at 20x and 40x magnification (Olympus, BX40) by an investigator blinded to 

animal treatment. For figures, representative images were taken at 4x and 10x 

magnification to display the whole dentate gyrus. DCX cell counts were normalized to 

the dentate granule cell area measured from DAPI counterstain of immunolabeled 

sections. Area measurement included only included the dentate granule cell layer and was 

outlined by tracing in ImageJ. Cell density for DCX-immunolabeling was measured the 

same as described for FJB-labeled neurons, both across the hippocampus measured and 

subdivided into anatomical locations. 

  Methods used in Chapter 3 also include: traumatic brain injury, rapamycin 

injection, seizure observations, Timm staining, immunohistochemistry, dentate granule 

cell layer area, FJB staining, slice preparation, extracellular field recordings, and whole 

cell recordings described in Chapter 2 of this dissertation. 

 

3.3 Results 

We compared cellular and behavioral outcomes (i.e., FJB staining, DGC area, 

DCX staining, mossy fiber sprouting, field potential responses, sEPSC frequency, and 

seizures) in the dentate gyrus of mice from sham-injured, CCI-injured with vehicle 

treatment, and CCI-injured with rapamycin treatment (3 or 10 mg/kg). For cellular 

outcomes, each hemisphere was assessed independently for all groups. Initial 

comparisons between hemisphere from sham-injured mice and the hemisphere 

contralateral to CCI injury in vehicle- and rapamycin-treated mice indicated there were 

no differences in the cellular outcomes for these groups. Data from sham and 
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contralateral hemisphere were compared using a One-way ANOVA for normally 

distributed parametric data, or Kruskal Wallis/Chi-square statistic for non-parametric 

data, and significance was set at p < 0.05. No significant differences were found for any 

measure between sham-injured mice and those made in the hemisphere contralateral to 

CCI injury (p>0.05). For each analysis of cellular outcome, these groups were therefore 

combined as a single control group for clarity of presentation. Table 3.1 compares results 

of measurements from both hemispheres after sham surgery with results from the 

hemisphere contralateral to CCI injury in mice treated with vehicle or rapamycin. 

Table 3.1. Measures from sham operated mice (both hemispheres) and the 
hemisphere contralateral to injury after CCI in mice treated with vehicle or 
rapamycin. 

 

3.3.1 Behavioral seizure monitoring  

Subsets of mice were monitored for behavioral seizures after severe (1.0 mm 

depth) unilateral CCI injury from 6-10 weeks post-injury (6 hr/week) to qualitatively 

assess spontaneous seizure development. Consistent with previous reports, four of 10  

mice (40%) that received CCI injury and vehicle treatment displayed spontaneous 

seizures during this period post-injury (Hunt et al., 2009; 2010;Guo et al., 2013). All 

were S2 seizures with tail stiffness and freezing for more than 30 seconds. One of 12 
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mice (8%) in the low-dose (3mg/kg) rapamycin-treated group and one of 11 mice (9%) in 

the high-dose (10 mg/kg) rapamycin-treated group were observed to have spontaneous 

seizures (all category S2). Although numerically lower in the rapamycin treatment 

groups, and a trend toward reduced seizures was apparent, the prevalence of observed 

seizures in CCI injured mice with no treatment and CCI injured mice with rapamycin 

treatment was not significantly different using a Chi-square test of probability (3mg/kg, 

p=0.078; 10mg/kg, p=0.097). These data indicate that mTOR activity may influence 

seizure development after CCI in some cases, but mTOR inhibition is not sufficient to 

prevent epileptogenesis after CCI injury in all mice. 

 

3.3.2 Fluoro-Jade B (FJB) labeling  

Regional cell loss (i.e., dentate gyrus, hilus, and CA3 pyramids) in the 

hippocampus is a common feature after TBI (Lowenstein et al., 1992;Hicks et al., 

1993;Smith et al., 1995).  The role of mTOR in neuronal death and survival after TBI has 

been controversial (Guo et al., 2013;Tanaka et al., 2013). This is likely due to the 

complex role mTOR plays in the balance of autophagy and apoptosis after injury. Based 

on previous reports, FJB staining in the ipsilateral hemisphere peaks following CCI 

injury in the first 3 days after injury (Anderson et al., 2005). We therefore measured FJB 

staining at 72 hrs post-CCI injury to evaluate this peak FJB staining. Representative 

images of FJB stained sections from CCI-injured mice treated with vehicle, low-dose 

rapamycin (3mg/kg), and high-dose rapamycin (10mg/kg) in hemispheres ipsilateral to 

the injury are shown in Figure 3.1A. The granule cell layer and hilus of mice with CCI 
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injury + vehicle (309.1 ±37.8 FJB-positive cells/mm2; n=7), CCI + low-dose rapamycin 

(256.6 ±27.3 FJB-positive cells/mm2; n=6), and CCI + high-dose rapamycin (238.6 ±27.0 

FJB-positive cells/mm2; n=7) treatment displayed significantly more FJB-labeled cells 

ipsilateral to injury than contralateral controls (7.38 ±0.73 FJB-positive cells/mm2; n=20; 

One-way ANOVA; F(3,37)= 66.58, p<0.0001; Tukey’s, p<0.0001 control vs CCI ipsi, 

p<0.0001 control vs CCI+Rapa(3) ipsi, p<0.0001 control vs Rapa(10) ipsi; Fig. 3.1B). 

There was no difference in the density of FJB-labeled cells between the ipsilateral 

hemispheres of vehicle- or rapamycin-treated mice after CCI injury (p>0.05). 

 Previously, rapamycin treatment was reported to reduce FJB staining in one 

region of the dentate gyrus (Guo et al., 2013), so we investigated FJB staining throughout 

the septo-temporal dentate gyrus and hilus at 180 µm intervals. Using a Two-Way 

ANOVA we found an interaction effect of FJB labeling between the groups measured at 

these anatomical locations (Two-way ANOVA; F(18,224)=7.715, p<0.0001). We 

therefore investigated the differences between the treatment groups at these anatomical 

locations, particularly noting reduction of FJB labeling within the rapamycin treated 

groups as previously described (Guo et al., 2013). We found only 2 intervals in which 

FJB staining in CCI-injured mice treated with high dose rapamycin was reduced in the 

ipsilateral hemisphere relative to CCI + vehicle (Bonferroni, p=0.0451 CCI+Rapa(10) 

ipsi vs CCI ipsi at -2.64 to -2.82, p=0.0026 CCI+Rapa(10) ipsi vs CCI ipsi at -3.00 to -

3.18; Figure 3.1C). These locations were between -2.62 to -3.18 mm from bregma, which 

is ~1 mm posterior to injury epicenter (Fig 3.1C). There was no significant reduction in 

FJB staining at any other location along the hippocampal axis after CCI injury in 
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rapamycin-treated mice and FJB labeling was significantly increased relative to controls 

at all septo-temporal locations. 

 

Figure 3.1. Fluoro-Jade B labeling in dentate gyrus 3 days after control treatment, 
CCI or CCI with daily rapamycin administration. A. Representative images of 
Fluoro-Jade B (FJB) labeling from four different groups: control, ipsilateral to CCI injury 
+ vehicle (CCI Ipsi), ipsilateral to CCI injury + rapamycin at 3 mg/kg (CCI+Rapa(3) 
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Ipsi), and ipsilateral to CCI injury + rapamycin at 10 mg/kg (CCI+Rapa(10) Ipsi).  B. 
Mean FJB labeling in control, CCI Ipsi, CCI+Rapa(3) Ipsi, and CCI+Rapa(10) Ipsi 
groups. FJB-positive cell density (cells/mm2) was averaged across coronal slices from -
1.22 to -3.52 mm from bregma. All CCI ipsilateral hemispheres exhibited increased FJB-
positive cell density relative to controls. No significant difference was observed after CCI 
injury between vehicle- and rapamycin-treated mice. C. FJB-positive cells/mm2 as a 
function of distance from bregma along the septo-temporal axis of hippocampus.  The 
CCI+Rapa(10) group exhibited reduced FJB-positive cell density only in a limited region 
of posterior hippocampus relative to CCI + vehicle treatment. Error bars indicate SEM; 
asterisk (*) indicates p <0.05. 

 

3.3.3 Dentate granule cell layer area 

Both cell death and cell proliferation are common features in the dentate granule 

cell layer following injuries such as TBI and seizures (Parent et al., 1997;Rola et al., 

2006;Carlson et al., 2014). After TBI in rodents, a reduction in dentate granule cell count 

or area has been observed early (48 hr.) after injury (Smith et al., 1995). This reduction 

persists for up to 7 days (Witgen et al., 2005) and is alleviated by 2 weeks post-injury 

(Grady et al., 2003), suggesting cell proliferation compensates for early cell loss after 

injury. To test the effect of rapamycin on dentate granule cell layer thickening at a time 

point corresponding to its restoration after CCI injury, dentate granule cell layer area was 

measured 14 days after injury in Nissl stained sections from control (0.125 ±0.006 mm2; 

n=35; Fig. 3.2B), CCI with vehicle (0.110 ±0.009 mm2; n=8; Fig 3.2B), CCI with low-

dose rapamycin treatment (0.094 ±0.010 mm2; n=6; Fig. 3.2B), and CCI with high-dose 

rapamycin treatment (0.093 ±0.005 mm2; n=7; Fig. 3.2B). Representative images of Nissl 

stained sections are shown in Figure 3.2A. The overall One-way ANOVA indicated a 

significant change in dentate granule cell area among the experimental groups (One-way 

ANOVA; F(3,41)=6.476, p=0.0003; Fig. 3.2B) Rapamycin treatment resulted in a 

significant reduction of DGC layer area ipsilateral to the injury relative to control 



71 
 

(Tukey’s, p=0.0053 control vs CCI+Rapa(3) ipsi, p=0.0007 control vs CCI+Rapa(10) 

ipsi; Fig. 3.2B). There was a trend toward decreased granule cell layer area after CCI, but 

a significant change was not detected (Tukey’s, p=0.0846).  

 

Figure 3.2. Dentate granule cell area 14 days after injury in mice from control, CCI-
injured, and CCI-injured with rapamycin treatment. A. Representative images of 
Nissl stained sections ipsilateral to injury from the four different treatment groups: sham-
operated control, CCI injury + vehicle (CCI Ipsi), CCI injury + 3 mg/kg rapamycin 
(CCI+Rapa(3) Ipsi), and CCI injury + 10 mg/kg rapamycin (CCI+Rapa(10) Ipsi). 
Hippocampal sections were from similar anterior-posterior coordinates. B. Mean dentate 
granule cell area from Nissl stained sections in control, CCI Ipsi, CCI+Rapa(3) Ipsi, and 
CCI+Rapa(10) Ipsi groups. Scale bar indicates 0.5 mm. Error bars indicate SEM; asterisk 
(*) indicates p <0.05. 
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3.3.4 Doublecortin (DCX) immunolabeling  

Shortly after CCI injury there is an initial decrease in DCX expression ipsilateral 

to injury, but from days 7 to 14 after injury an increase in DCX expression ipsilateral to 

the injury has been reported (Dash et al., 2001;Rola et al., 2006;Barha et al., 2011). This 

proliferation of newborn dentate granule cells after injury or status epilepticus has been 

proposed to contribute substantially to epileptogenesis (Parent et al., 2006;Hester and 

Danzer, 2013;LaSarge et al., 2015). Therefore, DCX expression was examined 14 days 

after injury in control mice (n=29), vehicle-treated CCI-injured mice (n=6), CCI-injured 

mice with low-dose rapamycin treatment (n=5), and CCI-injured mice with high-dose 

rapamycin treatment (n=6). Figure 3.3A shows representative images of DCX staining 

from the dentate gyrus ipsilateral to the injury (or sham surgery) in these groups. The 

overall One-way ANOVA indicated a significant change in DCX immunolabeling among 

the experimental groups (One Way ANOVA; F(3,39)=4.838, p=0.0059)In the ipsilateral 

hemisphere, a significant increase in DCX expression was observed in vehicle-treated 

CCI-injured mice relative to controls (Control: 730.04 ±51.71 DCX-positive cells/mm2; 

CCI: 1154.15 ±114.00 DCX-positive cells/mm2; Tukey’s; p=0.0081; Fig. 3.3B). The 

relative increase in DCX expression after CCI was observed up to ~1.5 mm temporal to 

the injury epicenter (Fig. 3.3C).  Rapamycin treatment after CCI injury significantly 

reduced DCX expression to levels similar to control (rapamycin 3mg/kg: 653.94 ±85.99 

DCX-positive cells/mm2, p=0.6098 control vs CCI+Rapa(3) ipsi, p=0.0081 CCI ipsi vs 

CCI+Rapa(3) ipsi; rapamycin 10mg/kg: 728.51 ±117.2 DCX-positive cells/mm2, 

p=0.8848 control vs CCI+Rapa(10) ipsi, p=0.0267 CCI ipsi vs CCI+Rapa(10) ipsi; Fig. 
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3.3B). These results are consistent with an inhibitory effect of rapamycin treatment on 

post-injury neurogenesis. 
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Figure 3.3. Doublecortin (DCX) immunolabeling in dentate gyrus 14 days after 
injury in mice from control, CCI-injured, and CCI-injured with rapamycin groups. 
A. Representative images of DCX expression from four treatment groups: control, CCI 
Ipsi, CCI+Rapa(3) Ipsi, and CCI+Rapa(10) Ipsi.  B. Mean DCX expression in control, 
CCI Ipsi, CCI+Rapa(3) Ipsi, and CCI+Rapa(10) Ipsi groups.  Ipsilateral CCI exhibited 
greater DCX-positive cell density compared to controls. The injury-induced increase in 
DCX-positive cell density in CCI ipsi mice was not observed in either CCI+Rapa 
treatment group. C. DCX-positive cells/mm2 as a function of distance from bregma along 
septo-temporal axis of hippocampus. Scale bar indicates 0.1 mm. Error bars indicate 
SEM; asterisk (*) indicates p <0.05. 

 

3.3.5 Timm staining 

Several weeks after CCI, there is an increase in Timm staining in the inner 

molecular layer of the dentate gyrus ipsilateral to the injury relative to the contralateral 

hemisphere or in sham-treated mice (Hunt et al., 2009; 2010; 2011;Hunt et al., 2012;Guo 

et al., 2013).  Rapamycin treatment for 4 weeks post-injury reduced Timm staining five 

weeks after CCI (Guo et al., 2013). However, as with studies done in the pilocarpine-

induced status epilepticus model of TLE (Buckmaster et al., 2009), mossy fiber sprouting 

recurred after cessation of treatment.  To assess the effects of continuous rapamycin 

treatment on mossy fiber sprouting after injury, Timm staining was examined in control 

mice and in CCI-injured mice treated daily for 8-13 weeks with rapamycin or vehicle. 

Slices used for extracellular field potential recordings, as well as mice perfused for 

histology, were used for Timm staining measurements. There was no significant 

difference between the contralateral hemispheres of any of the groups (all exhibited 

Timm scores <1; Table 3.1).  Figure 3.4A shows representative images of Timm stained 

sections ipsilateral to the injury from control, CCI+vehicle, CCI+rapamycin (3mg/kg), 

and CCI+rapamycin (10mg/kg) treated mice. The overall Kruskal-Wallis test indicated a 
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difference in Timm scores among the experimental groups (Kruskal Wallis stat=41.41, 

p<0.0001). In vehicle-treated mice, Timm scores in hemispheres ipsilateral to CCI injury 

were increased relative to control hemispheres (control: 0.364 ±0.05, n=31; vehicle+CCI:  

2.035 ±0.300, n=12; Dunn’s, p<0.0001; Fig. 3.4B).  In low-dose rapamycin-treated mice, 

Timm scores were reduced (1.275 ±0.315, n=12; Fig 3.4B) ipsilateral to the injury 

relative to vehicle-treated mice after CCI injury (Dunn’s, p=0.025), but remained greater 

than controls (Dunn’s, p<0.0001). Mossy fiber sprouting was not different from controls 

in the high-dose rapamycin treatment group (0.55 ±0.09, n=11; Dunn’s, p=0.145 versus 

control, p<0.0001 versus CCI ipsi; Fig. 3.4B). Although the average mossy fiber 

sprouting score was reduced in mice that received rapamycin treatment, localized areas of 

mossy fiber sprouting into the inner molecular layer were always observed in the dentate 

gyrus of mice that expressed spontaneous behavioral seizures. These data indicated that 

continual rapamycin treatment reduced mossy fiber sprouting after CCI injury and this 

reduction was maintained during treatment for up to 12 weeks. 
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Figure 3.4. Timm staining in the dentate gyrus 8-13 weeks post-injury from sham-
operated control, CCI injured, and CCI-injured with rapamycin treatment groups. 
A. Representative images of Timm staining from the four different groups: control, CCI 
Ipsi, CCI+Rapa(3) Ipsi, and CCI+Rapa(10) Ipsi. B. Mean Timm scores in control, CCI 
Ipsi, CCI+Rapa(3) Ipsi, and CCI+Rapa(10) Ipsi groups. The injured hemisphere of both 
CCI Ipsi and CCI+Rapa(3) Ipsi groups exhibited higher Timm scores relative to the 
control group. Mice receiving rapamycin treatment (10 mg/kg) after CCI had Timm 
scores similar to controls. Error bars indicate SEM; asterisk (*) indicates p <0.05. 
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3.3.6 Network excitability in dentate gyrus  

Increased network excitability (Hunt et al., 2009) and synaptic connectivity 

between granule cells (Hunt et al., 2010) emerge in the dentate gyrus several weeks after 

CCI injury. Antidromically-evoked field potentials following electrical stimulation of the 

hilus were examined in slices perfused with Mg2+ free ACSF with bicuculline (30 µM) 8-

13 weeks after injury. Data are expressed as percent of slices with SEM as multiple slices 

were obtained from individual animals. In these recordings, a single antidromic 

population spike was elicited after hilar stimulation in most slices (29/36) from five 

control animals (Table 3.1; Fig. 3.5A). In contrast, a secondary after discharge was 

observed in most slices (11/14 slices from 9 mice) from the ipsilateral hemisphere of 

vehicle-treated CCI-injured mice (Fig. 3.5A), similar to previous findings in this model 

(Hunt et al., 2009); Chi-square statistic= 15.295; p<0.0001; Fig. 3.5B). Low-dose 

rapamycin treatment reduced, but did not normalize the percentage of slices with 

secondary depolarization in ipsilateral hemisphere (5/9 slices from 8 mice; Chi square 

statistic= 1.3707; p=0.241 versus CCI ipsilateral; Fig 3.5B). In mice treated with high-

dose rapamycin, the percentage of slices ipsilateral to the injury that responded with a 

secondary depolarization (2/10 slices from 10 mice) was significantly lower than for 

vehicle-treated CCI-injured mice (Chi-square statistic= 8.0607; p=0.0045; Fig. 3.5B), and 

was similar to controls (p=0.9687). Notably, 86% of slices from CCI-injured, rapamycin-

treated mice that displayed increased network excitability also exhibited localized mossy 

fiber sprouting near the recording site upon post hoc examination. Overall, rapamycin 

treatment after CCI significantly reduced dentate granule cell network excitability 
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following hilar antidromic stimulation, but excitability was maintained in slices with 

mossy fiber sprouting. 

