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ABSTRACT Equine arteritis virus (EAV) has a global impact on the equine industry
as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and re-
productive disease of equids. A distinctive feature of EAV infection is that it estab-
lishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In
these stallions, EAV is detectable only in the reproductive tract, and viral persistence
occurs despite the presence of high serum neutralizing antibody titers. Carrier stal-
lions constitute the natural reservoir of the virus as they continuously shed EAV
in their semen. Although the accessory sex glands have been implicated as the
primary sites of EAV persistence, the viral host cell tropism and whether viral
replication in carrier stallions occurs in the presence or absence of host inflam-
matory responses remain unknown. In this study, dual immunohistochemical and
immunofluorescence techniques were employed to unequivocally demonstrate
that the ampulla is the main EAV tissue reservoir rather than immunologically
privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific
tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8� T
and CD21� B lymphocytes but not glandular epithelium. Persistent EAV infection is
associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clus-
ters of B (CD21�) lymphocytes and significant infiltration of T (CD3�, CD4�, CD8�,
and CD25�) lymphocytes, tissue macrophages, and dendritic cells (Iba-1� and
CD83�), with a small number of tissue macrophages expressing CD163 and CD204
scavenger receptors. This study suggests that EAV employs complex immune eva-
sion mechanisms that warrant further investigation.

IMPORTANCE The major challenge for the worldwide control of EAV is that this vi-
rus has the distinctive ability to establish persistent infection in the stallion’s repro-
ductive tract as a mechanism to ensure its maintenance in equid populations. There-
fore, the precise identification of tissue and cellular tropism of EAV is critical for
understanding the molecular basis of viral persistence and for development of im-
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proved prophylactic or treatment strategies. This study significantly enhances our
understanding of the EAV carrier state in stallions by unequivocally identifying the
ampullae as the primary sites of viral persistence, combined with the fact that per-
sistence involves continuous viral replication in fibrocytes (possibly including tissue
macrophages) and T and B lymphocytes in the presence of detectable inflammatory
responses, suggesting the involvement of complex viral mechanisms of immune
evasion. Therefore, EAV persistence provides a powerful new natural animal model
to study RNA virus persistence in the male reproductive tract.

KEYWORDS arterivirus, equine arteritis virus, EAV, equine viral arteritis, EVA,
persistent infection, male reproductive tract, immunohistochemistry, cellular tropism,
immune response

Equine arteritis virus (EAV), the prototype member of the family Arteriviridae, genus
Arterivirus, in the order Nidovirales (1), is the causative agent of equine viral arteritis

(EVA), a respiratory, systemic, and reproductive disease of equids. EAV has a worldwide
distribution, and it causes significant economic loss to the equine industry in the United
States and other countries (2–8). EAV contains a positive-sense, single-stranded RNA
genome (�12.7 kb) containing 10 known open reading frames (ORFs) (2, 3, 9, 10). ORFs
1a and 1b encode two replicase polyproteins (pp1a and pp1ab) that are cleaved to give
rise to 13 nonstructural proteins (nsp1 to nsp12 and nsp7�/nsp7�), whereas ORFs 2a,
2b, 3, 4, 5a, 5b, 6, and 7 encode the viral structural proteins E, GP2, GP3, GP4, ORF5a
protein, GP5, M, and N (nucleocapsid protein), respectively (3, 9, 10).

Following respiratory or venereal exposure, EAV induces a cell-associated viremia
and a systemic panvasculitis involving small muscular arteries (2, 3, 11–17). Acutely
infected horses may develop a wide range of clinical signs (influenza-like syndrome),
with dependent edema, conjunctivitis, periorbital or supraorbital edema, respiratory
distress, urticaria, and leukopenia (2–4, 8, 15, 17–23). However, a remarkable property
of EAV is that following initial exposure, it can establish persistent infection in the
reproductive tract of stallions, resulting in continuous shedding of infectious virus in
semen (2–4). Although in some cases this ceases at only a few weeks or a few months
postinfection, in 10 to 70% of infected stallions shedding can continue for many years
or even the remainder of the animal’s lifetime (2–4, 18, 24–27). Interestingly, EAV
carriers do not exhibit clinical disease, and reproductive fecundity is not decreased (8,
24, 25). Furthermore, EAV is detectable only in the reproductive tract of these stallions,
and the virus persists despite the presence of neutralizing antibodies in serum (2–4, 8,
18, 24, 25, 27, 28). Persistently infected stallions play a major epidemiological role since
they constitute the natural reservoir for EAV and, thus, are responsible for the main-
tenance and perpetuation of EAV in equine populations between breeding seasons
(2–4, 18, 27). Viral evolution and emergence of novel genetic and antigenic variants are
associated with long-term persistent infection in the reproductive tract of the stallion
(3, 26, 29–31), and the maintenance of the carrier state is androgen dependent (8), as
evidenced by the fact that the only documented method to prevent viral shedding in
long-term carrier stallions is surgical castration (32).

Many different viruses can establish relatively long-term or even persistent infec-
tions in the mammalian male reproductive tract despite the resolution of clinical signs
and establishment of adaptive immune responses (33). Indeed, it has been recently
shown that Zika virus can be shed in semen for periods up to 80 days, with viral nucleic
acids detectable for as long as 6 months following infection (34–38). Unfortunately, the
mechanisms by which such infections are maintained have not been extensively
investigated in most cases despite the fact that they may represent a major mode of
transmission within mammalian populations. However, we recently reported that EAV
carrier status in stallions correlates with possession of a subpopulation of CD3� T
lymphocytes that is susceptible to viral infection in vitro (39, 40). On the other hand,
stallions that lack this subpopulation are at significantly lower risk of becoming
persistently infected (39). Furthermore, a genome-wide association study (GWAS) con-
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ducted by this laboratory revealed that the ability of EAV to infect CD3� T lymphocytes
and establish long-term carrier status in stallions is strongly associated with four
nucleotide changes in the CXCL16 gene located on equine chromosome 11 (41, 42). To
our knowledge this is the first demonstration of a correlation between a viral carrier
state and a host genetic component. As such, it adds impetus to the study of EAV
persistence in the stallion reproductive system as a model of viral persistence in the
mammalian male reproductive tract. Continuation of this work, however, necessitates
identification of the sites of viral persistence within the stallion reproductive tract and,
just as importantly, the host cell types that are capable of supporting EAV replication.
An additional consideration is to determine if EAV replication in persistently infected
stallions triggers active immunological responses. Although a previous study suggested
that EAV could be primarily isolated from an accessory sex gland, the ampulla, the
experiments were conducted exclusively using homogenized tissue samples (43) and,
therefore, were of little value in terms of identifying either EAV host cell tropism within
the stallion’s reproductive tract tissues or detecting the presence of inflammatory
responses. In addition, the methodologies employed in the previous study make it
impossible to determine if the ampulla is the primary site of active EAV replication or
if viral particles simply accumulate in this accessory sex gland. However, on the basis of
virus isolation, we hypothesized that EAV persists in non-immunologically privileged
tissues of the stallion’s genital tract and that viral replication within specific cell types
at these sites is associated with modulation of immunological responses that prevent
excessive tissue damage resulting in gross pathological lesions. In this study, we have
combined virus isolation, insulated isothermal reverse transcription-PCR (RT-iiPCR),
single and dual immunohistochemistry (IHC), immunofluorescent antibody (IFA), and
transmission electronic microscopy (TEM) techniques to unequivocally demonstrate
EAV tissue and cellular localization in the stallion reproductive tract during persistent
infection. Our findings provide compelling evidence that persistent EAV infection is
associated with certain subpopulations of infiltrating T and B lymphocytes and of
stromal cells (fibrocytes and possibly tissue macrophages), with a specific homing to
the accessory sex glands despite the strong humoral and local inflammatory response
of the host. Consequently, the stallion accessory sex glands must represent a highly
specialized microenvironment that enable EAV persistence, making this system a
powerful natural animal model for studying host-RNA virus interactions in the mam-
malian male reproductive tract.

