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Peptide Inhibitors Targeting the
Neisseria gonorrhoeae Pivotal Anaerobic
Respiration Factor AniA

Aleksandra E. Sikora,a Robert H. Mills,a Jacob V. Weber,a Adel Hamza,b*
Bryan W. Passow,a Andrew Romaine,a Zachary A. Williamson,b Robert W. Reed,b

Ryszard A. Zielke,a Konstantin V. Korotkovb

Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon,
USAa; Department of Molecular & Cellular Biochemistry, College of Medicine, University of Kentucky,
Lexington, Kentucky, USAb

ABSTRACT Neisseria gonorrhoeae causes the sexually transmitted infection gonor-
rhea, which is highly prevalent worldwide and has a major impact on reproductive
and neonatal health. The superbug status of N. gonorrhoeae necessitates the devel-
opment of drugs with different mechanisms of action. Here, we focused on target-
ing the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae an-
aerobic respiration and biofilm formation. Our studies showed that gonococci
expressing AniA containing the altered catalytic residues D137A and H280A failed to
grow under anaerobic conditions, demonstrating that the nitrite reductase function
is essential. To facilitate the pharmacological targeting of AniA, new crystal struc-
tures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display ap-
proach with libraries expressing randomized linear dodecameric peptides or hepta-
meric peptides flanked by a pair of cysteine residues was utilized. Biopanning
experiments led to the identification of 29 unique peptides, with 1 of them, C7-3,
being identified multiple times. Evaluation of their ability to interact with AniA using
enzyme-linked immunosorbent assay and computational docking studies revealed
that C7-3 was the most promising inhibitor, binding near the type 2 copper site of
the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic
assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1
and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of
C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We pres-
ent the first peptide inhibitors of AniA, an enzyme that should be further exploited
for antigonococcal drug development.

KEYWORDS Neisseria gonorrhoeae, anaerobic respiration, AniA, nitrite reductase,
phage display, peptide inhibitors, crystal structure, docking studies, biolayer
interferometry

Among the human-colonizing Neisseria species, only Neisseria gonorrhoeae, the
causative agent of gonorrhea, is always considered pathogenic. Gonorrhea re-

mains a serious public health concern, with 78 million new cases occurring annually
worldwide; has severe consequences on reproductive and neonatal health; and con-
tributes to the transmission and acquisition of HIV (1, 2). Untreated or inadequately
treated infections can result in endometritis, pelvic inflammatory disease, ectopic
pregnancy, epididymitis, and infertility (3–5). During pregnancy, gonorrhea may lead to
chorioamnionitis, which can be further complicated by septic abortion, premature
rupture of membranes, and preterm delivery (6). Infants born to infected mothers have
an increased risk of ophthalmia neonatorum, which can lead to blindness. There is a
pressing need for the development of new antibiotics, improved antibiotic surveillance
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strategies, and a gonorrhea vaccine, as N. gonorrhoeae strains resistant to the last
effective treatment options are emerging and clinical treatment failures have been
documented (7–15).

N. gonorrhoeae, initially considered an obligate aerobic bacterium, survives and
proliferates in a milieu of obligate anaerobes within the genitourinary tract (16).
Pioneering work by Short et al. (17) demonstrated that various gonococci, including
laboratory strains and fresh clinical isolates, remained viable during anaerobic inocu-
lation. Subsequently, nitrite was identified to be the critical terminal electron acceptor
supporting N. gonorrhoeae growth under oxygen-limited conditions (18). Mounting
evidence demonstrates that the anaerobic lifestyle is an important state during infec-
tion and the stimulon for anaerobic growth comprises about 10% of the N. gonorrhoeae
genome (19–22). N. gonorrhoeae favors anaerobic respiration during growth in biofilms
(21–23). Bacteria in biofilms display increased resistance to antimicrobials and host
defense mechanisms, and naturally occurring N. gonorrhoeae biofilms are linked with
persistent infections in women (23–26). Anaerobic growth is accomplished by the
utilization of a two-step denitrification pathway consisting of AniA (NGO1276), a
copper-containing enzyme that reduces nitrite to nitric oxide, which is subsequently
reduced to nitrous oxide by NorB (NGO1275) (Fig. 1). The denitrification pathway is
truncated, as it lacks a nitrous oxide reductase complex (27–30). AniA (formerly Pan 1),
also known as NirK, is a surface-exposed glycosylated lipoprotein essential for N.
gonorrhoeae viability under oxygen-limited conditions and enhances gonococcal sur-
vival upon exposure to normal human serum (21, 22, 31). Nitrite reductase, in addition
to Ccp, cytochrome c=, and Laz, provides pathogenic Neisseria strains with protection
against assaults from reactive oxygen and nitrogen species (32, 33). Further, antibodies
to AniA have been found in serum from infected women, demonstrating that aniA is
expressed in vivo (18, 34). For these reasons, interest in AniA’s potential as a gonorrhea
vaccine candidate has increased recently (31, 35).

