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ABSTRACT OF DISSERTATION 

 

 

EXPLORING THE EFFECT OF CHRONIC INFLAMMATION ON RESPONSE 
TO IMMUNE CHECKPOINT INHIBITORS IN CANCER 

 
Precision medicine has allowed for the development of monoclonal antibodies that 
unmask the anti-tumor immune response. These agents have provided some patients 
durable clinical benefit. However, PD-1 and PD-L1 inhibitor therapies are effective in a 
small group (10-20%) of non-small cell lung cancer (NSCLC) patients when used as 
single-agent therapy. The approved companion diagnostic is expression of the immune 
cell surface molecule, programmed death ligand 1 (PD-L1), on tumors measured by 
immunohistochemistry (IHC). Studies in tumor biology and immune surveillance dictate 
that PD-1 inhibitor efficacy should depend on the level of PD-L1 expression; however, 
the literature has not followed with convincing evidence. The limitations of this test 
include timing of tissue acquisition, tumor heterogeneity, and timing of therapy relative to 
the expression of PD-L1. In addition, the requirement of analyzing tumor tissue biopsy 
samples from a patient is cumbersome. Thus, a peripheral blood biomarker that predicts 
efficacy of PD-1/PD-L1 inhibition would be optimal for precise and cost-effective 
treatment. A history of chronic inflammatory diseases may be advantageous for a cancer 
patient who is treated with PD-1/PD-L1 inhibitors and may allow them to then mobilize a 
swift immune response to tumor cells. Specific biological components of this persistent 
inflammation may predict PD-1 inhibitor response. We have taken a novel approach to 
leverage national healthcare claims data that couples patient history with response to 
therapy. We have identified potential peripheral blood biomarkers of response to PD-
1/PD-L1 inhibitors using a combination of healthcare outcomes and molecular markers 
that correlate with therapeutic efficacy. 

 

 

KEYWORDS: Immune checkpoint inhibitors, biomarkers of response, health outcomes 
research, cancer, PD-1/PD-L1 
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CHAPTER 1  

A. CANCER & THE IMMUNE RESPONSE OVERVIEW 

Cancer Overview 

Cancer is understood to be a disease of unchecked cell growth due to genetic mutation; 

a continuous series of genetic events that guide cells to uncontrolled proliferation and 

invasion into surrounding tissue. Tumor cells gain the ability to survive independently 

and metastasize to other organs within the body (1).  Multiple organ involvement and 

ultimate failure is the final state of late-stage disease, resulting in death. Standard of 

care for cancer includes the resection of the malignant tissue, radiotherapy, and 

systemic chemotherapy.  Resection of the malignancy, the only treatment which can be 

considered a cure among solid tumors, is typically only possible when the disease is 

localized and detected early (2).  Unfortunately, patients with aggressive cancer types, 

including lung cancer, are diagnosed during late stage disease resulting in high mortality 

rates (3). Hanahan and Weinberg published the first iteration of The Hallmarks of Cancer 

in the year 2000 wherein they described six major factors influencing cancer biology; 

self-sufficiency in growth signals, insensitivity to anti-growth signals, evading apoptosis, 

limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis (1). Specifically, normal cells require mitogens to signal them to undergo 

growth and division; however, cancer cells are often able to grow despite the lack of 

external signals. Tumor suppressor genes are expressed to halt division in normal cells; 

however, cancer cells harbor mutated tumor suppressor genes resulting in aberrant 

progression through the cell cycle. Apoptosis is the programmed self-destruct function of 

nucleated cells to prevent the formation of abnormalities such as aberrant growth. 

Cancer cells can evade this programming. Normal cells have a finite number of divisions 

before a cell becomes unable to divide, known as senescence. Cancer cells overcome 
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this limit by disabling the pRB, p53 tumor suppressor proteins and maintaining 

telomeres. Angiogenesis is the generation of new blood vessels from pre-existing 

vessels and is essential for the transportation of oxygen. New blood vessels are typically 

generated during wound repair and the development of embryos; however, cancer cells 

can trigger the production of new vasculature. Lastly, cancer cells can undergo 

transformation from an epithelial form to mesenchymal form to break away from the 

primary tumor site to metastasize to distant organs. In 2011, Hanahan and Weinberg 

supported the inclusion of four additional hallmarks; reprogramming of energy 

metabolism, genome instability, inflammation and evading the immune response (4). 

Specifically, cancer cells prevent mitochondria from normal aerobic respiration leading to 

the decreased production of ATP. The resulting low ATP: ADP ratio deactivates 

mitochondria and prevents triggering of apoptosis. Cancer cells can harbor 

chromosomal abnormalities such as tetraploidy or trisomy making DNA more susceptible 

to mutations. Local chronic inflammation can, over time, cause DNA damage leading to 

the development of cancer cells. The discovery that cancer cells use mechanisms to 

evade the immune response initiated investigations into medications that would retarget 

the immune response to cancer. 

 

Cancer immunosurveillance describes a mechanism by which tumor cells are 

recognized and subsequently destroyed by the immune system (5, 6). Exploitation of 

immune mechanisms and evasion of immune surveillance are activities that survived 

selection in cells that underwent random mutagenesis to ensure the rise of a tumor. 

Tumor-associated antigens (TAAs) as well as neoantigens released by the cancer cells 

enter the blood circulation and initiate the triggering of the immune response (Figure 

1.1). The tumor microenvironment contains multiple immune cell-types, including 

macrophages, dendritic cells, natural killer (NK) cells, mast cells, B cells, and T cells 
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including T helper 1 (Th1) CD4+, T helper 2 (Th2) CD4+, regulatory T cells (TReg) and 

cytotoxic CD8+ T cells (7). The presence of the immune cells as well as cytokines and 

chemokines in the tumor microenvironment aid the growth and viability of the cancer 

cell. The immune response is differentiated into two types: the innate immune response 

and the adaptive immune response. The immune cells that are part of the innate 

response include dendritic cells, macrophages, NK cells and mast cells that are the first 

to respond to foreign agents. These cells, however, are not specially targeted for the 

cancer cells. The adaptive response typically follows the innate response. Its potency 

and effectiveness is greater than the innate response due to the priming and activation 

of these cells for the specific target. Certain adaptive immune cells can exert anti-tumor 

effects by recognizing TAAs or neoantigens presented on major histocompatibility 

complex (MHC) molecules (Figure 1.1). These antigens are presented to T cells via 

MHC class I or MHC class II on antigen presenting cells (APC) within lymph nodes. The 

presentation of the antigen requires additional co-stimulatory signals to induce T cell 

activation and expansion. Binding of B7 (CD80/CD86) on the APC to CD28 on the T cell 

leads to proliferation and differentiation via production of cytokines including interleukin 

(IL)-2. The effect is to drive clonal expansion of the activated T cell and to recruit other 

immune effector cells. Th1 and Th2 T cells secrete cytokines and chemokines that help 

to regulate this process with Th1 T cells activating CD8+ T cells and Th2 cells activating 

B cells. The primed T cells then exit the lymph node and are trafficked to the tumor site 

infiltrating the tumor. The cancer cells can then be destroyed by direct cell-mediated 

cytotoxicity. This adaptive immune response limits the establishment of cancer. 

However, in some cases tumor cells can escape the selective pressure from the immune 

system that allow tumor progression in the face of an ongoing immune response (8, 9).  
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Figure 1.1: Normal adaptive immune response to tumor associated antigens (TAAs). 

Used with permission from Macmillan Publishers Ltd: Nature Reviews Cancer, 6, 24-37, 

copyright 2006. 
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Selection of tumor cells with the ability to increase the expression of certain markers that 

alter natural immune defenses of the host is favored, protecting themselves from 

destruction. Specifically, many tumors acquire the ability to modify cell surface epitopes 

and upregulate immune checkpoint molecules such as cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4), programmed death-ligand 1 (PD-L1), lymphocyte 

activation gene 3 protein (LAG-3), and T cell immunoglobulin domain and mucin domain-

containing protein 3 (TIM-3), thereby resisting an immune response (9-11). Programmed 

death cell protein 1 (PD-1), is normally expressed on CD4+ or CD8+ T cells. Antigen 

presenting cells (APC) normally express PD-L1 that, when bound by PD-1 on T cells, 

signal an exhausted active immune response. Evaluation of T cells in the tumor 

microenvironment show that these cells are often in the exhausted state leading to 

cancer immune evasion (Figure 1.2) (12). A growing approach to cancer therapy is the 

development of agents that block these immunosuppressive mechanisms by interfering 

with these checkpoint sites. 

Immune Response Deregulation 

Naïve T cells undergo maturity in response to acute events such as bacterial/viral 

infections or vaccinations over a 1-2 week period resulting in differentiation into T cells 

with effector functions (13, 14). Following clonal expansion and the clearance of the 

foreign antigen, a subset of T cells remain and become memory T cells. This pool of 

memory T cells retains the ability to rapidly reactivate effector functions against any 

future recurrence of the stimulating antigen. However, these functional, persistent 

memory T cells mature in the absence of continual antigen stimulation and after 

inflammation from the effector phase has subsided. 

 

In stark contrast, chronic conditions, such as cancer, involve persistent antigen exposure 

and chronic inflammation which then alters the development of memory T cells (15-17). 
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The alteration of these memory T cells, known as T cell exhaustion, includes key 

characteristics such as sustained upregulation and co-expression of multiple inhibitory 

receptors. Another characteristic of T cell exhaustion is the loss of secreted cytokine 

including interleukin-2 (IL-2), interferon gamma (IFN-γ) and tumor necrosis factor alpha 

(TNFα) (18, 19). T cells in this hypo-responsive state have been described in multiple 

conditions, including chronic viral infections such as lymphocytic choriomeningitis virus 

(LCMV), HIV and hepatitis C virus, in addition to cancer (20). Overexpression of 

inhibitory receptors PD-1 and CTLA-4, can be reversed to allow the immune response 

against these conditions (20, 21). The molecular mechanisms by which inhibitory 

receptors regulate T cell exhaustion remain unknown; however, there are several 

mechanisms discussed in the literature. First, inhibitory receptors may block target 

receptors or ligands preventing the formation of lipid rafts, as has been shown with 

CTLA-4 (22). Second, modulation of intracellular mediators downstream of receptor 

signaling can lessen the influence of activating signals from receptors such as TCR and 

co-stimulatory receptors (23). Lastly, induction of inhibitory genes such as basic leucine 

transcription factor, ATF-like (BATF) may lead to T cell exhaustion (24).  

 

There are several cell surface interactions that mediate T cell exhaustion (Figure 1.2). 

Upon T cell activation due to an acute event, PD-1 expression is upregulated; however, 

during chronic infections, co-expression of other cell surface inhibitory molecules such 

LAG-3, CD160, TIM-3 and CTLA-4 has been observed [(25, 26). LAG-3 is a cell surface 

protein that is structurally homologous to CD4 and binds to MHCII, inhibiting CD4-

dependent downstream signaling (27). Immune checkpoints, consisting of stimulatory or 

inhibitory signals, regulate T cell activation and effector functions to sustain self-

tolerance and minimize normal tissue damage (28). Blockade of more than one immune 
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checkpoint, such as PD-1 and LAG-3, results in improved reversal of T cell exhaustion 

(25, 29, 30).  

 

In addition to the immune checkpoint receptors and proteins expressed on immune cell 

components, certain soluble factors found in the tumor microenvironment and periphery 

that also play a role in the induction and suppression of the exhausted T cells. 

Overexpression of inflammatory or immunosuppressive cytokines that induce T cell 

exhaustion are important soluble factors. Chronic interferon alpha and interferon beta 

(IFN-α/β) signaling has been shown to induce T cell exhaustion during chronic infection 

(31). IL-10 blockade has been shown to restore T cell function during chronic viral 

infections (32). Certain cytokines, such as IL-6 and IL-27, induce the exhausted T cell 

phenotype (33, 34). In addition, blockade of PD-1 and IL-10 simultaneously in mice 

synergistically reverses CD8+ T cell exhaustion (35). Lastly, in vivo inhibition of 

transforming growth factor-β (TGF-β) signaling in CD8+ T cells improved the function of 

exhausted T cells (36). Despite the present evidence that certain cytokines have direct 

or indirect influence on T cell exhaustion, the precise mechanism has not been defined. 
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Figure 1.2: Mechanisms of tumor immune evasion. Used with permission from 

Macmillan Publishers Ltd: Nature Reviews Cancer, 12, 252-264, copyright 2012. 
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B. CANCER IMMUNOTHERAPY 

 

Immunotherapy describes several modes of treatment that aim to reorient the immune 

system to fight cancer. Early on, IL-2, an inducer of T cell expansion, was the first 

introduced in the treatment of cancer (37). IL-2 treatment is capable of mediating tumor 

regression in tumors; however, the toxicity profile manifests in multiple organ systems 

presenting as severe flu-like symptoms. Most common of these is capillary leak 

syndrome, a hypovolemic state and fluid accumulation the extravascular space leading 

to oliguria and ischemia. The toxicity profile of this treatment limited its clinical use. 

Another form of immunotherapy called adoptive cell transfer (ACT) was recently 

developed to utilize the patient’s own T cells with anti-tumor activity and expand those 

cells in vitro then reinfusing into the patient (38). Once reinfused, the T cells require 

binding to MHC molecules to induce their functions; however, tumor intrinsic functions 

may downregulate MHC on the surface of the tumor cell. Next, Chimeric antigen 

receptors (CAR) T cells were developed as engineered, patient-derived T cells with the 

ability to recognize and kill tumor cells without the MHC binding requirement (39). CAR T 

cells have additional co-stimulatory molecules that enhance its ability to proliferate. For 

example, a patient with advanced follicular lymphoma treated with CAR T-cell therapy 

targeting CD19 presented with dramatic regression after infusion (40). Finally, immune 

checkpoint inhibition (ICI) is a new mode of immunotherapy that has truly revolutionized 

cancer treatment and exhibits impressive responses in several tumor. The focus of my 

research explored markers of the immune response that may be associated with 

improved response to ICIs. 

 

Inhibition of immune checkpoints has multiple FDA-approved indications for the 

treatment of various malignancies, including melanoma, non-small cell lung cancer 
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(NSCLC), bladder cancer and many more, and has allowed clinicians another tool in 

their armament of cancer treatments (41-44). This form of treatment shifts the 

perspective from giving a patient medication to destroy tumor cells to giving medication 

to aid their immune system in mounting a response against the tumor. The medications 

include agents that target immune checkpoints such as ipilimumab (Yervoy®, Bristol-

Myers Squibb), an antibody to CTLA-4, nivolumab (Opdivo®, Bristol-Myers Squibb), and 

pembrolizumab (Keytruda®, Merck) which are antibodies to programmed cell death 

protein 1 (PD-1), the receptor for PD-L1, as well as atezolizumab (Tecentriq®, 

Genentech), avelumab (Bavencia®, Merck/Pfizer), and durvalumab (Imfinzi®, 

AstraZeneca), antibodies to PD-L1. The checkpoints these medications target act as 

mediators for the balance and escape phases of cancer immune editing, as discussed 

above. By targeting these inhibitory receptors, cancer cells lose the ability to suppress 

the antitumor response. 

 

The use of ICIs in oncology has been met with excitement and hope as another pillar of 

treatment that is promising and results in long and durable responses. In the treatment 

of NSCLC patients, Nivolumab improved median overall survival as compared to 

Docetaxel treatment (9.2 mos vs. 6.0 mos; P <0.001) (42). Dual blockade of PD-1 and 

CTLA-4 in patients with melanoma has demonstrated improved tumor control with 

median duration of response at 22.3 months (45, 46).  In addition to the improvement of 

overall survival, the treatment regimen is more tolerable as compared with docetaxel 

with less grade 3/4 adverse events. Importantly, in a long-term follow-up study of 129 

nivolumab-treated patients with NSCLC, the 3-year OS rate was only 18% (47). The 

benefit of ICIs is the potential for long, durable responses, however, it’s been shown that 

approximately 20% of the treated-population actually realizes benefit (48, 49). To 

improve that response, durable biomarkers of response are essential for clinical 
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management. Herein I review the body of scientific work assessing both tumor-specific 

and peripheral blood markers that are promising predictive biomarkers (Table 1). 

 

C. TUMOR BIOMARKERS OF RESPONSE 

 

Due to a low percentage of durable responders to ICI treatment, research efforts into 

developing predictive biomarkers of response began (Table 1.1). Given the mechanism 

of action of PD-1 and PD-L1 inhibitors, initial studies into biomarkers tried to determine 

whether the efficacy of these monoclonal antibodies correlated with PD-L1 expression in 

the tumor. 

PD-L1 Expression  

PD-L1 is a ligand of the PD-1 receptor, expressed on both tumor cells and APCs, and 

plays an important role in the inhibition of the normal T cell-mediated immune response. 

When PD-L1, expressed on the tumor cell, binds to PD-1 receptor on T cells, this leads 

to exhaustion of effector T cells and poorer prognosis of the patient (50). For the agents 

targeting the PD-1/PD-L1 axis, tumor expression of PD-L1 has been used as a method 

of selecting appropriate patients to be treated; however, it has not proven to be universal 

(51, 52). In cancers that express PD-L1, the interaction with the PD-1 receptor 

expressed on T cells, B cells, and natural killer (NK) cells of an activated immune system 

characterize an immune-evasive response by the tumor. Monoclonal antibodies that 

then bind to PD-1 or PD-L1 prevent cancer cells’ immune evasion (53). For this reason, 

expression of PD-L1 is currently utilized in the clinic as the best available biomarker to 

predict response to ICI targeting this checkpoint (51, 53, 54).  

 

Interpretation of PD-L1 expression levels has caused confusion as there are several 

methodologies that utilize different cut-offs differentiating between positive and negative 
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expression. The currently utilized companion diagnostic tools were developed for use 

with pembrolizumab and nivolumab, both PD-1 inhibitors. Each measurement is 

completed using immunohistochemistry (IHC). However, there were two antibodies 

developed specifically for each of the medications; antibody 22C3, anti-PD-L1, for 

pembrolizumab and antibody 28-8, anti-PD-L1, for nivolumab. The Tumor Proportion 

Score (TPS) is the percentage of PD-L1 positive tumor cells showing partial or complete 

membrane staining relative to all viable tumor cells present in the sample. A positive 

TPS using pembrolizumab’s companion diagnostic (antibody 22C3) is considered to be 

greater than 50% whereas for nivolumab (antibody 28-8), expression cut-offs are set at 

>1%, >5% or >10%. There are ongoing efforts to standardize and optimize PD-L1 

expression testing that include collaboration by the current ICI manufacturers to develop 

a universal PD-L1 testing platform (55).  

 

From a simply biological perspective, measuring the expression of the membrane-bound 

PD-L1 ligand should indicate tumors that will respond to therapy. However, limitations of 

this diagnostic test, such as timing of tissue acquisition, tumor heterogeneity, and timing 

of therapy relative to the inducible expression of PD-L1, raise the question as to whether 

expression of this molecule truly represents an anti-PD-1 or anti-PD-L1 responsive 

tumor (52). The Keynote-001 trial sought to correlate response to pembrolizumab with 

expression of PD-L1. In the melanoma arm, PD-L1 expression correlated with increased 

response rate in 49% compared with 13% of PD-L1 negative patients. The NSCLC arm 

of this study showed that, when PD-L1 expression on tumor cells was greater than 50%, 

response to pembrolizumab was predicted (67% PFS rate at 6 months). Of these 

patients, nearly 25% demonstrated PD-L1 protein on greater than 50% of tumor cells. 

For all-comers, response rate to pembrolizumab was about 19%. Importantly, median 

progression free survival (PFS) was 14.1 months in PD-L1 strongly positive patients 
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compared with 9.3 months in the weakly positive population (56). Response rates 

appear to be higher in tumors with elevated PD-L1 expression; however, some tumors 

that do not express PD-L1 still exhibit a response to therapy (57). Given these 

observations, measuring PD-L1 expression in a tumor cannot serve as an exclusionary 

predictive biomarker of response. Development of robust and validated biomarkers of 

response for ICI therapy has become a priority in this burgeoning field.  

Tumor-Infiltrating Lymphocytes and T-cell Receptors 

The abundance of tumor-infiltrating lymphocytes (TILs), specifically CD8+ T-cells 

expressing PD-1 or CTLA-4, have previously been identified as indicators of successful 

checkpoint inhibition (58, 59). There is a demonstrated difference, however, between 

increased populations of CD8+ T cells found at the invasive tumor margin versus those 

in the tumor itself with the former being the most closely associated with increased PD-

L1 expression. In addition, double positive PD-1+/CTLA-4+ CD8+ T cells within the 

melanoma were strongly associated with improved progression-free survival (PFS) (15.9 

mos vs. 9.9 mos, P=0.04) after anti-PD-1 therapy (59). Out of 15 patients in a validation 

cohort assessing the predictive ability of CD8+ T cells abundance, quantified CD8+ T 

cell density accurately predicted 4 out of 5 patients in the true progression group and 9 

out of 9 patients in the true response group. This data supports the notion that the 

abundance of TILs correlates with improved anti-PD-1 therapy response. Limitations of 

this assay include the need for assessing tumor tissue sample immediately prior to 

treatment. Most NSCLC patients undergo biopsies prior to resection and follow up with 

chemotherapy and/or radiotherapy. However, another biopsy would be necessary prior 

to addressing if the patient would be a candidate for ICI blockade. It is likely that the 

genomic and immune properties of the tumor would have changed since that initial 

biopsy so analyzing the original sample for TILs may not be accurate for subsequent 
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therapy. Further, it is cumbersome, and sometimes unreasonable, for a patient to 

undergo additional biopsies. 

 

T-cell receptor (TCR) diversity, or the range of difference TCRs expressed, plays a vital 

role in host defense (60). Diversity refers to the degree of dispersion between clonotypes 

or phenotype of a clone of cells. TCR diversity is generated by mutations resulting from 

recombination, random insertion, deletion and/or mismatch in the genes that encode T-

cell receptors, and there is potential to create between 106 to 1020 TCR clonotypes. TCR 

diversity has been examined before and after checkpoint inhibition to assess its impact 

on T-cell clonal populations and its effect on response (61-63). In both peripheral blood 

as well as tumor samples, a substantial increase in “diversity” of unique TCR V-beta 

CDR3 sequences after anti-CTLA-4 treatment was observed and presumably led to pro-

inflammatory or autoimmune hyper-responsiveness. Kvistborg et al monitored immune 

reactivity against a panel of 145 melanoma-associated epitopes in patients receiving 

anti-CTLA-4 treatment. Comparison of T cell reactivities prior to and after treatment for 

40 melanoma patients demonstrated that anti-CTLA-4 treatment induces a significant 

increase in the number of detectable melanoma-specific CD8 T cell responses (P 

=0.0009) (63). There was an increase in the total number of unique sequences but no 

one specific clone became predominant. In a study of patients with metastatic melanoma 

treated with PD-1 blockade, tumors that illustrated expansion of pre-existing TCRs, a 

more “focused” repertoire, were most likely to respond to therapy (58). The “focused” 

repertoire, defined as a more restricted TCR beta chain population, correlated with 

clinical response after pembrolizumab therapy (P=0.004).  Together, these data suggest 

a “diverse” profile of TCRs present in T cells infiltrating tumors is associated with 

improved response with anti-CTLA-4 treatment. A “focused” TCR profile is associated 

with improved response with anti-PD-1/PD-L1 blockade. Immuno-sequencing of TIL and 
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TCR diversity may be effectively used as predictors of response or for monitoring drug 

efficacy and toxicity. 

Mutational Burden 

Mutations give rise to the development of cancer; however, the degree of burden differs 

between different cancer types. Among all cancers, melanoma and lung cancers exhibit 

the highest mutational burden as determined by cataloging somatic mutations (64). 

Patients who harbor tumors exhibiting increased somatic mutations, such as 

nonsynonymous variants (a nucleotide substitution that alters the amino acid sequence), 

correlated with a benefit from CTLA-4 blockade (65). In a study of 64 malignant 

melanoma patients treated with anti-CTLA-4, whole-exome sequencing was conducted 

on tumor and matched blood samples. Somatic mutations and candidate neoantigens, a 

new antigen developed within the tumor the immune system has not previously been 

exposed to, were characterized. A discovery set of 11 patients who exhibited long-term 

clinical benefit and 14 patients who presented with minimal benefit were characterized. A 

neoantigen signature, determined by genome-wide somatic neoepitope analysis, 

predicted strong response to CTLA-4 blockade. This signature was validated in a set of 

39 patients. Tobacco smoke, which contains carcinogens such as arsenic and benzene 

that induce mutations, was associated with benefit of PD-1 blockade in lung cancer 

patients (66). A smoking signature was determined utilizing whole-exome sequencing of 

NSCLC samples in two independent cohorts, n=16 and n=18. The smoking signature, 

identified as transversion high (i.e. the substitution of a purine for a pyrimidine DNA base 

or vice versa) and is associated with elevated neoantigen burden, lead to improved 

objective response, durable clinical benefit, and progression-free survival (66). The 

observation that nonsynonymous mutation burden is associated with anti-PD-1 efficacy 

is consistent with the hypothesis that APC recognition of neoantigens, formed because 

of somatic mutations, is important for the activity of anti–PD-1 therapy. 
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DNA repair mechanism mutations, especially in the mismatch repair (MMR) pathway, 

also contributed to the mutational burden leading to improved response to certain 

therapies. Patients exhibiting MMR-deficient tumors, which occurs in a small population 

of cancers, benefited from anti-PD-1 treatment (67). In 41 patients with metastatic 

carcinoma with or without MMR-deficient disease, anti-PD-1 treatment was 

administered. The 20-week immune-related progression free survival rate showed an 

improved response in patients with the MMR-deficient cancer (78% vs. 11%). Whole-

exome sequencing revealed 1,782 somatic mutations per tumor in the MMR-deficient 

tumors compared to 73 in the MMR-proficient tumors (P=0.007). The resulting tumors 

express high levels of PD-L1 and possess a cytokine-rich microenvironment with 

immune infiltrates expressing PD-1, CTLA-4 or LAG-3, signaling a primed response. 

Since then, this study has been expanded to evaluate the efficacy of PD-1 blockade in 

patients with advanced MMR-deficient cancers across 12 tumor types and is currently 

still ongoing (68). Eighty-six patients with at least one prior therapy and evidence of 

progressive disease underwent treatment with a PD-1 inhibitor. Mismatch-repair 

deficiency was identified in all patients using either polymerase chain reaction or 

immunohistochemistry.  The study is ongoing and has yet to reach the primary endpoint 

of overall survival. In May of 2017, Keytruda (pembrolizumab) received an indication for 

the treatment of adult and pediatric patients with unresectable or metastatic solid tumors 

that have a microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) 

hypermutated malignancy (69). These works have collectively led to the fast-tracked 

approval for the first cancer treatment for any solid tumor with a specific genetic feature.  