RESULTS
Clinical outcome and establishment of EAV persistent infection in experimen-

tally infected stallions. All experimentally infected stallions (n � 8) (Table 1) devel-
oped moderate to severe clinical signs of EVA following intranasal infection with the

TABLE 1 Stallions included in the study (n � 13)

Stallion
identification

Infection status at
time of euthanasia

Duration of viral
shedding (dpi)a

Viral titer in
semen (PFU/ml)b

N105 Control NA NA
N121 Control NA NA
O103 Control NA NA
O113 Control NA NA
L136 Persistently infected �726 6.5 � 103

L140 Persistently infected �726 7.8 � 103

Stallion E Persistently infected �7 yr 1 � 105

L137 Stopped shedding 149 0
L138 Stopped shedding 128 0
L139 Stopped shedding 380 0
L141 Stopped shedding 380 0
L142 Stopped shedding 198 0
L143 Stopped shedding ND ND
aExcept as noted, values represent days postinfection (dpi). NA, not applicable; ND, not determined.
bViral titers in semen correspond to ejaculates obtained by 726 dpi with the exception of that of stallion E.
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EAV KY84 strain. Clinical signs started at 2 days postinfection (dpi) and included fever
(38.7°C to 40.8°C [101.7°F to 105.6°F]), leukopenia, edema in multiple locations (ocular,
scrotal, preputial, and limb edema), nasal and ocular discharge, photophobia, anorexia,
decreased libido, and congestion and petechial or ecchymotic hemorrhages on the oral
mucosal membranes (Table 2). Clinical signs lasted for a median of 20 days (interquar-
tile range [IQR], 11.25 days; range, 10 to 28 days), and their peak occurred at a median
of 7 dpi (Fig. 1). No signs of disease were observed after clinical recovery and until the
conclusion of the experimental study. Viral shedding in nasal secretions was detected
as early as 2 dpi, with a median duration of 10 days (IQR, 2 days; range, 8 to 19 days)
and a mean viral titer of 4.36 � 103 PFU/ml (range, �10 to 5.7 � 104 PFU/ml). Similarly,
viremia was detected in buffy coat cells at 2 dpi but was extended to between 28 and
42 dpi, with a median duration of 26 days (IQR, 17.5 days; range, 12 to 40 days) and a
mean viral infectivity titer of 2.35 � 102 PFU/ml (range, �10 to 5.1 � 103 PFU/ml) (Fig.
1). The peak for both nasal shedding and viremia occurred at a median of 6 dpi. The
clearance of virus from blood mononuclear cells coincided with the appearance of
neutralizing antibodies. All stallions seroconverted starting from 8 dpi and maintained
high serum neutralizing antibody titers until the end of the study (1:64 to �1:512;
median titer, 1:256) (data not shown). Viral shedding in semen started at 5 dpi, except
for in one stallion (L141), where it was detected at 3 dpi. Viral infectivity titers in semen
varied from 1.0 � 101 to 1.88 � 107 PFU/ml during the acute phase of infection (up to
21 dpi), with a mean titer of 7.85 � 105 PFU/ml. A peak in viral infectivity titers in semen
occurred at a median of 9 dpi.

All experimentally infected stallions showed decreased libido during the acute
phase of infection. However, neither clinical signs of EVA nor reproductive dysfunction
were observed in any of the experimentally infected stallions (n � 8) (Table 1) at the
time of euthanasia. Two out of 8 experimentally infected stallions (L136 and L140)

TABLE 2 Median duration and peak of clinical signs after experimental infection with the
EAV KY84 strain (n � 8)

Clinical sign
Median duration
(days [IQR])

Median
peak (dpi)

Hyperthermiaa 6 (2) 6.5
Edema 20 (14.25) 9.25
Nasal discharge 3 (6) 6.5
Congestion or hemorrhage

of oral mucosa
2 (1.5) 6.5

Leukopenia 8 (15) 8
aHyperthermia was considered to be a body temperature of �38.6°C.

FIG 1 Clinical outcome following experimental infection of stallions with EAV KY84 strain (n � 8). Duration
(in days) (A) and peak (dpi) (B) of nasal shedding, viremia, clinical signs, and seminal shedding. The data
shown for seminal shedding in panel A correspond to the experimentally infected stallions that stopped
shedding virus in semen during the course of the study (n � 6). Median peaks are marked with an
arrowhead, and dots represent individual stallions.
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continued to shed EAV in their semen for �726 dpi (i.e., long-term persistently infected
stallions). By the end of the study, viral titers in their semen were 6.5 � 103 and 7.8 �

103 PFU/ml, respectively (Table 1), but infectivity titers in these stallions fluctuated from
1.2 � 103 to 8.8 � 105 PFU/ml after resolution of clinical signs. The remaining stallions
shed virus in their semen for a variable period of time after experimental infection, with
a range of 128 to 380 dpi and a median duration of EAV seminal shedding of 165 days
(IQR, 263.5 days; range, 102 to 377 days) (Table 1 and Fig. 1). For behavioral reasons,
semen collection from one of the stallions (L143) was not feasible, and the carrier status
could not be determined until the end of the study. Stallion E (naturally infected) had
shed EAV in semen for approximately 7 years, with a mean titer of 1.0 � 105 PFU/ml,
with no clinical signs of EVA or reproductive dysfunction. None of the stallions were
viremic or shed EAV in nasal secretions at the time of euthanasia.

Identification of EAV main tissue reservoirs during persistent infection in the
reproductive tract of the stallion. EAV was isolated from several tissues of the
reproductive tract of long-term persistently infected stallions (n � 3; L136, L140, and
stallion E) with marked variation in viral titers among tissues (range, �10 to 1.7 � 105

PFU/g). EAV was isolated from the ampullae in all cases and presented the highest viral
infectivity titers of the tissues examined (mean viral titer of 4.52 � 104 PFU/g; range,
1.0 � 103 to 1.7 � 105 PFU/g) (Fig. 2A). Infectious virus could be recovered from either

FIG 2 Viral infectivity titers and viral antigen scores per tissue type derived from EAV long-term
persistently infected stallions (n � 3). (A) Mean viral infectivity titers in long-term persistently infected
stallions per tissue type. Bars represent the standard deviations. (B) Median viral antigen scores from
long-term persistently infected stallions per tissue type. Viral antigen in tissues was detected using an
EAV N protein-specific monoclonal antibody (3E2) and a Bond Polymer Refine Red Detection kit. 0,
negative; 1, �5 positive cells; 2, 5 to �45 positive cells; 3, 46 to �125 positive cells; 4, 126 to �250
positive cells; 5, �250 positive cells. Scores reflect the cumulative number of positive cells in five �100
(total magnification) fields.
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one or both vesicular glands in persistently infected stallions, but infectivity titers were
approximately 100-fold lower than those observed in the ampullae (mean viral titer of
1.67 � 102 PFU/g; range, 1.0 � 102 to 5.0 � 102 PFU/g). EAV was recovered from the
prostate gland of a single persistently infected stallion (stallion E) and from one or both
bulbourethral glands in all of them. However, mean viral titers for both of these
accessory sex glands were very low (�10 PFU/g) (Fig. 2A). In addition, EAV was isolated
from the tail of the left epididymis (1.0 � 102 PFU/g) and the left ductus deferens (mean
viral titer of 3.5 � 103 PFU/g) of a single persistently infected stallion (stallion E).
Regional lymph nodes associated with the reproductive tract (superficial and deep
inguinal, lumbar, and iliac lymph nodes), other lymphoid tissues (e.g., spleen, splenic
lymph node, and bone marrow), and other body tissues from three long-term persis-
tently infected stallions failed to yield virus following two blind passages in cell culture.
Similarly, virus was not isolated from any body tissues, including the reproductive tract,
of the stallions that stopped shedding virus in their semen during the course of the
study (stallions L137, L138, L139, L141, L142, and L143).

Single immunohistochemistry (IHC) and immunofluorescent antibody (IFA) staining
for the detection of EAV antigen were used to quantify EAV-positive cells in tissues from
the reproductive tract of persistently infected stallions. Immunostaining demonstrated
the presence of intracytoplasmic antigen predominantly localized in stromal cells
(spindle-shaped cells, consistent with fibrocytes) and lymphocytes that were either
present within inflammatory infiltrates or scattered through the lamina propria of the
ampullae and, rarely, in the interstitium of the epididymides and other accessory sex
glands (vesicular glands, prostate, and bulbourethral glands) (Fig. 3). EAV antigen-
positive subepithelial and intraepithelial lymphocytes were observed in close associa-
tion with and across the glandular epithelium of the ampullae (Fig. 3), and some
EAV-positive cells were large and resembled macrophages. Interestingly, viral antigen
did not localize in the glandular epithelium, smooth muscle cells, or blood vessels from
tissues of the reproductive tract (Fig. 3). Furthermore, EAV antigen was not identified in
testes, ductus deferens, pelvic urethra, penis, kidneys, ureters, or urinary bladder (Fig.
2B). The ampullae contained the highest number of EAV antigen-positive cells, and
scores ranged from 2 to 4 (�250 positive cells) while other accessory sex glands had
scores of 2 or less (�45 positive cells) (Fig. 2B). Median immunostaining scores showed
a strong positive correlation with mean viral titers (� � 0.62).

Tissues derived from most of the stallions that stopped shedding EAV during the
course of the study did not exhibit EAV antigen, with the exception of rare EAV
antigen-positive stromal cells observed in the left vesicular gland, prostatic lobe, and
bulbourethral gland (L137), and left bulbourethral gland (L138 and L142) from three
stallions within this group (data not shown). EAV nucleic acids were detected only in
the aforementioned tissues from stallion L137 by EAV-specific RT-iiPCR but not in
tissues derived from the other two animals. In addition, neither infective virus nor viral
nucleic acids were detected in semen samples collected prior to euthanasia, further
confirming that there was no active shedding of EAV in these stallions.

