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Introduction
All human cells generate messenger RNA (mRNA) through 
pre-mRNA splicing, a process that removes intervening 
sequences (introns) and splices exonic sequences together 
prior to their export into the cytosol.1 This process is con-
served in all eukaryotic cells and performed by a multienzyme 
complex, the spliceosome.2,3 Changes in alternative splicing 
are a hallmark of cancer and targeting the spliceosome has 
been proposed as a possible treatment for cancer.4,5

Sudemycins
Bacteria generate natural products that bind to components of 
the spliceosome; 2 of the best-known examples are FR901464 
and pladienolide, which causes selective regression of tumors in in 
vivo cancer models,6,7 making them promising anticancer agents. 
FR901464 is chemically unstable, and thus, more stable com-
pounds were designed and optimized through focused medicinal 
chemistry; these compounds are collectively called sudemycins.7,8 
Sudemycins selectively stop the growth of tumors in mice and 
preferably target cancer cells, sparing nonneoplastic cells through 
an unknown mechanism.7 Similar to FR901464, sudemycins 
bind to the U2 component SF3B1, which is part of the spliceo-
some.9 In cell culture, sudemycin D6 does not inhibit splicing but 

change certain alternative splicing patterns within 3 to 6 hours in 
immortalized cells, possibly by causing a dissociation of the U2 
complex.9

The aim of the study was to characterize RNA splicing bio-
markers in primary human cells using an ex vivo assay we pre-
viously developed.10 We identified human RNA targets of 
sudemycin D6 in human ex vivo blood samples that can be 
used in future human clinical trials.

Methods
An overview of the assay is shown in Figure 1.

Human subjects

Healthy volunteer blood donors were recruited in accordance with 
the institutional review board protocol #15-0077, approved by the 
University of Kentucky. To be included, subjects must be more than 
18 years old, not on current chronic medication, and free from hep-
atitis. Blood was taken from healthy subjects in the morning after 
an overnight fast to limit lipids that possibly interfered with the 
RNA isolation. The intake of liquids was permitted.

Blood collection

About 30 mL of venous blood was collected in BD Vacutainer 
vials (Becton, Dickinson, Franklin Lakes, NJ, USA) containing 
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acid citrate dextrose (“yellow cap”) solution A (trisodium cit-
rate [22.0 g/L], citric acid [8.0 g/L], and dextrose [24.5 g/L]). 
The blood samples were transferred from the Vacutainer vials 
into 2 separate platelet storage bags (Blood Cell Storage, Inc., 
Seattle, WA, USA): 1 containing 18 mL of blood and the other 
containing 12 mL of blood.

Ex vivo sudemycin treatment

The blood was treated with 1 µM sudemycin D6, dissolved in 
dimethyl sulfoxide (DMSO) or an equal volume of DMSO in 
the control. During the incubation time, 3-mL samples were 
taken at 0, 3, 6, 9, and 24 hours.

Lymphocyte isolation

Lymphocytes from the samples were isolated using Sigma-
Aldrich Accuspin System-Histopaque 1077 gradient tubes 
(Sigma, St Louis, MO, USA), according to the manufacturer’s 
protocol. After the isolation, lymphocytes were pelleted at 
5000×g for 3 minutes.

RNA extraction

Total RNA was isolated from the pelleted lymphocytes using 
TRIzol (Invitrogen, Waltham, MA, USA). About 1 mL of TRIzol 
was added to the lymphocyte pellet and homogenized using a 
1-mL pipette and incubated for at least 5 minutes. The aqueous 
solution was isolated by adding 200 μL of chloroform/1 mL 
TRIzol, separated by centrifugation at 12 000×g for 5 minutes. 
RNA was precipitated using 500 µL isopropanol/1 mL original 
TRIzol, washed with 75% ethanol, and resuspended in 25 µL water.

Reverse transcription-polymerase chain reaction was per-
formed using 1 µg RNA and 1 pM reverse primer as previously 
described.9 The primers (Table 1) are located in constitutive 
exons flanking the alternative exons (Figure 1B).

Statistical Analysis
Gene expression signals were quantified using ImageJ11 and 
relative quantities were determined by band intensities 

within a lane. Exon inclusion was calculated by dividing the 
intensity of the regulated gel band by the sum of both band 
intensities. A Shapiro-Wilk test was used to determine the 
normality for validity of the analysis of variance (ANOVA), 
where P < .05 demonstrates a non normal distribution.12 
The exon inclusion proportion was analyzed with an 
ANOVA test and Tukey HSD (honest significant differ-
ence) post hoc13 using IBM SPSS Statistics treatments.14 
Changes were considered significantly different with P < .05. 
Subjects were separated by age, sex, and ethnicity and ana-
lyzed with paired t test and considered significantly differ-
ent with P < .05.

Results
Selection of subjects

The blood donors were 21 to 51 years of age, 4 men, 8 women, 
from different ethnicities (mean age = 31.75, median 
age = 28) years (Table 2).

