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ABSTRACT OF DISSERTATION 

 

 

NEW APPROACHES TO CYCLOPENTADIENYL-FUSED THIOPHENE 

COMPLEXES OF IRON 

and 

SYNTHESIS AND CHARACTERIZATION OF CARBONIC ANHYDRASE ACTIVE-

SITE MIMICS FOR CO2 HYDRATION 

 

Polyheterocycles such as polythiophene and its derivatives comprise an important 

class of conducting polymers used for electronic applications. They have been of great 

interest for use in electronic materials due to their increased environmental stability as 

well as novel electronic properties in their polymer states. We have been interested in 

exploring the electronic properties of organometallic analogues of the low-band-gap 

polymer poly(benzo[3,4-c]thiophene) (polyisothianaphthene) that incorporates η5-

cyclopenta[c]thienyl monomers such as ferroceno[c]thiophene. First chapter of this 

dissertation involved synthetic attempts to ferroceno[c]thiophene. Exploring a shorter 

synthetic route to starting material, 1,2-di(hydroxymethyl)ferrocene was the first task. 

This was followed by attempts to synthesize an important precursor, 1,3-

dihydroferroceno[c]thiophene to our target molecule, ferroceno[c]thiophene. In order to 

achieve our target precursor molecule, 1,3-dihydroferroceno[c]thiophene, we reacted 1,2-

di(hydroxymethyl)ferrocene with H2S/H2SO4 and Na2S/HBF4 respectively. Reaction of 

1,2-di(hydroxymethyl)ferrocene with either H2S/H2SO4 or Na2S/HBF4 results in 2,16-

dithia[3.3](1,2)ferrocenophane instead of monomeric 1,3-dihydroferroceno[c]thiophene. 

Dehydration of 1,2-di(hydroxymethyl)ferrocene with dilute H2SO4 resulted in 2,16-

dioxa[3.3](1,2)ferrocenophane. Formation of the five-membered tetrahydrothiophene or 

tetrahydrofuran rings is probably disfavored compared to formation of the ten-membered 

ferrocenophane rings because of greater strain in the five-membered rings. Thus, in order 

to achieve our target molecule ferroceno[c]thiophene, we took an alternate route. We 

decided to pursue the route with 1,4-dihydro-2,3-ferrocenodithiin being the precursor to 

our final target molecule. This was successfully accomplished. 1,2-

Di(hydroxymethyl)ferrocene reacts with thiourea in the presence of catalytic 

trifluoroacetic acid to give a water-soluble thiouronium salt, which reacts with aqueous



 

potassium hydroxide in air to give 1,4-dihydro-2,3-ferrocenodithiin, via oxidation of the 

intermediate 1,2 di(mercaptomethyl)ferrocene. 1,4-dihydro-2,3-ferrocenodithiin, an 

important precursor to our desired heterocyclic chemistry was synthesized.  

  

The increased emission of CO2, a greenhouse gas, to the atmosphere is a matter of 

serious worldwide concern. Every year a few gigatons of CO2 are added to the 

atmosphere by various anthropogenic activities like burning of fuel for electricity, 

running industry and transportation. Thus, developing ways to reduce the emission of 

CO2 to the atmosphere is of major importance. Although the amine-based absorption 

method is considered the most reliable, it is an expensive alternative. The catalyzed 

enhancement of CO2 absorption is a critical component to reduce the capital cost of 

CO2 capture. Specifically, an effective catalyst will increase the CO2 hydration rate, 

thereby decreasing the size of the absorber tower needed. In biological systems, CO2 

hydration is catalyzed by the enzyme carbonic anhydrase, which contains ZnII in its 

active site. Carbonic anhydrase typically is not stable enough to be used in an industrial 

process, therefore, there is a need to synthesize robust, inexpensive CO2 hydration 

catalysts.  

 

Majority work of this dissertation focuses on designing catalysts that show high 

CO2 hydration rate similar to carbonic anhydrase while showing superiority towards 

temperature, pH and inhibitors. We focused our efforts on complexes of Zn, Cu and Co 

with ligands such as 1,4,7,10-tetraazacyclododecane (cyclen), 5,5,7,12,12,14-

hexamethyl-1,4,8,11-tetraazacyclotetradecane (teta and tetb), 

tris(benzimidazolylmethyl)amine (BIMA) and anionic tris(pyrazolylborate)s that mimic 

the enzyme, carbonic anhydrase. Several of these complexes have been reported for their 

interesting CO2 capture properties but they contain hazardous perchlorate ion. We desired 

to replace them with benign, non-coordinating counterions like PF6
-, BF4

-, Cl-, CH3COO-, 

NO3
-, CF3SO3

-
, SiF6

2- that avoid the potentially explosive perchlorate salts. In order to test 

the activity of synthesized catalysts under industrial capture conditions, we designed a 

quick experimental screening pH drop method. [[Zn(cyclen)(H2O)][SiF6]•2H2O as well 

as a number of other catalysts have been synthesized and tested for their post-

combustion CO2 capture enhancement capabilities in aqueous solvent mixtures under 

both pH-drop screening and stopped-flow conditions.  

[Zn(cyclen)(H2O)][SiF6]•2H2O, which has an unreactive counteranion, is found to 

catalyze CO2 hydration in aqueous solvent mixtures under both pH-drop screening and 

stopped-flow conditions. However, under pH-drop which has conditions similar to 

industrial post combustion capture, activity of Zn(cyclen)(H2O)][SiF6]•2H2O drops as 

compared to observed in stopped-flow conditions probably because of bicarbonate 



 

coordination to Zn active site in these systems. The Zn center is highly electron deficient 

and therefore easily coordinates anions, inhibiting the ability to reform hydroxyl species 

on the metal. Thus, we decided to test the catalysis of benchmark enzyme carbonic 

anhydrase under similar conditions to determine the threshold 𝑘𝑜𝑏𝑠 value. Carbonic 

anhydrases catalyze the hydration of carbon dioxide at ambient temperatures and 

physiological pH with the highest known rate constant = 106 M–1 s–1, but in our system 

(CAER pH drop screening) 𝑘𝑜𝑏𝑠 came out to be 438797 M–1 s–1. The lower catalytic rate 

constant for carbonic anhydrase in 0.1000 M K2CO3, similar to Zn-cyclen, strengthens 

the conjecture that at high bicarbonate concentrations, HCO3
– binding to the Zn(II) active 

site slows catalysis by inhibiting bicarbonate displacement with water to regenerate the 

active species.  

The complexes containing anionic ligands that donate electron density into the 

metal center may serve to remove anionic bicarbonates/carbamates from the secondary 

coordination sphere and away from the metal center, thereby facilitating 

bicarbonate/anion dissociation and increasing CO2 hydration rates. We studied catalysis 

of trispyrazolylborate molecule in 30% MEA and found the molecule to be catalytically 

active. We also developed an NMR-based method to see if the coordination of solvents to 

CO2 capture solvents can be studied. 

KEYWORDS: polythiophene, ferrocene, ferroceno[c]thiophene, carbon dioxide capture, 

carbonic anhydrase, cyclen 
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Chapter 1 Synthesis and Characterization of Ferrocene-Fused Thiophene 

Complexes 

 

1.1  Introduction 

 

1.1.1 Polyheterocycles 

 

Polyheterocycles comprise an important class of semiconductors used for organic 

electronic applications (rechargeable batteries, electrolytic capacitors, LEDs, etc.), in 

particular polythiophene and polypyrrole derivatives. In terms of band theory, for 

conduction to occur in materials, a high-energy promotion from the valence band to the 

conduction band must occur. As the band gap essentially dictates the electronic behavior 

of the polymer, band gap control is critical to synthesizing materials of desirable 

properties. Research has continued to push towards polymers that have a low or zero 

band gap (metallic in nature). Goal of chemists is to synthesize polymers having small 

band gap and thus high conductivities. Polymers of this type would not require doping 

because they would be intrinsically conducting. These polymers would show high 

conductivity because having small gap would result in room temperature thermal 

excitation, thus allowing the promotion of electrons from the valence to the conduction 
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band. However, the mobility of the charge carriers in organic systems is a primary 

limiting factor. To achieve high conductivities, a small band gap and high mobilities are 

necessary. Due to the wide band gaps of most organic materials, they are not intrinsic 

semiconductors; thus, doping is required to reduce the band gap in order to conduct. 

When the material is doped, there is an introduction of lower energy transitions caused by 

the presence of solitons. When electrons are removed from the valence band, there is a 

partial delocalization of the newly formed charge over several chain lengths with an 

accompanying deformation in the local structure. This deformation causes higher energy 

levels or bands located within the band gap. Doping can be done electrochemically or 

chemically.1 Oxidative doping is typically achieved with iodine, producing a p-doped 

polymer with an I3
– counter ion. Reductive doping can be achieved using sodium metal to 

produce an n-doped polymer with a Na+ counter ion.2  

Practical concerns have limited use of polyacetylene and other linear polymers in 

materials processing. While these polymers display favorable electronic properties, they 

are brittle, insoluble and show poor environmental stability. Therefore, much of the 

interest research has switched to polyheterocycles, mainly polythiophene and 
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polypyrrole. Polythiophene and its derivatives have also been of great interest for use in 

electronic materials due to their increased environmental stability as well as novel 

electronic properties. Their stability is due to the ability of the heteroatom to stabilize the 

positive charge in the p-doped state.3 In both doped and undoped states, polythiophene 

and its derivatives are stable to both air and moisture. Wudl et al. made a remarkable 

discovery by synthesizing poly(benzo[3,4-c]thiophene) (polyisothianaphthene, PITN), a 

polyheterocycle incorporating a thiophene with a fused, six-membered aromatic ring. 

Oxidatively doped PITN is an optically transparent, electrochromic polymer that exhibits 

increased conductivity and stability. The reason behind this is stabilization by additional 

resonance forms, quinoidal forms.1,4 The discovery of PITN has promoted the expansion 

of an entire class of small intrinsic band-gap polymers incorporating a fused ring and a 

wide variety of structural variations.5,6 

 

 

Figure 1.1 Polyisothianaphthene (PITN) resonance forms 
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Further progress in the area has been made, hoping that the use of fused rings 

would have the ability to tune the band gap of polyheterocycles, as well as providing the 

stability and processability required for electronic materials. However, there occurs an 

issue of insolubility of these polymers into common organic solvents. The insolubility of 

these polymers makes them difficult to purify and process. To increase solubility, 

thiophenes with solubilizing alkyl chains and other solubilizing functional groups can be 

introduced at the 3- and 4-positions of thiophene. Since 3-substituted thiophene is not a 

symmetrical molecule, coupling at the 2- and 5-positions leads to three possible 

regioisomeric linkages: head-to-head (HH), head-to-tail (HT), and tail-to-tail (TT). 

Regioregular functionalization also helps to create a highly ordered polymer by 

improving the solid-state order as a result of greater structural regularity.6 A high degree 

of homogeneity or long-range order will lessen the effects of unfavorable steric 

interaction between R-substituents on adjacent heterocycles. Head-to-head ordering will 

cause planarity of the polymer to decrease, given in terms of the twist angle. This is 

significant because the electronic properties of conducting polymers are dependent upon 

efficient overlap of the π-orbital system of adjacent rings. 

 

 

 



 5 

  

 

 

 

 

 

 

 

Figure 1.2 Ordering for 3-substituted polythiophene. (a) Polymer with regular head-to-tail 

linkages. b) Polymer with head-to-head and tail-to-tail linkages. 

Thus, regioregular functionalization decreases the band gap of the polymer and 

enhances its conductivity as compared to regiorandom analogs. Poly(3-substituted 

thiophene)s are among the most studied polymeric materials for semiconductor 

applications. Recently, this made rr-P3HT, poly-3-hexylthiophene, one of the benchmark 

organic semiconductors, with charge-carrier mobility up to 0.1 cm2/Vs. This benchmark 

polymer has several drawbacks, such as poor environmental stability.7,8 High side-chain 

substitution frequency along the backbone lowers the interdigitation of the side-chain 

packing, thus lowering the three-dimensional order. 

1.1.2 Metallocene-Fused Heterocycles 

 

Incorporation of organometallic moieties into polymers has several advantages. 

These transition metal moieties could act as “switches”, enabling the polymer to be 
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reversibly doped and undoped by using the metal’s electrochemistry.9 It also allows for 

tuning the properties of the polymer by simply substituting different organic ligands on 

the metal center, thereby changing the electronic environment. These materials, which 

combine the electrical properties of the metals with the advantages of polymers such as 

lighter weight, greater workability, resistance to corrosion and chemical attack and lower 

cost, have become extremely attractive for many applications including light-emitting 

diodes (LEDs), chemical and biological sensors, microelectronic devices, and advanced 

textiles incorporating the advantages of strength, flexibility, and novel electronic 

properties. 

 
 

Figure 1.3. Resonance forms of the desired organometallic polymer system 

 

Various transition metal polymer systems that incorporate the thiophene 

derivatives have already been explored. These systems can be classified based upon the 
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arrangement of the metal center relative to the polymer backbone. Type 1 organometallic 

polymers have the metal center situated on a tether or pendant attached to the polymer 

backbone. In this case, there is little electronic interaction between the metal center and 

the backbone and the polymer serves as a support with little effect on the properties of the 

metal. Type II metal-containing polymers have the metal and the polymer electronically 

coupled, thus leading to the ability of the metal to influence the properties of the polymer. 

The metal center itself is not incorporated into the polymer backbone. In contrast, Type 

III polymers have the metal situated within the backbone, leading to a strong interaction 

between metal and organic chain.10 

1.1.3 Goal of this project  

Intrigued by these properties, our group’s long-term interest is in the electronic 

properties of organometallic analogues of the low-band-gap polymer PITN that 

incorporate cyclopenta[c]thienyl monomers or polycyclic aromatic hydrocarbons as 

ligands.11 Organometallic groups provide the ability to tune the band gap, thus increasing 

the conductivities as well as providing the stability and processability required for the 

electronic materials.9 Selegue and coworkers have been particularly interested in fused-

ring thiophenes and pyrroles incorporating group 6–9 metals bound in a π fashion 

through the ring portion. While a variety of hapticities is possible through both the 

thiophene and ring portion, the Selegue group has focused primarily upon coordination 
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through a fused Cp ring. We are primarily interested in fused-ring thiophenes as synthetic 

models and precursors for potential Type II organometallic polymers incorporating a 

polyheterocyclic backbone. Selegue and Swarat prepared a chromium complex of 

benzo[3,4-c]thiophene, from the reaction of benzo[3,4-c]thiophene with photochemically 

generated [Cr(thf)(CO)5] at room temperature.12 It was the first transition metal complex 

of benzo[3,4-c]thiophene. X-ray diffraction showed that chromium is bound to the benzo 

ring rather than the thiophene ring. The stability of the complex was found to be better 

than that of a free non-classical thiophene. Wallace et al. prepared pyridazine complexes 

of ruthenium, by employing two different methodologies. The first method involves the 

reaction of [Ru{5-C5H3(CO2Ph)2}(Cp*)] with hydrazine monohydrate; the second 

method involves the deprotonation of free cyclopenta[d]pyridazines13 with thallium 

ethoxide followed by treatment with [Ru(3-Cl)(Cp*)]4 to give pyridazine complexes.14 

Similarly, 1,4-difurylcyclopenta[c]pyridazyl complexes of manganese and rhenium have 

been studied.15 Blankenbuehler, Snyder and Selegue reported on the formation of discrete 

manganese tricarbonyl complexes incorporating cyclopenta[c]thiophenes.11 Tice 

expanded the work to prepare a number of cyclopenta[c]thienyl complexes of manganese 

including 4-chloro and 4-bromothiapentanyl complexes and succeeded in coupling the 4-

bromo complex with phenylboronic acid under Suzuki conditions.16 Current project at 

Selegue lab is aimed at developing monomers based on ferrocene-fused thiophene 
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systems. Efforts are underway to prepare Type II metallopolymers chemically and/or 

electrochemically. Appreciable progress has been made over the years for low-band gap 

materials with modest environmental stability compared to polyacetylene. However, an 

ideally stable, easily processable, zero-band gap conducting polymer is yet to be reported. 

In order to synthesize organometallic polyheterocycles and predict the properties and 

characteristics of the polymer, it is important to understand how the heterocycle bonds to 

the metal center. Herein, we report on the continued investigation to improve the 

understanding of the interaction of fused-ring thiophenes and their potential incorporation 

into conducting polymers.  

1.2 Experimental 

Reactions are carried out using standard Schlenk line techniques under nitrogen. 

Solvents were dried and distilled under nitrogen before use, including ethyl ether, 

benzene, tetrahydrofuran (THF), hexane and toluene over sodium benzophenone ketyl. 

Dichloromethane and acetonitrile were dried and distilled over calcium hydride. CDCl3, 

C6D6, DMSO-d6 and acetone-d6 (Cambridge Isotopes), N,N,N’,N-

tetramethylmethylenediamine (Aldrich), n-butyllithium 2.5 M (Aldrich), active 

manganese dioxide (Acros), sodium hydroxide (Fisher), potassium hydroxide (EMD), 

were used without further purification. H2S was obtained from the Matheson Co. Inc. 1,2-

Di(hydroxymethyl)ferrocene was prepared by literature methods.17,18,19 Organic phases 
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were dried using either anhydrous sodium sulfate or anhydrous magnesium sulfate 

purchased from Mallinckrodt. Flash chromatography was performed using 60-Å pore 

size, 230–400 mesh silica gel purchased from Sorbent Technologies. 1H and 13C NMR 

spectra were recorded on a Varian Gemini-400 spectrometer at ca. 22 °C unless 

mentioned otherwise and were referenced to residual solvent peaks. Infrared spectra were 

recorded on an ATI-Mattson Galaxy Series 5000 FTIR15 spectrometer. Mass spectra 

were acquired by the University of Kentucky Mass Spectrometry Facility. Electron 

ionization (EI) mass spectra were recorded at 70 eV on a Thermo Finnigan PolarisQ 

(quadrupole ion trap). Samples were introduced via a heatable direct insertion probe. 

Melting points were taken on Thomas Hoover capillary melting point apparatus and were 

uncorrected. X-ray diffraction data were collected at 90 K on either a Nonius KappaCCD 

diffractometer or a Bruker-Nonius X8 Proteum diffractometer. Crystal indexing and data 

processing were performed with either DENZO-SMN (KappaCCD)20 or with Bruker 

APEX2 (X8 Proteum). The structures were solved and refined by using SHELXL-97.21 

1.2.1 Synthesis 

 

1.2.1.1 Preparation of 1,4-dihydro-2,3-ferrocenodithiin 

To a 250-mL, three-necked flask containing refluxing dichloromethane (50 mL) and 

trifluoroacetic acid (5 drops) at reflux were added 1,2-di(hydroxymethyl)ferrocene (150.0 

mg, 0.609 mmol) in freshly distilled dichloromethane (7.7 mL) from a dropping funnel 
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and thiourea (150.0 mg, 1.970 mmol) from a solid-addition sidearm, simultaneously over 

about 1 h with vigorous stirring. The reaction mixture was refluxed in a dinitrogen 

atmosphere for 18 hours. After cooling to room temperature, the reaction mixture was 

washed with 5% KOH solution. The organic layer was separated, washed several times 

with water, dried over anhydrous magnesium sulfate and evaporated under reduced 

pressure. The product was column chromatographed over silica gel with hexane-ether 

(3:1) to get the crude product. The compound was crystallized from ether/ hexane 

as bright yellow-orange crystals. Yield was around 20%. 1H NMR, 400 MHz (CDCl3): δ 

(ppm) 4.13 (d, 2H, 2J = 2.4 Hz, CHCHCH), 4.122 (s, 5H, Cp), 3.989 (t, 1H, 3J = 2.4 Hz, 

CHCHCH), 3.89(d, CH2, Ha 2J = 14.8 Hz), 3.59 (d, CH2, Hb
2J = 15.2 Hz). MS m/e: 276, 

212, 152, 121, 91, 77, 65, 56. 13C NMR (50 MHz, CDCl3, ppm): δ (ppm) 32.587 (CH2), 

81.200 (ipso Cp), 70.527 (unsubstituted Cp), 67.422(CHCHCH), 64.037 (CHCHCH). IR 

(ATR, cm–1) 3093, 2922, 1396, 1103, 903, 650; Mp. 98 ˚C. Complete characterization 

was done by X-ray crystallography. 

1.2.1.2 Preparation of 2,16-dioxa[3.3](1,2)ferrocenophane  

1.2.1.2.1 Method 1 

To 1,2-di(hydroxymethyl)ferrocene (50.0 mg, 0.21 mmol) dissolved in freshly distilled 

ethyl ether was added 10 drops of 3:1 water: H2SO4. The reaction mixture became lighter 

in color and a precipitate appeared. The mixture was left stirring overnight and filtered. 
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The precipitate was washed with ether and vacuum dried. Yield was 70% m.p. 210 ºC 

(dec. without melting) 1H NMR, 400 MHz (CDCl3): δ (ppm) 4.411 (d, 4H, 2J = 2.8 Hz, 

CHCHCH), 3.978 (s, 10H, Cp), 4.293 (t, 2H, 2J = 2.8 Hz, CHCHCH), 4.34 (d, CH2, Ha 

2J = 13.2 Hz), 4.007 (d, CH2, Hb
2J = 12.8 Hz). MS, m/e:456(M+), 390, 362, 227, 

200,186, 128, 91, 73, 56. 13C{1H} NMR (50 MHz, CDCl3, ppm): δ (ppm) 60.774 (CH2), 

82.930 (ipso Cp), 69.359 (unsubstituted Cp), 70.192 (CHCHCH), 69.954 (CHCHCH). 

Complete characterization was done by X-ray crystallography. 

1.2.1.2.2 Method 2 

Tosyl chloride (38.73 mg, 0.203 mmol) was added to 1,2-di(hydroxymethyl)ferrocene 

(50.0 mg, 0.20 mmol), in 15 mL of refluxing benzene. After two hours, the reaction 

mixture was cooled, the precipitate was collected, washed with ether and vacuum dried. 

Yield was 60%. 

1.2.1.3 Preparation of 2,16-dithia[3.3](1,2)ferrocenophane  

1.2.1.3.1 Method 1  

Dilute H2SO4 (30 drops, 1:1) was added to 1,2-di(hydroxymethyl)ferrocene (100.0 mg, 

0.406 mmol) in freshly distilled ethyl ether (60 mL). As H2S from an H2S cylinder was 

bubbled through the solution for 2 h, a precipitate appeared. The precipitate was filtered, 

washed with ether and vacuum dried. Yield was 80% m.p. 172 °C (dec. without melting). 

1H NMR, 400 MHz (CDCl3): δ (ppm) 4.391(d, 4H, 3J = 2.4 Hz, CHCHCH), 3.950 (s, 
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10H, Cp), 4.155 (t, 2H, 2J = 2.8 Hz, CHCHCH), 3.348(d, CH2, Ha
2J = 15.2 Hz), 3.09 (d, 

CH2, Hb
2J = 15.2 Hz).MS, m/e: 488(M+), 308, 307, 306, 304, 244, 241, 212, 186, 121, 

91, 65, 56. Complete characterization was done by X-ray crystallography. 

1.2.1.3.2 Method 2  

To 1,2-di(hydroxymethyl)ferrocene (100.0 mg, 0.406 mmol) dissolved in freshly distilled 

dichloromethane was added Na2S·9H2O (97.44 mg, 0.406 mmol). A few drops of HBF4 

(48% aqueous) were added with vigorous stirring. The reaction mixture was stirred for 30 

minutes at room temperature and 30 mL of ether was added. The ethereal solution was 

washed twice with water and dried with magnesium sulfate. The compound was vacuum 

dried. Yield was 70%. 

1.3 Results and Discussion 

 

The organometallic chemistry of thiophene-based compounds has been 

extensively studied during the past few years. It is motivated by the search for metal-

based catalysts to accomplish the hydrodesulfurization of fossil fuels. The 

hydrodesulfurization of fossil fuels is very important as a means for providing a cleaner 

form of energy. In fossil fuels, organic sulfur is present in the form of thiophenes, 

benzothiophenes, etc. As a result, the research is driven to investigate sulfur-bound 

chemistry of thiophene-metal complexes.22 Thiophene can bind to a metal center in a 
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variety of ways. The lone pairs on sulfur can bond to the metal in a sigma fashion.  HDS 

catalysts have been developed to remove the sulfur from these compounds. The 

mechanism of how these catalysts work is still unclear. Much work has been done to 

investigate S-bound thiophene-metal complexes because it was believed that thiophene 

compounds would adsorb onto the metal catalysts by means of a sulfur-metal bond. This 

would activate the sulfur-carbon bonds to aid in loss of the sulfur atom. In order to 

synthesize organometallic polyheterocycles and predict the properties and characteristics 

of the polymer, it is important to understand how the heterocycle bonds to the metal 

center. 

