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Yuhang Yin1, Weiling Luan1, a*, Chengxi Zhang1, Fuqian Yang2, b* 

1Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and 

Power Engineering, East China University of Science and Technology, Shanghai 

200237, P. R. China.  

2Materials Program, Department of Chemical and Materials Engineering, University of 

Kentucky, Lexington, KY 40513, USA.  

*E-mail: aluan@ecust.edu.cn, bfyang2@uky.edu 

Abstract.  Recently, all-inorganic perovskites CsPbX3 (X= Cl, Br and I) quantum dots (QDs) 

have drawn great attentions because of their PL spectra tunable over the whole visible spectral 

region (400-700 nm) and adjustable bandgap, which revealed a promising potential on the field 

of photoelectronic devices, such as solar cells, LEDs and sensors. In this paper, CsPbX3 QDs 

and hybrid QDs, CsPbClxBr3-x and CsPbBrxI3-x were synthesized via one-step and two-step 

methods comparably. The optical bandgaps of CsPbCl3, CsPbBr3, and CsPbI3, were calculated 

as 3.08, 2.36, and 1.73eV, respectively, based on the Tauc’s equation and UV absorption spectra. 

Ionic displacement and phase transformation occurred during the mixing process were found 

based on the monitoring of PL spectra and HRTEM characterization. The long-term stability, 

dried, high quality and two-dimensional hybrid CsPbBrxI3-x QDs powders could be achieved via 

the two-step method. Polar solution inductions were used to wash and purify the CsPbX3 QDs, 

which help obtain of various compositions and well crystallize all-inorganic perovskites QDs 

powders.  

1.  Introduction 

Organic-inorganic hybrid halide perovskite have been studied since 2009; however, only in the last five 

years has the vast potential of this material come to light 1, 2. In fact, inorganic-organometallic halides 

with perovskite structures, such as ABX3, have emerged as novel materials because of their unique 

properties, including high absorption coefficients, balanced electron/hole mobility, possible low-

temperature processing, small exciton binding energies (37-75 meV), and long exciton diffusion lengths 

(100-1000nm) 3-8. The cation A can be either organic or inorganic, for example, methylammonium (MA+) 

or formamidinium (FA+) for an organic cation and Cs+ for an inorganic cation. B is a bivalent metal 

cation, such as Pb2+ or Sn2+, and X is a halide, usually Cl−, Br−, or I− 9, 10. Because of these advantageous, 

the power conversion efficiency of solar cells which based on inorganic-organometallic halides has over 

20% 11. Although the stability of these cells have not been extensively investigated, perovskite materials 

are showing huge application prospects in the photoelectric field. Nowadays, many researchers are 

focusing on applying inorganic-organometallic halides to the display, lighting, and lasing applications. 

Particularly for all-inorganic halides nanocrystals (NCs) or quantum dots (QDs) (CsPbX3, X=Cl, Br, I), 
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because of the facile synthesis route, excellent luminescence efficiency, bandgap tenability, and flexible 

process 12-19. 

Actually, QDs possess potential applications in some fields, under commercialization stage 

(especially in lighting and display areas). Besides, with recent breakthroughs in liquid phase synthesis, 

monodispersed perovskite QDs solution with high color purity and high quantum yields (QYs) can be 

obtained 20-23. Compared to inorganic-organometallic halides, all-inorganic QDs materials are supposed 

to be with higher photo-stability, thermal stability, and chemical stability to solve the troublesome 

operational instability of perovskite devices. However, most of the efforts toward implementation of 

electroluminescent (EL) perovskite QLEDs are focused on the green-emitting CsPbBr3 because of its 

synthesis simplicity, superior photo-electronic properties, and better matched electronic energy levels 
24-28. Other quaternary lead halide perovskite QDs such as CsPbBrxI3-x or CsPbBrxCl3-x are still at the 

stage of synthesis investigation and phosphor-related applications 29. 