 

Figure 3.5. Network excitability of dentate granule cells after antidromic electrical 
stimulation 8-13 weeks post-injury. A. Representative traces of field potential 
responses to antidromic hilar stimulation in control and CCI-injured mice. A secondary 
depolarization was often observed in slices ipsilateral to CCI injury (red box indicates 
area of secondary depolarization). B. Percentage of slices ipsilateral to injury that 
displayed secondary depolarization from control, CCI Ipsi, CCI+Rapa(3) Ipsi, and 
CCI+Rapa(10) Ipsi treatment groups.  Error bars represent SEM; * indicates p <0.05 for 
CCI Ipsi relative to control or CCI+Rapa(10).  # indicates p <0.05 for CCI+Rapa(3) Ipsi 
versus control. 
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3.3.7 sEPSCs in DGCs  

Spontaneous EPSCs (sEPSCs) were recorded from dentate granule cells in slices 

from vehicle- and rapamycin-treated mice 8-13 weeks after CCI.  Slices were perfused 

with nominally Mg2+-free ACSF containing 30 µM bicuculline and cells were voltage-

clamped at -70mV (Fig. 3.6A). The overall One-way ANOVA indicated differences in 

sEPSC frequency between experimental groups (One Way ANOVA; F(3,56)= 5.336, 

p=0.0026).  sEPSC frequency was greater in DGCs ipsilateral to CCI injury with vehicle 

treatment relative to controls (control: 0.72 ±0.08 Hz; n=29; CCI: 1.51 ±0.38 Hz, n=14; 

Tukey’s, p=0.0081; Fig. 3.6B).  The increase in sEPSC frequency after CCI injury was 

reduced in rapamycin-treated mice (CCI+rapamycin 3 mg/kg: 1.16 ±0.18 Hz; n=11; 

p=0.187 vs CCI+vehicle; CCI+rapamycin 10mg/kg: 0.67 ±0.30 Hz; n=12; Tukey’s, 

p=0.0267 vs CCI+vehicle).  Relative to controls, however, sEPSC frequency in dentate 

granule cells from rapamycin-treated (3 mg/kg) mice remained significantly elevated 

(Tukey’s, p=0.0154), with no difference between controls and rapamycin treated (10 

mg/kg) mice (Tukey’s, p=0.847). No differences in sEPSC amplitude were found among 

any of the experimental groups (Control: 12.04 ±0.49 pA; CCI+vehicle: 11.12 ±1.09 pA; 

CCI+rapamycin 3 mg/kg: 12.06 ±0.78 pA; CCI+rapamycin 10 mg/kg: 10.84 ±1.54 pA; 

One Way ANOVA, p= 0.6894; Fig. 3.6B). Increased sEPSC frequency was observed 

ipsilateral to the injury after CCI.  Low-dose rapamycin treatment reduced, but did not 

eliminate this increase, whereas sEPSC frequency was similar to controls in mice treated 

with 10 mg/kg rapamycin daily. 
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Figure 3.6. Spontaneous EPSCs (sEPSCs) in dentate granule cells 8-13 weeks post-
injury. A. Representative traces of sEPSCs in dentate granule cells ipsilateral to injury 
from four treatment groups: sham and contralateral control, CCI injury + vehicle (CCI 
Ipsi), CCI injury + 3 mg/kg rapamycin (CCI+Rapa(3) Ipsi), and CCI injury + 10 mg/kg 
rapamycin (CCI+Rapa(10) Ipsi). All recordings were performed in the presence of 
nominally Mg2+-free ACSF containing 30 µM bicuculline. Arrow indicates expanded 
example of a burst of sEPSCs in a dentate granule cell from the vehicle-treated CCI 
group. B. Mean sEPSC frequency and amplitude in the same treatment groups. Error bars 
indicate SEM; asterisk (*) indicates p <0.05. 

 

3.4 Discussion 

Multiple outcome measures associated with epileptogenesis after CCI have been 

established in the dentate gyrus, allowing for mechanistic investigation of cellular events 

subsequent to TBI. Within a few weeks after CCI trauma in mice, sprouting of dentate 

granule cell axons to proximal granule cell dendrites in the inner molecular layer of the 

dentate gyrus (i.e., mossy fiber sprouting) occurs, synaptic reorganization of dentate 
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granule cells is observed near the injury site, and mice develop spontaneous seizures after 

several weeks (Hunt et al., 2009; 2010;Guo et al., 2013). This study focused on the role 

of mTOR signaling in PTE development using the CCI model of TBI. Previous studies 

on the effects of rapamycin treatment in acquired epilepsy models have focused mainly 

on the anatomical phenotype of mossy fiber sprouting and the functional correlation with 

seizure frequency (Buckmaster and Lew, 2011;Guo et al., 2013). However, increased 

mossy fiber sprouting and seizure frequency were noted after cessation of rapamycin 

treatment, suggesting epileptogenic mechanisms that trigger mTOR activity and 

subsequent neurogenesis or other cellular activity post-injury may be sustained, although 

the activity itself is suppressed during rapamycin treatment. To avoid confounds 

associated with reemergence of mTOR activity-related phenotypes after cessation of 

rapamycin treatment, we continued rapamycin treatment daily throughout the duration of 

our experiments. Here, we report that rapamycin treatment after CCI injury inhibits the 

progression of epileptogenesis after focal brain injury in a manner that involves effects on 

several cellular outcomes associated with development of spontaneous seizures after TBI, 

including post-injury neurogenesis, mossy fiber sprouting, and synaptic reorganization in 

the dentate gyrus ipsilateral to the injury. No differences were observed contralateral to 

injury, implying rapamycin alone had little effect compared to uninjured controls. Both 

doses of daily rapamycin treatment (3 and 10 mg/kg) were effective in reducing the 

proportion of mice that developed spontaneous seizures, consistent with effects of an 

intermediate dose (6 mg/kg) administered for four weeks after CCI injury (Guo et al., 

2013). Both rapamycin doses also significantly reduced post-injury neurogenesis in the 

granule cell layer.  Other outcomes, including mossy fiber sprouting and elevated 
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synaptic excitation were reduced, but not abolished by the lower rapamycin dose, but 

were abrogated by the high-dose regimen.  Granule cell layer area and FJB staining 

measurements indicated that neither rapamycin dose significantly reduced overall 

neuronal death after CCI, but cell death was reduced by the high dose regimen at a 

specific site along the septo-temporal hippocampal axis. The lack of effect on cell death 

is consistent with the re-emergence of spontaneous seizures after cessation of rapamycin 

treatment in previous reports and suggests that important components of the underlying 

injury that triggers the eventual development of epilepsy are not abrogated by mTOR 

inhibition, even though several other cellular correlates of epileptogenesis are suppressed 

during high-dose rapamycin treatment. 

3.4.1 Newborn neurons 

The continual adult generation of selective neuron populations, including within 

the subgranular zone (SGZ) of the hippocampus (Altman and Das, 1965b;Eriksson et al., 

1998), remains one of the least well understood types of experience-dependent brain 

plasticity. Adult neurogenesis has been proposed to either decrease (Gould and Tanapat, 

1997;Rola et al., 2006) or increase after TBI (Liu et al., 1998;Parent et al., 1998;Dash et 

al., 2001;Arvidsson et al., 2002;Chirumamilla et al., 2002), and markers of adult 

neurogenesis are diminished if rapamycin is administered pre-SE (Zeng et al., 2009), 

suggesting effects of rapamycin on proliferation and/or survival of newborn neurons. 

Two weeks post-injury, we identified an increase in DCX-positive cell density in the 

dentate gyrus ipsilateral to the injury, consistent with previous reports linking seizures 

with increased adult neurogenesis (Parent et al., 1997;Parent et al., 1998;Parent et al., 

2006). 



83 
 

Both rapamycin doses used in this study suppressed post-injury neurogenesis in 

association with diminished seizure prevalence, consistent with the hypothesis that 

mTOR inhibition is associated with decreased adult neurogenesis. Little is known about 

the role immature dentate granule cells play in the functional connectivity of the 

hippocampal circuit after brain injury, but several studies have linked seizure-associated 

synaptic reorganization to abnormal connectivity of newborn neurons. The hypothesis 

that newborn dentate granule cells contribute selectively to synaptic reorganization and 

epileptogenesis has been proposed (Kron et al., 2010). Genetic enhancement of the 

PI3KAKTmTOR pathway by deletion of PTEN (i.e., transgenic phosphatase and 

tensin homolog), specifically in neural progenitors, is sufficient to increase adult 

neurogenesis (Amiri et al., 2012) and cause development of spontaneous seizures (Pun et 

al., 2012;Hester and Danzer, 2013;LaSarge et al., 2015).  Further, mTOR inhibition with 

rapamycin attenuates development of seizures in PTEN knockout mice (Sunnen et al., 

2011), implicating the mTOR-mediated modulation of adult neurogenesis in the 

development of acquired epilepsy. Interestingly, and perhaps paradoxically, increased 

mTOR activation has been proposed as a means of diminishing injury and improving 

cognitive recovery after TBI in patients (Don et al., 2012), whereas use of rapamycin to 

suppress mTOR activity post-TBI has been proposed to prevent or suppress 

epileptogenesis (Guo et al., 2013). A better understanding of the contribution of newly-

born neurons to adult brain function in healthy and disease states appears necessary in 

order to optimally utilize mTOR modulation after TBI for cognitive recovery and 

prevention of PTE. 
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3.4.2 Mossy fiber sprouting  

Synaptic reorganization in the dentate gyrus after CCI injury was also reduced by 

rapamycin treatment. The relationship between modulation of post-injury synaptic 

reorganization and reducing the prevalence of spontaneous seizures in rapamycin treated 

mice is unclear, since the treatment did not completely eliminate either seizures or mossy 

fiber sprouting. This was most apparent at the low dose of rapamycin, where both mossy 

fiber sprouting and seizure prevalence were reduced but not eliminated. It is possible that 

even limited synaptic reorganization is sufficient for seizure expression (Hunt et al., 

2010;Pun et al., 2012). The general failure of many studies to quantitatively link post-

injury mossy fiber sprouting with spontaneous seizures, along with recent studies 

showing that seizures develop in the absence of robust mossy fiber sprouting in the 

pilocarpine-induced status epilepticus model of epilepsy after rapamycin treatment, have 

led to the suggestion that mossy fiber sprouting and spontaneous seizures are not causally 

linked. However, even when quantitatively reduced in rapamycin treated mice, some 

degree of mossy fiber sprouting was observed in all mice that displayed spontaneous 

seizures here. While no proven causal relationship exists to date, the qualitative presence 

of post-injury mossy fiber sprouting suggests it cannot be excluded as a cellular correlate 

of epileptogenesis. Alternatively, mossy fiber sprouting and synaptic reorganization may 

represent a secondary change associated with epileptogenesis, since rapamycin prevented 

significant mossy fiber sprouting, but not spontaneous seizures, in rapamycin treated 

mice after pilocarpine-induced status epilepticus (Heng et al., 2013). It is also possible 

that the synaptically reorganized dentate gyrus reflects a relatively mature stage of 

epileptogenic circuit formation, whereas other factors that occur in earlier stages of 
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epileptogenesis, including cell loss and adult neurogenesis, contribute to the eventual 

change in connectivity. The cellular triggers of epileptogenesis remain poorly defined. 

However, the association of rapamycin treatment with a reduction in seizure prevalence 

and cellular markers of PTE is consistent with the hypothesis that activation of the mTOR 

pathway plays a role in development of PTE. 

Mice receiving severe unilateral CCI injury begin to develop PTE after a latent 

period of ~6-10 weeks post-injury (Hunt et al., 2009;Guo et al., 2013). The percentage of 

mice reported to develop spontaneous behavioral or electrographically measured seizures 

varies from 36 to 50% (Hunt et al., 2009;Guo et al., 2013). Here 40% of mice receiving 

CCI without drug treatment developed spontaneous behavioral seizures, similar to 

previous reports. Rapamycin treatment (6 mg/kg) for 4 weeks after injury reduced seizure 

prevalence, with 13% of mice expressing electrographically identified seizures (Guo et 

al., 2013). The proportion of mice exhibiting spontaneous behavioral seizures observed 

here was similarly reduced in mice that received either low- or high-dose rapamycin 

treatment in the present study to 8 and 9%, respectively, representing a trend toward 

reduced seizure prevalence. Notably, our behavioral seizure measurements probably 

underestimate the total number of seizures in all groups, due to periodic observation. 

Rapamycin treatment therefore tended to reduce, but did not eliminate, development of 

generalized spontaneous seizures after CCI.  

3.4.3 Network excitability 

 Electrophysiological indices of network excitability are increased in the dentate 

gyrus after CCI, including evoked network responses and sEPSC frequency in dentate 
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granule cells. Commensurate with diminished mossy fiber sprouting, synaptic excitability 

was suppressed in rapamycin treated CCI-injured mice, and was comparable to controls 

with the high dose regimen, although increased network excitability was observed in 

slices where mossy fiber sprouting was present. Others have reported effects of mTOR 

inhibition on mossy fiber sprouting, but assessment of synaptic or network activity has 

not been reported previously. Increased electrophysiological responses are hallmarks of 

synaptic reorganization in excitatory circuitry of the dentate gyrus and are correlated with 

mossy fiber sprouting and development of spontaneous seizures in this and other epilepsy 

models (Dudek and Spitz, 1997;Patrylo and Dudek, 1998;Lynch and Sutula, 

2000;Winokur et al., 2004;Hunt et al., 2009; 2010; 2011;Hunt et al., 2012). Axon 

plasticity after injury or seizures is a feature of many neuron types, and these neurons 

could also contribute to increased sEPSC frequency in dentate granule cells. Although a 

causative link between synaptic reorganization and epilepsy remains controversial, these 

results are consistent with reduced functional synaptic reorganization after CCI injury in 

rapamycin-treated mice. 

3.4.4 Cell death 

 Another hallmark of CCI injury is selective cell loss, particularly in the hilus and 

dentate gyrus (Hicks et al., 1993;Graham et al., 2000;Maxwell et al., 2003;Anderson et 

al., 2005). The use of FJB as a marker to infer cell degeneration and necrotic cell death 

indicates peak cell loss within the first 3 days after CCI injury, with a gradual reduction 

in neuronal degeneration over time (Anderson et al., 2005;Ansari et al., 2008;Hall et al., 

2008). Rapamycin was shown previously to reduce FJB staining in dentate gyrus, CA3, 

and CA1 regions of the hippocampus three days post-injury at a site ~1 mm posterior to 
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epicenter (Guo et al., 2013). Here, we assessed the full septo-temporal axis of the 

hippocampus and found that neither low- nor high-dose rapamycin treatment attenuated 

FJB staining in the dentate gyrus and hilus. Although FJB labeling remained significantly 

greater than in controls, 10 mg/kg rapamycin treatment did attenuate FJB staining relative 

to vehicle treatment after CCI in the ipsilateral hemisphere in the same area (i.e. ~ 1 mm 

from injury epicenter) as previously reported (Guo et al., 2013). This region corresponds 

to the area of greatest cell death in this brain injury model. Together, these results suggest 

the possibility that rapamycin may moderately suppress post-injury neuronal death 

regionally, even if cell death overall in the dentate gyrus and hilus is unaffected by the 

treatment.  

3.4.5 Conclusions 

The findings of this study are consistent with the hypothesis that mTOR inhibition 

reduces synaptic reorganization among granule cells and inhibits post-traumatic 

epileptogenesis after CCI. Continuous rapamycin treatment reduced the percentage of 

mice expressing spontaneous seizures, inhibited measures of synaptic reorganization in 

the granule cell layer, and abrogated the increase in neurogenesis following CCI injury. 

Notably, even the highest dose of rapamycin failed to completely prevent PTE or specific 

cellular changes associated with epileptogenesis, including post-injury cell death, in a 

substantial number of injured mice.  These findings suggest that mTOR inhibition alters 

disease progression, but does not prevent the initiation of epileptogenesis.  The 

relationship between adult neurogenesis, excitatory synaptogenesis, and seizure 

susceptibility remains uncertain in the CCI and other models of acquired epilepsy, but we 

hypothesize that the inhibition of post-injury neurogenesis is a significant feature of the 
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antiepileptogenic effects of rapamycin treatment following CCI injury.  Effects of 

hormones and growth factors that cross the blood brain barrier after injury have been 

attributed to an increase in neurogenesis mediated by mTOR activity, and several studies 

have targeted this mechanism as a therapeutic option to restore cognitive function post-

injury (Lu et al., 2005;Sun et al., 2009;Xiong et al., 2012;Carlson et al., 2014). However, 

the present results imply that potential benefits of increased mTOR signaling might be 

mitigated by the potentially detrimental epileptogenic effects over time. This study 

highlights the need for further work to be done in understanding how newly born dentate 

granule cells integrate and function in the injured hippocampus and how this integration 

is related to both functional recovery after TBI and the potentially increased risk of 

seizure susceptibility. Understanding mTOR’s role in these processes may help define the 

critical features of epileptogenesis and recovery from TBI. 
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Chapter 4: Differential effects of rapamycin treatment on GABAergic inhibition in 
mouse dentate granule cells after focal controlled cortical impact 

 

4.1 Introduction 

 

In cases of moderate to severe TBI, the incidence of spontaneous seizure 

development is ~10 to 30 times higher than those of non-injured patients (Temkin et al., 

1998;Temkin et al., 2001;Temkin, 2009). The development of spontaneous seizures after 

a latent, non-symptomatic post-injury period is referred to as post-traumatic epilepsy 

(PTE) and often manifests as temporal lobe epilepsy (TLE) (Caveness et al., 

1979;Annegers et al., 1998;Diaz-Arrastia et al., 2000;Englander et al., 2003;Hudak et al., 

2004). One of the primary origins for seizure generation in patients with TLE is the 

hippocampus, which is also often affected by TBI (Newcomb et al., 1997;Hall et al., 

2005;Saatman et al., 2006;Hall et al., 2008). After focal TBI in mice, both excitation and 

inhibition of dentate granule cells (DGCs) is altered in conjunction with PTE 

development (Hunt et al., 2009; 2010; 2011). Sprouting of DGC axons into the granule 

cell and inner molecular layer of the dentate gyrus (i.e. mossy fiber sprouting) leads to 

recurrent excitation of DGCs and disrupts the normal information processing of the 

hippocampus. Synaptic inhibition of DGCs is also altered after TBI, and GABAA 

receptors (GABAAR’s) undergo functional changes in models of TBI and 

epilepsy(Mtchedlishvili et al., 2010;Hunt et al., 2011;Raible et al., 2012;Raible et al., 

2015;Boychuk et al., 2016). 