Cellular tropism of EAV during persistent infection in the reproductive tract of
the stallion. Identification of EAV host cell tropism during persistent infection was
assessed in the ampullae, which demonstrated the highest viral infectivity titers and
highest number of EAV antigen-positive cells. Both stromal cells and lymphocytes were
dually stained for vimentin and EAV N protein (Fig. 4). In contrast, EAV N protein was
not detected in the glandular epithelium (vimentin negative and pan-cytokeratin
positive) (Fig. 4), which further confirmed the observation that EAV does not persist in
the reproductive epithelium. EAV antigen-positive lymphocytes were identified by the
expression of the T lymphocyte markers CD2, CD3, CD5 (data not shown), and CD8 (Fig.
4) and by the expression of the B lymphocyte marker CD21 (Fig. 4). Interestingly, viral
antigen was not detected in CD4� T lymphocytes (Fig. 4) or tissue macrophages and
dendritic cells expressing either CD163 or Iba-1 (ionized calcium-binding adapter
molecule 1) (data not shown).
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TEM demonstrates EAV in the ampullae of the stallion. Electron-dense, spherical
particles consistent with EAV virion morphology were observed by transmission elec-
tron microscopy (TEM) in thin sections from the ampullae of long-term persistently
infected stallions and were localized within the cisternae of the endoplasmic reticulum
(ER) and other intracellular membrane compartments of fibrocytes. In addition, vesicles
containing viral particles were observed in lymphocytes localized within inflammatory
infiltrates (Fig. 5). EAV virions had an average size of 59.3 nm � 8.98 nm. Smaller
particles ranging from 42 to 46 nm were also observed and might correspond to
immature virions.

Local inflammatory response to persistent EAV infection in the male reproduc-
tive tract. There were no significant gross lesions in the reproductive tract of the
long-term carrier stallions or in most of the stallions that had stopped shedding EAV in
semen. However, gross lesions were observed in the reproductive tract of only one
stallion (L139) that had stopped shedding EAV in semen. In this stallion, there were
fibrous adhesions between the tunica albuginea of the testis and the tunica vaginalis,
a unilateral varicose pampiniform plexus, and a unilateral suppurative epididymitis.
Histopathological examination revealed a bilateral, moderate, multifocal lymphoplas-
macytic ampullitis with median severity and distribution scores of 3 (301 to 500

FIG 3 Detection of EAV antigen-positive cells in the accessory sex glands of long-term persistently infected stallions by immunohistochemistry. Tissue
sections were stained with an EAV N protein-specific monoclonal antibody (3E2) and a Bond Polymer Refine Red Detection kit. IHC staining was
performed with Fast Red. (A) Ampulla. EAV antigen-positive lymphocytes (Fast Red) were either present in inflammatory infiltrates or scattered in the
lamina propria. (B) Magnification of the boxed area shown in panel A. EAV antigen-positive lymphocytes (arrowheads) observed in close association with
the glandular epithelium. (C) Prostate. Scattered EAV antigen-positive stromal cells (arrowheads) were observed. (D) Bulbourethral gland. Rare stromal
cells positive for EAV antigen (arrowheads) were observed. Magnifications, �200 (A, C, and D) and �400 (B); bars, 100 �m (A, C, and D) and 50 �m (B).
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FIG 4 Dual immunofluorescence staining of ampulla sections from long-term persistently infected stallions for EAV antigen and cell
surface markers. The cell surface markers (pan-cytokeratin, vimentin, CD4, CD8, and CD21) are identified in panels in the left column
of the figure. Staining for the other panels is as indicated above the columns. (A to C) Viral antigen (Alexa Fluor 594, red) is absent
in pan-cytokeratin-positive epithelial cells (Alexa Fluor 488, green). (D to F) EAV antigen (Alexa Fluor 594, red) is present in scattered
vimentin-positive stromal cells (Alexa Fluor 488, green; merged image shown as yellow). (G to I) EAV antigen (Alexa Fluor 594, red)
was not detected in CD4� T lymphocytes (fluorescein isothiocyanate; green). (J to L) EAV antigen (Alexa Fluor 488, green) was detected
in a subpopulation of CD8� T lymphocytes (R-phycoerythrin, red; merged image shown as yellow). (M to O) EAV antigen (Alexa Fluor
488, green) was detected in a subpopulation of CD21� B lymphocytes (R-phycoerythrin, red; merged image shown as yellow). Nuclei
counterstaining was performed using DAPI (blue). Magnification, �400.
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inflammatory cells) and 4 (5 or more foci per tissue section), respectively, in long-term,
persistently infected stallions (Fig. 6). Inflammatory mononuclear cells were present as
multifocal aggregates within the lamina propria, with a more dispersed distribution
pattern between aggregates. The inflammation was particularly prominent within the
lamina propria of the luminal villi, and, interestingly, there was a notable presence of
intra- and subepithelial CD3� T lymphocytes (Fig. 7). In contrast, the stallions that
cleared EAV infection had minimal, focal lymphoplasmacytic ampullitis, with me-
dian severity and distribution scores of 1 (31 to 150 inflammatory cells) and 2 (2 foci
per tissue section), respectively (Fig. 6). While a moderate number of foamy
macrophages were observed infiltrating the ampullae of three stallions that
stopped shedding virus (stallions L137, L139, and L141) (Fig. 8), none was observed
in tissues derived from persistently infected stallions. Statistical analysis demon-
strated significant differences in severity, distribution, and cumulative scores be-
tween persistently infected stallions and those that cleared viral infection (Kruskal-
Wallis test, P values of �0.0001) for inflammatory infiltrates in the ampullae, while
no significant differences were observed between groups for other genital tract
tissues including testes, epididymides, and other accessory sex glands (Fig. 6). Other
microscopic findings in both groups included unilateral or bilateral, minimal lym-
phoplasmacytic orchitis and epididymitis with occasional perivascular cuffs and rare
hemosiderophages (Fig. 7) and mild lymphoplasmacytic adenitis of bulbourethral
glands with occasional foci of inflammatory cells. Inflammatory lesions were infre-
quent in vesicular glands and prostate.

Characterization of the local inflammatory response by IHC. The inflammatory
response to EAV in the ampullae was further characterized by IHC using lymphocyte,

FIG 5 Demonstration of EAV subcellular localization by transmission electron microscopy (TEM). (A)
Lymphocyte containing EAV virions within an intracytoplasmic vesicle. The cell was located in an
inflammatory infiltrate of the ampulla. Magnification, �9,300. (B) Magnification (�30,000) of the boxed
area in panel A showing an intracytoplasmic vesicle containing viral particles (arrowhead).
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macrophage, and dendritic cell-specific markers (Table 3). The inflammatory response
in the ampullae of EAV-infected stallions primarily consisted of T lymphocytes.
Statistical analysis demonstrated significant differences in the lymphocyte infiltra-
tion between long-term persistently infected stallions and stallions that stopped
shedding virus (P values of �0.05). Specifically, infiltrating T lymphocytes in tissues
from long-term persistently infected stallions consisted of moderate to high num-
bers of CD2�, CD3�, CD5�, and CD8� T lymphocytes and low to moderate numbers
of CD4� and CD25� T lymphocytes. Clusters of CD21� B lymphocytes were also
observed although they comprised a minor component of the inflammatory infil-
trates (Table 4 and Fig. 9). In contrast, lymphocytes in tissues from stallions that
stopped shedding EAV were comprised of low numbers of CD2�, CD3�, and CD5�

T lymphocytes, rare to minimal CD4� and CD25� T lymphocytes, and low to
moderate numbers of CD8� T lymphocytes. CD21� B lymphocytes were either
absent or rare in this group (Fig. 9).