Recently, a huge number of articles were published on the hot injection (HI) method to synthesis the 

all-inorganic perovskite QDs systems. Indeed, although no surface shelling is applied, QYs as high as 

90%, narrow line width and high stability make the all-inorganic perovskite family promising for both 

optical and optoelectronic applications, then high reaction temperature and surface passivation (shelling) 

are inevitable to achieve good stability and high QYs 21. In addition, emission light covering the whole 

visible region (400-700 nm) is readily achieved via composition and crystal size controlling. In this 

paper, all-inorganic perovskite QDs with compositions of CsPbBr3, CsPbCl3 and CsPbI3 were 

synthesized via hot injection. The photoluminescence (PL) of QDs were tunable by controlling the 

reaction temperature, especial for CsPbBr3, whose size have a good linear with the temperature in 100-

190 oC. However, the PL of CsPbCl3 and CsPbI3 were found to be tunable difficultly with the 

temperature. Indeed, CsPbI3 was unstable extremely because its cubic structure easily transforms into 

an orthorhombic (yellow) structure. 

In addition, perovskite QDs, whose emission light covering the whole visible region (400-700 nm) 

and PL tunable were synthesized via various composition. Indeed the perovskite QDs, such as 

CsPbClxBr3-x and CsPbBrxI3-x, which were synthesized via two-step are more stable than one-step 

synthesis. Two-step synthesis were defined as that CsPbCl3, CsPbBr3 and CsPbI3 was obtained 

respectively, and then mixing them. CsPbBrxI3-x which synthesized by one-step was found more unstable, 

and easier to be quenching. Interestingly, perovskite QDs’ powders have been washed out via polar 

solvent induction. 

2.  Experimental 

2.1. Chemical 

Most of the chemicals used in the experiments including Cs2CO3 (99.99%), octadecene (ODE, 90%), 

oleic acid (OA), oleylamine (OLA, 70%), PbI2 (99.999%), PbBr2 (99.999%) and PbCl2 (99.99%) were 

purchased from Aladdin. Tert-butanol (tBuOH) acetone and n-Hexane (>97.0%) was purchased from 

Lingfeng Reagent Company (Shanghai, China). All solvents and reagents were of analytical grade and 

directly used without further purification. 

2.2 Preparation of Cs-oleate 

The preparation process is similar to the previous report by L. Protesescu et al. 30 with slight different 

here. Typically, 195.6 mg Cs2CO3 was loaded into a 25 mL 3-neck flask along with 6 mL octadecene, 

and 1 mL OA, dried for 1 h at 120 0C, and then heated under inert argon gas to 150 0C until all Cs2CO3 

reacted with OA. 

2.3. Synthesis of CsPbClxBr3-x and CsPbBrxI3-x QDs 

The CsPbClxBr3-x and CsPbBrxI3-x QDs could be synthesized via one-step and two-step methods 

according to the HI. PbX2 was replaced by the mixing of PbCl2, PbBr2 and PbI2 with the different molar 

ratios in process of one-step synthesis. In this study, two-step synthesis was highlighted. Firstly, CsPbX3 
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(X=Cl, Br, I) were synthesized via the hot injection under the different temperature which mentioned 

above. Then, the CsPbCl3 and CsPbBr3, CsPbBr3 and CsPbI3 were mixing with the different molar ratios. 

The mixing solution were re-reaction for 30-60 min in the ultrasonic instrumentation. Finally, 

CsPbClxBr3-x and CsPbBrxI3-x QDs powder could be obtained in the same washing and purify methods 

which mentioned above.  

 

Figure 1.  Scheme of two-step method to synthesize the hybrid CsPbClxBr3-x and CsPbBrxI3-x QDs 

3.  Results and discussion 

3.1. Preparation and structure of the CsPbX3 QDs 

CsPbX3 are known to crystallize in orthorhombic, tetragonal, and cubic phase. Otherwise, perovskite 

QDs which were synthesis via the hot injection are cubic phase for all compounds 31-33. In this work, the 

high resolution transmission electron microscope (HRTEM) (Figure.2) and the X-ray diffraction (XRD) 

(Figure.3) were used to show that the nanocrystals have a well-defined three-dimensional structure, 

which agreed well with the formation of CsPbX3 QDs. Indeed, all CsPbX3 QDs crystallize in the cubic 

phase were more stability in the room temperature which contributions from the higher surface energy 

in the higher reaction temperature. However, for CsPbI3 NCs, this is very much a metastable state, 

because bulk material converts into cubic polymorph only above 315 °C. At room temperature, an 

exclusively PL-inactive orthorhombic phase has been reported for bulk CsPbI3 (a yellow phase) 30. 