One prominent cell signaling pathway associated with both TBI and 

epileptogenesis is the mammalian target of rapamycin (mTOR). Some of the common 
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biochemical and cellular structure alterations associated with increased mTOR activation 

after TBI are increased protein synthesis and phosphorylation, axon sprouting, cell 

migration, and neurogenesis (Buckmaster and Wen, 2011;Guo et al., 2013;Heng et al., 

2013;Hester and Danzer, 2013;Butler et al., 2015;LaSarge et al., 2015). Previous studies 

of mTOR activation in both TBI and epilepsy models have predominately focused on the 

excitatory circuitry of the hippocampus and, in particular, axonal plasticity of DGCs 

(Buckmaster and Schwartzkroin, 1994;Wuarin and Dudek, 1996;Winokur et al., 

2004;Zeng et al., 2008;Hunt et al., 2009; 2010;Buckmaster and Wen, 2011;Hunt et al., 

2012;Guo et al., 2013;Heng et al., 2013;Hester and Danzer, 2013;Butler et al., 

2015;LaSarge et al., 2015). The effect of mTOR inhibition in TBI and TLE models on 

neuron loss is controversial (Buckmaster and Wen, 2011;Guo et al., 2013;Butler et al., 

2015), but rapamycin treatment suppresses TLE-related morphological changes in hilar 

inhibitory interneurons (Buckmaster and Wen, 2011). Hilar interneuron loss likely 

contributes to altered GABAergic circuitry function and receptor responsiveness after 

TBI (Mtchedlishvili et al., 2010;Hunt et al., 2011;Boychuk et al., 2016), but effects of 

mTOR modulation on inhibitory signaling in the dentate gryus after focal brain injury 

have not been adequately described. We hypothesized that chronic rapamycin treatment 

following CCI injury leads to reduced TBI-induced changes in synaptic and non-synaptic 

inhibition of DGCs in the ipsilateral hemisphere. 

4.2 Methods 

eGFP-positive Hilar Cell Density Measurements: 72 hours after injury, GIN mice were 

anesthetized by isoflurane inhalation to effect (lack of tail pinch response) and perfused 

transcardially with 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH=7.4) 
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while anesthetized. Brains were then removed and placed in fixative overnight, 

equilibrated in 30% sucrose for 48 hours, and sectioned at 30 µm on a cryostat (-22oC). 

1-in-6 serial section series (180 µm between mounted sections) containing the 

hippocampus were mounted in Vectashield with DAPI counterstain (Vector Labs) and 

images were taken on a Zeiss 5 Live confocal microscope (Zeiss; Oberkochen, 

Germany). Hilar area was measured using ImageJ software to trace along the inner 

surface of the upper and lower blades of the dentate gyrus and in a line from the tip of 

each blade of the dentate gyrus to the proximal most point of CA3 pyramidal cell layer. 

Cell counts from each section were divided by this hilar area measure to give enhanced 

green fluorescent protein (eGFP) cell density measures for each section. On average, 15 

serial sections were taken from each animal and cell density measurements were then 

averaged for each animal, divided into dorsal, medial, and ventral thirds of hippocampus 

(i.e. 5 sections per region). Each area covered ~900 µm. The investigator was blinded to 

animal treatment for all cell counts. 

Whole cell recordings: Cells were voltage-clamped at 0 mV for 5-10 min to allow 

equilibration of pipette and intracellular solutions prior to data collection, after which 

time whole-cell patch-clamp recordings of spontaneous inhibitory postsynaptic currents 

(sIPSCs) were obtained. An initial 5 minute baseline recording period was followed by 

the addition of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride (THIP; 

gaboxadol; 3 µM; Sigma-Aldrich) to the ACSF, a super-agonist of GABAAR’s 

containing δ subunits. At the concentration used here (3 µM), THIP selectively targets δ 

subunit-containing, putatively extrasynaptic GABAARs that contribute to the tonic 

GABA current (Ebert et al., 1994;Brown et al., 2002). THIP was applied for 10 minutes 
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and followed by addition of bicuculline methiodide (30 µM; Tocris Bioscience) to the 

ACSF for 8 minutes to eliminate postsynaptic inhibitory currents and measure resting 

tonic current. Recordings exhibiting >25 MΩ (mean= 13.53 ±0.62 MΩ, n=88) series 

resistance or in which series resistance changed by >20% were discarded. 

Data and statistical analysis: Only events with three times the amplitude of root mean 

squared (RMS) baseline noise were included (RMS= 1.59 ±0.05, n=88). Events 

characterized by a typical fast rise phase and exponential decay were automatically 

detected and then manually verified in MiniAnalysis. Tonic current amplitude was 

detected by subtracting mean steady-state holding current values during baseline or 

during THIP application from mean steady-state holding current values in the presence of 

bicuculline methiodide, a competitive antagonist of GABAAR’s.  Tonic current amplitude 

values were normalized to whole cell capacitance (Glykys and Mody, 2007b). 

 Methods used in Chapter 4 of this dissertation also include: traumatic brain injury, 

rapamycin injection, slice preparation, and data analysis, as described previously in 

Chapter 2. 

4.3 Results 

4.3.1 eGFP-positive hilar interneuron counts  

After brain injury, a significant percentage of hilar GABA neurons are depleted 

(Lowenstein et al., 1992;Toth et al., 1997;Santhakumar et al., 2000).  Cell loss following 

CCI injury peaks within the first three days after insult (Anderson et al., 2005). 

Therefore, we measured eGFP-positive cell density at 72 hours post-injury to determine 

the effect of rapamycin on hilar inhibitory interneuron survival after CCI.  Cell density 



93 
 

measurements were made in mice from groups of sham operated controls (n=7 mice), 

CCI injured with vehicle treatment (n=7 mice), and CCI injured with 3 mg/kg rapamycin 

treatment (n=10 mice). Figure 4.1A shows representative images of eGFP-positive hilar 

interneurons with DAPI counterstain in the dorsal, medial, and ventral thirds of the 

hippocampus from sham injured mice and in the hippocampus ipsilateral to CCI injury 

with vehicle or rapamycin treatment. In the dorsal and medial sections of the 

hippocampus, there was an interaction effect between group and hemisphere using a 

Two-way ANOVA (Dorsal; Two-way ANOVA; F(5,40)=20.12; p=0.0033: Medial; Two-

way ANOVA; F(5,40)=10.57; p=0.0005). CCI injured mice with vehicle or rapamycin 

treatment exhibited lower eGFP-positive hilar cell density compared to sham-injured 

controls and hemispheres contralateral to injury in the dorsal (Bonferroni, p<0.0001 

Sham contra vs CCI ipsi, p<0.0001 Sham ipsi vs CCI ipsi, p<0.0001 CCI contra vs CCI 

ipsi, p<0.0001 CCI+Rapa contra vs CCI ipsi, p<0.0001 Sham contra vs CCI+Rapa ipsi, 

p<0.0001 Sham ipsi vs CCI+Rapa ipsi, p=0.0003 CCI contra vs CCI+Rapa ipsi, 

p<0.0001 CCI+Rapa contra vs CCI+Rapa ipsi; Figure 4.1B) and medial (Bonferroni, 

p=0.0025 Sham contra vs CCI ipsi, p=0.0409 Sham ipsi vs CCI ipsi, p=0.0019 CCI 

contra vs CCI ipsi, p=0.0003 CCI+Rapa contra vs CCI ipsi, p=0.0004 Sham contra vs 

CCI+Rapa ipsi, p=0.0159 Sham ipsi vs CCI+Rapa ipsi, p=0.0003 CCI contra vs 

CCI+Rapa ipsi, p<0.0001 CCI+Rapa contra vs CCI+Rapa ipsi; Figure 4.1B) portions of 

the hippocampus (Table 4.1). In the ventral portions of hippocampus there was no 

significant difference among experimental groups, hemispheres, or the interaction of 

these variables (Two-way ANOVA; F(5,40)=0.217,p>0.05; Table 4.1; Figure 4.1B). 

Rapamycin treatment did not alter hilar interneuron survival after focal brain injury in the 
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dorsal or medial portions of the hippocampus compared to vehicle treated mice after CCI 

injury (Bonferroni, p>0.05). These data indicate that rapamycin does not affect the loss of 

eGFP-positive hilar interneurons ipsilateral to CCI injury. Power analysis was performed 

to estimate sample sizes required to detect a significant effect between vehicle and 

rapamycin treated mice after CCI injury. The results of this analysis indicated that sample 

sizes of 44 mice for dorsal and 1563 mice for medial hippocampus would be required in 

order to reach significance. A previous study which did observe reduced FJB labeling 

with rapamycin, indicative of neuroprotection, used 6 mice per group which is lower than 

group sizes in this study (Guo et al., 2013). 

Tabel 4.1. Hilar inhibitory interneuron cell counts 

 

Experimental group Dorsal (cells/mm2) Medial (cells/mm2) Ventral (cells/mm2) 

Sham contra 17.43 ±2.47 

n=7 

27.77 ±5.34 39.89 ±7.16 

Sham ipsi 15.92 ±1.26 

n=7 

24.21 ±7.53 42.23 ±7.89 

CCI contra 12.34 ±3.37 

n=7 

22.66 ±3.72 34.15 ±5.37 

CCI ipsi 3.16 ±0.67 * 

n=7 

6.61 ±1.63 * 29.28 ±7.14 

CCI+Rapa contra 13.02 ±3.41 

n=10 

28.62 ±5.71 35.89 ±5.72 

CCI+Rapa ipsi 5.13 ±0.85 * 

n=10 

7.24 ±2.32 * 36.65 ±3.16 
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Figure 4.1. eGFP-positive cell density 72 hours post-CCI injury.  A. Representative 
images of eGFP-positive cell distribution in the hilus 72 hours post-injury in three 
different groups: ipsilateral to sham injury (Sham), ipsilateral to CCI injury + vehicle 
(CCI Ipsi), and ipsilateral to CCI injury + rapamycin at 3 mg/kg (CCI+Rapa Ipsi) in the 
dorsal, medial, and ventral thirds of hippocampus. B. Representative histograms of mean 
eGFP-positive cell density 72 hours post-injury in ipsilateral to sham injury, CCI injury 
with vehicle treatment, and CCI injury with rapamycin treatment in the dorsal, medial 
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and ventral thirds of hippocampus. In the dorsal and medial thirds, sections ipsilateral to 
CCI injury exhibited decreased eGFP-positive cell density compared to sham and 
contralateral hemispheres. Rapamycin treatment did not alter the reduction in eGFP-
positive cell density.  No difference was observed between any experimental group in the 
ventral third of hippocampus.  Error bars indicate SEM; asterisk (*) indicates p <0.05 
versus sham. 

 

4.3.2 sIPSC frequency in DGCs  

Although it has been shown that rapamycin reduces axon sprouting of eGFP-

positive hilar inhibitory interneurons after pilocarpine treatment in GIN mice 

(Buckmaster and Wen, 2011), it is not known if this is accompanied by altered inhibition 

of DGCs. sIPSC frequency was measured in DGCs from sham-injured mice, CCI-injured 

mice with vehicle treatment, and CCI-injured mice with rapamycin treatment at 1-2 

(sham= 5 mice, CCI+vehicle= 7 mice, CCI+Rapa= 8 mice; Figure 4.2A) or 8-13 weeks 

after injury (sham= 6 mice, CCI+vehicle= 8 mice, CCI+Rapa= 7 mice; Figure 4.2C).  At 

1-2 weeks post-injury, there was no difference in sIPSC frequency among groups in 

DGCs contralateral to injury (Sham contra: 2.43 ±0.22 Hz, n=5 cells, CCI contra: 2.41 

±0.23 Hz, n=9 cells, CCI+Rapa contra: 2.29 ±0.27 Hz, n=12 cells; F(2,24)=0.1112, 

p=0.8953; One-way ANOVA; Figure 4.2B). The overall ANOVA of the sIPSC 

frequency from ipsilateral DGCs did indicate an effect among experimental groups (One-

way ANOVA; F(2,27)=4.112, p=0.0184). DGCs from the ipsilateral hemisphere of CCI 

injured mice with either vehicle or rapamycin treatment exhibited reduced sIPSC 

frequency relative to DGCs from the ipsilateral hemisphere of sham injured mice (Sham 

ipsi: 2.61 ±0.22 Hz, n=6 cells, CCI ipsi: 1.44 ±0.09 Hz, n=9 cells, CCI+Rapa ipsi: 1.39 

±0.26 Hz, n=13 cells; Tukey’s, p<0.0001 Sham ipsi vs CCI ipsi, p=0.0053 Sham ipsi vs 
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CCI+Rapa ipsi; Figure 4.2B), but there was no difference between ipsilateral DGCs from 

vehicle- and rapamycin-treated mice after CCI injury (Tukey’s, p=0.8775). Rapamycin 

treatment therefore did not alter the reduction in sIPSC frequency detected in DGCs 

ipsilateral to CCI injury. 

As at the earlier time point post-injury, there was no difference in sIPSC 

frequency among groups in the contralateral hemisphere 8-13 weeks after injury (Sham: 

2.24 ±0.14 Hz, n=5 cells, CCI contra: 2.13 ±0.25 Hz, n=8 cells, CCI+Rapa contra: 1.71 

±0.38 Hz, n=8 cells; F(2,19)=0.7659, p=0.4803; One-way ANOVA; Figure 4.2D). 

However, the overall ANOVA of the sIPSC frequency from ipsilateral DGCs did indicate 

an effect among experimental groups (One-way ANOVA; F(2,17)=20.38, p<0.0001). In 

CCI-injured mice, DGCs from the ipsilateral hemisphere of vehicle and rapamycin 

treatment groups exhibited reduced sIPSC frequency compared to DGCs from sham-

treated controls 8-13 weeks post-injury, which was similar to the earlier time point (Sham 

ipsi: 2.10 CCI ±0.10 Hz, n=5 cells, CCI ipsi: 1.35 ±0.11 Hz, n=7 cells, CCI+Rapa ipsi: 

0.83 ±0.15 Hz, n=8 cells; Tukey’s, p=0.0003 Sham ipsi vs CCI ipsi, p<0.0001 Sham ipsi 

vs CCI+Rapa ipsi; Figure 4.2D).  Unlike at 1-2 weeks post-injury, there was a significant 

reduction in sIPSC frequency 8-13 weeks after injury in DGCs from the ipsilateral 

hemisphere of rapamycin treated mice compared to the vehicle-treated CCI-injured mice 

(p=0.017). These data indicate that reduced synaptic inhibition in the ipsilateral 

hemisphere observed 1-2 weeks after CCI was not altered by rapamycin treatment. 

However, continued rapamycin treatment for 8-13 weeks further reduced synaptic 

inhibition of DGCs ipsilateral to CCI injury. 
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Figure 4.2. sIPSCs in dentate granule cells (DGCs) at 1-2 and 8-13 weeks post-
injury.  A. Representative traces showing sIPSCs in DGCs 1-2 weeks post-injury in five 
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different groups: sham-operated control, contralateral to CCI injury + vehicle (CCI 
Contra), ipsilateral to CCI injury + vehicle (CCI Ipsi), contralateral to CCI injury + 
rapamycin at 3 mg/kg (CCI+Rapa Contra), and ipsilateral to CCI injury + rapamycin at 3 
mg/kg (CCI+Rapa Ipsi).  B. Representative histograms of mean sIPSC frequency 1-2 
weeks post-injury.  DGCs in the ipsilateral hemispheres exhibited decreased sIPSC 
frequency after CCI relative to sham injury.  No significant difference was observed 
contralateral to injury.  C. Representative traces showing sIPSCs in DGCs 8-13 weeks 
post-injury in the same groups.  D. Representative histograms of mean sIPSC frequency 
8-13 weeks post-injury.  Decreased sIPSC frequency was observed ipsilateral to CCI 
injury, regardless of treatment.  Additionally, CCI+Rapa Ipsi exhibited reduced sIPSC 
frequency relative to CCI Ipsi.  No significant difference was observed in cells from 
contralateral hemispheres after CCI injury.  Error bars indicate SEM; asterisk (*) 
indicates p <0.05 relative to sham; (#) indicates p<0.05 relative to both sham and CCI 
Ipsi. 

 

4.3.3 Tonic GABAAR currents 1-2 week post-injury  

THIP-induced tonic GABAAR-mediated currents in DGCs are altered in rodent models of 

TBI and TLE (Mtchedlishvili et al., 2010;Pavlov et al., 2011;Gupta et al., 2012;Boychuk 

et al., 2016). In mice, resting tonic GABAAR current is not altered after CCI, but the 

THIP- or neurosteroid-induced tonic GABAAR current amplitude is reduced in the 

ipsilateral hemisphere after CCI, and this reduction is sustained for at least 3 months 

(Boychuk et al., 2016). Although synaptic GABAergic transmission was not altered by 

rapamycin treatment 1-2 weeks after injury, it is not known what effect rapamycin has on 

resting or THIP-induced tonic GABAAR mediated currents. Therefore, both resting and 

THIP-induced GABAAR mediated tonic currents were measured 1-2 weeks post injury in 

sham and vehicle- or rapamycin-treated mice after CCI. 