 

1.3.1 Synthesis 

 

1,2-Di(hydroxymethyl)ferrocene is a very important precursor for our desired 

heterocyclic chemistry. Synthesis of 1,2-di(hydroxymethyl)ferrocene was performed by 

the method of Marr and Rockett17,18,19 (Scheme 1.1). It is a time-consuming method with 

an overall low yield due to lithiation step. 
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Scheme 1.1 Preparation of 1,2-di(hydroxymethyl)ferrocene17, 18,19 

 

We sought a more convenient, higher-yield method to prepare the diol.23,24,25,26,27 

(Scheme 1.2). The route shown below avoids the troublesome lithiation step. 

Intermediates 1-(3-carboxypropionyl)ferrocene, 1-(3-carboxypropyl)ferrocene and α–

keto-1,2-tetramethyleneferrocene were prepared according to literature procedures by 

Rinehart et al.23-24 Although oxidation of α–keto-1,2-tetramethyleneferrocene to 1,2-

ferrocenedicarboxylic acid has been reported in the literature by Maier et al.,27 we were 

unable to reproduce the results.  
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Scheme 1.2 Attempted alternative preparation of ferrocene 1,2-dicarboxylic 

acid23,24,25,26,27 

 

Oxidation of acetylferrocene to ferrocenecarboxylic acid is well known.25,26,27 

Following the procedures for oxidation of acetylferrocene to ferrocenecarboxylic acid, 

several attempts to oxidize ferrocene cyclic ketone to ferrocenedicarboxylic acid such as 

reaction with NaOCl, Br2/NaOH, I2/NaOH, potassium superoxide in the presence of 

crown ether were made. All of the above reactions lead to either no reaction or the 

decomposed product. Repeated attempts to synthesize the acid have failed so far.  

1.3.1.1 Preparation of 2,16-dithia[3.3](1,2)ferrocenophane  

1,3-dihydroferroceno[c]thiophene is a very important intermediate for our desired 

heterocyclic chemistry (Scheme 1.3)  
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Scheme 1.3  Preparation of ferroceno[c]thiophene 

In order to prepare starting material 1,3-dihydroferroceno[c]thiophene, we 

followed the strategy of Ratajczak et al.,28 but we were not able to obtain the monomeric 

1,3-dihydroferroceno[c]thiophene. We tried another approach by Boev et al.29 in order to 

prepare the monomer. Reaction of 1,2-di(hydroxymethyl)ferrocene with either 

H2S/H2SO4 or Na2S/HBF4 results in 2,16-dithia[3.3](1,2)ferrocenophane instead of 

monomeric 1,3-dihydroferroceno[c]thiophene (Scheme 1.4). The dimer is thought to be 

more stable than the monomer because of strain in the five-membered dihydrothiophene 

ring. 
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Scheme 1.4 Preparation of 2,16-dithia[3.3](1,2)ferrocenophane 

 

 

1.3.1.2 Preparation of 2,16-dioxa[3.3](1,2)ferrocenophane  

In order to determine whether monomer is possible in furan system, we attempted 

to dehydrate 1,2-di(hydroxymethyl)ferrocene with dilute H2SO4, but the reaction resulted 

in 2,16-dioxa[3.3](1,2)ferrocenophane instead of monomeric 1,3-

dihydroferroceno[c]furan. We tried another approach to monomeric 1,3-

dihydroferroceno[c]furan. As synthesized by Hillman et al. on 1,2’ derivative30, we 

hoped to get intramolecular reaction, but reaction of 1,2-di(hydroxymethyl)ferrocene 

with tosyl chloride also results in the formation of 2,16-dioxa[3.3](1,2)ferrocenophane 

(Scheme 1.5).  

 

 



 19 

 

Scheme 1.5 Preparation of 2,16-dioxa[3.3](1,2)ferrocenophane 

Formation of the five-membered tetrahydrothiophene or tetrahydrofuran rings is 

probably disfavored compared to formation of the ten-membered ferrocenophane rings 

because of greater strain in the five-membered rings.  

1.3.1.3 Preparation of 1,4-dihydro-2,3-ferrocenodithiin 

Thus, in order to achieve our target ferrocene-fused thiophene polymer, we 

thought of taking an alternate route. We decided to pursue route with 1,4-dihydro-2,3-

ferrocenodithiin being the precursor to our final target molecule (Scheme 1.6).  

  

 

 

Scheme 1.6 Preparation of ferroceno[c]thiophene polymer 
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1,4-dihydro-2,3-ferrocenodithiin is a very important intermediate for our desired 

heterocyclic chemistry. We picked this idea from the similar type of chemistry done on 

benzo analogues by Sato and coworkers.26 (Scheme 1.7) 

 

 

 

 

Scheme 1.7 Preparation of 1,3-diphenylbenzo[c]thiophene 

 

1,2-Di(hydroxymethyl)ferrocene reacts with thiourea in the presence of catalytic 

trifluoroacetic acid to give a water-soluble thiouronium salt, which reacts with aqueous 

potassium hydroxide in air to give 1,4-dihydro-2,3-ferrocenodithiin, via oxidation of the 

intermediate 1,2 di(mercaptomethyl)ferrocene. (Scheme 1.8)  

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.8  Preparation of 1,4-dihydro-2,3-ferrocenodithiin31,32 
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1.3.2 Spectroscopy 

New compounds were characterized by spectroscopic methods, including 1H and 

13C NMR, MS and IR. The compound 1,4-dihydro-2,3-ferrocenodithiin has C–S bands at 

649 cm–1 and 661 cm–1, typical aromatic C–H stretching vibrations at 3000 cm–1 and 

above (variable), and C=C ring bands at about 1600 cm–1 (medium to weak). Strong to 

medium aromatic C–H bending vibrations is also present around 600–900 cm–1. 

Fragmentation of all the new compounds was observed as expected. Fragmentation of 

1,4-dihydro-2,3-ferrocenodithiin is as follows: 276(M+), 212, 152, 121, 91, 77, 65, 56. 

Fragmentation of 2,16-dioxa[3.3](1,2)ferrocenophane: 456(M+), 390, 362, 227, 200, 186, 

128, 91, 73, 56. Fragmentation of 2,16-dithia[3.3](1,2)ferrocenophane: 488(M+), 308, 

307, 306, 304, 244, 241, 212, 186, 121, 91, 65, 56. 1H NMR resonances of the 

unsubstituted cyclopentadienyl ring for all compounds lie in the range of 3.95 to 4.12 

ppm as a characteristic singlet. The proton resonances of the substituted cyclopentadienyl 

ligand of all compounds display characteristic doublet and triplet with an integration of 

2:1. 1H NMR resonances of all compounds are listed in Table 1.1. 
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 Table 1.1 Selected 1H NMR spectroscopic data (ppm) for complexes 

Complex C5H5 CHCHCH CHCHCH CH2 Solvent 

1,4-dihydro-2,3-ferrocenodithiin 4.122 4.13 3.99 
3.89, 

3.59 
CDCl3 

2,16-

dioxa[3.3](1,2)ferrocenophane 
3.98 4.41 4.29 

4.34, 

4.01 
CDCl3 

2,16-

dithia[3.3](1,2)ferrocenophane 
3.95 4.39 4.16 

3.35, 

3.09 
CDCl3 

 

 

1.3.3 Structure 

The structures of complexes 2,16-dioxa[3.3](1,2)ferrocenophane, 2,16-

dithia[3.3](1,2)ferrocenophane and 1,4-dihydro-2,3-ferrocenodithiin were determined by 

single X–ray crystallography. The compound 1,4-dihydro-2,3-ferrocenodithiin was 

crystallized as bright yellow-orange crystals by slow evaporation of hexane and ethyl 

ether at room temperature. Single crystals of 2,16-dioxa[3.3](1,2)ferrocenophane and  

2,16-dithia[3.3](1,2)ferrocenophane were  grown by slow evaporation of ethyl ether at 

room temperature. Molecular structures of 2,16-dioxa[3.3](1,2)ferrocenophane, 2,16-

dithia[3.3](1,2)ferrocenophane and 1,4-dihydro-2,3-ferrocenodithiin with numbering are 

shown in Figures 1.4–1.6. The crystal structure and refinement data for these complexes 

are in Tables 1.2–1.5. 

 



 23 

 
 

 

 

 Figure 1.4 Crystal structure of 2,16-dioxa[3.3](1,2)ferrocenophane (1) 

 
Figure 1.5 Crystal structure of 2,16-dithia[3.3](1,2)ferrocenophane (2) 

 

 
 

Figure 1.6 Crystal structure of 1,4-dihydro-2,3-ferrocenodithiin (3)



 24 

Table 1.2 Crystal Data and Structure Refinement for Compounds 1, 2 and 3. 

Compound 1 2 3 

Formula C24 H24 Fe2 O2 C24 H24 Fe2 S2 C12 H12 FeS2 

Formula wt (amu) 456.13 488.25 276.19 

T, K 90.0(2) 90.0(2) 90.0(2) 

Crystal system Monoclinic Monoclinic Orthorhombic 

Space group P21/n P21/n Pbca 

Z 2 2 8 

a, Å 11.0426(4) 10.5707(4) 10.6203(4) 

b, Å 7.4969(3) 8.4321(3) 7.8144(3) 

c, Å 12.0805(5) 12.2601(4) 26.2852(9) 

,(deg) 90 90 90 

, (deg) 112.1742(18) 114.422(1) 90 

, (deg) 90 90 90 

V, Å3 926.12(6) 995.00(6) 2181.44(14) 

dcalc, Mg/m3 1.636 1.630 1.682 

F(000) 472 504 1136 

Crystal size (mm3) 0.34 x 0.08 x 0.05 0.18 x 0.16 x 0.03 0.25 x 0.10 x 0.02 

Radiation Mo Kα (λ = 0.7107 

Å) 

Cu Kα (λ= 1.54178 

Å) 

Cu Kα (λ= 1.54178 

Å) 

Monochromator Graphite Graded Multilayer 

Optics 

Graded Multilayer 

Optics 

Absorption coef   

(mm–1) 

1.584 13.691 14.312 

Diffractometer NoniusKappaCCD Bruker X8 Proteum Bruker X8 Proteum 

 Range (deg) 2.13 to 27.50 4.66 to 68.52 3.36 to 68.37 

Limiting indices –14 ≤ h ≤ 14 –12 ≤ h ≤ 11 –12 ≤ h ≤12 

 –9 ≤ k ≤ 9  0 ≤ k ≤ 10 –9 ≤ k ≤ 9 

 –15 ≤ l ≤ 15  0 ≤ l ≤ 14 –31 ≤ l ≤ 31 

Reflections collected 18281 1814 24965 

Independent 

reflections 

2129 (Rint = 0.0650) 1814 (Rint= 0.0604) 1990 (Rint = 0.0850) 

Absorption 

correction 

Semi-empirical from 

equivalents 

Semi-empirical from 

equivalents 

Semi-empirical from 

equivalents 

Refinement method SHELXL-97 SHELXL-97  SHELXL-97 

Refinement method Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Data/restraints/para

meters 

2129 / 0 / 127 1814 / 0 / 127 1990 / 0 / 136 

Goodness-of-fit on 

F2 

1.079 1.059 1.167 

Final R indices  

[l>2σ (l)] 

R1 = 0.0311, wR2 = 

0.0743 

R1 = 0.0493, wR2 = 

0.1382 

R1 = 0.0662, wR2 = 

0.1467 

R indices (all data) R1 = 0.0407, wR2 = R1 = 0.0504, wR2 = R1 = 0.0747, wR2 = 
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0.0792 0.1405 0.1506 

Largest diff. peak 

and hole  

0.795 e•Å–3 and  

–0.461 e•Å–3 

0.875 e•Å–3 and  

–1.186 e•Å–3 

0.734 e•Å–3 and  

–0.703 e•Å–3 
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Table 1.3 Bond Distances (Å) and Bond Angles (°) for 2,16-dioxa [3.3](1,2)ferrocenophane (1) 

 

Atoms Distance (Å) 

Fe(1)–C(2) 2.0350(19) 

Fe(1)–C(10) 2.036(2) 

Fe(1)–C(6) 2.0367(19) 

Fe(1)–C(3) 2.038(2) 

Fe(1)–C(5) 2.040(2) 

Fe(1)–C(4) 2.041(2) 

Fe(1)–C(9) 2.043(2) 

Fe(1)–C(8) 2.043(2) 

Fe(1)–C(11) 2.046(2) 

Fe(1)–C(12) 2.052(2) 

O(1)–C(7)#1 1.430(2) 

O(1)–C(1) 1.434(2) 

C(1)–C(2) 1.502(3) 

C(2)–C(3) 1.430(3) 

C(2)–C(6) 1.433(3) 

C(3)–C(4) 1.422(3) 

C(4)–C(5) 1.421(3) 

C(5)–C(6) 1.432(3) 

C(6)–C(7) 1.492(3) 

C(7)–O(1)#1 1.430(2) 

C(8)–C(12) 1.413(3) 

C(8)–C(9) 1.427(3) 

C(9)–C(10) 1.417(3) 

C(10)–C(11) 1.418(3) 

C(11)–C(12) 1.427(3) 

Atoms Angle (°) 

C(7)#1–O(1)–C(1) 114.42(15) 

O(1)–C(1)–C(2) 113.21(17) 

C(3)–C(2)–C(6) 107.64(18) 

C(3)–C(2)–C(1) 124.81(18) 

C(6)–C(2)–C(1) 127.54(18) 

C(3)–C(2)–Fe(1) 69.55(11) 

C(6)–C(2)–Fe(1) 69.46(11) 

C(1)–C(2)–Fe(1) 125.55(14) 

C(4)–C(3)–C(2) 108.35(18) 

C(4)–C(3)–Fe(1) 69.72(12) 

C(2)–C(3)–Fe(1) 69.33(11) 

C(5)–C(4)–C(3) 108.08(18) 

C(5)–C(4)–Fe(1) 69.59(11) 

C(3)–C(4)–Fe(1) 69.48(11) 

C(4)–C(5)–C(6) 108.24(18) 

C(4)–C(5)–Fe(1) 69.65(12) 

C(6)–C(5)–Fe(1) 69.30(11) 

C(5)–C(6)–C(2) 107.68(18) 

C(5)–C(6)–C(7) 124.68(18) 

C(2)–C(6)–C(7) 127.59(18) 

C(5)–C(6)–Fe(1) 69.57(11) 

C(2)–C(6)–Fe(1) 69.34(11) 

C(7)–C(6)–Fe(1) 124.50(14) 

O(1)#1–C(7)–C(6) 113.96(17) 

C(12)–C(8)–C(9) 108.3(2) 

C(12)–C(8)–Fe(1) 70.15(12) 

C(9)–C(8)–Fe(1) 69.56(12) 

C(10)–C(9)–C(8) 107.7(2) 

C(10)–C(9)–Fe(1) 69.41(13) 

C(8)–C(9)–Fe(1) 69.57(13) 

C(9)–C(10)–C(11) 108.3(2) 

C(9)–C(10)–Fe(1) 69.94(12) 

C(11)–C(10)–Fe(1) 70.03(12) 

C(10)–C(11)–C(12) 107.9(2) 

C(10)–C(11)–Fe(1) 69.32(12) 

C(12)–C(11)–Fe(1) 69.87(12) 

C(8)–C(12)–C(11) 107.8(2) 

C(8)–C(12)–Fe(1) 69.47(12) 

C(11)–C(12)–Fe(1) 69.38(12) 
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Table 1.4 Bond Distances (Å) and Bond Angles (°) for 2,16-dithia[3.3](1,2)ferrocenophane (2) 

Atoms Distance (Å) 

Fe(1)–C(3) 2.035(3) 

Fe(1)–C(9) 2.036(3) 

Fe(1)–C(4) 2.039(3) 

Fe(1)–C(6) 2.042(3) 

Fe(1)–C(8) 2.044(3) 

Fe(1)–C(11) 2.047(3) 

Fe(1)–C(2) 2.049(3) 

Fe(1)–C(5) 2.049(3) 

Fe(1)–C(12) 2.051(3) 

Fe(1)–C(10) 2.055(4) 

S(1)–C(1) 1.807(3) 

S(1)–C(7)#1 1.810(3) 

C(1)–C(2) 1.491(4) 

C(2)–C(3) 1.432(4) 

C(2)–C(6) 1.439(4) 

C(3)–C(4) 1.418(4) 

C(4)–C(5) 1.424(4) 

C(5)–C(6) 1.435(4) 

C(6)–C(7) 1.500(4) 

C(7)–S(1)#1 1.810(3) 

C(8)–C(12) 1.420(5) 

C(8)–C(9) 1.426(5) 

C(9)–C(10) 1.430(5) 

C(10)–C(11) 1.419(5) 

C(11)–C(12) 1.418(5) 

Atoms  Angles (°) 

C(1)–S(1)–C(7)#1 101.72(14) 

C(2)–C(1)–S(1) 114.0(2) 

C(3)–C(2)–C(6) 107.1(2) 

C(3)–C(2)–C(1) 125.9(3) 

C(6)–C(2)–C(1) 127.1(3) 

C(3)–C(2)–Fe(1) 68.97(16) 

C(6)–C(2)–Fe(1) 69.17(16) 

C(1)–C(2)–Fe(1) 126.9(2) 

C(4)–C(3)–C(2) 108.6(3) 

C(4)–C(3)–Fe(1) 69.76(17) 

C(2)–C(3)–Fe(1) 69.98(16) 

C(3)–C(4)–C(5) 108.5(3) 

C(3)–C(4)–Fe(1) 69.51(16) 

C(5)–C(4)–Fe(1) 70.00(17) 

C(4)–C(5)–C(6) 107.6(3) 

C(4)–C(5)–Fe(1) 69.23(17) 

C(6)–C(5)–Fe(1) 69.21(16) 

C(5)–C(6)–C(2) 108.2(2) 

C(5)–C(6)–C(7) 124.9(3) 

C(2)–C(6)–C(7) 126.9(3) 

C(5)–C(6)–Fe(1) 69.71(17) 

C(2)–C(6)–Fe(1) 69.66(15) 

C(7)–C(6)–Fe(1) 125.2(2) 

C(6)–C(7)–S(1)#1 114.7(2) 

C(12)–C(8)–C(9) 107.9(3) 

C(12)–C(8)–Fe(1) 70.00(18) 

C(9)–C(8)–Fe(1) 69.26(18) 

C(8)–C(9)–C(10) 107.9(3) 

C(8)–C(9)–Fe(1) 69.82(18) 

C(10)–C(9)–Fe(1) 70.23(18) 

C(11)–C(10)–C(9) 107.6(3) 

C(11)–C(10)–Fe(1) 69.5(2) 

C(9)–C(10)–Fe(1) 68.86(18) 

C(12)–C(11)–C(10) 108.5(3) 

C(12)–C(11)–Fe(1) 69.92(19) 

C(10)–C(11)–Fe(1) 70.03(19) 

C(11)–C(12)–C(8) 108.1(3) 

C(11)–C(12)–Fe(1) 69.62(18) 

C(8)–C(12)–Fe(1) 69.42(18) 
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Table 1.5 Bond Distances (Å) and Bond Angles (°) for 1,4-dihydro-2,3-ferrocenodithin (3) 

Atoms Distance (Å) 

Fe(1)–C(8) 2.022(7) 

Fe(1)–C(12) 2.033(8) 

Fe(1)–C(6) 2.035(6) 

Fe(1)–C(9) 2.037(7) 

Fe(1)–C(10) 2.042(7) 

Fe(1)–C(4) 2.046(6) 

Fe(1)–C(5) 2.047(6) 

Fe(1)–C(3) 2.048(6) 

Fe(1)–C(11) 2.049(7) 

Fe(1)–C(2) 2.055(6) 

S(1)–C(1) 1.816(7) 

S(1)–S(2) 2.046(2) 

S(2)–C(7) 1.820(6) 

C(1)–C(2) 1.496(8) 

C(2)–C(3) 1.420(8) 

C(2)–C(6) 1.431(8) 

C(3)–C(4) 1.432(9) 

C(4)–C(5) 1.415(9) 

C(5)–C(6) 1.427(8) 

C(6)–C(7) 1.502(8) 

C(8)–C(9) 1.378(13) 

C(8)–C(12) 1.414(11) 

C(9)–C(10) 1.393(12) 

C(10)–C(11) 1.393(11) 

C(11)–C(12) 1.389(10) 

Atoms  Angles (°) 

C(1)–S(1)–S(2) 99.0(2) 

C(7)–S(2)–S(1) 98.6(2) 

C(2)–C(1)–S(1) 113.3(5) 

C(3)–C(2)–C(6) 107.4(5) 

C(3)–C(2)–C(1) 125.0(6) 

C(6)–C(2)–C(1) 127.5(5) 

C(3)–C(2)–Fe(1) 69.5(3) 

C(6)–C(2)–Fe(1) 68.8(3) 

C(1)–C(2)–Fe(1) 127.7(4) 

C(2)–C(3)–C(4) 108.4(5) 

C(2)–C(3)–Fe(1) 70.0(3) 

C(4)–C(3)–Fe(1) 69.4(3) 

C(5)–C(4)–C(3) 107.8(5) 

C(5)–C(4)–Fe(1) 69.8(3) 

C(3)–C(4)–Fe(1) 69.6(3) 

C(4)–C(5)–C(6) 108.2(5) 

C(4)–C(5)–Fe(1) 69.7(4) 

C(6)–C(5)–Fe(1) 69.1(3) 

C(5)–C(6)–C(2) 108.1(5) 

C(5)–C(6)–C(7) 124.4(6) 

C(2)–C(6)–C(7) 127.4(5) 

C(5)–C(6)–Fe(1) 70.0(3) 

C(2)–C(6)–Fe(1) 70.3(3) 

C(7)–C(6)–Fe(1) 125.9(4) 

C(6)–C(7)–S(2) 112.2(4) 

C(9)–C(8)–C(12) 107.3(7) 

C(9)–C(8)–Fe(1) 70.8(4) 

C(12)–C(8)–Fe(1) 70.0(4) 

C(8)–C(9)–C(10) 108.5(7) 

C(8)–C(9)–Fe(1) 69.5(4) 

C(10)–C(9)–Fe(1) 70.2(4) 

C(9)–C(10)–C(11) 108.6(7) 

C(9)–C(10)–Fe(1) 69.9(4) 

C(11)–C(10)–Fe(1) 70.4(4) 

C(12)–C(11)–C(10) 107.3(7) 

C(12)–C(11)–Fe(1) 69.5(4) 

C(10)–C(11)–Fe(1) 69.8(4) 

C(11)–C(12)–C(8) 108.4(7) 

C(11)–C(12)–Fe(1) 70.7(4) 

C(8)–C(12)–Fe(1) 69.2(4) 
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1.4 Summary and Future Work 

Exploring a shorter synthetic route to starting material, 1,2-

di(hydroxymethyl)ferrocene was the first task. This was followed by attempts to 

synthesize an important precursor, 1,3-dihydroferroceno[c]thiophene, to our target 

molecule, ferroceno[c]thiophene. We reacted 1,2-di(hydroxymethyl)ferrocene with 

H2S/H2SO4 and Na2S/HBF4 respectively. Reaction of 1,2-di(hydroxymethyl)ferrocene 

with either H2S/H2SO4 or Na2S/HBF4 resulted in 2,16-dithia[3.3](1,2)ferrocenophane 

instead of monomeric 1,3-dihydroferroceno[c]thiophene. Dehydration of 1,2-

di(hydroxymethyl)ferrocene with dilute H2SO4 resulted in 2,16-

dioxa[3.3](1,2)ferrocenophane. Thus, in order to achieve our target molecule, 1,3-

dihydroferroceno[c]thiophene, we decided to pursue the route with 1,4-dihydro-2,3-

ferrocenodithin being the precursor to our final target molecule. 1,2-

Di(hydroxymethyl)ferrocene reacts with thiourea in the presence of catalytic 

trifluoroacetic acid to give a water-soluble thiouronium salt, which reacts with aqueous 

potassium hydroxide in air to give 1,4-dihydro-2,3-ferrocenodithin, via oxidation of the 

intermediate 1,2-di(mercaptomethyl)ferrocene. This project was further pursued by a 

coworker.33 The desired end product, ferrocene–fused thiophene monomer, hasn’t been 

obtained yet. Further optimization of synthetic pathway to the target molecule is needed. 