Otherwise, the unclear crystallize boundary of the CsPbI3 are well agreed with this point, and the CsPbI3 

perovskite are more or less deviated from the cubic phase which showed in the Figure.2c. 

 

Figure 2. HRTEM images of a) CsPbCl3 QDs, b) CsPbBr3 QDs and c) CsPbI3 QDs dispersed in n-

hexane solution which were synthesized under 180 oC. d) QDs solutions images under UV light 

excitation. 

CsPbClxBr3-x or CsPbBrxI3-x 

solutions 

Ultrasonic 

dispersion 

Centrifugati

on 

a 

d c 

b 
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XRD data in Fig. 3a confirm the changes of the crystal structure between the CsPbCl3 QDs and 

CsPbBr3 QDs, in which the sample with a bigger bromine amount results in a shift moved to the small 

angle degree 34. Indeed, in accordance with the XRD analysis, the QDs powders (Figure. 3b) were 

confirmed to be well crystallized which were purified by polar solvent induction, especially for CsPbCl3. 

But for CsPbBrxI3-x which were synthesized via two-step, its diffraction peaks were disappeared which 

also have the fluorescence phenomenon with UV light excitation. 

 

Figure 3. a) XRD patterns of CsPbX3 QDs powders. b) CsPbX3 QDs powders under UV light 

excitation. 

3.2. Optical properties of the perovskite QDs 

The photoluminescence (PL) spectra of colloidal perovskite QDs (Figure 4a) can be tuned over the entire 

visible spectral region (400-700 nm) via adjusting their composition (ratio of halides in mixed halide 

NCs) and reaction temperature which could change the particle size. The images of QDs in solution 

under UV irradiation were shown in the fig.4b. Indeed, the narrow line width of 15-40 nm indicated the 

excellent photoluminescence. Interestingly, with the increase of the Cl ions, the PL peak wavelength of 

perovskite QDs shift to ~400 nm (blue shift), instead, the PL wavelength has red shift after injecting I 

ions. The optical bandgaps of CsPbX3 were calculated using Tauc’s equation, 𝛼ℎ𝑣 = 𝐵 (ℎ𝑣 − 𝐸𝑔)𝛾 (𝐸𝑔, 

energy gap; ℎ, Planck’s constants; 𝑣, frequency of incident photos; 𝛼, absorption coefficient; B constant; 

𝛾, index) 35-36. In this case, ℎ𝑣 was considered to be the energy (E), B was 1, 𝛼 was extracted from UV-

Vis absorption spectra, and 𝛾 was 1/2 due to the direct allowed transition. Based on absorption spectra, 

Tauc plots of CsPbCl3, CsPbBr3, and CsPbI3 were constructed, as shown in Figure 4c, d, e, respectively. 

The optical bandgaps of CsPbCl3, CsPbBr3, and CsPbI3, were calculated as 3.08, 2.36, and 1.73 eV, 

respectively, by finding the maximum value of E at(𝛼𝐸)2 = 0. Therefore, the optical bandgaps of 

CsPbX3 could be adjusting via controlling the composition modulations, such as Cl, Br and I, which was 

very useful for improving the performance of photo-electronic devices based on all-inorganic perovskite.   

a b  
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Figure 4. a) PL spectra of the CsPbX3 (X=Cl, Br and I) QDs b) CsPbX3 QDs images dispersed in 

hexane solution under UV light excitation. Tauc’s plots of c) CsPbCl3 QDs, d) CsPbBr3 QDs and e) 

CsPbI3 QDs. Bandgap of CsPbCl3 QDs, CsPbBr3 QDs and CsPbI3 QDs were 3.08 eV, 2.36 eV and 

1.73 eV, respectively. 