Figure 4.3A shows representative traces of whole-cell recordings of DGCs from 

sham-injured mice, and contralateral and ipsilateral DGCs from CCI-injured mice with 

vehicle or rapamycin treatment. Rapamycin treatment after CCI did not alter resting tonic 
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GABAAR-mediated currents in DGCs from either the contralateral (Table 4.2; p=0.6772; 

F(2,21)=0.3979; One-way ANOVA) or ipsilateral hemisphere (Table 4.2; p=0.5458; 

F(2,22)=0.6242; One-way ANOVA; Figure 4.3A, B). Additionally, there was no change 

in THIP-induced tonic GABA current response of DGCs in the contralateral hemisphere 

of any treatment group (sham contra: 2.98 ±0.57 pA/mF, n=5 cells, CCI+vehicle contra: 

3.11 ±0.50 pA/mF, n=9 cells, CCI+Rapa contra: 3.09 ±0.44 pA/mF, n=8 cells; p=0.9862; 

F(2,21)=0.01388; One-way ANOVA; Figure 4.3C). There was an overall change in 

THIP-induced tonic currents in the ipsilateral DGCs among experimental groups (One-

way ANOVA; F(2,26)=3.560; p=0.0443). Similar to our previous report (Boychuk et al., 

2016), CCI injury resulted in a reduction in the response to THIP in DGCs ipsilateral to 

injury relative to DGCs ipsilateral to sham-injured controls (sham ipsi: 3.08 ±0.42 

pA/mF, n=6 cells, CCI+vehicle ipsi: 1.81 ±0.30 pA/mF, n=9 cells; Tukey’s, p=0.0261 

sham ipsi vs CCI+vehicle ipsi; Figure 4.3C). Rapamycin treatment prevented the 

reduction of THIP-induced tonic GABAAR current amplitude in ipsilateral DGCs 1-2 

weeks after injury (CCI+Rapa ipsi: 3.22 ±0.56 pA/mF, n=10 cells, p=0.8402 relative to 

sham, p=0.0321 relative to CCI+vehicle ipsi; Figure 4.3C). These data indicated that 

rapamycin treatment did not alter resting tonic GABAAR currents following CCI injury, 

but eliminated the reduction in THIP-induced GABAAR current amplitude measured in 

DGCs ipsilateral to CCI injury. 
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Table 4.2. Resting tonic GABA currents in DGCs 

Animal Group 1-2 weeks post injury resting 
tonic current (pA/mF) 

8-13 weeks post-injury resting 
tonic current (pA/mF) 

Sham Contra 0.64 ±0.17, n=5 0.76 ±0.35, n=5 

Sham Ipsi 0.84 ±0.13, n=6 0.79 ±0.34, n=5 

CCI Contra 0.84 ±0.13, n=9 0.89 ±0.14, n=8 

CCI Ipsi 0.72 ±0.15, n=9 0.74 ±0.13, n=7 

CCI+Rapa Contra 0.82 ±0.22, n=8 0.94 ±0.29, n=8 

CCI+Rapa Ipsi 0.92 ±0.14, n=10 0.85 ±0.16, n=8 
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Figure 4.3. Bicuculline- and THIP-sensitive tonic currents in DGCs 1-2 weeks post-
injury.  A. Representative traces from DGCs 1-2 weeks post-injury in five experimental 
groups: sham-injured control (Sham), contralateral to CCI injury + vehicle (CCI Contra), 
ipsilateral to CCI injury + vehicle (CCI Ipsi), contralateral to CCI injury + rapamycin at 3 
mg/kg (CCI+Rapa Contra), and ipsilateral to CCI injury + rapamycin at 3 mg/kg 
(CCI+Rapa Ipsi).  Cells were voltage-clamped at 0 mV; bars under the Sham trace 
indicate times of THIP and bicuculline application during recordings.  B. Mean 
bicuculline-sensitive tonic current density 1-2 weeks post-injury in each experimental 
group.  No significant difference was observed for bicuculline sensitive resting currents 
after injury between any experimental group.  C. Mean THIP-sensitive tonic current 
density in DGCs 1-2 weeks post-injury.  Error bars indicate SEM; asterisk (*) indicates p 
<0.05 relative to sham. 
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4.3.4 Tonic GABAAR currents 8-13 weeks post-injury  

Based on reduced synaptic GABAergic transmission to ipsilateral DGCs 8-13 

weeks after injury and attenuated THIP-induced tonic GABAAR currents 1-2 weeks after 

CCI injury, we tested the effect of chronic rapamycin treatment 8-13 weeks after CCI on 

resting and THIP-induced GABAAR-mediated tonic currents. Figure 4.4A shows 

representative traces of whole-cell recordings of DGCs from sham, and contralateral and 

ipsilateral to CCI injury with vehicle or rapamycin treatment. There was no difference in 

THIP-induced tonic current amplitude in DGCs from the contralateral hemisphere of any 

treatment group (sham contra: 3.43 ±0.33 pA/mF, n=5 cells, CCI contra: 3.79 ±0.39 

pA/mF, n=8 cells, CCI+Rapa contra: 3.34 ±0.38pA/mF, n=8 cells; p=0.6191; 

F(2,22)=0.4912; One-way ANOVA; Figure 4.4C). Similar to a previous report (Boychuk 

et al., 2016), and similar to currents measured 1-2 weeks post-injury, there was an overall 

effect on THIP-induced tonic currents in the ipsilateral DGCs (One-way ANOVA; 

F(2,21)=10.69; p=0.0008). DGCs from the ipsilateral hemisphere of CCI injured mice 

exhibited reduced THIP-induced tonic currents compared to DGCs from the ipsilateral 

hemisphere of sham-operated controls (sham ipsi: 3.83 ±0.37 pA/mF, n=5 cells, CCI ipsi: 

1.69 ±0.23 pA/mF, n=7 cells: Tukey’s, p=0.0009 Sham ipsi vs CCI ipsi; Figure 4.4C). 

Chronic rapamycin treatment for 8-13 weeks after CCI attenuated the reduction in THIP-

induced tonic currents in the ipsilateral hemisphere (CCI+Rapa ipsi: 2.84 ±0.26 pA/mF, 

n=8 cells; p=0.0982 relative to sham, p=0.0064 relative to CCI+vehicle ipsi). There was 

no difference in resting GABAAR-mediated tonic current in DGCs from any treatment 

group contralateral (Table 4.2; p=0.9103; F(2,22)=0.09441; One-way ANOVA; Figure 

4.4B), or ipsilateral to the injury (Table 4.2; p=0.9244; F(2,21)=0.07894; One-way 
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ANOVA; Figure 4.4B). Although resting tonic current was unaltered after CCI or by 

rapamycin treatment post-injury, THIP-induced tonic current amplitude was reduced 

ipsilateral to CCI injury. Rapamycin treatment attenuated this reduction and restored 

tonic inhibition to values similar to controls. This occurred despite diminished synaptic 

inhibition in rapamycin treated mice. 
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Figure 4.4. Bicuculline- and THIP-sensitive tonic currents in DGCs 8-13 weeks post-
injury: A. Representative traces from DGCs 8-13 weeks post-injury in five different 
experimental groups. Cells were voltage-clamped at 0 mV and bars under Sham trace 
indicate THIP and bicuculline application during recordings.  B. Mean bicuculline-
sensitive current density 8-13 weeks post-injury.  C. Mean THIP-sensitive current density 
DGCs 8-13 weeks post-injury.  Error bars indicate SEM; asterisk (*) indicates p<0.05 
relative to Sham. 

 

4.4 Discussion 

Little is known about the effects of rapamycin treatment on GABAergic signaling 

in the dentate gyrus after CCI or in models of epilepsy. Most previous work on the role of 

mTOR modulation in epilepsy and in models of TBI has focused on plasticity of 

excitatory circuitry, including mossy fiber sprouting and synaptic reorganization of 

glutamatergic circuits in the dentate gyrus (Buckmaster et al., 2009;Zeng et al., 2009;Guo 

et al., 2013;Heng et al., 2013;Butler et al., 2015). Although effects of rapamycin 

treatment on hilar inhibitory neuron morphology have been reported (Buckmaster and 

Wen, 2011), mTOR’s role in regulating inhibitory synaptic reorganization or GABAAR’s 

mediating tonic GABA currents in DGCs has not been previously studied. However, 

axon sprouting in surviving inhibitory hilar interneurons could be a mechanism to 

compensate for the loss of GABAergic neurons and their connections to DGCs after 

pilocarpine-induced status epilepticus or TBI. Alternatively, aberrant axon sprouting 

could be a generalized response of injured neurons.  Here, chronic rapamycin treatment 

did not prevent hilar inhibitory neuron cell loss after CCI, and suppressed sIPSC 

frequency to a greater extent than CCI alone by 8-13 weeks post-injury. This is consistent 

with reduced axon sprouting in eGFP hilar interneurons after rapamycin treatment in 

mice with acquired TLE (Buckmaster and Wen, 2011), and could be predicted to further 
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diminish synaptic inhibition of DGCs. Reduced synaptic inhibition after rapamycin 

treatment post-CCI would be inconsistent with an antiepileptogenic effect of the 

treatment. This feature would actually be predicted to increase seizure susceptibility by 

further aggravating the imbalance of excitation and inhibition of DGCs in the ipsilateral 

hemisphere. Additionally, chronic mTOR inhibition in patients with cancer can lead to 

the eventual upregulation of ERK/MAPK/Akt pathways in the cancerous tumors 

(O'Reilly et al., 2006;Tabernero et al., 2008), which can upregulate mTOR complex 2 

and compensate for the rapamycin-induced suppression of mTOR complex 1. Analogous 

compensation may be a consideration in chronic rapamycin treatment for patients with 

epilepsy.   

Synaptic inhibition of DGCs is only one form of inhibitory control, and small 

changes in tonic GABAAR mediated currents may have a large impact on inhibitory 

control of DGCs (Mody and Pearce, 2004;Coulter and Carlson, 2007).  Unlike effects on 

synaptic inhibition, rapamycin attenuated the reduction in THIP-sensitivity seen in DGCs 

ipsilateral to injury at both early and chronic phases post-injury.  Present and previously 

reported results indicate that, while resting tonic current is unaltered by injury or 

rapamycin treatment, the reduction in THIP sensitivity of ipsilateral DGCs from CCI 

injured mice was responsive to mTOR inhibition. A previous study concluded that 

receptor trafficking was affected after CCI to account for the diminished THIP-sensitivity 

in DGCs ipsilateral to injury (Boychuk et al., 2016). This normalized response suggests a 

role for mTOR in receptor trafficking, likely targeting the available, unbound receptors in 

the ipsilateral hemisphere following CCI injury. This could also indicate a change in 

either the GABAAR subtypes responding to different stimuli, a reorganization of the 
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pentameric archetypal structure of the GABAAR’s, such as the substitution of different α 

subunits or δ/γ subunits in disease states, or a change in receptor distribution within the 

membrane.  

The hilar inhibitory interneuron loss observed here is consistent with previous 

work showing that CCI injury results in loss of hilar neurons (Lowenstein et al., 

1992;Hicks et al., 1993). Following CCI, higher doses of rapamycin treatment resulted in 

a reduction in Fluoro-Jade B staining in a limited area of the hippocampus ~1mm 

posterior to injury epicenter (Guo et al., 2013;Butler et al., 2015), although cell loss was 

still significant relative to uninjured-controls. The loss of eGFP-positive interneurons 

after CCI in this study was observed only in the dorsal and middle hippocampal regions 

along the septo-temporal axis after CCI injury, with no measurable cell loss occurring in 

the ventral third of the hippocampus. Rapamycin had no effect on this inhibitory hilar 

interneuron loss, consistent with previous conclusions (Butler et al., 2015). Furthermore, 

a lack of rapamycin treatment effect on cell loss in the dorsal and middle regions of 

hippocampus after CCI suggests effects on synaptic or tonic inhibition in DGCs 

ipsilateral to injury are not likely to be related to prevention of eGFP-positive interneuron 

loss, though it does not rule out effects on other interneuron phenotypes. 

 Although rapamycin treatment had little effect on the reduction in sIPSC 

frequency ipsilateral to CCI injury 1-2 weeks after injury, continued administration of 

rapamycin for 8-13 weeks post-injury further reduced sIPSC frequency in ipsilateral 

DGCs relative to vehicle treatment. This result is consistent with reduced axon sprouting 

of hilar interneurons in pilocarpine treated mice that received rapamycin (Buckmaster 

and Wen, 2011), and suggests the reduced axon sprouting after rapamycin treatment may 
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also contribute to reduced sIPSC frequency in DGCs ipsilateral to CCI.  Similarly, in 

models of both TLE and TBI surviving hilar inhibitory interneurons have been shown to 

receive increased excitatory input and exhibit increased action potential activity 

(Halabisky et al., 2010;Hunt et al., 2011). This increase in excitatory synaptic drive is due 

to axon plasticity of both DGCs (i.e. mossy fiber sprouting) and CA3 pyramidal neurons 

(i.e. CA3 backprojections). Rapamycin treatment in models of both TLE and TBI reduces 

mossy fiber sprouting, and could also lead to reduced excitatory drive to this interneuron 

population, contributing to reduced recurrent synaptic inhibition of DGCs (Buckmaster et 

al., 2009;Zeng et al., 2009;Buckmaster and Lew, 2011;Guo et al., 2013;Heng et al., 

2013;Butler et al., 2015). Effects of rapamycin treatment on synaptic inhibition may 

reflect a role of mTOR in functional morphological changes underlying synaptic 

reorganization after focal brain injury. 

 The processes underlying altered GABAAR function continue to be inadequately 

understood, especially in models of epilepsy and TBI. The precise mechanisms by which 

cellular changes in GABAAR-mediated responses occur remain unknown and alterations 

of both GABAAR location and organization are not consistently reported across various 

models of epilepsy and TBI. This variation may reflect differing sampling techniques, 

brain area selection, and the various mechanisms by which these animal models achieve 

epileptogenesis. One of the more interesting differences in modulation of GABAAR’s 

between the models of TBI used to study PTE is the reversion of changes in GABAAR’s 

after a latent period in the fluid percussion injury model (Pavlov et al., 2011), which is 

not seen in the CCI model. This difference may reflect the different mechanisms which 

underscore the increased susceptibility of epileptogenesis in mice receiving CCI injury 
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vs. fluid percussion injury.  Although some work in cell culture has linked the 

AktmTOR pathway to altered GABAAR phosphorylation and surface expression 

(Wang et al., 2003), our understanding of how this translates to normal function and in 

models of disease is insufficient.  

mTOR’s role in cortical excitation after TBI and in severe forms of epilepsy has 

been investigated rigorously, but the role it plays in regulating inhibition is less clear. 

This study suggests inhibition of mTOR activity following CCI injury could promote 

maintenance of normal responses to THIP-induced GABAAR activity, but that long term 

rapamycin treatment may also lead to reduced synaptic inhibition of DGCs. Effects of 

mTOR inhibition on epileptogenesis do not seem to outlast treatment (Buckmaster et al., 

2009;Guo et al., 2013), possibly due to persistent effects of injury-induced interneuron 

loss or effects of rapamycin on potentially compensatory axon sprouting and synaptic 

reorganization of inhibitory circuits. This detriment could contribute to the eventual 

development of an epileptogenic circuit and recurrence of seizure susceptibility after 

treatment removal. Prolonged rapamycin treatment could therefore exacerbate the 

imbalance of excitation and inhibition in the dentate gyrus after TBI, and could 

potentially lead to the re-activation of cell signaling pathways involving the mTOR 

complex 2. These potential pitfalls and the mechanisms by which mTOR contributes to 

GABAAR modulation require further investigation, which would not only be informative 

but critical to our understanding of the complex nature of how changes in inhibitory 

synaptic organization and the GABAAR system relate to the development of PTE. In 

conclusion, rapamycin treatment after CCI injury has restorative effects on the THIP-

induced tonic GABAAR currents, but chronic treatment demonstrates possible deleterious 
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effects on synaptic inhibition and does not alter resting tonic GABAAR currents. This 

combined with a lack of neuroprotection for eGFP-positive hilar inhibitory interneurons 

suggests that rapamycin treatment does not restore or prevent all inhibitory alterations in 

the dentate gyrus after CCI injury. 
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Chapter 5: Rapamycin treatment reduces recurrent excitation of eGFP+ hilar 
interneurons from dentate granule cells, but not CA3 backprojections after controlled 
cortical impact injury 

 

5.1 Introduction 

The reactive plasticity of dentate granule cells (DGCs), CA3 pyramids, and hilar 

inhibitory neurons has been associated with seizure and epilepsy generation following 

severe brain trauma (Scharfman, 2007;Hunt et al., 2009; 2010; 2011;Hunt et al., 

2012;Guo et al., 2013). Although the synaptic reorganization of excitatory inputs among 

DGCs in the form of mossy fiber sprouting may contribute to the formation of an 

epileptogenic circuit, the nature of their contribution is controversial. Increased mossy 

fiber innervation of hilar inhibitory interneurons is also a component of this synaptic 

plasticity (Halabisky et al., 2010;Hunt et al., 2011). Increased excitation of inhibitory 

neurons could counter the loss of inhibitory neurons (Lowenstein et al., 1992;Hicks et al., 

1993), and could thus restore inhibitory regulation in the dentate gyrus following brain 

injury. For this reason, loss of these interneurons has been theorized to be detrimental to 

the excitatory and inhibitory balance of the dentate gyrus, and could lead to increased 

susceptibility to burst-like firing in the dentate gyrus and seizure susceptibility. Many 

inhibitory interneuron subtypes are vulnerable to injury, and somatostatin interneurons in 

the hilus of the dentate gyrus are particularly susceptible to cell death after injury 

(Lowenstein et al., 1992;Hicks et al., 1993). This class of interneuron is of particular 

interest due to the unique location of its axonal projections, which form synapses directly 

on the dendrites of DGCs across from excitatory entorhinal cortex projections 

(Buckmaster et al., 1994;Buckmaster and Schwartzkroin, 1995). 
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The role of the mammalian target of rapamycin (mTOR) activity in excitatory and 

inhibitory axon sprouting has been demonstrated in the pilocarpine model of temporal 

lobe epilepsy (TLE) and in the controlled cortical impact model (CCI) of posttraumatic 

epilepsy (PTE) (Hunt et al., 2009; 2010;Buckmaster and Wen, 2011;Hunt et al., 

2011;Hunt et al., 2012;Guo et al., 2013;Yamawaki et al., 2015). After CCI, 

reorganization of DGC and CA3 pyramidal neuron inputs to surviving hilar inhibitory 

interneurons has been identified (Hunt et al., 2011), and mirrors findings of  the 

pilocarpine model of TLE and undercut cortex model of epilepsy (Halabisky et al., 

2010;Jin et al., 2011). The role of mTOR signaling in reactive plasticity after CCI has 

been studied in the excitatory circuitry of DGCs (Guo et al., 2013;Butler et al., 2015).  

Rapamycin treatment after CCI or pilocarpine-induced status epilepticus reduces mossy 

fiber sprouting and neurogenesis post-injury though treatment also reduces 

morphological changes in hilar interneurons after pilocarpine-induced status epilepticus 

(Buckmaster et al., 2009;Buckmaster and Wen, 2011;Guo et al., 2013;Butler et al., 2015). 

However, little is known of mTOR’s role in functional reorganization of inhibitory 

circuitry and associated reactive plasticity with inhibition of the dentate gyrus after TBI. 

In this study we used a transgenic mouse line in which the somatostatinergic hilar 

inhibitory interneurons express eGFP (Oliva et al., 2000), to study effects of rapamycin 

treatment on reorganization of excitatory synaptic input to hilar inhibitory interneurons 

after CCI injury. We tested the hypothesis that continuous rapamycin treatment following 

CCI injury would reduce excitatory drive onto surviving ipsilateral eGFP-positive hilar 

neurons arising from both DGCs and CA3 pyramids. 
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5.2 Methods 

On-cell recordings: After an equilibration period of at least one hour, slices were 

transferred to a recording chamber on an upright, fixed-stage microscope equipped with 

infrared, differential interference contrast, and epifluorescence optics (Olympus 

BX50WI), and continuously perfused with warmed (32oC- 34oC) oxygenated ACSF. 

Recordings were performed from hilar eGFP-positive labeled interneurons, identified by 

epiflorescence illumination. Recording pipettes were pulled from boroscilliate glass (1.65 

mm outer diameter, 0.45 mm inner diameter; King’s Precision Glass) with a P-87 puller 

(Sutter Instrument). The intracellular solution contained 130 K+-gluconate, 1 NaCl, 5 

EGTA, 10 HEPES, 1 MgCl2, 1 CaCl2, 3 KOH, and 2 ATP. Open tip series resistance was 

2-5 MΩ. Recordings were obtained using an Axon Axopatch 200B or Axon Multiclamp 

700B amplifier (Molecular Devices), low-pass filtered at 2-5 kHz, digitized at 20 kHz 

with a Digidata 1322A or Digidata 1550A (Molecular Devices), and acquired using 

pClamp 10.2 and 10.5 programs (Clampfit, Molecular Devices). On-cell recordings of 

spontaneous AP firing were obtained with no holding command. 

 The methods used in Chapter 5 of this dissertation also include: traumatic brain 

injury, rapamycin injection, slice preparation, whole cell recording, and glutamate 

photostimulation, as described previously in Chapter 2. 