In this paper, we propose AniA as a target for pharmacological intervention against
gonorrhea. The pharmacological inhibition of AniA should reduce the fitness of the
gonococcus in the genital tract, where oxygen tension is reduced, and should augment
the ability of existing antimicrobials to clear the pathogen. To facilitate the targeting of
AniA with small-molecule inhibitors, we solved new crystal structures of AniA. Subse-
quently, a phage display approach with highly diversified libraries expressing random-
ized linear dodecameric peptides or heptameric peptides was utilized to identify
peptide ligands interacting with a purified recombinant version of the N. gonorrhoeae
FA1090 nitrite reductase. These experiments enabled the discovery of 29 unique
peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their
ability to interact with AniA using an enzyme-linked immunosorbent assay (ELISA) and
computational docking established C7-3 as the most promising inhibitor, binding near
the type 2 copper site of the enzyme. Subsequent enzymatic assays with purified AniA,
whole-cell nitrite utilization studies, biolayer interferometry (BLI), and MIC50 determi-
nation demonstrated that synthetic C7-3 and its derivatives have an inhibitory effect on
AniA nitrite reductase activity and on N. gonorrhoeae growth under anaerobic condi-
tions.

RESULTS
Refining the N. gonorrhoeae AniA structure. The structure of N. gonorrhoeae AniA

has been reported (27). However, the high ionic strength under the crystallization
condition of AniA in space group P1 (27) is not readily suitable for cocrystallization with
inhibitors. To facilitate the targeting of AniA with small-molecule inhibitors, the recom-
binant version of AniA, sAniA (36), from N. gonorrhoeae strain FA1090 was purified and
the new structures of the N. gonorrhoeae AniA were solved and refined to 1.90-Å and
2.35-Å resolutions in two novel crystal forms, P212121 and I4122, respectively (Table 1
and Fig. 1B to D). While the crystals belonging to the P212121 form were grown under
the high-ionic-strength condition, the crystals belonging to the I4122 form were
obtained using 0.2 M potassium thiocyanate and 20% polyethylene glycol (PEG) 3350
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crystallization solution. Therefore, the I4122 crystals should be readily amenable for
cocrystallization or soaking experiments with potential inhibitors or small-molecule
fragments. C-terminal residues 355 to 363, which were not modeled in the previous
AniA structure (27), form an additional �-strand that reaches over to the neighboring
subunit and engages in intersubunit �-strand complementation. Interestingly, similar
intersubunit interactions have been observed in the structures of other bacterial nitrite
reductases, for example, those from Alcaligenes faecalis (37), Achromobacter xylosoxi-
dans (38), and Achromobacter cycloclastes (39). Otherwise, our AniA structures are
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FIG 1 Structural and functional analysis of AniA. (A) Schematic illustration of AniA function in the Neisseria
gonorrhoeae denitrification pathway. A two-step denitrification pathway in N. gonorrhoeae is comprised of
AniA (NGO1276), which reduces nitrite to nitric oxide, and NorB, which subsequently reduces nitric oxide
to nitrous oxide. (B, C) The crystal structure of the AniA trimer shown in ribbon representation with three
subunits colored in green, magenta, and cyan. Side (B) and top (C) views are shown. Each monomer
contains two Cu2� ions, shown as gold spheres. (D) Diagram of native AniA and the recombinant variant
proteins sAniA and mutated AniA D137A H280A. Gray, signal peptide (SP), amino acids 1 to 20; green,
N-terminal cupredoxin domain, amino acids 102 to 198; yellow, C-terminal cupredoxin domain, amino acids
205 to 348; red, the C-terminal 6� His tag. The active-site residues aspartate (D137) and histidine (H280)
are also shown. (E) Effect of genetic inactivation of aniA and point mutations D137A and H280A on N.
gonorrhoeae survival under anoxia. Wild-type (wt) strain FA1090, the isogenic knockout ΔaniA strain, the
complemented ΔaniA/Plac::aniA strain, and the ΔaniA strain carrying a mutated version of AniA, ΔaniA/
Plac::aniA D137A H280A, were grown in broth to an OD600 of 0.2, serially diluted, and spotted onto solid
medium supplemented with nitrite and 0.1 mM IPTG. Growth was examined after 22 and 48 h of incubation
under aerobic and anaerobic conditions, respectively. (F) Measurements of the nitrite reductase activity of
AniA obtained using a fluorometric 2,3-diaminophtalene (DAN) assay. The consumption of nitrite was
examined at 37°C under anaerobic conditions in a solution containing sodium nitrite, methyl viologen,
sodium dithionate, Tris-HCl, pH 7.0, and either decreasing concentrations of sAniA (in micromolar, as
indicated) or AniA D137A H280A (1 �M). The data show the mean reaction rates with the associated SEMs
(n � 10).
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similar to the previously determined AniA structure (27), with the root mean square
error between individual subunits being 0.3 Å (Fig. 1B and C).

N. gonorrhoeae AniA is a trimer, with each monomer consisting of two �-sandwich
cupredoxin domains (Fig. 1). The monomers contain two types of Cu-binding sites
involved in catalysis. The type 1 Cu site is coordinated by the Cys125, Met188, His134,
and His183 residues from the same subunit. The type 2 Cu site is located on the
interface between subunits and is coordinated by His139 and His174 residues from one
subunit and a His329 residue from another subunit. Interestingly, another His residue,
His280, is located in the vicinity of the type 2 Cu site but does not directly coordinate
the Cu ion.