Inflammatory Gene Signatures 

Other factors inherent to the nature of the tumor microenvironment may determine 

resistance or susceptibility to immunotherapy. Gamma interferon-inducible genes have 
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been highlighted in the literature in defining a “hot” tumor – or a tumor with an interferon 

responsive signature (70, 71). Class II MHC-positive melanomas that have this 

interferon responsive signature respond to PD-1 blockade. Other studies show the loss 

of this signature reduces efficacy of treatment (72). First, whole exome sequencing of 

tumors from 16 patients with melanoma who did not respond to ipilimumab therapy and 

had reduced overall survival, identified multiple-copy-number alterations resulting in the 

loss of interferon gamma pathway genes, including IFNGR1 (73). Next, patients from the 

KEYNOTE-012 (NCT01848834) study that assessed the use of pembrolizumab for the 

second-line treatment of head and neck squamous cell carcinoma (HNSCC) were tested 

using 4 multi-gene expression signatures (74). These 4 gene sets included “IFN-γ” (6-

gene), “TCR signaling” (13-gene), “expanded-immune” (18-gene) and “de novo” (33-

gene). The “IFN-γ” set included CXCL9, CXCL10, IDO1, IFN- γ, HLA-DRA, and STAT1. 

All 4 sets showed strong association with PFS (P<0.0005) with “IFN-γ” the top performer 

with a positive predictive value (PPV) for response of 40.0%, and negative predictive 

value (NPV) of 95.0%. In a third study, patients treated with atezolizumab, a PD-L1 

inhibitor, demonstrated an increased response when an INF-γ gene signature was highly 

expressed (75). In this open-label phase 2 trial, 286 patients with NSCLC previously 

treated with platinum chemotherapy were to be randomized to receive atezolizumab or 

docetaxel therapy. Overall survival for the atezolizumab group was 12.6 months (95% CI 

9.7-16.4) versus 9.7 months (95% CI 8.6-12.0) for the docetaxel group. More 

impressively, in an additional exploratory analysis, patients treated with atezolizumab 

with high T-effector-interferon-γ-associated gene expression (Teff High) improved overall 

survival (HR 0.43; 95% CI 0.24–0.77), the best improvement in response. End of the 

study was reached before overall survival could be assessed. Teff high was associated 

with a median follow-up of 15 months where Teff low had a median follow-up of 10 

months (75). Another study assessed the regulation of a library of 209 different cytokines 
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from the human cytokine library, IFN-γ  stood out due to its autocrine mechanism to 

elevate STAT1 and induce internalization of gp130, a component of many heterodimeric 

cytokine receptors (76). 

 

These studies have identified the impact of inflammatory genes and pro-inflammatory 

cytokines on immune response. IFN-γ may be critical in this process due to its 

hypothesized role as a master checkpoint regulator for many other cytokines. STAT 

family proteins generally reside in the cytoplasm as inactive homodimers (77). Receptor-

associated JAKs become activated upon ligand binding leading to phosphorylation of 

specific receptor tyrosine residues. These residues direct SH2-dependent recruitment of 

specific STATs which as then activated and released and reorient into antiparallel 

dimers where the SH2 domain on one STAT binds to the phosphotyrosine on the other 

STAT. Activated STAT dimers translocate into the nucleus. In response to IFN-γ, STAT3 

protein phosphorylation is reduced in favor of increasing both expression and 

phosphorylation of STAT1. Once phosphorylated, STAT1 proteins form homo- or 

heterodimers and translocate to the nucleus where they act as transcription activators. 

This simple elevation of STAT1 and down-regulation of STAT3 by IFN-γ interferes with 

multiple cytokines using STATs as key signal transducers.  

Gut Microbiome 

Several studies have shown that the intestinal microbiome may modulate the anticancer 

effect of certain chemotherapies, such as cyclophosphamide (78-80). 

Cyclophosphamide alters the composition of the gut microbiota, specifically translocating 

select Gram positive bacteria into secondary lymphoid organs leading to generation of T 

helper 17 (Th17) cells and memory Th1 immune responses. The specific Gram-positive 

bacteria identified were Lactobacillus johnsonii, Lactobacillus murinus and Enterococcus 

hirae. When assessing the therapeutic efficacy of anti-PD-1 treatment alone or in 
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combination with anti-CTLA-4 treatment in mice with sarcoma or melanoma, mice were 

raised in specific pathogen-free conditions and then either treated for 14 days with 

broad-spectrum antibiotics (ampicillin, colistin, streptomycin) or left untreated (81). Mice 

that were exposed to antibiotics exhibited a worse prognosis when treated with an ICI. 

The researchers also examined the impact of antibiotics on 249 human patients with 

NSCLC, renal cell carcinoma (RCC) or urothelial carcinoma treated with ICI.  Patients 

exposed to antibiotics two months prior to ICI treatment or one month after exhibited 

decreased PFS (3.5 mos vs. 4.1 mos, P=0.017) and decreased overall survival (11.5 

mos vs. 20.6 mos, P<0.001) as compared to patients with no exposure to antibiotics. 

Analysis of the composition of the gut microbiota implicated A. muciniphila with favorable 

clinical outcome (P=0.004). In a separate prospective study, microbiome samples were 

collected from patients with metastatic melanoma patients prior to treatment with anti-

PD-1 therapy (82). Thirty-five patients were classified as non-responders and fifty-four 

classified as responders based on Response Evaluation Criteria in Solid Tumors 

(RECIST) criteria at 6 months after treatment initiation. Diversity of the gut microbiome 

was significantly higher in the responder group compared to the non-responders 

(P<0.001). R. faecalibacterium was abundant in the responder group while Bacteroides 

thetaiotaomicron was found present in non-responders. R. faecalibacterium in the gut 

was associated with higher levels of effector CD4+ and CD8+ T cells in the systemic 

circulation with a preserved cytokine response to anti-PD-1 therapy, whereas patients 

with a higher abundance of Bacteroides in the gut microbiome had higher levels of 

regulatory T cells (Treg) and myeloid derived suppressor cells (MDSC) in the systemic 

circulation, with a blunted cytokine response. The proposed mechanism by which the gut 

microbiome enhances systemic and anti-tumor immune responses suggests that 

increased antigen presentation improves effector T cell function in the periphery and the 

tumor microenvironment. Specific bacteria, such as E. hirae and A. microsciphilia, are 
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also associated with obesity and diabetes. Previous microbiome-wide association 

studies not only linked cancer to the gut microflora but also to obesity, cardiovascular 

disease, and type 2 diabetes (83).  These data prompt the question as to whether the 

inflammatory states induced by these chronic conditions give rise to the microbiome that 

impacts ICI treatment. 

 

D. BIOMARKERS OF RESPONSE IN PERIPHERAL BLOOD 

 

In the clinical setting, the ease of access to a patient sample with which to measure a 

potential biomarker is weighed heavily in addition to its precision of use. Currently, only a 

tumor-derived biomarker of response has been approved by the FDA for anticipating 

response to ICI. PD-L1 expression is typically assessed from a biopsy of the solid tumor 

and, as discussed earlier, the timing of tissue acquisition, tumor heterogeneity, and 

timing of therapy affect the PD-L1 expression value. PD-L1 expression is a dynamic 

parameter that cannot be adequately represented with a single snapshot (84). Liquid 

biopsies, in addition to being repeatable and easily accessible, allow for characterization 

of the dynamic changes of the tumor. Circulating tumor cells (CTCs) sampled from the 

primary tumor site likely share the immune escape mechanisms (85). In addition to PD-

L1 expression, peripheral blood may allow for identification of other immune factors 

influencing the response to ICIs. Identification of a robust biomarker that is more readily 

available from peripheral blood would, not only avoid the need for additional biopsies, 

but could then be streamlined in the clinic to allow for more efficient treatment.  

Peripheral Immune Populations  

Tumor immune cell subtypes have been assessed within the tumor microenvironment, 

and specific cells are associated with improved response to ICIs (58, 59). These are 

typically measured from a tumor biopsy of the primary or metastatic tumor site. However, 
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these sites are often not very accessible and so immune cell subpopulations in the 

periphery can be explored using multi-parametric flow cytometry (86, 87). In a study of 

209 advanced melanoma patients treated with ipilimumab, baseline frequencies of 

myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), serum lactate 

dehydrogenase (LDH), eosinophil count, and other clinical characteristics were 

measured then analyzed by Cox regression analysis to identify factors associated with 

improved overall survival (88). The study, conducted in two phases, aimed to first 

identify biomarker candidates that best fit a prognostic model and in the second phase 

validate the biomarker combination. Of 28 potential variables measured, a six 

biomarkers signature was confirmed to predict improved survival (low LDH count, 

elevated eosinophils, low absolute monocytes, high absolute lymphocytes, low 

Lin−CD14+HLA-DR-/low MDSC frequencies, and elevated CD4+CD25+FoxP3+ Treg 

frequencies). The immunological rejection of cancer is dependent on the balance of 

interactions between T cells and regulatory cells (89). Eosinophils, lymphocytes, 

monocytes, Tregs and MDSCs are components involved in this regulatory network. 

Eosinophils are multifunctional white blood cells with cytosolic, large granules containing 

a variety of cytokines and chemokines. These cells play a part in tumor surveillance and 

tumor rejection. MDSCs and Tregs suppress the functions of T cells potentially 

counteracting the benefit of ICIs. 

 

Another study investigating peripheral markers of response suggests that CD4+ T cells 

expressing PD-1 in peripheral blood are associated with poor clinical outcomes for 

NSCLC patients treated with a PD-1 inhibitor (90). Peripheral blood mononuclear cells 

(PBMC) retrieved from 42 NSCLC patients at diagnosis and from an additional 25 

healthy donors were assessed for frequency of PD-1 expression on both CD4+ and 

CD8+ T cells. PD-1+ CD4+ T cells were elevated among NSCLC patients as compared 
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to healthy donors (13.3% vs. 8.8%, p=0.0045). However, there was no difference in PD-

1 expression on CD8+ T cells among both populations. CD4+ T cell subgroups defined 

as high-PD-1 (PD-1 > 12.27%) and low PD-1 (PD-1 <12.27%) were based on the mean 

expression levels of the 42 NSCLC patients. Lower rates of both OS and PFS were 

associated with the high-PD-1 groups as compared to the low-PD-1 group (median OS: 

397 days vs. 721 days, p=0.028; median PFS: 88 days vs. 391 days, p=0.044). In 

addition, the elevated PD-1 expression on either T cell subset isolated from peripheral 

blood was not associated with PD-L1 expression on tumor tissue.  These results suggest 

a biomarker of response to checkpoint inhibition could be established based on cell 

surface markers of immune cell subsets in peripheral blood. 

Peripheral Immunoscore 

As discussed earlier, it has been reported that patients with high baseline TILs are 

associated with improved response to ICI therapy. Immunoscores are a signature of 

immune cell populations that indicate disease responsive to ICI treatment. Single 

parameters, like tumoral PD-L1 expression, are limited in their prognostic value, but the 

combination and interaction of several parameters may establish a robust predictor of 

response. Tumor immunoscore analyses have been primarily conducted on biopsies of 

primary or metastatic tumor lesions, but there may be promise in completing the same 

analyses of immune cell subsets in the periphery (91, 92). Further, others have 

hypothesized that immune cells in peripheral blood may be different among patients with 

metastatic disease leading to a different response to immunotherapy. Single marker 

studies have assessed the prevalence of circulating CCR7+ CD8+ T lymphocytes in 

head and neck cancers, or MDSC in advanced melanoma in relation to PFS (93, 94). 

However, a multivariate panel that measures immune cell subsets is more likely to be an 

efficient prognostic assay than any single immune effector cell (95). In a study by 

Farsaci et al, peripheral immunoscores were established from analysis of PBMC prior to 
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treatment with immunotherapy to define whether there was a correlation of what with 

efficacy of immune-based treatment (87). PBMC analyzed were collected from two 

sources: patients with metastatic cancer randomized to receive docetaxel with or without 

PANVAC vaccine or prostate cancer patients with metastatic bone lesions randomized 

to receive radionuclide with or without PROSTVAC vaccine (96, 97). PANVAC is a 

poxviral-based vaccine therapy targeting carcinoembryonic antigen (CEA) and mucin-1 

in carcinoma. PROSTVAC is prostate specific antigen (PSA)-targeted immunotherapy. A 

peripheral immunoscore accounting for "classic" immune cell types (CD4, CD8, NK cells, 

regulatory T cells, and MDSCs) revealed no differences in progression-free survival 

(PFS) for either arm in both trials. Importantly, an immunoscore developed from a 

“refined” subsets of immune cells with a phenotype reflecting immune function revealed 

statistically significant differences in PFS. Peripheral immunoscores have yet to be 

assessed at baseline of PD-1 or PD-L1 inhibitor treatment, and so different immune cell 

properties may be better predictive of interactions in the PD-1/PD-L1 pathway. The 

clinical application of this assay is promising, but further validation in all ICI pathways is 

required. 

Tumor-derived Exosomes 

Tumor cells produce more extracellular vesicles than normal cells, which may explain 

why plasma exosomes are substantially higher in patients with cancer than in normal 

donors (98). Tumor-derived exosomes, or “TEX”, carry molecular cargo from the tumor 

microenvironment and can also deliver suppressive or stimulatory signals to immune 

cells. TEX are typically isolated from supernatants of cultured human or murine tumor 

cell lines using ultracentrifugation or sucrose density gradient centrifugation; however, 

this method is time-consuming and is not reproducible in a scaled-up environment for 

exosome recovery from numerous human specimens. Taylor, et al. developed a size 

exclusion chromatography (SEC) approach to readily recover intact TEX from small 



   

24 
 

volumes of plasma (99). TEX do mirror some of the key molecules characteristic of the 

parent tumor cell and thus may serve as a surrogate of the tumor microenvironment 

(100). As such, they carry tumor-associated antigens, major histocompatibility complex 

(MHC) class I and II molecules, and a variety of cytokines that enable TEX to stimulate 

or suppress immune cells. However, in another study, antibody-based therapies such as 

ICIs can be less effective because TEX carry the antigen targets of ICI and can act as a 

sponge to “soak” up the antibodies. Therefore, diminishing concentrations of drug are 

measured at the tumor site (101). TEX may be used as a predictive model for treatment 

due to it serving as a surrogate for the tumor microenvironment; however, further 

validation is required. 

Angiopoietin-2 

Angiogenesis, the formation of new vasculature, is a hallmark of cancer. Angiogenic 

factors, such as angiopoietin-2 (ANGPT2), play significant roles in the inhibition of 

immune activities by inhibiting dendritic cell maturation, tumor infiltration by lymphocytes, 

promoting Tregs and MDSC expansion (102-104). Increased expression of Tregs and 

MDSCs directly suppresses the immune response. ANGPT2 is upregulated in tumor 

vasculature and confers resistance to anti-angiogenesis therapy targeting vascular 

endothelial growth factor (VEGF) (105). Although ANGPT2 had been previously 

identified as a prognostic marker of outcome. For certain cancers being treated with anti-

VEGF therapy, it may have the potential to be used as a predictive biomarker for 

immune checkpoint inhibition. In metastatic melanoma patients, both high pretreatment 

concentrations and increases in serum ANGPT2 during treatment were associated with 

reduced overall survival in CTLA-4 and PD-1 blockade–treated patients (106). Further 

data indicates that the features of tumor blood vessels can limit the anti-tumoral 

functions of T cells, specifically cytotoxic CD8+ T cells. Dual blockade of VEGF and 

ANGPT2 as a tumor-conditioning strategy has been shown to increase the efficacy of 
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anti-PD-1/PD-L1 therapy in cancer (107). In both transgenic and transplant mouse tumor 

models, dual blockade delayed tumor progression and was found to expand tumor-

associated-macrophages (TAMs) and dendritic cells. In addition, the proportion of CD8+ 

TILs were increased. When PD-1 blockage was introduced into the mouse model, the 

anti-tumoral activity of the dual blockade was further enhanced. The harmonizing actions 

of the antiangiogenic therapy with immune checkpoint inhibition may allow for synergistic 

efficacy in treatment. ANGPT2 addresses a lot of the criteria of a robust peripheral 

biomarker of response. It is easily sampled, validated in multiple tumor types in different 

combinations of ICIs, and is continually monitored during treatment. A comparison study 

of ANGPT2 levels and PD-L1 expression is needed to determine which one is a more 

robust biomarker. 

 

E. RESEARCH PROPOSAL OVERVIEW 

 

The identification of potent immune response inhibitory pathways, regulated by 

interactions managed by PD-1 and CTLA-4, have paved the way for revolutionizing 

immunotherapy for cancer treatment. Despite the development of immunotherapies 

utilized in the clinical setting today, we still understand little of the molecular mechanisms 

that initiate or subdue T cell exhaustion. With the increasing use of these agents in the 

clinic as well as many other ICIs currently in the pipeline, the demand for a validated and 

robust biomarker of response is high. Due to the potential for long durable responses, a 

validated and robust biomarker of response is needed to increase the rate of long-term 

responders from merely 20%. Further analyses of peripheral immune cells, cytokine 

production and the mechanisms influencing T cell exhaustion will be critical to defining a 

peripheral blood biomarker that is accessible, reproducible and validated.  
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I sought to identify a biomarker of response to ICIs that improves patient care using a 

combination of healthcare outcomes and molecular markers that correlate to therapeutic 

efficacy. Two testable research hypotheses were developed: First, I proposed that 

chronic inflammatory pretreatment comorbidities would impact baseline immune 

system function and regulation of response to cancer.  This includes 

hyperlipidemia, hypertension, diabetes mellitus and obesity; collectively known as 

metabolic syndrome (MetS) as well as chronic obstructive pulmonary disorder 

(COPD). The comorbid history of MetS and/or COPD among NSCLC patients 

correlates with response to immune checkpoint inhibitor treatment. This 

hypothesis was assessed in both a retrospective single-center study as well as a 

national health outcomes observational study. Secondly, MetS and COPD 

comorbidities will provide additional understanding of the underlying biology of 

immune cell subsets and cytokine profiles in the periphery that influence 

response to ICIs. 

 

The work herein documents the use of translational research and 

pharmacoepidemiology utilized to improve the clinical use of ICIs in cancer through 

improving patient selection via a more robust biomarker of response. 
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         Table 1.1:  Overview of candidate biomarkers of response for immune checkpoint inhibitors. 

TYPE BIOMARKER 
DISEASE 
SETTING TREATMENT 

CUT-
OFF/MEASURE CLINICAL SIGNIFICANCE 

Tumor-
derived 

Tumor-
Infiltrating 

Lymphocytes 
(TILs) 

Melanoma/
NSCLC Anti-PD-1 20% 

PD-1+/CTLA-4+ CD8+ T Cells 
>20% were associated with 
improved PFS (15.9 Mo vs. 9.9 
Mos, P=0.04).20 

  T-Cell Receptor 
(TCR) Diversity Melanoma Anti-CTLA-4 "Diverse" 

Pre- and posttreatment T cell 
reactivity after anti-CTLA-4 
treatment show significant 
increases in number of detectable 
melanoma-specific CD8+ T cell 
responses (P=0.0009).21,22 

    Melanoma Anti-PD-1 "Focused" 

A more restricted TCR beta chain 
usage (less diverse and more 
clonal) correlated with clinical 
response after pembrolizumab 
therapy (P=0.004).19 

  

Mutational 
Burden Melanoma Anti-CTLA-4 > 100 mutations 

Patients with long-term clinical 
benefit (PFS > 6 months), had 
increased mutational burden 
(P=0.04).25 

  

  

NSCLC Anti-PD-1   

Greater PFS in those with higher 
nonsynonymous mutation burden 
compared to those with lower 
nonsynonymous mutation burden 
(HR 0.19, 95% CI 0.08–0.47, P = 
0.0004).26 
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  Mismatch 
Repair (MMR)  Multiple Anti-PD-1 MMR-deficient 

Response rate and PFS for MMR-
deficient colorectal cancers were 
40% and 78% compared to 0% and 
11% for MMR-proficient colorectal 
cancers, respectively.27 Current 
study expanded for 12 more tumor 
types and is ongoing.28 

  IFN-γ Gene 
Signature Melanoma Anti-CTLA-4 

High expression of 
IFN-γ gene 
signature 

Strong associated with improved 
PFS (P=0.0005). PPV of 40.0%, 
NPV 95.0%.33 

    NSCLC Anti-PD-L1 
High expression of 

IFN-γ gene 
signature 

NSCLC patients treated with 
atezolizumab with high T-effector-
IFN-γ-associated gene expression 
(Teff  IFN-γ High) improved overall 
survival (HR 0.43; 95% CI 0.24–
0.77), compared to Teff  IFN-γ Low 
(HR 1.10, 95% CI 0.68-1.76).34 

  Gut Microbiome mRCC/NS
CLC Anti-PD-1 E. hirae & A. 

microsciphilia 

Presence of certain gut flora has 
been associated with improved 
efficacy of nivolumab. In addition, 
antibiotic therapy 2 months or or 
month after nivolumab-treatment, 
resulted in reduced PFS (2.3 Mos 
vs. 9.1 Mos, P<0.001).39 

Peripheral 
Blood 

Immune Cell 
Populations NSCLC Anti-PD-1 PD-1 >12.27% on 

CD4+ T Cells 

Lower rates of both OS and PFS 
were associated with the high-PD-1 
groups as compared to the low-PD-
1 group (median OS: 397 days vs. 
721 days, P=0.028; median PFS: 
88 days vs. 391 days, P=0.044).45 
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  Peripheral 
Immunoscore Breast Immunotherap

y Vaccines 

Score based on % 
CD4, % CD8, % 
Treg, %MDSC, 

%NK, Ratio 
CD4:Treg, Ratio 
CD8:Treg, Ratio 

CD4:MDSC, Ratio 
CD8:MDSC 

Peripheral immunoscore of refined 
subsets of immune cells revealed 
statistically significant differences 
in PFS (P < 0.001) for breast 
cancer patients receiving docetaxel 
plus immunotherapy vaccine and in 
prostate cancer patients receiving 
radionuclide plus immunotherapy 
vaccine (P = 0.004).43 

  
Tumor-derived 

Exosomes 
(TEX) 

Multiple N/A   
TEX can act as a snapshot of the 
tumor microenvironment but easily 
assessed in peripheral blood.55 

  Angiopoietin-2 
(ANGPT2) Melanoma Anti-CTLA-4/ 

Anti-PD-1 
ANGPT2 <  3,175 

pg/mL 

Patients with low pretreatment 
ANGPT2 experienced improved 
survival as compared to those with 
low ANGPT2 concentrations (7.9 
Mos vs. 34.6 Mos, P<0.0001).61 
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CHAPTER 2  

A. OVERVIEW 
 

The utilization of pharmacoepidemiological techniques was a familiar task to myself and 

to our laboratory. To assess the ability of measuring survival and response from 

exposure to a certain treatment, we evaluated the role of statins in the cancer 

population.  Our laboratory has prior experience in the analysis national healthcare 

claims datasets, such as Truven Marketscan (108). The role of HMG-CoA reductase 

inhibitors (statins) in chemoprevention and cancer treatment has been deliberated in the 

literature (109-113) as well as the mechanism by which they may exert their effect and 

improve overall survival (OS) in cancer patients (114-117).  Recent cohort studies have 

shown that current statin use is associated with significantly lower risk of cancer death 

(111) while other studies have shown that statin use following diagnosis can reduce 

cancer-specific mortality in breast (118), colon (119, 120), and lung cancer (121) 

patients. However, some skepticism remains as mitigation of all confounding factors is 

not possible with cohort or pharmacoepidemiological studies (122, 123). Prospective 

evaluation of statins as monotherapy in cancer has been attempted, but a recent review 

of clinical trials of statin monotherapy in cancer revealed little effect (124). In contrast, 

prospective trials using a combination of statin with chemotherapy have shown improved 

survival in cancer patients (125-129). Given the relative safety profile of statins, rational 

combination therapies may provide cancer patients clinical benefit at the expense of 

minimal toxicity risk.  

 

Mechanistically, statins inhibit 3-hydroxy-3-methylglutarylcoenzyme A (HMGCoA) 

reductase, the rate-limiting enzyme of the mevalonate pathway, which ultimately 
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produces cholesterol along with isoprenoids; intermediate pathway metabolites such as 

farnesyl pyrophosphate (FPP) and geranyl geranyl pyrophosphate (GGPP) (130, 131). 

The physiological importance of isoprenoids in normal and cancer cells is critical for 

facilitating membrane anchoring of numerous signaling molecules including G-proteins 

such as Ras and Rho (132). Furthermore, constitutive activation of signaling pathways in 

cancer is dependent on cholesterol availability for formation of lipid rafts (133, 134). 

Recognition of the biological importance of FPP and GGPP led to drug development 

efforts of isoprenylation enzyme inhibitors (135, 136), which ultimately stalled in early 

phase studies due to toxicity and lack of efficacy. Pharmacologically, bisphosphonates 

also act as isoprenylation inhibitors (137, 138) and are widely used to inhibit bone 

resorption and treat osteoporosis. Bisphosphonates have also been used extensively to 

treat cancer patients with bone metastases (139-142). Their effect on reducing bone 

metastasis is significant and is consistent with the observations that they cause 

apoptosis in tumor cells via inhibition of the mevalonate pathway as well as tumor cell 

invasion in vitro (143, 144).  Reduced cholesterol levels trigger a negative feedback 

loop, which ultimately leads to the upregulation of mevalonate pathway genes via the 

transcriptional activity of SREBP transcription factors (145, 146). Based on this 

understanding, preclinical studies have demonstrated synergy when combining statins 

with bisphosphonates (114, 143, 147-151) and most recently dipyridamole, which has 

been shown to inhibit SREBP2 (152, 153).  Thus, the use of combination therapies that 

can amplify the effect of statins or abrogate the development of statin related resistance 

may lead to synergistic clinical combinations. Here we used a large dataset of health 

claims to test the hypothesis that statins alone, or in combination with potentially 

synergistic therapies prolong survival in cancer patients. The combination of 
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epidemiological evidence and preclinical data may provide strong rational for future 

prospective clinical studies.  