5.3 Results 

5.3.1 Action potential frequency of surviving eGFP-postive hilar interneurons 

 After CCI, surviving eGFP-positive hilar interneurons ipsilateral to the injury 

display increased spontaneous action potential firing rate and sEPSC frequency (Hunt et 
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al., 2011). The effect of rapamycin treatment on activity and synaptic input to eGFP-

positive hilar interneurons after CCI is not known. Spontaneous action potential firing 

rate was recorded in eGFP-positive hilar interneurons in slices from sham (n=6 cells, 5 

mice), slices from CCI-injured mice (contralateral, n=10, ipsilateral, n=12, 10 mice), and 

analogous slices from CCI-injured mice that were treated daily for 8-12 weeks with 

rapamycin (contralateral, n=8; ipsilateral, n=9, 11 mice). Representative traces of 

spontaneous action potential firing in eGFP-positive neurons from control (i.e. sham and 

contralateral hemisphere), ipsilateral to CCI injury with vehicle treatment, and ipsilateral 

to CCI injury with rapamycin treatment groups are shown in Figure 5.1A. There was no 

significant difference between cells from contralateral and ipsilateral hemispheres in 

sham-treated mice for any measurements made; therefore results from sham-treated mice 

were combined into one group. Using a One-way ANOVA, we detected changes in firing 

rates of eGFP-positive neurons among experimental groups (One-way ANOVA; 

F(4,43)=21.38,p<0.0001). There was also no significant difference between cells in slices 

from sham versus the contralateral hemisphere of CCI groups (Tukey’s, p>0.05). In 

eGFP-positive hilar interneurons ipsilateral to CCI injury increased firing rates relative to 

eGFP-positive neurons from the contralateral hippocampus or from sham-injured mice 

(Sham= 4.22 ± 1.16 Hz, CCI contra= 3.93 ±0.76 Hz , CCI ipsi= 11.79 ±0.94 Hz; 

Tukey’s, p=0.0002 Sham vs CCI ipsi, p<0.0001 CCI contra vs CCI ipsi; Fig 5.1B).  In 

ipsilateral eGFP-positive neurons from rapamycin treated mice, firing rate was reduced 

relative to vehicle treated mice, but remained significantly elevated compared to eGFP-

positive neurons from sham injured or cells contralateral to CCI injury (CCI+Rapa 

contra= 4.43 ±0.64 Hz, CCI+Rapa ipsi= 8.86 ±0.49 Hz; Tukey’s, p<0.0001 Sham vs 
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CCI+Rapa ipsi, p=0.0002 CCI contra vs CCI+Rapa ipsi, p=0.0003 CCI+Rapa contra vs 

CCI+Rapa ipsi, p=0.014 CCI ipsi vs CCI+Rapa ipsi; Fig 5.1B). 

 

Figure 5.1. Rapamycin treatment reduces the increased activity of hilar inhibitory 
interneuron 8-12 weeks after CCI injury. A. Representative traces showing 
spontaneous action potential firing from three different treatment groups: control (i.e. 
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sham and contralateral neurons), ipsilateral to CCI injury + vehicle (CCI Ipsi), and 
ipsilateral to CCI injury + 3 mg/kg rapamycin (CCI+Rapa Ipsi). B. Mean spontaneous 
action potential firing in sham, CCI contra, CCI Ipsi, CCI+Rapa contra, and CCI+Rapa 
Ipsi groups. Error bars indicate SEM; asterisk (*) indicates p <0.05 compared to sham 
and contralateral hemispheres; hashtag (#) indicates p<0.05 for CCI+vehicle Ipsi vs. 
CCI+Rapa Ipsi. 

 

 5.3.2 sEPSC frequency in eGFP-positive hilar interneurons 

 The sEPSC frequency in eGFP-positive hilar interneurons was determined using 

whole-cell patch-clamp recordings. Representative traces of sEPSC frequency are shown 

in Figure 5.2A from control (i.e. sham and contralateral hemisphere), ipsilateral to CCI 

injury with vehicle treatment, and ipsilateral to CCI injury with rapamycin treatment 

groups. A One-way ANOVA demonstrated that there was a change in sEPSC frequency 

of hilar eGFP-positive hilar interneurons among experimental groups (One-way 

ANOVA; F(4,45)=9.478, p<0.0001). Ipsilateral to CCI injury, eGFP-positive hilar 

interneurons exhibited increased sEPSC frequency relative to sham interneurons and 

interneurons contralateral to CCI (sham: 3.69 ±0.71 Hz, CCI contra= 3.65 ±0.73 Hz, CCI 

ipsi= 10.69 ±1.36 Hz; Tukey’s, p=0.0034 sham vs CCI ipsi, p=0.0003 CCI contra vs CCI 

ipsi; Fig 5.2B). Rapamycin treatment reduced, but did not normalize, the increased 

sEPSC frequency in ipsilateral eGFP-positive neurons (CCI+Rapa contra=2.66 ±0.65 Hz, 

CCI+Rapa ipsi= 6.60 ±1.33 Hz; Tukey’s, p=0.0182 sham vs CCI+Rapa ipsi, p=0.0356 

CCI contra vs CCI+Rapa ipsi, p=0.0127 CCI+Rapa contra vs CCI+Rapa ipsi, p=0.014 

CCI ipsi vs CCI+Rapa ipsi, Fig 5.2B). These results indicate rapamycin treatment after 

CCI reduced, but did not normalize, the increases in AP firing and sEPSC frequency in 

eGFP-positive interneurons ipsilateral to CCI injury. 
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Figure 5.2. Rapamycin treatment reduces the increase in sEPSC frequency of hilar 
inhibitory interneurons 8-12 weeks after CCI injury. A. Representative traces 
showing sEPSCs in eGFP-positive neurons from three different treatment groups: control 
(i.e. sham and contralateral neurons), ipsilateral to CCI injury + vehicle (CCI Ipsi), and 
ipsilateral to CCI injury + 3 mg/kg rapamycin (CCI+Rapa Ipsi). Expanded sections of the 
trace under the black line indicated by arrow. B. Mean sEPSC frequency in sham, CCI 
contra, CCI Ipsi, CCI+Rapa contra, and CCI+Rapa Ipsi groups. Error bars indicate SEM; 
asterisk (*) indicates p <0.05 compared to sham and contralateral hemispheres; hashtag 
(#) indicates p<0.05 for CCI Ipsi vs. CCI+Rapa Ipsi. 

 

5.3.3 Whole cell capacitance and sEPSC amplitude of eGFP-positive hilar interneurons 

 In the pilocarpine-induced SE model of TLE an increase in soma size of surviving 

somatostatin+ hilar interneurons has been reported and rapamycin treatment resulted in 

reduced soma size relative to vehicle treatment (Buckmaster and Wen, 2011). As an 

indirect measurement of soma size, whole cell capacitance was measured from recorded 

eGFP-positive hilar interneurons to determine the effect of CCI and rapamycin treatment 

on capacitance. There was an overall effect of whole cell capacitance among 
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experimental groups (One-way ANOVA; F(4,46)=8.187; p<0.0001). We found that CCI 

injury did not result in an increase to whole cell capacitance of eGFP-positive hilar 

interneurons in the ipsilateral hemisphere relative to sham or contralateral controls 

(sham= 22.31 ±1.09 MΩ, CCI contra= 23.36 ±0.89 MΩ, CCI ipsi= 24.44 ±0.65 MΩ;; 

p>0.05, Fig 5.2B), but rapamycin treatment after CCI reduced whole cell capacitance of 

these neurons to a greater extent compared to CCI alone or sham injured groups 

(CCI+Rapa contra= 19.22 ±0.97 MΩ, CCI+Rapa ipsi= 16.21 ±1.52 MΩ; Tukey’s, 

p=0.0406 sham vs CCI+Rapa contra, p=0.0121 sham vs CCI+Rapa ipsi, p=0.0089 CCI 

contra vs CCI+Rapa contra, p=0.0017 CCI ipsi vs CCI+Rapa contra, p=0.001 CCI ipsi vs 

CCI+Rapa ipsi, p=0.0023 CCI contra vs CCI+Rapa ipsi; Fig 5.2B). Additionally, 

amplitude measures from unitary sEPSCs in eGFP-positive hilar interneurons have been 

shown to be unaltered in CCI injured mice compared to the contralateral hemisphere and 

controls (Hunt et al., 2011). To assess the effect of rapamycin the amplitude of unitary 

sEPSC events was compared among sham and CCI injured mice. There was no difference 

in amplitude of sEPSCs among experimental groups using a One-way ANOVA (Sham= 

16.65 ±2.18 pA, CCI contra= 20.14 ±4.89 pA, CCI ipsi= 21.49 ±2.25 pA, CCI+Rapa 

contra= 16.90 ±1.91 pA, CCI+Rapa ipsi= 20.86 ±3.30 pA; One-way ANOVA; p>0.05, 

Fig 5.2B). These results indicate that effects of rapamycin on sEPSC and AP firing 

frequency are not likely due to post-synaptic modification of synaptic glutamate 

responses but excitatory synaptic input may be altered by rapamycin. 

5.3.4 Responses to glutamate photostimulation of local excitatory circuits 

 After CCI, surviving eGFP-positive hilar interneurons ipsilateral to injury exhibit 

increased input from both DGCs and CA3 pyramidal neurons (Hunt et al., 2011). Although MFS 
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connections among DGCs after CCI injury are reduced in mice treated with rapamycin (Guo et 

al., 2013;Butler et al., 2015), the effects of rapamycin have not been investigated in the context of 

synaptic input to hilar eGFP-positive neurons. Here, hilar interneuron recordings were performed 

during glutamate uncaging in either the DGC layer, or CA3, in order to test for reactive axonal 

plasticity between DGCs-to-hilar interneurons or between CA3 pyramidal cells-to-hilar 

interneurons respectively. Representative traces of evoked responses in eGFP-positive hilar 

interneurons during glutamate photostimulation applied to DGCs (Figure 5.3A) and CA3 

pyramidal neurons (Figure 5.4A) are shown from control (i.e. sham and vehicle/rapamycin-

treated contralateral hemispheres), ipsilateral to CCI injury with vehicle treatment, and ipsilateral 

to CCI injury with rapamycin treatment groups. To test for newly sprouted DGC- or CA3- to-

hilar interneuron connections, the number of glutamate uncaging sites that responded with ≥1 

evoked EPSC (eEPSC; post-stimulation frequency minus pre-stimulation frequency) were 

measured across groups (n= # of stimulation sites). Responses to glutamate photostimulation in 

both the DGC layer and CA3 were TTX sensitive (Fig 5.3C), indicating they originated 

subsequent to action potential generation in photostimulated DGCs and CA3 pyramidal cells.  

Slices from sham-injured animals and slices from hemispheres contralateral to injury in 

CCI animals (vehicle or rapamycin treatment) did not significantly differ in the number of 

responsive sites during uncaging within the DGC layer (Kruskal-Wallis stat=3.079, p=0.2144) or 

during uncaging within CA3 (Kruskal-Wallis stat=2.523, p=0.2832).  As a result, these eGFP-

positive hilar interneuron recordings from sham treatment or contralateral to CCI were combined 

into a single control group for clarity of presentation. The number of responsive stimulation sites 

(9 cells; 5 mice) with sham eGFP-positive hilar interneuron recordings was 1/34 (DGC uncaging) 

and 0/18 (CA3 uncaging). The number of responsive stimulation sites (6 cells; 5 mice) with 

contralateral CCI+vehicle eGFP-positive hilar interneuron recordings was 3/36 (DGC uncaging) 

and 1/14 (CA3 uncaging). The number of responsive stimulation sites (5 cells; 5 mice) with 
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contralateral CCI+vehicle eGFP-positive hilar interneuron recordings was 1/26 (DGC uncaging) 

and 1/10 (CA3 uncaging). 

There was a significant overall difference in the number of responsive stimulation sites 

between control recordings and recordings from the ipsilateral hemisphere of CCI-injured 

animals given either vehicle or rapamycin (Kruskal-Wallis stat=18.27, p=0.0001 for DG 

photostimulation; Kruskal-Wallis stat=13.86, p=0.001 for CA3 photostimulation). The number of 

responsive stimulation sites (10 cells; 6 mice) from the ipsilateral hemisphere of CCI+vehicle 

mice was 22/55 (DGC uncaging) and 10/25 (CA3 uncaging). Cells ipsilateral to CCI injury with 

vehicle treatment exhibited significantly larger numbers of responsive stimulation sites to 

glutamate uncaging applied to DGCs versus control recordings (Dunn’s, p<0.0001). Similarly, 

cells ipsilateral to CCI injury exhibited significantly larger numbers of responsive stimulation 

sites to glutamate uncaging applied to CA3 versus control recordings (Dunn’s, p=0.0009). 

In this study, rapamycin treatment in CCI-injured mice reduced both sEPSC frequency 

and action potential firing of surviving eGFP-positive hilar interneurons located within the 

injured hemisphere. As a result, eGFP-positive recordings were performed during glutamate 

uncaging in DG and CA3 within slices from animals given CCI+rapamycin treatment to 

determine whether mTOR modulation alters the pattern of synaptic reorganization detected in 

CCI+vehicle mice. The number of responsive stimulation sites (8 cells; 7 mice) from the 

ipsilateral hemisphere of CCI injured mice given rapamycin was 7/40 (DGC uncaging) and 8/18 

(CA3 uncaging). For uncaging within the DGC layer, the ipsilateral hemisphere of CCI-injured 

rapamycin treated mice displayed no increase in the number of responsive stimulation sites in 

comparison to control recordings (Dunn’s, p=0.1381) and their number of responsive sites was 

significantly reduced relative to ipsilateral cells from CCI+vehicle mice (Dunn’s, p=0.0054). For 

uncaging within CA3, the ipsilateral hemisphere of CCI-injured rapamycin treated mice exhibited 

a significantly larger number of responsive stimulation sites relative to controls (Dunn’s, 
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p=0.0009) whereas there was no significant different versus ipsilateral slices from CCI+vehicle 

mice (Dunn’s, p=0.8705). These results indicate that rapamycin treatment reduces the increased 

input to eGFP-positive neurons from DGCs, but not the increased input from CA3 pyramidal 

neurons after CCI injury based on the number of responsive sites. 

In addition to the number of responsive stimulation sites, we also compared the mean 

normalized frequency of eEPSCs between all treatment groups. This analysis was undertaken to 

assess how the differences in the number of responsive sites affected the total number of eEPSCs. 

eEPSC frequency was again normalized by subtracting the pre-stimulation frequency from the 

post-stimulation frequency. Both pre-stimulation and post-stimulation measurements were 

performed within 200 millisecond bins of time that occurred on either side of photostimulation. 

Slices from sham-injured animals and slices from hemispheres contralateral to injury in 

CCI animals (vehicle or rapamycin treatment) did not significantly differ in normalized frequency 

of eEPSCs during uncaging within the DGC layer (Kruskal-Wallis stat=2.823, p=0.2438) or 

during uncaging within CA3 (Kruskal-Wallis stat=1.112, p=0.5735). As a result, eGFP+ hilar 

interneuron recordings from sham treatment or contralateral to CCI were again combined into a 

single control group for clarity of presentation and consistency with analysis of the number of 

responsive stimulation sites. The mean normalized frequency of eEPSCs for eGFP hilar 

interneurons from sham injured mice was 0.1273 ±0.076 for DGC photostimulation and 0.089 

±0.108 for CA3 photostimulation. The mean normalized frequency of eEPSCs for eGFP-positive 

hilar interneurons from the contralateral hemisphere of CCI-injured mice given vehicle treatment 

was 0.3111 ±0.129 for DGC photostimulation and 0.280 ±0.136 for CA3 photostimulation. The 

mean normalized frequency of eEPSCs for eGFP-positive hilar interneurons from the 

contralateral hemisphere of CCI-injured mice given rapamycin treatment was 0.038 ±0.095 for 

DGC photostimulation and 0.025 ±0.377 for CA3 photostimulation. 
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 There was a significant overall difference in the normalized eEPSC frequency between 

control recordings and recordings from the ipsilateral hemisphere of CCI-injured animals given 

either vehicle or rapamycin (Kruskal-Wallis stat=31.11, p<0.0001 for DG photostimulation; 

Kruskal-Wallis stat=13.74, p=0.001 for CA3 photostimulation). eGFP hilar interneurons from 

CCI-injured mice given vehicle treatment exhibited greater eEPSC frequency following 

glutamate photostimulation in the DGC layer compared to controls (mean normalized  frequency: 

0.898 ±0.189; Dunn’s, p<0.0001; Fig. 5.3B). Additionally, these interneurons exhibited increased 

eEPSC frequency after glutamate photostimulation in CA3 compared to controls (mean 

normalized frequency: 1.308 ±0.428; Dunn’s, p=0.0022; Fig. 5.4B) 

 eGFP-positive hilar inhibitory interneurons from the ipsilateral hemisphere of CCI-

injured mice given rapamycin treatment failed to exhibit increased eEPSC frequency after DGC 

photostimulation compared to controls (mean normalized frequency: 0.332 ±0.108; Dunn’s, 

p=0.1381; Fig. 5.3B), and was significantly reduced relative to eGFP cells from CCI-injured mice 

given vehicle treatment (Dunn’s, p=0.0114). However, eGFP hilar interneurons from CCI-injured 

mice given rapamycin treatment exhibited an increase in eEPSC frequency after CA3 glutamate 

photostimulation compared to controls (1.267 ±0.440; Dunn’s, p=0.0027; Fig. 5.4B) and this 

increase was not significantly different than the eEPSC frequency exhibited by CCI-injured mice 

given vehicle treatment (Dunn’s, p=0.9288). Collectively these results indicate that rapamycin 

reduces aberrant connections between DGC-to-eGFP-positive hilar interneurons but fails to 

suppress aberrant connections between CA3-to- eGFP-positive hilar interneurons.  
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Figure 5.3. eEPSC responses in eGFP-positive hilar interneurons from glutamate 
photoactivation in dentate granule cells (DGCs) 8-12 weeks after injury in mice 
from control, CCI-injured with vehicle treatment, and CCI-injured with rapamycin 
treatment. A. Representative eEPSC responses in eGFP-positive interneurons to 
glutamate photostimulation applied to DGCs from three different treatment groups: 
control (i.e. sham and contralateral hemispheres), CCI+vehicle Ipsi, and CCI+Rapa Ipsi. 
B. Individual and mean of eEPSC responses in control, CCI+vehicle Ipsi, and CCI+Rapa 
Ipsi groups. Error bars indicate SEM; asterisk (*) indicates p <0.05 for mean normalized 
eEPSC responses compared to control. C. Representative eEPSC response demonstrates 
TTX sensitivity. 