The nitrite reductase function of AniA is pivotal for N. gonorrhoeae survival
under anaerobic conditions. An insertional mutation within the aniA locus caused the
loss of N. gonorrhoeae viability under anaerobic growth conditions (28, 40). Corrobo-
rating these findings, a strain with an in-frame aniA deletion knockout in the FA1090
background, the ΔaniA strain, grew robustly aerobically, but no colonies were observed
under oxygen-limited conditions (Fig. 1E). To test whether this effect on gonococcal
viability was associated with the nitrite reductase function of AniA, a mutated version
of the enzyme with altered predicted catalytic residues D137A and H280A (Fig. 1) (27)
was created using site-directed mutagenesis. Subsequently, the wild-type (wt) aniA

TABLE 1 Data collection and refinement statistics

Parametera

Value(s) for AniA with PDB accession no.b:

5TB7 5UE6

Data collection statistics
Wavelength (Å) 1.0000 1.0000
Space group P212121 I4122
Unit cell dimensions

a, b, c (Å) 76.23, 129.10, 136.72 177.34, 177.34, 449.46
�, �, � (°) 90, 90, 90 90, 90, 90

Resolution (Å) 66.58–1.90 (1.95–1.90) 83.68–2.35 (2.41–2.35)
Rsym 0.090 (1.038) 0.179 (1.050)
CC1/2 99.8 (67.7) 99.0 (75.4)
I/�I 11.7 (1.9) 5.8 (1.8)
Completeness (%) 99.2 (100) 84.8 (83.3)
Multiplicity 6.2 (6.3) 4.2 (3.9)

Refinement statistics
Resolution (Å) 66.58–1.90 83.68–2.35
No. of reflections (total/free) 105,946/10,240 125,511/11,871
Rwork/Rfree 0.155/0.179 0.236/0.259
No. of atoms

Protein 7,156 21,242
Ligand/ion 21 27
Water 486 984

B factors
Protein 34.1 37.2
Ligand/ion 53.7 36.5
Water 41.9 32.2
All atoms 34.6 36.1

Wilson B 37.4 31.7
RMSD

Bond lengths (Å) 0.010 0.003
Bond angles (°) 1.006 0.638

Ramachandran distributionc (%)
Favored 98.7 98.2
Outliers 0 0

MolProbity scored 0.71 0.79
aCC1/2, correlation coefficient, as defined in the work of Karplus and Diederichs (101) and calculated by
XSCALE (102); I, intensity of a reflection; RMSD, root mean square deviation.

bValues in parentheses are for the highest-resolution shell.
cCalculated using the MolProbity server (http://molprobity.biochem.duke.edu) (73).
dMolProbity score combines the clash score, rotamer, and Ramachandran evaluations into a single score,
normalized to be on the same scale as the X-ray resolution (73).

Sikora et al. Antimicrobial Agents and Chemotherapy

August 2017 Volume 61 Issue 8 e00186-17 aac.asm.org 4

 on F
ebruary 15, 2018 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://www.rcsb.org/pdb/explore/explore.do?structureId=5TB7
http://www.rcsb.org/pdb/explore/explore.do?structureId=5UE6
http://molprobity.biochem.duke.edu
http://aac.asm.org
http://aac.asm.org/


allele and the aniA D137A H280A allele were cloned under the control of the Plac

promoter and introduced individually into the chromosome of FA1090 ΔaniA, creating
the ΔaniA/Plac::aniA and ΔaniA/Plac::aniA D137A H280A strains, respectively. Bacterial
suspensions of the same optical density were spotted on gonococcal base solid
medium (GCB) containing nitrite as a terminal electron acceptor and IPTG (isopropyl-
�-D-thiogalactopyranoside) to induce expression of aniA. Under aerobic conditions, all
strains grew similarly to wild-type N. gonorrhoeae, and full complementation of the
ΔaniA phenotype was achieved in the ΔaniA/Plac::aniA strain incubated anaerobically. In
contrast, the ΔaniA/Plac::aniA D137A H280A strain failed to form colonies under oxygen-
limited conditions, demonstrating that the nitrite reductase function of AniA is critical
for N. gonorrhoeae survival during anaerobiosis (Fig. 1E). To assess the enzymatic
activities of sAniA and AniA D137A H280A, both recombinant proteins were purified in
milligram quantities to homogeneity (see Fig. S1 in the supplemental material) and
nitrite utilization was measured in a fluorometric assay (27, 41–43). The enzymes were
individually incubated with nitrite as the substrate and dithionate-reduced methyl
viologen as an artificial electron donor. Following incubation, the reactions were
stopped and the concentrations of residual nitrite were determined with the 2,3-
diaminonaphthalene (DAN) reagent (42). As shown in Fig. 1F, the wild-type protein,
sAniA, consumed nitrite in a dose-dependent manner, whereas the mutated version of
AniA, AniA D137A H280A, displayed completely abolished nitrite reductase activity.

Together, the results of these studies demonstrate the importance of the predicted
catalytic residues D137 and H280 in the enzymatic function of AniA and gonococci
viability under anoxia.

AniA is expressed in a panel of geographically, temporally, and genetically
diverse gonococcal isolates. AniA appeared as one of the major anaerobically induced
outer membrane proteins that was not detected under aerobic growth (44, 45). We,
however, have shown that four different laboratory isolates of N. gonorrhoeae cultured
under standard aerobic conditions, as well as in the presence of normal human serum
and during iron deprivation, had sufficient amounts of AniA to be detectable not only
by mass spectrometry but also by standard immunoblotting (36, 44). Analysis of aniA
conservation (Fig. S2) demonstrated the existence of 318 alleles with 395 single
nucleotide polymorphic sites present in 42,088 isolates of Neisseria spp. deposited into
the PubMLST database (http://pubmlst.org/neisseria/, as of 25 January 2017). Further,
expression of aniA was tested in whole-cell lysates derived from 36 aerobically grown
different N. gonorrhoeae strains isolated from patients at different times and from
different geographic locations, including the 2016 WHO reference strains (46), by
SDS-PAGE and immunoblotting with polyclonal anti-AniA antiserum (36). Antiserum
against AniA cross-reacted with all clinical isolates, albeit with noticeable differences in
AniA levels being found between the strains (Fig. 2).