A panel of monoclonal and polyclonal antibodies specific for tissue macrophages
and dendritic cells was utilized for immunohistochemical characterization of these cells
in response to EAV infection (Table 3). This included the following: the leukocyte
integrin CD18, reported to be highly expressed in tissue macrophages (44–46); the
ionized calcium-binding adapter molecule 1 (Iba-1), a calcium-binding protein ex-
pressed in tissue macrophages, dendritic cells, and microglial cells, especially during
their activated state (47–49); the major histocompatibility complex class II (MHC-II), an
antigen receptor expressed on antigen-presenting cells including tissue macrophages
and dendritic cells (50); the scavenger receptors CD163 and CD204, highly expressed in
macrophages, especially those with an M2 phenotype (51–54); calprotectin/L1, a
marker for activation of macrophages shortly after recruitment from peripheral blood
(55, 56); and CD172a, a signal regulatory protein expressed by myeloid-derived cells,
including macrophages and other leukocytes (57–62). Monoclonal antibodies directed
to the maturation marker CD83 and the costimulatory molecule CD86 were used to

FIG 6 Median histological scores (severity, distribution, and cumulative) per tissue type in EAV
long-term persistently infected stallions and stallions that stopped shedding virus in semen during the
study (n � 8). The severity is categorized as follows: 0, negative (�30 inflammatory cells); 1, minimal
(31 to 150 inflammatory cells); 2, mild (151 to 300 inflammatory cells); 3, moderate (301 to 500
inflammatory cells); and 4, severe (�500 inflammatory cells). Distribution scores indicate the following:
0, negative; 1, focal (1 focus per tissue section); 2, rare foci (2 foci per tissue section); 3, occasional foci
(3 to 4 foci per tissue section); 4, multifocal (5 or more foci per tissue section); and 5, diffuse.
Cumulative scores comprise the sum of both severity and distribution scores, respectively. *, P �
0.0001, as determined by a Kruskal-Wallis test.
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FIG 7 Histological findings following experimental infection of stallions with the EAV KY84 strain. (A)
Moderate, multifocal lymphoplasmacytic ampullitis in EAV long-term persistently infected stallions.
Magnification, �40; bar, 500 �m. (B) Magnified view of the boxed area in panel A. Note the large
predominance of intra- and subepithelial T lymphocytes, as demonstrated by CD3 immunostaining in
cryosections from this tissue using a monoclonal antibody to CD3 (LN10) and a Bond Polymer Refine
Detection kit (inset, IHC using DAB). Magnification, �200 (inset, �400); bar, 100 �m (inset, 50 �m). (C)
Minimal, focal lymphoplasmacytic ampullitis in stallions that stopped shedding virus during the study.
Rare foci of mononuclear cells were present. Magnification, �40; bar, 500 �m. (D) Magnified view of the
boxed area in panel C. Note the significantly lower number of CD3� T lymphocytes which are mostly
distributed within the lamina propria in contrast to distribution in EAV long-term persistently infected
stallions as demonstrated by immunohistochemistry with a monoclonal antibody to CD3 (LN10) and a
Bond Polymer Refine Detection kit (inset, IHC with DAB). Magnification, �200 (inset, �400); bar, 100 �m
(inset, 50 �m). (E) Minimal, multifocal, lymphoplasmacytic orchitis with occasional perivascular cuffs in
EAV long-term persistently infected stallions. Magnification, �40; bar, 500 �m. (F) Magnified view of the
boxed area in panel E depicting a perivascular cuff. Magnification, �200; bar, 100 �m. (G) Mild, multifocal
lymphoplasmacytic epididymitis in an EAV long-term persistently infected stallion. Magnification, �40;
bar, 500 �m. (H) Magnified view of the boxed area in panel G. Note the presence of hemosider-
ophages. Magnification, �200; bar, 100 �m. IHC staining was performed with H&E and as noted for
panels B and D.
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identify dendritic cells (63, 64). Moderate to high numbers of Iba-1� cells along with
low to moderate numbers of CD83� cells were observed in tissues derived from
long-term, persistently infected stallions (P values of �0.05) (Table 5 and Fig. 10).
Interestingly, the presence of CD163� and CD204� tissue macrophages in these tissues
was low (Fig. 10), while CD86� and calprotectin/L1-positive (calprotectin/L1�) cells
were rarely identified (Fig. 11). In stark contrast, minimal numbers of Iba-1� or CD83�

macrophages and dendritic cells were observed in tissues derived from stallions that
stopped shedding virus (Fig. 10). Although CD163 expression was also low in this
group, the presence of CD204� tissue macrophages was abundant in some cases (Table
5 and Fig. 10). In common with persistently infected stallions, CD86� and calprotectin/
L1� cells were rarely observed in tissues derived from stallions that had stopped
shedding virus (Fig. 11). Finally, CD18, CD172a, and MHC-II expression shared similar
widespread distributions in tissues derived from both groups (Fig. 11). Immunohisto-
chemical characterization of foamy macrophages observed in tissues derived from
three stallions that stopped shedding virus (L137, L139, and L141) revealed that these
were CD18�, while scattered cells within these infiltrates expressed CD204. In addition,
low numbers of foamy macrophages expressed CD163 and MHC-II while none ex-
pressed Iba-1 (Fig. 8).

DISCUSSION

Several animal and human viruses have the ability to infect the mammalian male
reproductive tract, thereby posing a high risk for sexual transmission (33). In contrast to

FIG 8 Immunohistochemical characterization of foamy macrophages infiltrating the ampullae from three
stallions that stopped viral shedding during the course of the study. Immunohistochemical staining was
performed using a panel of monoclonal and polyclonal antibodies specific to macrophage markers and
a Bond Polymer Refine Detection kit. (A) Moderate numbers of foamy macrophages infiltrated the lamina
propria of the ampullae. Foamy macrophages were CD18� (B), and scattered cells were immunoreactive
for CD204 (D, arrowheads). Few foamy macrophages showed immunoreactivity for CD163 (C, arrow-
heads) and MHC-II (E, arrowheads), whereas none expressed Iba-1 (F). IHC was performed using DAB.
Magnification, �200; bar, 100 �m.
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many viral infections, EAV has evolved a highly sophisticated mechanism that enables
its long-term persistence (carrier state) in the stallion’s reproductive tract with no major
associated tissue damage, sperm abnormalities, or adverse effects on reproductive
fertility (8, 24, 25). Interestingly, EAV persistence occurs despite induction of host
immune responses (e.g., strong neutralizing antibody response) that effectively clear
the virus from all body tissues with the exception of the carrier stallion’s reproductive
tract (2–4, 8, 18, 24–28, 30). The strategy employed by EAV to successfully evade host

TABLE 3 Antibodies for immunohistochemical and immunofluorescent antibody staining used in this study

Cellular phenotype Antigen Clone Assay(s)a Source and reference(s)

T lymphocytes CD2 HB88A IHC Washington State University (W. Davis); 109
CD3 LN10 IHC Leica Microsystems; 110
CD3 UC F6G-3 IFA University of California (J. L. Stott); 111
CD4 CVS4 IHC and IFA AbD Serotec; 112
CD5 HT23A IHC Washington State University (W. Davis); 113
CD8 CVS8 IHC and IFA AbD Serotec; 112
CD25 4C9 IHC Leica Microsystems; 110

B lymphocytes CD21 B-ly4 IHC and IFA BD Pharmingen; 40

Tissue macrophages and
dendritic cells

CD18 CA18.2G1 IHC University of California (P. F. Moore); 45
CD83 HB15E IHC BD Pharmingen; 114
CD86 IT2.2 IHC BioLegend; 114
CD163 AM-3K IHC Transgenic; 115
CD172a DH59B IHC Washington State University (W. Davis); 16, 71
CD204 SRA-E5 IHC Transgenic; 116
Iba-1 NAb IHC Wako Chemicals; 48
MHC-II CR3/43 IHC Dako; 117
Calprotectin/L1 MAC387 IHC AbD Serotec; 56

Epithelial and mesenchymal
cells

Pan-cytokeratin AE1/AE3 IFA eBioscience; 118
Vimentin V9 IFA eBioscience; 119

aIHC, immunohistochemistry; IFA, immunofluorescent antibody staining.
bNA, not applicable.

TABLE 4 Immunohistochemical characterization of lymphocyte infiltrates in sections from
the ampullae of EAV long-term, persistently infected stallions and stallions that stopped
shedding virus in semen

Stallion group and
identification

Marker profile by cell typea

T lymphocytesb
B lymphocytes
(CD21)cCD2 CD3 CD4 CD5 CD8 CD25

Persistently infected
L136 ���� ���� ��� ���� ���� ��� ���
L140 ��� ��� �� ��� ��� ��� ��
Stallion E ��� ���� �� ��� ���� �� �

Stopped shedding
L137 �� �� � �� ��� �/	 	
L138 �� �� � �� ��� �/	 	
L139 �� �� � �� �� � �/	
L141 �� �� �/	 �� �� � 	
L142 �� �� � �� �� �/	 	
L143 �� �� � �� ��� �/	 �/	

aScores reflect the cumulative number of positive cells in five �100 (total magnification) fields. For all values,
P � 0.05.

bFor CD2, CD3, CD4, CD5, and CD8, immunohistochemical scoring is as follows: 	, no specific positive cells;
�/	, rare presence of positive cells; �, �200 positive cells; ��, 201–350 positive cells; ���, 351–500
positive cells; ����, �500 positive cells. For CD25, immunohistochemical scoring is as follows: 	, no
specific positive cells; �/	, rare presence of positive cells; �, �30 positive cells; ��, 31– 80 positive cells;
���, 81–200 positive cells; ����, �200 positive cells.