 

B. METHODS 

 

We used the Truven Health MarketScan Commercial Claims and Medicare Supplemental 

Databases. The Marketscan database includes approximately 40 million individuals from 

over 160 large employers and health plans across the US and includes healthcare 

claims with diagnosis and procedure codes for medical encounters and all prescription 

medication fills. Data are de-identified in compliance with the Health Insurance 

Portability and Accountability Act regulations (HIPAA) and the University of Kentucky 

Institutional Review Board approved the use of the database for this study. 

Patient Selection 

Adults aged 18 years and older diagnosed with cancer between January 1, 2010 and 

November 31, 2013 were identified using ICD-9 codes in the primary or secondary 

positions. Patients with prostate and breast cancer were excluded due to the use of 

hormonal therapy affecting risk for thromboembolism. Patients were diagnosed with one 

of the following types of cancer: Stomach (ICD-9 codes: 151.xx), Pancreatic (157.xx), 

Brain (191.xx), Lung (162.2 – 162.9), Renal (189.0, 189.1), Lymphoma (200.xx – 

202.xx), Leukemia (204.xx – 208.xx), Myeloma (203.0x), Colorectal (153.xx, 154.xx), or 

Gynecological (179.xx, 180.xx, 182.xx, 183.xx). At least 2 inpatient or outpatient 

diagnoses within 14 days were required, and the date of the first qualifying diagnosis of 

cancer was defined as the index date. Patients were required to have at least 12 months 

of pre-index and a minimum of one-month post-index continuous enrollment in the 

database.  
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Exposure groups were defined as: statin users with no history of non-statin cholesterol-

lowering medication use; non-statin cholesterol-lowering medication users with no 

history of statin use (“non-statin users,” active control group); and those with no history 

of statin or non-statin medication use (“non-users,” control group). Medication use was 

based on having at least 90 cumulative days supplied in the 6 months prior to diagnosis. 

Specific statins include lovastatin, pravastatin, simvastatin, rosuvastatin, atorvastatin, 

fluvastatin and pitavastatin. Non-statins include fibric acid derivatives, bile acid 

sequestrants, and nicotinic acid.  

Measures 

Patient demographic characteristics included age, gender, geographic region and urban 

residence. Clinical characteristics measured during the 12-month pre-index period 

included the Charlson Comorbidity Index (CCI) and Elixhauser comorbidities (Elix) (154, 

155).  These include 17 and 31 categories of comorbid conditions, respectively, and are 

widely used for risk adjustment with health outcomes data. Additional medications 

accounted for in the pre-index period included anticoagulants, antihypertensives, 

antiplatelet, antiarrhythmics, and digoxin. Presence of metastatic disease was assessed 

on the index date.    

Statistical Methods 

Pairwise analyses were done between: statins vs. non-statins, statins vs. non-users, and 

non-statins vs. non-users. Propensity score matching was conducted using baseline 

comorbidities, medications, and demographic information to achieve balance between 

treatment groups. Propensity scoring mimics the randomization process of a clinical trial 

so that each matched pair has the same baseline probability to receive either treatment 

(156-158). Matched pairs should be similar in all baseline characteristics. Patients with 

the same cancer type were matched using a greedy, nearest neighbor algorithm with a 
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caliper set at 0.2 times the standard deviation of the propensity scores in the sample, 

allowing for up to five matches for each treated person (159). Standardized differences 

were calculated and shown in Appendix A. A standardized difference of <0.10 is 

generally considered to be non-significant (160).  To address any residual confounding 

after propensity score matching, covariates were also incorporated in the final regression 

models (157). The final model included the following adjustment covariates: age, CCI 

score, region, anticoagulants, antihypertensives, antiplatelets, antiarrhythmics, digoxin, 

elixhauser index comorbidities and pre-index history of CHD, DVT, PE, atrial thrombosis 

and MI. Two sample t-test and chi-square tests were conducted to assess significant 

differences between treatment groups before and after matching. 

 

The study cohort was followed until subjects died, were lost to follow-up due to loss of 

enrollment in the dataset, or the end of the study data. Cox proportional hazard 

regression models, accounting for correlation within matched pairs, were used to assess 

risk of death within one year of diagnosis among all cancers and then stratified among 

each cancer. Follow-up was terminated for those surviving beyond one year and were 

censored. Hazard ratios (HR) and 95% confidence intervals (CI) are reported. A p-value 

of <0.05 is considered statistically significant. All matching and statistical analyses were 

conducted in SAS. 

Subgroup Analyses 

A sensitivity analysis assessing the influence of age as an effect modifier was 

completed. Comparisons were made within age groups of less than 65 years old, 65-75 

and greater than 75 as these groups may have different treatment patterns, responses 

and baseline survival prior to cancer diagnosis. The effect of dose intensity was 

evaluated by limiting the statin cohort to moderate or high dosage statins and comparing 
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again with non-statins and non-users (161). Patients remaining on statin therapy after 

cancer diagnosis were assessed by observing the proportion of days where medication 

was on-hand in the post-index period until end of follow-up. Statins were compared 

individually and by type to ascertain differences among outcomes. Natural statins 

include lovastatin, pravastatin and simvastatin and synthetic statins include rosuvastatin, 

atorvastatin, fluvastatin and pitavastatin (162). Patients using bisphosphonates or 

dipyridamole, alone or in combination with statins, were compared to non-users to 

assess effectiveness or synergy in terms of survival. Bisphosphonates assessed in the 

analysis were alendronate sodium, etidronate disodium, ibandronate sodium, 

pamidronate disodium, risedronate sodium and zoledronic acid. Bisphosphonates and 

dipyridamole were subject to the same requirement of having at least a 90 cumulative 

days supplied in the 6 months prior to cancer diagnosis. For all subgroup analyses, all 

cohorts were rematched via propensity score methods described above. 

 

C. RESULTS 

 

Table 2.1 displays the baseline demographic and clinical characteristics of the study 

population by treatment group. Due to the enrollment criteria, there were no missing 

values on covariates used for propensity-score matching or survival analyses. Eligibility 

criteria were met by 312,907 cancer patients. Three treatment groups were established 

as outlined in the CONSORT diagram (Figure 2.1): statin-users (n=65,440), non-statin-

users who received non-statin cholesterol lowering medications (n=9,289) and non-users 

(n=226,007). There were 8,198 patients who passed away within one year of diagnosis, 

1,702 from the statin-users cohort, 216 among the non-statins users and 6,280 from the 

no treatment cohort. The cohort contributed an average follow-up time of 359 days (SD 
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39.3) with no differences between cancer types or treatment groups. The mean 

(standard deviation, SD) age of patients in the statins, non-statins and non-users cohorts 

was 74.2 (7.8), 71.8 (9.3) and 60.8 (14.1), respectively. In all treatment groups, lung, 

lymphomas, and colorectal cancers accounted for the top three diagnosed cancers 

whereas stomach, pancreatic, and brain cancers were the least diagnosed.  
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Table 2.1:  Baseline demographic and clinical characteristics of all cohorts included in 

the analysis. 

  Treatment Group 
Statins 

N=65,440 
Non-Statins 

N=9,289 
Non-Users 
N=226,007 

Characteristic Mean Std. Dev Mean Std. Dev Mean Std. Dev 
Age 74.72 7.84 71.79 9.33 60.8 14.08 

CCI 5.1 3 5.09 3 4.34 2.9 
  N % N % N % 
Gender (Male) 31,006 47.4% 4,046 43.6% 129,670 57.4% 
Urban 55,634 85.0% 7,758 83.5% 188,958 83.6% 
CHF 10,456 16.0% 1,255 13.5% 16,016 7.1% 
Arrhythmias 18,941 28.9% 2,364 25.4% 37,160 16.4% 
Valvular disease 10,749 16.4% 1,364 14.7% 19,602 8.7% 
Pulmonary 
Circulation 

3,008 4.6% 414 4.5% 7,496 3.3% 

Peripheral 
Vascular 

20,169 30.8% 2,570 27.7% 33,064 14.6% 

Hypertension 
uncomplicated 

46,024 70.3% 6,476 69.7% 108,426 48.0% 

Hypertension 
complicated 

7,300 11.2% 1,026 11.0% 12,416 5.5% 

Paralysis 712 1.1% 86 0.9% 2,316 1.0% 
Other 
neurological 

5,282 8.1% 666 7.2% 16,383 7.2% 

Chronic 
pulmonary 

19,996 30.6% 2,599 28.0% 50,536 22.4% 

Diabetes 
(Uncomplicated) 

21,848 33.4% 3,625 39.0% 41,544 18.4% 

Diabetes 
(Complicated) 

7,598 11.6% 1,230 13.2% 10,859 4.8% 

Hypothyroidism 9,122 13.9% 1,378 14.8% 31,244 13.8% 
Renal failure 8,605 13.1% 1,433 15.4% 14,718 6.5% 
Liver disease 5,558 8.5% 943 10.2% 25,865 11.4% 
Peptic ulcer 
disease 

1,278 2.0% 184 2.0% 3,776 1.7% 

HIV/AIDS 49 0.1% 25 0.3% 1,035 0.5% 
Metastatic 
Cancer 

9,925 15.2% 1,362 14.7% 40,686 18.0% 
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Rheumatoid 
Arthritis 

3,231 4.9% 497 5.4% 11,365 5.0% 

Coagulopathy 3,775 5.8% 527 5.7% 13,017 5.8% 
Obesity 3,486 5.3% 676 7.3% 16,740 7.4% 
Weight Loss 4,981 7.6% 656 7.1% 16,717 7.4% 
Fluids and 
Electrolytes 

9,179 14.0% 1,228 13.2% 30,267 13.4% 

Blood Loss 
Anemia 

4,005 6.1% 493 5.3% 10,277 4.5% 

Deficiency 
Anemia 

5,272 8.1% 767 8.3% 15,505 6.9% 

Alcohol Abuse 522 0.8% 71 0.8% 3,212 1.4% 
Drug Abuse 349 0.5% 51 0.5% 2,211 1.0% 
Psychoses 1,252 1.9% 163 1.8% 3,705 1.6% 
Depression 5,120 7.8% 751 8.1% 26,685 11.8% 
CHD 24,187 37.0% 3,252 35.0% 26,015 11.5% 
DVT 3,204 4.9% 442 4.8% 10,856 4.8% 
PE 1,346 2.1% 208 2.2% 4,481 2.0% 
AT 655 1.0% 92 1.0% 1,297 0.6% 
MI 4,696 7.2% 569 6.1% 5,335 2.4% 
Stomach CA 1,861 2.8% 245 2.6% 6,024 2.7% 
Pancreas CA 3,011 4.6% 466 5.0% 9,770 4.3% 
Brain CA 1,720 2.6% 272 2.9% 11,212 5.0% 
Lung CA 15,812 24.2% 2,047 22.0% 36,891 16.3% 
Kidney CA 6,308 9.6% 981 10.6% 19,799 8.8% 
Lymphomas 9,926 15.2% 1,507 16.2% 40,114 17.7% 
Leukemia 6,058 9.3% 948 10.2% 20,518 9.1% 
Myeloma 3,031 4.6% 476 5.1% 10,367 4.6% 
Colorectal CA 13,126 20.1% 1,817 19.6% 45,390 20.1% 
Gynecologic CA 5,755 8.8% 752 8.1% 34,106 15.1% 

CCI Charlson Comorbidity Index; CHF Congestive Heart Failure; CHD Coronary Heart 

Disease; DVT Deep vein Thrombosis; CA Cancer 
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Figure 2.1: CONSORT flow diagram. Flow diagram of the inclusion of patients from the 

national healthcare claims dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Screened 
N~40million 

Non-statin-users 
n = 9,289 

Statin-users 
n = 65,440 

Non-users 
n = 226,007 

Cancer Patients 
N = 312,907 

Bisphosphonates 
n = 4,528 

Dipyridamole 
n = 372 

Bisphosphonates 
n = 4,090 

Dipyridamole 
n = 651 



ADAPTED FROM: El-Refai et al, JCO Clinical Cancer Informatics (2017) 
DOI:10.1200/CCI.17.99919 
 

41 
   
  

The number of matched pairs post-propensity score matching were 39,989, 101,401 and 

27,319 for the statins- vs. non-statins-users comparison, statins vs. no treatment 

comparison and the non-statins vs. no treatment comparison, respectively. While 

baseline differences existed among treatment groups, matching provided samples that 

had minimal differences as all standardized scores were below 0.1  

 

Figure 2.2 displays the HR and associated 95% CI for the effect of treatment group on 

survival within the propensity-matched sample. Overall, there were no differences in 

survival between statin-users and non-statin-users. Among all cancers, statin-use prior 

to diagnosis improved overall survival compared to no treatment (HR 0.85, 95% CI 0.80-

0.91). When stratified by cancer type, this observation held true for lung cancer (HR 

0.88, 95% CI 0.78-0.98), renal cancer (HR 0.63, 95% CI 0.44-0.90) and leukemia (HR 

0.73, 0.58-0.92). Non-statin-use provided a similar reduction in overall survival 

compared to no treatment (HR 0.73, 95% CI 0.62-0.85); but when stratified, this held 

true only for pancreatic cancer (HR 0.53, 95% CI 0.29-0.98) and leukemia (HR 0.53, 

0.30-0.94).   

 

Dose intensity analysis determined that the effect observed is not dosage-dependent 

(Figure 2.3). By removing low-dosage statins and comparing to non-statins and non-

users, overall survival was of the same magnitude and direction observed in the overall 

analysis. The sensitivity analysis assessing age (Table 2.2) also showed no difference in 

effect within age groups when comparing statins to non-statins or non-statins to non-

users. However, patients under the age of 65 in the statins vs. non-users group had 

improved survival while those over the age of 65 did not. 
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Figure 2.2:  One-year survival analysis. Hazard ratios (HR) and associated 95% 

confidence intervals (CI) for the effect of treatment group on survival within the 

propensity-matched sample. Matching was conducted for each treatment group analysis. 

(*) signifies statistically significant result.  
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Figure 2.3: The effect of dose intensity on one-year survival. Statin exposure groups 

limited to medium and high dosages. The distribution of low, moderate and high dosage 

statins prior to matching is 7,918, 46,152 and 11,307, respectively. Hazard ratios (HR) 

and associated 95% confidence intervals (CI) for the effect of treatment group are 

presented. (*) signifies statistically significant result.  
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Table 2.2: Age sensitivity analysis for all exposure group analyses. Hazard ratios (HR) 

and associated 95% confidence intervals (CI) for the effect of treatment group are 

presented. 

  Statins Vs. Non-Statins Statins Vs. Non-
Users 

Non-Statins Vs. 
Non-Users 

Age HR 95% CI HR 95% CI HR 95% CI 
< 65 Yrs 0.67 0.40 1.10 0.71 0.55 0.92 0.79 0.54 1.17 

65-75 Yrs 1.17 0.92 1.48 0.94 0.84 1.05 0.93 0.72 1.20 
>75 Yrs 1.22 0.96 1.56 0.91 0.82 1.01 0.77 0.59 1.01 
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To examine differences among individual statins (Figure 2.4), we stratified molecules by 

natural and synthetic origin. Compared to simvastatin as reference, the more hydrophilic 

rosuvastatin (HR 1.21, 95% CI 1.03-1.43) and fluvastatin (HR 2.18, 95% CI 1.36-3.50) 

molecules were associated with a higher rate of death with no differences between other 

products, i.e. simvastatin is associated with a protective effect. When grouped by type, 

natural statins had a marginally protective effect on survival, but this was not statistically 

significant (HR=0.91, 95% CI 0.83-1.01)   

 

Bisphosphonate users (n=4,528) were compared to non-users and stratified by statin 

use. Among all cancers, bisphosphonates had a non-significant reduction in death when 

compared to non-users (HR 0.82, 95% CI 0.65-1.03) (Figure 2.5). Stratification by 

cancer type could not be completed due to limited population size. A treatment group 

consisting of patients using both statins and bisphosphonates (n=4,090) exhibited a 

much larger improvement in survival compared to a subset of non-users that did not 

receive either medication (HR 0.60, 95% CI 0.45-0.81). 

 

The majority of subjects remained on statin therapy with an average of 78.3% of days in 

the post-index period covered by statin therapy and only 19 out of 65,440 patients 

stopped statin therapy after cancer diagnosis. More than half of this treatment group 

received statins for the entire follow-up period. Generally, we observed that the statin 

cohort continued on statin therapy for the majority of their post-diagnosis follow-up time. 
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Figure 2.4:  The effect of statin stratification by type and class on one-year survival. In 

comparison by type, simvastatin was used as reference. In comparison by class, 

synthetic statins were used as reference. The list of natural statins included lovastatin, 

pravastatin and simvastatin. Synthetic statins included rosuvastatin, atorvastatin, 

fluvastatin and pitavastatin. Hazard ratios (HR) and associated 95% confidence intervals 

(CI) for the effect of treatment group are presented.  
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Figure 2.5:  The effect of synergistic statin combinations on one-year survival. 

Bisphosphonates assessed in the analysis were alendronate sodium, etidronate 

disodium, ibandronate sodium, pamidronate disodium, risedronate sodium and 

zoledronic acid. Bisphosphonates and dipyridamole users were required to have at least 

a 90 cumulative days supplied in the 6 months prior to cancer diagnosis. Hazard ratios 

(HR) and associated 95% confidence intervals (CI) for the effect of treatment group are 

presented. (*) signifies statistically significant result.  
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D. DISCUSSION 

 

This observational cohort study used epidemiological data and identified a significant 

effect on the overall survival of cancer patients who receive statins at the time of 

diagnosis. This advantage was specific to cancers of the lung, kidney, and leukemias. In 

addition, the concurrent use of a bisphosphonate with a statin was associated with an 

improvement in overall survival, but stratification by cancer type was not possible due to 

the small sample size. This observation is consistent with the mechanisms of action of 

the two agents suggesting the theoretical potential for synergy in a prospective study. 

The effect of dipyridamole in combination with statin was not significant in the small 

cohort of patients receiving this combination (n=651). The effect of statins was 

comparable to other cholesterol-lowering medications, which is consistent with a recent 

cohort study in postmenopausal women showing that regular use of statins or other-lipid-

lowering medications was associated with decreased cancer death (111). Multiple 

systems or pathways may explain the mechanism by which statins induce their effect on 

cancer survival including inhibition of Ras, improvement of immune surveillance, and the 

reduction of venous thromboembolisms (VTE). 

 

Statins impact normal cell survival mechanisms including cell proliferation, pro-apoptotic 

effects, induction of autophagy, and anti-invasive and anti-migration effects that have 

been systematically studied in in vitro and in vivo models systems. The overarching 

hypothesis is the potential effect of statins on the Ras signaling pathway (163-169). Lung 

cancer, pancreatic cancer and hematopoietic/lymphoid cancers are associated with high 

rates of K-Ras mutation (38%, 63% and 21%, respectively) (170). High frequency of 

mutation may explain why patients with these cancers benefited in our analysis. 
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However, our results did not show an effect in colorectal cancer, which also has a high 

frequency in K-Ras mutation (170). Stain-use following diagnosis was previously shown 

to reduce colorectal cancer–specific mortality (119) and the prospective use of 

simvastatin with cetuximab/irinotecan in K-Ras mutant patients had favorable disease 

control rate (129). Considering in vitro evidence, statin-mediated modulation of protein 

prenylation in cancer cells requires suprapharmacologic concentrations (e.g., 1-25µM) 

for prolonged periods (171-174). Previous studies from our group demonstrated high 

(7.5mg/kg b.i.d.) simvastatin doses, ~25-fold of the typical daily dose (i.e., 40mg), 

achieved maximum plasma concentrations that were in the range of 0.08-2.2µM (175). 

Consistent with this, our results show that the dose-intensity of typical dosages 

cholesterol lowering treatment does not impact overall survival, suggesting other 

mechanisms may be involved.  

 

Prior studies have suggested the immuno-stimulatory effects of statins as the 

mechanism for anti-cancer activity. By inhibiting the mevalonate pathway, statins can 

induce innate lymphocyte activation and increase immune surveillance. Depletion of 

prenyl pyrophosphates in human dendritic cells generates danger signals that can 

translate into caspase-1 activation. Caspase-1 cleaves interleukin-1-beta (IL-1β) and IL-

18 into their activated forms allowing the release of cytokines that include interferon-γ 

and IL-2 (176). Statin-induced activation of IL-2 primed γδ T cells and natural killer cells 

exhibit potent antitumor cytotoxicity and ectopic GGPP reintroduced into the cell culture 

abolishes this effect (177, 178). Immunomodulation may be an important contributor as 

immune cells are more likely to be exposed to higher statin concentrations than cancer 

cells. 
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Finally, given the lack of difference between statin and non-statin drugs, the survival 

effect may in part be due to reductions in thrombotic events. Observational studies show 

that statins lower the risk of VTE in the cancer population, thereby increasing OS (179). 

In a prospective observational cohort of 1,434 cancer patients, VTEs occurred in 2.94% 

of patients at 12 months and 3.54% at 24 months for statin users. In comparison, those 

who were not treated with statins had elevated rates of VTE of 7.13% at 12 months and 

8.13% at 24 months (P= 0.04). Among newly-diagnosed cancer patients who were 

prospectively followed for a two-year period, statins users had a lower risk of VTE than 

non-users (HR 0.43, CI 0.19 to 0.98). In contrast, a meta-analysis of 27 trials assessing 

the effect of statin use and the lowering of LDL cholesterol on cancer incidence and 

mortality found a lack of effect after a median of five years of therapy, but a small effect 

within the first year after diagnosis (180). In the ACALM study, hyperlipidemia was 

associated with a significantly reduced mortality rate in lung, breast, prostate and bowel 

cancers (181). With respect to age, our analyses shows that those over 65 had no 

significant benefit from statin treatment, which may be the result of an overall increased 

VTE risk in that population. More work is needed to understand how cholesterol lowering 

medications impact the risk of thrombotic events in cancer and whether this effect 

explains part of the overall protective effect observed in this study.  

 

This study is subject to the limitations of all claims-based studies (182, 183). Claims data 

lack detailed information on laboratory values or tumor staging, which may have 

influenced the outcomes of this study. This study was limited to a one-year follow-up due 

to the availability of data and the heterogeneity and time-varying confounded with longer 

follow-up. Lastly, while propensity score matching is known to reduce selection bias in 

non-randomized studies, it is possible that residual bias is present or that unmeasured 
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confounders may have impacted these findings (158). This study is strengthened by a 

large sample size, inclusion of minimum medication exposure criteria (e.g. 90 days 

supplied), and by inclusion of an active control group, which are often lacking in similar 

studies. 

 

E. CONCLUSION 

 

Epidemiological health outcomes data can be used to test hypotheses based on the 

effect of drugs on specific biological pathways and processes. Our work shows that the 

use of statins alone and in combination with bisphosphonates could provide a survival 

benefit in certain cancers. We have shown the applicability of health outcomes research 

in the assessment of response dependent on differing exposure groups. 
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CHAPTER 3  

A. OVERVIEW 
 

Immune checkpoint inhibitors (ICI) are designed to restore a patient’s antitumor immune 

response, which has been attenuated during the process of tumor development. Antigen 

presenting cells (APC) normally express programmed death ligand 1 (PD-L1) that, when 

bound by PD-1 on T cells, signal an exhausted active immune response. In cancers that 

express PD-L1 on tumor cells, PD-1 receptor expressed on T cells, B cells, and NK cells 

of an activated immune system, and the interaction of PD-1 and PD-L1 characterize an 

adaptive and immune-evasive response by the tumor. This immune-evasive interaction 

can be reversed by addition of ICIs that inhibit either molecule (53).  Recently, agents 

that modulate the tumor immune response have provided durable clinical benefit to 

patients with late-stage or recurrent disease. Nivolumab (Opdivo®) has received FDA 

approval for the treatment of squamous and non-squamous metastatic non–small cell 

lung cancer (NSCLC) and metastatic renal cell carcinoma with progression on or after 

chemotherapy (184). Nivolumab is a human IgG4 antibody that blocks programmed 

death 1 (PD-1) receptor and potentiates activation of T cells (185). Nivolumab therapy 

demonstrated improved tumor-related outcomes in multiple types of cancer (186). 

Pembrolizumab (Keytruda®), another PD-1 inhibitor, received FDA approval to treat 

advanced (metastatic) NSCLC whose disease has progressed after other treatments 

and with tumors that have 50% programed death  ligand 1 (PD-L1) expression (187). 

PD-1 inhibition facilitates activation of potentially autoreactive T cells, leading to 

inflammatory adverse events across a range of tissues. Patients with a history of 

autoimmune diseases were excluded from clinical trials of PD-1 inhibitors (188). 

Exclusions included multiple sclerosis, autoimmune neuropathy, Guillain-Barre 
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syndrome, myasthenia gravis, systemic lupus erythematosus, connective tissue 

diseases, scleroderma, inflammatory bowel disease, Crohn’s disease, ulcerative colitis, 

and hepatitis. Patients with rheumatoid arthritis, Sjogren’s syndrome, and psoriasis were 

included if disease was well-controlled. Although these therapies hold great promise, 

ICIs can trigger a variety of immune-related adverse events (irAEs). These include 

dermatologic, gastrointestinal, hepatic, endocrine, and other inflammatory conditions and 

they are believed to result from general immune response enhancement (189).  Khan et 

al have shown a relatively high rate of autoimmune diseases, approximately 14%, 

among lung cancer patients, and these patients were more likely to be older females 

(190). The objective of this study was to confirm findings of Khan and colleagues in a 

more diverse cohort and identify whether cancer patients with autoimmune disease 

exhibit different baseline characteristics and comorbidities. 

 

B. METHODS 

 

We identified lung and renal cancer patients using Truven Health MarketScan 

Commercial Claims and Medicare Supplemental Database. The Marketscan database 

includes approximately 40 million individuals from over 160 large employers and health 

plans across the US and includes healthcare claims with diagnosis and procedure codes 

for medical encounters and all prescription medication fills. These data are de-identified 

in compliance with the Health Insurance Portability and Accountability Act regulations 

(HIPAA) and the University of Kentucky Institutional Review Board approved the use of 

the database for this study. 
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Adults 18 years and older diagnosed with cancer between January 1, 2010 and 

November 31, 2013 were identified. At least 2 inpatient or outpatient diagnoses 

separated by at least 14 days were required and the date of the first qualifying diagnosis 

of cancer was defined as the index date. We directed our analyses to only lung and 

renal cancer due to the initial approvals of the immune checkpoint inhibitor, nivolumab. 

Nivolumab received approval for the treatment of metastatic non-small cell lung cancer 

on March 4, 2015 and for metastatic renal cell carcinoma on November 23, 2015. 