The conservation and expression of AniA under different growth conditions and
among diverse gonococcal isolates further highlight the importance of maintaining this
outer membrane protein in N. gonorrhoeae.

Targeting AniA using a phage display approach. We chose a phage display
approach to identify peptide ligands interacting with AniA, as this technology has been
successfully applied in basic and translational research and some of the identified
peptides are currently in preclinical or clinical trials (47, 48). To provide a high diversity
of peptide sequences, two commercially available M13 phage-based randomized pep-
tide libraries comprised of 1.9 � 109 independent linear dodecameric peptides (Ph.D.-
12) and 3.7 � 109 heptameric peptides each flanked by a pair of cysteine residues
(Ph.D.-C7C) were used (Fig. 3). We utilized an affinity capture method by immobilizing
sAniA onto magnetic Ni-nitrilotriacetic acid (NTA) agarose and, as outlined in Fig. 3,
preclearing steps prior to each biopanning experiment to remove Ni-NTA- and plastic-
binding sequences. Additionally, increasing stringency was applied during the wash
steps of three consecutive rounds of the biopanning experiments. Finally, the DNA of
24 randomly chosen phages from each group was extracted and sequenced. A total of
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29 different deduced peptide sequences were identified, with 6 and 23 different
peptides being identified in the Ph.D.-C7C and Ph.D.-12 phage pools, respectively.
Strikingly, one heptameric peptide, designated C7-3 (CNYCRLNLW), was identified 19
times (Fig. 3B).

The ability of the phage-displayed peptides to bind to sAniA was subsequently
examined in a monoclonal phage enzyme-linked immunosorbent assay (ELISA). The 29
phage clones, 1010 PFU per well, were individually incubated in microtiter plates coated
with sAniA. Following extensive washing, the signal was detected by a monoclonal
anti-M13– horseradish peroxidase (HRP) conjugate coupled with a colorimetric reaction
(Fig. 3C). These studies revealed C7-3 and 12-5 (KHYYGGDTTTLW) to be the best
binding among the heptameric and dodecameric phage-expressed peptides, respec-
tively, and these two peptides were selected for further investigation.

Docking studies. It has been observed that normal mode analysis (NMA) is well
suited for describing conformational changes between bound and unbound (apo-form)
protein structures (49–51). To understand AniA-peptide interactions, it was critical to
determine the flexibility and the conformational states of the homotrimer AniA struc-
ture. Whereas in the standard molecular dynamics (MD) simulation all atoms of the
protein are of equal importance, in our approach we considered that the structural
flexibility of the protein conformation is better represented by the linear combinations
of the lowest normal modes of vibrations. Thus, we approximated the total molecular
flexibility by considering only the most significant degrees of freedom (50, 51). As
shown in Fig. 4, the motion of the four combined lowest normal modes of vibrations
described the opening and closing states of cupredoxin domain II (Cu2� catalytic active
site) of the AniA structure. Thus, NMA revealed the tendency of the protein to move in
a certain direction, even though this movement was not fully explored during the MD
simulations.

The view of the top of the catalytic active site of the AniA structure (Fig. 4) shows
that the flexibility of the protein is well oriented and can dramatically change the
accessible area of the catalytic metal ion Cu2� and its potential interaction with a ligand
(NO2 or peptide). The open conformation of the homotrimer AniA structure was used
to identify several binding pockets.

Prediction of interactions between the C7-3 and 12-5 peptides and AniA. The
multiconformational states of the peptides C7-3 and 12-5 were first generated, and the
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FIG 2 AniA is expressed in a diverse panel of N. gonorrhoeae isolates. N. gonorrhoeae wild-type strain
FA1090, the isogenic ΔaniA/Plac::aniA strain, and the ΔaniA/Plac::aniA D137A H280A strain, as well as 36
additional strains of N. gonorrhoeae, as indicated above the immunoblots, were grown concurrently on solid
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conformations of the peptides with the lowest total energy were positioned on top of
each cavity with an arbitrary distance of �8 Å. The AniA-peptide complexes were
simulated by MD in a vacuum for 500 ps, and the last 20 final snapshots from the
trajectory were used to compute the binding free energy (ΔGbind). The stabilized
peptide conformation with the higher binding energy was used for the docking
procedure, as described in Materials and Methods. We docked the peptides in the
opened Cu2� catalytic active site of the AniA structure. After several docking trials, we
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FIG 3 Targeting AniA using a phage display approach. (A) The recombinant version of AniA, sAniA, was purified to homogeneity and
used in an affinity capture method as the bait during three panning experiments with two phage display libraries expressing either
randomized linear 12-mer peptides (Ph.D.-12) or randomized 7-mer peptides flanked by a pair of cysteine residues (Ph.D.-C7C). As a
first step in every round of the panning experiment, both peptide libraries were precleared against Ni-NTA magnetic chitin resin to
remove nonspecifically binding peptides. The supernatants from this step were then added to 200 �g of sAniA bound to the resin.
After incubation with the protein, unbound phages were washed away using TBST, with an increasing stringency of the washing being
used in consecutive rounds. The elutions were performed with glycine-HCl (pH 2.2). (B) Deduced peptide sequences of the 7-mer and
12-mer peptides obtained by sequencing of the DNA of 24 randomly selected phages from each group eluted after the third round
of biopanning. These studies revealed 26 unique peptides, with 1 of them, C7-3, being identified multiple times. Synthesized peptides
are shown in red. (C) Evaluation of the identified peptides through phage ELISA. Phage clones were purified and tested separately to
measure their affinity to sAniA in the phage ELISA. Purified sAniA (2 �M) was coated overnight at 4°C on 96-well flat-bottom plates.
After the coating step, unbound sAniA was removed and the wells were thoroughly washed with the storage buffer. The wells were
blocked and incubated with 1010 PFU per well from each amplification. After washing, the anti-M13 monoclonal antisera coupled to
horseradish peroxidase were added. Unbound antisera were removed by excessive washing, and enzymatic activity was exerted by
the addition of Turbo TMB-ELISA substrate. The absorbance at 450 nm was measured. Readings were compared to those of wells
which underwent an identical treatment but lacked sAniA (control) and to the signal from a wild-type phage, M13KE (1010 PFU), that
did not display peptides (wild type). The means and SEMs from seven independent experiments are shown. Clones 3* and 5 (in red)
were identified multiple times. *, P � 0.05.
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observed that the Tyr side chains (underlined and in bold in the amino acid sequences
of the peptides) of the C7-3 (CNYCRLNLW) and 12-5 (KHYYGGDTTTLW) peptides
stabilized in the active site by anchoring the Asp137 carboxylate group close to the
metal ion (Cu2�), while the side chains of the neighboring residues of the peptides
interacted with the residues of the active site. Figures 5 and S3 show that the Tyr side
chain fit in the cavity and established a strong van der Waals contact with the
hydrophobic residues of the cavity, while the hydroxyl group of the Tyr formed an H
bond with the Asp137 residue. Thereafter, several binding conformations of the