3.3. Preparation and structure of the mixing CsPbX3 (X = Cl、Br、I) 

Although the PL spectra peaks of all-organic perovskite QDs could be tuned via adjusting the synthesis 

temperature (Figure. 4a), controlling the composition modulations of CsPbX3 was more practical than 

changing the reaction temperature. Fig. 5a showed the PL spectra of CsPbClxBr3-x and CsPbBrxI3-x which 

have the different molar ratios for Cl、Br and I ions. CsPbCl3、CsPbBr3 and CsPbI3 were synthesized 

in the 3-neck flask under 180 oC, respectively, then they were mixed in the different molar ratios to 

obtain the hybrid CsPbX3 QDs (Figure.1). The PL spectra of hybrid QDs were tunable in the whole 

visible region (400-700 nm) just via adjusting the hybrid molar ratios. Otherwise, the hybrid CsPbX3 

QDs solutions showed the different brightly color with UV light excitation (Figure.5c).  

 

Figure 5.  a) The PL spectra of hybrid CsPbX3 QDs which were synthesized via two-step method. b) 

Time-resolved PL spectra of CsPbX3 QDs solutions (hexane). c) Hybrid CsPbX3 QDs solutions 

images under the UV light excitation. d) The dried powders of CsPbX3 QDs which were washing out 

by the polar solutions induction. d) The powders of CsPbBr3 and CsPbI3 QDs under light and UV light 

excitation, respectively. 

+ I CsPbBr3 
Cl + 

Eg= 3.08eV 

Eg= 2.36eV 

Eg= 1.73eV 

CsPbCl3 

CsPbBr3 

CsPbI3 
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a 

b 
e 
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To gain more optical properties of hybrid CsPbX3 QDs, time-resolved PL spectra were measured, 

as shown in fig. 5b. In accordance with the time-resolve spectra analysis, the average PL lifetime of the 

CsPbBr3 and CsPbI3 QDs were longer than the hybrid CsPbX3 QDs, such as CsPbClxBr3-x and CsPbBrxI3-

x. To achieve a better understanding of this phenomenon, the PL decay can be described by biexponential 

fitting, 𝐴(𝑡) = 𝐴1 𝑒𝑥𝑝 (
−𝑡

𝜏1
) + 𝐴2𝑒𝑥𝑝 (

−𝑡

𝜏2
)  (𝐴1, 𝐴2, 𝜏1, 𝜏2  are the fitting coefficient, and  𝜏1, 𝜏2  were 

defined as PL lifetime of quantum dots), giving a short-lived PL lifetime ( 𝜏1) and long-lived PL lifetime 

(𝜏2). 

Table 1. Biexponential fitting of the time-resolved PL lifetime, short-lived lifetime and long-lived 

lifetime were obtained. 

 Short-lived lifetime ( 𝝉𝟏)/ns Long-lived lifetime (𝝉𝟐)/ns 

CsPbClxBr3-x 4.88 30.56 

CsPbBr3 39.30 163.77 

CsPbBrxI3-x 5.09 27.10 

CsPbI3 54.19 166.05 

The biexponential decay behavior strongly suggested that two different species are involved in the 

emission. According to the study of surface-related emission in highly luminescent CdSe QDs 37, the 

short-lived PL lifetime is attributed to the recombination of initially generated excitons upon light 

absorption, while the long-lived PL lifetime component may correlate to the exciton recombination with 

the involvement of surface states due to the stable exciton at room temperature. Indeed, PL lifetime of 

CsPbX3 QDs could be changed via adjusting the composition and surface state of QDs. Therefore, OA-

OLA acted as surface ligands during synthesis reaction makes the QDs come to surface passivation 

which contributed to the higher long-lived PL lifetime, about 160 ns for CsPbBr3 and CsPbI3. This well 

agreed with the amount of reports that the PL lifetime could be increased via surface ligands 

modification of the QDs.  

However, the long-lived PL lifetime of hybrid perovskite QDs, such as CsPbClxBr3-x and CsPbBrxI3-

x, which were synthesized by two-step method, had decreased greatly, about 30 ns. On the one hand, the 

surface state of hybrid CsPbX3 QDs was destroyed in the process of mixing that maybe lead to the great 

decreasing in the long-lived lifetime. In the typically case, the surface ligands, OA-OLA were destroyed, 

which increased the density of defect states on the surface of hybrid QDs. On the other hand, when 

comes to the mixing of the CsPbCl3 and CsPbBr3, because of the PL spectra peak of CsPbCl3 QDs was 

shorter than CsPbBr3, so the CsPbCl3 QDs could be regarded as donor, and CsPbBr3 QDs was acceptor. 