Patients were required to have at least 12 months of pre-index and a minimum of one-

month post-index continuous enrollment in the database.  We assessed patients for 

diagnosis of autoimmune diseases prior to or after diagnosis of cancer using ICD-9 

codes for 41 autoimmune diseases. It is necessary to assess autoimmune disease 

before and after diagnosis because newly diagnosed autoimmune conditions would still 

have bearing on therapeutic decision-making practices. Prevalence was determined by 

the presence of 2 or more claims to autoimmune diseases separated by at least 30 

days. Baseline characteristics and Elixhauser and Charlson comorbidity indexes of 

patients with and without autoimmune diseases were compared. These indexes include 

17 and 31 categories of comorbid conditions, respectively, and have been widely used 

for risk adjustment with health outcomes data (154, 155). Two sample t-test and chi-

square tests were conducted to assess significant differences between groups. 

Bonferroni correction was applied due to multiple comparisons. 

 

C. RESULTS 

 

We identified 53,783 lung cancer patients and 27,349 renal cancer patients of whom 

13,156 (24.5%) and 8,217 (30.1%) also had an autoimmune disease, respectively. 
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Hypothyroidism (55.8%, 56.7%), rheumatoid arthritis (20.2%, 18.1%) and type 1 

diabetes mellitus (11.5%, 14.5%) were the most common for both lung and renal cancer 

patients respectively (Table 3.1). Baseline characteristics and comorbidities are listed in 

Table 3.2. Cancer patients with autoimmune disease were more likely to be female, 

older and had higher prevalence of comorbidities than cancer patients without 

autoimmune disease (Table 3.2).  
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Table 3.1: Autoimmune (AI) disorders in lung and renal cancer patients between the 

years 2009-2013. 

Autoimmune Disorder 

Among Lung CA 
Patients with AI 
Disease. N (%) 

Among Renal CA 
Patients with AI 
Disease. N (%) 

Rheumatoid Arthritis 2,653 (20.2) 1490 (18.1) 
Psoriasis 527 (4.0) 402 (4.9) 

Systemic Lupus Erythematous 225 (1.7) 120 (1.5) 
Systemic Sclerosis 78 (0.6) 20 (0.2) 
Sicca Syndrome 115 (0.9) 70 (0.9) 

Autoimmune NOS 37 (0.3) 20 (0.2) 
Autoimmune Hepatitis 59 (0.5) 72 (0.9) 

Primary Biliary Cirrhosis 38 (0.3) 33 (0.4) 
Celiac Disease 71 (0.5) 51 (0.6) 

Ankylosing Spondylitis 506 (3.9) 402 (4.9) 
Polymyalgia Rheumatica 227 (1.7) 141 (1.7) 

Addison's Disease 357 (2.7) 196 (2.4) 
Ulcerative Colitis 352 (2.7) 238 (2.9) 
Crohn's Disease  258 (2.0) 208 (2.5) 

Meniere's Disease 89 (0.7) 67 (0.8) 
Hashimoto's Disease 89 (0.7) 67 (0.8) 
Polyartheritis Nodosa 174 (1.3) 89 (1.1) 

Giant Cell Arthritis 93 (0.7) 45 (0.6) 
Pernicious Anemis 710 (5.4) 301 (3.7) 

Autoimmune Hemolytic Anemia 39 (0.3) 22 (0.3) 
Idiopathic Thrombocytopenic Purpura 152 (1.2) 82 (1.0) 

Thyrotoxicosis 157 (1.2) 100 (1.2) 
Multiple Sclerosis 200 (1.5) 103 (1.3) 

Iridocyclitis 280 (2.1) 209 (2.5) 
Pemphigus 32 (0.2) 33 (0.4) 

Eczema 312 (2.4) 288 (3.5) 
Alopecia Areata 34 (0.3) 26 (0.3) 

Vitiligo 18 (0.1) 29 (0.4) 
Wegener's Granulomatosis 28 (0.2) 21 (0.3) 

Dermatopolymyositis 33 (0.3) 10 (0.1) 
Myasthenia Gravis 89 (0.7) 58 (0.7) 

Scleroderma 62 (0.5) 47 (0.6) 
Antiphospholipid 3 (0.0) 5 (0.1) 

Guillian-Barre Syndrome 28 (0.2) 23 (0.3) 
Type 1 Diabetes Mellitus 1,507 (11.5) 1,189 (14.5) 
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Hypothyroidism 7,334 (55.8) 4661 (56.7) 
Hyperthyroidism 157 (1.2) 100 (1.2) 

Sweet's Syndrome 215 (1.6) 183 (2.2) 
Sjogren's Syndrome 115 (0.9 70 (0.9) 

Pyoderma Gangrenosum 7 (0.1) 1 (0.0) 
Sarcoidosis 249 (1.9) 129 (1.6) 
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Table 3.2:  Baseline characteristics and comorbidities between lung and renal cancer 

patients with or without autoimmune disease. 

  
Cancer W/ 

Autoimmune 
Cancer W/O 
Autoimmune   

  N (21,373) % N (59,759) % P Value 
Age Categories           

< 65 Yrs 8,393 39.3 25,672 43.0 <.0001 
65 to 74 Yrs 6,439 30.1 16,762 28.1 <.0001 
75 to 80 Yrs 3,545 16.6 9,276 15.5 <.0001 

>80 Yrs 2,996 14.0 8,049 13.5 <.0001 
Gender (F) 12,133 56.8 25,140 42.1 <.0001 
CHF 2,938 13.8 6,860 11.5 <.0001 
Arrhythmias 5,530 25.4 13,659 22.9 <.0001 
Valvular disease 2,986 14.0 6,920 11.6 <.0001 
Pulmonary Circulation 1,150 5.4 2,953 4.9 0.0119 
Peripheral Vascular 5,812 27.2 14,187 23.7 <.0001 
Hypertension 
uncomplicated 13,814 64.6 35,614 59.6 <.0001 
Hypertension complicated 2,375 11.1 5,067 8.5 <.0001 
Paralysis 211 1.0 584 1.0 0.899 
Other neurological 1,919 9.0 4,231 7.1 <.0001 
Chronic pulmonary 9,063 42.4 25,053 41.9 0.2219 
Renal failure 3,085 14.4 6,130 10.3 <0.0001 
Liver disease 2,528 11.8 6,767 11.3 0.047 
Peptic ulcer disease 308 1.4 772 1.3 0.1032 
HIV/AIDS 33 0.2 116 0.2 0.2445 
Metastatic Cancer 4,340 20.3 15,952 26.7 <.0001 
Coagulopathy 1,145 5.4 2,332 3.9 <.0001 
Obesity 1,598 7.5 3,402 5.7 <.0001 
Weight Loss 1,599 7.5 4,778 8.0 0.0165 
Fluids and Electrolytes 3,549 16.6 8,679 14.5 <.0001 
Blood Loss Anemia 990 4.6 2,075 3.5 <.0001 
Deficiency Anemia 1,358 6.4 2,835 4.7 <.0001 
Alcohol Abuse 278 1.3 1,087 1.8 <.0001 
Drug Abuse 246 1.2 624 1.0 0.1933 
Psychoses 397 1.9 1,148 1.9 0.5595 
Depression 2,713 12.7 5,888 9.9 <.0001 
CHD 5,791 27.1 14,702 24.6 <.0001 
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More than a quarter of patients diagnosed with lung and renal cancer were found to 

have a comorbid autoimmune condition. When considering that immune checkpoint 

inhibition is only approved in late stages of cancer, it is not clear whether the benefits of 

pursuing treatment in patients with autoimmune disease outweigh the risk of inducing 

worse irAEs. Several case reports have been published showing that while 

discontinuation of the immune checkpoint inhibitor results in resolution of the irAE, long 

courses of medications specific to the autoimmune reaction may be needed to mitigate 

the effects of ICI therapy (191-193). In a large systematic review of 251 cases involving 

anti-CTLA-4 and anti-PD-1 agents, approximately 52% of treated patients discontinued 

ICI therapy due to the irAEs.(191) Less than 10% required no treatment for the irAE, 

while the remainder was treated with corticosteroids, infliximab (an anti-tumor necrosis 

factor (TNF) agent), or disease-modifying anti-rheumatic drugs (DMARDs). Death due to 

the irAEs occurred in 4.7% of patients. Cutaneous autoimmune reactions are commonly 

associated with ICI therapy, but a case report on two patients with metastatic melanoma 

illustrated that irAEs may not appear until long after initiation of therapy.(193) An autopsy 

study presented an elderly melanoma patient exhibiting a systemic inflammatory 

response that affected multiple organ sites ultimately resulting in the death of the patient 

(194). 

 

This study is subject to the limitations of all claims-based studies (182, 183). Notably, 

claims data lack detailed information on laboratory values or information on tumor 

staging, which may have influenced the outcomes of this study. This study was limited to 

a one-year follow-up due to the availability of data and the heterogeneity and time-

varying confounded with longer follow-up. This study is strengthened by a large sample 

size and the inclusion of both commercial and medicare claims. 
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D. CONCLUSION 

 

The exclusion of patients with autoimmune conditions from the approval studies of 

nivolumab and pembrolizumab resulted in a lack of clinical guidance for a large 

population of patients that oncologists must decide whether to treat or not. In late stage 

treatment of these cancers, the potential durable response associated with immune 

checkpoint inhibitors will need to be weighed against the worsening of the patient’s 

autoimmune condition, a decision for which clinical trials have not provided a concrete 

answer. Future evaluation of real-world treatment patterns will be needed to assess ICI 

usage and response in patients with autoimmune conditions.  
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CHAPTER 4  

A. OVERVIEW 

 

Immune checkpoint inhibitors (ICI) are designed to restore a patient’s antitumor immune 

response, which has been attenuated during the process of tumor development. Antigen 

presenting cells (APC) normally express programmed death ligand 1 (PD-L1) that, when 

bound by programmed death 1 receptor (PD-1) on T cells, signal an exhausted active 

immune response. In cancers that express PD-L1 on tumor cells, PD-1 receptor 

expressed on T cells, B cells, and NK cells of an activated immune system, and the 

interaction of PD-1 and PD-L1 characterize an adaptive and immune-evasive response 

by the tumor. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a homolog to 

CD28 and competitively binds to B7 on antigen-presenting cells providing a co-inhibitory 

signal, preventing the priming and activation of CD8+ T cells (195). These immune-

evasive interactions can be reversed by addition of ICIs (53). These agents that 

modulate the tumor immune response have recently provided durable clinical benefit to 

patients with late-stage or recurrent disease.  

 

To date, nivolumab (Opdivo®) has received FDA approvals for the treatment of 

squamous and non-squamous metastatic non–small cell lung cancer (NSCLC), 

metastatic renal cell carcinoma, advanced melanoma, Hodgkin lymphoma, previously 

treated locally advanced or metastatic urothelial carcinoma, hepatocellular carcinoma 

patients previously treated with sorafenib and microsatellite instability-high (MSI-H) or 

mismatch repair deficient (dMMR) metastatic colorectal cancer (mCRC) that has 

progressed following treatment with a fluoropyrimidine, oxaliplatin and irinotecan (184, 

186). Nivolumab is a human IgG4 antibody that blocks PD-1 and potentiates activation 
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of T cells (185). Pembrolizumab (Keytruda®), also a PD-1 inhibitor, received FDA 

approval for the treatment of advanced (metastatic) NSCLC that has progressed after 

other treatments and for tumors with at least 50% expression of programmed death 

ligand 1 (PD-L1) by tumor cells. Specifically, advanced melanoma, metastatic head and 

neck squamous cell carcinoma, classical Hodgkin lymphoma, advance or metastatic 

urothelial carcinoma, gastroesophageal junction cancer whose tumors express PD-L1, 

and metastatic solid tumors that are MSI-H or dMMR are eligible for this therapy (187). 

 

The only approved biomarker of response for any ICI is measurement of PD-L1 

expression from the tumor. The Keynote-001 trial sought to correlate response to MK-

3475, a PD-1 inhibitor, with expression of PD-L1. In the melanoma arm, PD-L1 

expression on tumor cells increased the response rate in 49% compared with 13% of 

PD-L1 negative patients. The NSCLC arm of this study showed that when greater than 

50% of tumor cells expressed PD-L1, response to MK-3475 was predicted and this was 

observed in nearly 25% patients. For all patients, response rate to MK-3475 was about 

19%, irrespective of PD-L1 expression in the tumor. Median progression free survival 

(PFS) was 14.1 months in PD-L1 strongly positive patients compared with 9.3 months in 

the weakly positive population (56). These findings preclude PD-L1 expression from 

being an exclusionary predictive biomarker. The limitations of this assay include timing 

of tissue acquisition, tumor heterogeneity, and timing of therapy relative to the 

expression of PD-L1 suggesting that finding a more robust biomarker of response is 

needed.  

 

Applying precision medicine principles to immuno-oncology requires the discovery of 

biomarkers that can identify the patients most likely to benefit from this class of 
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treatment. Robust biomarkers need to encompass an efficient, repeatable and easily 

accessible source of biological data from the patient. Determination of PD-L1 expression 

requires direct sampling of tumor tissue from a patient which necessitates an invasive 

procedure. If samples banked early during treatment and then used later to determine 

expression levels, the assayed expression levels may not represent the tumor or 

metastases in the current state. Predictive biomarkers that can be measured from 

peripheral blood sampling allow the inclusion of this tool into clinical practice with 

minimal workup, allow for assay immediately prior to initiation of ICI treatment, and can 

be repeated throughout therapy for monitoring purposes. I sought to determine whether 

peripheral factors associated with the patient’s immune response or malignancy that 

have the precision and robustness to be more predictive than PD-L1 expression for 

anticipating response to PD-1 inhibitor therapy.  

 

Several comorbid conditions have been associated with the development and 

progression of cancer but the long-term effect on the immune system may also impact 

response to ICI treatment (196). It is estimated that potentially 25% of all malignancies 

develop after exposure to chronic inflammation and to viral and bacterial infections that 

initiate an immune response (197). Chronic inflammation encompasses multiple 

conditions. Metabolic syndrome, one family of chronic inflammatory diseases, has 

consistently been correlated with the development of several tumor types. Worldwide 

there are over 312 million people with a BMI>30 kg/m2 and within the last four decades, 

the prevalence of obesity has amassed to approximately 50% of adults within the US 

(198). Obese patients develop more localized tumors, have earlier relapse, and a 

diminished overall survival (199). Hyperlipidemia includes low high-density-lipoprotein 

(HDL) cholesterol and elevated low-density lipoprotein (LDL) cholesterol. Low HDL and 
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high serum levels of total cholesterol have been associated with higher incidence of 

lung, prostate and post-menopausal breast cancer (200, 201). This study followed over 1 

million patients for 16 years who had no reported history of cancer and identified that, 

independent of high body mass, type 2 diabetes mellitus (T2DM) is a predictor of 

mortality in pancreatic, breast, liver and bladder cancer (202). The potential causal link 

between metabolic syndrome, inflammation and cancer is adipose tissue hypoxemia 

(203). This phenotype is characterized by inflammatory cytokines in plasma and the 

adipose tissue itself as well as macrophage infiltration and activation.  

 

Immune cells secrete specific cytokines and chemokines that act as survival and 

proliferation factors for the promotion of malignant tumor cells. The presence of 

inflammation and the secretion of inflammatory mediators can lead to the induction of 

transcription factors such as NF-κβ. In the initial phase of tumor development, 

inflammatory mediators such as cytokines, reactive oxygen species (ROS), and reactive 

nitrogen species (RNS) derived from tumor-infiltrating immune cells induce epigenetic 

alterations in pre-malignant lesions and silence tumor suppressor genes (204). 

Accumulation of microbial pathogens and tissue necrosis activate transcription factors 

that are necessary for the expression of pro-angiogenic factors (IL-8, VEGF), growth 

factors (IL-6, GM-CSF), anti-apoptotic factors (Bcl-XL, c-FLIP), invasion-promoting 

factors (MMP-2, MMP-7, MMP-9, uPA), inflammatory enzymes (PGHS-2, LOX), 

prostaglandins, iNOS, chemokines (CCL2, CCL20, IL-8), and pro-inflammatory cytokines 

(IL-1, IL-6, IL-23, TNF, TGF-β, EGF) that support the malignant phenotype (205). Of the 

cytokines released, transforming growth factor beta (TGF-β) and tumor necrosis factor 

alpha (TNF-α) help activated NF- κβ in a process called epithelial-mesenchymal 
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transition (EMT). EMT is a process necessary for tumor invasiveness and metastasis to 

other sites (206). 

 

While we understand that a pro-inflammatory cytokine-rich environment promotes the 

formation of some tumor types, we are interested in understanding whether these 

cytokines induce adaptive immune resistance in lung cancers. If true, patients with an 

inflammatory cytokine-rich periphery may respond well to certain immune checkpoint 

inhibitors. Importantly, PD-L1 expression is induced by interferon (IFN) activity, and 

indirectly by IL12, in both endothelial and breast cancer cells (207, 208). Further, Taube 

and colleagues investigated the signaling events that induce PD-L1 expression and 

demonstrated that many cytokines were overexpressed expression in melanoma cell 

lines, including RANTES, CXCL1, IL10, IL18 and IL21. In vitro stimulation of melanoma 

cells by IFN-γ induced PD-L1, but recombinant forms of the other cytokines failed to 

increase cell surface expression of PD-L1 with or without IFN-γ (54). In a separate study, 

incubation of activated T-cells with IL10 (+/- IFN-γ) induced expression of PD-L1 on 

monocytes thereby reducing T-cell activation (51). Increased expression of these 

molecules correlates with increased T cell infiltration (209, 210). Because PD-L1 

expression is modulated by the interferons (α, β, and γ) in a dose- and time-dependent 

manner as measured by both mRNA and cell surface expression, regulation of this 

molecule is important for maintaining control of the immune response and is dependent 

on peripheral cytokines (207).  

 

Inflammatory diseases are, in part, caused by poor lifestyle choices and can contribute 

to cancer development. Paradoxically, the presence of inflammatory diseases may serve 

as biomarkers of durable response to immune checkpoint inhibitors. Given these 
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studies, there is a fundamental gap in understanding of the timing of expression of PD-

L1 in NSCLC tumors and PBMC and how those levels relate to the state of the 

inflammatory response and response to ICI. To measure the relationship between 

chronic inflammation and the response to ICIs, we investigated the following two aims: 

• Retrospective analysis of local Markey Cancer Center (MCC) data for a history 

of chronic inflammation and correlate with response to nivolumab therapy in 

NSCLC patients 

• Assess national healthcare claims data to determine if ICI-treated patients with a 

history of chronic inflammation exhibited improved overall survival 

Health outcomes research is a methodology used to identify and measure the link 

between treatments or interventions and the desired outcome of interest. With the 

limited, real-time clinical applicability of basic science research and the constraints of 

expensive, time-consuming and limited populations of clinical trials, health outcomes 

data research bridges the gap to identify the most effective intervention. Health 

outcomes research can be used to identify disparities among different populations and 

further patient-centered outcomes. Advances in bioinformatics using a “Big Data” 

approach provide an opportunity for novel insights regarding the discovery of biomarkers 

of response (211). Researcher are now able to use real-world data to conduct high 

quality investigations that demonstrate the value of this novel class of treatment and the 

variables that influence its success. The combination of epidemiological evidence and 

preclinical data will provide strong rationale for future prospective clinical studies.  
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B. METHODS 

 

Retrospective Study Subjects and Methods 

Metastatic NSCLC-diagnosed patients treated at the MCC with nivolumab were 

retrospectively identified between March 2015 and February 2016 using an institutional 

IRB-approved study. The study was deemed as minimal risk and was exempt from 

obtaining informed consent from study patients. The range of dates chosen covered the 

span of time from the FDA approval of nivolumab treatment for patients diagnosed with 

metastatic NSCLC with progression on or after platinum-based chemotherapy in NSCLC 

to the date this study was conducted. The data were gathered by reviewing electronic 

medical records. Data collected included gender, age, comorbid condition history, 

previous chemotherapy treatment, nivolumab treatment start date and number of cycles 

of therapy completed. Cycles of nivolumab therapy received were utilized as a surrogate 

for response. Patients treated with 6 cycles or more of therapy were considered to have 

a robust, objective response. Chronic inflammatory conditions collected included the 

diagnosis of hyperlipidemia, hypertension, diabetes mellitus, obesity or chronic 

obstructive pulmonary disorder (COPD). No statistical analyses or power calculations 

was undertaken.  

Tumor Acquisition & PD-L1 Expression 

Using the identified patients treated with nivolumab, the MCC Biospecimen and Tissue 

Procurement Shared Resource Facility was used as an honest-broker to query for 

formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples associated with each 

patient. Of the 45 patients for which health history was collected, PD-L1 expression was 

assessed for each tumor sample retrieved. The PD-L1 IHC 28-8 pharmDx assay is 

approved by the US Food and Drug Administration (FDA) as a complementary 
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diagnostic for non-squamous NSCLC and melanoma in the USA (212). The rabbit 

monoclonal antihuman PD-L1 antibody 28-8 was produced by Abcam (San Francisco, 

CA, USA). The 28-8 antibody was tested using Dako PD-L1 IHC 28-8 pharmDx (Dako 

North America; SK005) and the Dako-recommended protocol, as previously described 

(213). Tumor tissue sections were de-paraffinized and antigen-retrieval was initiated at 

97 °C for 20 min. Detection of PD-L1 protein was conducted using 2 µg/mL of the 

antibody on the Autostainer Link 48 according to Dako instructions. Upon completion, 

the stained sample slides were sent to Kimberly Abshear M.D. of UK Pathology to 

measure the expression level of PD-L1 and to determine the histology as either 

squamous or non-squamous carcinoma. 

Outcomes Study Subjects 

For the health outcomes research aim of this study, the Truven Health MarketScan 

Commercial Claims and Medicare Supplemental Databases was used to complete the 

outcomes aim of this study. The Marketscan database includes approximately 40 million 

individuals from over 160 large employers and health plans across the United States and 

includes healthcare claims with diagnosis and procedure codes for medical encounters 

and all prescription medication fills. Data are de-identified in compliance with the Health 

Insurance Portability and Accountability Act regulations (HIPAA), and the University of 

Kentucky Institutional Review Board previously provided blanket approval the use of the 

database for studies conducted by UK researchers. Adults aged 18 years and older 

treated with an ICI between January 1, 2013 and December 31, 2015 were identified 

using J codes associated with the medications. The healthcare common procedure 

coding system (HCPCS) is a standardized coding system, including current procedural 

terminology (CPT) codes and J codes, which is used to identify products, supplies or 

services. Patients were required to have at least 24 months of pre-index and a minimum 
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of one-month post-index continuous enrollment in the database (Figure 4.1). Patients 

were diagnosed with one of the following types of cancer as categorized using the 

international classification of diseases, ninth revision (ICD-9) codes: Lung cancer (162.2 

– 162.9) or Melanoma (172.0-172.9) (214). The ICIs included were nivolumab (C9453, 

J9299), pembrolizumab (C9027, J9271), and ipilimumab (J9228). At least two inpatient 

or outpatient diagnoses within 14 days were required, and the date of the first qualifying 

diagnosis of cancer was defined as the index date. Exposure groups were defined as: 

ICI-treated patients with a history of chronic inflammatory conditions or ICI-treated 

patients without a history of chronic inflammatory conditions. Chronic inflammatory 

conditions included the diagnosis of hyperlipidemia, hypertension, obesity, diabetes 

mellitus or chronic obstructive pulmonary disorder (COPD).  
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Figure 4.1:  Health outcomes data analysis timeline and process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Pre-Index 12-Months Post-Index 

24-Month Pre-
Index 

ICI-Treated 
Population 
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Truven claims data stratification and analysis approach. An illustration 
representing the manner in which the desired patient population was identified 
under Truven and how the relationship between chronic inflammatory 
conditions and ICIs are assessed. 
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Outcomes Data Measures & Statistical Methods 

Patient demographic characteristics included age, gender, geographic region and urban 

residence. Clinical characteristics measured during the 24-month pre-index period 

included previous chemotherapy treatments, previous radiation exposure, and the 

Charlson Comorbidity Index (CCI) (154).  CCI includes 17 categories of comorbid 

conditions, respectively, and are widely used for risk adjustment with health outcomes 

data. Presence of metastatic disease was assessed on the index date. The outcome of 

interest is one-year overall survival. Pairwise analyses were carried out between the two 

exposure groups: ICI-treated patients with a history of a chronic inflammatory disorders 

versus ICI-treated patients without a history of chronic inflammatory disorders. 

Propensity score matching was conducted using baseline comorbidities, medications, 

and demographic information to achieve balance between treatment groups. Propensity 

scoring mimics the randomization process of a clinical trial so that each matched pair 

has the same baseline probability to receive either treatment (156-158). Matched pairs 

should be similar in all baseline characteristics. Patients with the same cancer type were 

matched using a greedy, nearest neighbor algorithm with a caliper set at 0.2 times the 

standard deviation of the propensity scores in the sample, allowing for up to five 

matches for each treated person (159). Standardized differences were calculated. A 

standardized difference of <0.10 is generally considered to be non-significant (160).  To 

address any residual confounding after propensity score matching, covariates were also 

incorporated in the final regression models (157). The final model included the following 

adjustment covariates: age, CCI score, gender, region, urban, myocardial infarction, 

congestive heart failure, peripheral vascular disease, cerebrovascular disease, 

chemotherapy and radiation.  
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Cox proportional hazard regression models, accounting for correlation within matched 

pairs, were used to assess risk of death within one year of diagnosis among all cancers 

and then stratified among each cancer. Follow-up was terminated for those surviving 

beyond one year and were censored. Hazard ratios (HR) and 95% confidence intervals 

(CI) are reported. A p-value of <0.05 is considered statistically significant. All matching 

and statistical analyses were conducted in SAS. 