Investigation into polymerization (electrochemical and chemical) is the next logical step 
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once the monomer (aromatic or quinoid form) is achieved. When synthesized, 

polymerization of 1,3-dihydroferroceno[c]thiophene will give the Type II polymer. This 

will be the simplest metallocene-fused thiophene polymer of Type II. This will open a 

new route to synthesize Fe thiophene complexes. Future work will also involve study of 

electronic and electrochromic properties and changing other conjugated substituents to 

obtain different forms of metallocene-fused thiophene polymer. 
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Chapter 2 Introduction to Development of Carbonic Anhydrase Active-site 

mimics for CO2 hydration 

 

2.1 Increasing Carbon Dioxide Levels in Atmosphere 

 

Fundamentals for habitability of terrestrial planets followed by emergence and 

creating habitable zones has been studied by Kathryn et al.34 Several computational 

models discussed by Luisa et al 35 exhibits the condition for a habitable zone on a planet. 

The atmospheric temperature and pressure are key variables that make earth different 

from other planets. The chief terrestrial greenhouse gases are water vapors and carbon 

dioxide which clearly governs the earth atmospheric temperature. Since, water vapors 

condense and precipitate actively, they are identified as fast feedback processes in the 

ecosystem. However, carbon dioxide, similar to N2O, ozone, CH4 and 

chlorofluorocarbons, does not condense or precipitate from the atmosphere and thus, pose 

serious threat levels.36 Air bubbles trapped in the ice at Antarctica region, measured for 

carbon dioxide ppm levels are found to be the highest in recent years. Furthermore, 

Mauna Loa record installed at Hawai has shown extremely high CO2 ppm levels above 

400 ppm.37-38 High ppm levels raise concerns over reduction and control of atmospheric 

CO2 as compared to thousands of years. Since 1970s, daily CO2 trend was recorded and 

raised concerns among researchers about increasing CO2 levels.37-38 Winter ages were 

recorded with 200 ppm while warmer periods recorded with 280 ppm, this trend 
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identified throughout 400,000 years prior to 1950s. In 1958, the month of June was 

recorded with a ppm of 317.10 as compared to 408.84 ppm in June of 2017. There is a 

consistent upward trend of 91.74 ppm within last 59 years as compared to an upward and 

downward trend that was present before 1950s.39 Human activities mainly burning of 

fossil fuels but not limited to deforestation and industrial activity, cause the ppm levels of 

carbon dioxide to increase. Carbon present in fossil fuels get mixed with atmospheric 

oxygen resulting in formation of CO2. Ultimately, increased CO2 is directly proportional 

to increased greenhouse gas effect. An interagovernment panel on climate change called 

as IPCC, in 2014 has demonstrated the global emissions of key greenhouse gases with 

CO2 consisting of 75% followed by CH4, NO2 and F-Gases consisting of 25%.40 There is 

a concern whether solar rays from sun are manipulating earth’s atmospheric temperature. 

Scientific studies have shown that variation in solar energy has affected climate on 

earth.41-42 

Based up on scientific facts, it has been ruled out that sun is the reason behind 

changing the climate on earth. In addition, if climate has to be extremely affected by the 

sun then all the layers of the atmosphere should have exhibited similar temperature zones 

as compared to cooler temperature levels in upper layer while warmer towards surface or 

lower levels of atmosphere. Temperatures measured in stratospheric levels by NOAA 

between 1979-2016 has not shown a major difference to demonstrate that solar activity is 
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a reason behind increasing atmospheric temperatures in stratosphere. It has been 

concluded that there is more than 95% probability that raised CO2 levels have occurred 

due to human activity.40 At 1 hPA, with measurement location at 90N-65N Latitudes with 

a range of 55 km from earth’s surface, mean temperature is measured between 5 ºC 

during July 1979 and -20 ºC during months of January 1979 as compared to similar 

temperatures in relative months of 2016.43 It is clearly evident that lower levels in 

atmosphere produce greenhouse effect and trap CO2 causing increase in atmospheric 

temperature. Global land-ocean temperature monitoring atmospheric temperatures reflect 

0.99 ºC increase compared to 1950-1980 levels.44 Further details shown by GISTEMP, 

the warmer each month than the annual global mean, August 2017 is 2.15 ºC warmer than 

August 1880.45-46 In 1881, Hansen et al46 concluded that global temperature rose between 

0.2 ºC during 1960-1980s, yielding a warming of 0.4 ºC in past century. This change in 

temperature consistently correlates with increasing measured CO2 levels in troposphere. 

2.2 CO2 Emissions in the United States and the World 

 

Global emissions of CO2 are mainly contributed by China 30%, US 15%, 

European Union 9%, India 7%, Russia 5% and Japan 4% and  rest of the world 30%.40, 47
 

In the United States, 6586.7 million metric tonnes of CO2 Equivalent Greenhouse Gas 

emissions were noted in 201548, a total of 3.5% increase from 1990 to 2015 in 
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greenhouse gas emissions. However, in 2015 CO2 emissions were noticed with a 2.3% 

decrease from 2014. Several key factors contributed to the decrease including transition 

from coal to natural gas in electricity generation and warmer winter conditions reduced 

electricity & heating fuel consumption. In 2015, CO2 emissions consist of 82.2% of 

overall US emissions of GHG from human activities with electricity generation and 

consumption contributed 35% followed by 32% and 15% contribution from 

Transportation and Industry sectors respectively. Extensive combustion of fossil fuels 

resulted with 5049.8 MMT Equivalent CO2 emissions out of total of 6586.7 MMT GHG 

emissions in 2015.48 The effect of increased CO2 levels has been seen clearly with 

glaciers been shrunk, ice melting earlier, plant and animal ranges shifted, sea level rise 

and more intense heat waves. Sea level has rose to 8 inches globally since 1880s40 and 

expected to increase between 1-4 feet by 2100. In United States, climate change impacts 

have been noted by the United States Global Research Program. A 2014 Third Climate 

Assessment49 exhibited impact of rising CO2 levels on oceans and land. As oceans absorb 

CO2, their acidic level starts increasing because of formation of carbonic acid. Ocean 

waters have become acidic with 30% increase in acidity in last 250 years which directly 

impacts the corrosiveness in water and marine food chain.50 Extreme impacts of climate 

change are expected in different parts of the United States. South-East and Carribean 

region where the state of Kentucky region lies is projected with decreased availability of 
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water and increase in hurricanes.49 Definitely, GHG emissions linked to human activity 

must be reduced with effective and sustainable methods. As discussed above, CO2 is a 

key GHG which must be primarily addressed. The robust way to reduce CO2 emissions is 

to reduce the consumption of fossil fuels. In 1990, the key CO2 generation sector was 

electricity generation from power plants utilizing fossil fuels mainly coal powered plants. 

It comprised of 52% electric generation followed by 12% Natural Gas and remaining 

coming from other sources.51 However, strict environmental rules and regulations lead 

towards prematurely retirement of few coal powered plants. In addition, cheaper natural 

gas prices driven by shale gas availability drove increased availability and consumption 

of natural gas which resulted in future power plants designed for natural gas. In 2016, 

fossil fuels accounted for 65% share in electricity generation with natural gas dominated 

electric generation at 34%, coal 30%, nuclear 20% followed by renewable 15% and other 

sources.51 In 2017 EIA Energy Conference meeting identified the completion of coal vs 

natural gas where pricing and reliability has been discussed. Reliability of Natural Gas is 

still in question since events similar to polar vortex in 2014 limited the availability of 

natural gas which ultimately raised the prices. Natural gas does carry more risk of 

methane leakage during extraction process. The key CO2 reduction strategy lies with 

switching to alternate non-fossil fuels and Carbon Capture and Storage (CCS). Non-fossil 

fuels are mainly renewable sources of energy such as Wind, Hydropower and Solar and 
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are cleaner. However, application of renewable energies suffers the limitation that they 

are not as reliable as coal for e.g. calm days may cut off the continuous wind supply; 

droughts greatly affect hydropower; weather conditions limit solar energy collection. 

Backup plants driven by fossil fuels are required to take over when the renewable energy 

sources are interrupted. In addition, the transition from fossil fuels to the clean energy 

technologies requires considerable modifications of existing power plants which involves 

huge capital investment. Carbon Capture and Storage (CCS) is an important method to 

reduce carbon emissions into the atmosphere since combustion of fossil fuels is still a 

major source of energy generation for human activities, before a more environmentally 

sustainable energy generation infrastructure is available. 

2.3 Carbon Capture and Storage (CCS) 

 

The basic fundamental goal is to capture carbon and prevent it to be released in 

the atmosphere. CCS is a process that enable the capture of carbon dioxide (CO2) from 

fuel combustion or industrial processes, then transportation of CO2 via ships or pipelines, 

and its storage underground, in depleted oil and gas fields and deep saline formations.52 

International Energy Agency released a report in 2016 highlighting the status over two 

decades of carbon capture and storage.53 CCS is classified into pre-combustion, post-

combustion and oxy-fuel combustion process. Abanades et al54 has mentioned emerging 



 

 

 37 

CO2 capture systems by referencing capture toolbox identified in IPCC 2005 report.55 

IPPC break down pre, post and oxy fuel combustion in further details and classified 

carbon capture systems as absorption, cryogenics, high temperature solid looping, solid 

sorbents and membranes. The concentration of CO2 in the gas stream, the pressure of the 

gas stream and the fuel type (solid or gas) are important factors in selecting the capture 

system.56 A 2014 Technological readiness Assessment Report identified the technology 

readiness level (TRL) of several carbon capture processes. Carbon capture systems are 

discussed in next sections of this chapter. 

2.3.1 Pre-combustion Carbon Capture 

 

Pre-combustion process involves processing of fuel with air or oxygen into a 

steam reactor to produce a mixture of carbon monoxide and hydrogen gas which together 

is called a synthesis or syngas.56 In next steps, carbon monoxide and steam react again in 

a shift convertor or catalytic reactor which generates additional hydrogen and CO2. CO2 

is then separated from hydrogen using a chemical or physical absorption process. 

Hydrogen can be used as fuel for power generation and CO2 is compressed and 

transported for storage. Jansen et al57 focused on pre-combustion CO2 capture from 

natural gas combined capture cycles (NGCC) and Integrated gasification combined 

cycles (IGCC) for power generation. The key element of pre-combustion is synthesis gas 

or syngas.58 Syngas composition varies depending on type of fuel utilized. It can be 
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produced through steam reforming where steam is added to primary fuel. Another 

method is partial oxidation where gaseous and liquid fuels are utilized as primary fuel. As 

compared to solid fuel as a primary fuel, the term is called as gasification, to produce 

syngas. Syngas produced with coal through gasification process typically consists of 

30~60% of carbon monoxide, 25 to 30% of H2 gas, 0 to 5% CH4, 5 to 15% CO2 followed 

by varying amount of water vapor, minor traces of hydrogen sulfide (H2S), carbonyl 

sulfide (COS), ammonia (NH3) and few contaminants.59 Higman and burgt60-65 mentioned 

the detailed gasification process including the thermodynamics and kinetics of 

gasification process. Practical issues were reported such as contaminated syngas. 

Additional treatment of the flue gas may be needed to remove air pollutants and non-

condensed gases (such as nitrogen) from the flue gas before the CO2 is sent to storage. 

2.3.2 Oxyfuel Combustion 

 

Oxyfuel combustion involves O2 instead of air for combustion of the primary fuel 

to produce a flue gas consisting mainly of water vapor and CO2. As a result, flue gas with 

high CO2 concentrations (greater than 80% by volume) is produced. The water vapor is 

then removed by cooling and compressing the gas stream.56 Oxygen is the main element 

of oxyfuel combustion since it requires a purity of 95–99% oxygen assumed in most 

current designs. An upstream oxygen separation process from air is required which 

results in additional emissions. Oxyfuel systems are also being studied in gas turbine 
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systems, but conceptual designs for such applications are still in the research phase. 

Stanger et al 66 primarily focused on the development of the boiler and gas turbine (GT) 

with Oxy-GT combustion as an emerging option for capturing the emissions from natural 

gas combined cycles, with the pre-combustion capture technology related to coal 

gasification. In case of coal fired oxy-combustion, the Air Separator Unit and CO2 

Processing Unit are the main components which consumed additional energy. The higher 

efficiencies of the combined cycles are expected to manage an overall efficiency of 44-

59%. Oxygen must be supplied at high pressure and different cycles are currently being 

investigated. Oxy-GT technology is currently in development at small pilot scale with 

tests on-going for a large scale implementation (i.e. CES cycle).66 

2.3.3 Post-combustion Carbon Capture 

 

Post-combustion process involves capturing of flue gas produced after 

combustion of fuel by absorbing flue gas into a suitable liquid solvent. The concentration 

range of the components of flue gas varies for different combustion processes and coals. 

Flue gas contains mainly nitrogen and 3~15% of CO2 by volume. Typical concentration 

generated from bulk species include 76–77 vol% N2, 10–14 vol% CO2, 4–16 vol% H2O, 

and 2–6 vol% O2 and also different combustion by products, such as 5–100 ppmv HCl, 2 

gr/dscf fly ash and sulfur and nitrogen oxides (500–3000 ppmv SO2, 5–60 ppmv SO3, 50–

300 ppmv NO and 10–40 ppmv NO2).
67-68 Conventionally, chemical or physical 
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absorption has been utilized to perform solvent based post combustion absorption. 

Deschermeier et al focused-on characterization of solvents for physical absorption 

process. Physical Absorption process consists of absorption of acidic gases such as CO2 

with solvent, desorption includes separation of solute from solvent stream and 

regeneration of solvent back to absorption process after adjusting its temperature and 

pressure.69 Physical Absorption has an advantage over chemical absorption as no 

chemical reaction is invlolved.70  

Oko et al identified chemical absorption post combustion technology with solvent 

based carbon capture as a key near term technical and commercial option highlighting the 

current and future status of PCC implementation.71 Pulverized Coal and NGCC Power 

Plants would typically utilize monoethanolamine (MEA) as an organic solvent.56 Sask 

Power Boundary Dam Carbon Capture project is a good example of post combustion 

carbon capture technology. In 2014, boundary dam became the first full scale post 

combustion capture coal fired powered power plant to demonstrate successful use of CCS 

technology with a full capacity of 1 Mpta CO2.
53 Captured carbon was transported 3.2 

kilometers below the earth’s surface and captured safely in a layer of brine filled 

sandstone, also called as deadwood formation.72 Cebrucian et al73 reviewed the 

performance of large scale power plants installed or upcoming projects with carbon 

capture, and presented development and demonstration status of current carbon capture 
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activities. Unfortunately, CCS application may reduce the net efficiency of a power plant 

by up to 14% points thereby increasing the electricity generation costs by 30-70%. As far 

as output and optimization of post combustion capture process, Oexmann et al74 

discussed about the heat requirement for solvent regeneration that contributed towards 

the largest impact on the power output of the overall process, the optimal process 

parameters required for the lowest possible heat requirement of the capture unit do not 

necessarily coincide with the optimal process parameters that make for the most energy 

efficient operation of the overall capture process. Therefore, when optimizing process 

parameters of CO2 absorption processes in power plants, a key focus should be inclined 

towards the minimization of the overall power loss instead of solely reducing the heat 

requirement for solvent regeneration. As part of improvement and separation of CO2 

capture, Soong et al initiated a study to develop amine enriched solid sorbents. Their 

results preliminary exhibited a capability of CO2 capture while sorbents are regenerable.75 

Dabrowski et al presented current status of application and characterization of new 

environmental sorbents.76 Since current carbon dioxide capture methods result in 

corrosivity and heat losses, Vericella et al proposed microencapsulation by creating 

microencapsulated carbon sorbents.77 Tachy et al worked on a hybrid model to combine 

amines and membranes during chemical absorption process since amines are one of the 

best solvent in chemical absorption process due to higher purity of CO2 capture.78 In 
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addition to solvent, sorbent and membrane based post carbon combustion technologies; 

other novel concepts evolved such as hybrid models and CO2 adsorption. Kim et al 

presented an experimental data exhibiting measurements of heat of adsorption of CO2 

using aqueous MEA based solvent and partial pressure of CO2 with a calorimeter.79 

Choma et al developed four nanoporous carbons from polymers which exhibited 

developed microporosity and exceptional CO2 adsorption.80 

Out of three technological pathways for CO2 capture from combustion of fossil 

fuels: pre-combustion capture, post-combustion capture, and oxyfuel combustion,5 post 

combustion capture has been used on an industrial scale for decades in certain 

applications, and is being further developed for broader use due to the fact that it can be 

retrofitted to existing power plants with minimal modification, though the corresponding 

energy penalty is high. Chemical absorption has been discussed further with aqueous 

amines as focus of solvent based carbon capture. 

2.3.3.1 Chemical Absorption 

 

Chemical absorption systems at present are the preferred option for post-

combustion capture of CO2. Most existing post-combustion CO2 capture systems are 

related to chemical absorption/desorption using aqueous solvents such as alkanolamines, 

and have been practiced for gas cleanup applications since 1930.81 In the process, CO2 is 

separated from the flue gas by passing the flue gas through a continuous scrubbing 
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system. The system consists of an absorber (also called scrubber) and a desorber (also 

called stripper, regeneration tower). Absorption processes utilize the reversible chemical 

reaction of CO2 with an aqueous alkaline solvent, usually an amine. Flue gas is fed into 

the CO2 absorber at the bottom and ascending through the column. In order to assure an 

efficient gas-liquid contact in the absorber column, the column is filled with metal 

structured packing. CO2 lean solution enters into the absorber at the top and passes 

through the packing materials. At a temperature of 40–50 °C, CO2 is absorbed during the 

countercurrent contact with the absorbent solution, which becomes carbon-rich in the 

bottom of the absorber. In the desorber, a higher temperature (usually 100–140 °C 

depending on the thermal stability of the absorbent) is applied to the CO2 rich solution.82-

83 The absorbed CO2 is stripped from the CO2 rich solution and a pure stream of CO2 is 

then dried and pressurized to 100–150 bar and sent for compression while the regenerated 

solvent is sent back to the absorber for further CO2 absorption after cooling down in the 

heat exchanger. 

A key issue of solvent based capture systems is the heat requirement for solvent 

regeneration, which significantly reduces the net power output of the power plant.84 Heat 

is required in the reboiler to heat up the solvent to the required temperature to strip CO2 

and to produce steam in order to establish the required driving force for CO2 stripping 

from the solvent. This leads to the main energy penalty on the power plant. In addition, 



 

 

 44 

energy is required to compress the CO2 to the conditions needed for storage and to 

operate the pumps and blowers in the process. Therefore, for economic reasons, the 

solutions for CO2 absorption should have the advantages of (a) large capacity for CO2; 

(b) capable of being regenerated using minimal energy; and (c) a high specific absorption 

rate.85 

Potassium carbonate-bicarbonate solution is a common absorbent to capture CO2 

with high vapor pressure from natural gas or petroleum refinery process since it is 

moderately alkaline and undergoes slight change in pH during the absorption process,86-87 

has negligible volatility and degradation, and possesses the higher solubility of potassium 

bicarbonate. However, its slow reaction kinetic almost counter-balance all these benefits 

when applying to low vapor pressure CO2 stream such as post-combustion utility flue gas 

stream. On another hand, considering these advantages potassium carbonate based 

solvents remain of interest for post-combustion-CO2 absorption88 particularly with a 

promoter.89-90  

Alkanolamines are one of the best absorbents to separate CO2 from gas streams in 

a chemical absorption process. Primary and secondary alkanolamines react with CO2 to 

form carbamate RNHCOO– as shown below. The tertiary amines and hindered amines 

form the bicarbonate ion in a reaction with water as they do not possess an N–H bond, 

which is required in carbamate formation (Equations 1, 2 and 3). 
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CO2 + 2RNH2 ⇄ RNHCOO –  + RNH3
+ 1 

 

CO2 + R3N + H2O ⇄ HCO3
–  + R3NH+  2 

 

CO2 + H2O ⇄ H2CO3 (H
+ + HCO3

–)  3 

 

According to Davidson, Trachtenberg and Bao,91 the absorption capacity of 

tertiary amines is twice that of primary or secondary amines; however, the rate of 

absorption is lower. Key alkanolamines used in industrial capture of CO2 are primary 

amines such as mono-ethanolamine or MEA and diglycolamine or DGA, secondary 

amines diethanolamine or DEA and diisopropanolamine or DIPA and the tertiary amines 

methyldiethanolamine or MDEA and triethanolamine or TEA.81 The most widely studied 

alkanolamine in post-combustion CO2 capture is monoethanolamine (MEA). It is a 

primary amine with several advantages over other alkanolamines, such as fast CO2 

absorption kinetics, favorable physical properties and relatively low cost. Conventionally, 

30 wt% MEA aqueous solution has been considered as a benchmark CO2 absorbent in 

industry. Prakash and Eugeny provided a detailed overview of recent studies completed 

on kinetics of reaction of CO2 with aqueous solutions of alkanolamines.92 There are 

implications of producing MEA on global scale since it requires production of Ammonia 

(NH3) and Ethylene Oxide (EO) which finally reacts to produce MEA. This whole 

process includes direct and indirect CO2 emissions.93 The viscosity of MEA is usually 

high causing difficulty in generating large surface areas of fast absorption of CO2. Aines 
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et al has developed an encapsulated form of carbon capture solvents where amines or 

carbonate is enclosed in a thin polymer shell forming a 200~400µm beads thereby 

increasing absorption surface area.94 

2.4 Importance of Catalysts for CO2 Capture and Storage 

 

Capturing and compressing CO2 with CCS requires much energy. These and other 

system costs are estimated to increase the cost of the overall CCS process by more than 

80% for a unit with alkanolamine-based CO2 capture.95-96 Hence, optimizing the rate of 

CO2 hydration (for capture) and dehydration (for release) can reduce the overall costs of 

energy production. To discover a catalyst that could enhance the rate of hydration and 

dehydration reaction of CO2 is of major importance. Naturally occurring enzymes, e.g. 

carbonic anhydrase (CA) and carboxypeptidases, catalyzes these reactions in living 

systems. 

2.5 Carbonic Anhydrase and its Mechanism 

  

In biological systems, CO2 hydration is essential in maintaining acid-base balance 

in blood, transporting carbon dioxide out of tissues, nerve signaling and numerous other 

processes. Because the uncatalyzed hydration of CO2 is too slow to keep up with 

respiration in living systems, nature has developed the carbonic anhydrase enzymes to 

speed up the reaction (and its reverse) to essentially the limit of diffusion control. 
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Carbonic anhydrase (CA) is one of the fastest enzyme found in plants and animals that 

accelerates CO2 hydration converting CO2 to bicarbonate and the reverse bicarbonate 

dehydration drastically.  

CO2(g) + H2O(l) ⇄ H+(aq) + HCO3
− (aq) (1) 

 

The most active enzymes, human carbonic anhydrase II, hydrate CO2 at rates as 

high as kcat = 106 s−1. Molar mass of carbonic anhydrase is around 30,000 Da with a ZnII 

ion located at the active site, coordinated by three imidazoles groups of histidine amino 

acid residues and a water/hydroxide, resulting in distorted tetrahedral geometry.97 The 

water ligand is polarized by the zinc ion, shifting its pKa into physiological range. The 

active site steers carbon dioxide to the bound hydroxide, facilitating nucleophilic attack 

and a proton shift to form bicarbonate. Activity of CA is pH dependent. At pH 8, the 

reaction proceeds near its maximal rate. As the pH decreases, the rate of the reaction 

drops. The midpoint of this transition is near pH 7, suggesting that a group with pKa = 7 

plays an important role in the activity of carbonic anhydrase and that the deprotonated 

(high pH) form of this group participates more effectively in catalysis. Although some 

amino acids, notably histidine, have pKa values near 7, a variety of evidence suggests that 

the group responsible for this transition is not an amino acid but is the zinc-bound water 

molecule. Thus, the binding of a water molecule to the positively charged zinc center 

reduces the pKa of the water molecule from 15.7 to 7. With the lowered pKa, a substantial 
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concentration of hydroxide ion (bound to zinc) is generated at neutral pH. A zinc-bound 

hydroxide ion is sufficiently nucleophilic to attack carbon dioxide much more readily 

than water does. The importance of the zinc-bound hydroxide ion suggests a simple 

mechanism for carbon dioxide hydration.  