Assay

To test the effect of sudemycin D6 under in vivo conditions, 
we treated whole blood samples ex vivo with sudemycin D6. 
We used treatment conditions similar to blood banking, 
which keeps cells intact for several days. Citric acid and glu-
cose were added as an anticoagulant and nutrient, respec-
tively, and the blood was stored in blood bags that allowed 
gas exchange during the experiments. We did not observe 
any hemolysis.

Changes in alternative splicing caused by sudemycin 
D6 treatment

Sudemycin D6 is a compound that binds to the splicing 
component SF3B1, which is part of the U2 small nuclear 
ribonucleoprotein complex. We previously performed array 
analyses and found that sudemycin D6 changes the usage of 
numerous alternative splice sites at low µM concentrations 
within hours in HeLa, RH19, and HEK293 cells.9 In most 
cases, sudemycin causes exon skipping within 3 to 6 hours of 
treatment. Importantly, these changes were reversible, ie, the 
exon skipping was not detectable after 9 hours, which likely 
reflects the inactivation of sudemycin D6 in aqueous solu-
tion.9 To identify biomarkers for possible sudemycin D6 
clinical trials, we treated human blood samples ex vivo, using 
the sudemycin D6 concentration of 1 µM that showed an 
effect in cell culture. Because splice site selection can be 
individual specific,15 we tested subjects from different eth-
nicities, both sexes and ages.

We tested 6 splicing events in the DUSP11, SRRM1, 
RPp30, AURKB, MLH3, and PAPOLG genes (Figure 2A to F) 
that showed high expression and reproducible changes in 
RH19 and HEK293 cells.9 These findings were quantified by 

Figure 1.  Overview of the assay. (A) Overall experimental design: patient 

blood was drawn and citric acid and glucose were added. The treatment 

with sudemycins is performed in blood storage bags for up to 24 hours, 

followed by isolation of lymphocytes in Ficoll gradients, isolation of RNA, 

and RT-PCR detection. (B) Chemical structure of sudemycin D6. RT-PCR 

indicates reverse transcription-polymerase chain reaction.
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calculating the percent exon inclusion as the intensity of the 
band containing the alternative exon divided by the intensity of 
all bands (Figure 3A to F).

Our assay amplifies mRNA isoforms containing or skipping 
an alternative exon using the same set of polymerase chain 
reaction primers and is thus internally controlled.

DUSP11 and SRRM1 splicing patterns were changed in 
all subjects beginning at 9 hours of treatment and did not 
revert to the original splicing patterns after 24 hours, which 
is in contrast to the splicing patterns in transformed cells 
that revert to the pretreatment ratio at this time point. 

Despite the small sample number, these changes were highly 
significant (P values in a 1-way ANOVA: DUSP11: 9 hours: 
P = 1.11 × 10−8; 24 hours: P = 6.27 × 10−13; SRRM1: 9 hours: 
P = .00031; 24 hours: P = 1.47 × 10−9).

Although the splicing patterns for MLH3 and PAPOLG 
showed a similar trend, the patterns varied between the vari-
ous individuals. AURKB (12/12 cases) and RPp30 (11/12 
cases) showed no changes in overall expression or alternative 
splicing, respectively, in human blood samples, which is in 
contrast to previous results in HEK293 and RH19 cells that 
exhibit changes.

Table 1.  Primers used.

Primer Sequence Amplicon size

DUSP 11 forward 5′-GAC ATC AAG TGC CTG ATG ATG A-3′ 212, 151

DUSP11 reverse 5′-ATG TCC CCG GCA CCT ATT-3′

RPp30 forward 5′-TAT ATC TAG TGC TGC AGA AAG G-3′ 193 (retained intron)

RPp30 reverse 5′-GCC TAA AGA AAG TGG GGA TAA-3′

SRRM1 forward 5′-GAC TCT GGC TCC TCC TCC TC-3′ 209, 167

SRRM1 reverse 5′-GGA CTT CTC CTC CGT CTA CCA-3′

MLH3 forward 5′-TTA TTG CCT GTT TGA TGA GCA C-3′ 220, 150

MLH3 reverse 5′-TCC TTT GTT CCT CTG TCA CTG TT-3′

PAPOLG forward 5′-AAG AGA TCC CAT TCC CCA TC-3′ 178, 112

PAPOLG reverse 5′-TGC GTG ATG TAT CAA TAG TTG GA-3′

AURKB forward 5′-ATG ACC GGA GGA GGA TCT AC-3′ 182 (retained intron)

AURKB reverse 5′-GAT GGA CCT CCA GCT ACA AG-3′

Table 2.  Age and ethnicity of subjects.

Sample no. Sex, self-identified ethnicity Age

380 Female, white 21

657 Female, white 21

346 Female, Multi: African American and white 21

M.T. Female, white 23

559 Female, white 24

278 Male, Hispanic/Latino 27

296 Female, white 29

786 Male, Asian 31

767 Male, white 44

944 Female, white 44

902 Female, African American 45

S.S. Male, white 51



4	 Biomarker Insights ﻿

Differences between sex, age, and ethnicity

There was no difference between the sexes and ethnicities. 
However, unexpectedly, after 24 hours of sudemycin D6 treat-
ment, samples from subjects older than 30 years showed a 
lower percentage of exon inclusion than samples from sub-
jects younger than 30 years in the PAPOLG gene, suggesting 
that age modulates the response to sudemycin D6 (Figure 4).