FIG 4 Normal mode analysis (NMA) of the conformational transition of the homotrimer AniA structure.
The motion of the combined four lowest normal modes of vibrations described the opening and closing
states of cupredoxin domain II (Cu2� catalytic active site) of the AniA structure. Thus, NMA revealed the
tendency of the protein to move in a certain direction, even though this movement was not fully
explored during the MD simulations. The view on the top of the catalytic active site of the AniA structure
shows that the flexibility of the protein is well oriented and can dramatically change the accessible area
of the catalytic metal ion Cu2� and its potential interaction with a ligand (NO2 or peptide). The open state
of the homotrimer AniA structure was used to identify several binding pockets. These conformations
essentially depended on the sequence of the residue composing the peptide. Afterward, the initial
conformation of the peptide (which is in a stable conformation in the solvent) was slightly perturbed
during the docking procedure due to the interactions with the receptor.

FIG 5 Stick view of the interaction of the peptide 12-5 Tyr side chain in the catalytic active site of AniA
homotrimer. The Tyr side chain of the peptide fits in the cavity and established strong van der Waals
contact with the hydrophobic residues of the cavity, while the hydroxyl group of the Tyr formed an H
bond with the Asp137 residue.
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peptides were generated and refined using 10-ns MD simulations in an explicit water
model.

The analysis of the binding energy of the peptides in the different pockets showed
that the binding free energy of peptides C7-3 and 12-5 in the Cu2� catalytic active site
was stronger than that in the other cavities of the protein complex. The calculated
relative binding free energy (ΔΔG) was ��4 kcal/mol, suggesting that the peptides
may bind in the other pockets, but the most important binding pose was in the
catalytic domain at the interface of the 2 monomers.

Binding mode of C7-3 and 12-5 in complex with AniA. As displayed in Fig. 6A and
B, the two peptides bound in the pocket with distinct conformations. These confor-
mations depended on the peptide’s amino acid sequence. Afterward, the initial con-
formation of the peptide (which had a stable conformation in the solvent) was slightly
perturbed during the docking procedure due to interactions with the receptor.

Finally, based on the docked models, we suggested that the residues near the key
Tyr side chain should be (i) small to prevent steric clashes throughout the docking of
the Tyr side chain into the narrow Cu2� pocket and/or (ii) polar so that they may
establish H bonds with the residues on top of the cavity. To validate the peptides’
binding prediction and highlight the key residues of the peptides involved in the
interactions with the receptor, we performed in silico mutations of some specific
residues and computed the relative binding free energy of the mutants simulated by
MD (Table 2).

Inhibition of AniA nitrite reductase activity by the heptamer and dodecamer
peptides. The inhibitory capacity of the two synthesized peptides, C7-3 and 12-5, on
the nitrite reductase activity of AniA was assessed in the in vitro nitrite consumption
assays with DAN. The efficiency of peptide inhibition was calculated from the rate of
nitrite reduction in the presence of the peptides at various concentrations (0 to 100
�M). The residual AniA activity (percent inhibition) with the peptides at different
concentrations was calculated by comparing the reaction rate of sAniA alone with that
of AniA D137A H280A (Fig. 6C). These experiments revealed that peptide 12-5 did not
influence the enzymatic activity of AniA (Fig. 6C), and therefore, its additional modifi-
cations (Table 2) were not tested. In contrast, C7-3 had a strong inhibitory effect on
sAniA with a 50% inhibitory concentration (IC50) of 10.15 �M (Fig. 6C). Next, we tested
whether the Tyr side chain plays a role in the C7-3–AniA interaction by measuring
nitrite reductase activity in the presence of increasing concentrations of peptides C7-3A
and C7-3P, in which the Tyr residue was replaced with Ala and Phe, respectively. The
calculated IC50s had values of �25.18 and �105 �M for C7-3A and C7-3P, respectively,
demonstrating that the replacement of Tyr with Phe had detrimental effects on the
inhibitor-receptor interaction.