 

C. RESULTS 

 

Identification of chronic inflammatory diseases as precursor to response in MCC 

patients 

We identified 45 patients diagnosed with metastatic NSCLC treated with nivolumab 

between the dates of March 2015 and February 2016. The average number of cycles of 

nivolumab therapy administered for all 45 patients is 5.49 with a standard deviation of 

5.03 (Figure 4.2). Nine patients achieved long-term objective response (Mean=8.5 

cycles, SD=1.2), representing 20% of the patient population. Consistent with prior 

studies, approximately 20% of treated patients achieved an objective response/clinical 

benefit (> 6 cycles of nivolumab) in the absence of molecular selection for therapy (47, 

215). Of the 45 patients, twenty-nine had at least one, pre-existing, comorbid, chronic 

inflammatory condition. Eleven patients had two or more chronic inflammatory 

conditions. Patients with no history of chronic inflammatory conditions averaged 3.88 

cycles of nivolumab treatment (SD = 0.28), those with at least one chronic inflammatory 

condition averaged 6.38 cycles of therapy (SD = 0.89), and lastly those patients with a 

history of two or more chronic inflammatory conditions averaged 8.45 cycles of 

nivolumab treatment (SD = 1.02) (Figure 4.3). 
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Figure 4.2: MCC nivolumab-treated patients treated March 2015 to February 2016. 
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Figure 4.3:  The effect of chronic inflammatory conditions on cycles of nivolumab. 
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PD-L1 expression of tumor tissue analysis 

Seven patients were found to have banked FFPE lung tumor tissue samples in the MCC 

biospecimen core. No information was present as to when sample was isolated during 

the patient’s treatment history. Three patients demonstrated no PD-L1 expression, two 

had expression on macrophages only, one showed less than 10% expression, and one 

had greater than 20% PD-L1 expression (Table 4.1). Three of those seven patients 

exhibited objective response to nivolumab treatment (i.e. >6 cycles of therapy); however, 

response was not correlated with PD-L1 expression. The patients that exhibited a 

positive tumor PD-L1 expression had a histology of squamous cell carcinoma. The 

patient whose sample had a PD-L1 expression greater than 20% had a history of chronic 

inflammatory conditions while the patient with tumor PD-L1 expression less than 10% 

did not have a history of chronic inflammatory conditions.  
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Table 4.1:  PD-L1 expression and history of inflammation for nivolumab-treated NSCLC 

patients. 

Patient 
ID Gender Histology 

Response on 
Nivolumab 

Inflammatory 
Disease 

PD-L1 
expression by 

IHC 

BH556 F adenocarcinoma NR-expired yes 
macrophages 

only 

BH2022 F adenocarcinoma R yes 
macrophages 

only 

BH2023 M 
squamous cell 

carcinoma NR-expired no <10% 
BH2024 F adenocarcinoma Lost to follow-up no no 
BH2025 F adenocarcinoma Lost to follow-up no no 

BH2026 M 
squamous cell 

carcinoma NR-expired yes ~20% 
BH2027 F N/A NR-expired yes no 
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Outcome Data Results 

The health outcomes research aim provided a much larger pool of patients to assess. 

Table 4.2 displays the baseline demographic and clinical characteristics of the study 

population by exposure group. Eligibility criteria were met by 3,252 ICI-treated patients 

from whom a complete dataset was available. Among the ICI-treated cancer patients 

identified, 2,339 had a history of chronic inflammation and 913 patients did not. There 

were 432 patients who passed away within one-year of diagnosis. The mean age of 

patients in the chronic inflammation cohort was 62.3 (SD = 12.31) and in the no chronic 

inflammation cohort was 52.6 (SD=12.72). In both exposure groups, melanoma and lung 

cancer were the only two diagnosed cancers, and the majority of patients were diagnosed 

with melanoma (lung cancer = 815 and melanoma = 2,612 patients). Over 95% of the 

entire patient population was previously treated with cytotoxic chemotherapy. Of the 

chronic inflammation cohort, 42% were treated previously with radiotherapy whereas 36% 

of the no chronic inflammation cohort was treated with radiotherapy. In the chronic 

inflammation cohort, 1,987 were obese, 1,761 were diagnosed with diabetes, 609 with 

hypertension, 854 with hyperlipidemia and 1,582 with COPD.  

 

The number of matched pairs post-propensity score matching were 1,948  for the chronic 

inflammations versus no chronic inflammation comparison. Upon stratification by cancer 

type, the number of matched pairs for lung cancer and melanoma were 367 and 1,531, 

respectively. While baseline differences existed among exposure groups, matching 

provided samples that had minimal differences (Table 4.3). Four clinical variables 

(myocardial infarction, congestive heart failure, peripheral vascular disease and 

cerebrovascular disease) did not meet standardized differences scores below 0.10, that 

which is accepted to be balanced between cohorts. To account for these differences, 
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these four variables were included as covariates in the Cox proprotional hazard regression 

model. Table 4.4 displays the HR and associated 95% CI for the effect of the exposure 

group on on-year survival within the propensity-matched sample. Pre-existing chronic 

inflammation improved overall survival compared to no history of chronic inflammation 

(HR 1.23, 95% CI 1.01-1.50). When stratified by cancer, this observation held true 

specifically in patients with melanoma (HR 1.26, 95% CI 1.01-1.58). No differences were 

observed in patients diagnosed with lung cancer (HR 1.35, 95% CI 0.82 – 2.23).  
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Table 4.2:  Baseline demographics for all immune checkpoint inhibitor treated patients. 

  Chronic Inflammation No History 
  Mean Std. Dev Mean Std. Dev 
Age 62.3 12.31 52.56 12.72 
CCI 9.65 2.4 7.63 2.6 
  N (2,339) % N (913) % 
Gender (M) 1518 64.9% 495 54.2% 
Urban 398 17.0% 145 15.9% 
CCI Category 2,339   913   

1 37 1.6% 113 12.4% 
2 67 2.9% 13 1.4% 
3 48 2.1% 8 0.9% 
4 2187 93.5% 779 85.3% 

Obesity 1987 85.0% 0 0.0% 
Diabetes 1761 75.3% 0 0.0% 
Hypertension 609 26.0% 0 0.0% 
Hyperlipidemia 854 36.5% 0 0.0% 
COPD 1582 67.6% 0 0.0% 
Myocardial Infarction 140 6.0% 5 0.5% 
Congestive Heart Failure 229 9.8% 8 0.9% 
Peripheral Vascular 
Disease 657 28.1% 73 8.0% 
Cerebrovascular Disease 705 30.1% 114 12.5% 
Dementia 145 6.2% 26 2.8% 
Rheumatism 53 2.3% 19 2.1% 
Peptic Ulcer Disease 56 2.4% 8 0.9% 
Mild Liver Disease 713 30.5% 209 22.9% 
Paralysis 69 2.9% 16 1.8% 
Renal Disease 189 8.1% 4 0.4% 
Cancer 2325 99.4% 876 95.9% 
Severe Liver Disease 19 0.8% 3 0.3% 
Metastatic Cancer 2,184 93.4% 783 85.8% 
HIV/AIDS 7 0.3% 3 0.3% 
Lung Cancer 679 29.0% 136 14.9% 
Melanoma 1,839 78.6% 773 84.7% 
Previous Chemotherapy 2,272 97.1% 863 94.5% 
Previous Radiation 971 41.5% 330 36.1% 
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Table 4.3:  Standardized differences post-propensity score matching. 

Cohort (Chronic Inflammation) 
Obs Variable Std. Diff 

1 Age 0.117 
2 Charlson Comorbidity Index (CCI) 0.517 
3 Gender 0.035 
4 Region 0.050 
5 Urban 0.046 
6 CCI Category 0.159 
7 Myocardial Infarction 0.231 
8 Congestive Heart Failure 0.298 
9 Peripheral Vascular Disease 0.299 

10 Cerebrovascular Disease 0.228 
11 Dementia -0.011 
12 Rheumatism -0.006 
13 Peptic Ulcer Disease 0.003 
14 Mild Liver Disease 0.024 
15 Paralysis 0.021 
16 Renal Disease 0.021 
17 Cancer 0.021 
18 Severe Liver Disease 0.021 
19 Metastatic Cancer 0.021 
20 HIV/AIDS 0.021 
21 Chemotherapy 0.0722 
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Table 4.4: One-year survival analysis for ICI-treated patients. Hazard ratios (HR) and 

associated 95% confidence intervals (CI) for the impact of chronic inflammation on 

survival within the propensity-matched sample. Results include entire treated group (All 

Selected Cancers) and stratified by cancer type. 

Stratification 
Patients with 

History of 
Chronic 

Inflammation 

Patients without 
history of 
Chronic 

Inflammation 
HR 95% CI 

All Selected 
Cancers 1,218 730 1.23 1.01 1.5 

Lung 240 127 1.35 0.82 2.23 
Melanoma 949 582 1.26 1.01 1.58 
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D. DISCUSSION 

 

ICIs have been enthusiastically accepted by clinicians as a promising option for patients 

well into their malignancy treatment pathway. PD-1 inhibitors such as nivolumab and 

pembrolizumab are gaining additional FDA approvals for several malignancies, including 

becoming first line treatment options in metastatic disease (216). The high financial 

costs of these agents justify careful consideration when selecting a patient to be treated. 

The one guiding principle presently used clinically is PD-L1 expression on tumors. This 

diagnostic has inherent flaws and has not been able to objectively determine patients 

exhibiting long-term durable responses. Therefore, we undertook these studies with the 

hypothesis that comorbid conditions, specifically those that affect the inflammatory 

conditions in the periphery and in the tumor microenvironment, would correlate with 

response to nivolumab in NSCLC patients.  Furthermore, closer examination of these 

comorbid conditions, may allow us to identify a molecular signature going forward that 

serves as a robust predictor of response. Our hypothesis is anchored in the concept that 

while chronic inflammation may create genetic alterations that induce the growth of 

tumor cells, the presence of those immune factors in peripheral blood, and in the tumor 

microenvironment, may prime an immune response once the inhibition of the immune 

checkpoint is released.  

 

The first local, retrospective study presented herein identified an association of chronic 

inflammatory conditions with the response of cancer patients treated with nivolumab. 

Our patient population consisted of a small group of adult patients with metastatic 

NSCLC disease who progressed after platinum chemotherapy. As expected, twenty 

percent of our population exhibited long-term durable responses matching the results of 
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other long-term nivolumab treatment studies. Patients with a history of chronic 

inflammatory conditions, including metabolic syndrome disorders or COPD, stayed on 

nivolumab therapy for a longer period averaging a higher number of cycles received. In 

addition, those patients with a history of more than two of these conditions received an 

average number of nivolumab cycles greater than those patients with only one condition. 

Of the seven tumor samples analyzed for PD-L1 expression, two exhibited positive 

expression and neither correlated with improved response. PD-L1 expression alone did 

not correlate with response however the patient with PD-L1 expression greater than 20% 

also had a comorbid history of chronic inflammation.  

 

Components of the circulating immune response might better indicate response to ICI 

agents than PD-L1 expression alone. Systemic inflammation has been shown to 

increase oxidative stress, activate circulating neutrophils and lymphocytes, and alter 

levels of inflammatory mediators (i.e. TNF-α, IL-6, IL-8 & C-reactive protein) (217, 218). 

The tumor microenvironment may have altered levels of cytokines, growth factors, and 

chemokines that affect tumor cell proliferation, survival and immune evasion due to 

chronic inflammation (4). Chronic obstructive pulmonary disease (COPD), a chronic 

inflammatory condition, is associated with elevated IFN-γ + and TNF-α+ CD8+ T-cells 

when compared with healthy controls (219). TNF-α is recognized by two receptors, TNF-

α R-1 and TNF-α R-2, the latter of which is expressed mainly on immune cells (220). It 

has been shown that high concentrations of this cytokine can induce an anti-tumor 

response in sarcoma mouse models (221). In addition, NSCLC patients with elevated 

TNF-α in tumor islets have had favorable survival rates (222). The interplay between 

chronic inflammation and immune response has been theorized as an important part of 

immune checkpoint inhibition (223, 224). PD-L1 expression can be induced by interferon 
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(IFN) activity, and indirectly by IL-12, in both endothelial normal cells and breast cancer 

cells (207, 208). Importantly, activated oncogenes can transduce intracellular signaling 

events leading to aberrant PD-L1 expression in cancer cells (225). Taube and 

colleagues investigated the signaling events that induce PD-L1 expression and 

demonstrated that many cytokines were overexpressed in melanoma cell lines, including 

RANTES, CXCL1, IL-10, IL-18 and IL-21. In vitro stimulation of melanoma cells by IFN-γ 

induced PD-L1, but recombinant forms of the other cytokines failed to increase cell 

surface expression of PD-L1 with or without IFN-γ (54). However, incubation of activated 

T-cells with IL10 (+/- IFN-γ) induced expression of PD-L1 on monocytes thereby 

reducing T-cell activation (51). In an open-label, phase 2 randomized controlled trial, 

patients with NSCLC who progressed post-platinum chemotherapy were allocated to 

treatment with atezolizumab (PD-L1 inhibitor) or docetaxel (75). In an exploratory 

analysis, effector T cell INF-γ gene signatures, defined by CD8A, GZMA, GZMB, IFNγ, 

EOMES, CXCL9, CXCL10, and TBX21 were assessed. Patients with high expression of 

the IFN- γ signature had improved overall survival with atezolizumab treatment 

compared to patients with low expression of this cytokine gene signature (HR 0.43, 95% 

CI 0.24-0.77).  

 

Our second aim was an observational cohort study and identified a significant effect on 

the overall survival of cancer patients who received immune checkpoint inhibitor 

treatment with previous comorbidity of a chronic inflammatory condition, replicating the 

institutional study. Upon stratification by cancer type, the improved survival advantage 

held true only in the melanoma population. Our Truven population of ICI-treated patients 

were identified from early 2011 to the end of December 2015. The earliest FDA approval 

of an ICI for the treatment of lung cancer was granted to nivolumab on March 4th, 2015 
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for the treatment of metastatic squamous NSCLC with progression on or after platinum-

based chemotherapy (184). This limited our follow-up and none of these patients 

completed one full year of follow-up to assess one-year mortality. Thus, additional years 

of data are necessary to fully vet the lung cancer population for the effect of chronic 

inflammation on response to ICI. This population suggests however that chronic 

inflammation does impact overall survival for ICI-treated patients. This health outcomes 

study improved and extended the results of the prior analysis with the inclusion of a 

large sample size and with the use of one-year overall survival as a measure of 

response.  

 

Limitations of the local retrospective study include the small population size as well as 

the use of cycles of nivolumab therapy as a surrogate for survival. The population size 

assessed in this study is 45 patients, which is enough to assess trends and correlations, 

but a much larger sized population of real patient data will be required to validate the 

findings of this study. Clinically, response is measured by two outcomes, PFS and OS, 

each allowing direct interpretation of how ICIs affect the tumor size and growth. Cycles 

of therapy, although may reflect the length of the treatment period and tolerance of the 

regimen, does not give us insight on the effect of ICIs on the tumor. The national health 

outcome study is subject to the limitations of all claims-based studies (182, 183). Claims 

data lack detailed information on laboratory values or tumor staging, which may have 

influenced the outcomes of this study. This study was limited to a one-year follow-up due 

to the availability of data. Lastly, while propensity score matching is known to reduce 

selection bias in non-randomized studies, it is possible that residual bias is present or 

that unmeasured confounders may have impacted these findings (158). This study is 

strengthened by a large sample size and the assessment of all-cause mortality. 
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Obesity and Inflammation 

Obesity is a worldwide epidemic which is characterized by inflammation of adipose 

tissue eventually leading to the development of type 2 diabetes, cardiovascular disease 

and cancer (226). Immunologically, adipocytes represent a large source of immune cells 

and inflammatory cytokines including T cells, B cells, macrophages and neutrophils 

(227). The number of leukocytes in the blood is increased as compared to patients with 

a normal body surface area (BSA) (228). Monocytes, specifically macrophages, migrate 

to adipose tissue and overwhelming have an M1 configuration relative to M2, leaning 

into a pro-inflammatory function (229). The increased release of leptin from adipocytes 

of visceral fats act upon Th1 and Th2 cells inducing the production of IL-2 and IL-4 

activating the proliferation of T cells (230). In addition to the release of leptin, resistin and 

visfatin induce the production of IL-1β, IL-6, IL-8 and IL-12 (231). Adipose tissue from 

obese patients with colorectal cancer expressed elevated levels of PD-L1 and PD-L2 

(232). The presence of adipose tissue from obese patients that is present throughout the 

development of the tumor may instill a pro-inflammatory tumor microenvironment. The 

adipose tissue surrounding the tumor site would potentially secrete the same cytokines 

and induce the immune cell populations present in the periphery as well.  

Diabetes and Inflammation 

Obesity is closely linked to the advent of type 2 diabetes mellitus (T2DM) which itself is 

associated with several macrovascular (coronary artery disease, stroke) and 

microvascular complications (diabetic retinopathy, nephropathy and neuropathy) (233). 

In an analysis of inflammatory cytokine concentrations from monocytes and neutrophils 

in patients with T2DM, it was observed that the concentrations of TNF-α, IL-6, IL-1β, IL-

10, IL-12, IL-8, IFN-β and IFN-γ were all normal compared to non-diabetic volunteers 

(234). However, when assessing the gene expression, cytokine and TLR gene profiles 
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were enhance in T2DM patients compared to non-diabetic volunteers. TNF-α, IL-6 and 

IFN- β mRNA levels in monocytes and neutrophils were elevated in patients with good 

glycemic control however patients with poor glycemic control presented with a reduced 

inflammatory expression and did not differ from the non-diabetic volunteers. Genome-

wide expression profiling of patients with diabetes shows an up-regulation of CD274, 

otherwise known as PD-L1 (235). This is to prevent the pancreatic islets from 

autoimmune destruction but may be allowing for the up-regulation of PD-L1 on tumors 

increasing the likelihood of success with ICI therapy. The control of the diabetic state 

also directly influences the inflammatory environment. The diagnosis alone of diabetes 

prior to ICI therapy may not be a robust measure of predicting response without the 

assessment of glycemic control.  

COPD and Inflammation 

COPD is typically caused by exposure to inhaled toxins such as tobacco smoke or dust 

and has been deemed a risk factor for the development of lung cancer. Just like with 

T2DM, the severity of COPD dictates the inflammatory cytokines present in the lung 

(236).  IL-6, IL-8 and IL-10 were independently associated with worse airflow obstruction 

(P<0.05). In a full regression model with all clinical covariates including IL-2, IL-6, IL-8, 

IL-10, TNF-α and INF-γ, IL-6 accounted for the largest portion of the variance of forced 

expiratory airflow at 1 sec (FEV1%). In a cohort of 10,300 COPD patients, blood was 

drawn and spun down during their initial visit and then again in their 5-year follow-up visit 

(237). Elevated IL-6 was associated with rapid decline of airflow at 5 years. This 

observations held despite stratification by COPD treatments used. In malignancies, IL-6 

was seen to play a part in tumor microenvironment regulation and the induction of 

metastasis through down-regulation of E-cadherin (238, 239). IL-6 exposure in cervical 

carcinoma cell lines induced IL-6R and STAT3 expression resulting in the down-
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regulation of E-cadherin. IL-6 complexes with IL-6R then associated with signal-

transducing membrane protein gp130. GP130 dimerization occurs and is followed by 

rapid activation of the Janus kinase (JAK) family. Activated JAKs then phosphorylate 

tyrosine residues on the receptor. Signal transducer and activator of transcription 

proteins (STATs) with SH2 domains are recruited to the receptor where they are 

tyrosine-phosphorylated by JAKs. The activated STATs then dimerize and translocate to 

the cell nucleus where they induce transcription of target genes. STAT3 activation 

suppresses Toll-like receptor 4 (TLR4) ligand and lipopolysaccharide (LPS)-mediated 

dendritic cell (DC) maturation and activation (240). In addition, STAT3 activation by IL-6 

suppresses MHC class I expression on DCs and attenuates CD4+ Th1 helper T cell 

response through activation of lysosomal protease (241). Th1 cells produce IL-2 and 

IFN-γ which are involved in the activation of cytotoxic T lymphocytes (242). 

Augmentation of IFN-γ levels directly impact PD-L1 expression on tumor cells (243).  

 

E. CONCLUSIONS 

 
Our data show that a patient history of chronic inflammation correlates with ICI 

response. In an institutional IRB-approved study, former and current NSCLC patients 

treated with a PD-1 inhibitor were assessed for a correlation between their history of 

chronic inflammation and ICI response, and those with a history of at least one chronic 

inflammatory condition received more cycles of nivolumab therapy than those patients 

who did not have these conditions. Using the national health outcomes data, our work 

shows that patients with a history of chronic inflammatory comorbidities have improved 

one-year survival rates as compared to ICI-treated patients without a history of chronic 

inflammation. These results are in accordance with the findings of the single-center 

retrospective study.  
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CHAPTER 5  

A. OVERVIEW 

 

My work that determined that cancer patients with a history of a chronic inflammatory 

condition improves the response to immune checkpoint inhibitors (ICIs) was an initial 

step in the development of a blood-based biomarker of response to ICI therapy. 

Currently in clinical practice, the gold standard for isolating samples to develop 

biomarkers of response in cancer is tumor tissue analysis. It is amenable to many 

measures of biological activity including nucleic acid sequencing and assessment of 

protein expression by immunohistochemistry (IHC) (244). Characterization of the tumor 

specimen, from a biopsy or from resected material, can measure molecular features 

specific to the patient; however, it represents a static image and does not characterize 

the dynamic changes to the tumor over time. Importantly, even though this snapshot is 

rich in information, it does not represent the inter- and intratumoral heterogeneity of a 

tumor (245). Further, logistical issues may prevent acquisition of tumor tissue. Eighty 

percent of metastatic non-small cell lung cancer (NSCLC) patients have limited tissue 

availability and up to 31% do not have accessible tissue at all (246) .The performance 

status of NSCLC patients may not allow for interventional biopsy procedures at the 

moment needed for biomarker evaluation (247). Considering the limitations of tumor 

tissue, liquid biopsies have become more appealing as they are much more accessible 

for sampling, amenable to serial sampling throughout treatment, and flexible for multiple 

testing platforms (flow cytometry, ELISA, mass spectrometry, etc.). Liquid biopsies may 

contain circulating tumor cells (CTCs), non-hematological cells with malignant features 

encompassed in the tumor microenvironment, and cells of the immune system (248). 

Large comparison studies that assess the equality of DNA analysis of CTCs and tumor 
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tissue biopsies demonstrate that the liquid biopsy approach gives a faithful measure of 

DNA features compared with tumor tissue (249, 250). In addition to CTCs and cells of 

the immune response, sampling the periphery can also measure tumor-derived 

exosomes, extracellular vesicles that contain cytokines present in the tumor 

microenvironment. Serial sampling of the periphery using liquid biopsies permits tracking 

of efficiency and toxicity of treatment allowing the oncologist to anticipate the most 

effective subsequent treatments (251).  

 

I believe that liquid biopsy of NSCLC patients can provide a sample(s) for development 

of a biomarker of response to ICI that exceeds the performance of the companion 

diagnostic (IHC for PD-L1 expression) for PD-1 and PD-L1 inhibitors. Development of a 

robust biomarker of response can improve efficacy and control the cost of therapy in 

patients who have few therapeutic options, like recurrent lung cancer patients. We 

hypothesized that chronic inflammation creates an environment that promotes an anti-

tumor immune response and the molecular marker of that response can predict an anti-

tumor response in NSCLC patients to immune checkpoint inhibitors. The primary goal for 

this study was to measure pro-inflammatory cytokine levels and immune cell subtype 

populations in healthy subjects and patients with metabolic syndrome, chronic 

obstructive pulmonary disorder (COPD), and NSCLC to develop predictive biomarkers of 

response to PD-1 and PD-L1 inhibitors. We expect this work to also be impactful in 

further understanding the biological role of chronic inflammation in response to ICI.  
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B. METHODS 

 

Patient Selection and Monitoring 

We received institutional IRB approval for this clinical study to recruit patients diagnosed 

with metabolic syndrome disorders (MetS; hyperlipidemia, hypertension, diabetes mellitus 

or obesity), COPD or NSCLC. These cohorts were selected as COPD and MetS 

populations are expected to have a high degree of chronic inflammation, healthy subjects 

were expected to have no history of chronic inflammation and NSCLC to have a mixed 

history. Healthy subjects were included in this study who did not self-report any of the 

aforementioned conditions and history of smoking. All subjects/patients were aged 50 

years or older. We will enroll 20 healthy subjects and 20 each of the MetS and COPD 

cohorts. We will enroll 90 NSCLC patients. All patients enrolled are 50 years or older and 

women will be postmenopausal. Enrolled patients were excluded if they exhibited flu or 

cold symptoms or the use of antibiotics in the two weeks prior to clinic visit, diagnosis of 

an autoimmune disorder or treatment with any immune modulating therapies or lastly, 

smoking history (only for healthy volunteer cohort). All patients gave written informed 

consent. The study protocol was approved by the institutional review board (IRB) of the 

University of Kentucky. NSCLC cohort patients were recruited at the time of treatment with 

a PD-1 or PD-L1 inhibitor. These included nivolumab, pembrolizumab and atezolizumab. 

Blood samples were taken from patients with histologically confirmed NSCLC. Blood 

samples were drawn right prior to ICI infusion. All NSCLC patients were monitored via 

monthly (Months 1-3) and 3-month (Months 6, 9, and 12) chart review. Data collected 

includes number of treatment cycles, CT scan results, objective response, patient survival, 

and disease state measures (recurrence, progression, etc.). Durable response defined as 

ongoing treatment with complete disappearance of all lesions or decrease in tumor burden 
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by > 50% relative to baseline after 6 cycles of therapy per the immune-related response 

evaluation criteria in solid tumors (irRECIST) (252). 

 

Data Collection and Analysis 

Enrollment of 20 subjects/patients of the healthy, MetS and COPD cohorts will provide 

90% power to detect difference in expression of several inflammatory cytokines (see 

power analysis below) using a two-sided, two-sample t-test with 1% significance 

level.  Adjustment in significance level was employed due to multiple comparisons 

between healthy versus MetS and COPD cohorts. Frequency matching will be employed 

to ensure similar distribution with respect to gender among the subject cohorts. 

Assuming a moderate correlation coefficient equal to 0.30 between each cytokine level 

and PD-L1 expression levels, enrollment of 90 NSCLC patients will provide 82% power 

based on a two-sided t-test with 5% significance level.  

Power calculations 

Power was determined by reviewing the literature for evidence of whether physiological 

levels of cytokines were significantly different among COPD and metabolic syndrome 

patients, and healthy adults (e.g. IL-4, IL-5, and TNFα). From these reports, we 

determined that a small sample size per group provide power to detect differences in 

cytokine levels (253-255). Specifically, we will compare each cytokine level between 

NSCLC and each of the MetS, COPD and healthy cohorts.  Statistical power for the 

NSCLC cohort was primarily based on the association of PDL1 expression with clinical 

outcome and this will be carried out as an exploratory analysis.  Other data analysis 

plans include two group comparisons of each cytokine between healthy and each of the 

MetS, COPD and NSCLC groups using two sample t-test, and analysis of variance 

(ANOVA) for comparison across groups.    
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Multiplexed ELISA  

Consented patients had two blood samples drawn in 6-mL K2+EDTA+ in the clinic and, 

those were transported to the lab. Each blood sample (10-12ml) was immediately 

centrifuged at 250 g for 10 minutes at room temperature. The plasma from each patient 

or normal donor was aliquoted in cryotubes and stored in -80C. Cytokine profiles were 

assessed by multiplex human cytokine ELISA assay (Quansys Biosciences, Logan, UT, 

USA) to determine the relative levels of 15 pro-inflammatory cytokines. The 15 cytokines 

included were IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-15, IL-17, IL-

23, IFN-γ, TNF-α and TNF-β. The multiplexed assay was used to reduce volume of 

sample needed and to standardize the assay using purified cytokines as controls. 