 

 

Figure 5.4. eEPSC responses in eGFP-positive hilar interneurons from glutamate 
photoactivation in CA3 pyramids 8-12 weeks after injury in mice from control, 
CCI-injured with vehicle treatment, and CCI-injured with rapamycin treatment. A. 
Representative traces of eEPSC responses of eGFP-positive interneurons to glutamate 
photoactivation applied to CA3 pyramids from three different treatment groups: control, 
CCI+vehicle Ipsi, and CCI+Rapa Ipsi. B. Individual and mean of eEPSC responses in 
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control, CCI+vehicle Ipsi, and CCI+Rapa Ipsi groups. Error bars indicate SEM; asterisk 
(*) indicates p <0.05 for mean normalized eEPSC responses compared to control. 

 

5.4 Discussion 

This study investigated the effect of mTOR inhibition after CCI on the synaptic 

reorganization of a subset of hilar interneurons. In models of traumatic brain injury and 

TLE, the loss of these interneurons is significant (Lowenstein et al., 1992;Buckmaster 

and Wen, 2011), and Chapter 4 of this dissertation corroborated these previous reports. It 

has been theorized that these interneurons contribute to shunting excessive excitatory 

input through the DGC layer, and the loss of these neurons could contribute to seizure 

susceptibility (Buckmaster and Dudek, 1997b;Buckmaster and Wen, 2011;Hunt et al., 

2011). Additionally, the transplant of immature inhibitory neurons into the hippocampus 

of mice after pilocarpine treatment alleviated seizures (Hunt et al., 2013b). Understanding 

the contribution of these interneurons to hippocampal excitability and how aberrant 

sprouting onto the surviving population impacts the hippocampal circuit, are important in 

our understanding of PTE and other forms of epilepsy. The main findings indicate mTOR 

inhibition reduces excitability of hilar inhibitory interneurons by inhibiting the increase in 

excitatory synaptic reorganization after CCI injury. 

 Although higher dose rapamycin treatment (10mg/kg) resulted in a regional 

reduction in FJB staining of the hippocampus (~1mm postior to injury epicenter), cell 

death was not reduced to control levels (Guo et al., 2013;Butler et al., 2015). 

Additionally, rapamycin treatment does not prevent eGFP-positive cell loss in the hilus 

after CCI injury, as demonstrated in Chapter 4 of this dissertation. Therefore, measures of 
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eGFP-positive neuron activity are likely not related to altered cell survival using 

rapamycin treatment after CCI injury. 

 After pilocarpine-induced SE, somatostatin interneurons increase in soma size 

compared to control and non-SE mice, and rapamycin treatment after pilocarpine induced 

SE reduced this increase in soma size (Buckmaster and Wen, 2011). While CCI injury 

did not significantly alter whole cell capacitance compared to sham controls, daily 

rapamycin treatment reduced both contralateral and ipsilateral whole cell capacitance of 

eGFP-positive interneurons 8-13 weeks after injury. By inference, reduced capacitance 

may reflect reduced soma size in eGFP-positive interneurons after rapamycin treatment, 

consistent with measurements in the pilocarpine treated mice (Buckmaster and Wen, 

2011).  

The surviving ipsilateral eGFP-positive hilar interneurons after CCI exhibit 

increased sEPSC frequency and spontaneous AP firing relative to the contralateral 

hemisphere and sham treated controls 8-12 weeks after injury. This result is consistent 

with previous work related to increased excitation of eGFP-positive interneurons in 

models of TLE and PTE (Halabisky et al., 2010;Hunt et al., 2011). Previous studies have 

shown rapamycin treatment in models of TLE and PTE reduced mossy fiber sprouting in 

the inner molecular layer of the dentate gyrus, but none have examined the effects of 

rapamycin on the CCI-associated increase in excitation of eGFP-positive hilar 

interneurons. In mice receiving daily rapamycin treatment for 8-12 weeks post injury, the 

sEPSC frequency and spontaneous AP firing rate of ipsilateral eGFP-positive hilar 

interneurons was reduced, but not normalized, with no change in the contralateral 

hemisphere. This result is consistent with the reduction in Timm staining (i.e. mossy fiber 
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sprouting) and recurrent excitation observed in previous studies of rapamycin’s effect in 

PTE models (Guo et al., 2013;Butler et al., 2015) and after status epilepticus induced 

TLE (Buckmaster et al., 2009;Zeng et al., 2009). There was no change among groups in 

sEPSC amplitude or direct response to glutamate, which suggests a pre-synaptic 

mechanism (i.e. axonal sprouting) is a likely contributor to the change in excitability.  

It is not known if rapamycin treatment reduces axonal sprouting ubiquitously or if 

the effect is preferential to only DGCs. After CCI injury or seizures, surviving ipsilateral 

eGFP-positive interneurons receive increased excitatory input which arises from axons of 

both DGCs, and CA3 pyramidal neurons (Halabisky et al., 2010;Hunt et al., 2011). We 

used caged glutamate to measure responses in eGFP-positive hilar interneurons to 

glutamate photostimulation applied to DGCs and CA3 pyramidal neurons. Input to eGFP-

positive neurons arising from both DG and CA3 was increased ipsilateral to CCI injury, 

consistent with a previous report (Hunt et al., 2011). Rapamycin treatment reduced input 

arising from DGCs to control levels, consistent with effects of mTOR inhibition on 

mossy fiber sprouting and synaptic reorganization of DGCs. There was no reduction, 

however, in excitatory synaptic responses arising from CA3 pryamidal neurons. These 

results suggest that rapamycin reduced DGC axon sprouting, but did not suppress 

reactive axon sprouting of CA3 pyramidal cells after CCI injury. This preference could 

be related to the reduction of DGC neurogenesis after CCI in rapamycin treated mice 

(Butler et al., 2015) or effects of other factors such as serotonin, which can induce axonal 

plasticity (Busto et al., 1997). The sustained, rapamycin –resistant increase in input from 

CA3 neurons probably contributes to the sustained increase in sEPSC frequency in the 

eGFP-positive neurons. 
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This study as well as previous work examining excitatory plasticity of eGFP-

positive interneurons suggests excitatory synaptic reorganization onto ipsilateral eGFP-

positive interneurons occurs after injury from both DGC and CA3 cell sprouting. It is 

unclear if this increased sprouting onto surviving interneurons is compensatory, serving a 

potentially beneficial role in maintenance of synaptic inhibition of DGCs, or detrimental 

to overall hippocampal circuitry. Rapamycin treatment appears to preferentially inhibit 

synaptic reorganization from DGCs, but not CA3 pyramids onto ipsilateral eGFP-positive 

hilar interneurons following CCI injury. Continued synaptic excitation of hilar 

interneurons arising from CA3 could contribute to synaptic imbalance and altered 

excitability of ipsilateral hilar inhibitory interneurons, and therefore DGCs. The lack of 

effect on reorganization of CA3 inputs also suggests a different role for mTOR in CA3 

pyramidal neuron plasticity than DGCs. Alternatively, maintained plasticity from CA3 

could contribute to the reemergence of seizure susceptibility in models of TLE and PTE 

when rapamycin treatment is removed, even with no mossy fiber sprouting (Guo et al., 

2013;Heng et al., 2013). Additionally, this study demonstrates that mTOR’s role is not 

limited to excitatory circuits but has effects on both excitatory and inhibitory balance in 

the hippocampus. Further work on inhibitory modulation related to mTOR signaling will 

help develop our understanding of this complex system of excitatory and inhibitory 

balance. 
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Chapter 6: General Discussion 

6.1 Summary of findings 

 The principal findings of this dissertation are that rapamycin treatment after CCI 

injury: 1) reduced seizure prevalence, 2) did not prevent overall FJB labeling or eGFP-

positive cell death in the ipsilateral dentate gyrus, 3) reversed injury-induced 

neurogenesis in the ipsilateral hippocampus, 4) reduced synaptic reorganization of 

ipsilateral dentate granule cells, 5) further reduced synaptic inhibition of  ipsilateral 

dentate granule cells 8-13 weeks post-injury, 6) prevented reduction in THIP-mediated 

tonic GABAergic inhibition of ipsilateral dentate granule cells at both 1-2 and 8-13 

weeks post-injury, 7) prevented increased synaptic dentate granule cell-hilar GABAergic 

cell input in ipsilateral hemisphere, and 8) did not prevent the increased synaptic CA3-to-

hilar GABAergic cell “back-projection” that is observed in the ipsilateral hemisphere 

with brain insult. This dissertation is the first detailed examination of rapamycin’s effect 

on functional hippocampal cell signaling in mice given focal brain injury. The results 

indicate that mTOR signaling regulates hippocampal glutamatergic and GABAergic 

signaling at many synapses after brain injury and is not limited to reorganization of 

excitatory DGC synapses as previously described (Buckmaster et al., 2009;Zeng et al., 

2009;Guo et al., 2013). 
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Figure 6.1 Illustration of effects of mTOR inhibition on dentate gyrus circuitry after 
CCI injury. A. Normal local dentate gyrus circuitry, yellow cells represent immature 
granule neurons. B. Dentate gyrus circuitry after CCI injury in ipsilateral hippocampus 
which includes loss of hilar inhibitory interneurons, increased immature neuron 
production, and axon sprouting of dentate granule cells and CA3 pyramidal neurons. C. 
Effects of chronic rapamycin treatment dentate gyrus circuitry includes reduced immature 
neuron production and axon sprouting of dentate granule cells, but no change in hilar 
inhibitory interneuron loss or CA3 pyramidal neuron axon sprouting. 

6.2 Effect of mTOR inhibition on cell death after CCI injury 

6.2.1 Fluoro-Jade B (FJB) labeling 

 Following brain injury, cell death by either mechanical forces of the injury or by 

programmed cell death through a cascade of events is a common feature (Graham et al., 

2006). There are many ways of measuring dead or dying neurons following brain injury, 

and one of the more common techniques used is Fluoro-Jade staining. FJB is anion 

fluorescein stain used for histological staining of neurons undergoing degeneration 

(Schmued and Hopkins, 2000). Following CCI injury, FJB staining peaks in the 

ipsilateral hemisphere in the first 3 days and then gradually declines (Anderson et al., 
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2005). Therefore to measure cell loss after CCI and the potential effect of rapamycin on 

this cell loss after CCI injury, FJB staining was performed. 

A previous report demonstrated reduced FJB labeling in the ipsilateral hemisphere 

of CCI injured mice which received rapamycin treatment (6 mg/kg), but this was only 

measured in an area ~1 mm posterior to injury epicenter (Guo et al., 2013). FJB-positive 

cell density measures were therefore assessed using 180 µm regions across the septo-

temporal axis. Using this regional analysis of FJB staining, two of the 180 µm regions 

~1mm posterior to the injury epicenter demonstrated a significant reduction in the 

ipsilateral FJB-positive cell density of mice treated with rapamycin (10 mg/kg) compared 

to mice injured and given vehicle treatment. These findings show that overall FJB-

positive cell death in the ipsilateral dentate gyrus following CCI injury is not altered by 

rapamycin treatment, but high dose (10 mg/kg) rapamycin treatment does have regional 

reduction of FJB-positive cell density compared to CCI injury alone. This would suggest 

that any antiepileptogenic properties of rapamycin treatment following CCI injury are not 

likely due to overall neuroprotective effects in the dentate gyrus. This is an important 

distinction considering previous work using rapamycin treatment has suggested this 

mechanism of action when only sampling from a similar specified 300 µm region ~1 mm 

posterior to injury epicenter in mice treated with rapamycin after CCI injury (Guo et al., 

2013). However, it is unclear what role reduced cell death in a posterior region from the 

injury epicenter would have on the epileptogenic process.  
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6.2.2 Hilar eGFP-positive cell loss 

 Cell loss in selective regions such as the hilus, CA3, and CA1 area is a common 

feature of both TBI and epilepsy. Hilar inhibitory interneurons are particularly 

susceptible to cell death following brain injury (Lowenstein et al., 1992;Smith et al., 

1995). One of the subsets of hilar inhibitory interneurons vulnerable to cell death after 

injury is the somatostatin-positive subset of hilar inhibitory interneurons (Buckmaster and 

Dudek, 1997b). The development of transgenic mice has greatly improved the ability to 

target specific genes of neuronal subtypes in disease state. FVB (i.e. GIN mice) which 

express enhanced green fluorescent protein (eGFP) in the somatostatin-positive neurons, 

have been used in models of TBI and epilepsy to better understand this vulnerable cell 

type in disease (Oliva et al., 2000;Buckmaster and Wen, 2011). In this dissertation loss of 

hilar eGFP-positive neurons in the hilus of the ipsilateral hemisphere of CCI injured mice 

given vehicle treatment was exhibited in the most dorsal two-thirds of the hippocampus 

examined compared to sham  and contralateral controls. Rapamycin treatment after CCI 

injury did not alter the reduction of eGFP-positive hilar interneurons in the ipsilateral 

hemisphere. There was also no difference among any groups in the most ventral third of 

hippocampus examined in this study, suggesting that loss of these neurons occurs in 

regions of the brain closer to injury epicenter.  

6.2.3 Additional future directions 

mTOR inhibition after CCI injury did not alter overall FJB-positive cell density or 

eGFP-positive hilar inhibitory cell loss in the ipsilateral hemisphere in this study, as 

described in Chapters 3 and 4 of this dissertation. Based on these data inhibition of 
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mTOR is not a candidate for use as a neuroprotective therapy. Neuroprotection is 

typically thought of as the prevention of overall neuron loss in a region susceptible to 

neuron loss/death after injury. However, a recent study in the pilocarpine-induced status 

epilepticus model of TLE demonstrated that transplanted GABA progenitor neurons from 

the medial ganglionic eminence into mice after pilocarpine treatment reduced seizure 

frequency of the mice treated with the GABAergic progenitor neuron transplant (Hunt et 

al., 2013b). These data would suggest that overall neuron protection after injury is not the 

ideal target of PTE, but rather studies should focus on the protection of the hilar 

GABAergic interneurons. Although this study demonstrates great potential for use of 

transplantation of GABAergic precursor neurons as a therapeutic for epilepsy, there are 

still many obstacles to overcome before use of this therapeutic strategy in humans, such 

as generation of pure GABA progenitor neurons to avoid complications of tumor 

formation (Hunt and Baraban, 2015). In the meantime, alternative strategies to cell 

transplantation could prove to be useful tools in therapeutic targets for PTE. 

One potential alternative to a pharmacological treatment for neuroprotection after 

injury would be hypothermia. It remains unclear the exact mechanism hypothermia 

modifies after brain injury, but one postulated mechanism involves reduced inflammatory 

signaling (Goss et al., 1995;Marion et al., 1997). Following brain injury, there is an 

increase in many cell signaling pathways and extracellular signaling molecules, including 

inflammatory cytokines (Yakovlev and Faden, 1995). Inflammatory cytokine production 

has also been associated with seizures and epilepsy (Nelson and Ellenberg, 1976;Pacifici 

et al., 1995;Crespel et al., 2002;Choi and Koh, 2008;Dedeurwaerdere et al., 2012). 

Hypothermia in experimental animal models of TBI has shown reduction in 
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inflammatory cytokines in the brain and improvement of cognitive and motor functions in 

these animals (Dietrich et al., 1994). One of the other notable improvements with 

hypothermia treatment following CCI injury in the ipsilateral hemisphere of rats is the 

increase of intact CA3 pyramidal neurons compared to normothermic CCI injured rats 

(Kline et al., 2002). The CA3 pyramidal cell layer and inhibitory interneurons in the hilus 

of the dentate gyrus have been similarly noted as vulnerable cell populations following 

brain injury (Lowenstein et al., 1992;Smith et al., 1995;Saatman et al., 2006). Although 

not yet tested, it is possible that hypothermia to CCI injured mice could reduce or prevent 

cell loss in the hilus, similar to reports from the CA3 region of rats. If shown to be an 

effective treatment option, this would potentially eliminate many of the obstacles 

currently limiting GABAergic cell transplant therapy, and would be a potential major 

step forward in TBI and PTE treatment. 

6.3 Effects of mTOR inhibition on neurogenesis after CCI injury 

6.3.1 Dentate granule cell area 

 Following CCI injury, there is a reduction in the cell density of select regions 

such as the hilus, CA3 and CA1 regions. One area which demonstrates a brief reduction 

shortly after injury (2 days; (Smith et al., 1995), but no change at later time points (7-14 

days; (Grady et al., 2003;Witgen et al., 2005) is the dentate granule cell layer. To assess 

the effect of rapamycin treatment after CCI injury on this response of the dentate granule 

cell area, measurements using ImageJ softeware of dentate granule cell area were made at 

14 days post-injury in CCI injured mice with daily vehicle or rapamycin (3 or 10 mg/kg) 

treatment and compared to sham injured controls. There were no changes in the 
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contralateral hemispheres of any of the treatment groups, and dentate granule cell area 

was not significantly different in the ipsilateral hemisphere of CCI injured mice with 

vehicle treatment compared to sham injured controls. Dentate granule cell area of CCI 

injured mice which received either 3 or 10 mg/kg rapamycin treatment was reduced 

relative to sham injured controls. These data would suggest that the processes underlying 

the maintanence of dentate granule cell area after CCI injury are affected by rapamycin 

treatment. One potential mechanism underlying this response could be the process of 

neurogenesis in the subgranular zone of the dentate gyrus. mTOR signaling is thought to 

contribute to cell proliferation and therefore this process of neurogenesis was tested. 

6.3.2 Doublecortin expression 

 Doublecortin (DCX) is a microtubule associated protein and is expressed in 

immature neurons during development. Expression of DCX is transient and is only 

expressed in cells which are fated to become neurons following proliferation. This 

transient expression begins approximately 4-10 days after proliferation and continues up 

to 4 weeks following generation (Gage, 2002;Kempermann et al., 2004;Rikani et al., 

2013). Following CCI injury there is an initial decrease in DCX expressing neurons in the 

ipsilateral hemisphere in the first 3 days, but then a gradual increase in expression in the 

ipsilateral hemisphere over the following 10-14 days post-injury (Dash et al., 

2001;Chirumamilla et al., 2002;Barha et al., 2011;Carlson et al., 2014;Villasana et al., 

2014;Butler et al., 2015;Villasana et al., 2015). Seizures have also been associated with 

increased expression of DCX-positive neurons in the dentate gyrus (Parent et al., 

1997;Parent et al., 2006;Kron et al., 2010) and therefore the measurement of this peak 

region of DCX expression after CCI injury was the goal of this dissertation. Fourteen 
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days after CCI injury, in the ipsilateral hemisphere of CCI injured mice with vehicle 

treatment there was an increase in DCX-positive cell density in the dentate granule cell 

area compared to sham injured mice. Rapamycin treatment (3 or 10 mg/kg) following 

CCI injury resulted in reduced DCX-positive cell density in the ipsilateral hemisphere 

compared to the ipsilateral hemisphere of CCI injured mice and no significant difference 

compared to sham controls. There was no difference in DCX-positive cell density in the 

dentate granule cell areas of the contralateral hemisphere in any experimental group. This 

data demonstrates that neurogenesis is a process following CCI injury that is regulated by 

mTOR signaling. The relative contribution of mature versus immature neurons in 

creating abnormal circuitry of the dentate gyrus is unclear, but the reduction of immature 

neuron production in rapamycin treated mice following CCI injury could be beneficial in 

preventing some of the abnormal circuitry generated in the ipsilateral hemisphere of CCI 

injured mice. Also, increased neurogenesis following CCI injury has been proposed as a 

mechanism for improved cognition, and therefore, rapamycin treatment after CCI injury 

could negatively affect cognition following injury.  