So resonance energy transfer (RET) might happened between the donor and the acceptor, which might 

result in the quenching of donor. Indeed, this phenomenon of quenching could contribute to the 

decreasing of the lifetime 38. Otherwise, this case would happened in the mixing solution of CsPbBr3 

and CsPbI3.  

As the same moment, The PL spectra have confirmed that the mixing process was not just simple 

dispersion, but some reactions happened among the hybrid CsPbX3 QDs at room temperature. Otherwise, 

resonance energy transfer (RET) was not concerned to be the factor that resulted in the great decreasing 

for the hybrid QDs. What’s more, the PL spectra just have one peak for the hybrid CsPbX3 QDs after 

fully mixing, which showed that substitution reaction happened in the mixing process at the room 

temperature. As for mixing of CsPbCl3 and CsPbI3, there was displacements between Cl ions and Br 

ions in the perovskite cubic lattices. That reaction might damage the initial surface states of CsPbBr3 

and CsPbI3, so the density of defect states of hybrid CsPbX3 would increase during the substitution 

reaction, which led to the great reduced in the long-lived PL lifetime.  

Surely, the high synthesis temperature which contributed to high surface energy and the OA-OLA 

surface ligands which could reduce the density of defect states, that made a difference in keeping the 

cubic phase for CsPbX3 at the room temperature which were synthesized by one-step. Indeed the crystal 

structure of cubic phase and the ionic radius of Cl and Br were very similar, although there was a little 

difference in surface energy for CsPbCl3 and CsPbBr3 QDs, the surface energy of QDs was tend to be 

homogeneous and stability during the mixing process. Due to that, displacement reaction would happen 

1st International Global on Renewable Energy and Development (IGRED 2017)                             IOP Publishing
IOP Conf. Series: Earth and Environmental Science 100 (2017) 012057       doi:10.1088/1755-1315/100/1/012057



7

 

 

 

 

 

 

for the Cl ionic and I ionic in the different cubic lattices under the slow and mild reaction conditions, 

which resulted in lots of defect states for the hybrid QDs. The same case was suit for the mixing process 

of the CsPbBr3 and CsPbI3 QDs. 

Interestingly, although the OA-OLA surface ligands of CsPbX3 QDs could make a difference for 

keeping QDs stability, actually the surface ligands have double side effect on photo-electronic devices. 

On the one hand, a large number of ligands are needed to provide sufficient surface passivation, which 

can get rid of surface defects, inducing high ink stability 39, 40. On the other hand, excessive ligands will 

form an insulating layer because oleylamine and oleic acid organics used in the synthesis of CsPbX3 

QDs all have very poor electric conductivity, and then block charge injection 41, 42. Besides, CsPbX3 

QDs were difficult to be washed out and purified from nonpolar solutions via centrifugation due to 

excessive ligands which led to low productivity. Therefore, in order to obtain the pure CsPbX3 QDs 

powders, appropriate polar solutions (acetone) was induced to reprecipitation process. Indeed, the OA-

OLA surface ligands could be removed, then dried QDs powders could obtain via centrifugation and 

dried about 1 hour at the 60 oC. Surprisingly, in accordance with the XRD analysis, the QDs powders 

(fig. 5b) were confirmed to be well crystallized which were purified by polar solvent induction, 

especially for CsPbCl3. But for CsPbBrxI3-x which were synthesized via two-step, its diffraction peaks 

were disappeared which also have the fluorescence phenomenon with UV light excitation.  

To achieve a better understanding of this phenomenon, the high resolution transmission electron 

microscope (HRTEM) was used to character the crystal structure of CsPbBrxI3-x and CsPbClxBr3-x. Fig. 