Cytokine concentrations were measured then calculated by Q-View software version 

3.09. All samples were assayed in duplicate and the mean value was reported. 

Flow Cytometry 

Due to known degradation of cell surface markers such as PD-L1 when samples are 

cryopreserved, flow cytometry was conducted promptly after blood sample collection 

(256). Following plasma removal, the remaining blood sample was processed through a 

Ficoll Hypaque gradient and centrifuged at 400 g for 20 minutes at room temperature to 

separate plasma from the buffy coat  which contains peripheral blood mononuclear cells 

(PBMC) (257). Cells were washed twice in buffer (PBS). After PBMC isolation, 1 x 106 

cells were distributed to 10 FACs tubes. Cells were pelleted by centrifugation, 

resuspended in 400 μl of buffer (PBA). Cell suspensions were stained with 

Phycoerythrin-conjugated anti-human CD279 (PD-1), fluorescein isothiocyanate-

conjugated anti-human CD3, phycoerythrin-cyanine 5-conjugated anti-human CD4, 

phycoerythrin-cyanine 7-conjugated CD8, phycoerythrin-conjugated anti-human CD274 

(PD-L1), fluorescin isothiocyanate-conjugated anti-human CD14 and allophyocyanin-

conjugated anti-human CD45 antibodies. Secondary antibodies for CD3, CD4, CD8, 
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CD14, CD45, PD-1 and PD-L1 bound to fluorophores were added to FACs tubes and 

incubated in cold room over 20 minutes.  Immune cell subtype populations sorted using 

the Attune™ flow cytometer. Immune cell populations analyzed included CD3+ only, 

CD3+CD4+, CD3+CD8+, CD4+PD-1+, CD8+PD-1+, CD14+CD45+ and 

CD14+CD45+PD-L1+. Flow cytometry data analysis was performed using FlowJo 

version 7.6.5 (Tree Star). 

Statistical analyses 

Statistical analyses were conducted in collaboration with Katherine Thompson, PhD of the 

Department of Statistics at the University of Kentucky. Distribution of continuous variables, 

including cytokine concentrations and immune cell populations, were described by their 

mean and standard deviation. Four cohort comparisons (Healthy, MetS, COPD, NSCLC) 

were done using analysis of variance (ANOVA). A p-value < 0.05 was considered as 

statistically significant. All analyses were performed using SAS software (SAS, Cary, NC, 

USA) and R Package software (Version 3.40) (258). Cytokine concentrations, expressed 

in pg/ml, were first assessed by Fisher’s exact test for detection in plasma.  Cytokines that 

were detectable were then compared by ANOVA followed by post-hoc t tests with 

reference to NSCLC cohort. Cytokine concentrations were natural log-transformed. 

Immune cell subtype populations derived from flow cytometry were compared using 

ANOVA followed by post-hoc t tests with reference to NSCLC cohort. Percentages of 

specific immune cell populations were transformed by taking the arcsine of the square root 

for ease of depiction. ANOVAs followed by post-hoc t tests were used for assessment with 

reference to NSCLC to determine if any cohort significantly differed in immune cell 

subtypes. Finally, to determine whether immune cell subpopulations and/or cytokine levels 

predict response to ICI in NSCLC patients, a logistic regression model was employed. It 

is likely that this model would not be appropriate with these data due to perfect separation 

of responders from non-responders, so feasible solutions algorithm (FSA) with the 
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criterion of Bhattacharrya distance (B-distance) will be utilized to assess pairs of 

observations that can provide “feasible solutions” for prediction of ICI response in the 

NSCLC cohort (259-261). Perfect separation typically occurs in small samples with 

unbalanced and/or highly predictive variables. Separation occurs if the predictor is 

associated with only one outcome value when the predictor is greater than some constant 

(262). This means the maximum likelihood estimate of the logistic slope coefficient does 

not exist. FSA is a technique that allows the assessment of predictive capabilities of 

different combinations of pairs of variables to determine the pair(s) with the best predictive 

ability of the outcome of interest. This technique serially tests pairs based on a selected 

criterion. FSA in turn can employ B-distance, a measure of the relative proximity of two 

samples taking into account shape, range and direction of the sample data. The center 

point of two samples may overlap, but when considering each individual data value, the B 

distance may be different and highlight variables of interest. 
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Figure 5.1:  Clinical study protocol 
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C. RESULTS 

 

The study is ongoing and has recruited 36 patients to date, six in the COPD cohort and 

ten in each of the remaining cohorts. The study will continue to achieve target accrual; 

however, herein I discuss the interim analysis of the data collected. First, not all 

cytokines could be detected (Detect: Y/N) from plasma using multiplexed ELISA (Table 

5.1). Cytokines that were detectable in greater than 50% of the subject/patient samples 

included IL-4, IL-6, IL-13, IL-23, IFN-γ and TNF-α. IFN-γ was evaluable in all patient 

samples. Certain cytokines were more readily detectable in certain cohorts. IL-4 

concentrations were detectable in most healthy subjects but not in any other cohort. IL-6 

concentrations were detectable in patients with NSCLC and healthy subjects. Six 

detectable cytokines were compared for differences among the cohorts (Figure 5.2). In 

NSCLC patients, IL-4 levels were significantly decreased compared to the healthy 

subject cohort (P=0.0066). In addition, the COPD cohort trended toward increased IL-4 

concentrations compared to NSCLC patients (P=0.1888). IL-6 demonstrated lower 

concentrations in the MetS cohort compared to the NSCLC cohort (P=0.0691). IL-13 

levels are decreased in NSCLC patients compared to healthy subjects (P=0.0788). 

Although IFN-γ was detectable in all patients, there were no significant differences 

among the four cohorts. TNF-α did not show any significant differences among the 

cohorts.  
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Table 5.1:  Cytokine measurements organized by cohort. 

  Detect Healthy COPD MetS NSCLC P-value 

IL-1a (pg/ml) N 3 4 5 6 0.5237 
Y 7 2 5 4 

IL-1b (pg/ml) N 7 4 10 10 0.0347 
Y 3 2 0 0 

IL-2 (pg/ml) N 8 6 10 10 0.2381 
Y 2 0 0 0 

IL-4 (pg/ml) N 2 4 10 10 <.0001 
Y 8 2 0 0 

IL-5 (pg/ml) N 7 5 10 10 0.0922 
Y 3 1 0 0 

IL-6 (pg/ml) N 4 4 9 4 0.0678 
Y 6 2 1 6 

IL-10 (pg/ml) N 8 5 10 10 0.2297 
Y 2 1 0 0 

IL-12p70 (pg/ml) N 5 4 10 10 0.0043 
Y 5 2 0 0 

IL-13 (pg/ml) N 7 5 10 10 0.0922 
Y 3 1 0 0 

IL-15 (pg/ml) N 0 2 0 1 0.1162 
Y 10 4 10 9 

IL-17 (pg/ml) N 6 5 6 9 0.3562 
Y 4 1 4 1 

IL-23 (pg/ml) N 3 4 3 5 0.4137 
Y 7 2 7 5 

IFN-y (pg/ml) N 0 0 0 0 N/A 
Y 10 6 10 10 

TNF-a (pg/ml) N 1 2 1 0 0.2908 
Y 9 4 9 10 

TNF-b (pg/ml) N 5 4 10 9 0.0288 
Y 5 2 0 1 
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 Figure 5.2: Comparison of IL-4, IL-6, IL-13, IL-23, IFN-γ, and TNF-α levels by cohort. 
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The second goal was to investigate the proportions of relevant immune cell subtypes in 

each cohort and compare among cohorts. The immune cell subsets chosen for study 

include CD8+ T cells, CD4+ T cells, CD14+CD45+ monocytes, PD-1+ T cells and PD-

L1+ monocytes. Lymphocyte populations were assessed using CD3, CD4 and CD8 

markers. Monocyte populations were then assessed using the markers CD14 and CD45. 

We found significant differences among the several cohorts (Figure 5.3). Healthy 

subjects, patients diagnosed with MetS, and those with COPD all had significantly 

elevated levels of CD3+ lymphocytes compared to patients with NSCLC (P=0.0094, 

P=0.0043, P=0.0026, respectively). There were no detectable differences between 

CD3+CD4+ lymphocyte populations among all four cohorts; however, there was a 

significantly increased level of CD3+CD8+ lymphocytes in the NSCLC cohort compared 

to both healthy subjects and MetS patients (P=0.0344, P=0.0099, respectively). 

Interestingly, the CD3+CD8+ immune cell subtype did not differ between NSCLC and 

COPD patients. There were no distinguishable differences in CD4+PD-1+ or CD8+PD-

1+ populations among the cohorts. Of note, monocyte populations were significantly 

elevated in patients with NSCLC compared to the MetS and COPD cohorts (P=0.0293, 

P=0.0025, respectively). However, the comparison of CD4+CD45+PD-L1+ immune cell 

subtypes showed no difference among cohorts. 

 

Finally, we examined whether any of the measured parameters might predict durable 

response to ICI in the NSCLC cohort. Of the ten patients in the NSCLC cohort, seven 

met our criteria for durable response. Eleven variables were selected to be included in a 

logistic regression model; six cytokines (IL-4, IL-6, IL-13, IL-123, IFN-γ, TNF-α) and 5 

immune cell populations (CD3+ Only, CD3+CD8+, CD8+PD-1+, CD14+CD45+, 

CD14+CD45+PD-L1+). Logistic regression models could not be fit due to perfect 

separation between the 7 responders and 3 non-responders. In this case, all durable 
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responders are associated with a cytokine concentration above or below a certain level. 

For maximum likelihood estimates to exist, there must be some overlaps in the two 

distributions. We then used FSA, with a criterion of B distance, to find possible solutions 

that might be predictive. Out of 25 times FSA was run, two pair of measures were 

determined to be predictive of response (Figure 5.4A). The combination pair of CD3+ 

only and CD8+PD-1+ immune cell populations had the largest B distance of 2.88. This 

pair was chosen 15 of the 25 trials. Elevated CD8+PD-1+ populations and low CD3+ 

only populations were predictive of non-responders (Figure 5.4B). Another pair was 

chosen for the remaining 10 trials and that is the combination pair of CD14+CD45+ 

monocyte population and IFN-γ cytokine concentration with a B distance of 2.34. 

Increased concentrations of IFN-γ and elevated monocyte populations were indicative of 

response (Figure 5.4C). 
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 Figure 5.3:  Comparison of immune cell populations by cohort. 
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        Figure 5.4: Feasible solutions algorithm (FSA) assessment to predict durable response in NSCLC cohort. 

Variable 1 Variable 2 B Distance Trials 
CD3+ CD8+ PD-1+ 2.878134 15 

CD14+ CD45+ IFN-γ 2.340578 10 
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D. DISCUSSION 
 

 
Recent literature has revealed that the presence of inflammatory cells within the tumor 

microenvironment is associated with an improved clinical outcome after treatment with 

ICIs (263). The concept of “immune contexture” was established, assessing the type, 

density, functional orientation and location of the immune cells within distinct tumor 

regions (264). To establish a viable clinical utility for this concept in ICI-treated patients, 

the immunoscore was formed that is based on the immune cell subtype populations. The 

immunoscore can be based on any combination of the lymphocyte or monocyte 

populations but most researchers noted the use of CD3+ and CD8+ tumor-infiltrating 

lymphocytes (TILs). 

  

To date, there has been no standardized scoring system of immune cell profiles 

combined with cytokines concentrations from peripheral blood to predict response from 

ICI treatment in NSCLC patients. Our goal was to use our prior work that established 

that chronic inflammation associates with response to PD-1 and PD-L1 inhibition and 

extend that work to measure molecular markers of inflammation, specifically 

inflammatory cytokines and immune cell subsets in the periphery of patients with known 

chronic inflammation or NSCLC. The inclusion of healthy, MetS and COPD cohorts was 

to compare different states of known chronic inflammation to the mixed state expected 

within the NSCLC cohort with the expectation that NSCLC patients that are responders 

to ICI would have an immune profile similar to those with chronic inflammation. We 

sought to determine whether peripheral biomarkers could also predict response to ICI 

therapy in NSCLC and whether the inflammatory markers are different in NSCLC 

compared with other cohorts of non-cancer, chronically inflamed patients.  
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While this study is ongoing, preliminary analysis of the data has provided insights into 

the molecular interactions of immune response and cancer. The primary endpoints 

analyzed are the differential expression of cytokine concentrations and immune cell 

subsets in NSCLC patients compared to patients with MetS or COPD. In our exploratory 

analysis, we have shown that immune cell subtype populations consisting of elevated 

CD3+ lymphocytes as well as low CD8+PD-1+ T cells, which distinguishes an exhausted 

cytotoxic T cell population, were predictive of response in NSCLC. CD3 is a T cell co-

receptor present on both T helper cells and cytotoxic T cells and is a general indicator of 

proliferation of lymphocytes (265). Elevated CD3+ expression suggests that the 

proliferative status of the immune response in NSCLC patients may indicate a readily 

actionable response to tumor cells following inhibition of the co-inhibitory signal. Low 

PD-1 expression on CD8+ cells has previously been shown to be a distinctive feature of 

nivolumab-treated patients showing clinical benefit with prolonged progression-free 

survival (HR 4.51; 95% CI 1.45-13.94) (266). With the development of PD-1 inhibitors 

that bind directly to the PD-1 receptor, it was hypothesized that the more PD-1 

expressed on T cells, the more anti-PD-1 antibody binding will occur. However, it is likely 

that elevated PD-1 expression indicates an exhausted state that, even with the binding 

of anti-PD-1 antibodies, the cytotoxic T cells cannot surmount a strong immune 

response to the tumor cells. With the variability of PD-L1 expression, PD-1 negative 

effector T lymphocytes provides an immune-privileged microenvironment with a positive 

impact on survival.  

 

We also identified a second combination of predictive markers, consisting of an immune 

cell subtype population and concentration of a certain cytokine was also predictive of 

response: increased CD14+CD45+ macrophage populations and IFN-γ concentrations. 

These results suggest activation of the innate immune response in NSCLC patients that 
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respond to ICI therapy. Specifically, innate immune response includes the activation of 

macrophages and the boosting of natural killer cell activity. Inflammatory monocytes 

selectively traffic to the sites of inflammation, produce inflammatory cytokines and 

contribute to local inflammation (267). CD14+ monocyte count increases correlate with 

presence of inflammatory conditions. Antitumor M1-polarized macrophages have the 

ability to direct cytostatic and cytotoxic effects on tumor cells, secret pro-inflammatory 

cytokines, and stimulate T cell immunity (268, 269). Investigations into the cooperation 

of lymphoid cells and macrophages led to the identification of IFN-γ as a regulator of 

macrophage tumoricidal activity (270). Two molecular signals are required for efficient 

induction of the M1 phenotype, TLR4 agonist LPS and IFN-γ (271). Importantly, IFN-γ 

has been identified as a cytokine that specifically upregulates PD-L1 expression on 

tumor cells, but it also plays a key role in the PD-L1 expression on macrophages. 

 

Completion of this study is required to ascertain whether these pairs of peripheral 

immune properties significantly predict responders to ICI treatment. Once accrual to all 

cohorts is complete, a validation cohort study will be required to compare the precision 

of this assay compared to the current standard of care, PD-L1 expression in the tumor. 

 
E. CONCLUSION 

 
Preliminary analysis of peripheral cytokine profiles and immune cell subset populations 

has identified several immune response molecular markers that describes differences 

among inflamed patients and healthy subjects and may be effective in predicting 

response to ICI therapy in NSCLC patients. We have shown that IL-4, IL-6, IL-13, IL-23, 

IFN-γ and TNF-α are detectable in peripheral blood. The cytokine profile present in 

NSCLC patients closely resembles that of COPD patients. Immune cell subset 

populations, including those with PD-1 receptor or PD-L1 can be assessed from PBMC 
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however there were no significant differences among cohorts. These data have given us 

insight into the alteration of the innate and adaptive immune responses that may be 

important for response to immune checkpoint inhibition. Importantly, these markers were 

generated from a minimally-invasive sample from peripheral blood and could be readily 

used by clinicians to continually monitor the patient for response and toxicity. Complete 

analysis of the entire study population will be required to confirm these findings and 

extend these observations. 
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CHAPTER 6  

A. SUMMARY OF RESULTS 

 

By coupling an observational clinical study design with a pharmacoepidemiological 

analyses, I have developed a testable hypothesis that chronic inflammation predicts 

response to ICI treatment in NSCLC patients. I then hypothesized that a liquid biopsy 

could be used to generate a biomarker of response to immune checkpoint inhibitors (ICI) 

in NSCLC patients by measuring molecular markers of inflammation. I concluded this 

work by demonstrating that this strategy could be utilized for the development of a 

peripheral blood biomarker assessment to predict response to ICI treatment. 

  

The first hypothesis that chronic inflammatory comorbidities, explored in Chapter 4, was 

tested by utilizing health outcomes research and pharmacoepidemiology principles to 

address the direct impact of chronic inflammatory comorbid conditions on response to 

ICI treatment without respect to a particular cancer. I developed an experimental 

strategy to identify a novel biomarker of response to ICI therapy. I initially utilized these 

principles to test hypotheses using large national databases based on the impact of 

treatment or exposure on specific biological pathways and processes. Specifically, in two 

previous studies,  I measured the impact of statin therapy on survival in cancer and then 

in the next study, calculated the incidence of autoimmune diseases in lung and renal 

cancer patients (108, 272). In the study outlined in Chapter 4, I found that, among the 

3,252 ICI-treated patients between 2011 and 2015, 2,339, with a history of chronic 

inflammation, had an improved one-year overall survival compared to those without 

chronic inflammation. This observation was in agreement with the findings of our local 

retrospective study analysis. Those results suggest that comorbidities that elicit a 
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constant, low-grade inflammatory state have a positive impact on the patient response to 

ICI treatment. It is anticipated that through further analysis and validation, the immune 

cell and cytokine profile brought about by this low-grade inflammatory state will yield a 

predictive diagnostic, achieved by liquid biopsy, to identify responders to ICI treatment in 

lung cancer.  

 

In Chapter 5, I analyzed inflammatory cytokine concentrations and immune cell 

populations in peripheral blood mononuclear cells (PBMCs) sampled from peripheral 

blood of non-small cell lung cancer (NSCLC) patients and identified differences among 

cohorts with and without inflammation and/or NSCLC and molecular profiles that may be 

predictive of response to ICIs. I characterized the inflammatory profile of NSCLC 

patients treated with programmed death receptor 1 (PD-1) or programmed death ligand 

1 (PD-L1) inhibitors and compared to the profile present in patients with chronic 

inflammatory disorders, either metabolic syndrome (MetS) or chronic obstructive 

pulmonary disorder (COPD).  I was able to identify six cytokines from peripheral blood in 

all cohorts including interleukin 4 (IL-4), IL-6, IL-13, IL-23, IFN-γ and tumor necrosis 

factor alpha (TNF-α) that were expressed above baseline. Of the six differentially-

expressed cytokine, significant differences were observed between certain cohorts. The 

cytokine profile of NSCLC most closely resembled that of the COPD cohort. NSCLC 

patients exhibited a smaller population of CD3+ lymphocytes relative to the other 

cohorts. Cytotoxic T cell (CD8+) levels in the NSCLC cohort were elevated compared to 

healthy and MetS populations, but did not differ from the COPD population. In addition, 

patients with NSCLC had a higher concentration of monocytes compared to MetS or 

COPD patients. Of these observations, I identified two pair of peripheral blood markers 

that may be predictive of response to ICI treatment; high CD3+ lymphocyte and low PD-

1 + cytotoxic T cell population levels or high monocyte levels coupled with high IFN-γ 
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concentrations. Finally, these results suggest that the peripheral blood can provide a 

means for minimally-invasive assessment of the state of the innate and adaptive 

immune response that may serve as a predictor of response to ICIs. This enables 

clinicians to sample for the predictor immune response from a peripheral blood test right 

prior to ICI treatment and determine whether this treatment path is suitable for this 

patient. Extending these observations to a more complete understanding of the 

underlying mechanisms that influence patient response to immunotherapies including 

ICIs will help shape future targeting strategies of the immune response.  

   

A. EXPERIMENTAL CONSIDERATIONS 

 

I utilized health outcomes data analysis to drive the design and analysis of the 

observational clinical study to test the central hypothesis that peripheral blood markers 

could be used to select patients primed for durable response for ICI therapy.  Using 

health outcomes approaches, we were able to assess specific health outcomes from a 

large national population and make broad inferences about the underlying interaction of 

cancer and chronic inflammation. Incorporating pharmacoepidemiology allowed us to 

then focus on specific properties of chronic inflammation to analyze in the clinical study.  

Finally, the use of clinical study model allowed us to directly explore the impact of 

specific cytokine levels and of immune cell populations in a prospective manner in 

patients undergoing therapeutic interventions.  

 

Although the interim results are promising, it is important to note that the clinical study 

has not met accrual goals and is thus not powered to address our central hypothesis that 

chronic inflammation improves the response to ICI treatment in NSCLC patients. 
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Completion of patient enrollment and peripheral blood assessment will be needed to 

identify the appropriate immune markers to further validate in future studies.  

Health Outcomes Data Models  

National healthcare claims data from Truven Marketscan were used in these analyses. 

This data encompasses both commercial and Medicare claims for over 65 million 

patients across the United States. Due to the limited history of ICI use in clinical practice, 

analysis of “big data” allowed us to study a large population of patients who otherwise 

would not be evaluable.  However, these data are limited to what is billed per claim for 

each patient visit. Pathology of tumors and diagnostic laboratory values, which are not 

present in the dataset, would allow for further insights into the underlying molecular 

mechanisms. Importantly, health outcomes research is understood to identify 

correlations as opposed to causation. Thus, continued validation in human peripheral 

blood samples will be important for further development as a useful clinical biomarker of 

response. 

Prospective Clinical Study Model   

We used a single site for prospective evaluation of biological markers of immune 

response from peripheral blood. There are important considerations associated with 

conclusions drawn from this clinical study. Peripheral blood samples were drawn only 

once prior to treatment limiting the analysis to a single measure of cytokine 

concentrations and immune cell populations. Also, peripheral blood concentrations of 

cytokines are notably less than within the tumor microenvironment (255, 273, 274). Of 

note, blood was drawn from a central line in NSCLC patients however was drawn by 

venipuncture in the other cohorts. Blood drawn by venipuncture may introduce 

inflammatory mediators not present from a central line blood draw. In order to reduce the 

impact of these limitations, we performed all ELISA experiments using a multiplexed kit 
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with the lowest level of detection (LLD) on the market. Although the kit allowed for levels 

of 15 different cytokines, only 6 could be ascertained above the LLD. 

 

Another experimental consideration in the prospective clinical study is the lack of PD-L1 

expression data on the tumor from prior biopsies of the included NSCLC patients. A 

comparison of the predictive ability of the peripheral immune profiles identified in this 

clinical study to the clinical assessment of PD-L1 would have aided in determining the 

value of the peripheral blood analysis. PD-L1 status is not routinely ordered for patients 

to be treated with a PD-1 or PD-L1 inhibitor in the clinic. To address this limitation, we 

assessed PD-L1 status expressed on PBMC in peripheral blood as a surrogate as it has 

been previously shown to be readily detectable from peripheral blood (275).  

 

B. CONTRIBUTION TO THE FIELD 

 

This work makes a substantial contribution to an improved understanding of immune 

checkpoint inhibition and immune response to cancer.  The rising costs of 

immunotherapy treatment are a burden for patients to bear. The identification of effective 

ways of minimizing non-beneficial medication use and maximizing outcomes would aid 

in their decision to proceed with treatment. Our work and the work of others have 

identified multiple potential peripheral blood-sampled biomarkers that could underlie 

responsiveness to ICIs (93, 94, 99, 102-104, 276). (see also Chapter 1). In a study by 

Farsaci et al, peripheral immunoscores were established from analysis of PBMC prior to 

treatment with vaccine therapy to prostate specific antigen (PSA) to define whether there 

was a correlation of what with efficacy of immune-based treatment (87).  Their approach 

similarly assessed PBMC for immune cell populations but did not assess cytokine 

concentrations from plasma. In addition, the Farsaci, et al. study did not assess a 
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peripheral immunoscore prior to the use of ICIs. Importantly, their study was able to 

identify a peripheral immunoscore capable of predicting improvements in progression-

free survival (PFS). Martens et al explored combinations of 28 potential biomarkers 

sourced from peripheral blood prior to cytotoxic T lymphocyte antigen-4 (CTLA-4) 

inhibitor (88). A six-candidate combination biomarker was identified to be predictive of 

improve overall survival; low LDH count, elevated eosinophils, low absolute monocytes, 

high absolute lymphocytes, low Lin−CD14+HLA-DR-/low myeloid-derived suppressor cells 

(MDSC), frequencies, and elevated CD4+CD25+FoxP3+ Treg frequencies. Similarly to 

Farscai et al, this study did not evaluate cytokine concentrations. Another difference is 

the assessment of baseline markers prior to anti-CTLA-4 treatment in melanoma 

patients whereas our focus was on anti-PD-1 or anti-PD-L1 treatment in NSCLC 

patients. 

 

To our knowledge, our study is the first to identify potential biomarkers of response to ICI 

therapy utilizing health outcomes research data. Our own mining of this dataset was 

successful in identifying chronic inflammation as a precursor to durable response. I have 

shown that the analysis of national patient data can be used to inform biomarker 

characterization and drive clinical study design, limiting the expensive cost of large 

prospective adequately-powered clinical trials. This concept of using health outcomes 

data principles to drive translational research efforts remains to be rigorously tested, but 

provides a hypothesis to be further explored by those in the field.   

 

C. TRANSLATIONAL AND CLINICAL RELEVANCE 

 

The findings presented in this work are fully translatable for clinical application.  Each of 

the formulated hypotheses and aims in this work were made with particular concern for 
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their impact on patient care.  Furthermore, the approaches used bridged both basic 

science and clinical fields, thus being largely translational in nature. 