cFor CD21, immunohistochemical scoring is as follows: 	, no specific positive cells; �/	, rare presence of
positive cells; �, 1 focus of positive cells; ��, 2 foci of positive cells; ���, 3– 4 foci of positive cells;
����, �4 foci of positive cells.
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immune surveillance has yet to be determined. Since the carrier stallion plays a pivotal
role in the epidemiology of EAV and constitutes the main challenge for its control and
potential eradication (2–4, 18, 27), it is important to fully understand the underlying
mechanisms involved in the establishment and maintenance of persistent infection in
the stallion’s reproductive tract. Until the experiments described herein, our knowledge
regarding the anatomical sites of EAV persistence was limited to a single study
conducted by infecting pre- and peripubertal colts (�12 months of age) rather than

FIG 9 Immunophenotypic characterization of lymphocyte infiltrates in the ampullae of EAV experimentally infected stallions.
Immunohistochemical staining was performed using a panel of monoclonal antibodies specific to T and B lymphocyte surface markers
and a Bond Polymer Refine Detection kit. Surface markers for T (CD3, CD4, CD8, and CD25) and B (CD21) lymphocytes are indicated
to the left. Stallion groups are indicated at the top of the columns. IHC was performed with DAB. Magnification, �40; bar, 500 �m.
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sexually mature stallions (43). Moreover, the conclusion that EAV can be isolated only
from the ampullae in carrier stallions is based on tissues harvested from a single animal
that at 450 dpi was still actively shedding EAV in semen. The remaining animals used
in that study were euthanized too early following infection to be reliably classified as
persistently infected. Consequently, this earlier study is limited by the fact that it not
only employed virus isolation techniques on homogenized tissue samples but also used
a very small sample size. Here, we sought to expand our understanding of the
pathogenesis of EAV persistence by precisely identifying its anatomic distribution and
host cell tropism in the male genital tract following infection of sexually mature
stallions. An additional aim was to determine if local host inflammatory responses were
associated with chronic EAV infection and to immunophenotype the cells involved.

Direct virus isolation and viral nucleocapsid immunostaining unambiguously dem-
onstrated that EAV anatomic distribution in the reproductive tract of persistently
infected stallions is not reliant on immunologically privileged tissues such as the testes
but, instead, predominantly involves the accessory sex glands, with the ampullae
serving as the major reservoirs for the virus. Within these tissues, EAV exhibited a strong
host cell tropism for vimentin-positive stromal cells of the lamina propria (including
fibrocytes and possibly tissue macrophages) in addition to T (CD2�, CD3�, CD5�, and
CD8�) and B (CD21�) lymphocytes that were closely associated with local inflammatory
infiltrates. Glandular epithelial cells (cytokeratin positive) did not contain detectable
amounts of EAV N protein despite the intimate association of EAV-infected intra- and
subepithelial lymphocytes with the reproductive epithelium. Even though this close
association suggests that infectious virus may gain access to seminal fluid via these
infected lymphocytes simply migrating across the glandular epithelium, further inves-
tigations are required to test this hypothesis. In addition, EAV was not detectable in
lymphoid tissues, including those associated with lymph drainage from the reproduc-
tive tract. While this suggests that infected T and B lymphocytes may exhibit a specific
homing pattern to the reproductive tract (65–70) and restricted migration from repro-
ductive tract tissues to secondary lymphoid organs, this observation warrants further
investigation to better understand the unique mechanism(s) of lymphocyte homing to
the male reproductive tract.

Interestingly, results presented here suggest that EAV exhibits different host cell
tropism profiles dependent on the tissue compartment and/or stage of infection (i.e.,
acute versus chronic). For example, while CD21� B lymphocytes containing EAV N
antigen are clearly present in the accessory sex glands of the stallion’s reproductive
tract, recent in vitro studies demonstrated that although EAV infects CD3� (CD4� and

TABLE 5 Immunohistochemical characterization of tissue macrophages and dendritic cell populations in sections from the ampullae of
EAV long-term, persistently infected stallions and stallions that stopped shedding virus in semen

Stallion group and
identification

IHC score by markera

CD18 CD83b CD86 CD163 CD172a CD204 Iba-1b MHC-II Calprotectin/L1

Persistently infected
L136 ���� ��� � � ���� �� ���� ��� �/	
L140 ��� �� 	 � ��� �� ��� �/	 �/	
Stallion E ���� �� 	 � ��� � ��� ���� �/	

Stopped shedding
L137 ���� �/	 	 �� ��� ���� � ��� 	
L138 � �/	 � � �� �� � �� �/	
L139 ��� �/	 � �� ��� ��� � ��� �/	
L141 ���� 	 	 �� �� ��� � �/	 �/	
L142 � � �/	 � � �� � �� �/	
L143 �� 	 	 � �� �� � �� �

aFor CD18, CD163, CD172a, CD204, Iba-1, MHC-II, and calprotectin/L1, immunohistochemical scoring is as follows: 	, no specific positive cells; �/	, rare presence of
positive cells; �, �200 positive cells; ��, 201–350 positive cells; ���, 351–500 positive cells; ����, �500 positive cells. For CD83 and CD86,
immunohistochemical scoring is as follows: 	, no specific positive cells; �/	, rare presence of positive cells; �, �80 positive cells; ��, 81–120 positive cells; ���,
121–150 positive cells; ����, �150 positive cells. Scores reflect the cumulative number of positive cells in five �100 (total magnification) fields.

bP � 0.05.
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CD8�) T lymphocytes and CD14� monocytes, it does not infect CD21� B lymphocytes
derived from the peripheral blood mononuclear cell fraction (40). However, EAV-
infected IgM� B lymphocytes are detectable in both in vitro studies conducted using
polarized upper respiratory tract mucosal explants and in vivo studies during acute
infection (16, 71), indicating that infection of these cells is dependent on as yet
undiscovered cellular factors. Another significant example of apparent differences in
the spectra of EAV host cell tropism is observed during the early and persistent phases
of infection. Following initial exposure, EAV N antigen is readily detectable in vascular
endothelial cells from small blood vessels, resulting in an extensive panvasculitis, a
hallmark of the acute phase of EAV infection (11–13, 15, 72, 73). In contrast, EAV N
antigen was not observed in endothelial cells within the reproductive tract of carrier
stallions, and no other microscopic lesions except lymphoplasmacytic inflammation are
associated with the carrier state. Taken together, our findings suggest variation be-
tween peripheral blood and tissue T and B lymphocytes regarding their susceptibility
to EAV infection along with clear differences in EAV cell tropism between acute and
chronic (persistent) phases of infection. At present, the mechanisms that determine
these differences are unknown.

The intimate localization of EAV-infected cells within inflammatory infiltrates indi-
cates that viral replication occurs despite the presence of an inflammatory/immune

FIG 10 Immunophenotypic characterization of macrophage and dendritic cell infiltrates in the ampullae of EAV
experimentally infected stallions. Immunohistochemical staining was performed using a panel of monoclonal and
polyclonal antibodies specific to tissue macrophage and dendritic cell markers and a Bond Polymer Refine
Detection kit. Specific markers for tissue macrophages and dendritic cells are indicated to the left. Stallion groups
are indicated at the top of the columns. IHC was performed with DAB. Magnification, �40; bar, 500 �m.
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response in the reproductive tract of persistently infected stallions. This host response
was characterized by the presence of mature dendritic cells as defined by expression of
CD83, a protein that is essential for T lymphocyte costimulation (63), and by substantial
infiltration of CD3� CD5� CD8� T lymphocytes consistent with a cytolytic response.
However, only low numbers of these T lymphocytes expressed granzyme B or inter-
feron gamma, suggesting a local suppression in the CD8� T-mediated response (M.
Carossino and U. B. R. Balasuriya, unpublished data). Such immunosuppression might
be explained by the presence of CD4� CD25� T lymphocytes within the inflammatory
infiltrates as this cell phenotype is consistent with T regulatory (Treg) lymphocytes.
Support for this notion is provided by the fact Treg cells have been implicated in the
suppression of local immune responses following infection with other arteriviruses
(74–79). In addition to potential Treg cell activity, EAV undergoes antigenic drift (26, 30)

FIG 11 Immunophenotypic characterization of macrophage and dendritic cell infiltrates in the ampullae of
EAV experimentally infected stallions (continued). Specific markers for tissue macrophages and dendritic cells
are indicated to the left. Stallion groups are indicated at the top of the columns. IHC was performed with DAB.
Magnification, �40; bar, 500 �m.
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during the course of persistent infection in carrier stallions that could contribute to
immune evasion and/or promote immune exhaustion, as observed for other chronic
viral infections (80–84). Another property of the inflammatory response to EAV in the
stallion’s reproductive tract is that although tissue macrophages were activated as
defined by expression of Iba-1 (47, 49), they did not express calprotectin/L1, a marker
frequently downregulated in resident macrophages compared with levels in macro-
phages that have been recently recruited to a tissue site (55). This is consistent with
some form of active inhibition of macrophage recruitment to locations in the stallion
reproductive tract where EAV replication is occurring. However, further investigations
are required to validate this conclusion. Finally, local immune suppression is likely to be
enhanced by the strong influence of androgens in reproductive tissue homeostasis (85),
which may also explain EAV’s dependence on androgenic hormones during persistent
infection. Therefore, it is hypothesized that EAV persistence is likely to be associated
with dysregulation of local immune responses at multiple levels. Consequently, exper-
iments are in progress to understand the local immune pathways, expand the pheno-
typic identity of local CD4�/CD25� T lymphocytes, and understand the role of andro-
genic hormones in EAV persistence.