1) Zinc facilitates the release of a proton from a water molecule, which generates a 

hydroxide ion. 

2) The carbon dioxide substrate binds to the enzyme's active site and is positioned to 

react with the hydroxide ion. 

3) The hydroxide ion attacks the carbon dioxide, converting it into bicarbonate ion. 

4) The catalytic site is regenerated with the release of the bicarbonate ion and the binding 

of another molecule of water. 

There are many different types of carbonic anhydrase enzymes, with the potential 

to develop improved enzymes depending on what the process requires. The reaction and 

the catalytic activity of carbonic anhydrase have been widely studied for their 

physiological importance using certain very pure enzymes.98-99 Tsao,100 Alper,101-102 and 

Donaldson103 investigated CO2 absorption in the presence of carbonic anhydrase enzyme 

in the stirred cell and the wetted wall column with pure CO2. These studies were aimed to 

collect kinetic data about the catalytic activity of carbonic anhydrase on CO2 absorption 

and so solution concentration was not as high. For example, Tsao employed 0.2 M 
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phosphate buffer solution with pH=7, and Alper and Deckwer used 0.2 M phosphate 

buffer solutions (pH=6.6 and 11) and 0.5 M carbonate buffer solution (pH=9.6) in the 

presence of crude carbonic anhydrase for their CO2 absorption studies. 

Recently, attentions have been paid on utilization of enzyme carbonic anhydrase 

on the CO2 capture and sequestration from evolved stream of fossil fuels combustion, 

where carbonic anhydrase was used to increase the CO2 absorption rate. Researcher at 

New Mexico Institute of Mining and Tech. have developed of system resembling a CO2 

scrubber, in which carbonic anhydrase catalyzed the rate of CO2 hydration for subsequent 

geologic fixation into stable mineral carbonates for CO2 sequestration.104-105 Immobilized 

carbonic anhydrase (CA)-based CO2 separation processes are currently under 

development. Carbozyme Inc. employed a membrane-contained CA enzyme process to 

capture CO2 from flue gas with CO2 concentration range of 1%-20%.91 Dilmore et al. 

developed a novel concept of a CA-facilitated CO2 absorption with regenerable amine-

bearing polyacrylamide buffering beads (PABB).106 CO2 Solution Inc. of Montreal, 

Quebec, Canada, has patented a CO2 capture process from flue gas using enzyme 

carbonic anhydrase. This system was based on a packed-bed aqueous CO2 scrubber, 

where CA was fixed to a solid support, and increased the CO2 absorption rate of aqueous 

amine solutions.107 
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2.6 Goal of this Project 

 

Carbonic anhydrase is typically not stable at the high temperatures used during 

the solvent regeneration process for CO2 capture, making it important to design robust, 

synthetic catalysts for CO2 fixation. Our basic thought started with selecting a molecule 

that could mimic the enzyme carbonic anhydrase. Mostly, the solvent based data reported 

so far are collected from experiments conducted at diluted reagent conditions. Lower 

reactant concentration will result in a low carbon loading exit solution from CO2 capture 

process (scrubber). Unfortunately, a low-carbon content rich solution/sorbent will require 

more energy input for reactant regeneration in the solution stripper. Generally speaking, 

the cost (capital and operational) for gaseous CO2 separation processes is controlled by 

the combination of reaction kinetics, reaction enthalpy, and solvent carbon capacity in the 

rich solution. Low reaction rates will necessitate the need for larger absorption towers, 

which will result in higher capital costs. The solvent carbon capacity (sorbent type and 

reactant concentration) determines the majority of the energy input, e.g. sensible heat and 

steam evaporated for CO2 stripping. The reaction enthalpy between a solvent and CO2 

will determine the heat released during the capture process and a larger portion of the 

heat input for carbon-component dissociation in the stripper.   

We intended to explore some of the most effective ways to minimize CO2 

emission by developing a catalyst that could enhance the rate of CO2 hydration. We 
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focused mainly on the synthesis and characterization of Cu, Co, and Zn with ligands, 

such as 1,5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (teta, tetb)108-109, 

1,4,7,10-tetraazacyclododecane (cyclen)110-112, tris(2-benzimidazoylmethyl)amine (NTB), 

nitrilotris(2-benzimidazoylmethyl-6-sulfonic acid) (NTBSA).113 We found these 

complexes very interesting, affordable and conveniently prepared. We opted for the basic 

criteria of the catalyst, i.e., it should mimic the enzyme, be soluble in the solvent, be easy 

to synthesize and increase the rate of reaction at room temperature. We studied the CO2 

absorption at CAER in K2CO3 and MEA (monoethanolamine) solution at room 

temperature and the results were calculated by plotting the CO2 loading (mol/kg) vs. flux 

(mol•cm-2•sec-1). Tests mentioned in this research were conducted in wetted-wall column 

(WWC) available at CAER. Wetted wall columns have been widely used in the 

investigation of mass transfer between gas and liquid, partially because the interfacial 

area can be measured accurately.90, 114-115 With a known and uniform liquid contact area 

for gas diffusion the flux per unit area can be calculated.  
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Chapter 3 Development of Catalysts for CO2 Capture 

 

 

3.1 Introduction 

 

Solvent-based post-combustion CO2 capture is one of the preferred options for 

CO2 removal from coal-fired combustion power plants. Post-combustion CO2 capture has 

been used on an industrial scale for decades, and is being further developed for broader 

use due to the fact that it can be retrofitted to existing power plants with minimal 

modification, though the corresponding energy penalty is high. Most existing post-

combustion CO2 capture systems are related to chemical absorption/desorption using 

aqueous solvents such as alkanolamines, and have been practiced for gas cleanup 

applications since 1930.81 In the process, CO2 is absorbed at low temperature in the 

absorber, and is desorbed in the stripper at high temperature with solvent recycled to the 

absorption process.  

A key issue of solvent-based capture systems is the heat requirement for solvent 

regeneration, which significantly reduces the net power output of the power plant.84 

Therefore, for economic reasons, the solutions for CO2 absorption should have the 

advantages of (a) large capacity for CO2; (b) capable of being regenerated using minimal 

energy; and (c) a high specific absorption rate.85  
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Potassium carbonate-bicarbonate solution is a common absorbent to capture CO2 

with high vapor pressure from natural gas or petroleum refinery process since it is 

moderately alkaline and undergoes slight change in pH during the absorption process,87 

has negligible volatility and degradation, and possesses the higher solubility of potassium 

bicarbonate. However, the major challenge of using a K2CO3−KHCO3 solvent is the low 

absorption rate due to the slow CO2 hydration step resulting in poor absorption 

performance. On another hand, considering these advantages, potassium carbonate-based 

solvents remain of interest for post-combustion CO2 absorption.  

We intended to explore some of the most effective ways to minimize CO2 

emission by developing a catalyst that could enhance the rate of CO2 hydration. We 

focused mainly on the synthesis and characterization of Cu, Co, and Zn complexes with 

ligands, 1,5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (teta, tetb)108-109, 

1,4,7,10-tetraazacyclododecane (cyclen)110-112, tris(2-benzimidazoylmethyl)amine 

(NTB)116-117, and nitrilotris(2-benzimidazoylmethyl-6-sulfonic acid) (NTBSA)113. There 

are various rationales behind choosing these complexes as these have many interesting 

CO2 capture properties,112,111,118,119 i.e., similar structural, thermodynamic and kinetic 

properties to carbonic anhydrase, stability towards heat, pH change and ionic strength as 

compared to carbonic anhydrase. We intended to test these molecules in a wetted-wall 

column experiment.  
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Figure 3.1 Ligands for CO2 capture 

 

Wetted-wall columns have been widely used for the determination of the 

fundamental gas–liquid absorption process (laminar film), partially because the 

interfacial area can be measured accurately.90, 114-115 The essence of the WWC is a gas–

liquid contactor in which CO2 absorption by an aqueous solvent occurs on a known 

surface area. With a known and uniform liquid contact area for gas diffusion the flux per 

unit area can be calculated. This allows simplification of the second-order rate for CO2 

reaction to a pseudo first-order reaction by means of the surface renewal theory. In a 

wetted-wall column, the liquid flows in a film, under the influence of gravity, down a 

surface, usually a tube or rod. The contacting gas flows countercurrent to the liquid and 

mass transfer occurs over the gas-liquid contact area. The rigid tube or rod has a known 

surface area which is entirely coated by the thin film of solvent. The length of the rod can 

be adjustable to vary the contact time and thus vary the liquid film physical mass transfer 

coefficient. One major advantage of the wetted-wall column is its versatility. It can 
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operate over a wide range of conditions and can absorb or desorb CO2 equally well. 

Among the concerns of the wetted-wall column are the entrance effects. It is important 

that the solvent is evenly dispersed so that a uniform film coats the entire surface of the 

rod. Any dry spots on the surface of the rod will not contribute to the flux and will lead to 

erroneous calculations. It is important to prevent the solution from rippling as it flows 

down the side of the contactor. The ripples enhance the liquid film physical mass transfer 

coefficient, and may affect the rate of absorption.  

3.1.1 Setup of Wetted-Wall Column 

 

A small wetted-wall column (WWC, Figure 3.2) built at the Center for Applied 

Energy Research (University of Kentucky) has been used for this research.120 The system 

includes the main reactor of the WWC, the metering gas supply device, a water bath for 

gas saturation, a solvent reservoir, a pump, a CO2 analyzer and a LabView control and 

data acquisition unit. The main reactor of the wetted-wall column, depicted in Figure 3.2, 

was used as the gas-liquid contactor throughout the experiments. The column is a 

stainless steel hollow rod measuring 15.3 cm in height and 1.26 cm in diameter with a 

well-defined surface area (60.56 cm2). The WWC is enclosed in a reaction chamber, 

enclosed by a heating jacket to achieve and maintain the experimental temperature. 

During the experiment, the chemical solution of interest is pumped from a 

reservoir through the inside of the tube, and flows down along the outer surface of the 
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tube to form a thin liquid film with a known surface area. The gas stream enters the 

WWC near the base of the column, counter-currently contacting the liquid film as it 

flows up into the gas outlet. The water bath, with circulation of the water inside, is used 

to control the temperature of the inlet gas, liquid and the reactor. The liquid is pumped 

back to a reservoir after collection at the base of the column. A Cole-Parmer peristaltic 

pump at 180 mL/min moves the solution from the reservoir through a preheater immersed 

in the heating bath. Preheater is a metal vessel with dip tube and packed with metal mesh. 

This cylinder serves two purposes, to pre-heat the gas before it enters the wetted-wall 

column and to moisten and saturate the gas before it enters the wetted-wall column. The 

saturation of the gas is important because if the gas is dry when it enters the reactor, it 

will pull the liquid film off the column, disrupting the flow and reaction. The saturated 

gas prevents this from happening and allows the gas and liquid to undergo the desired 

reaction. After heating, the solution flows into the WWC and later after contacting the 

gas stream, the solvent returns to the reservoir. The total pressure used in this work was 

14 to 16 psi. The metered gases were mixed prior to entering the WWC. The gas flow 

rates were regulated using mass flow controllers and were calibrated by a soap bubble 

flow meter. After exiting the contactor, excess water was removed by passing the stream 

through a condenser. The acid traps eliminate any unwanted elements that might have 

entered the gas outlet line. Two tubes of crystalline silica gel pellets serve as a desiccant 
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for the gas stream, protecting the CO2 analyzer from moisture damage. Absorption or 

desorption of CO2 across the contacting area gives a CO2 concentration difference in the 

gas stream between the inlet and outlet of the column. The Horiba VIA-510 NDIR CO2 

analyzer, which is an infrared CO2 analyzer, was used to quantitatively measure the CO2 

concentration of the dry gas.  

National Instruments NI LabVIEW 2010 (32-bit) with FieldPoint software 

(Version 6.0.5) is used to record the data and to simulate the gas flow inside the reactor 

and the inlet gas diffusion.  

 
 

Figure 3.2 The experimental setup of the wetted-wall column (Reprinted with permission 

from Liu, K.; Jinka, K. M.; Remias, J. E.; Liu, K.; Ind. Eng. Chem. Res. 2013, 52, 

15932). Copyright 2013 American Chemical Society.120 
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3.2 Experimental 

3.2.1 Materials  

All reactions were run under a nitrogen atmosphere with constant stirring. Ligands 

1,4,8,10-tetraazacyclododecane (cyclen)110, tris(2-benzimidazoylmethyl)amine (NTB)121 

and nitrilotris(2-benzimidazoylmethyl-6-sulfonic acid) NTBSA113 were prepared by 

using known procedures. CDCl3, acetone-d6, DMSO-d6 and D2O (Cambridge Isotopes) 

and reagent-grade solvents (acetone, methanol, ethanol) were used as obtained 

commercially. Acetonitrile was dried and distilled over magnesium sulfate. Potassium 

carbonate (purity > 99%), 1,2-diaminoethane, hydrobromic acid, phenylenediamine, 

Zn(BF4)2·6H2O, Cu(BF4)2•xH2O and Co(BF4)2•xH2O were procured from Sigma Aldrich. 

Carbonic anhydrase NS81239 (batch PPE31476) with 38.0 g/L concentration was 

generously provided by Novozymes North America, Inc. Span gas (14% CO2 in N2), pure 

N2 and pure CO2 were supplied by Scott Gross. N,N-Dimethylformamide dimethyl acetal 

(ca. 97%), triethylenetetramine (technical 60%), nitrilotriacetic acid (Acros), boric acid 

(Fisher Scientific), ZnCl2 and NaBH4 (EMD), NH4BF4 (Alfa Ventron), NH4PF6 

(Advanced Research Chemicals), AgBF4 and TlPF6 (Ozark Fluorine Specialists) and 

other reagents were obtained from the indicated commercial sources and used without 

purification. Melting points were recorded on either a Thomas-Hoover melting apparatus 

or Digi-Melt apparatus. TGA analyses were done on Thermal Analysis Hi-Res TGA 
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2950 instrument. In a typical run, 10–15 mg of the sample was loaded in a platinum pan. 

For all the analyses, a Hi-Res dynamic ramp 12.5 °C min–1, Hi-Res 4.0, RT to 1000 °C 

was used under constant argon flow (65 mL/min). Infrared spectra of solid complexes 

were recorded in ATR mode between 4000 and 400 cm−1 on a Perkin-Elmer Paragon 

1000 FT-IR spectrophotometer. 1H and 13C NMR spectra were recorded on a Varian 

Gemini 400 spectrometer at room temperature, unless mentioned otherwise, and were 

referenced to residual solvent peaks. Mass spectra were acquired by the University of 

Kentucky mass spectrometry facility. High-resolution electron impact (EI) ionization 

mass spectra were recorded at 25 eV on JEOL JMS-700T station and were referenced to 

perfluorokerosene (PFK). FAB-mass spectra were obtained on a Finnigan Polaris Q in EI 

mode via direct insertion probe. The mass spectrometer was operated in positive ion 

mode and mass spectra were calibrated by Alkali-CsI positive. X-ray diffraction data was 

collected on at 90K on either a Nonius Kappa CCD diffractometer or a Bruker-Nonius 

X8 Proteum diffractometer. Crystal indexing and data processing were performed either 

with DENZO-SMN (KappaCCD) or with Bruker APEX2 (X8 Proteum). The structures 

were solved and refined with SHELXS-97. Elemental analyses were performed at the 

Center for Applied Energy and Research at University of Kentucky. 
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3.2.2 Synthesis of ligands 

3.2.2.1 Cyclen110 

 
Linear teta (1). TETA (technical, 50.0 g, 0.30 mol) was added dropwise to a stirring 

solution of HCl (200 mL) and water (200 mL) over a period of fifteen minutes. This was 

then added all at once to HCl conc. (200 mL) and allowed to sit for two hours. A white 

precipitate of teta HCl formed. The solid was vacuum-filtered and washed twice with 

HCl conc. (2 × 50 mL) then dissolved in the minimal amount of water. While cooling and 

stirring, solid NaOH was added slowly until the pH reached approximately 10. The 

solution was then evaporated to remove the water and the remaining salt slurry was 

extracted with EtOH. The EtOH was then removed by rotary evaporation to yield a 

yellow oil salt, which was then distilled under a vacuum to give a clear oil (1). 11.0 mL 

(37.0 %) was recovered.  

1,1’-Ethylene-2-imidazoline (2). Linear teta (1) (10.0 mL, 0.07 mol) and DMF−DMA 

(18.0 mL, 0.14 mol) were added to a clean, dry round-bottom flask. The flask was purged 
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with N2 and brought to reflux for thirty minutes, removed from heat and rotary-

evaporated to give a thick, yellow oil, which crystallized upon standing (2). 11.0 g were 

recovered for a yield of 97.0%.  

2,3,4,5,6,7,8,8c-Octahydro-1H-4a,6a,8a-triaza-2a-azoniacyclopent[fg]-

acenaphthylene bromide salt (3). Compound (2) (11.0 g, 0.07 mol), 1,2-dibromoethane 

(8.7 mL, 0.1 mol), anhydrous K2CO3 (7.70 g 0.06 mol) and acetonitrile (576 mL) were 

charged to a 1000 mL round-bottom flask and brought to reflux for three hours. The 

solution was removed from heat, filtered hot and rotary-evaporated to dryness to yield 

17.0 g (86.0%) of brownish yellow crystals of (3). 

Cyclen (4). Compound (3) (17.0 g, 0.03 mol) was dissolved in 34 mL H2O. This was 

added dropwise to a refluxing solution of NaOH (14.0 g, 0.24 mol) in 30 mL H2O. The 

solution was allowed to reflux for thirty minutes. It was then filtered hot and rotary-

evaporated. When the volume was sufficiently reduced, crystal formation began. 

Evaporation was stopped and the solution was allowed to cool. Crystals were then filtered 

and rotary evaporation of filtrate begun. When most of the water had been removed, a 

dark oil formed on top of the aqueous base. The mixture was allowed to cool and 

extracted with hot toluene to yield 4.0 g (38%) of (4). Spectroscopic and physical 

properties of the ligand matched the literature.  
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3.2.2.2 Tris(2-benzimidazoylmethyl)amine (NTB) 121  

Tripod, tris-(2-benzimidazoylmethyl)-amine and NTB complexes were synthesized from 

o-phenylenediamine and nitrilotriacetic acid by the method described by Thompson et 

al.121 

 

(4.59 g, 24.0 mmol) Nitrilotriacetic acid (8.10 g, 74.9 mmol) and o-phenylenediamine 

were finely ground with a mortar and pestle. Both were heated together at 190–200 °C for 

an hour in an oil bath. The mixture was then cooled and crushed once again with mortar 

and pestle and refluxed in methanol with decolorizing charcoal. The solution was filtered 

hot with gravity filtration. Volume of the solution was reduced until crystals formed, 

which were recrystallized from methanol. The product was vacuum filtered and dried 

under vacuum to get 4.69 g, 48% yield. Spectroscopic and physical properties of the 

ligand matched the literature.  

 

 



 

 

 63 

3.2.2.3  Nitrilotris(2-benzimidazoylmethyl-6-sulfonic acid), NTBSA.113  

 

 
 

Tripod, (nitrilotris(2-benzimidazoylmethyl-6-sulfonic acid) NTBSA and NTBSA 

complexes were synthesized from o-phenylenediamine and nitrilotriacetic acid by the 

method described by Nakata et al.113 Sodium 3-nitro-4-aminobenzenesulfonate (5.00 g, 

20.8 mmol) was dissolved in 20 mL of 12 M HCl and reduced by SnCl2 (14.1 g, 62.5 

mmol) at 70 °C. The solution was concentrated for about 4 hours to form a white 

precipitate of 3,4-diaminobenzenesulfonate hydrochloride. 3,4-Diaminobenzenesulfonate 

hydrochloride (7.41 g, 33.2 mmol) and nitrilotriacetic acid (2.12 g, 11.1 mmol) were 

refluxed in 25 mL of 4.0 M HCl for 4 days. The formed blue precipitate with white 
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specks was dissolved in water by the addition of 25 mL NaOH solution. After the 

solution was decolorized by charcoal and acidified to less than pH 3 by p-toluenesulfonic 

acid, the white product was filtered and dried in vacuo to get 6.10 g of product (86.4% 

yield). Spectroscopic and physical properties of the ligand matched the literature.  

3.2.3 Synthesis of complexes 

3.2.3.1 Synthesis of [Cu(teta)][BF4]2 
122  

Teta (2.09 g, 7.01 mmol) was dissolved in 25 mL methanol and added to a warm solution 

of Cu(BF4)2•xH2O (1.68 g, 7.01 mmol) in 25 mL of methanol and refluxed at 60 °C under 

nitrogen for 1 h. The solution was allowed to cool to room temperature and stand for 30 

min and then filtered. Magenta crystals were formed (1.22 g) and washed with methanol. 

The filtrate was kept overnight, filtered and was refluxed again at 60 °C under nitrogen 

for 1 h. After that the solution was allowed to stand at room temperature overnight. Deep 

blue crystals were filtered and washed with methanol. Both compounds were 

recrystallized from methanol and water (99:01), filtered, washed with ethyl ether and 

dried in vacuo to give solids. The theoretical yield for magenta and blue complexes were 

(1.12 g, 0.28 g ~38.3 % total yield based on limiting reagent) and IR (ATR, cm–1): 3237 

(NH), 2976 (CH), broad peak ~1035 (BF4). The magenta product was characterized by an 

X-ray diffraction study.  
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3.2.3.2 Synthesis of [{Cu(cyclen)(H2O)}2(μ-CO3)][BF4]2 
122  

Cyclen (1.01 g, 5.80 mmol) dissolved in 30 mL methanol was added to warm solution of 

Cu(BF4)2•xH2O (1.39 g, 5.81 mmol) in 30 mL of methanol and refluxed at 60 °C under 

nitrogen for 1 h. The solution was allowed to cool to room temperature and filtered. The 

volume was reduced to 25 % by evaporating the solution on a hot water bath. After the 

solution was allowed to stand at room temperature overnight, the deep blue precipitate 

formed was filtered and washed with methanol. The second crop of the material was 

obtained by evaporating the filtrate on a rotary evaporator at 55 °C. The compound was 

recrystallized from methanol and water (99:01), filtered washed with ethyl ether and 

dried in vacuo to give a deep blue solid (2.14 g, 49.8 % based on limiting reagent). IR 

(ATR, cm–1): 3628 (OH), 3359 (NH), 3296 (NH) multiple peaks between ~1410–1490 

(CO3) and ~1030 (BF4). Elemental analysis data: (Anal. Calcd for C17H42N8O4B2F8Cu2: 

% C 27.55, % H 5.98, % N 15.11. Found: % C 28.16, % H 6.02, % N 15.60).  

3.2.3.3 Synthesis of [Co(cyclen)(OH)(H2O][BF4]2•(CH3OH) 122  

Cyclen (1.01 g, 5.80 mmol) dissolved in 30 mL methanol was added to Co(BF4)2•xH2O 

(1.39 g, 5.81 mmol) in 30 mL of methanol and refluxed at 60 °C under nitrogen for 1 h. 

The solution was allowed to cool to room temperature and was then filtered. The volume 

was reduced to 25 % by evaporating the solution on a hot water bath. After the solution 

was allowed to stand at room temperature, the mixture was kept overnight and the dark 
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brown precipitate was filtered and washed with methanol. The second crop of the 

material was obtained by evaporating the filtrate on a rotary evaporator at 55 °C. The 

compound was titrated with pentane and recrystallized from methanol, filtered, washed 

with ethyl ether and dried in vacuo to give a dark brown solid (1.84 g, 67.2 % based on 

limiting reagent). IR (ATR, cm–1): 3571(OH), 3305 (NH), 3230 (NH), ~1000(BF). 