 

Improving the methods by which appropriate patients are selected for treatment with ICIs 

can properly balance cost-efficiency of this class of medications in the clinic.  The cost of 

nivolumab treatment is estimated to be greater than $100,000 per year due to the 

continuous administration schedule (277). The median PFS of 9 months or longer, 

depending on the agent used, may be worthwhile for durable responders but the cost 

may be too great for those patients that gain little to risk no benefit. The impact of failed 

treatment on health care costs, quality of life, and outcome are driving forces in the focus 

on predicting response to cancer therapies.  I have made a significant effort in 

understanding the relationship of inflammation and response to ICI therapy in a clinical 

setting, but more validation is necessary prior to implementation into practice. The 

ongoing clinical study requires completion with accrual targets for all cohorts to firmly 

assess significance of results in an appropriately powered cohort study. If our findings of 

the two combination pairs of peripheral immune data remain predictive of response, a 

prospective validation study will be conducted to affirm their utility. Translating our 

findings to a clinically useful diagnostic is difficult, but addresses the broader clinical 

needs of the health care system.  Successful implementation of the model could 

significantly impact health care costs and outcomes associated with ICI use. 

 

One common practice utilized in anti-cancer therapy is the implementation of drug 

combinations to combat resistance and to synergistically improve outcomes compared to 

each agent separately.  The probability of a tumor cell becoming resistant to a 

combination therapy of two agents with differing mechanisms of action is far less than 
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the probabilities of the development of resistance to each individual agent alone (278, 

279). If patients, at baseline, do not have the immune profile deemed as predictive as a 

response, a secondary agent could be used to “prime” the patient’s immune profile to 

become responsive to ICI therapy. Thus, identifying effective drug combinations for 

treating NSCLC is paramount.    

 

D. CONCLUSIONS 

 

I conclude that chronic inflammation can be defined by a specific immune profile 

consisting of cytokines and immune cell populations and believe that chronic 

inflammation is predictive of response to ICI in NSCLC. This profile could aide in 

identifying and stratifying NSCLC patients who will benefit from ICI therapy.  Enrichment 

of the treated population for responders will significantly impact the clinical utility of these 

agents. The research methods employed here allowed us to characterize potential 

biomarkers from peripheral blood without the cost of a large prospective clinical study. 

Furthermore, we conclude that coupling bioinformatics principles with basic science 

experimental approaches can bridge the gap of understanding of translating findings to 

clinical application. 

 

 

 

 

 

 

 

 

Copyright © Sherif M. El-Refai 2017



 

117 
 

REFERENCES 

 
1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. 
2. Bach PB, Kelley MJ, Tate RC, McCrory DC. Screening for Lung Cancer: A Review of the 
Current Literature. Chest. 2003;123(90010):72S-82. 
3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer 
J Clin. 2008;58(2):71-96. 
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 
2011;144(5):646-74. 
5. Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 
1957;1(5022):779-86. 
6. Ehrlich P. Ueber den Jetzigen stand der Karzinomforschung. Ned Tijdshr Geneeskd. 
1909;5:273. 
7. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human 
tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298-306. 
8. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from 
immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991-8. 
9. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in 
cancer suppression and promotion. Science. 2011;331(6024):1565-70. 
10. Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) 
limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis 
(EAE)-resistant BALB/c mice. Proc Natl Acad Sci U S A. 2002;99(5):3013-7. 
11. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what's here, 
what's next? Curr Opin Immunol. 2015;33:23-35. 
12. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 
2015;6:e1792. 
13. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell 
differentiation. Nat Rev Immunol. 2012;12(11):749-61. 
14. Masopust D, Schenkel JM. The integration of T cell migration, differentiation and 
function. Nat Rev Immunol. 2013;13(5):309-20. 
15. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492-9. 
16. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev 
Immunol. 2015;15(8):486-99. 
17. Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from 
pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15(1):1. 
18. Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D, et al. PD-1 is a regulator of NY-
ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol. 2009;182(9):5240-9. 
19. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of 
tumor-specific CD8(+) T cells in metastases from melanoma patients. The Journal of clinical 
investigation. 2011;121(6):2350-60. 
20. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function 
in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682-7. 
21. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3--potential mechanisms of 
action. Nat Rev Immunol. 2015;15(1):45-56. 
22. Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. B7-1 and B7-2 selectively recruit 
CTLA-4 and CD28 to the immunological synapse. Immunity. 2004;21(3):401-13. 



 

118 
 

23. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. 
Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell 
receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201-17. 
24. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, et al. Transcriptional 
analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating 
BATF. Nat Med. 2010;16(10):1147-51. 
25. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of 
CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat 
Immunol. 2009;10(1):29-37. 
26. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with 
Specialized Functions in Immune Regulation. Immunity. 2016;44(5):989-1004. 
27. Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative 
regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392-5. 
28. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 
Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and 
Clinical Outcome. Front Pharmacol. 2017;8:561. 
29. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, et al. Therapeutic 
blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat 
Immunol. 2011;13(2):188-95. 
30. Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ, et al. Functionally distinct 
LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J Immunol. 
2009;182(11):6659-69. 
31. Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, Cheng G, et al. Blockade of 
chronic type I interferon signaling to control persistent LCMV infection. Science. 
2013;340(6129):202-7. 
32. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. Interleukin-
10 determines viral clearance or persistence in vivo. Nat Med. 2006;12(11):1301-9. 
33. Harker JA, Dolgoter A, Zuniga EI. Cell-intrinsic IL-27 and gp130 cytokine receptor 
signaling regulates virus-specific CD4(+) T cell responses and viral control during chronic 
infection. Immunity. 2013;39(3):548-59. 
34. Harker JA, Lewis GM, Mack L, Zuniga EI. Late interleukin-6 escalates T follicular helper 
cell responses and controls a chronic viral infection. Science. 2011;334(6057):825-9. 
35. Brooks DG, Ha SJ, Elsaesser H, Sharpe AH, Freeman GJ, Oldstone MB. IL-10 and PD-L1 
operate through distinct pathways to suppress T-cell activity during persistent viral infection. 
Proc Natl Acad Sci U S A. 2008;105(51):20428-33. 
36. Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI. Cell-intrinsic transforming growth factor-
beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. 
Immunity. 2009;31(1):145-57. 
37. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 
2014;192(12):5451-8. 
38. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a 
clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299-308. 
39. Zhang E, Xu H. A new insight in chimeric antigen receptor-engineered T cells for cancer 
immunotherapy. J Hematol Oncol. 2017;10(1):1. 
40. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et 
al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with 
autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099-102. 



 

119 
 

41. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved 
survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-
23. 
42. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab 
versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015. 
43. Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of PD-1/PD-L1 
immunotherapy for bladder cancer: The future is now. Cancer Treat Rev. 2017;54:58-67. 
44. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for 
classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and 
brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. The Lancet Oncology. 
2016;17(9):1283-94. 
45. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab 
plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122-33. 
46. Callahan MK, Kluger H, Postow MA, Segal NH, Lesokhin A, Atkins MB, et al. Nivolumab 
Plus Ipilimumab in Patients With Advanced Melanoma: Updated Survival, Response, and Safety 
Data in a Phase I Dose-Escalation Study. J Clin Oncol. 2017:JCO2017722850. 
47. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall Survival and 
Long-Term Safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) 
in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 
2015;33(18):2004-12. 
48. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for 
the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018-28. 
49. Leighl NB, Hellmann MD, Hui R, Costa EC, Felip E, Ahn M-J, et al. KEYNOTE-001: 3-year 
overall survival for patients with advanced NSCLC treated with pembrolizumab. Journal of 
Clinical Oncology. 2017;35(15_suppl):9011-. 
50. Xue S, Song G, Yu J. The prognostic significance of PD-L1 expression in patients with 
glioma: A meta-analysis. Sci Rep. 2017;7(1):4231. 
51. Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer 
Immunotherapy. Mol Cancer Ther. 2015;14(4):847-56. 
52. Spira A, Park K, Mazieres J, Vansteenkiste JF, Rittmeyer A, Ballinger M, Waterkamp D, 
Kowanetz M, Mokatrin A, Fehrenbacher L. Efficacy, safety and predictive biomarker results from 
a randomized phase II study comparing MPDL3280A vs docetaxel in 2L/3L NSCLC (POPLAR). J 
Clin Oncol. 2015;33(15):suppl. 
53. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of 
inflammatory response with B7-h1 expression in human melanocytic lesions supports an 
adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. 
54. Taube JM, Young GD, McMiller TL, Chen S, Salas JT, Pritchard TS, et al. Differential 
Expression of Immune-Regulatory Genes Associated with PD-L1 Display in Melanoma: 
Implications for PD-1 Pathway Blockade. Clin Cancer Res. 2015;21(17):3969-76. 
55. Caldwell C, Jr., Johnson CE, Balaji VN, Balaji GA, Hammer RD, Kannan R. Identification 
and Validation of a PD-L1 Binding Peptide for Determination of PDL1 Expression in Tumors. Sci 
Rep. 2017;7(1):13682. 
56. Gandhi L; Balmanoukian A HR, et al. MK-3475 (anti-PD-1 monoclonal antibody) for non-
small cell lung cancer (NSCLC): Antitumor activity and association with tumor PD-L1 expression. 
AACR Annual Meeting. 2014;Abstract. 
57. Jing W, Li M, Zhang Y, Teng F, Han A, Kong L, et al. PD-1/PD-L1 blockades in non-small-
cell lung cancer therapy. Onco Targets Ther. 2016;9:489-502. 



 

120 
 

58. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade 
induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568-71. 
59. Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, et al. Tumor 
immune profiling predicts response to anti-PD-1 therapy in human melanoma. The Journal of 
clinical investigation. 2016;126(9):3447-52. 
60. Laydon DJ, Bangham CR, Asquith B. Estimating T-cell repertoire diversity: limitations of 
classical estimators and a new approach. Philos Trans R Soc Lond B Biol Sci. 2015;370(1675). 
61. Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, et al. CTLA4 blockade 
broadens the peripheral T-cell receptor repertoire. Clin Cancer Res. 2014;20(9):2424-32. 
62. Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, et al. Improved survival with T 
cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med. 
2014;6(238):238ra70. 
63. Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, et al. 
Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med. 
2014;6(254):254ra128. 
64. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. 
Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-21. 
65. Chan TA, Wolchok JD, Snyder A. Genetic Basis for Clinical Response to CTLA-4 Blockade 
in Melanoma. N Engl J Med. 2015;373(20):1984. 
66. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer 
immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell 
lung cancer. Science. 2015;348(6230):124-8. 
67. Le DT, Uram JN, Wang H, Bartlett B, Kemberling H, Eyring A, et al. PD-1 blockade in 
tumors with mismatch repair deficiency. J Clin Oncol. 2015;33(supple;abstr LBA100). 
68. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair 
deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409-13. 
69. Food & Drug Administration. FDA approves first cancer treatment for any solid tumor 
with a specific genetic feature 2017 [Available from: 
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm. 
70. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and 
Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 
2017;168(3):542. 
71. Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, et al. Melanoma-
specific MHC-II expression represents a tumour-autonomous phenotype and predicts response 
to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582. 
72. Jamieson NB, Maker AV. Gene-expression profiling to predict responsiveness to 
immunotherapy. Cancer Gene Ther. 2017;24(3):134-40. 
73. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma Pathway Genes in 
Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016;167(2):397-404 
e9. 
74. Seiwert TY BB, Weiss J, Eder JP, Yearley J, Murphy E. Inflamed-phenotype gene 
expression signatures to predict benefit from the anti-PD-1 antibody pembrolizumab in PD-L1+ 
head and neck cancer patients. J Clin Oncol. 2015;33((suppl; abstr 6017)). 
75. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. 
Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer 
(POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 
2016;387(10030):1837-46. 

https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm


 

121 
 

76. Zha Z, Bucher F, Nejatfard A, Zheng T, Zhang H, Yea K, et al. Interferon-gamma is a 
master checkpoint regulator of cytokine-induced differentiation. Proc Natl Acad Sci U S A. 
2017;114(33):E6867-E74. 
77. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol 
Chem. 2007;282(28):20059-63. 
78. Zitvogel L, Daillere R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the 
microbiome and its products. Nat Rev Microbiol. 2017;15(8):465-78. 
79. Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and Anticancer 
Immunosurveillance. Cell. 2016;165(2):276-87. 
80. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal 
microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 
2013;342(6161):971-6. 
81. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut 
microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. 
Science. 2017. 
82. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut 
microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 
2017. 
83. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, et al. Microbiome-wide 
association studies link dynamic microbial consortia to disease. Nature. 2016;535(7610):94-103. 
84. Nicolazzo C, Raimondi C, Mancini M, Caponnetto S, Gradilone A, Gandini O, et al. 
Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated 
with the PD-1 inhibitor Nivolumab. Sci Rep. 2016;6:31726. 
85. Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B, et al. Immune escape 
and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 
2014;74(6):1694-704. 
86. Donahue RN, Lepone LM, Grenga I, Jochems C, Fantini M, Madan RA, et al. Analyses of 
the peripheral immunome following multiple administrations of avelumab, a human IgG1 anti-
PD-L1 monoclonal antibody. J Immunother Cancer. 2017;5:20. 
87. Farsaci B, Donahue RN, Grenga I, Lepone LM, Kim PS, Dempsey B, et al. Analyses of 
Pretherapy Peripheral Immunoscore and Response to Vaccine Therapy. Cancer Immunol Res. 
2016;4(9):755-65. 
88. Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, et al. 
Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma 
Patients Treated with Ipilimumab. Clin Cancer Res. 2016;22(12):2908-18. 
89. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells 
by tumours. Nat Rev Immunol. 2012;12(4):253-68. 
90. Zheng H, Liu X, Zhang J, Rice SJ, Wagman M, Kong Y, et al. Expression of PD-1 on CD4+ T 
cells in peripheral blood associates with poor clinical outcome in non-small cell lung cancer. 
Oncotarget. 2016;7(35):56233-40. 
91. Galon J, Fox BA, Bifulco CB, Masucci G, Rau T, Botti G, et al. Immunoscore and 
Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J 
Transl Med. 2016;14:273. 
92. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification 
using the Immunoscore: a worldwide task force. J Transl Med. 2012;10:205. 
93. Czystowska M, Gooding W, Szczepanski MJ, Lopez-Abaitero A, Ferris RL, Johnson JT, et 
al. The immune signature of CD8(+)CCR7(+) T cells in the peripheral circulation associates with 
disease recurrence in patients with HNSCC. Clin Cancer Res. 2013;19(4):889-99. 



 

122 
 

94. Zhang ZN, Yi N, Zhang TW, Zhang LL, Wu X, Liu M, et al. Myeloid-Derived Suppressor 
Cells Associated with Disease Progression in Primary HIV Infection: PD-L1 Blockade Attenuates 
Inhibition. J Acquir Immune Defic Syndr. 2017. 
95. Dang Y, Disis ML. Identification of immunologic biomarkers associated with clinical 
response after immune-based therapy for cancer. Ann N Y Acad Sci. 2009;1174:81-7. 
96. Arlen PM, Pazdur M, Skarupa L, Rauckhorst M, Gulley JL. A randomized phase II study of 
docetaxel alone or in combination with PANVAC-V (vaccinia) and PANVAC-F (fowlpox) in 
patients with metastatic breast cancer (NCI 05-C-0229). Clin Breast Cancer. 2006;7(2):176-9. 
97. Heery CR, Madan RA, Stein MN, Stadler WM, Di Paola RS, Rauckhorst M, et al. 
Samarium-153-EDTMP (Quadramet(R)) with or without vaccine in metastatic castration-
resistant prostate cancer: A randomized Phase 2 trial. Oncotarget. 2016;7(42):69014-23. 
98. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a 
novel template for clinical diagnostics. J Transl Med. 2011;9:86. 
99. Hong CS, Funk S, Muller L, Boyiadzis M, Whiteside TL. Isolation of biologically active and 
morphologically intact exosomes from plasma of patients with cancer. J Extracell Vesicles. 
2016;5:29289. 
100. Whiteside TL. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune 
Suppression. Vaccines (Basel). 2016;4(4). 
101. Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, et al. Tumour exosomes 
inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol 
Immunother. 2011;60(5):639-48. 
102. Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid 
cells. Trends Immunol. 2015;36(4):240-9. 
103. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, et al. Vascular endothelial growth 
factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B 
activation in hemopoietic progenitor cells. J Immunol. 1998;160(3):1224-32. 
104. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic 
agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of 
adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171-80. 
105. Rigamonti N, Kadioglu E, Keklikoglou I, Wyser Rmili C, Leow CC, De Palma M. Role of 
angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 2014;8(3):696-
706. 
106. Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, et al. Angiopoietin-2 as a 
Biomarker and Target for Immune Checkpoint Therapy. Cancer Immunol Res. 2017;5(1):17-28. 
107. Schmittnaegel M, Rigamonti N, Kadioglu E, Cassara A, Wyser Rmili C, Kiialainen A, et al. 
Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 
checkpoint blockade. Sci Transl Med. 2017;9(385). 
108. El-Refai SM, Brown JD, Leggas MK, Black EP, Talbert JC. Epidemiological analysis along 
the mevalonate pathway reveals improved cancer survival in patients receiving statins alone and 
in combination with bisphosphonates. JCO Clin Cancer Inform. 2017. 
109. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM. Statins and cancer 
prevention. Nat Rev Cancer. 2005;5(12):930-42. 
110. Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a meta-
analysis. JAMA. 2006;295(1):74-80. 
111. Wang A, Aragaki AK, Tang JY, Kurian AW, Manson JE, Chlebowski RT, et al. Statin use and 
all-cancer survival: prospective results from the Women's Health Initiative. Br J Cancer. 
2016;115(1):129-35. 



 

123 
 

112. Brewer TM, Masuda H, Liu DD, Shen Y, Liu P, Iwamoto T, et al. Statin use in primary 
inflammatory breast cancer: a cohort study. Br J Cancer. 2013;109(2):318-24. 
113. Smith A, Murphy L, Sharp L, O'Connor D, Gallagher WM, Bennett K, et al. De novo post-
diagnosis statin use, breast cancer-specific and overall mortality in women with stage I-III breast 
cancer. Br J Cancer. 2016;115(5):592-8. 
114. Thurnher M, Nussbaumer O, Gruenbacher G. Novel aspects of mevalonate pathway 
inhibitors as antitumor agents. Clin Cancer Res. 2012;18(13):3524-31. 
115. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and 
the mevalonate pathway in cancer. Nat Rev Cancer. 2016. 
116. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, et al. Metabolic 
control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 2014;16(4):357-66. 
117. Ginestier C, Charafe-Jauffret E, Birnbaum D. p53 and cancer stem cells: the mevalonate 
connexion. Cell Cycle. 2012;11(14):2583-4. 
118. Cardwell CR, Hicks BM, Hughes C, Murray LJ. Statin use after diagnosis of breast cancer 
and survival: a population-based cohort study. Epidemiology. 2015;26(1):68-78. 
119. Cardwell CR, Hicks BM, Hughes C, Murray LJ. Statin use after colorectal cancer diagnosis 
and survival: a population-based cohort study. J Clin Oncol. 2014;32(28):3177-83. 
120. Cai H, Zhang G, Wang Z, Luo Z, Zhou X. Relationship between the use of statins and 
patient survival in colorectal cancer: a systematic review and meta-analysis. PLoS One. 
2015;10(6):e0126944. 
121. Cardwell CR, Mc Menamin U, Hughes CM, Murray LJ. Statin use and survival from lung 
cancer: a population-based cohort study. Cancer Epidemiol Biomarkers Prev. 2015;24(5):833-41. 
122. Friedman GD, Achacoso N, Fireman B, Habel LA. Statins and Reduced Risk of Liver 
Cancer: Evidence for Confounding. J Natl Cancer Inst. 2016;108(10). 
123. Hoffmeister M, Jansen L, Rudolph A, Toth C, Kloor M, Roth W, et al. Statin use and 
survival after colorectal cancer: the importance of comprehensive confounder adjustment. J 
Natl Cancer Inst. 2015;107(6):djv045. 
124. Chae YK, Yousaf M, Malecek MK, Carneiro B, Chandra S, Kaplan J, et al. Statins as anti-
cancer therapy; Can we translate preclinical and epidemiologic data into clinical benefit? Discov 
Med. 2015;20(112):413-27. 
125. Kawata S, Yamasaki E, Nagase T, Inui Y, Ito N, Matsuda Y, et al. Effect of pravastatin on 
survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br J 
Cancer. 2001;84(7):886-91. 
126. Lopez-Aguilar E, Sepulveda-Vildosola AC, Betanzos-Cabrera Y, Rocha-Moreno YG, 
Gascon-Lastiri G, Rivera-Marquez H, et al. Phase II study of metronomic chemotherapy with 
thalidomide, carboplatin-vincristine-fluvastatin in the treatment of brain stem tumors in 
children. Arch Med Res. 2008;39(7):655-62. 
127. Han JY, Lim KY, Yu SY, Yun T, Kim HT, Lee JS. A phase 2 study of irinotecan, cisplatin, and 
simvastatin for untreated extensive-disease small cell lung cancer. Cancer. 2011;117(10):2178-
85. 
128. Han JY, Lee SH, Yoo NJ, Hyung LS, Moon YJ, Yun T, et al. A randomized phase II study of 
gefitinib plus simvastatin versus gefitinib alone in previously treated patients with advanced 
non-small cell lung cancer. Clinical cancer research : an official journal of the American 
Association for Cancer Research. 2011;17(6):1553-60. 
129. Lee J, Hong YS, Hong JY, Han SW, Kim TW, Kang HJ, et al. Effect of simvastatin plus 
cetuximab/irinotecan for KRAS mutant colorectal cancer and predictive value of the RAS 
signature for treatment response to cetuximab. Invest New Drugs. 2014;32(3):535-41. 



 

124 
 

130. Tatsuno I, Tanaka T, Oeda T, Yasuda T, Kitagawa M, Saito Y, et al. 
Geranylgeranylpyrophosphate, a metabolite of mevalonate, regulates the cell cycle progression 
and DNA synthesis in human lymphocytes. Biochem Biophys Res Commun. 1997;241(2):376-82. 
131. Danesi R, McLellan CA, Myers CE. Specific labeling of isoprenylated proteins: application 
to study inhibitors of the post-translational farnesylation and geranylgeranylation. Biochem 
Biophys Res Commun. 1995;206(2):637-43. 
132. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89-
118. 
133. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR. Cholesterol targeting alters lipid 
raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest. 
2005;115(4):959-68. 
134. Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, Sato C. Low cholesterol triggers 
membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol 
Chem. 2011;286(3):1999-2007. 
135. Martin NE, Brunner TB, Kiel KD, DeLaney TF, Regine WF, Mohiuddin M, et al. A phase I 
trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and 
radiotherapy for locally advanced pancreatic cancer. Clin Cancer Res. 2004;10(16):5447-54. 
136. Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T, et al. 
Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and 
inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced 
multiple myeloma. Blood. 2004;103(9):3271-7. 
137. Wills VS, Allen C, Holstein SA, Wiemer DF. Potent Triazole Bisphosphonate Inhibitor of 
Geranylgeranyl Diphosphate Synthase. ACS Med Chem Lett. 2015;6(12):1195-8. 
138. Wasko BM, Smits JP, Shull LW, Wiemer DF, Hohl RJ. A novel bisphosphonate inhibitor of 
squalene synthase combined with a statin or a nitrogenous bisphosphonate in vitro. J Lipid Res. 
2011;52(11):1957-64. 
139. Rosen LS, Gordon D, Tchekmedyian S, Yanagihara R, Hirsh V, Krzakowski M, et al. 
Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung 
cancer and other solid tumors: a phase III, double-blind, randomized trial--the Zoledronic Acid 
Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol. 2003;21(16):3150-7. 
140. Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Zoledronic acid 
versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or 
osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 
2001;7(5):377-87. 
141. Ibrahim A, Scher N, Williams G, Sridhara R, Li N, Chen G, et al. Approval summary for 
zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin Cancer 
Res. 2003;9(7):2394-9. 
142. Coleman RE. Efficacy of zoledronic acid and pamidronate in breast cancer patients: a 
comparative analysis of randomized phase III trials. Am J Clin Oncol. 2002;25(6 Suppl 1):S25-31. 
143. Shipman CM, Croucher PI, Russell RG, Helfrich MH, Rogers MJ. The bisphosphonate 
incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the 
mevalonate pathway. Cancer Res. 1998;58(23):5294-7. 
144. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, et al. 
Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the 
formation of bone metastases. Cancer Res. 2000;60(11):2949-54. 
145. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 
2010;501(2):177-81. 