Finally, we also aimed to experimentally verify the effect of the replacement of
residues adjacent to Tyr (Cys and Asn) with Ser on the inhibitory potential of C7-3 by
including in the nitrite reductase assay peptides C7-3m1 and C7-3m2 (Table 2). The
IC50s decreased about 2-fold in comparison to the IC50 for C7-3 and were 5.91 and 4.81
�M for C7-3m1 and C7-3m2, respectively (Fig. 6C).

Kinetic analyses of the interaction between AniA and C7-3. Subsequently,
biolayer interferometry (BLI) was utilized to study the inhibitory interaction between
C7-3 and N. gonorrhoeae AniA. BLI is a method of label-free biophysical analysis of
small-molecule binding that enables the validation and understanding of primary
screening actives and that provides kinetic data similar to those provided by surface
plasmon resonance (52, 53). We used a biotinylated C7-3 peptide, C7-3Bio (biotinAhx-
ACNYCRLNLWGGGS-NH2), with 6-aminohexanoic acid (Ahx) being used as a spacer that
allowed the peptide to bind to the BLI sensor. First, we verified that the C7-3Bio peptide
was active against AniA by assessing the AniA nitrite reductase activity in the presence
of increasing concentrations of the peptide. These experiments gave an IC50 of 13.47
�M, a value very close to the IC50 of the unmodified C7-3 peptide inhibitor (Fig. 6C).
Biotinylated C7-3 was immobilized on disposable streptavidin sensors and incubated
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with increasing concentrations of AniA. The BLI experiments were performed using a
steady-state method and curve fitting of the association and dissociation responses.
The curves were biphasic, indicating that more than one interaction was occurring, and
the 2:1 heterogeneous ligand model gave a calculated KD (equilibrium dissociation
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FIG 6 Binding studies. (A, B) Binding mode of C7-3 (A) and 12-5 (B) in the Cu2� active site of the AniA
homotrimer. Peptides C7-3 (A) and 12-5 (B) bound in the AniA pocket with distinct conformations. These
conformations essentially depended on the sequence of the residues composing the peptide. Afterward,
the initial conformation of the peptide (which is in a stable conformation in the solvent) was slightly
perturbed during the docking procedure due to the interactions with the receptor. (C) Inhibition of nitrite
reductase activity of sAniA. Nitrite reductase inhibition plot of sAniA with synthetic peptides C7-3 and 12-5 and
mutated variants of C7-3 (C7-3m1, C7-3m2, C7-3P, and C7-3A). sAniA was preincubated with various concen-
trations (0 to 100 �M) of synthetic peptides for 1 h at room temperature following measurement of nitrite
reductase activity with DAN. Percent inhibition was calculated using the formula 100 · {1 � [(x � y)/(z � y)]},
where x, y, and z are the concentrations of nitrite in samples containing sAniA incubated with synthetic
peptides, AniA D137A H280A, and sAniA, respectively. (D) Inhibition of the nitrite reductase activity of intact
N. gonorrhoeae cells. Inhibition of nitrite reductase AniA was assessed using intact gonococci. Bacteria were
preincubated with different concentrations of synthetic peptides (0, 0.6, 0.3, and 0.15 mM) for 1 h, followed
by measurement of nitrite reductase activity using DAN. Percent inhibition was calculated using the formula
100 · {1 � [(x � y)/(z � y)]}, where x, y, and z are the concentrations of nitrite in samples containing FA1090
ΔaniA/Plac::aniA incubated with synthetic peptides, ΔaniA/Plac::aniA D137A H280A, and ΔaniA/Plac::aniA,
respectively. Statistically significant P values are reported. (E) Kinetic analyses of the interaction between
AniA and C7-3. The binding affinity between AniA and the C7-3 peptide was measured using biolayer
interferometry. The biotinylated C7-3 peptide was immobilized on a streptavidin-coated sensor and
incubated with increasing concentrations of recombinant AniA (50 to 1,000 nM). Experiments were
repeated on three separate occasions, and the dissociation constants were calculated by globally fitting the
curves with 2:1 binding kinetics. The KD determined for C7-3 was 775 	 88.5 nM (average 	 SEM from three
independent experiments).
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constant) value of 775 	 88.5 nM, confirming the strong ligand-receptor interaction
(Fig. 6E).

Inhibition of AniA nitrite reductase activity of intact N. gonorrhoeae cells and
MIC50 determination. To test whether the C7-3 peptide and its modifications, C7-3m1
and C7-3m2, as well as the 12-5 peptide were capable of blocking the AniA enzymatic
activity of intact gonococci, N. gonorrhoeae FA1090 ΔaniA/Plac::aniA and ΔaniA/Plac::
aniA D137A H280A were utilized in nitrite consumption assays as described in Materials
and Methods. Incubation of ΔaniA/Plac::aniA cells, even with the highest tested con-
centration of 12-5 peptide (0.6 mM), had no effect on AniA activity, whereas the same
concentration of C7-3m2 gave 90% inhibition (Fig. 6D). Also, 50% inhibition of nitrite
reductase activity was observed with C7-3 and C7-3m2 at concentrations of 0.6 and 0.3
mM, respectively, and C7-3mod1 moderately inhibited AniA.

Finally, we aimed to examine the ability of C7-3, C7-3m1, and C7-3m2 to inhibit N.
gonorrhoeae growth under anaerobic conditions using a microdilution method in the
broth medium established previously for N. gonorrhoeae 1291 (31). Despite multiple
trials, FA1090 failed to grow under these conditions; therefore, we chose strain 1291 for
use in these experiments. The MIC50 for both C7-3 and C7-3m2 was 0.6 mM, whereas
C7-3mod1 did not exhibit a significant effect on N. gonorrhoeae growth.