6.3.3 Additional future directions 

 Two of the remaining unknown questions associated with neurogenesis and PTE 

are: does neurogenesis remain upregulated in latent periods after TBI and do certain 

populations of newborn neurons contribute to the reorganization of the dentate gyrus 

differently? In the pilocarpine induced status epilepticus model of TLE, newborn neuron 

production increases in the first few weeks after insult, but reduces below control levels 

at later time points (15 weeks; (Hattiangady et al., 2004;Hattiangady and Shetty, 2010;Hu 

et al., 2015). To date no studies of newborn neuron production after CCI injury have been 
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done at later time points (i.e. months after injury), as with the pilocarpine model of TLE. 

Therefore it remains unknown if the noted increase of newborn neuron production in the 

ipsilateral hemisphere after CCI injury is maintained or reduces below control levels at 

later time points.  

 Another unknown feature of injury-induced neurogenesis is the contribution of 

different populations of newborn neurons either before, during, or following the initial 

insult. One report suggests that dentate granule cells, which are in an immature state, at 

the time of pilocarpine induced status epilepticus contribute more to synaptic 

reorganization (i.e. mossy fiber sprouting) than other populations of dentate granule cells 

generated before, during, or after pilocarpine-induced status epilepticus (Kron et al., 

2010). It is untested whether this feature of the pilocarpine model of TLE holds true for 

the CCI model of PTE. The previous report of functional integration of newborn granule 

cells after CCI injury was all done from age matched dentate granule cells born after 

sham or CCI injury (Villasana et al., 2015). Although this report showed increased 

morphological changes to the dendrites of newly born neurons after CCI injury in the 

ipsilateral hemisphere, there were no functional changes in sEPSC or sIPSC frequency of 

these neurons (Villasana et al., 2015). The authors concluded that this demonstrated 

normal integration of these newly born neurons after CCI injury in the ipsilateral 

hippocampus, but even in robust models of status epilepticus seizures it is necessary to 

perturb the environment of dentate granule cells to “unmask” recurrent excitation (Cronin 

and Dudek, 1988;Wuarin and Dudek, 1996;Patrylo and Dudek, 1998;Molnar and Nadler, 

1999;Lynch and Sutula, 2000;Winokur et al., 2004). Additionally the measurements of 

synaptic integration at 4 weeks post-injury would not likely reflect potential synaptic 
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reorganization associated with axonal sprouting, which generally takes longer to develop. 

Therefore, further tests are necessary to understand how these newborn neurons in the 

hippocampus contribute to the process of epileptogenesis. 

6.4 Effects of mTOR inhibition on excitatory synaptic reorganization of dentate 

granule cells 

6.4.1 Mossy fiber sprouting 

 Axons of dentate granule cells are known as mossy fibers. These axons are 

generally unidirectional and project from dentate granule cells to CA3 pyramidal neurons 

as part of the tri-synaptic circuit of the hippocampus. One of the hallmark features of 

resected tissue from patients with epilepsy is sprouting of the mossy fibers back into the 

inner molecular layer of the dentate granule cells and synapsing on the dendrites of 

neighboring dentate granule cells, called mossy fiber sprouting (de Lanerolle et al., 

1989;Sutula et al., 1989;Babb et al., 1991;Houser, 1992). This form of axon sprouting is 

believed to contribute to recurrent excitation within the dentate gyrus and either lead to 

increased aberrant excitation of dentate granule cells or synchronization of populations of 

dentate granule cells, potentially leading to seizure generating foci within the 

hippocampus. Following CCI injury, mossy fiber sprouting occurs in the ipsilateral 

hemisphere in highest abundance near the site of injury, and may be affected by factors 

such as hippocampal distortion (Hunt et al., 2009; 2010;Hunt et al., 2012). Rapamycin 

treatment has demonstrated beneficial effects on abberant mossy fiber sprouting in this 

model of PTE and other models of TLE (Buckmaster et al., 2009;Zeng et al., 2009;Guo et 

al., 2013;Heng et al., 2013). However, using this model of PTE a previous report 
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demonstrated that when rapamycin treatment was removed after 4 weeks post-injury, 

mossy fiber sprouting at 12 weeks post-injury returned to CCI with vehicle treatment 

levels in the ipsilateral hemisphere. Therefore, this dissertation maintained daily 

rapamycin treatment over the entire timeframe of the study. Rapamycin treatment after 

CCI injury resulted in a dose dependent reduction in mossy fiber sprouting of the 

ipsilateral hemisphere, in which 10 mg/kg normalized mossy fiber sprouting to control 

levels. There was no change in mossy fiber sprouting among contralateral hemispheres of 

any experimental group.  

This reduction in mossy fiber sprouting using rapamycin is consistent with 

previous work in models of epilepsy as well as the CCI model of PTE (Buckmaster et al., 

2009;Zeng et al., 2009;Guo et al., 2013;Heng et al., 2013). In the studies run in this 

dissertation, all mice which demonstrated spontaneous seizures expressed at least 

portions of mossy fiber sprouting into at least the granule cell layer along the blades of 

the dentate gyrus. These data are consistent with a previous study using a high dose of 

rapamycin (10 mg/kg) in a robust model of epilepsy, pilocarpine-induced (Heng et al., 

2013). Combined with previous work using rapamycin treatment, this data suggests that 

rapamycin treatment pauses the underlying processes associated with mossy fiber 

sprouting following CCI injury but does not eliminate this mechanism. Further studies in 

this dissertation were the first to demonstrate functional changes associated with this 

reduced anatomical measure of synaptic reorganization using rapamycin after CCI injury. 
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6.4.2 sEPSC frequency of dentate granule cells 

 Although the histological assessment of mossy fiber sprouting suggests the 

potential for recurrent excitation through the dentate gyrus, it does not functionally 

address this question. Therefore, the use of electrophysiology is a helpful tool to 

investigate functional changes to neurons in this region. One of the problems with 

determining aberrant excitation in dentate granule cells is the amount of inhibitory 

properties associated with this cell group. For this reason, methods to unmask recurrent 

excitatory circuits must be used to determine changes in these cells in disease states 

(Cronin et al., 1992;Patrylo and Dudek, 1998;Molnar and Nadler, 1999;Lynch and 

Sutula, 2000;Wuarin and Dudek, 2001;Winokur et al., 2004). One way to “unmask” 

changes in the excitatory circuit of the dentate gyrus is by measuring spontaneous 

excitatory post synaptic currents (sEPSCs) in the presence of a GABAAR blocker, 

bicuculline, and in nominally Mg2+ free artificial cerebrospinal fluid (ACSF). Dentate 

granule cells from CCI injured mice given vehicle treatment 8-13 weeks after injury in 

ACSF nominally free of Mg2+ and bicuculline added exhibited an increase in sEPSC 

frequency compared to dentate granule cells from sham injured mice and the contralateral 

hemisphere. The dentate granule cells from the ipsilateral hemisphere of CCI injured 

mice with vehicle treatment also demonstrated “bursts” of activity during the sEPSC 

frequency recordings. Rapamycin treatment in mice after CCI injury demonstrated a dose 

dependent reduction in sEPSC frequency of ipsilateral dentate granule cells, and high 

dose (10 mg/kg) rapamycin treatment resulted in normalized sEPSC frequency of 

ipsilateral dentate granule cells compared to sham injured mice. These data combined 

with results of mossy fiber sprouting and seizure expression in experimental mice suggest 
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that mossy fiber sprouting does contribute to seizure generation of CCI injured mice. 

However this connection is only part of the complex process of epileptogenesis and not 

likely the only causation for PTE. In order to corroborate these findings of functional 

changes to individually recorded neurons, extracellular recordings of dentate granule cell 

population response to electrical stimulation was also performed. 

6.4.3 Antidromic stimulation of dentate granule cells 

 The use of whole cell patch-clamp recordings allows assessment of excitatory 

connections onto an individual neuron, but does not address the possibility of population 

synchrony or a population response to an individual stimulus. Antidromic stimulation is 

the use of stimulating downstream axons of a population of neurons to cause the 

synchronized action potential generation of a neuron population. Extracellular recordings 

of a neuron population exhibit the synchrony of the neuron population after stimulation 

and in cases of recurrent excitatory circuit formation (i.e. mossy fiber sprouting), 

secondary depolarizations after the initial population spike are thought to demonstrate the 

recurrent excitatory loop generated by excitatory synaptic reorganization. In this 

dissertation, vehicle injection after CCI injury replicated the previous report of secondary 

depolarization to antidromic stimulation in extracellular recordings of dentate granule 

cells from the ipsilateral hemisphere 8-13 weeks post-injury (Hunt et al., 2009). 

Rapamycin treatment after CCI injury reduced in a dose dependent manner these 

secondary depolarizations to antidromic stimulation in the ipsilateral dentate granule 

cells. This data corroborates the results of sEPSC frequency of ipsilateral dentate granule 

cells after CCI injury and the effect of rapamycin treatment. Reduced axon sprouting of 

dentate granule cells in the ipsilateral hemisphere of mice which received rapamycin 
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treatment after CCI injury suggests some role of mossy fiber sprouting in epileptogenesis 

after TBI.  

6.4.4 Additional future directions 

 All of these data demonstrate that mossy fiber sprouting is at least part of the 

epileptogenic process. Interestingly, these data also correlate the effect of rapamycin after 

CCI injury on neurogenesis with rapamycin’s effect on aberrant mossy fiber sprouting 

and hyperexcitability of the dentate gyrus after CCI injury. After CCI injury newborn 

neurons develop morphologically abnormal dendritic processes, but appear to integrate 

into the hippocampal circuit with normal excitatory and inhibitory synaptic input 

(Villasana et al., 2015). However, this previous work on functional integration of 

newborn dentate granule cells was performed with normal extracellular conditions. Based 

on the work done in robust seizure models and this dissertation, it could be important to 

perturb the extracellular environment to “unmask” the potential abnormalities of newborn 

neurons in the ipsilateral hemisphere after CCI injury. Future studies on the ability of 

these newborn neurons to respond normally to environmental strain, would further our 

understanding of the potential role these newborn neurons could play in the epileptogenic 

process. 

6.5 Effects of mTOR inhibition on inhibitory synaptic reorganization of dentate 

 granule cells 

6.5.1 sIPSC frequency of dentate granule cells 

 Synaptic GABAergic inhibition can be measured using whole cell patch-clamp 

recordings of neurons and assessing the spontaneous inhibitory post-synaptic current 
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(sIPSC) frequency. In the CCI model, dentate granule cells in the ipsilateral hemisphere 

of CCI injured mice exhibit reduced sIPSC frequency at both an early (1-2 weeks post-

injury) and late (8-12 weeks post-injury) time period compared to dentate granule cells in 

the contralateral hemisphere or sham controls (Hunt et al., 2011;Boychuk et al., 2016). 

This reduction in sIPSC frequency has been postulated as the result of cell death to hilar 

inhibitory interneurons in the ipsilateral hemisphere after injury (Hunt et al., 2011). 

Rapamycin treatment after pilocarpine-induced status epilepticus in GIN mice resulted in 

a reduction of axon sprouting of eGFP-positive hilar interneurons, but did not prevent the 

loss of these neurons in the pilocarpine induced status epilepticus model (Buckmaster and 

Wen, 2011) or in this dissertation. The primary target of these eGFP-positive hilar 

interneurons is the dendritic field of dentate granule cells. Reduced axon sprouting of 

these hilar inhibitory interneurons in mice treated with rapamycin after CCI injury could 

result in further reduced synaptic inhibition of dentate granule cells.  

To test this possibility sIPSC frequency was measured. 1-2 weeks post-injury, 

sIPSC frequency of dentate granule cells from the ipsilateral hemisphere of CCI injured 

mice with vehicle or rapamycin treatment was reduced compared to sham control mice. 

However, there was no difference in sIPSC frequency between ipsilateral dentate granule 

cells of vehicle or rapamycin treated CCI-injured mice. At the later time point, 8-13 

weeks post-injury, the sIPSC frequency of ipsilateral dentate granule cells from CCI 

injured mice with vehicle or rapamycin treatment was reduced relative to sham controls, 

and ipsilateral dentate granule cells from rapamycin treated mice exhibited further 

reduced sIPSC frequency compared to ipsilateral dentate granule cells from CCI injured 

mice with vehicle treatment. These data suggest that rapamycin treatment after CCI 
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injury reduces inhibitory synapse formation onto dentate granule cells, possibly through 

the inhibition of axon sprouting of hilar inhibitory interneurons. This form of reduced 

axon sprouting over time could be detrimental for the balance of excitation and inhibition 

in the hippocampus after injury.  

6.5.2 Resting and THIP-induced tonic GABAAR currents 

 Synaptic inhibition of dentate granule cells is only one of the forms of inhibitory 

control of dentate granule cells. Tonic inhibition is another form of inhibitory control of 

dentate granule cells, and alterations of tonic inhibition after CCI have been reported 

previously (Mtchedlishvili et al., 2010;Boychuk et al., 2016). One of the key differences 

in one previous report of CCI-induced changes to GABAAR mediated tonic inhibition 

and both this dissertation as well as another study from the Smith lab, is the ability to 

record dentate granule cells from the ipsilateral hemisphere after CCI injury. In a 

previous report the ipsilateral hippocampus was extensively damaged and unsuitable for 

recording dentate granule cells, therefore differences in outcome measures are likely due 

to the severity of that CCI injury model (Mtchedlishvili et al., 2010). In this dissertation, 

whole cell patch clamp recordings were obtained from ipsilateral dentate granule cells as 

well as contralateral and sham controls.  

Because mTOR inhibition after CCI injury had synaptic inhibitory effects at 8-13 

weeks post-injury, this study tested the possible effects of rapamycin treatment after CCI 

on tonic GABAAR mediated currents. At both 1-2 and 8-13 weeks post-injury, ipsilateral 

dentate granule cells from CCI injured mice with vehicle treatment exhibited reduced 

THIP-induced tonic currents relative to sham controls, but ipsilateral dentate granule cells 
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from CCI injured mice with rapamycin treatment did not exhibit a reduced THIP-induced 

tonic current. The reduced THIP-induced tonic current amplitude in ipsilateral dentate 

granule cells of CCI injured mice with vehicle treatment corroborates previous work from 

the Smith lab (Boychuk et al., 2016). The reduced responsiveness of ipsilateral dentate 

granule cells to THIP was not due to reduced mRNA expression of either α4 or δ subunit 

containing GABAAR’s (Boychuk et al., 2016). There are many possible explanations for 

this reduced responsiveness including; subunit reorganization, the number of receptors in 

the membrane, different activation state of GABAAR’s, or the amount of agonist present 

in post-synaptic space. Based on the evidence for kinase mediated phosphorylation of 

GABAAR’s and the potential relationship this process has with trafficking of GABAAR’s, 

these possibilities are discussed below.  

6.5.3 Additional future directions 

Modulation of GABAAR’s continues to be a subject of interest in both normal 

physiology as well as in disease states. Two kinases that have been most associated with 

altering phosphorylation state of GABAAR’s are PKA and PKC (Browning et al., 

1990;Porter et al., 1990;Moss et al., 1992a;Moss et al., 1992b). Another kinase which has 

been associated with increased phosphorylation of GABAAR’s in cell culture is Akt (also 

known as PKB; (Wang et al., 2003). It is currently unclear what role phosphorylation of 

GABAAR’s plays in modifying the function of these receptors. The work done by 

Boychuk and colleagues demonstrates reduced GABAAR function in a subset of receptors 

without altered mRNA expression in the ipsilateral dentate granule cells after CCI injury 

at both an early (1-2 weeks post-injury) and late (8-13 weeks post injury) time period. As 

previously stated there are many possible explanations for altered function of 
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phosphorylated GABAAR’s. Although the work presented in this dissertation does not 

determine an exact mechanism of action, it would suggest that Akt/mTOR activity is 

involved in the process of this reduced function of GABAAR’s in ipsilateral dentate 

granule cells. Due to Akt and mTOR being kinases, it is likely that the processes these 

proteins affect are related to phosphorylation events. These phosphorylation events could 

be either associated with the direct phosphorylation of GABAAR’s or part of a cell 

signaling pathway which effects the phosphorylation state of GABAAR’s. Improved 

understanding of the role of phosphorylation of GABAAR’s in both normal physiology 

and disease state would benefit our understanding of the role altered function of 

GABAAR’s due to phosphorylation events after CCI injury plays in the epileptogeneic 

process. 

6.6 Effects of mTOR inhibition on synaptic reorganization of surviving hilar 

GABAergic interneurons 

6.6.1 Action potential firing of eGFP-positive hilar interneurons 

  Neuron communication occurs by neurotransmission and action potentials. There 

are many factors which can increase action potential firing of a neuron such as reduced 

inhibition, internal polarity properties of the neuron, or sprouting of excitatory synapses 

onto a neuron. Increased excitatory inputs onto a neuron can cause an increase in the 

frequency of action potentials generated in that neuron. More active neurons therefore 

have higher frequencies of action potentials than less active neurons. Increased activity of 

the same neuron populations can result in maintained or strengthening of synaptic 

contacts for that neuron population (i.e. long-term potentiation). In some disease states, 
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such as PTE, axon sprouting is a common feature and could alter the activity level of 

different neuron populations (Hunt et al., 2009; 2010; 2011). In the CCI model, 8-12 

weeks after injury mossy fiber sprouting in the ipsilateral hemisphere is a hallmark 

feature, but mossy fibers do not only sprout into the inner molecular layer. One of the 

prominent connections of dentate granule cells is with hilar inhibitory interneurons 

(Amaral, 1979;Amaral and Dent, 1981;Claiborne et al., 1986;Zhang and Houser, 1999). 

These axons can also sprout within their normal projection pathway onto surviving 

inhibitory interneurons in the hilus (Halabisky et al., 2010;Hunt et al., 2011). Rapamycin 

has been shown in models of epilepsy and the CCI model to reduce mossy fiber 

sprouting, but what effect this could have with the reorganization of the hippocampal 

inhibitory circuit had not been previously tested.  