Elemental analysis data: Anal. calcd. for C9H27N4O3B2F8Co: % C 22.9, % H 5.8, % N 

11.9 Found: % C 23.1, % H 5.1, % N 11.8.  

3.2.3.4 Synthesis of [Zn(cyclen)(H2O)][SiF6]•2H2O 

 

 
 

 

Cyclen (1.00 g, 5.80 mmol) dissolved in 30 mL methanol was added to [Zn(H2O)6]SiF6 

(1.39 g, 5.81 mmol) in 30 mL of methanol and refluxed at 60 °C under nitrogen for 1 h. 

The solution was allowed to cool to room temperature and filtered to obtain 2.38 g (95.0 

% yield) of the catalyst. IR (ATR, cm−1): 3342 (NH), 3247 (NH), 688 (SiF6
2−). Crystal 

structure determination was done via X-ray crystallography. 
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3.2.3.5 Synthesis of [Zn(NTB)(H2O)][BF4]2  

NTB (1.51 g, 3.70 mmol) and Zn(BF4)2·6H2O (1.30 g, 3.75 mmol) were separately 

dissolved in ethanol. The metal tetrafluoroborate solution was added dropwise with 

stirring to the NTB solution. The mixed solution was then stirred for an hour at 80 °C 

with a condenser. Volume was reduced for the product to crystallize, then vacuum 

filtered and dried under vacuum to get 2.31 g, 87.1% yield. Compound was characterized 

with X-ray crystallography.  

3.2.3.6 Synthesis of [Cu(NTB)(H2O)](BF4)2 

NTB (2.00 g, 4.91 mmol) and Cu(BF4)2·6H2O (1.25 g, 4.91 mmol) were separately 

dissolved in ethanol. The metal tetrafluoroborate solution was added dropwise with 

stirring to the NTB solution. The solution was stirred for an hour at 80 °C with a 

condenser. Volume was reduced for the product to crystallize, then vacuum filtered and 

dried under vacuum to get 1.0 g, 31% yield. Compound was characterized with X-ray 

crystallography.   
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3.2.4 Setup for fast catalyst screening 

The reactions were carried out in a 4-necked 250 mL round-bottom flask equipped with a 

pH meter. A 14 vol% CO2 gas with balanced N2, was supplied through an MFC 

(Aalborg) at 1.0 L/min. The temperature was monitored throughout the reaction with 

experiments conducted at room temperature. The progress of the experiment was 

monitored for the change in pH with time as CO2 was absorbed. 

3.2.5 Setup for catalysts and enzyme testing in wetted-wall column  

Experiments were conducted with 500 mL of solution, which was run continuously over 

the wetted-wall (to and from the same reservoir). A liquid sample was taken when the 

CO2 analyzer reading stabilized and the mass transfer rate and solution composition were 

determined based on this sample. The solution was then carbon-loaded by sparging the 

solution reservoir with 40% CO2 (balance N2) for 5 minutes with stirring before passing 
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the solution again to the WWC for a mass transfer measurement. The purpose of carbon 

loading is to speed up the entire process by helping the solution reach its carbon 

saturation point (carbon capacity) quicker, which would result in the conclusion of the 

experiment. Every time carbon loading is performed on the solvent, the carbon level 

increases as the solvent absorbs carbon dioxide. Faster rates come from higher CO2 

concentration and so 100% is ideal, but some solvents may not allow this (i.e. ammonia 

solution will have a gas-phase reaction with high CO2 levels forming solid ammonium 

bicarbonate in the reaction chamber.) At the same time, there is an exothermic reaction 

that takes places between the carbon dioxide and the solvent, which results in the 

temperature of the solvent increasing substantially in the beginning but less and less as 

the solvent approaches its saturation point. For all tests, a 1.9 M concentration of K2CO3 

was used. The enzyme and catalysts were tested at 50 °C and 1.51 SLPM of total inlet 

gas flow was nominally set at 18% CO2. 

3.3 Results and Discussion 

[Zn(cyclen)][ClO4]2 is a promising CO2 hydration catalyst.118-119, 123 Zhang et al. 

118 showed that the catalytic activity of [Zn(cyclen)(OH)]+ with perchlorate counteranion 

is the highest of all of their studied model complexes. A number of other simple zinc 

complexes like 1,5,9-triazacyclododecane-([12]aneN3) prepared by Kimura et al.124, 

modeled on carbonic anhydrase, have been shown to activate the bound ligand water 
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molecule for nucleophilic attack towards CO2. Based on this result, our group’s first 

targets were the Cu, Co and Zn cyclen mono- or di-aqua complexes with counteranions, 

including PF6
–, BF4

–, Cl–, CH3COO–, NO3
–, CF3SO3

–. The initial aim in doing this was to 

synthesize complexes that did not possess the potentially explosive perchlorate 

counteranion. Perchlorate is also toxic to the environment. It is generally not expected 

that the counteranion participates in the reaction mechanism, and so the change was 

anticipated as a simple process. However, it was found that substitution of other non-

coordinating counteranions for perchlorate was not trivial. Substitution of other weakly or 

non-coordinating counteranions including PF6
–, Cl–, CH3COO–, NO3

– and CF3SO3
– 

showed strong coordination to the Zn center. For example, the use of zinc acetate 

dihydrate to provide the zinc ion gives [Zn(teta)(CH3COO)][PF6], which was 

characterized by single-crystal X-ray diffraction.122 Zinc nitrate hexahydrate gives 

similarly characterized [Zn(teta)(NO3)][PF6].
122 The acetate and nitrate ions both bind to 

the zinc ion in a dihapto (κ2O,O) mode. Tetrafluoroborate ligand was found to have 

further reactions in aqueous-based solvents. 

The reaction of [Zn(H2O)6][BF4]2 with cyclen gives [{Zn(cyclen)}3(μ3-

CO3)][BF4]4•H2O, which was characterized by single-crystal X-ray diffraction.122 It 

contains three roughly square pyramidal zinc centers bound to cyclen in the basal 

positions and bicarbonate in the apical site, forming a trimeric μ3-carbonato complex. The 
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carbonate complex appears to be a dead end in carbon dioxide hydration. Finally, 

[Zn(H2O)6][SiF6] reacts with cyclen to give [Zn(cyclen)(H2O)][SiF6]•2H2O which has the 

desired H2O bound to Zinc. A coordinated water that ionizes to a coordinated hydroxide 

around neutral pH could be the key to rapid CO2 fixation. According to Vahrenkamp,117 

the pKa of unbound water is around 14 but in presence of the zinc ion surrounded by 

ligands, the pKa of the bound water decreases to around 7-8 pKa units in CA (similarly in 

mimetic zinc complexes) making OH– available to react with CO2 at near neutral 

pH. According to Kimura125, since the ligated water in CA has pKa around 6.8 the 

predominant form of CA above pH 6.8 will be L3Zn-OH–. This OH– form catalyzes the 

hydration of CO2 to HCO3
- ion, while below pH 6.8 L3Zn-OH2 is the predominant form, 

which catalyzes the reverse reaction, dehydration of HCO3
-. ZnII has a high affinity for 

HCO3
- as a monodentate ligand. Koike and Kimura125-126 postulated that if the zinc were 

more acidic, the HCO3
- may become deprotonated to CO3

2– and act as a bidentate ligand.  

A crystal structure of [Zn(cyclen)(H2O)][SiF6]•2H2O complex (Figure 3.3) shows 

that hexafluorosilicate neither fragments under the reaction conditions nor coordinates to 

the zinc(II) ion. [Zn(cyclen)(H2O)][SiF6]•2H2O prepared at CAER was sent to LLNL for 

stopped-flow kinetics comparison of its activity with [Zn(cyclen)(H2O)][ClO4]2 

synthesized at LLNL. The catalyst was dissolved in 0.1 M AMPSO buffer, 0.2 M 

NaClO4, 10−5 M thymol blue pH indicator, and pH 9.0, at 25 ºC. The above solution was 
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rapidly mixed 1:1 with a CO2-saturated water solution ([CO2] = 0.034 M) and the change 

of pH was monitored versus time. The rate constant found for the SiF6
2– salt was 2100 ± 

100 M–1s–1, and for the perchlorate salt from LLNL salt was 2300 ± 200 M−1s−1. These 

rates compare favorably to the literature values (2200 M−1s−1 for pH 8.8, 2600 M−1s−1 for 

pH 9.1).118  

A series of metal(II) tetrafluoroborate salts was reacted with a tripodal ligand, 

tris(2-benzimidazoylmethyl)amine (NTB), by Dunbar High School student, Christopher 

Sato, to form metal complexes [M(NTB)(H2O)][BF4]2 that are able to catalyze the 

hydration of CO2. The reaction of NTB with ZnII and CuII hydrated tetrafluoroborate salts 

in ethanol gave new Zn-NTB Cu-NTB complexes. Zn-NTB structure does not allow the 

water to bind to the zinc. The structure of Cu-NTB complex was found to be same as 

previously reported by a coworker when methanol was used as solvent.122 However, these 

metal complexes do not dissolve well in water or a weak base. This makes it difficult to 

test in the wetted-wall column experiment for the rate of absorption of carbon dioxide. 

Therefore, a sulfonate derivative ligand, nitrilotris(2-benzimidazolylmethyl-6-sulfonic 

acid) (NTBSA)127, is reacted with the same metal tetrafluoroborate hydrates to produce a 

soluble complex, Na[M(NTBSA)(H2O)]. Both Zn and Cu NTBSA metal complexes are 

soluble in water and weak base. According to Davy et al.119 ZnII complex with NTBSA, 

was able to catalyze the capture of CO2 at a rate extrapolated almost to an order of 
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magnitude of that of CA. Both ligands, NTB and NTBSA have three benzimidazole 

branches stemming out from a nitrogen atom to form a trigonal pyramidal shape. 

However, after their reaction with the metal tetrafluoroborate, the product becomes 

trigonal bipyramidal. The trigonal bipyramid creates a guarded pocket in the center of the 

molecule underneath the metal atom for CO2 binding. This coordination is important to 

mimic the CA active site. A coordinated water that ionizes to a coordinated hydroxide 

around neutral pH could be the key to rapid CO2 fixation. A hydrophobic pocket that can 

hold CO2 may activate the substrate toward hydration. The optimum distance should be 

about 3.2 Å from the zinc center.118 

In the crystallography of NTB catalysts, it was found that SiF6
2– is formed during 

the reaction using the metal tetrafluoroborates. Reaction of [Zn(H2O)6][BF4]2 and 

[Cu(H2O)6][BF4]2 with tris(2-benzimidazoylmethyl)amine (NTB) resulted in [Zn2(µ-

F)(NTB)2][SiF6][BF4] and [Cu(NTB)(H2O)]2[BF4]2[SiF6]•(CH3OH)3•(H2O)11, containing 

fluoride and SiF6
2− derived from BF4

−. Evidently, tetrafluoroborate is attacked by the 

electrophilic center and the glass reaction vessel, suggesting that BF4
− could compromise 

the stability of a catalyst. It is recommended to do the synthesis of [M(NTB)(H2O)][BF4]2 

and Na[M(NTBSA)(H2O)] in a plastic container. 

The X-ray crystal structure of the Zn NTB complex (Figure 3.4) shows a fluoride 

bridge between two zinc centers, resulting in a Zn‒F‒Zn moiety with a Zn‒F distance of 
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1.9692(7) Å. A crystallographic inversion center at the fluorine atom resulted in a 

180.00(4)° Zn–F–Zn bond angle. On the other hand, the Cu NTB catalyst formed the 

proposed structure, but still had the SiF6
2– form with it (Figure 3.5). The single-crystal X-

ray structure (Figure 5) shows that the compound is pseudo trigonal pyramidal at Cu with 

a bond angle of 106.34(6)° for N(5)-Cu(1)-N(7), 117.21(6)° for N(3)-Cu(1)-N(7) and 

129.58(6)° for N(5)-Cu(1)-N(3) with the bond distances of 2.0050(16) Ǻ for Cu1-N5, 

2.0122(16) Ǻ for Cu1-N3 and 2.0904(15) Ǻ for Cu1-N7 and the axial position is 

occupied by the water molecule with a bond distance of 1.9484(14) Ǻ for Cu1-O1.  

We were not able to crystallize NTBSA complexes for crystallography. It has 

been difficult to crystallize them due to the sodium cation. Attempts were made to react 

the complexes with tetramethylammonium chloride dissolved in methanol to get rid of 

the sodium cation for easier crystallization.  

 
Figure 3.3 Thermal ellipsoid plot of the X-ray crystal structure of 

[Zn(cyclen)(H2O)][SiF6]•2H2O 
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Figure 3.4 Thermal ellipsoid plot of the X-ray crystal structure of                                 

[Zn2(µ-F)(NTB)2][SiF6][BF4] 
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Figure 3.5 Thermal ellipsoid plot of the X-ray crystal structure of 

[Cu(NTB)(H2O)]2[SiF6][BF4]2 (H2O)9.29(CH3OH)3.35 
122 

3.3.1 Catalytic Activity 

 

Based on the carbonic anhydrase (CA) experiments conducted in the wetted-wall 

column as shown in Figure 3.6 (carbonic anhydrase in 1.9 M K2CO3 in wetted-wall 

column), baseline threshold was established. Using the 95% confidence interval, catalyst 



 

 

 77 

concentration needed in the wetted-wall column to see the change in the flux can be 

found out. Based on CA kcat and CA concentration used, method was demonstrated 

effective using CA. Though, with the concentrations for mimics here and the rate 

constants reported, we should have been able to see a difference in the flux with catalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Establishment of baseline in 1.9 M aqueous K2CO3 in wetted-wall column and 

demonstration of observed catalytic enhancement using carbonic anhydrase. Blue = 

control (no carbonic anhydrase); red = 2 × 10–3 mM carbonic anhydrase. 

 

Figure 3.7 (wetted-wall column measurements in 1.9 M aqueous K2CO3) shows 

the results of the experiment. Before testing catalysts, it was first necessary to establish 

the baseline experiment for the solvent alone and also to show good reproducibility. For 

all tests, a 1.9 M concentration of K2CO3 was used. The catalysts were tested at 50 °C 
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and 1.51 SLPM of total gas flow inlet flow was nominally set at 18% CO2.  

[Cu(teta)][BF4]2, [{Cu(cyclen)(H2O)}2(μ-CO3)][BF4]2, 

[Co(cyclen)(OH)(H2O][BF4]2•(CH3OH) and [Zn(cyclen)(H2O)][SiF6]•2H2O catalysts 

were tested. In following figure, they are identified as [Cu(teta)][BF4]2, 

[Cu(cyclen)][BF4]2, [Co(cyclen)][BF4]2 and [Zn(cyclen)][SiF6] respectively. From figure 

3.7, it is seen that out of the various catalysts tested, none of them show significant 

absorption. 

 
Figure 3.7 Wetted-wall column measurements in 1.9 M aqueous K2CO3. 

Furthermore, to improve the efficiency and decrease the amount of catalyst 

needed, a smaller-scale screening test was developed for CO2 capture. Figure 3.8 shows 

the pH drop method. Using a decrease in pH over time method a series of catalysts was 
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tested. Compared to the WWC method, 5 times lower catalyst and only a few hours of 

evaluation time are required. This, further saves time since the smaller amount of catalyst 

needed reduces time spent synthesizing complexes. 

 
 

Figure 3.8 pH drop experiment setup 

 

Figure 3.9 highlights the results obtained using the pH drop evaluation method. 

The complexes tested include [Cu(teta)][BF4]2, [{Cu(cyclen)(H2O)}2(μ-CO3)][BF4]2 

[Co(cyclen)(OH)(H2O][BF4]2•(CH3OH), [Zn(cyclen)(H2O)][SiF6]•2H2O, 

Na[Zn(NTBSA)(H2O)] and Na[Cu(NTBSA)(H2O)]. In (Figure 3.9), they are identified as 

Cu(teta), Cu(cyclen), Co(cyclen), Zn(cyclen), Zn(NTBSA) and Cu(NTBSA) respectively. 

However, regardless of species or testing method, as discussed above, the enhancement 

in the measured rate is insignificant here. Note that for carbonic anhydrase (at the same 

concentration) to show minimum activity increase in the WWC was also tested and so 
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establishes a threshold value for testing using pH drop. Based on these results, the crystal 

structures obtained and discussion with LLNL as part of project collaboration, it is 

believed that the lack of activity in the tested solvent, at least for the Zn(cyclen) complex, 

is related to a strong interaction of the solvent with catalyst. 

 

 
Figure 3.9 Results for catalyst screening experiment using pH drop over time method in 

1.9 M K2CO3. 

3.4 Conclusions 

Our group’s first targets were the Cu, Co and Zn cyclen mono- or di-aqua 

complexes with environmentally safe counteranions instead of perchlorates. However, it 

was found that substitution of other non-coordinating counteranions for perchlorate was 
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not trivial. Substitution of other weakly or non-coordinating counteranions including PF6
–

, Cl–, CH3COO–, NO3
– and CF3SO3

– showed strong coordination to the Zn center. None 

of the compounds were found to be catalytically active in the conditions conducive to 

post carbon capture when tested in a wetted-wall experiment. It was proposed that the 

lack of activity may be related to coordination of the solvent to the metal. A new 

laboratory setup was designed to reduce the screening time of catalysts for CO2 capture. 

Using a decrease in pH over time method a series of catalysts was tested. Compared to 

the WWC method, lower catalyst quantity and only a few hours of evaluation time are 

required. This further save time since the smaller amount of catalyst needed reduces time 

spent synthesizing complexes. 
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Table 3.1 Crystal data and structure refinement for [Cu(NTB)(H2O)]2[SiF6][BF4]2 

(H2O)9.29(CH3OH)3.35 

 

Formula C51.35H78B2Cu2F14N14O14.83Si 

Formula wt (amu) 1571.59 

T,K 90.0(2) 

Crystal system, Triclinic 

Space group P –1 

Z 1 

a, Å 10.8160(2) 

b, Å 13.7558(3) 

c, Å 14.0715(5) 

,(deg) 118.516(1) 

, (deg) 101.512(1) 

, (deg) 101.053(1) 

V, A3 1699.51(8) 

dcalc, Mg/m3 1.536 

Crystal size(mm3) 0.12 x 0.11 x 0.02 

F(000) 811 

Radiation CuKa (λ= 1.54178 Å) 

Monochromator Graded Multilayer Optics 

Absorption coef(mm–1) 1.916 

Diffractometer Bruker X8 Proteum 

Range (deg) 3.70 to 68.29 

Limiting indices –13 ≤ h ≤ 13 

 –16 ≤ k ≤ 16 

 –16 ≤ l ≤ 16 

Reflections collected 23902 

Independent Reflections 6114 [R(int) = 0.0368] 

Absorption correction Semi-empirical from equivalents 

Refinement method SHELXL-97 

Refinement method Full-matrix least-squares on F2 

Max. and min. transmission 0.963 and 0.774 

Data / restraints / parameters 6114 / 48 / 511 

Goodness-of-fit on F2 1.046 

Final R indices [I>2 σ (I)] R1 = 0.0346, wR2 = 0.0905 
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R indices (all data) R1 = 0.0370, wR2 = 0.0927 

Largest diff. peak and hole 0.525 and –0.400 e.A–3 
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Table 3.2 Bond Angle and Bond Distances for [Cu(NTB)(H2O)]2[SiF6][BF4]2 

(H2O)9.29(CH3OH)3.3 

 

Atoms Distance (Å) 

Cu(1)-O(1) 1.9484(14) 

Cu(1)-N(5) 2.0050(16) 

Cu(1)-N(3) 2.0122(16) 

Cu(1)-N(7) 2.0904(15) 

Cu(1)-N(1) 2.1154(15) 

O(1)-H(1O) 0.793(18) 

O(1)-H(2O) 0.791(18) 

N(1)-C(1) 1.488(2) 

N(1)-C(9) 1.489(2) 

N(1)-C(17) 1.491(2) 

N(2)-C(2) 1.343(2) 

N(2)-C(3) 1.382(3) 

N(3)-C(2) 1.316(2) 

N(3)-C(8) 1.393(2) 

N(4)-C(10) 1.339(2) 

N(4)-C(11) 1.383(3) 

N(5)-C(10) 1.322(2) 

N(5)-C(16) 1.388(2) 

N(6)-C(18) 1.348(2) 

N(6)-C(19) 1.387(3) 

N(7)-C(18) 1.317(2) 

N(7)-C(24) 1.391(2) 

C(1)-C(2) 1.491(3) 

C(3)-C(4) 1.391(3) 

C(3)-C(8) 1.399(3) 

C(4)-C(5) 1.378(3) 

C(5)-C(6) 1.405(3) 

C(6)-C(7) 1.380(3) 

C(7)-C(8) 1.390(3) 

C(9)-C(10) 1.488(3) 

C(11)-C(12) 1.392(3) 

C(11)-C(16) 1.403(3) 

C(12)-C(13) 1.381(3) 

C(13)-C(14) 1.402(3) 

C(14)-C(15) 1.382(3) 

C(15)-C(16) 1.397(3) 

C(17)-C(18) 1.493(3) 

C(19)-C(20) 1.392(3) 

C(19)-C(24) 1.405(3) 

C(20)-C(21) 1.378(3) 

C(21)-C(22) 1.407(3) 

C(22)-C(23) 1.380(3) 

C(23)-C(24) 1.392(3) 

B(1)-F(4) 1.370(3) 

B(1)-F(1) 1.378(3) 

B(1)-F(2) 1.401(3) 

B(1)-F(3) 1.419(3) 

Si(1)-F(8) 1.6775(11) 

Si(1)-F(8)#1 1.6776(11) 

Si(1)-F(7)#1 1.6790(12) 

Si(1)-F(7) 1.6790(12) 

Si(1)-F(9)#1 1.6929(10) 

Si(1)-F(9) 1.6929(10) 

O(2W)-H(1W2) 0.785(18) 

O(2W)-H(2W2) 0.793(18) 

O(3W)-H(1W3) 0.789(19) 

O(3W)-H(2W3) 0.817(18) 

O(4W)-H(1W4) 0.812(19) 

O(4W)-H(2W4) 0.794(19) 

O(5W)-H(1W5) 0.820(19) 

O(5W)-H(2W5) 0.82(2) 

O(1M)-C(1M) 1.398(4) 

O(2M)-C(2M) 1.43(2) 

O(2M)-H(1W6) 0.96(7) 

O(2M)-H(2W6) 1.04(7) 



 

 

 85 

O(6W)-H(1W6) 0.82(2) 

O(6W)-H(2W6) 0.81(2) 
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Atoms Angle (°) 

O(1)-Cu(1)-N(5) 98.20(6) 

O(1)-Cu(1)-N(3) 95.00(6) 

N(5)-Cu(1)-N(3) 129.58(6) 

O(1)-Cu(1)-N(7) 103.51(6) 

N(5)-Cu(1)-N(7) 117.21(6) 

N(3)-Cu(1)-N(7) 106.34(6) 

O(1)-Cu(1)-N(1) 175.71(6) 

N(5)-Cu(1)-N(1) 81.39(6) 

N(3)-Cu(1)-N(1) 82.09(6) 

N(7)-Cu(1)-N(1) 80.39(6) 

Cu(1)-O(1)-H(1O) 116.5(19) 

Cu(1)-O(1)-H(2O) 120.0(19) 

H(1O)-O(1)-H(2O) 111(2) 

C(1)-N(1)-C(9) 112.14(15) 

C(1)-N(1)-C(17) 111.15(14) 

C(9)-N(1)-C(17) 110.94(14) 

C(1)-N(1)-Cu(1) 109.06(11) 

C(9)-N(1)-Cu(1) 106.54(11) 

C(17)-N(1)-Cu(1) 106.74(11) 

C(2)-N(2)-C(3) 106.89(15) 

C(2)-N(2)-H(2N) 126.6 

C(3)-N(2)-H(2N) 126.6 

C(2)-N(3)-C(8) 105.87(15) 

C(2)-N(3)-Cu(1) 113.62(13) 

C(8)-N(3)-Cu(1) 140.18(13) 

C(10)-N(4)-C(11) 107.12(16) 

C(10)-N(4)-H(4N) 126.4 

C(11)-N(4)-H(4N) 126.4 

C(10)-N(5)-C(16) 105.92(15) 

C(10)-N(5)-Cu(1) 112.39(12) 

C(16)-N(5)-Cu(1) 141.12(13) 

C(18)-N(6)-C(19) 107.17(15) 

C(18)-N(6)-H(6N) 126.4 

C(19)-N(6)-H(6N) 126.4 

C(18)-N(7)-C(24) 106.13(15) 

C(18)-N(7)-Cu(1) 111.16(12) 