Discussion
We were looking for a simple and robust assay to monitor 
the effect of sudemycin D6 and possible future improved 
sudemycins in primary human cells. Sudemycins have previ-
ously been shown to change splicing patterns in numerous 

cell lines, including immortalized leukemia cell lines.16 As a 
model for primary cells, we choose blood because it contains 
a variety of cell types in a physiological environment. By 
adding sudemycin to blood ex vivo, we could circumvent 
clearance of the liver. Using the blood from 12 healthy 
donors, we found that sudemycin D6 changes splice site 
usage of the DUSP11 and SRRM1 pre-mRNA after 9 hours 
of treatment. Our tested subjects showed statistically sig-
nificant changes in the splicing patterns of DUSP11, 
SRRM1, and PAPOLG. However, the degree of response was 
variable for PAPOLG where older subjects showed a stronger 
response to sudemycin. Alternative splicing patterns are fre-
quently developmentally regulated1 and it has been reported 
that some alternative splicing patterns are age dependent in 

Figure 2.  Representative change of splicing patterns in tested genes. Shown are ethidium bromide–stained agarose gels after reverse transcription-

polymerase chain reaction analysis. Numbers indicate the time of treatment with 1 µM sudemycin D6 in hours. M: 100-base pair marker, C: blood without 

sudemycin but dimethyl sulfoxide for 24 hours in the blood bag. The amplicon sizes are given in Table 1, and the structure of the RNA products is 

schematically indicated. (A) DUSP11, (B) SRRM1, (C) RPp30, (D) AURKB, (E) MLH3, and (F) PAPOLG.
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mature organisms,17 but this is the first report that shows 
that age influences a splicing response to a drug.

The genes responding to sudemycin are likely merely indi-
cators for a sudemycin D6 effect on splicing and are not caus-
ative for the death of cancer cells, as in most cases, they have 
no known connection with disease. For example, DUSP11 
(dual specific protein phosphatase) is a dual specificity pro-
tein phosphatase, removing phosphates from phosphoserine/
threonine and phosphotyrosine residues. DUSP11 binds 
directly to RNA18 and changes in expression of the DUSP11 
protein have been observed in inflammatory bowel disease.19 
MLH3 is the MutL-Homolog 3 involved in DNA mismatch 
repair, and rare polymorphisms of this gene are associated 
with colorectal cancer.20,21

SRRM1 (serine and arginine repetitive matrix 1) pro-
motes exon enhancer formation by interacting with serine-
arginine–rich proteins and has no known connection to a 
disease,22 similar to RPp3023 that works in transfer RNA 
maturation and PAPOLG (poly(A) polymerase gamma), 
which is a poly(A) polymerase.24

There are differences between the response of cultured cells 
and blood lymphocytes and cultured cells, as HeLa cells 
change their splicing patterns after 2 to 4 hours in response to 
sudemycin. Furthermore, in lymphocytes, there was no rever-
sal of splicing up to 48 of treatment, whereas we saw the pre-
treatment splicing patterns in cultured cells after 24 hours. It is 
likely that the transformation of the cells or the artificial cul-
ture conditions cause this difference.

Figure 3. Q uantification of the changes in splicing. The band intensities of bands after reverse transcription-polymerase chain reaction and agarose gel 

electrophoresis were determined by ImageJ and the percent exon inclusion was calculated as [intensity of alternative exon]/[sum of all exon intensities]. # 

represents nonsignificant changes compared with 0-hour control (P > .05) and * represents significantly different group to 0-hour control (P ≤ .05). The 

individual subjects are shown by different colors and referred to in Table 2. (A) DUSP11, (B) SRRM1, (C) RPp30, (D) AURKB, (E) MLH3, and (F) PAPOLG.
The changes in splicing were significant for the 9- and 24-hour time points when compared with dimethyl sulfoxide–treated controls:
DUSP11: 9 hours: P = 1.11 × 10−8; 24 hours: P = 6.27 × 10−13.
SRRM1: 9 hours: P = .00031; 24 hours: P = 1.47 × 10−9.
MLH3: 9 hours: P = 4.39 × 10−6; 24 hours: P = 9.00 × 10−11.
PAPOLG: 9 hours: P = .000017; 24 hours: P = 2.15 × 10−11.
AURKB: P = .78 (ns), RPp30: P = .43 (ns). ns indicates nonsignificant.
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Limitations
Our study used ex vivo analysis in blood samples. Any treat-
ment in humans will have to account for liver clearance of sud-
emycins. Despite highly significant changes (P = 6.27 × 10−13 
and P = 1.47 × 10−9 for DUSP11 and SRRM1, respectively), the 
number of subjects was only n = 12.

Conclusions
Changes in alternative splicing of DUSP11 and SRRM1 can be 
used as biomarkers for sudemycin D6 treatment in human blood.

Author Contributions
MT and BD performed the experiments; JD performed statis-
tical analysis TRB and SS devised the experiments and wrote 
the manuscript.
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