Therefore action potential firing and sEPSC frequency of surviving hilar eGFP 

neurons was measured using cell-attached and whole cell patch clamp recordings to 

determine changed in activity of surviving hilar inhibitory interneurons. 8-12 weeks after 

CCI injury, this dissertation shows that surviving hilar eGFP-positive neurons in GIN 

mice fire more action potentials than sham and contralateral eGFP-positive neurons hilar 

interneurons, similar to a previous report (Hunt et al., 2011). Daily rapamycin treatment 

(3 mg/kg) for 8-13 weeks post-CCI injury reduced action potential firing of surviving 

eGFP-positive hilar neurons compared to ipsilateral eGFP-positive neurons in CCI 

injured mice with vehicle treatment, but did not normalize the firing frequency to sham 

levels. Although this data indicates reduced activity of surviving ipsilateral eGFP-

positive hilar interneurons of rapamycin treated mice after CCI injury, it does not 

demonstrate that this is due to a reduction in excitatory synaptic plasiticity.  
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6.6.2 sEPSC frequency of eGFP-positive hilar interneurons 

 This study used sEPSC frequency to test if the effect of rapamycin treatment after 

CCI injury on action potential firing of hilar interneurons was due to reduced excitatory 

synaptic reorganization of ipsilateral hilar interneurons after CCI injury. eGFP-positive 

hilar interneurons from the ipsilateral hemisphere of CCI injured mice which received 

vehicle treatment exhibited increased sEPSC frequency compared to eGFP-positive hilar 

neurons from the contralateral hemisphere or sham controls, similar to the previous report 

from the Smith lab (Hunt et al., 2011). Rapamycin treatment after CCI injury did not alter 

sEPSC frequency in eGFP-positive neurons of the contralateral hemisphere, but eGFP-

positive hilar interneurons from the ipsilateral hemisphere exhibited reduced sEPSC 

frequency compared to eGFP-positive neurons of the ipsilateral hemisphere of CCI 

injured animals but did not normalize to sham control levels. These data suggest 

rapamycin treatment after CCI injury reduces synaptic reorganization in the hilus as well 

as the abberant mossy fiber sprouting and synaptic reorganization into the inner 

molecular layer previously discussed. The increase in excitation of surviving ipsilateral 

hilar interneurons of CCI-injured mice has been proposed as a compensatory mechanism 

for maintaining the inhibition of dentate granule cells after the loss of hilar interneurons 

following brain injury (Hunt et al., 2011). Therefore, this reduced excitation could also be 

detrimental for inhibition of the dentate granule cells. However it was also noted that 

increased excitation onto surviving hilar inhibitory interneurons in the ipsilateral 

hemisphere after CCI injury could causes these surviving hilar interneurons to be more 

susceptible to entering a state of depolarizing block (Hunt et al., 2011). So this reduction 

in excitatory drive of eGFP-positive hilar interneurons could be beneficial in reducing the 



148 
 

potential risk of these neurons entering a depolarizing block state during excessive 

excitation. It remains unclear how altered excitation of surviving hilar interneurons 

contributes to the epileptogenic process and the beneficial/detrimental nature of this 

synaptic reorganization.  

6.6.3 Cell size of surviving eGFP-positive hilar interneurons 

 In the pilocarpine-induced model of status epilepticus, increased soma size was 

observed in eGFP-positive hilar interneurons from GIN mice which underwent 

pilocarpine-induced status epilepticus compared to saline controls (Buckmaster and Wen, 

2011). This suggests that cell size for this subset of neurons could potentially change in 

injury states such as the ipsilateral hemisphere of CCI injured mice, and rapamycin 

treatment after CCI injury could modify this response to injury. An indirect measure of 

cell soma size is the whole cell capacitance measure of neurons during whole cell patch 

clamp electrophysiology recordings. However, this has not been previously tested in the 

CCI model. After CCI injury, eGFP-positive hilar interneurons exhibited no change in 

whole cell capacitance in either the contralateral or ipsilateral hemisphere of CCI injured 

mice with vehicle treatment compared to sham controls 8-13 weeks post-injury. 

However, eGFP-positive hilar interneurons from both the contralateral and ipsilateral 

hemispheres of CCI injured mice with rapamycin treatment displayed reduced whole cell 

capacitance compared to sham controls. The theory of increased soma size in pilocarpine 

induced status-epilepticus mice was that increased size was due to the increased energy 

demands of the neurons in these mice, and that rapamycin treatment reduced the energy 

demands for these neurons (Buckmaster and Wen, 2011). Although the CCI model does 

not exhibit the increase in cell size measured in the pilocarpine model of status 
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epilepticus, rapamycin treatment after CCI injury did demonstrate reduced cell size in 

both hemispheres. However, there is a caveat of no rapamycin treated sham-injured mice 

to compare this change in cell size. If energy demand is the driving force in soma size, it 

could be beneficial to maintain lowered energy demand on an already reduced neuron 

population such as the eGFP-positive hilar interneurons after CCI injury. 

6.7 Effects of mTOR inhibition on glutamate photoactivation responses in the 

dentate gyrus 

6.7.1 Photoactivation responses from dentate granule cells 

 Use of caged glutamate to stimulate cell populations is a useful tool for mapping 

out circuitry in a region of the brain and avoids the use of large electrodes which can kill 

neurons during electrophysiology experiments. Based on the work from Chapter 5 of this 

dissertation, rapamycin treatment after CCI injury reduces excitatory inputs onto 

surviving hilar eGFP-positive neurons. However, after CCI injury there are two neuron 

populations in the ipsilateral hemisphere that this aberrant excitatory sprouting can occur. 

These two neuron populations are dentate granule cells and CA3 pyramidal neurons 

(Halabisky et al., 2010;Hunt et al., 2011;Zhang et al., 2012). Based on the work from 

Chapter 3 of this dissertation, mossy fiber sprouting of dentate granule cells is reduced in 

mice treated with rapamycin after CCI injury. However, eGFP-positive hilar inhibitory 

interneurons in the ipsilateral hemisphere of CCI injured mice treated with rapamycin 

still have increased excitatory input and fire more action potentials than eGFP-positive 

hilar inhibitory interneurons from the contralateral hemisphere or sham controls. 

Therefore, glutamate photostimulation applied to both dentate granule cells and CA3 
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pyramidal neurons was used while recording from eGFP-positive hilar inhibitory 

interneurons to determine if rapamycin treatment was preferential toward axon sprouting 

of dentate granule cells or CA3 pyramidal neurons. 

 There was no difference in the responses to applied glutamate photostimulation 

in dentate granule cells from the contralateral hemisphere onto recorded eGFP-positive 

hilar interneurons 8-12 weeks post-injury. eGFP-positive hilar interneurons in the 

ipsilateral hemisphere of CCI injured mice with vehicle treatment exhibited increased 

evoked responses when glutamate photostimulation was applied to the dentate granule 

cell layer compared to controls. Ipsilateral eGFP-positive hilar interneurons from CCI 

injured mice which received rapamycin treatment did not exhibit increased evoked 

responses after glutamate photostimulation in dentate granule cells, seen in CCI injured 

mice with vehicle treatment. This data confirms the effects previously reported in this 

dissertation of rapamycin treatment after CCI injury on aberrant mossy fiber sprouting. 

This is the first report of functional changes associated with reduced mossy fiber 

sprouting within the hilus, and therefore leads to the following question: does rapamycin 

also reduce aberrant sprouting of CA3 pyramidal neurons onto surviving hilar inhibitory 

interneurons? 

6.7.2 Glutamate photostimulation in CA3 pyramidal neurons 

 The effect of rapamycin on CA3 backprojections is untested. To test the potential 

effect of rapamycin on this aberrant sprouting of CA3 pyramidal neurons, whole cell 

patch-clamp recordings of sEPSCs were made of eGFP-positive hilar interneurons, and 

then caged glutamate was released in the CA3 pyramidal cell layer 8-12 weeks post-
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injury. eGFP-positive hilar interneurons in the ipsilateral hemisphere of CCI injured mice 

with vehicle treatment exhibited increased responses to glutamate photostimulation 

applied to CA3 pyramidal cell layer compared to controls. Ipsilateral eGFP-positive hilar 

interneurons from CCI injured mice which received rapamycin treatment also exhibited 

the observed increase in evoked responses to glutamate photostimulation of CA3 

pyramidal neurons, seen in CCI injured mice with vehicle treatment. This data suggests 

rapamycin treatment preferentially inhibits hilar sprouting of mossy fibers onto surviving 

eGFP-positive interneurons, but does not inhibit CA3 backprojections. Based on the data 

in this study, CA3 pyramids undergo axon sprouting in an mTOR independent manner. It 

remains unclear what role these backprojections play in disease states such as epilepsy. 

6.7.3 Additional future directions 

Little is understood about the sprouting of CA3 pyramidal neurons in normal 

physiology or disease states. In normal physiology CA3 pyramidal neurons will synapse 

back into the hilus onto GABAergic hilar inhibitory interneurons and excitatory mossy 

cells (Scharfman, 1993;Scharfman, 1994;Kneisler and Dingledine, 1995). The input onto 

recorded dentate granule cells after CA3 pyramid stimulation is one of inhibition, which 

suggests the primary contribution of the CA3 pyramidal neuron back-projection is one of 

synapsing onto GABAergic hilar inhibitory interneurons (Scharfman, 1993;Kneisler and 

Dingledine, 1995). This has led to the theory that CA3 pyramidal neurons contribute to a 

secondary dentate filter of inhibition for dentate granule cells (Scharfman, 2007). After 

CCI and in models of TLE the synaptic input of CA3 pyramidal neurons onto surviving 

hilar inhibitory interneurons in the ipsilateral hemisphere increases (Halabisky et al., 

2010;Hunt et al., 2011), which this dissertation confirms. The work from Chapter 5 of 
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this dissertation demonstrates that these increased synaptic connections with surviving 

hilar inhibitory interneurons in the ipsilateral hemisphere are not rapamycin sensitive. 

This is different than the increase in excitatory synaptic connections from dentate granule 

cells onto surviving hilar inhibitory interneurons, which are sensitive to rapamycin 

treatment after CCI injury. It remains unclear if this is a beneficial or detrimental effect of 

TBI. Both the CA3 pyramidal cells and hilar inhibitory interneurons are lost after CCI 

injury in the ipsilateral hippocampus (Lowenstein et al., 1992;Hicks et al., 1993;Smith et 

al., 1995;Saatman et al., 2006). If the back-projection of CA3 pyramidal neurons is part 

of a secondary dentate filter, then sprouting of surviving CA3 pyramidal neurons would 

be beneficial in the maintenance of this inhibitory filter.  

There are several possible explanations for this difference in excitatory axon 

sprouting of dentate granule cells and CA3 pyramidal neurons. Some of the possibilities 

are: different growth cues for axon sprouting, different cell membrane receptor 

populations, and different activity levels of neuron populations. One of the possibilities is 

that different neuron populations respond to various extracellular signaling molecules 

such as hormones differently. It is possible that CA3 pyramidal neuron sprouting is the 

result of one of the hormones released after TBI in the ipsilateral hemisphere which 

dentate granule cells are insensitive to but CA3 pyramidal neurons respond to strongly. A 

recent report in pilocarpine induced status epilepticus mice demonstrated a substantial 

reduction in seizure generation when mice were treated with an inhibitor of TrkB (Liu et 

al., 2013). Loss of CA3 pyramidal neurons is a common feature of animal models of 

TLE, and interestingly the treatment of pilocarpine induced TLE mice with this TrkB 

kinase inhibitor reduced the percent of cell loss in the CA3 region. This would suggest 
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that the CA3 pyramidal neurons are very important to the epileptogenic process. One may 

even conclude that a focus on changes to CA3 pyramidal neurons, as opposed to a 

dentate-centric view of epilepsy, could be very beneficial in our understanding of 

epileptogenesis.  

However, work done in the pilocarpine-induced status epilepticus mouse model of 

TLE suggests CA3 pyramidal neuron sprouting is not only to hilar interneurons and 

mossy cells, but also increased sprouting directly onto dentate granule cells was observed 

in mice which underwent status epilepticus (Zhang et al., 2012). There is no evidence of 

direct CA3 pyramidal neuron connections onto dentate granule cells in CCI injured mice 

yet, but evidence from the Smith lab (Hunt et al., 2011) and Chapter 5 of this dissertation 

suggest that this form of sprouting could happen in the ipsilateral hemisphere of CCI 

injured mice. If this form of sprouting is also insensitive to rapamycin treatment, then this 

could be another potentially maintained form of excitatory synaptic reorganization in CCI 

injured mice given rapamycin treatment. This aberrant synaptic reorganization of CA3 

pyramidal neurons directly onto dentate granule cells could lead to reemergence of 

phenotypes associated with epilepsy and potentially seizures after rapamycin treatment is 

removed, by becoming a focus of aberrant circuitry within the hippocampus. 

Investigation into the existence of these aberrant connections between CA3 pyramidal 

neurons and dentate granule cells within the ipsilateral hemisphere of CCI injured mice, 

as well as potential treatments to prevent this aberrant sprouting would help in 

understanding the role of CA3 backprojections to epileptogenesis. 
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6.8 Final conclusions 

 The findings in this dissertation greatly improve our understanding of the effects 

of rapamycin treatment following CCI injury on many cellular mechanisms associated 

with epileptogenesis. Previously the only outcome measures used in studies testing 

rapamycin as an antiepileptogenic therapy were mossy fiber sprouting and seizure 

generation (Buckmaster et al., 2009;Zeng et al., 2009;Guo et al., 2013;Heng et al., 2013). 

However the role of mossy fiber sprouting in the process of epileptogenesis has become 

controversial (Heng et al., 2013). This dissertation research shows that rapamycin 

treatment does not prevent the initiation of epileptogenesis, but rather modifies the 

process and so modifies the disease. The experimental outcomes from these studies 

should be used to help guide future work toward the development of an antiepileptogenic 

therapy for PTE. Rapamycin may still have some clinical relevance for other forms of 

epilepsy such as tuberous sclerosis complex disorder, a genetic form of epilepsy in which 

the inhibitory molecules which control mTOR signaling are dysfunctional and lead to 

excessive activity of mTOR (Zeng et al., 2008). Even in this case caution should be 

observed before the use of rapamycin in the human population with potential impact on 

all cell types if treatment is given broadly. Drug delivery would be very important to 

avoid complications in these other tissues and organ systems.  

Additionally, increased mTOR activity is not limited to neurons within the 

hippocampus, but is also present in glia (Zhu et al., 2014). Rapamycin treatment also 

reduces microglia activation after TBI injury in mice (Erlich et al., 2007). This 

dissertation work did not focus on changes in glia after CCI injury or how rapamycin 

treatment would modify these changes. The electrophysiological measurements made 
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here are expected to be most sensitive to changes in neuronal synaptic reorganization. For 

example, the stimulation protocols used here to assess cell connectivity, such as 

antidromic stimulation of DGC axons or glutamate photoactivation within the DGC and 

CA3 neuron layers, are expected to preferentially activate neurons. Additionally, the 

mossy fiber sprouting observed with Timm stain indicates that axonal reorganization of 

DGCs is occurring after brain injury. That being said, it remains possible that astrocytes 

or microglia are participating in some of the observed changes following brain injury 

and/or are sensitive to the rapamycin treatment used here. There is evidence that glia can 

indirectly modify neuronal excitability and axonal plasticity through the release of 

various transmitters and factors. The present projects did not attempt to isolate the effects 

of glia on hippocampal signaling after brain injury. 
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Appendix 1 

Lists of immunohistochemical protocols 

A1.1 Doublecortin protocol 

First Day: 

-10% blocking/permeabilization step for 30 minutes at room temperature 

-2% goat serum, 0.15% triton 100 in TBS with 1:5000 primary rabbit anti-doublecortin 
antibody overnight at 4oC 

Second Day: All done at room temperature 

-3 X 5 minute washes with 2% goat serum, 0.15 triton 100 in TBS 

-1 hour in goat anti-rabbit alexa fluor (488; 1:1000) 

-3 X 5 minute washes with TBS 

-Mount tissue on Superfrost slides using vectashield with DAPI 

 

A1.2 Fluoro Jade B protocol 

- 5 minutes in 1% NaOH in 80% ethanol, gently shake at room temp 

- 2 minutes in 70% ethanol 

- 2 minutes in DDH2O 

- 10 minutes in 0.06% potassium permanganate solution (60 mg in 100 mL DDH2O), 
cover in aluminum foil 

- Short rinse in DDH2O 

- 1 minute DDH2O 

- 1 minute DDH2O 

- 1 minute DDH2O 

- 10 minutes in Fluoro Jade B solution (1 mL from 0.01% FJB in 99 mL of 0.1% acetic 
acid H2O) 

- 1 minute DDH2O 
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- 1 minute DDH2O 

- 1 minute DDH2O 

- 1 minute DDH2O 

- 1 minute DDH2O 

- Dry excess water from slide 

- Dry slides on slide warmer at 50 oC for 30 minutes, protect from light 

- 10 minutes in Xylene 

- 10 minutes in Xylene 

 

A1.5 Sodium phosphate buffer (0.3 M) protocol 

Chemical For 500 mL For 1000 mL 

Sodium phosphate 
monobasic (NaH2PO4*H2O, 
FW= 137.99) 

4.755 g 9.51 g 

Sodium phosphate dibasic 
(Na2HPO4, FW= 141.96) 

16.395 g 32.79 g 
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Appendix 2 

Electrophysiology protocols/setup 

 

A2.1 ACSF protocol 

Chemical 0.5 L 1 L 1.5 L 2 L Final 
concentration 

NaCl 3.6235 g 7.247 g 10.8705 g 14.494 g 124 mM 

NaHCO3 1.09 g 2.18 g 3.27 g 4.36 g 26 mM 

NaH2PO4 0.086 g 0.172 g 0.258 g 0.344 g 1.4 mM 

Glucose 0.99 g 1.98 g 2.97 g 3.96 g 11 mM 

KCl 0.75 mL 1.5 mL 2.25 mL 3 mL 3 mM 

MgCl2 0.65 mL 1.3 mL 1.95 mL 2.6 mL 1.3 mM 

CaCl2 0.65- 1 mL 1.3- 2 mL 1.95- 3 mL 2.6- 4 mL 1.3- 2 mM 

 

A2.2 Internal solutions protocols 

 A2.2.1 Cs-gluconate 140 

Chemical 200 mL 100 mL mM mOSM 

Gluconic acid 8.81 mL 4.405 mL 130 140 

HEPES 0.4766 g 0.2383 g 10 10 

NaCl 200 µL 100 µL 1 2 

MgCl2 200 µL 100 µL 1 3 

CaCl2 200 µL 100 µL 1 3 

Titrate to 
pH=7.2 with 
CsOH 

    



159 
 

Add EGTA 0.38048 g 0.19024 g 5 5 

-Spin until EGTA dissolves <30 minutes total, then titrate to pH=7.2 again 

 

A2.2.2 K-gluconate 130 

Chemical 200 mL 100 mL mM mOSM 

K gluconate 6.0892 g 3.0446 g 130 260 

HEPES 0.4766 g 0.2383 g 10 10 

NaCl 200 µL 100 µL 1 2 

MgCl2 200 µL 100 µL 1 3 

CaCl2 200 µL 100 µL 1 3 

Titrate to 
pH=7.2 with 
KOH 

    

Add EGTA 0.38048 g 0.19024 g 5 5 

-Spin until EGTA dissolves <30 minutes total, then titrate to pH=7.2 again 
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A2.3 Diagram of electrophysiology connections for Axon 200B 

 

 

 

 

 

 

 

 

 

 

 

 



161 
 

 

A2.4 Diagram of electrophysiology connections for Multiclamp 700B 

 

 

A2.5 List of tubing used for electrophysiology 

Fisherbrand Manifold pump tubing (1.30 mm x 16”) 

Dow corning Silastic (<0.040in x 50 ft.) 

Nalgene tubing products (0.25in x 3 ft.) 
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