 

125 
 

146. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of 
cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125-31. 
147. Gobel A, Thiele S, Browne AJ, Rauner M, Zinna VM, Hofbauer LC, et al. Combined 
inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-
tumor effects in human breast cancer cells. Cancer Lett. 2016;375(1):162-71. 
148. Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, et al. 
Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, 
prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc 
Natl Acad Sci U S A. 1999;96(1):133-8. 
149. Nilsson S, Huelsenbeck J, Fritz G. Mevalonate pathway inhibitors affect anticancer drug-
induced cell death and DNA damage response of human sarcoma cells. Cancer Lett. 
2011;304(1):60-9. 
150. Bruzzese F, Pucci B, Milone MR, Ciardiello C, Franco R, Chianese MI, et al. Panobinostat 
synergizes with zoledronic acid in prostate cancer and multiple myeloma models by increasing 
ROS and modulating mevalonate and p38-MAPK pathways. Cell death & disease. 2013;4:e878. 
151. Baulch-Brown C, Molloy TJ, Yeh SL, Ma D, Spencer A. Inhibitors of the mevalonate 
pathway as potential therapeutic agents in multiple myeloma. Leuk Res. 2007;31(3):341-52. 
152. Pandyra A, Mullen PJ, Kalkat M, Yu R, Pong JT, Li Z, et al. Immediate utility of two 
approved agents to target both the metabolic mevalonate pathway and its restorative feedback 
loop. Cancer Res. 2014;74(17):4772-82. 
153. Pandyra A, Penn LZ. Targeting tumor cell metabolism via the mevalonate pathway: Two 
hits are better than one. Mol Cell Oncol. 2014;1(4):e969133. 
154. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic 
comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-
83. 
155. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with 
administrative data. Med Care. 1998;36(1):8-27. 
156. Rosenbaum P.R, Rubin D.B. Constructing a control group using multivariate matched 
sampling methods that incorporate the propensity score. The American Statistician. 
1985;39(1):33-8. 
157. Imai K, Ratkovic M. Covariate balancing propensity score. J R Statist Soc B. 2013;76:243-
63. 
158. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional 
propensity score adjustment in studies of treatment effects using health care claims data. 
Epidemiology. 2009;20(4):512-22. 
159. Bergstralh E, Kosanke J. Computerized matching of cases to controls using the greedy 
matching algorithm with a fixed number of controls per case. Mayo Clinic2003 [Available from: 
http://www.mayo.edu/research/departments-divisions/department-health-sciences-
research/division-biomedical-statistics-informatics/software/locally-written-sas-macros. 
160. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates 
between treatment groups in propensity-score matched samples. Stat Med. 2009;28(25):3083-
107. 
161. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein 
cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 
2003;326(7404):1423. 
162. Wierzbicki AS. Synthetic statins: more data on newer lipid-lowering agents. Curr Med 
Res Opin. 2001;17(1):74-7. 

http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros


 

126 
 

163. Tapia-Perez JH, Kirches E, Mawrin C, Firsching R, Schneider T. Cytotoxic effect of 
different statins and thiazolidinediones on malignant glioma cells. Cancer Chemother 
Pharmacol. 2011;67(5):1193-201. 
164. Collisson EA, Kleer C, Wu M, De A, Gambhir SS, Merajver SD, et al. Atorvastatin prevents 
RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol Cancer Ther. 
2003;2(10):941-8. 
165. Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR. Lovastatin augments 
apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res. 
1999;5(8):2223-9. 
166. Koyuturk M, Ersoz M, Altiok N. Simvastatin induces apoptosis in human breast cancer 
cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer 
Lett. 2007;250(2):220-8. 
167. Denoyelle C, Vasse M, Korner M, Mishal Z, Ganne F, Vannier JP, et al. Cerivastatin, an 
inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness 
and metastatic properties of highly invasive breast cancer cell lines: an in vitro study. 
Carcinogenesis. 2001;22(8):1139-48. 
168. Bouterfa HL, Sattelmeyer V, Czub S, Vordermark D, Roosen K, Tonn JC. Inhibition of Ras 
farnesylation by lovastatin leads to downregulation of proliferation and migration in primary 
cultured human glioblastoma cells. Anticancer Res. 2000;20(4):2761-71. 
169. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance 
and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013-30. 
170. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer 
Res. 2012;72(10):2457-67. 
171. Morgan MA, Sebil T, Aydilek E, Peest D, Ganser A, Reuter CW. Combining prenylation 
inhibitors causes synergistic cytotoxicity, apoptosis and disruption of RAS-to-MAP kinase 
signalling in multiple myeloma cells. Br J Haematol. 2005;130(6):912-25. 
172. Zhao T, Le Francois B, Goss G, Ding K, Bradbury P, Dimitroulakos J. Lovastatin inhibits 
EGFR dimerization and AKT activation in squamous cell carcinoma cells: potential regulation by 
targeting rho proteins. Oncogene. 2010;29(33):4682-774. 
173. Ma L, Niknejad N, Gorn-Hondermann I, Dayekh K, Dimitroulakos J. Lovastatin Induces 
Multiple Stress Pathways Including LKB1/AMPK Activation That Regulate Its Cytotoxic Effects in 
Squamous Cell Carcinoma Cells. PLoS ONE. 2012;7(9):e46055. 
174. Ahmed TA, Hayslip J, Leggas M. Simvastatin interacts synergistically with tipifarnib to 
induce apoptosis in leukemia cells through the disruption of RAS membrane localization and ERK 
pathway inhibition. Leuk Res. 2014. 
175. Ahmed TA, Hayslip J, Leggas M. Pharmacokinetics of high-dose simvastatin in refractory 
and relapsed chronic lymphocytic leukemia patients. Cancer Chemother Pharmacol. 
2013;72(6):1369-74. 
176. Munz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: 
coordinated stimulation of innate and adaptive immunity. J Exp Med. 2005;202(2):203-7. 
177. Gruenbacher G, Gander H, Nussbaumer O, Nussbaumer W, Rahm A, Thurnher M. IL-2 
costimulation enables statin-mediated activation of human NK cells, preferentially through a 
mechanism involving CD56+ dendritic cells. Cancer Res. 2010;70(23):9611-20. 
178. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta 
T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 
engagement. Blood. 2010;116(10):1726-33. 



 

127 
 

179. Lotsch F, Konigsbrugge O, Posch F, Zielinski C, Pabinger I, Ay C. Statins are associated 
with low risk of venous thromboembolism in patients with cancer: a prospective and 
observational cohort study. Thromb Res. 2014;134(5):1008-13. 
180. Cholesterol Treatment Trialists C, Emberson JR, Kearney PM, Blackwell L, Newman C, 
Reith C, et al. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual 
data from 175,000 people in 27 randomised trials of statin therapy. PLoS One. 
2012;7(1):e29849. 
181. Carter P, Mcgowan J, Uppal H, Chandran S, Sarma J, Potluri R. Hyperlipidaemia reduces 
mortality in breast, prostate, lung and bowel cancer.  British Cardiovascular Society Conference 
(Abstract)2016. 
182. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for 
epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58(4):323-37. 
183. Zhan C, Miller MR. Administrative data based patient safety research: a critical review. 
Qual Saf Health Care. 2003;12 Suppl 2:ii58-63. 
184. Bristol-Myers-Squibb. Opdivo (nivolumab) prescribing information. Princeton, NJ. 2015. 
185. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study 
of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical 
activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167-75. 
186. Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL. Antagonists of PD-
1 and PD-L1 in Cancer Treatment. Semin Oncol. 2015;42(4):587-600. 
187. Merck & Co. I. Keytruda (pembrolizumab) prescribing information. Whitehouse Station, 
NJ. 2015. 
188. Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and 
safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, 
refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. 
The Lancet Oncology. 2015;16(3):257-65. 
189. Kong YC, Flynn JC. Opportunistic Autoimmune Disorders Potentiated by Immune-
Checkpoint Inhibitors Anti-CTLA-4 and Anti-PD-1. Front Immunol. 2014;5:206. 
190. Khan SA, Pruitt SL, Xuan L, Gerber DE. Prevalence of Autoimmune Disease Among 
Patients With Lung Cancer: Implications for Immunotherapy Treatment Options. JAMA Oncol. 
2016. 
191. Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse Events Associated with Immune 
Checkpoint Blockade in Patients with Cancer: A Systematic Review of Case Reports. PLoS One. 
2016;11(7):e0160221. 
192. Gibson R, Delaune J, Szady A, Markham M. Suspected autoimmune myocarditis and 
cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ 
Case Rep. 2016;2016. 
193. Mochel MC, Ming ME, Imadojemu S, Gangadhar TC, Schuchter LM, Elenitsas R, et al. 
Cutaneous autoimmune effects in the setting of therapeutic immune checkpoint inhibition for 
metastatic melanoma. J Cutan Pathol. 2016;43(9):787-91. 
194. Koelzer VH, Rothschild SI, Zihler D, Wicki A, Willi B, Willi N, et al. Systemic inflammation 
in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J 
Immunother Cancer. 2016;4:13. 
195. McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. 
Immunol Cell Biol. 1999;77(1):1-10. 
196. Sarfati D, Koczwara B, Jackson C. The impact of comorbidity on cancer and its treatment. 
CA Cancer J Clin. 2016;66(4):337-50. 



 

128 
 

197. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int 
J Cancer. 2007;121(11):2373-80. 
198. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197-209. 
199. Pavelka JC, Brown RS, Karlan BY, Cass I, Leuchter RS, Lagasse LD, et al. Effect of obesity 
on survival in epithelial ovarian cancer. Cancer. 2006;107(7):1520-4. 
200. Pothiwala P, Jain SK, Yaturu S. Metabolic syndrome and cancer. Metabolic syndrome 
and related disorders. 2009;7(4):279-88. 
201. Magura L, Blanchard R, Hope B, Beal JR, Schwartz GG, Sahmoun AE. 
Hypercholesterolemia and prostate cancer: a hospital-based case-control study. Cancer Causes 
Control. 2008;19(10):1259-66. 
202. Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a predictor of 
cancer mortality in a large cohort of US adults. Am J Epidemiol. 2004;159(12):1160-7. 
203. Braun S, Bitton-Worms K, LeRoith D. The link between the metabolic syndrome and 
cancer. Int J Biol Sci. 2011;7(7):1003-15. 
204. Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin 
Genet Dev. 2010;20(1):65-71. 
205. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the 
seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073-81. 
206. Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, et al. TGF-beta-induced 
epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-
inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem. 2012;151(2):205-
16. 
207. Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J, et al. 
Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial 
cells. Microcirculation. 2002;9(2):133-45. 
208. Alsuliman A, Colak D, Al-Harazi O, Fitwi H, Tulbah A, Al-Tweigeri T, et al. Bidirectional 
crosstalk between PD-L1 expression and epithelial to mesenchymal transition: significance in 
claudin-low breast cancer cells. Mol Cancer. 2015;14:149. 
209. Kim MY, Koh J, Kim S, Go H, Jeon YK, Chung DH. Clinicopathological analysis of PD-L1 and 
PD-L2 expression in pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T 
cells and the status of oncogenic drivers. Lung Cancer. 2015;88(1):24-33. 
210. Kim S, Kim MY, Koh J, Go H, Lee DS, Jeon YK, et al. Programmed death-1 ligand 1 and 2 
are highly expressed in pleomorphic carcinomas of the lung: Comparison of sarcomatous and 
carcinomatous areas. European journal of cancer. 2015. 
211. Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational 
drug discovery. Biosci Rep. 2017;37(4). 
212. Cogswell J, Inzunza HD, Wu Q, Feder JN, Mintier G, Novotny J, et al. An Analytical 
Comparison of Dako 28-8 PharmDx Assay and an E1L3N Laboratory-Developed Test in the 
Immunohistochemical Detection of Programmed Death-Ligand 1. Mol Diagn Ther. 
2017;21(1):85-93. 
213. Phillips T, Simmons P, Inzunza HD, Cogswell J, Novotny J, Jr., Taylor C, et al. 
Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung 
cancer. Appl Immunohistochem Mol Morphol. 2015;23(8):541-9. 
214. ICD-9-CM. International Classification of Diseases, 9th revision, Clinical Modification. 3d 
edition, volumes 1, 2 and 3. Official authorized addendum effective October 1, 1990--HCFA. J 
Am Med Rec Assoc. 1990;61(8):suppl 1-35. 



 

129 
 

215. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled Analysis 
of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or 
Metastatic Melanoma. J Clin Oncol. 2015;33(17):1889-94. 
216. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab 
in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(25):2415-26. 
217. Eid AA, Ionescu AA, Nixon LS, Lewis-Jenkins V, Matthews SB, Griffiths TL, et al. 
Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J 
Respir Crit Care Med. 2001;164(8 Pt 1):1414-8. 
218. Vernooy JH, Kucukaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, et 
al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: 
soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med. 
2002;166(9):1218-24. 
219. Paats MS, Bergen IM, Hoogsteden HC, van der Eerden MM, Hendriks RW. Systemic CD4+ 
and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD. Eur Respir J. 
2012;40(2):330-7. 
220. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 
2002;296(5573):1634-5. 
221. Havell EA, Fiers W, North RJ. The antitumor function of tumor necrosis factor (TNF), I. 
Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically 
dependent, and limited by severe toxicity. J Exp Med. 1988;167(3):1067-85. 
222. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P. Tumour necrosis factor-alpha 
expression in tumour islets confers a survival advantage in non-small cell lung cancer. BMC 
Cancer. 2010;10:323. 
223. Huang A, Zhang B, Yan W, Wang B, Wei H, Zhang F, et al. Myeloid-derived suppressor 
cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-
induced IL-10. J Immunol. 2014;193(11):5461-9. 
224. Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD-1 upregulation is associated with HBV-
specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol. 2008;45(4):963-70. 
225. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 
and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239-45. 
226. McGill AT. Past and future corollaries of theories on causes of metabolic syndrome and 
obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-
adaptations to brain energy consumption. Arch Public Health. 2014;72(1):31. 
227. Travers RL, Motta AC, Betts JA, Bouloumie A, Thompson D. The impact of adiposity on 
adipose tissue-resident lymphocyte activation in humans. International journal of obesity. 
2015;39(5):762-9. 
228. Yoshimura A, Ohnishi S, Orito C, Kawahara Y, Takasaki H, Takeda H, et al. Association of 
peripheral total and differential leukocyte counts with obesity-related complications in young 
adults. Obes Facts. 2015;8(1):1-16. 
229. Dalmas E, Clement K, Guerre-Millo M. Defining macrophage phenotype and function in 
adipose tissue. Trends Immunol. 2011;32(7):307-14. 
230. Meckenstock R, Therby A. [Modifications of immunity in obesity: The impact on the risk 
of infection]. Rev Med Interne. 2015;36(11):760-8. 
231. Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A 
review article. Dig Dis Sci. 2009;54(9):1847-56. 
232. Del Corno M, D'Archivio M, Conti L, Scazzocchio B, Vari R, Donninelli G, et al. Visceral fat 
adipocytes from obese and colorectal cancer subjects exhibit distinct secretory and omega6 



 

130 
 

polyunsaturated fatty acid profiles and deliver immunosuppressive signals to innate immunity 
cells. Oncotarget. 2016;7(39):63093-105. 
233. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes 
mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-51. 
234. Gupta S, Maratha A, Siednienko J, Natarajan A, Gajanayake T, Hoashi S, et al. Analysis of 
inflammatory cytokine and TLR expression levels in Type 2 Diabetes with complications. Sci Rep. 
2017;7(1):7633. 
235. Fang C, Huang Y, Pei Y, Zhang HH, Chen X, Guo H, et al. Genome-wide gene expression 
profiling reveals that CD274 is up-regulated new-onset type 1 diabetes mellitus. Acta Diabetol. 
2017;54(8):757-67. 
236. Bradford E, Jacobson S, Varasteh J, Comellas AP, Woodruff P, O'Neal W, et al. The value 
of blood cytokines and chemokines in assessing COPD. Respir Res. 2017;18(1):180. 
237. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic 
epidemiology of COPD (COPDGene) study design. COPD. 2010;7(1):32-43. 
238. Li J, Mo HY, Xiong G, Zhang L, He J, Huang ZF, et al. Tumor microenvironment 
macrophage inhibitory factor directs the accumulation of interleukin-17-producing tumor-
infiltrating lymphocytes and predicts favorable survival in nasopharyngeal carcinoma patients. J 
Biol Chem. 2012;287(42):35484-95. 
239. Miao JW, Liu LJ, Huang J. Interleukin-6-induced epithelial-mesenchymal transition 
through signal transducer and activator of transcription 3 in human cervical carcinoma. Int J 
Oncol. 2014;45(1):165-76. 
240. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, et al. IL-6 regulates in vivo 
dendritic cell differentiation through STAT3 activation. J Immunol. 2004;173(6):3844-54. 
241. Kitamura H, Kamon H, Sawa S, Park SJ, Katunuma N, Ishihara K, et al. IL-6-STAT3 controls 
intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. 
Immunity. 2005;23(5):491-502. 
242. Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, et al. Distinct role of 
antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med. 
1999;190(5):617-27. 
243. Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, et al. IFN-
gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian 
cancer. British journal of cancer. 2015;112(9):1501-9. 
244. Brandtzaeg P. The increasing power of immunohistochemistry and 
immunocytochemistry. J Immunol Methods. 1998;216(1-2):49-67. 
245. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 
2013;501(7467):355-64. 
246. Ofiara LM, Navasakulpong A, Ezer N, Gonzalez AV. The importance of a satisfactory 
biopsy for the diagnosis of lung cancer in the era of personalized treatment. Curr Oncol. 
2012;19(Suppl 1):S16-23. 
247. Sholl LM, Aisner DL, Allen TC, Beasley MB, Cagle PT, Capelozzi VL, et al. Liquid Biopsy in 
Lung Cancer: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab 
Med. 2016;140(8):825-9. 
248. Ilie M, Hofman V, Long E, Bordone O, Selva E, Washetine K, et al. Current challenges for 
detection of circulating tumor cells and cell-free circulating nucleic acids, and their 
characterization in non-small cell lung carcinoma patients. What is the best blood substrate for 
personalized medicine? Ann Transl Med. 2014;2(11):107. 



 

131 
 

249. Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib 
treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for 
determination of EGFR status. J Thorac Oncol. 2014;9(9):1345-53. 
250. Mok T, Wu YL, Lee JS, Yu CJ, Sriuranpong V, Sandoval-Tan J, et al. Detection and Dynamic 
Changes of EGFR Mutations from Circulating Tumor DNA as a Predictor of Survival Outcomes in 
NSCLC Patients Treated with First-line Intercalated Erlotinib and Chemotherapy. Clin Cancer Res. 
2015;21(14):3196-203. 
251. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive 
analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 
2013;497(7447):108-12. 
252. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of Immune-
Related Response Criteria and RECIST v1.1 in Patients With Advanced Melanoma Treated With 
Pembrolizumab. J Clin Oncol. 2016;34(13):1510-7. 
253. Kim HO, Kim HS, Youn JC, Shin EC, Park S. Serum cytokine profiles in healthy young and 
elderly population assessed using multiplexed bead-based immunoassays. J Transl Med. 
2011;9:113. 
254. Alnek K, Kisand K, Heilman K, Peet A, Varik K, Uibo R. Increased Blood Levels of Growth 
Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 
1 Diabetes. PLoS One. 2015;10(12):e0142976. 
255. Kleiner G, Marcuzzi A, Zanin V, Monasta L, Zauli G. Cytokine levels in the serum of 
healthy subjects. Mediators Inflamm. 2013;2013:434010. 
256. Campbell DE, Tustin NB, Riedel E, Tustin R, 3rd, Taylor J, Murray J, et al. 
Cryopreservation decreases receptor PD-1 and ligand PD-L1 coinhibitory expression on 
peripheral blood mononuclear cell-derived T cells and monocytes. Clin Vaccine Immunol. 
2009;16(11):1648-53. 
257. Yannelli JR, Tucker JA, Hidalgo G, Perkins S, Kryscio R, Hirschowitz EA. Characteristics of 
PBMC obtained from leukapheresis products and tumor biopsies of patients with non-small cell 
lung cancer. Oncol Rep. 2009;22(6):1459-71. 
258. Lambert J. rFSA: rFSA omplements a Feasible Solutions Algorithm (FSA) to optimal 
models of a specific form that includes mth order interactions. R Package version 10. 2015. 
259. Heinze G, Schemper M. A solution to the problem of separation in logistic regression. 
Stat Med. 2002;21(16):2409-19. 
260. Miller AJ. Selection of subsets of regression variables. Journal of Royal Statistical Society. 
1984;Series A:389-425. 
261. Bhattacharyya A. On a measure of divergence between two statistical populations 
defined by their probability distribution. Bull Calcutta Math Soc. 1943. 
262. Yusuf OB, Bamgboye EA, Afolabi RF, Shodimu MA. An appraisal of convergence failures 
in the application of logistic regression model in published manuscripts. Afr J Med Med Sci. 
2014;43(3):195-204. 
263. Kirilovsky A, Marliot F, El Sissy C, Haicheur N, Galon J, Pages F. Rational bases for the use 
of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in 
cancer patients. Int Immunol. 2016;28(8):373-82. 
264. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, 
density, and location of immune cells within human colorectal tumors predict clinical outcome. 
Science. 2006;313(5795):1960-4. 
265. Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, et al. 
Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on 
Survival. J Natl Cancer Inst. 2018;110(1). 



 

132 
 

266. Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, et al. Low PD-1 
expression in Cytotoxic CD8+ Tumor infiltrating Lymphocytes Confers an Immune Privileged 
Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value. Clin Cancer Res. 
2017. 
267. Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense 
in mice lacking the CCR2 chemokine receptor. J Exp Med. 1997;186(10):1757-62. 
268. Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of macrophage 
polarized activation. Semin Immunol. 2015;27(4):237-48. 
269. Haabeth OA, Lorvik KB, Hammarstrom C, Donaldson IM, Haraldsen G, Bogen B, et al. 
Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun. 
2011;2:240. 
270. Pace JL, Russell SW, Schreiber RD, Altman A, Katz DH. Macrophage activation: priming 
activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci U S A. 
1983;80(12):3782-6. 
271. Muller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, et al. Toll-Like 
Receptor Ligands and Interferon-gamma Synergize for Induction of Antitumor M1 Macrophages. 
Front Immunol. 2017;8:1383. 
272. El-Refai SM, Brown JD, Black EP, Talbert JC. Immune checkpoint inhibition and the 
prevalence of autoimmune disorders among lung and renal cancer patients. Cancer Informatics 
(Submitted). 2017. 
273. Ahn S-B, Khan A. Detection and quantitation of twenty-seven cytokines, chemokines and 
growth factors pre- and post-high abundance protein depletion in human plasma. EuPA Open 
Proteomics. 2014;3(Supplement C):78-84. 
274. Khan A. Detection and quantitation of forty eight cytokines, chemokines, growth factors 
and nine acute phase proteins in healthy human plasma, saliva and urine. Journal of Proteomics. 
2012;75(15):4802-19. 
275. Boffa DJ, Graf RP, Salazar MC, Hoag J, Lu D, Krupa R, et al. Cellular Expression of PD-L1 in 
the Peripheral Blood of Lung Cancer Patients is Associated with Worse Survival. Cancer 
Epidemiol Biomarkers Prev. 2017;26(7):1139-45. 
276. {Martens, 2016 #327;Czystowska, 2013 #310}. 
277. Andrews A. Treating with Checkpoint Inhibitors-Figure $1 Million per Patient. Am Health 
Drug Benefits. 2015;8(Spec Issue):9. 
278. Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and 
prevention. Proceedings of the National Academy of Sciences of the United States of America. 
2005;102(27):9714-9. 
279. Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted 
anticancer agents. Nat Rev Drug Discov. 2006;5(8):649-59. 

 

 
 
 
 
 
 



 

133 
 

Sherif Mohamed El-Refai, PharmD, MBA 
 

Education and Training 
 
Master of Business Administration            May 2013  
Hough Graduate School of Business 
University of Florida 
Gainesville, NC 
 
Doctorate of Pharmacy              May 2011 
Eshelman School of Pharmacy 
University of North Carolina 
Chapel Hill, NC 
 
Bachelor of Science in Pharmaceutical Sciences                                          May 2010 
University of North Carolina at Chapel Hill 
Chapel Hill, NC 
 

Publications & Research 
 
El-Refai SM, Black EP, Adams VR, Talbert JC, Brown JD. Statin use and 
venous thromboembolism in cancer: a large, active comparator, propensity 
score matched cohort study. Thromb. Res. August 2017; 158: 49-58 DOI: 
10.1016/j.thromres.2017.08.001 
 
El-Refai SM, Brown JD, Black EP, Talbert JC. Immune checkpoint inhibition and 
the prevalence of autoimmune disorders among lung and renal cancer patients. 
Cancer Informatics June 2017; 16: 1-5. DOI: 10.1177/1176935117712520, 
PMID: 28615920 
 
El-Refai SM, Brown JD, Arnold SM, Black EP, Leggas MM, Talbert JC. 
Epidemiological evidence for improved overall survival in cancer patients who 
receive anti-hypercholesterolemia treatment. JCO Clinical Cancer Informatics 
April 2017; DOI: 10.1200/CCI.17.00010 
 
Salem M, El-Refai S. Efficacy and Safety of Aflibercept in Cancer Treatment. 
Rare Cancers and Therapy. October 2013 10.1007/s40487-013-0002-8 
 
Salem ME, Jain N, Dyson G, Taylor S, El-Refai SM, et al. Radiographic 
parameters in predicting outcome of patients with hepatocellular carcinoma 
treated with yttrium-90 microsphere radioembolization. ISRN Oncol. Sep 
2013;538376. doi: 10.1155/2013/538376. 



 

134 
 

 
Salem M, Elson P, Pennel N, Sukari A, El-Refai S, et al. Association of the 
development of bone metastases with the development of brain metastases in 
patients with non-small cell lung cancer. [abstract]. June 2013 (2013 ASCO 
Annual Meeting) 
 
Kaufman M, Salem M, Aoun H, Kalemkerian G, Kunz S, El-Refai S, et al. 
Radiographic parameters in predicting outcome of patients with nonsquamous 
non-small cell lung cancer (NSCLC) treated with bevacizumab. [abstract]. June 
2013 (2013 ASCO Annual Meeting) 
 
Center for Pharmacogenomics & Individualized Therapy               
January 2014 – August 2014 
UNC Eshelman School of Pharmacy/School of Medicine 
Tim Wiltshire, PhD, Chapel Hill, NC 
 
Center for Pharmacogenomics, Clinical Service Implementation      
August 2012 – May 2013 
Department of Pharmacotherapy and Translational Research 
Julie Johnson, PharmD, Gainesville, FL 
 
PGENI - PharmacoGenetics for Every Nation Initiative  
April 2009 - January 2010 
IPIT - Institute for Pharmacogenomics & Individualized Therapy 
Howard McLeod, PharmD, Chapel Hill, NC 
 
 
Work Experience 
 
Oncology Pharmacist          October 2014 – Present 
Markey Cancer Center 
Lexington, KY 
 
Pharmacist                  November 2011 – May 2012 
Noble Pharmacy MT Inc. 
Jersey City, NJ 
 
 


	EXPLORING THE EFFECT OF CHRONIC INFLAMMATION ON RESPONSE TO IMMUNE CHECKPOINT INHIBITORS IN CANCER
	Recommended Citation

	Title Page
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	A. CANCER & THE IMMUNE RESPONSE OVERVIEW
	B. CANCER IMMUNOTHERAPY
	C. TUMOR BIOMARKERS OF RESPONSE
	D. BIOMARKERS OF RESPONSE IN PERIPHERAL BLOOD
	E. RESEARCH PROPOSAL OVERVIEW

	Chapter 2
	A. OVERVIEW
	B. METHODS
	C. RESULTS
	D. DISCUSSION
	E. CONCLUSION

	Chapter 3
	A. OVERVIEW
	B. METHODS
	C. RESULTS
	D. CONCLUSION

	Chapter 4
	A. OVERVIEW
	B. METHODS
	C. RESULTS
	D. DISCUSSION
	E. CONCLUSIONS

	Chapter 5
	A. OVERVIEW
	B. METHODS
	C. RESULTS
	D. DISCUSSION
	E. CONCLUSION

	Chapter 6
	A. SUMMARY OF RESULTS
	A. EXPERIMENTAL CONSIDERATIONS
	B. CONTRIBUTION TO THE FIELD
	C. TRANSLATIONAL AND CLINICAL RELEVANCE
	D. CONCLUSIONS

	References
	VITA