Altogether, these studies confirmed the C7-3 peptide to be the first identified
inhibitor of nitrite reductase with promising inhibitory activity in vitro.

DISCUSSION

Antibiotic resistance in N. gonorrhoeae continuously challenges treatment and
remains a public health concern globally (15, 54, 55). The development of antibacterial
compounds with new modes of action, including targeting of nonconventional mole-
cules, is critical in the battle with antibiotic-resistant gonorrhea. AniA has potential as
a nonconventional drug target for several reasons: (i) it is a surface-exposed lipoprotein
(31), which allows accessibility by a potential inhibitor(s); (ii) it plays a pivotal function
in N. gonorrhoeae biology, specifically, in the denitrification pathway (Fig. 1A and D) (30)
and in biofilm formation (56), and thus, its inhibition could affect slowly growing
bacteria, which often hamper antimicrobial therapy (57); (iii) it displays a high level of
sequence conservation (see Fig. S2 in the supplemental material) (27) and is expressed
by a wide range of contemporary gonococci as well as under various growth conditions
relevant to infection (Fig. 2) (36, 44); and (iv) the crystal structures of AniA, particularly
the newly solved I4122 crystals (Fig. 1 and Table 1) (PDB accession number 5UE6) (27),
should be amenable for cocrystallization or soaking experiments with potential inhib-
itors or small-molecule fragments, facilitating drug discovery.

In this study, we applied a phage display approach to identify peptide ligands
interacting with AniA (Fig. 3). The phage display technology is a biomolecular tool with
applications in basic research and in drug discovery. Ligands identified from the

TABLE 2 In silico analysis of ΔΔG of C7-3 and variants simulated by MD interacting in the
Cu2� cavity of the AniA homotrimera

Peptideb ��G (kcal/mol)

CNYCRLNLW 0.0
CNYSRLNLW �0.5
CSYCRLNLW �0.8
KHYYGGDTTTLW 0.0
KHYYGNDTTTLW �0.6
KHYYGSDTTTLW �0.9
KHYYGGDTTSLW �0.8
KHYYGGETTTLW �0.6
aTo validate the peptide binding prediction and highlight the key residues of the peptides involved in the
interactions with the receptor, we mutated in silico some specific residues and computed the relative
binding free energy of the mutants simulated by MD, where ΔΔG � ΔG for the mutant � ΔG for the wild
type. The peptides CNYCRLNLW and KHYYGGDTTTLW were wild types and were assigned ΔΔG values of 0.0
kcal/mol.

bBoldface amino acids are those that were mutated in silico.
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screening of phage-displayed peptide libraries enabled the selection of peptides with
an affinity to biologically relevant sites on the surface of the target protein (47, 58, 59).
AniA belongs to the surface-exposed copper nitrite reductases, which are respon-
sible for the reduction of nitrite to nitric oxide under oxygen-limiting conditions
and are primarily found in Gram-negative bacteria (27). AniA forms homotrimers via
extensive monomer-monomer interactions (Fig. 1B and C) (27). We reasoned that a
peptide ligand(s) could interfere with the AniA function either directly, by binding to
the active-site cavity, or indirectly, by either preventing AniA oligomerization or dis-
rupting the protein-protein interaction with the neisserial azurin Laz protein, which
serves as the electron donor for AniA (60), or with AccA, a periplasmic copper chap-
erone that delivers Cu to AniA, generating an active nitrite reductase (61). Biopanning
experiments with two diverse M13 phage display libraries resulted in the discovery of
29 unique peptides (Fig. 3B). We did not find peptide homologs in the databases, but
searches of two databases, the PepBank and SAROTUP databases (62, 63), revealed that
none of the identified peptides qualified as target unrelated. The phage-displayed
peptides showed different relative binding affinities in the ELISA that did not corre-
spond to the frequency of phage recovery (Fig. 3B and C). For instance, a highly
predominant C7-3 peptide, which was identified 19 times, showed about a 2-fold lower
relative binding to sAniA than the 12-5 peptide, identified only once. This phenomenon
has been observed in other phage display approaches, e.g., against the essential cell
division protein FtsA (64). This could be due to multiple reasons, including phage
infection and replication efficiency, folding bias, or protein translocation, as well as
differences between the conformation of the target resulting from directly coating a
plastic surface for ELISA and the conformation resulting from the solution-phase
panning with affinity bead capture used in biopanning experiments.

The segments displayed in the Ph.D.-C7C library are flanked by a pair of Cys residues,
which are oxidized during phage assembly to a disulfide linkage, resulting in the
displayed peptides presenting to the target as loops. We noted, however, that C7-3
contained a mutation at the C terminus of the peptide, where the second Cys residue
was replaced with Trp (Fig. 3B), which affected the way that the peptide was presented
to the receptor. Phage-displayed peptides with this mutation must have been enclosed
in the original Ph.D.-C7C library. Docking studies of two peptides selected for further
evaluation, heptameric C7-3 and dodecameric 12-5, showed several possible interac-
tions with the AniA homotrimer (Fig. 4, 5, and 6A and B). Experimental evaluation of
these two peptides in biochemical nitrite reductase inhibition assays, whole-cell nitrite
consumption assays, and MIC50 experiments conducted under anaerobic conditions
demonstrated that C7-3 is a promising inhibitor of the AniA nitrite reductase activity
(Fig. 6C and D). Finally, the AniA–C7-3 interaction was also confirmed by BLI experi-
ments, in which the KD was calculated to be in the nanomolar range (Fig. 6E). We
speculate that the 12-5 peptide could bind to the sites of AniA that were not critical for
AniA nitrite reductase function or were not accessible in the whole-cell assay, for
instance, at the AniA-Laz or AniA-AccA interaction sites.