C(24)-N(7)-Cu(1) 141.32(13) 

N(1)-C(1)-C(2) 108.90(15) 

N(1)-C(1)-H(1A) 109.9 

N(1)-C(1)-H(1B) 109.9 

N(3)-C(2)-N(2) 112.97(17) 

N(3)-C(2)-C(1) 121.30(17) 

N(2)-C(2)-C(1) 125.71(17) 

N(2)-C(3)-C(4) 131.70(18) 

N(2)-C(3)-C(8) 106.12(16) 

C(4)-C(3)-C(8) 122.12(18) 

C(5)-C(4)-C(3) 116.62(19) 

C(4)-C(5)-C(6) 121.64(19) 

C(7)-C(6)-C(5) 121.5(2) 

C(6)-C(7)-C(8) 117.31(19) 

C(7)-C(8)-N(3) 131.07(17) 

C(7)-C(8)-C(3) 120.75(18) 

N(3)-C(8)-C(3) 108.15(16) 

C(10)-C(9)-N(1) 106.56(15) 

N(5)-C(10)-N(4) 112.79(16) 

N(5)-C(10)-C(9) 120.93(17) 

N(4)-C(10)-C(9) 126.26(17) 

N(4)-C(11)-C(12) 131.95(18) 

N(4)-C(11)-C(16) 105.91(16) 

C(12)-C(11)-C(16) 122.02(18) 

C(13)-C(12)-C(11) 116.72(19) 

C(12)-C(13)-C(14) 121.65(19) 

C(15)-C(14)-C(13) 121.75(19) 

C(14)-C(15)-C(16) 117.16(18) 

N(5)-C(16)-C(15) 131.10(17) 

N(5)-C(16)-C(11) 108.23(16) 

C(15)-C(16)-C(11) 120.64(17) 

N(1)-C(17)-C(18) 106.84(15) 

N(1)-C(17)-H(17A) 110.4 

N(1)-C(17)-H(17B) 110.4 

N(7)-C(18)-N(6) 112.64(17) 
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N(7)-C(18)-C(17) 120.56(16) 

N(6)-C(18)-C(17) 126.77(17) 

N(6)-C(19)-C(20) 132.43(18) 

N(6)-C(19)-C(24) 105.62(16) 

C(20)-C(19)-C(24) 121.89(18) 

C(21)-C(20)-C(19) 116.47(18) 

C(20)-C(21)-C(22) 122.14(19) 

C(23)-C(22)-C(21) 121.20(19) 

C(22)-C(23)-C(24) 117.37(18) 

N(7)-C(24)-C(23) 130.66(17) 

N(7)-C(24)-C(19) 108.43(16) 

C(23)-C(24)-C(19) 120.89(18) 

F(4)-B(1)-F(1) 112.4(2) 

F(4)-B(1)-F(2) 110.4(2) 

F(1)-B(1)-F(2) 108.7(2) 

F(4)-B(1)-F(3) 109.4(2) 

F(1)-B(1)-F(3) 108.1(2) 

F(2)-B(1)-F(3) 107.8(2) 

F(8)-Si(1)-F(8)#1 180 

F(8)-Si(1)-F(7)#1 89.87(7) 

F(8)#1-Si(1)-F(7)#1 90.13(7) 

F(8)-Si(1)-F(7) 90.13(7) 

F(8)#1-Si(1)-F(7) 89.87(7) 

F(7)#1-Si(1)-F(7) 180 

F(8)-Si(1)-F(9)#1 89.07(5) 

F(8)#1-Si(1)-F(9)#1 90.93(5) 

F(7)#1-Si(1)-F(9)#1 90.31(6) 

F(7)-Si(1)-F(9)#1 89.69(6) 

F(8)-Si(1)-F(9) 90.93(5) 

F(8)#1-Si(1)-F(9) 89.08(5) 

F(7)#1-Si(1)-F(9) 89.68(6) 

F(7)-Si(1)-F(9) 90.32(6) 

F(9)#1-Si(1)-F(9) 180 

H(1W2)-O(2W)-

H(2W2) 

107(2) 

H(1W3)-O(3W)-

H(2W3) 

108(3) 

H(1W4)-O(4W)-

H(2W4) 

109(3) 

H(1W5)-O(5W)-

H(2W5) 

98(3) 

H(1W6)-O(6W)-

H(2W6) 

105(4) 

H(1W7)-O(7W)-

H(2W7) 

104.5 
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Table 3.3 Crystal data and structure refinement for [Zn2(µ-F)(NTB)2][SiF6][BF4]  

Formula C25H24B0.50F0.50N6OSi0.50Zn 

Formula wt (amu) 518.82 

T, K 90.0(2) 

Z 4 

a, Å 11.8046(3) 

b, Å 11.8669(3) 

c, Å 13.4027(3) 

,(deg) 113.1730(10) 

, (deg) 93.0140(10) 

, (deg) 115.4790(10) 

V, Å3 1501.45(6) 

dcalc, Mg/m3 2.295 

F(000) 1072 

Crystal size (mm3) .12 x .10 x .01 

Radiation Cu Kα (λ= 1.54178 Å) 

Monochromator Graded Multilayer Optics 

Absorption coef   (mm-1) 3.104 

Diffractometer Bruker X8 Proteum 

 Range (deg) 3.72 to 68.66 

Limiting indices -14 ≤ h ≤ 14 

 -14 ≤ k ≤ 12 

 -16 ≤ l ≤ 15 

Reflections collected 21450 

Independent reflections 5092 (Rint = 0.0414) 

Absorption correction Semi-empirical from equivalents 

Refinement method SHELXL-97 

Refinement method Full-matrix least-squares on F2 

Data/restraints/parameters 5431 / 16 / 395 

Goodness-of-fit on F2 0.996 

Final R indices  

[l>2σ (l)] 

R1 = 0.0732, wR2 = 0.1793 

R indices (all data) R1 = 0.0705, wR2 = 0.1778 
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Table 3.4 Bond Angle and Bond Distances for [Zn2(µ-F)(NTB)2][SiF6][BF4]  

Atoms Distance (Å) 

Zn(1)-F(1) 1.9692(6) 

Zn(1)-N(5) 2.014(4) 

Zn(1)-N(1) 2.025(4) 

Zn(1)-N(3) 2.026(4) 

Zn(1)-N(7) 2.425(4) 

F(1)-Zn(1) 1.9693(6) 

N(1)-C(2) 1.320(6) 

N(1)-C(8) 1.390(6) 

N(2)-C(2) 1.340(7) 

N(2)-C(3) 1.370(7) 

N(3)-C(10) 1.332(6) 

N(3)-C(16) 1.401(6) 

N(4)-C(10) 1.332(6) 

N(4)-C(11) 1.386(7) 

N(5)-C(18) 1.323(6) 

N(5)-C(24) 1.386(6) 

N(6)-C(18) 1.337(6) 

N(6)-C(19) 1.383(6) 

N(7)-C(17) 1.465(6) 

N(7)-C(1) 1.462(6) 

N(7)-C(9) 1.469(6) 

C(1)-C(2) 1.497(7) 

C(3)-C(4) 1.397(7) 

C(3)-C(8) 1.408(7) 

C(4)-C(5) 1.374(8) 

C(5)-C(6) 1.410(8) 

C(6)-C(7) 1.386(7) 

C(7)-C(8) 1.396(7) 

C(9)-C(10) 1.499(7) 

C(11)-C(16) 1.405(7) 

C(11)-C(12) 1.402(7) 

C(12)-C(13) 1.379(8) 

C(13)-C(14) 1.406(8) 

C(14)-C(15) 1.380(7) 

C(15)-C(16) 1.386(7) 

C(17)-C(18) 1.497(7) 

C(19)-C(20) 1.392(7) 

C(19)-C(24) 1.401(7) 

C(20)-C(21) 1.376(7) 

C(21)-C(22) 1.408(7) 

C(22)-C(23) 1.371(7) 

C(23)-C(24) 1.392(7) 

Si(1)-F(4) 1.670(3) 

Si(1)-F(4) 1.670(3) 

Si(1)-F(2) 1.688(3) 

Si(1)-F(2) 1.688(3) 

Si(1)-F(3) 1.707(3) 

Si(1)-F(3) 1.707(3) 

O(1M1)-C(1M1) 1.424(7) 

B(1)- F(8) 1.301(7) 

B(1)-F(6) 1.306(7) 

B(1)-F(7) 1.325(7) 

B(1)-F(5) 1.338(7) 
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Atoms Angle (°) 

F(1)-Zn(1)N(5) 103.43(11) 

F(1)-Zn(1)-N(1) 102.78(11) 

N(5)-Zn(1)-N(1) 114.37(16) 

F(1)-Zn(1)-N(3) 102.98(11) 

N(5)-Zn(1)-N(3) 116.32(16) 

N(1)-Zn(1)-N(3) 114.45(16) 

F(1)-Zn(1)-N(7) 179.45(10) 

N(5)-Zn(1)-N(7) 76.91(15) 

N(1)-Zn(1)-N(7) 76.67(15) 

N(3)-Zn(1)-N(7) 77.22(15) 

Zn(1)-F(1)-Zn(1) 179.998(1) 

C(2)-N(1)-C(8) 106.3(4) 

C(2)-N(1)-Zn(1) 117.8(3) 

C(8)-N(1)-Zn(1) 135.8(3) 

C(2)-N(2)-C(3) 108.3(4) 

C(2)-N(2)-H(2) 125.8 

C(3)-N(2)-H(2) 125.9 

C(10)-N(3)-C(16) 105.8(4) 

C(10)-N(3)-Zn(1) 117.2(3) 

C(16)-N(3)-Zn(1) 135.6(3) 

C(10)-N(4)-C(11) 107.4(4) 

C(10)-N(4)-H(4) 126.3 

C(11)-N(4)-H(4) 126.3 

C(18)-N(5)-C(24) 106.4(4) 

C(18)-N(5)-Zn(1) 118.4(3) 

C(24)-N(5)-Zn(1) 135.1(3) 

C(18)-N(6)-C(19) 107.9(4) 

C(18)-N(6)-H(6) 126.1 

C(19)-N(6)-H(6) 126.1 

C(17)-N(7)-C(1) 113.8(4) 

C(17)-N(7)-C(9) 113.6(4) 

C(1)-N(7)-C(9) 113.1(4) 

C(17)-N(7)-Zn(1) 105.3(3) 

C(1)-N(7)-Zn(1) 105.4(3) 

C(9)-N(7)-Zn(1) 104.4(3) 

N(7)-C(1)-C(2) 109.4(4) 

N(7)-C(1)-H(1A) 109.8 

N(7)-C(1)-H(1B) 109.8 

N(1)-C(2)-N(2) 111.9(4) 

N(1)-C(2)-C(1) 123.8(4) 

N(2)-C(2)-C(1) 124.3(4) 

N(2)-C(3)-C(8) 105.5(4) 

C(4)-C(3)-C(8) 122.4(5) 

C(5)-C(4)-C(3) 116.8(5) 

C(4)-C(5)-C(6) 121.5(5) 

C(7)-C(6)-C(5) 121.7(5) 

C(6)-C(7)-C(8) 117.4(5) 

N(1)-C(8)-C(7) 131.8(4) 

N(1)-C(8)-C(3) 108.0(4) 

C(7)-C(8)-C(3) 120.2(4) 

N(7)-C(9)-C(10) 108.6(4) 

N(7)-C(9)-H(9A) 110 

N(7)-C(9)-H(9B) 110 

N(3)-C(10)-N(4) 112.8(4) 

N(3)-C(10)-C(9) 122.3(4) 

N(4)-C(10)-C(9) 124.8(4) 

N(4)-C(11)-C(16) 106.3(4) 

N(4)-C(11)-C(12) 131.6(5) 

C(16)-C(11)-C(12) 122.1(5) 

C(13)-C(12)-C(11) 115.9(5) 

C(12)-C(13)-C(14) 122.3(5) 

C(15)-C(14)-C(13) 121.5(5) 

C(14)-C(15)-C(16) 117.3(5) 

C(15)-C(16)-C(11) 121.0(5) 

C(15)-C(16)-N(3) 131.3(4) 

C(11)-C(16)-N(3) 107.7(4) 

N(7)-C(17)-C(18) 110.3(4) 

N(7)-C(17)-H(17A) 109.6 

N(7)-C(17)-H(17B) 109.6 

N(5)-C(18)-N(6) 111.9(4) 

N(5)-C(18)-C(17) 123.3(4) 

N(6)-C(18)-C(17) 124.6(4) 

N(6)-C(19)-C(20) 132.1(5) 

N(6)-C(19)-C(24) 105.5(4) 

C(20)-C(19)-C(24) 122.5(4) 

C(21)-C(20)-C(19) 116.5(5) 

C(20)-C(21)-C(22) 121.2(5) 

C(23)-C(22)-C(21) 122.3(5) 

C(22)-C(23)-C(24) 117.0(4) 
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N(5)-C(24)-C(23) 131.2(4) 

N(5)-C(24)-C(19) 108.3(4) 

C(23)-C(24)-C(19) 120.5(4) 

F(4)-Si(1)-F(4) 180 

F(4)-Si(1)-F(2) 89.63(15) 

F(4)-Si(1)-F(2) 90.37(15) 

F(4)-Si(1)-F(2) 90.37(15) 

F(4)-Si(1)-F(2) 89.63(15) 

F(2)-Si(1)- F(2) 180 

F(4)-Si(1)-F(3) 90.68(14) 

F(4)-Si(1)-F(3) 89.32(14) 

F(2)-Si(1)-F(3) 89.99(13) 

F(2)-Si(1)-F(3) 90.01(13) 

F(4)-Si(1)-F(3) 89.32(14) 

F(4)-Si(1)-F(3) 90.68(14) 

F(2)-Si(1)-F(3) 90.01(13) 

F(2)-Si(1)-F(3) 89.99(13) 

F(3)-Si(1)-F(3) 180 

F(8)-B(1)-F(6) 107.1(7) 

F(8)-B(1)-F(7) 113.3(7) 

F(6)-B(1)-F(7) 109.7(8) 

F(8)-B(1)-F(5) 100.9(8) 

F(6)-B(1)-F(5) 111.7(7) 

F(7)-B(1)-F(5) 113.7(7) 
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Table 3.5 Crystal Data and Structure Refinement for [Zn(cyclen)(H2O)][SiF6]•2H2O 

 

 

 

 

 

Formula C8 H26 F6 N4 O3 Si Zn 

Formula wt (amu) 433.79 

T, K 90.0(2) 

Crystal system Monoclinic 

Space group P21/c 

Z 4 

a, Å 8.0122(1) 

b, Å 14.1608(2) 

c, Å 14.7302(2) 

α,(deg) 90 

β, (deg) 96.1924(5) 

γ, (deg) 90 

V, Å3 1661.52(4) 

dcalc, Mg/m3 1.734 

F(000) 896 

Crystal size (mm3) 0.26 × 0.17 × 0.10 

Radiation Mo Kα (λ = 0.7107 Å) 

Monochromator Graphite 

Absorption coef (mm−1) 1.628 

Diffractometer NoniusKappaCCD 

range (deg) 2 to 27.47 

Limiting indices −10 ≤ h ≤ 10 

 −18 ≤ k ≤ 18 

 −19 ≤ l ≤ 19 

Reflections collected 41951 

Independent reflections 3809 [R(int) = 0.0360] 

Absorption correction Semi-empirical from equivalents 

Refinement method Full-matrix least-squares on F2 

Refinement method SHELXL-97 

Data/restraints/parameters 3809 / 9 / 229 

Goodness-of-fit on F2 1.099 

Final R indices [I>2σ(l)] R1 = 0.0211, wR2 = 0.0502 

R indices (all data) R1 = 0.0243, wR2 = 0.0514 

Largest diff. peak 

and hole 

0.348 and −0.288 e.Å3 
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Table 3.6 Bond Distances (Å) and Bond Angles (°) for [Zn(cyclen)(H2O)][SiF6]•2H2O 

 

Atoms Distance (Å) 

Zn(1)–O(1) 1.9916(10) 

Zn(1)–−N(1) 2.1181(12) 

Zn(1)–N(3) 2.1263(12) 

Zn(1)–N(4) 2.1322(12) 

Zn(1)–N(2) 2.1519(12) 

O(1)–H(1O) 0.822(15) 

O(1)–H(2O) 0.816(15) 

N(1)–C(1) 1.4778(19) 

N(1)–C(8) 1.4807(18) 

N(2)–C(2) 1.4750(18) 

N(2)–C(3) 1.4881(17) 

N(3)–C(5) 1.4793(18) 

N(3)–C(4) 1.4796(18) 

N(4)–C(6) 1.4796(18) 

N(4)–C(7) 1.483(2) 

C(1)–C(2) 1.5208(19) 

C(3)–C(4) 1.519(2) 

C(5)–C(6) 1.518(2) 

C(7)–C(8) 1.516(2) 

Si(1)–F(5) 1.6540(9) 

Si(1)–F(6) 1.6872(9) 

Si(1)–F(4) 1.6910(9) 

Si(1)–F(1) 1.6970(9) 

Si(1)–F(2) 1.7029(9) 

Si(1)–F(3) 1.7066(9) 

O(1W)–H(1W1) 0.806(16) 

O(1W)–H(2W1) 0.797(16) 

O(2W)–H(1W2) 0.777(17) 

O(2W)–H(2W2) 0.800(16) 

Atoms Angle (°) 

O(1)–Zn(1)–N(1) 109.32(4) 

O(1)–Zn(1)–N(3) 111.85(4) 

N(1)–Zn(1)–N(3) 138.82(4) 

O(1)–Zn(1)–N(4) 109.24(4) 

N(3)–Zn(1)–N(4) 83.17(5) 

O(1)–Zn(1)–N(2) 112.24(4) 

N(1)–Zn(1)–N(2) 82.50(4) 

N(3)–Zn(1)–N(2) 82.54(4) 

N(4)–Zn(1)–N(2) 138.51(5) 

Zn(1)–O(1)–H(1O) 108.4(13) 

Zn(1)–O(1)–H(2O) 102.4(13) 

H(1O)–O(1)–H(2O) 103.6(17) 

C(1)–N(1)–C(8) 114.55(11) 

C(1)–N(1)–Zn(1) 108.87(8) 

C(8)–N(1)–Zn(1) 105.24(9) 

C(2)–N(2)–C(3) 113.82(11) 

C(2)–N(2)–Zn(1) 105.77(8) 

C(3)–N(2)–Zn(1) 108.18(8) 

C(5)–N(3)–C(4) 113.40(11) 

C(5)–N(3)–Zn(1) 107.77(9) 

C(4)–N(3)–Zn(1) 104.97(8) 

C(6)–N(4)–C(7) 114.26(12) 

C(6)–N(4)–Zn(1) 105.18(8) 

C(7)–N(4)–Zn(1) 107.77(9) 

N(1)–C(1)–C(2) 110.42(11) 

N(2)–C(2)–C(1) 108.85(11) 

N(2)–C(3)–C(4) 109.95(11) 

N(3)–C(4)–C(3) 109.06(11) 

N(3)–C(5)–C(6) 110.50(12) 

N(4)–C(6)–C(5) 108.69(12) 

N(4)–C(7)–C(8) 110.59(12) 

N(1)–C(8)–C(7) 108.72(12) 

F(5)–Si(1)–F(6) 91.50(5) 

F(5)–Si(1)–F(4) 90.92(5) 

F(6)–Si(1)–F(4) 177.26(5) 

F(5)–Si(1)–F(1) 91.57(5) 

F(6)–Si(1)–F(1) 90.81(5) 

F(4)–Si(1)–F(1) 90.41(5) 

F(5)–Si(1)–F(2) 91.72(5) 

F(6)–Si(1)–F(2) 89.29(5) 

F(4)–Si(1)–F(2) 89.36(4) 

F(1)–Si(1)–F(2) 176.70(5) 

F(5)–Si(1)–F(3) 179.52(5) 

F(6)–Si(1)–F(3) 88.95(4) 

F(4)–Si(1)–F(3) 88.64(4) 

F(1)–Si(1)–F(3) 88.24(4) 

F(2)–Si(1)–F(3) 88.46(4) 



 

 

 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(1W1)–O(1W)–H(2W1) 106(2) 

H(1W2)–O(2W)–H(2W2) 111(2) 
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Chapter 4 Catalytic activity of [Zn(cyclen)(H2O)]•2H2O for Industrial Carbon 

Capture  

 

 

4.1 Introduction 

The enhancement of CO2 absorption using a catalyst is a critical component to 

reduce the capital cost of CO2 capture.84 Specifically, an effective catalyst will increase 

the CO2 hydration rate and will decrease the size of the required absorber tower needed 

compared to the uncatalyzed reaction. Carbonic anhydrase enzymes being 

metalloproteins are susceptible to thermal denaturation128 and are therefore expected to 

lose activity at harsh conditions associated with industrial processes such as higher 

regeneration temperatures (above 100 °C), high pH and high ionic environment found in 

industrial conditions, where both denaturation and peptide hydrolysis can occur.129 While 

carbonic anhydrases cannot be employed under industrial conditions despite their 

unparalleled catalytic activity, they serve as a template for development of biomimetic 

catalysts for carbon capture. Metal, particularly zinc, 1,4,7,10-tetraazacyclododecane 

(cyclen) perchlorate complexes have been reported to catalyze CO2 hydration.123,118,119 

Based on these results, we became interested in exploring the chemistry of [Zn(cyclen)]2+ 

with SiF6
2− anion in order to avoid the potentially explosive perchlorate salts. 

[Zn(cyclen)(H2O)]SiF6•2H2O was synthesized and evaluated under rigorous conditions 

resembling those in an industrial setting, that is, with amine and carbonate. Previous 
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studies of small molecule carbonic anhydrase mimics were usually evaluated only under 

the mild, physiologically relevant conditions optimal for carbonic anhydrase.118,130,131 

While the design of improved small molecule carbonic anhydrase mimics for carbon 

capture is an important endeavor,119,130,131,132,133,134 it is equally important to ensure that 

this class of compounds will remain functional during industrial use. In order to 

circumvent the potential limitations of carbonic anhydrase and other enzymatic catalysts, 

here we explore the stability and activity of a small molecule zinc cyclen, which will be 

the focus of this work.  

The overall rate constant, 𝑘𝑜𝑏𝑠, for the absorption of CO2 in an amine or 

carbonate/bicarbonate solution can be expressed with the below equation: 

𝑘𝑜𝑏𝑠 = 𝑘𝑎𝑚𝑖𝑛𝑒[amine] + 𝑘𝑂𝐻[OH−] +  𝑘𝐻2𝑂  

In a carbonate/bicarbonate solution, the amine component is zero and the reaction 

is driven purely by the hydroxide and the hydrolysis of water. The 𝑘𝑂𝐻 term has a fast 

rate constant but is limited by the concentration of OH− in solution, <1 × 103 M, under 

CO2 capture conditions (pH < 11).  𝑘𝐻2𝑂 is so small that it can be excluded in 

carbonate/bicarbonate solutions at pH values above 10. When monoethanolamine (MEA) 

or another primary/secondary amine is present the  𝑘𝐻2𝑂 can generally be excluded under 

all conditions.  
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The addition of catalyst to the solution allows a further term to be included in the 

model as expressed below: 

𝑘𝑜𝑏𝑠 = 𝑘𝑎𝑚𝑖𝑛𝑒[amine] + 𝑘𝑂𝐻[OH−] +  𝑘𝐻2𝑂 +  𝑘𝑐𝑎𝑡[cat] 

 

The first observation of note is that the overall rate constant for MEA, or any 

primary or secondary amine, is primarily driven by the extremely high concentrations of 

amine used in CO2 capture solvents. This makes it extremely challenging to find a 

catalyst capable of enhancing the rate for primary amine absorption. Therefore, the 

application of catalyst to carbonate/bicarbonate or tertiary amines is a more reasonable 

goal. The use of tertiary amines removes the ability of the amine to react with CO2 

directly, therefore simplifying the solution speciation, and any enhancement will most 

likely come from the direct reaction of CO2 with the catalyst complexes, similar to the 

proposed mechanism for CO2 hydration by carbonic anhydrase. As a result, methyl 

diethanolamine (MDEA) and K2CO3 solution were chosen to study the catalytic activity. 