As observed during natural infection, some of the experimentally infected stallions
ceased shedding EAV in semen, suggesting that they were capable of clearing the virus
from the reproductive tract. Although no infective virus could be isolated from genital
tract tissues or semen of these stallions after interruption of viral shedding, very low
numbers of stromal cells expressing EAV antigen and containing viral RNA were
detectable. This observation is consistent with a previous study from this laboratory
(72) and the fact viral RNA can be detected in semen for variable periods of time after
the cessation of infectious virus shedding (86, 87). Similar findings have also been
reported in the case of other persistent viral infections such as foot-and-mouth disease
virus (FMDV) (88–90). However, it was consistently noted that stallions that had stopped
shedding had reduced local inflammatory responses compared with those of animals
that remained EAV carriers. This reinforces the view that viral replication in the stallion
reproductive tract induces a chronic inflammatory state that may aid viral persistence
by ensuring the continuous recruitment of lymphocytes as potential susceptible host
cells.

Although the mechanisms that determine why some stallions clear the virus from
the reproductive tract while others become carriers is far from being fully understood,
we have recently demonstrated that the ability of EAV to persist is strongly influenced
by host genetics (42). In support of this conclusion it was initially shown that long-term
persistence of EAV in the stallion reproductive tract is strongly correlated with
possession of a subpopulation of CD3� T lymphocytes that is susceptible to EAV
infection in vitro (39). Subsequent advanced genetic studies revealed that CD3� T
lymphocyte susceptibility or resistance to EAV is controlled by different alleles of
the equine homolog encoding the CXCL16 chemokine (SR-PSOX class G [91],
located on equine chromosome 11 [ECA11]). These alleles differ by four nonsyn-
onymous nucleotide substitutions within exon 1. The resultant proteins associated
with CD3� T lymphocyte EAV susceptibility or resistance are designated CXCL16S
and CXCL16R, respectively (41, 42). Furthermore, genetic association studies have
demonstrated the correlation between CXCL16S and EAV carrier status in stallions.
Moreover, we have determined that CXCL16S has receptor activity for EAV whereas
CXCL16R does not (42, 92). Therefore, CXCL16S clearly plays a central role in the
establishment and maintenance of persistent infection in the stallion reproductive
tract. To fully elucidate this role, analysis of the expression of CXCL16S and its unique
receptor (CXCR6) in different cell types within the reproductive tract of carrier stallions
is under way in this laboratory. In humans and mice, CXCL16 is expressed in a variety
of cell types in different tissues and under different disease conditions (e.g., inflamma-
tion or neoplasia) (93–96). CXCL16 is also involved in homing/recruitment of T lym-
phocytes, plasma cells, and other inflammatory cells (97–99). However, while CXCL16S
is clearly an important factor in the establishment and maintenance of persistent
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infection, its expression may not be limited solely to the stallion reproductive tract.
Therefore, in the context of CXCL16S expression, the stallion reproductive tract must
constitute a highly specialized environment with the unique distinction of enabling
viral persistence.

In conclusion, the results presented here provide novel insights into the pathogen-
esis of persistent EAV infection in the reproductive tract of the stallion by identifying
tissue reservoirs, viral host cell tropism, and cellular phenotypes involved in local
inflammatory responses. They demonstrate that EAV persistence is not dependent on
known immunologically privileged sites but appears to involve as yet unidentified
mechanisms, potentially including immunosuppression and/or T cell exhaustion to
circumvent the antiviral immune responses. Moreover, these results complement our
studies on the role of CXCL16S by showing that, in addition to this chemokine, the
accessory sex glands must offer a unique microenvironment that supports continuous
EAV replication despite elimination of the virus from all other body tissues. The reasons
underlying the uniqueness of this microenvironment, along with the immune pathways
that lead to viral persistence in the context of CXCL16S expression, are under investi-
gation in our laboratory.

MATERIALS AND METHODS
Cells and viruses. High-passage-number rabbit kidney 13 cells (RK-13 [KY], passage level 399 to 409

[derived from ATCC CCL-37; American Type Culture Collection]) were maintained in Eagle’s minimum
essential medium (EMEM) (Cellgro; Mediatech, Inc., Herndon, VA) with 10% ferritin-supplemented calf
serum (HyClone Laboratories, Inc., Logan, UT), penicillin and streptomycin (100 U/ml and 100 �g/ml,
respectively), and 0.25 �g/ml of amphotericin B (Gibco, Carlsbad, CA). Equine pulmonary artery endo-
thelial cells (EEC; University of California, Davis, CA) (100) were maintained in Dulbecco’s modified
essential medium (Mediatech, Herndon, VA) with 1 mM sodium pyruvate, 10% fetal bovine serum
(HyClone Laboratories, Inc., Logan, UT), penicillin and streptomycin (100 U/ml and 100 �g/ml, respec-
tively), 0.25 �g/ml of amphotericin B, 200 mM L-glutamine, and 0.5� nonessential amino acids (Gibco,
Carlsbad, CA). Tissue culture fluid (TCF) containing the KY84 strain of EAV (passage 1 in EEC) (University
of Kentucky, Lexington, KY) (23) was used for experimental infection of stallions and to infect EEC
monolayers for optimization of IHC and IFA assays. The KY84 strain of EAV has been shown to establish
persistent infection in the reproductive tract of stallions and to cause moderate clinical signs of EVA in
horses (23, 101). The modified live virus (MLV) vaccine strain of EAV (ARVAC; Pfizer Animal Health, Inc.,
Kalamazoo, MI) was used as the challenge virus in the virus neutralization assay described below.

Ethics statement. This study was performed in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The Institutional
Animal Care and Use Committee (IACUC) at the University of Kentucky, Lexington, KY, approved this
protocol (number 2011-0888). Stallions were humanely euthanized by pentobarbital overdose according
to the American Veterinary Medical Association (AVMA) guidelines for the euthanasia of animals, and all
efforts were made to minimize suffering.

Stallions. A total of 13 sexually mature stallions were included in the study (Table 1). These were
obtained from UK Maine Chance Farm, University of Kentucky, Lexington, KY. Twelve stallions, including
the animals in the control group, were confirmed seronegative (titer of �1:4) before initiation of the
study according to the World Organization for Animal Health (Office International des Epizooties [OIE])
standardized protocol (102) described below. An additional stallion naturally infected with EAV during
the 2006-2007 multistate EVA outbreak in the United States (31) and classified as a long-term persistently
infected stallion was also included in the study. The stallions were housed in individual stalls in an
isolation facility for the duration of the study at the University of Kentucky in Lexington, KY.

Experimental infection and establishment of EAV long-term persistent infection (carrier state)
in stallions. Eight stallions (animals L136 to L143) were intranasally inoculated in October 2011 with the
KY84 strain of EAV (3.75 � 105 PFU per ml of TCF delivered in 5 ml of EMEM) using a fenestrated catheter
and monitored as previously described (19, 103). The control group (stallions N105, N121, O103, and
O113) remained unexposed and unvaccinated against EAV. Serum neutralizing antibody titers, viremia,
and nasal shedding of EAV were assessed by collecting serum, whole blood, and nasopharyngeal swabs
at 0, 2, 4, 6, 8, 10, 12, 14, 21, 28, 35, 42, and 726 (preeuthanasia) days postinfection (dpi) with Vacutainer
serum and EDTA tubes (BD, Franklin Lakes, NJ) and sterile rayon swabs (1/2 by 1 in.) with plastic shafts
(16 in.), respectively. Nasopharyngeal swabs were placed into virus transport medium (VTM) containing
penicillin and streptomycin (100 U/ml and 100 �g/ml, respectively), 150 mg/liter of gentamicin sulfate
(Cellgro; Mediatech, Inc., Herndon, VA), and 0.25 �g/ml of amphotericin B (Gibco, Carlsbad, CA). Semen
samples were collected with the use of an artificial vagina to evaluate viral shedding during the acute
phase and after clinical recovery at 	2 (prechallenge), 1, 3, 5, 7, 9, 11, 13, 15, 23, 44, and 65 dpi. For the
purpose of monitoring viral persistence in the reproductive tract, semen samples were collected
approximately once a month, specifically on 86, 107, 128, 149, 170, 198, 226, 254, 282, 317, 345, 380, 407,
448, 462, 476, 497, 548, 701, and 726 dpi. Samples (whole blood, nasopharyngeal swabs, and semen)
were processed for virus isolation (VI) as previously described (20). Briefly, nasopharyngeal swabs in VTM
were centrifuged at 500 � g for 10 min at 4°C to eliminate cellular debris, filtered through a 0.45-�m-
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pore-size syringe filter, and stored at 	80°C. Whole-blood samples were centrifuged at 500 � g for 10
min, plasma and buffy coat cells were aspirated and placed in a 15-ml conical centrifuge tube, and buffy
coat cells were pelleted by centrifugation at 1,500 � g for 10 min at 4°C. The cell pellet was resuspended
in 2 ml of EMEM and stored at 	80°C.