6a shown that the crystal structure of CsPbClxBr3-x which were synthesized by two-step was still cubic 

phase, which confirmed that there was just substitution reaction happened during the mixing process 

and reprecipitation. On the contrary, for the CsPbBrxI3-x QDs, Figure.6b showed that the crystal structure 

was not cubic, but a kind of two-dimensional sheet material. This confirmed that expect for substitution 

reaction happened in the mixing process, the cubic phase of hybrid CsPbX3 transformed into other phase 

(orthorhombic phase). Indeed, it kept the fluorescence phenomenon with UV light excitation that was 

different from CsPbI3 QDs. On the one hand, it was known that the CsPbX3 had three types phase, 

orthorhombic, tetragonal, and cubic phase. And the lattice energy of cubic phase was higher than 

orthorhombic phase (17kJ/mol higher than orthorhombic phase in the cubic phase for CsPbI3 QDs), so 

it was tend to change into the orthorhombic with the temperature decreasing 30, 43. However, during the 

synthesis process, high reaction temperature induced the high surface energy which contributed to the 

CsPbX3 QDs keep cubic phase at room temperature. Indeed, for CsPbI3 QDs, if it were to keep cubic 

phase at room temperature, it needed to gain the higher surface that induced to higher reaction 

temperature, up to 305 oC. Therefore, because of the density of surface defects increasing which 

decreased the surface energy of CsPbI3 QDs, so the cubic phase transformed into the orthorhombic with 

the substitution reaction. But CsPbCl3 QDs had very cubic phase stability, so the phase transformation 

didn’t happen. On the other hand, amount of reports showed that the sum of halide/Pb atomic ratios in 

CsPbX3 was greater than 3 in all CsPbX3 compounds, otherwise, the proper chemical passivation of the 

Br-rich surface was benefit to increase PL quantum yield 13, 44. So while Br ions were induced into the 

hybrid CsPbBrxI3-x QDs, although the cubic phase transformed into orthorhombic phase, the hybrid 

CsPbX3 QDs still have the fluorescence phenomenon. Indeed, two-dimensional QDs was more stable 

than three-dimensional materials (cubic phase). Therefore, the purified QDs powders could be obtained 

by the polar solutions induction and keep long-terms stability after drying at 60 oC for 1 hour. 
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Figure 6. HRTEM images of a) CsPbClxBr3-x QDs and b) CsPbBrxI3-x QDs which were synthesized 

via two-step method. 

4.  Conclusions 

In this paper, all-organic perovskite quantum dots CsPbX3 (X= Cl, Br and I), CsPbClxBr3-x and 

CsPbBrxI3-x were synthesized via one-step and two-step methods, respectively, under the different 

reaction temperature range in 80-210 oC. The PL spectra peaks of CsPbX3 QDs were tunable over the 

entire visible spectral region (400-700 nm) via adjusting the synthesis temperature and composition 

molecules. Thus, the optical bandgaps of CsPbCl3, CsPbBr3, and CsPbI3, were calculated as 3.08, 2.36, 

and 1.73 eV, respectively, by finding the maximum value of E at(𝛼𝐸)2 = 0  in the Tauc’s plots. 

Surprisingly, the PL spectra peaks were easier to be tuned via controlling the composition molecules 

than changing the temperature. So two-step method was used to synthesize the hybrid CsPbX3 with the 

different PL spectra peaks via changing the mixing molar ratios. Interestingly, the average PL lifetime 

of CsPbX3 QDs were great longer than hybrid CsPbX3 which were synthesized by the two-step method. 

From the time-resolve PL spectra fitting and the changes of the PL spectra peaks during the mixing 

process, it was found that substitution reaction between the Cl ions and Br ions or the Br ions and I ions 

led to the density of surface defects increasing which contributed to the long-lived PL lifetime (~30 ns) 

were shorter than CsPbX3 QDs (~160 ns) synthesized by one-step, extremely. Otherwise, during the 

mixing process, for the hybrid CsPbClxBr3-x QDs, some of the Cl ions in the cubic lattices of the CsPbCl3 

QDs were displaced by the Br ions, while some of the Br ions in the cubic lattices of the CsPbBr3 QDs 

were displaced by the Cl ions respectively. But the phase transformations didn’t happen during this 

process. On the contrary, for the hybrid CsPbBrxI3-x, ionic displacement happened between the Br ions 

and I ions during the mixing process, indeed, because of the low-stability for CsPbI3 QDs at room 

temperature, the cubic crystal structure was transformed into orthorhombic phase that was a kind of two-

dimensional perovskite material. Compared to cubic phase, the two-dimensional hybrid CsPbBrxI3-x 

QDs was more stable under circumstance of the polar solutions and moisture. So all-inorganic perovskite 

powders could be obtained without fluorescence quenching via polar solutions reprecipitation and 

drying process. 
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