To determine the catalytic effect of the catalyst under pseudo-first-order 

conditions, the reaction rate constant 𝑘𝑐𝑎𝑡 is determined by subtracting the reaction rate in 

the absence of enzyme, 𝑘𝑜 from the total reaction rate 𝑘𝑜𝑏𝑠 using below equation.135,136 

𝑘𝑜𝑏𝑠 = 𝑘0 + 𝑘𝑐𝑎𝑡[cat] 
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Where 𝑘𝑜 is the reaction rate without enzyme, 𝑘𝑐𝑎𝑡 is the reaction rate constant of 

enzyme solution, and [cat] is the catalyst solution concentration. The overall mass 

transfer of the system is approximated using a pseudo-first-order approximation, where 

the catalyst contribution is bundled into the 𝑘𝑜𝑏𝑠 term. To determine the rate constant of 

the overall reaction, 𝑘𝑜𝑏𝑠 is determined from the slope of the plot of rate of reaction [s−1] 

vs. concentration of catalyst [M]. The slope of the graph gives the rate constant assuming 

a linear relationship is satisfied.  

Using the pH-drop method105, rate constants for CO2 hydration in the presence of 

[Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 and 0.5000 M MDEA were measured: 

𝑘𝑜𝑏𝑠 = 4.7374 M−1 s−1 in 0.1000 M K2CO3 and 0.5138 M−1 s−1 in 0.5000 M MDEA. 

These rate constants are lower than what was expected from the stopped-flow 

measurements, probably because of bicarbonate coordination to the Zn active site in these 

systems. Thus, it became necessary to test the catalysis of benchmark enzyme carbonic 

anhydrase under similar conditions to determine the threshold 𝑘𝑜𝑏𝑠 value. Carbonic 

anhydrase has the highest known rate constant of 106 M–1 s–1 at ambient temperatures and 

physiological pH137,138,139 but in our system (CAER pH drop screening) 𝑘𝑜𝑏𝑠 came out to 

be 438797 M−1 s−1. While zinc cyclen displays significantly slower CO2 hydration 

kinetics118 than carbonic anhydrase, on a per mass basis zinc cyclen has only a 5-fold 
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lower activity than carbonic anhydrase due to its lower molecular weight (455 Da vs 

30000 Da). Additionally, the cyclen ligand is commercially available in large scale.140 

4.2 Experimental  

4.2.1 Materials 

 Potassium carbonate and methyl diethanolamine were purchased from Acros-

Fisher. N2, CO2, 14% CO2 in N2 (span gas) was purchased from Scott Gross. Carbonic 

anhydrase NS81239 (batch PPE31476) with 38.0 g/L concentration was generously 

provided by Novozymes North America, Inc. 

4.2.2 Setup for faster catalyst screening 

 

The reactions were carried out in a 4-necked 250 cm3 round-bottom flask 

equipped with a pH meter. 14 vol % CO2 gas in N2 was supplied through a mass flow 

controller Aalborg) at 1.0 L/min. Temperature was monitored throughout the reaction 

with experiments conducted at room temperature. Reaction progress was followed by 

monitoring the change in pH with time, as CO2 was absorbed. Initial pH of each solution 

was adjusted to the same as that without catalyst solution by addition of KOH. 

4.3 Results and Discussion 

 

In order to determine catalysis of reaction by [Zn(cyclen)(H2O)]SiF6•2H2O, 

concentrations of [Zn(cyclen)(H2O)]SiF6•2H2O ranging from 5.00 mM to 50.00 mM 
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were tested in 0.1000 M K2CO3 and 0.5000 M MDEA. 0.1000 M K2CO3 was chosen 

because of low concentration of K2CO3 to observe catalytic difference. 0.5000 M MDEA 

was chosen as rate of reaction was very fast in 0.1000 M MDEA to observe any catalytic 

difference. The rates for 0.5000 M and 1.000 M MDEA were almost the same consistent 

with a reaction that is limited by CO2 concentration, and thus independent of amine. 

Figures 4.1−4.3 depict catalysis by [Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 

with 𝑘𝑜𝑏𝑠  =  4.7374 M−1s−1. As can be seen from Figure 4.1, pH drop rate increases with 

the increasing [Zn(cyclen)(H2O)]SiF6•2H2O concentration from 25.00 mM to 50.00 mM 

in 0.1000 M K2CO3. For the pH-drop experiments of each buffer solution, the 

concentration of bicarbonate species has been calculated using Henderson-Hasselbalch 

relation for every data point using pKa value. These values have been plotted against time 

for 0.1000 M K2CO3 (Figure 4.2).  As can be seen in Figure 4.2, as the catalyst 

concentration is increased, a rate enhancement of bicarbonate formation is observed. A 

maximum [HCO3]
–, corresponding to complete conversion to bicarbonate, is observed at 

ca. 10 min regardless of catalyst concentration. 𝑘𝑜𝑏𝑠 has been calculated at pH = pKa of 

the solvent. 

Figures 4.4–4.5 depict catalysis by 50.00 mM [Zn(cyclen)(H2O)]SiF6•2H2O in 

0.1000 M K2CO3 when started at pH = 8.4. As can be seen from the Figure 4.1, that no 

measurable difference can be observed between control experiment and the catalyst 
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experiment from pH = 11.5 to pH = 10 whereas considerable catalytic activity can be 

observed at pH = 8.5. This result is consistent with the hydroxide-dominated reaction and 

is presumably due to the reduced contribution from [OH–] at lower pH. Thus, a separate 

experiment was conducted starting at pH = 8.4 (Figures 4.4−4.5) to confirm this. As can 

be seen in Figure 4.4, a measurable pH difference can be observed between the control 

experiment and the 50.00 mM [Zn(cyclen)(H2O)]SiF6•2H2O at starting pH itself, thus 

proving that considerable effect due to catalyst can be observed at lower pH due to 

decreased role of OH− concentration. 

Figures 4.6−4.8 depict catalysis by [Zn(cyclen)(H2O)]SiF6•2H2O in 0.5000 M 

MDEA, with, 𝑘𝑜𝑏𝑠  = 0.5138 M−1 s−1. As can be seen from Figure 4.6, pH drop rate 

increases with the increasing catalyst concentration from 5.00 mM to 30.00 mM. As 

noted above, the rates are very similar above pH 10, consistent with a hydroxide-

dominated reaction. Again, the concentration of bicarbonate species was calculated using 

the Henderson-Hasselbalch relation as shown in Figure 4.7. 𝑘𝑜𝑏𝑠 has been calculated at 

pH = pKa of the solvent as shown in Figure 4.8.  
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Figure 4.1 pH vs. time for [Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 

 

 
 

Figure 4.2 Bicarbonate concentration vs. time for [Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 

M K2CO3 
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Figure 4.3 Rate constant for catalysis of bicarbonate formation by 

[Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 at pH = pKa = 10.33  

 

 

 
 

Figure 4.4 pH vs. time of 50.00 mM [Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 at 

pH 8.4 
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Figure 4.5 Bicarbonate concentration vs. time for 50.00 mM 

[Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 

 

 

 

  
 

 

Figure 4.6 pH vs. time for [Zn(cyclen)(H2O)]SiF6•2H2O in 0.5000 M MDEA 
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Figure 4.7 Bicarbonate vs. time for [Zn(cyclen)(H2O)]SiF6•2H2O in 0.5000 M MDEA 

 

 

   
 

Figure 4.8 Rate constant for catalysis of bicarbonate formation by 

[Zn(cyclen)(H2O)]SiF6•2H2O in 0.5000 M MDEA at pH = pKa = 8.68 
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In catalytic reactions, it is critical to understand the fate of the catalyst. A 

precipitate formed as the reaction progressed during experiments. The precipitate was 

immediately noted upon the introduction of CO2 gas and the amount increased as the 

reaction progressed. TGA and IR were not consistent with the starting zinc compound, 

ZnSiF6•6H2O (Figures 4.9, 4.10 and 4.11). IR (Figure 4.10) analysis of the precipitate 

suggested that it is a simple inorganic zinc salt, most likely a fluoride or silicate. IR 

spectra did not support the presence of carbonate, which would be evidenced by bands at 

1440 cm−1, 1335 cm−1, 744 cm−1 and 729 cm−1. IR spectra did suggest Si−O (1057.76 

cm−1) and Si−F bond (734.04 cm−1) but not a simple, binary zinc silicate. The precipitate 

was analyzed by powder XRD and was found to be K2SiF6 (Figure 4.12). In order to 

identify the Zn species present at the end of the reaction and also to determine the yield 

of K2SiF6, a reaction mixture of 0.1000 M K2CO3 and [Zn(cyclen)(H2O)][SiF6] after the 

reaction with CO2 was analyzed. 1H NMR confirmed the presence of intact 

[Zn(cyclen)(H2O)]2+. This suggests that [Zn(cyclen)(H2O)]2+, not a decomposition 

product, is the active catalyst. The results also demonstrate that the tetradentate cyclen 

ligand is retained during the reaction. This is an important aspect of catalyst design for 

the process of interest. The observation that no zinc carbonate was formed suggests that 

the cyclen ligand can prevent the precipitation of zinc carbonate. Loss of zinc from the 

catalyst active site is a potential route to catalyst inactivation in high CO3
2− 
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concentrations. CO3
2− can react with Zn2+ to form insoluble ZnCO3 in water. 

Additionally, the reaction between CO2 and water in carbonate solvent yields two HCO3
− 

molecules, leading to two times higher HCO3
− concentrations in carbonate solvents 

during CO2 loading than in other (e.g. amine) solvents. Accumulation of high 

concentrations of bicarbonate likely increases the rate of the reverse reaction. Since the 

measured catalytic rate constants were lower than what would be expected for 

[Zn(cyclen)(H2O)]SiF6•2H2O in 0.5000 M MDEA and 0.1000 M K2CO3, bicarbonate 

coordination to the Zn(II) active site may be the cause. More specifically, while the 

complex showed a reasonable 𝑘𝑜𝑏𝑠 of 2000 L/mol that was consistent with previously 

reported results using stopped-flow spectrometry kinetics testing, the activity was much 

lower when evaluated under conditions more consistent with CO2 capture reaction 

(CAER pH drop screening). It is proposed that the lack of activity is related to 

coordination of the solvent to the metal. Previous complexes have shown problems with 

unwanted coordination of carbonate as well as other nucleophiles (e.g., counteranions) in 

solution by crystallographic analysis of isolated complexes. Thus, strong coordination of 

newly formed bicarbonate species would prevent active site regeneration (inability to 

reform hydroxyl species on the metal). Moreover, as the measured catalytic rate constant 

was lower than what would be expected for carbonic anhydrase in 0.1000 M K2CO3, it 

strengthens the fact that bicarbonate coordination to the Zn(II) active site is the cause. 
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This would explain why [Zn(cyclen)(H2O)][SiF6] and similar catalysts show lower 

activity when evaluated using the CAER pH drop method. 

4.3.1 Calculation of Ksp of K2SiF6 

Solubility of K2SiF6 at 20 ºC is 1.129g/1000g in water141 or 0.00513 M 

K2SiF6 dissociates upon dissolution: 

K2SiF6 (s) ⇌ 2 K+ (aq) + SiF6
2- (aq) 

The Ksp expression is: 

Ksp = [K+]2 [SiF6
2−] 

Ksp = (0.01025)2(0.00513) = 5.4 × 10−7 

4.3.2 Calculation of solubility of K2SiF6 in 0.1000 M K2CO3 

K2SiF6 (s) ⇌ 2 K+ (aq) + SiF6
2- (aq) 

 
 K2SiF6(s) 2 K+(aq) SiF6

2−(aq) 

Initial concentration All Solid 0.2000 M 0 

Change in concentration −x 2x x 

Equilibrium 

concentration 
−x 0.2 + 2x x 

 

Ksp = [K+]2 [SiF6
2−] 

 

5.4 × 10−7 = [0.2 + 2x]2 [x] 

5.4 × 10−7 ≈ [0.2]2 [x] for very small x 
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x = 0.0000135 M 

Thus, solubility of K2SiF6 is decreased in the presence of K2CO3 leading to more 

crashing out of K2SiF6 in 0.1000 M K2CO3 solution. 

This left the question of precipitate yield to address. Using the same experimental 

conditions above, K2SiF6 formed at the end of the reaction was filtered, dried and 

weighed, in 90% yield. This suggests that a nearly quantitative salt metathesis reaction 

occurs, replacing SiF6
2– with CO3

2−.  

 

Figure 4.9 Thermograms (under air) of ZnSiF6
.6H2O and precipitate  
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Figure 4.10 IR spectrum of precipitate 

 

 

 
 

Figure 4.11 IR spectrum of ZnSiF6•2H2O 
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Figure 4.12 Powder XRD of K2SiF6 

 

 

            In order to compare the threshold value of the catalyst’s rate constant, carbonic 

anhydrase was run. Initially, concentrations of carbonic anhydrase ranging from 5.00 µM 

to 45.00 µM were tested in 0.1000 M K2CO3 to determine the 𝑘𝑜𝑏𝑠 (Figures 4.13–4.14), 

but these concentrations were too high to observe any difference in catalysis. To 

determine the 𝑘𝑜𝑏𝑠, concentrations of carbonic anhydrase ranging from 0.10 µM to 0.75 

µM were tested in 0.1000 M K2CO3 (Figures 4.15–4.17). Figure 4.17 shows the graph to 

calculate the rate constant; 𝑘𝑜𝑏𝑠 = 438797 M−1s−1. Different concentrations of 

[Zn(cyclen)(H2O)]SiF6•2H2O were run in 0.1000 M K2CO3 without the addition of KOH 

to determine the 𝑘𝑜𝑏𝑠 in this system (Figures 4.18–4.20). Figure 4.20 shows the graph to 
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calculate the rate constant; 𝑘𝑜𝑏𝑠 = 12.561 M−1s−1. This is improved from the 𝑘𝑜𝑏𝑠 = 

4.7374 M−1s−1 found when the KOH is added in the system.  

 
 

Figure 4.13 pH vs. time for carbonic anhydrase in 0.1000 M K2CO3 

 

 

 
 

Figure 4.14 Bicarbonate concentration vs. time for carbonic anhydrase in 0.1000 M 
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Figure 4.15 pH vs. time for carbonic anhydrase in 0.1000 M K2CO3 

 

 

 

    

 
                     

Figure 4.16 Bicarbonate concentration vs. time for carbonic anhydrase in 0.1000 M 

K2CO3 
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Figure 4.17 Rate constant for catalysis of bicarbonate formation by carbonic anhydrase in 

0.1000 M K2CO3 at pH = pKa = 10.33 

 

 

 
                                 

                   

  

                    

 

Figure 4.18 pH vs. time for [Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 
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Figure 4.19 Bicarbonate concentration vs. time for [Zn(cyclen)(H2O)]SiF6•2H2O in 

0.1000 M K2CO3 

 

 

   
 

Figure 4.20 Rate constant for catalysis of bicarbonate formation by 

[Zn(cyclen)(H2O)]SiF6•2H2O in 0.1000 M K2CO3 at pH = pKa = 10.33 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20

[H
C

O
3]

-

Time (min)

0.1000 M K₂CO₃

0.1000 M K₂CO₃ + 5.00 mM 
Zncyclen

0.1000 M K₂CO₃ + 15.00 mM 
Zncyclen

0.1000 M K₂CO₃ + 25.00 mM 
Zncyclen

y = 12.561x + 0.2966
R² = 0.9895

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.005 0.01 0.015 0.02 0.025 0.03

R
at

e
 c

o
e

ff
ic

ie
n

t 
[1

/s
]

Conc. [Zn(cyclen)(H2O)]SiF6•2H2O [M]



 

 

 116 

4.4 Conclusions 

Zinc cyclen is one of the most stable carbonic anhydrase mimics because the 

cyclen ligand is a highly stable macrocyclic chelator as described by the chelate effect.142 

The activity of Zn cyclen is lower when evaluated under conditions more consistent with 

CO2 capture reaction (CAER pH-drop screening). The determined value using the assay 

here was 1000 times lower than that determined using stopped-flow kinetic measurement 

in 0.1 M AMPSO buffer.  While stopped-flow spectrophotometry enables the direct 

measurement of the overall reaction rate, stopped flow is most accurate when using 

moderate buffer concentrations and pH ranges, and when the buffer and indicator have 

similar pKa values.143 These rate constants are lower than what was expected from the 

stopped-flow measurements, probably because of bicarbonate coordination to Zn active 

site in these systems. The Zn center is highly electron deficient and therefore easily 

coordinates anions, inhibiting the ability to reform hydroxyl species on the metal. The 

cationic complex attracts anionic species such as bicarbonate into its secondary 

coordination sphere to maintain charge balance which drives the equilibrium to the 

bicarbonate-bound species. Thus, it became necessary to test the catalysis of benchmark 

enzyme carbonic anhydrase under similar conditions to determine the threshold 𝑘𝑜𝑏𝑠 

value. Carbonic anhydrases catalyze the hydration of carbon dioxide at ambient 

temperatures and physiological pH with the highest known rate constant = 106 M–1 s–1 
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137,138,139, but in our system (CAER pH drop screening) 𝑘𝑜𝑏𝑠 came out to be 438797 M–1 

s–1. The lower catalytic rate constant for carbonic anhydrase in 0.1000 M, similar to Zn-

cyclen, strengthens the conjecture that at high bicarbonate concentrations, HCO3
– binding 

to the Zn(II) active site slows catalysis by inhibiting bicarbonate displacement with water 

to regenerate the active species. Therefore, routes for circumventing inhibition of carbon 

capture catalysts are broadly required.  Strong bicarbonate and carbonate inhibition have 

been observed for some isoforms of carbonic anhydrase144,145 and may represent a 

considerable challenge in catalyzed CO2 capture. However, the fact that some carbonic 

anhydrase isoforms are inhibited to a lesser extent than others144 suggests that carbonic 

anhydrase mimics might be designed to minimize bicarbonate and carbonate inhibition. 

While some variants of carbonic anhydrase minimize bicarbonate inhibition by protecting 

the active site with a hydrophobic pocket, other approaches to catalyst design may 

include using an anionic ligand to repel bicarbonate and other potential anionic inhibitors. 

The complexes containing anionic ligands that donate electron density into the 

metal center may serve to remove anionic bicarbonates/carbamates from the secondary 

coordination sphere and away from the metal center, thereby facilitating 

bicarbonate/anion dissociation and increasing CO2 hydration rates. The electron donation 

facilitates the dissociation of the formed bicarbonate, typically the rate-limiting step, 

regenerating the catalytically active species under basic conditions.146 We propose the 
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above as key features in achieving catalytic rates large enough to contribute to the overall 

mass transfer in concentrated primary amine-based solvents. Catalytic activity of some of 

the anionic ligands will be discussed in next chapter. 
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Chapter 5 Synthesis and Catalysis of Anionic Complexes 

 

5.1 Introduction 

 

The development and study of carbonic anhydrase mimics for CO2 hydration has 

been explored by several research groups113, 118, 147 but there are no carbonic anhydrase 

mimics that are currently employed in power plants for post-combustion absorption of 

CO2. Utilization of homogeneous catalysts for post-combustion carbon capture is plagued 

with difficult challenges, such as water solubility, water and air stability, and redox 

inertness. Direct structural mimics tend to dimerize, strongly bind anions, and perform 

undesirable side reactions due to the lack of a secondary coordination environment to 

control the reaction process.146  

Significant catalytic and mechanistic work has been performed on [Zn(cyclen)] 

system, one of the most efficient carbonic anhydrase mimics;118 however, their activities 

are still not comparable to benchmark carbonic anhydrase. As described in Chapter 4, we 

observed [Zn(cyclen)] complex to be even less active under conditions similar to 

industrial carbon capture. Under similar conditions, activity of carbonic anhydrase was 

found to be significantly lower too. This is due to inhibition by strong coordination of 

anions that block the active site. This strong affinity for anion coordination inhibits 

bicarbonate dissociation, thereby inhibiting catalyst activity. Bicarbonate dissociation is 

believed to be the rate-limiting step and largest barrier for catalyst to overcome. This 
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result suggests that ligand environments that donate electron density into the metal center 

will facilitate bicarbonate dissociation and increase the rate of CO2 hydration. The above 

criteria guided the choice to select new catalyst candidates.  

The testing of homogeneous CO2 hydration catalysts has mostly been reported in 

dilute tertiary amine or carbonate salt solutions in the presence of a concentrated CO2 

stream in stopped-flow conditions. These experiments are a far reach from conditions 

observed in post-combustion carbon capture, which typically utilize concentrated amine-

based or carbonate solvents and a dilute CO2 stream (14%). Upon identification of the 

potential CO2 hydration catalysts, we tested their catalytic activities under conditions 

similar to post-combustion carbon capture via pH drop method. Reported herein is the 

synthesis and analysis of catalysts comprised of zinc centers with electron-donating, 

anionic ligands. 

5.2 Experimental  

5.2.1 Materials  

 

All reactions were run under a nitrogen atmosphere with constant stirring. Zinc acetate 

tris(pyrazolyl)borate complex was prepared by using known procedures.147-148 CDCl3, 

acetone-d6, DMSO-d6 and D2O (Cambridge Isotopes) and reagent-grade solvents 

(acetone, methanol, ethanol, diethyl ether, dichloromethane, THF) were used as they 
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were obtained commercially. Acetonitrile was dried and distilled over magnesium sulfate. 

Potassium carbonate (purity > 99%), Zn(BF4)2•xH2O, were procured from Sigma-

Aldrich. Pyridine-2,6-dicarbonyl chloride, 2,6-dimethylaniline, triethylamine, diethyl 

zinc (Acros) and other reagents were obtained from the indicated commercial sources and 

used without purification. Span gas (14% CO2 in N2), pure N2 and pure CO2 were 

supplied by Scott-Gross. Melting points were recorded on either a Thomas-Hoover 

melting apparatus or Digi-Melt apparatus. TGA analyses were done on Thermal Analysis 

Hi-Res TGA 2950 instrument. In a typical run, 10–15 mg of the sample was loaded in a 

platinum pan. For all the analyses, a Hi-Res dynamic ramp 12.5 °C min−1, Hi-Res 4.0, RT 

to 1000 °C was used under constant argon flow (65 mL/min). Infrared spectra of solid 

complexes were recorded in ATR mode between 4000 and 400 cm−1 on a Perkin-Elmer 

Paragon 1000 FT-IR spectrophotometer. 1H and 13C NMR spectra were recorded on a 

Varian Gemini 400 spectrometer at room temperature, unless mentioned otherwise, and 

were referenced to residual solvent peaks. Mass spectra was acquired by the University of 

Kentucky mass spectrometry facility. High-resolution electron impact (EI) ionization 

mass spectra were recorded at 25 eV on JEOL JMS-700T station and were referenced to 

perfluorokerosene (PFK). FAB-mass spectra were obtained on a Finnigan Polaris Q in EI 

mode via direct insertion probe. The accelerating voltage was 10 kV. The mass 

spectrometer was operated in positive ion mode and mass spectra were calibrated by 
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Alkali-CsI positive. X-ray diffraction data was collected on at 90K on either a Nonius 

Kappa CCD diffractometer or a Bruker-Nonius X8 Proteum diffractometer. Crystal 

indexing and data processing were performed either with DENZO- SMN (KappaCCD) or 

with Bruker APEX2 (X8 Proteum). The structures were solved and refined with SHELXS-

97. Elemental analyses were performed at the Center for Applied Energy and Research at 

University of Kentucky. 

5.2.2 Setup for faster catalyst screening 

The reactions were carried out in a 4-necked 250 cm3 round-bottom flask equipped with a 

pH meter. 14 vol % CO2 gas in N2 was supplied through an Aalborg mass flow controller 

at 1.0 L/min. Temperature was monitored throughout the reaction with experiments 

conducted at room temperature. Reaction progress was followed by monitoring the 

change in pH with time, as CO2 was absorbed.  

5.2.3 Synthesis of ligands 

 

5.2.3.1 N,N’-Bis(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide149  

A solution of pyridine-2,6-dicarbonyl chloride (1.0 g, 5.0 mmol) at 0 °C in THF (150 

mL) was added slowly to a mixture of 2,6-dimethylaniline (1.21 g, 10.0 mmol) and 

triethylamine (1.41 mL, 10.0 mmol). The reaction mixture was warmed to room 

temperature, stirred for 5 h, and filtered. The light-yellow residue obtained by removal of 

solvent was treated with hexane (10.0 mL) and washed with a small volume of 
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dichloromethane/ether (1:5 v/v) to give the pure product as a white powder (1.4 g, 80%). 