VNT. Seroconversion was evaluated by a virus neutralization test (VNT) as described in the OIE
Manual for Diagnostics and Vaccines for Terrestrial Animals (102). A working dilution containing 100 50%
tissue culture infective doses (TCID50) per 25 �l of the commercial live-attenuated vaccine strain of EAV
(MLV, ARVAC; Zoetis, Kalamazoo, MI) was used as the challenge virus. The use of this strain was based
on the existence of a single viral serotype broadly neutralized by polyclonal equine antiserum and on its
standardized use for EAV serological testing as indicated in the OIE Manual of Diagnostic Tests and
Vaccines for Terrestrial Animals (102).

Necropsy examination and tissue collection. Stallions were humanely euthanized by pentobarbital
overdose according to the American Veterinary Medical Association (AVMA) guidelines for the euthanasia
of animals. Necropsy examination and tissue collection were performed 2 years postinfection. A total of
80 body tissues per stallion, with specific emphasis on the reproductive and urinary tract tissues, regional
lymph nodes, and other lymphoid tissues (n � 50) (Table 6), were aseptically collected and stored
at 	80°C. Both right and left sides were sampled in the case of paired organs. In addition, tissues were
fixed in 10% neutral buffered formalin for 24 h and paraffin embedded according to standard histological
procedures and also snap-frozen in optimum cutting temperature compound (Tissue-Tek O.C.T., Sakura
Finetek U.S.A., Torrance, CA). Briefly, individual tissue specimens were placed in a plastic cryo-mold
(Tissue-Tek, Sakura Finetek U.S.A., Torrance, CA), covered with O.C.T. compound, and submerged in
prechilled 2-methylbutane (Fisher Scientific, Pittsburgh, PA) in liquid nitrogen for 1 min. The frozen tissue
block was wrapped in Parafilm (Bemis, Oshkosh, WI) and aluminum foil and then stored at 	80°C.
Additionally, reproductive tract tissues were fixed in 4% paraformaldehyde and 3.5% glutaraldehyde in
0.1 M Sorensen’s buffer for 1.5 h and processed for transmission electron microscopy (TEM) examination.

Virus isolation (VI). Isolation of EAV from raw gel-free semen samples, buffy coat cells, nasopha-
ryngeal swabs, and tissue homogenates was performed according to a standard protocol used by the
EAV OIE Reference Laboratory at the Maxwell H. Gluck Equine Research Center, University of Kentucky,
as previously described (20, 72, 102, 103). Viral titers were expressed as the number of PFU per milliliter
or gram accordingly, and isolates were confirmed by real-time TaqMan reverse transcription-quantitative
PCR (RT-qPCR) as previously described (86, 87, 104).

Nucleic acid extraction and reverse transcription-insulated isothermal PCR (RT-iiPCR). Viral
nucleic acids were extracted from 10% tissue homogenates and from semen in cases where infective
virus could not be isolated but immunopositive cells were detected. A taco mini magnetic bead-based
extraction system and RT-iiPCR assay (GeneReach USA, Lexington, MA) were used as previously described
(87).

Histopathology. Sections of formalin-fixed paraffin-embedded (FFPE) tissues (5 �m) were stained
with hematoxylin and eosin (H&E) according to a standard laboratory procedure prior to histological
evaluation. Tissue sections were scrutinized by experienced veterinary pathologists who were blinded as
to the carrier status of the stallions, and a morphological diagnosis was provided. Inflammatory lesions
received a cumulative score based on their severity and distribution (cumulative score � inflammation
severity � inflammation distribution). The severity was categorized according to the cumulative number

TABLE 6 Reproductive, urinary, and lymphoid tissues collected from stallions at
postmortem examination

Tissue type Section(s)b

Testisa Cranial, middle, and caudal
Epididymisa Head, body, and tail
Ductus deferensa Proximal, middle, and distal
Ampullaa Proximal, middle, and distal
Vesicular glanda NA
Prostatea NA
Bulbourethral glanda NA
Pelvic urethra NA
Penis Pelvic section, shaft, and glans
Kidneya NA
Uretera NA
Urinary bladder Fundus and trigonum
Inguinal lymph nodea Superficial and deep
Lumbar lymph nodea NA
Iliac lymph nodea NA
Splenic lymph node NA
Spleen NA
Bone marrow NA
aLeft and right sides were collected.
bThe designations proximal and distal are in reference to the relative distances to the inguinal ring, with
proximal being closer to it. Other body tissues were collected and examined (not listed), including
respiratory tract tissues, visceral organs, lymph nodes, and tonsils. NA, not applicable.
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of inflammatory cells quantified in five fields at a magnification of �400 (total magnification) as follows:
0, negative (�30 inflammatory cells); 1, minimal (31 to 150 inflammatory cells); 2, mild (151 to 300
inflammatory cells); 3, moderate (301 to 500 inflammatory cells); and 4, severe (�500 inflammatory cells).
Similarly, the distribution was scored as follows: 0, negative; 1, focal (1 focus per tissue section); 2, rare
foci (2 foci per tissue section); 3, occasional foci (3 to 4 foci per tissue section; (4), multifocal (5 or more
foci per tissue section); and 5, diffuse.

Antibodies. A monoclonal antibody (MAb) specific to EAV N protein (MAb 3E2) was used for IHC and
IFA staining as previously described (15, 72). Additionally, a MAb specific to bluetongue virus (BTV) VP7
protein (MAb 290) (105) was used as a negative control. Mouse MAbs and rabbit polyclonal antibodies
against several cellular markers were utilized for single and dual IHC and IFA (Table 3). IHC staining was
performed using Bond Polymer Refine Detection and Bond Polymer Refine Red Detection kits (Leica
Biosystems, Buffalo Grove, IL) as described below. An Alexa Fluor 488- or Alexa Fluor 594-conjugated
F(ab=)2 fragment of goat anti-mouse IgG (Life Technologies, Grand Island, NY) was used as the secondary
antibody for IFA staining.

EAV anti-nucleocapsid-specific IHC. Snap-frozen tissue sections (10 �m) were mounted on posi-
tively charged Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA). Slides were fixed in cold acetone
for 10 min and processed with a Leica Bond-Max automated staining system (Leica Biosystems, Buffalo
Grove, IL). Immunostaining was performed using MAb 3E2 (1:50 dilution in ISH/IHC Super Blocking [Leica
Biosystems, Buffalo Grove, IL]) and a Bond Polymer Refine Red Detection kit (Leica Biosystems, Buffalo
Grove, IL) as previously described but omitting the antigen retrieval step (72). Sections were mounted
with permanent mounting medium (Micromount; Leica Biosystems, Buffalo Grove, IL). EAV KY84-infected
and mock-infected EEC monolayers were used as positive and negative assay controls along with the
ampulla of a control stallion. Tissue sections that were not incubated with the primary antibody along
with tissue sections stained with BTV VP7-specific MAb were included to assess staining specificity. The
cumulative number of positively stained cells was quantified in five �100 (total magnification) fields
using ImageJ, version 1.48, digital image analysis software (National Institutes of Health [NIH], Bethesda,
MD) (106) and an ImageJ plug-in for color deconvolution (107). Following deconvolution, a scale was set
according to the micrometer scale bar on each image, the images were thresholded, and positive cells
were counted. A score was assigned according to the number of immunopositive cells identified as
follows: 0, negative; 1, �5 positive cells; 2, 5 to �45 positive cells; 3, 46 to �125 positive cells; 4, 126
to �250 positive cells; and 5, �250 positive cells.