Spectroscopic and physical properties of ligand matched as described in literature. 

5.2.3.2 Synthesis of KL1147  

5.2.3.2.1 Step 1: 5-methyl-3-(4′-pyridyl)pyrazole148  

A mixture of (18.7 g, 0.10 mole) of methyl isonicotinate, 20 ml of acetone and (5.90 g, 

0.11 moles) of NaOMe dissolved in dry ether were heated under reflux with stirring for 

2.5 hr. The mixture was cooled, acidified with 10 ml of AcOH, and diluted with 50 ml of 

H2O. Organic layer was separated, and the aqueous phase was extracted with Et2O. Ether 

layer was dried with MgSO4 and concentrated under reduced pressure to provide 13.7 g 

of a red liquid, 1-(4-pyridinyl)butane-l,3-dione. (5.0 g ,0.03 mole) of 1-(4-

pyridinyl)butane-l,3-dione was added during 15 min with stirring to 11 ml of 100% 

hydrazine hydrate; the temperature of the solution rose. The mixture was stirred at room 

temperature for 1 hour, diluted with 17 ml of H2O, and cooled overnight at 5 °C. The 

white solid which separated was collected and dried. Yield 70%. 1H NMR (400 MHz, 

([D6] DMSO): δ=8.544-8.533 (d, 2H), 7.704-7.692 (d, 2H), 6.609 (s, 1H), 2.271 (s, 3H). 

5.2.3.2.2 Step 2: KL1 

 A mixture of (3.14 g, 19.7 mmol) of 5-methyl-3-(4′-pyridyl)pyrazole and (266 mg, 4.93 

mmol) of KBH4 was stirred in a three-necked 100-mL flask equipped with an immersing 

thermometer. The temperature was slowly increased to 200 °C over a period of 30 min. 



 

 

 124 

At 140–160 °C, the mixture melted and the gas evolution became brisk. The melt was 

stirred continuously at 200 °C until it started to turn brown (ca. 3 h) and then slowly 

cooled to room temperature. The resulting glassy residue was carefully powdered and 

refluxed in 50 mL of toluene for 30 min, in order to remove unreacted pyrazole 

impurities. The mixture was filtered while hot, and the light brown residue was washed 3 

times with 2.5 mL of boiling toluene and once with 2.5 mL of petroleum ether (30–50 

°C). Recrystallization from 50 mL of acetonitrile at yielded 1.25 g (50 %) of KL1 as 

colorless crystals, m.p. 328 °C. 1H NMR ([D6] DMSO): δ = 2.02 [s, 9 H, Me(pz)], 6.418 

[s, 3 H, H(pz)], 7.709-7.698 (dd, J = 4.5 and 1.5 Hz, 6 H, Py), 8.550-8.539 (dd, J = 4.5 

and 1.5 Hz, 6H, Py) ppm. 

5.2.3.3 Bis(5-sulfonatosalicylaldehyde)zinc(II) disodium salt 

5-sulfonatosalicylaldehyde sodium salt (3.30 g, 14.6 mmol) was dissolved in an aqueous 

solution of sodium hydroxide (15.0 mL, 1.0 M). A solution of ZnCl2 (0.66 g, 4.81 mmol, 

dissolved in 6.0 mL of water) was then added slowly to the solution. The yellow solution 

became white after one hour of agitation. The solid was filtered, washed with cold 

ethanol and dried under vacuum. Yield is mass 84.2%. 1H NMR ([D6] DMSO): δ = 9.51 

(s, 1 H), 7.62 (d, J = 2.5 Hz, 1 H), 7.49 (dd, J = 2.5, 8.7 Hz, 1 H), 6.55 (d, J = 8.7 Hz, 1 

H) ppm. IR (KBr pellet): 3585 (m), 3519 (m), 3218 (m), 2872 (w), 2785 (w), 1651 (s), 
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1525 (m), 1463 (s), 1406 (m), 13356 (w), 1171 (s), 1122 (s), 1043 (s), 921 (w), 841 (w), 

753 (w), 676 (m), 615 (m), 518 (w), 451 (w) cm–1 

5.2.4 Synthesis of complexes 

5.2.4.1 Attempted synthesis of 1:1 Zn complex of N,N’-bis(2,6-dimethylphenyl)-2,6-

pyridinedicarboxamide 

A solution of (0.5 g, 1.3 mmol) of N,N’-bis(2,6-dimethylphenyl)-2,6-

pyridinedicarboxamide was added slowly via cannula transfer to (5.2 mL, 5.2 mmol) of 

1.0 M diethylzinc in hexanes. Immediate precipitate formation started. The reaction was 

left overnight for stirring. Precipitate obtained was washed with THF and vacuum dried 

to give the powder. Yield: mass 60%. Powder was found partially soluble in most organic 

solvents. MALDI-MS was obtained. Peak at 810 suggests 2:1 (ligand: zinc complex) 

whereas peak at 873 suggests presence of 2:2 (ligand: zinc complex). 

5.2.4.2  Synthesis of Zn complex of KL1:147  

A solution of (174 mg, 0.79 mmol) of Zn(OAc)2·2H2O in 5 mL of methanol was added 

dropwise to a solution of (379 mg, 0.72 mmol) of in 20 mL of methanol/dichloromethane 

(1:1) over a period of 5 min. After 6 h of stirring, a small amount of a cloudy precipitate 

was removed by filtration, and the clear filtrate was concentrated to dryness in vacuo. 

Recrystallization from methanol yielded 401 mg (91 %) of complex as large colorless 

crystals, m.p. 242 °C. 1H NMR ([D6] DMSO): δ = 1.51 (s, 3 H, Ac), 2.56 [s, 9 H, 
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Me(pz)], 6.64 [s, 3 H, H(pz)], 7.60 (dd, J = 4.6 and 1.4 Hz, 6 H, Py), 8.60 (d, J = 6.0 Hz, 

6 H, Py) ppm.  

5.2.4.3 Synthesis of [Zn{Salen(SO3Na)}]  

Ethylenediamine (237 μL, 3.50 mmol) was added to a mixture of ethanol (70 

mL) previously degassed for 15 min. Bis(5-sulfonatosalicylaldehyde)zinc(II) disodium 

salt (2.0 g, 3.5 mmol) was introduced, and the mixture was stirred for two hours at 90 °C. 

The white solid was filtered, washed with ethanol and dried under vacuum. Yield is 70%. 

1H NMR ([D6] DMSO): δ = 8.43 (s, 1 H), 7.41 (d, J = 2.4 Hz, 1 H), 7.32 (dd, J = 2.4, 8.8 

Hz, 1 H), 6.52 (d, J = 8.8 Hz, 1 H), 3.72 (s, 2 H) ppm. IR (KBr pellet): 3604 (s), 3523 (s), 

3447 (m), 1641 (s), 1601 (m), 1537 (s), 1472 (s), 1382 (m), 1341 (m), 1312 (m), 1205 (s), 

1169 (s), 1123 (s), 1045 (s), 986 (w), 945 (w), 931 (w), 901 (w), 833 (m). 

5.3 Results and Discussion 

 

5.3.1 Pincer complexes 

 

Recently, it has been reported by Holm that a planar nickel complex 

[NiII(NNN)(OH)]− containing a tridentate 2,6-pyridinedicarboxamidate pincer ligand and 

a terminal hydroxide ligand carries out an extremely rapid CO2 fixation reaction.150-151 

For this bimolecular reaction, the reported (extrapolated) rate constant is 9.5 × 105 M–1 s–

1 in N,N′-dimethylformamide at 298 K, a value within the range of kcat/KM ≈ 105–108 M–
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1 s–1 for carbonic anhydrase. The initial event is the formation of a weak precursor 

complex between the Ni-OH group and CO2, followed by insertion of a CO2 oxygen 

molecule into the Ni-OH bond to generate a four-center Ni(η2-OCO2H) transition state 

similar to that at the zinc site in carbonic anhydrase. Carbon dioxide may react with free 

or metal-bound hydroxide to afford products containing bicarbonate or carbonate, often 

captured as ligands bridging two or three metal sites. Thus, we got interested in forming 

Zn analogue of these complexes. Scheme 5.1 describes the synthesis of Zn complex of 

N,N’-bis(2,6- dimethylphenyl)-2,6-pyridinedicarboxamide. 
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Scheme 5.1 Synthesis of Zn complex of N,N’-bis(2,6-dimethylphenyl)-2,6-

pyridinedicarboxamide 
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However, we were not able to isolate pure 1:1 Zn complex from the mixture of 

both the complexes. Due to insolubility of mixture in various common solvents, neither 

we were able to fully characterize compounds, nor we were able to test catalytic activity 

of these complexes. However, MALDI-MS (Figure 5.1) is indicative that both the 

complexes are formed. 

 

 
Figure 5.1 Maldi-MS spectrum of Zn complex of N,N’-bis(2,6-dimethylphenyl)-2,6-

pyridinedicarboxamide 

 

5.3.2 Tris(pyrazolyl)borate complexes 

 

Trofimenko’s tris(pyrazolyl)borate (Tp) ligands have been the key to success in 

biomimetic zinc enzyme chemistry.147 Vahrenkamp has extensively contributed to Tp 
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ligands117, 147, 152-168 in the field of zinc complexes, for simple Tp*Zn–OH systems as well 

as for a carbonic anhydrase enzyme model.169 One of the reasons being that their 

structures can be varied, for example, by attaching various substituents at the 3- and 5-

positions of their pyrazole rings. Substituents as small as methyl groups at the 5-positions 

protect the B-N bonds, preventing hydrolytic destruction of the ligands due to the 

presence of zinc ions. The substituents at the 3-positions create and control the protective 

pocket around the zinc ion, which is the active center of the enzyme model.169 Their 

organic substituents disfavor access of water to the functional Zn–X center, but favor 

product inhibition, i.e. the formation of uncharged molecular complexes by attachment of 

the hydrolysis products to zinc. The way out of this dilemma required a more hydrophilic 

Tp*Zn chemistry by the incorporation of suitable substituents in the Tp* ligands. This is 

not a trivial task, as these ligands are hydrolyzable boron–nitrogen compounds and their 

standard synthesis requires temperatures up to 200 ◦C. We decided to choose pyridyl- 

substituted Tp* complexes as they were water-soluble and best suited for our purposes. 

Pyrazolyl ligand coordinates to the zinc ion in the tripodal fashion, it contains donor 

functional groups, it engages in various kinds of hydrogen bonds, and it forms water 

soluble complexes. It enforces coordination numbers higher than four for zinc. 

Variability in coordination numbers and geometries is a prerequisite for catalytic activity. 

These characteristics make them an attractive candidate for CO2 hydration. The Tp*Zn–
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OH complexes owe their stability both to the fact that the sterically laden Tp* ligands 

enforce a low coordination number and that they create a hydrophobic pocket around the 

Zn–OH unit. Their organic substituents disfavor access of water  

 

Scheme 5.2 Synthesis of zinc complex of KL1 
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to the functional Zn–X center, but favor product inhibition, i.e. the formation of 

uncharged molecular complexes by attachment of the hydrolysis products to zinc. The 

way out of this required a more hydrophilic Tp*Zn chemistry by the incorporation of 

suitable substituents in the Tp* ligands.  

We decided to choose pyridyl- substituted Tp* complexes as they were water-

soluble and best suited for our purposes. Scheme 5.2 describes synthesis of zinc complex 

of KL1 and figure 5.2 depict catalysis by complex in 30% MEA. 

 

 
 

Figure 5.2 pH vs. time for zinc complex of KL1 in 30% MEA 

 

As seen from the graph, zinc complex of KL1 is very catalytically active. For, 

4.35 mM complex, it took approximate 25 minutes for reaction completion whereas 30 % 

MEA took around 45 minutes for completion. This is a very exciting result as the catalyst 
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is active in 30% MEA. However, during the reaction, foaming was observed. It is 

suggested to test this molecule in the presence of anti-foaming agent. 

5.3.3 Salen Complexes 

Salen-like ligand moieties have been extensively used as ligands for CO2 

activating catalysts.170-172 Typically, salen ligands synthesized by condensation of 

salicylaldehyde or its derivatives with ethylenediamine or its derivatives are insoluble in 

water but by incorporating hydrophilic moieties such as sulphonates or carboxylates 

around phenol group, water-soluble salen complexes can be synthesized. For catalysis of 

molecules towards CO2 capture, it is necessary that these complexes be soluble in amine 

or water. A major challenge we have encountered so far while synthesizing various other 

complexes for their efficacy towards CO2 hydration is the insolubility of complexes in 

solvents. Water soluble Zn(salen)SO3Na complex was synthesized by Dr. Rahul Butala 

from Dr. Atwood’s lab and provided to us to test for the efficacy towards CO2 hydration. 

Figure 5.3 depict catalysis by [Zn{Salen(SO3Na)}] in 0.1 M K2CO3. 
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Figure 5.3 pH vs. time for [Zn{Salen(SO3Na)}] in 0.1 M K2CO3 

 

As seen from the graph, the 10.00 mM zinc [Zn{Salen(SO3Na)}] is catalytically 

inactive in 0.1 M K2CO3. Possible reason for the inactivity is the decomposition of ligand 

in aqueous solution due to imine hydrolysis, making it unsuitable for aqueous amine-

based post-combustion carbon capture. One of the alternatives to overcome this problem 

is to synthesize ligands without the presence of hydrolyzable imine groups as that should 

serve as promising ligand scaffolds for the synthesis of more robust CO2 hydration 

catalysts. Scheme 5.3 describes one such process, where ligand salen is reduced to salean 

by NaBH4.  

 

Scheme 5.3 Reduction of Salen to Salean 
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5.3.4  NMR-based method to monitor catalytic activity 

[Zn(cyclen)] system is one of the most efficient carbonic anhydrase mimics; 

however, it’s activity is still not comparable to benchmark carbonic anhydrase. We 

observed [Zn(cyclen)] complex to be even less active under conditions similar to 

industrial carbon capture. This is due to inhibition of catalyst due to strong coordination 

of anions that block the active site. This strong affinity for anion coordination inhibits 

bicarbonate dissociation, thereby inhibiting catalyst activity. To observe coordination of 

bicarbonate or solvents in which CO2 hydration is carried out such as amines or 

carbonates on the active site of catalysts, we decided to develop an NMR-based method. 

It was hypothesized that if an alkanolamine is coordinating to the metal center either via 

OH or NH2 bond present in the alkanolamine then, it is going to block the active site of 

the catalyst inhibiting its catalytic activity. Furthermore, oxygen in the alcohol functional 

group in the commonly used alkanolamines, such as MEA, could coordinate even more 

strongly forming a chelate. This would prevent catalytic activity by blocking the potential 

active site. To figure out whether amine is coordinating to the catalysts, NMR method 

was developed. It was hypothesized that if amine is blocking the catalyst site, then there 

should be difference in the NMR spectrum of catalyst after coordination with amine. 

There could be formation of new peaks due to coordination or there could be shift in the 

peaks of the original spectrum. It was also hypothesized that the equilibrium of amine 
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coordinating with the catalyst is dynamic and it would not be possible to see the peaks at 

room temperature. We should be able to see the peaks at low temperature. For that 

purpose, an equimolar mixture of deuterated DMSO and acetonitrile was chosen to 

achieve low temperature (–30 °C). New peaks started emerging proving that coordination 

is indeed taking place. It is difficult to prove mechanistic pathway of coordination.  

Scheme 5.4 below shows the coordination mode of catalyst with amine. 

 
 

Scheme 5.4 Metal center coordination of catalyst by OH or NH2 of monoethanolamine 
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Figure 5.4 Spectrum change after addition of d3-CD3CN to catalyst solution in d6-DMSO 

  

In the 1H NMR (figure 5.4), it can be seen that upon addition of d3-CD3CN, broad 

singlet peak at 7.9 ppm tend to show more resolved coupling reaching doublet of doublet 

in the final spectrum. The broad singlet at 7.9 ppm that is observed in d6- DMSO 

indicates that the catalyst is fluxional in solution. Polarity of the pure d6-DMSO system is 

affected by addition of acetonitrile. Similar phenomenon was also observed by Dr. 

Atwood et al., in a similar salen complex.173 
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Figure 5.5 Spectrum change after addition of MEA to catalyst solution in d6-DMSO 

 

In the 1H NMR (figure 5.5), it can be seen that initially upon addition of MEA, 

broad singlet peak of catalyst at 7.9 ppm tend to show more resolved coupling reaching 

doublet of doublet. This phenomenon is similar as observed in the previous system upon 

addition of d3- CD3CN. Upon addition of further MEA, new peaks tend to form leading 

the conclusion of formation of new species that are completely different from starting 

material thus proving that coordination is indeed taking place. It is difficult to prove 

mechanistic pathway of coordination.   
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5.4 Conclusions 

The complexes containing anionic ligands that donate electron density into the 

metal center may serve to remove anionic bicarbonates/carbamates from the secondary 

coordination sphere and away from the metal center, thereby facilitating 

bicarbonate/anion dissociation and increasing CO2 hydration rates. Zn complex of KL1 

was found to be catalytically active; this compound should be tested in presence of anti-

foaming agent. 1:1 Zn complex of an N,N-pincer ligand couldn’t be isolated despite 

various attempts. Optimization of purification method to isolate the complex for full 

characterization needs to be done in the future. An NMR-based method was successfully 

developed to see if the coordination of solvents to CO2 capture solvents can be studied. 
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Chapter 6 Summary and Future Directions 

 
Work undertaken so far, and possible future development in ferrocene-fused 

thiophene complexes, and homogeneous catalysts for CO2 capture are discussed below.  

Chapter 1 discussed approaches to ferrocene-fused thiophene complexes. 

Exploring a shorter synthetic route to 1,2-bis(hydroxymethyl)ferrocene was the first task. 

This was followed by successful synthesis of an important precursor to 

ferroceno[c]thiophene, 1,4-dihydro-2,3-ferrocenodithiin. The desired end product, 

ferrocene–fused thiophene monomer, hasn’t been obtained yet. Further optimization of 

synthetic pathway to the target molecule is needed. Investigation into polymerization 

(electrochemical and chemical) is the next logical step once the monomer (aromatic or 

quinoid form) is achieved. Future work will also involve study of electronic and 

electrochromic properties and changing other conjugated substituents to obtain different 

forms of metallocene-fused thiophene polymer. Substituent effect with electron-

withdrawing functionalities on ferroceno[c]thiophene is an intriguing avenue for further 

research. 

Chapter 2 discussed the latest advancements in the area of Carbon capture and 

Storage. 

Chapter 3 focused on synthesis and catalysis of homogeneous catalysts for CO2 

capture. We focused mainly on the synthesis and characterization of Cu, Co, and Zn 
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complexes with ligands, 1,5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane 

(teta, tetb), 1,4,7,10-tetraazacyclododecane (cyclen), tris(2-benzimidazoylmethyl)amine 

(NTB), and nitrilotris(2-benzimidazoylmethyl-6-sulfonic acid) (NTBSA) as these 

complexes have similar structural, thermodynamic and kinetic properties to carbonic 

anhydrase. We tested these molecules in a wetted-wall column experiment. None of the 

compounds were found to be catalytically active in the conditions conducive to post 

carbon capture. It was proposed that the lack of activity may be related to coordination of 

the solvent to the metal. A laboratory setup was designed to reduce the screening time of 

catalysts for CO2 capture. Using a decrease in pH over time method a series of catalysts 

was tested. Compared to the WWC method, lower catalyst quantity and only a few hours 

of evaluation time are required. This further save time since the smaller amount of 

catalyst needed reduces time spent synthesizing complexes. 

Chapter 4 discussed catalysis by [Zn(cyclen)(H2O)]•2H2O. This complex showed 

a reasonable kcat of 2000 L/mol that was consistent with previous literature reported 

results using stopped-flow spectrometry kinetics testing. However, the activity was much 

lower when evaluated in conditions more consistent with CO2 capture reaction (CAER 

pH drop screening). The rate constant is lower than what was expected from the stopped-

flow measurements, probably because of bicarbonate coordination to Zn active site in 

these systems causing inability to reform hydroxyl species on the metal. The Zn center is 
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highly electron deficient and therefore easily coordinates anions, inhibiting the ability to 

reform hydroxyl species on the metal. The cationic complex attracts anionic species such 

as bicarbonate into its secondary coordination sphere to maintain charge balance which 

drives the equilibrium to the bicarbonate-bound species. Thus, it became necessary to test 

the catalysis of benchmark enzyme carbonic anhydrase under similar conditions to 

determine the threshold 𝑘𝑜𝑏𝑠 value. Carbonic anhydrases catalyze the hydration of carbon 

dioxide at ambient temperatures and physiological pH with the highest known rate 

constant = 106 M–1 s–1, but in our system (CAER pH drop screening) 𝑘𝑜𝑏𝑠 came out to be 

438797 M–1 s–1. The lower catalytic rate constant for carbonic anhydrase in 0.1000 M, 

similar to Zn-cyclen, strengthens the conjecture that at high bicarbonate concentrations, 

HCO3
– binding to the Zn(II) active site slows catalysis by inhibiting bicarbonate 

displacement with water to regenerate the active species. Therefore, routes for 

circumventing inhibition of carbon capture catalysts are broadly required.   

Chapter 5 discussed catalytic activity of various anionic complexes. The 

complexes containing anionic ligands that donate electron density into the metal center 

may serve to remove anionic bicarbonates/carbamates from the secondary coordination 

sphere and away from the metal center, thereby facilitating bicarbonate/anion 

dissociation and increasing CO2 hydration rates. Trispyrazolylborates were found to be 

catalytically active; these compounds should be tested in presence of anti-foaming agent. 
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1:1 Zn complex of an N,N-pincer ligand couldn’t be isolated despite various attempts. 

Optimization of purification method to isolate the complex for full characterization needs 

to be done in the future. An NMR-based method was developed to see if the coordination 

of solvents to CO2 capture solvents can be studied. We propose that trisimidazole 

moieties should be synthesized and tested for catalytic activity.  

 

 

Figure 6.1 New target candidates featuring (a) a tethered-tetrahedral, two tripodal 

networks containing a (b) tautomerized H-bond network, and (c) sterically demanding 

and rigid H-bond network. 

We predict that metal complexes of the trisimidazole ligand should be 

catalytically active based on three criteria: 1) Geometry: the tris(carbene) ligand 

coordinates in a tetrahedral geometry allowing access to both the metal center and 

hydroxo ligand for CO2 hydration. 2) Sterics: The imidazole functionality can be 
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sufficiently functionalized to form a bulky environment to prevent dimerization and/or 

bidentate coordination of carbonates. 3) Electronics: The carbenes are strong sigma 

donors that should elongate the Zn–OH bond, making it more reactive towards CO2 as 

well as facilitating dissociation of newly formed carbonates to regenerate the active 

species. The ligand design shown in Figure 6.1 was developed to overcome the problems 

contained in the Zn-cyclen system. The ligand scaffold in Figure 1a should provide a 

strong pseudo-trans-effect, thereby elongating the Zn–OH bond generating a more 

reactive hydroxo, disfavoring unwanted coordination, and promoting dissociation of 

newly formed carbonates derived from CO2. The ligand scaffold in Figure 1b and 1c both 

contain an H-bonding network in the 2nd coordination sphere that should aid the 

dissociation of carbonates as well as being significantly sterically hindered inhibiting 

dimerization. The ligand scaffold design in Figure 1 can be placed into two categories: 1) 

facially-capping tethered tetrahedral and 2) Hydrogen-bonding tripodal network. The 

above scaffolds have beneficial qualities that led to their selection as catalyst candidates. 

The scaffold in category two were chosen based on 3 criteria as well. 1) Geometry: 

Ligands in category 2 generate tripodal complexes consisting of trigonal bipyramidal 

geometry. This geometry still allows for activation of CO2 while inhibiting bidentate 

coordination of carbonates. 2) Sterics: As with category 1, the sterics should inhibit 

complex dimerization. 3) Hydrogen-Bonding Network: Ligands in category 2 contain 
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functionalities that allow for development of a hydrogen bonding network in the 2nd 

coordination sphere. This should help dissociate carbonate species and regenerate the 

active catalyst for CO2 hydration. 

To date, there are no homogeneous catalysts that are being used in CO2 capture 

plants to increase the rate of CO2 absorption, and hence this project has a vast scope of 

further development.  
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