Single IHC for various subpopulations of lymphocytes and tissue specific macrophages.
Acetone-fixed frozen sections (10 �m) were prepared as previously indicated. Immunostaining was
performed using a Bond Polymer Refine Detection kit (Leica Biosystems, Buffalo Grove, IL). Briefly,
endogenous peroxidase activity was blocked after incubation with 0.03% hydrogen peroxide for 15 min,
and then sections were washed with 1� phosphate-buffered saline (PBS), pH 7.4 (Gibco, Carlsbad, CA),
and incubated with specific MAbs against CD2, CD3, CD4, CD5, CD8, CD21, CD83, CD86, and CD172a
(Table 3) for 1 h at room temperature. This was followed by incubation with a rabbit anti-mouse IgG (8
min) and a polymer-labeled goat anti-rabbit IgG conjugated to horseradish peroxidase (HRP) (8 min).
DAB (3,3=-diaminobenzidine tetrahydrochloride) was used as the substrate and incubated for 10 min.
Finally, sections were counterstained and mounted as previously described.

Sections of FFPE tissues (5 �m) were mounted on positively charged Superfrost Plus slides (Fisher
Scientific, Pittsburgh, PA) and dried overnight at 37°C. For retrieval of CD25, CD204, and Iba-1 antigens,
heat-induced epitope retrieval (HIER) was performed following automated deparaffinization using a
ready-to-use citrate-based solution (pH 6.0; Leica Microsystems, Buffalo Grove, IL) at 100°C for 20 min. For
CD18, CD163, MHC-II, and calprotectin/L1 immunostaining, deparaffinization was performed by baking
samples in a 60°C oven (ProBlot; Labnet International, Inc., Edison, NJ) for 15 min, followed by two xylene
changes (5 min each), incubation in successive ethyl alcohols (100%, 90%, and 80%), and rehydration in
1� PBS. HIER was performed on either a modified citrate-based ready-to-use solution (pH 6.1; Dako,
Carpinteria, CA) at 96°C for 30 min (CD18, CD163, and MHC-II antigens) or a 10� citrate-based solution
(pH 6.0; Dako, Carpinteria, CA) diluted to 1� in deionized water at 96°C for 30 min (calprotectin/L1
antigen). Slides were allowed to cool for 20 min and washed three times in 1� PBS. Immunostaining was
performed using a Bond Polymer Refine Detection kit (Leica Biosystems, Buffalo Grove, IL). The slides
were incubated with 3% hydrogen peroxide (5 min), followed by incubation with MAbs specific for CD18,
CD25, CD163, CD204, Iba-1, MHC-II, and calprotectin/L1 for 1 h at room temperature. After incubation
with the MAbs, the immunostaining procedure was continued as described above for other cellular
markers, with the exception of anti-Iba-1, for which the rabbit anti-mouse IgG incubation step was
omitted. Positive tissue controls for each cellular marker were included (tonsil, liver, and spleen from
control stallions). The cumulative number of immunohistochemical positive cells was quantified in
five �100 (total magnification) fields, and a score was assigned as indicated in Table 7. Expected normal
scores for each marker were determined by the number of specifically immunostained cells observed in
the tissues from the control group, and IHC scores were normalized accordingly as described under
“Statistical analysis” (108).

Dual IHC. Acetone-fixed frozen tissue sections (10 �m) were prepared as previously indicated.
Immunostaining was sequentially performed using Bond Polymer Refine Red Detection and Bond
Polymer Refine Detection kits. Briefly, the endogenous peroxidase activity was blocked after incubation
with 0.03% hydrogen peroxide for 15 min, and tissue sections were incubated with MAb 3E2, followed
by the use of a Bond Polymer Refine Red Detection kit as previously described. This was followed by
sequential immunostaining using a set of primary antibodies against cellular markers (CD2, CD3, CD5,
CD8, CD21, Iba-1, and CD163) and a Bond Polymer Refine Detection kit as indicated above. Finally,
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sections were counterstained and mounted as indicated previously. Appropriate controls were included
as indicated above, in addition to incubation with an isotype control in replacement of the second set
of primary antibodies (Sigma-Aldrich, St. Louis, MO) in order to assess staining specificity.

Indirect immunofluorescent antibody (IFA) staining. Snap-frozen tissue sections (10 �m) were
obtained as previously indicated. Tissue sections were fixed in 4% paraformaldehyde in 1� PBS for 20
min at room temperature, washed in 1� PBS (three times, 5 min each), permeabilized with 0.1% Triton
X-100 (Sigma-Aldrich, St. Louis, MO) in 1� PBS for 15 min at room temperature, and washed as described
above. Tissue sections were blocked with ISH/IHC Super Blocking (Leica Biosystems, Buffalo Grove, IL) for
1 h at room temperature in a humidity tray and incubated with MAb 3E2 (diluted 1:50) overnight at 4°C
in a humidity tray. Slides were subsequently washed with 1� PBS (four times, 5 min each) and incubated
with the secondary antibody [F(ab=)2 fragment of goat anti-mouse IgG conjugated with Alexa Fluor 594
(Life Technologies, Grand Island, NY)] diluted 1:200 in 5% normal goat serum (Jackson ImmunoResearch,
West Grove, PA) for 1 h at room temperature in a humidity tray. Finally, sections were washed as
described above, and nuclear counterstaining was performed with a mounting medium containing
4=,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA). Tissue sections were ob-
served under a Nikon Ti fluorescence microscope, and images were acquired using NIS Ar imaging
software (Nikon Corporate, Tokyo, Japan). Appropriate controls were used as described for IHC.

Dual IFA staining. Paraformaldehyde-fixed and permeabilized frozen tissue sections (10 �m) were
prepared as described above. A sequential immunostaining protocol was developed, which consisted of
EAV anti-N staining followed by specific cellular surface marker staining. After the blocking step
previously described, the MAb 3E2 was incubated overnight at 4°C in a humidity tray. Slides were
subsequently washed with 1� PBS (four times, 5 min each), incubated with the secondary antibody
[F(ab=)2 fragment of goat anti-mouse IgG conjugated with Alexa Fluor 488 or Alexa Fluor 594] diluted
1:200 in 5% normal goat serum (Jackson ImmunoResearch, West Grove, PA) for 1 h at room temperature
in a humidity tray. The use of Alexa Fluor 488- or Alexa Fluor 594-conjugated secondary antibody (Life
Technologies, Grand Island, NY) depended on the fluorochrome conjugated to antibodies specific to
cellular markers. Sections were washed as described above, and free binding sites from the goat
anti-mouse IgG were blocked with 5% normal mouse serum (Jackson ImmunoResearch, West Grove, PA)
for 30 min at room temperature before incubation with the second set of MAbs. Staining of specific
cellular surface markers using fluorescence-conjugated MAbs (CD3, CD4, CD8, CD21, pan-cytokeratin,
and vimentin) was performed for 1 h at room temperature in a humidity tray. Slides were finally washed,
and nuclear counterstaining was performed as previously described. Tissue sections were visualized, and
images were captured as described previously; images from different fluorescent channels were overlaid
using ImageJ, version 1.48, digital image analysis software (National Institutes of Health [NIH], Bethesda,
MD). Appropriate controls were used as described for IHC.

TEM. Samples were fixed as indicated previously, postfixed in 1% osmium tetroxide (OsO4) for 1.5 h
at 4°C, embedded in Eponate 12 (Ted Pella, Inc., Redding, CA), and polymerized for 48 h at 60°C. Ultrathin
sections were obtained using a Reichert Ultracut E ultramicrotome (Leica Biosystems, Buffalo Grove, IL),
collected on copper grids, and counterstained with 4% uranyl acetate solution and Reynold’s lead citrate.
Images were obtained using a Philips Tecnai BioTwin 12 transmission electron microscope (TEM) (FEI,
Hillsboro, OR).

Statistical analysis. Data distribution, box plots, and scatterplots were generated using JMP10
statistical analysis software (SAS, Cary, NC). All correlation and statistical tests were performed using
JMP10 statistical analysis software. Correlation analysis was performed by the Spearman’s rank correla-
tion method. Histopathology scores were subjected to statistical analysis of nonparametric data by a
Kruskal-Wallis test. In addition, cellular marker immunostaining scores were normalized as performed by
Gown et al. (108). The normalized score was generated by subtracting the immunostaining score of
tissues derived from control stallions from that of tissues obtained from persistently infected stallions
and stallions that stopped shedding virus. The IHC scores for each specific cellular marker were subjected
to statistical analysis of nonparametric data by a Kruskal-Wallis test as previously indicated. The level of
significance was set at a P value of �0.05 in all cases.

TABLE 7 Scoring system used for specific cellular immunostaining

Score

Interpretation for the indicated marker(s)a

CD2, CD3, CD4, CD5, CD8, CD18,
CD163, CD172a, CD204, Iba-1,
MHC-II, and calprotectin/L1
(no. of cells)

CD21
(no. of foci)

CD25
(no. of cells)

CD83 and CD86
(no. of cells)

	 None None None None
�/	 Rare Rare Rare Rare
� �200 1 �30 �80
�� 201–350 2 31–80 81–120
��� 351–500 3–4 81–200 121–150
���� �500 �4 �200 �150
aNumerical values express the cumulative number of immunohistochemically positive cells, except as noted,
in five �100 microscopic fields.
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