We initiated optimization of C7-3 by experimental verification of the in silico
alterations of residues adjacent to the key Tyr side chain (Table 2). Of two synthesized
derivatives, C7-3m2 showed a promising IC50 in a biochemical assay and 90% inhibition
of AniA nitrite reductase activity in intact gonococci (Fig. 6C and D), supporting the
suggestion that a small and hydrophobic residue adjacent to the key Tyr side chain
might enhance the interactions of the peptide ligand with the receptor. However,
C7-3m2 showed an MIC50 value identical to that of C7-3 (0.6 mM), suggesting lower
peptide stability under the tested conditions.

Together, our studies identified the first and potent inhibitor of the pivotal gono-
coccal surface-exposed protein AniA. The therapeutic utilization of peptides is often
limited due to their degradation, low permeability, and unsuitability for oral adminis-
tration. However, we have discovered a novel structure that may constitute the core for
the synthesis of libraries of peptidomimetic molecules. Several lines of evidence
presented here suggest that C7-3 inhibits AniA by binding the catalytic active site, and
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characterization of the exact mechanism of this interaction, as well as further medicinal
chemistry approaches, will require cocrystallization of sAniA with C7-3. In addition, as
the C7-3 peptide is directed to the key functional site of AniA, it could potentially be
exploited as a surrogate ligand in a campaign of high-throughput screening of diverse
small-molecule libraries to identify AniA inhibitors.

MATERIALS AND METHODS
Bacterial strains and growth conditions. N. gonorrhoeae FA1090 (65) was cultured as specified in

the text on gonococcal base solid medium (GCB; Difco) for 18 to 22 h at 37°C in the presence of a 5%
atmospheric CO2 or anaerobically as described previously (44) or in gonococcal base liquid medium
(GCBL) supplemented with sodium bicarbonate at a final concentration of 0.042% and Kellogg’s
supplement I and II in ratios of 1:100 and 1:1,000, respectively (66). Piliated gonococci were used for DNA
transformation, while nonpiliated variants were used in all other experiments. Escherichia coli strains
either were grown on Luria-Bertani agar (Difco) or were cultured in Luria-Bertani broth (Difco) at 37°C.

Antibiotics were used on selected bacteria at the following concentrations: for N. gonorrhoeae,
kanamycin was used at 40 �g/ml and erythromycin was used at 0.5 �g/ml, and for E. coli, kanamycin was
used at 50 �g/ml and erythromycin was used at 250 �g/ml.

Genetic manipulations and site-directed mutagenesis. Oligonucleotides were designed on the
basis of the genomic sequence of N. gonorrhoeae FA1090 (GenBank accession number NC_002946) using
SnapGene software (version 2.8; GSL Biotech LLC) and synthesized by Integrated DNA Technologies.
Genomic DNA was isolated with a Wizard genomic DNA purification kit (Promega). PCR products and
plasmid DNA were purified using a QIAprep spin miniprep kit (Qiagen). PCRs were performed using
chromosomal or plasmid DNA as the template, appropriate oligonucleotides, and Q5 high-fidelity DNA
polymerase (NEB). E. coli MC1061 was used as the host during the molecular cloning and site-directed
mutagenesis. The constructs obtained were verified by Sanger sequencing at the Center for Genomic
Research and Biocomputing at Oregon State University. Transformation of N. gonorrhoeae was performed
as described previously (67).

The clean deletion of aniA, resulting in the ΔaniA mutant, was constructed in N. gonorrhoeae FA1090
by in-frame replacement of aniA (ngo1276) in its native chromosomal locus with the nonpolar kanamycin
resistance cassette using a strategy described by Zielke et al. (44). The constructs for the deletion of aniA
were obtained using Gibson assembly (68) as described below. The 1-kb upstream DNA region was
amplified using oligonucleotides aniA_up_fwd (5=-CCTTAATTAAGTCTAGAGTCGCCGGGACGGTTGGTCGA-
3=) and aniA_up_rev (5=-CAGCCTACACGCGTTTCATAATGTTTTCCTTTTGTAAGAAAAGTAGGG-3=), and 1 kb
downstream from aniA was amplified with primers aniA_down_fwd (5=-TAATTCCCATAGCGTTTATTAAA
TCGGATACCCGTCATTAGC-3=) and aniA_down_rev (5=-GCCTGCAGGTTTAAACAGTCGGCAAGGCGAGGCAA
CGC-3=). The kanamycin resistance cassette was amplified with oligonucleotides aniA_kan_fwd (5=-TAT
GAAACGCGTGTAGGCTGGAGCTGCT-3=) and aniA_kan_rev (5=-AATAAACGCTATGGGAATTAGCCATGGTCC-
3=), using pKD4 as a template. The linearized pNEB193 was obtained by PCR amplification using primers
pNEB193_fwd (5=-GACTGTTTAAACCTGCAG-3=) and pNEB193_rev (5=-GACTCTAGACTTAATTAAGGATCC-
3=). All fragments were purified, mixed in equimolar proportions, and assembled using the Gibson
assembly master mix. The plasmid obtained, pNEB193-ΔaniA, was linearized with HindIII and introduced
into FA1090. Clones were selected on solid medium supplemented with kanamycin and verified by PCR
with primers aniA_check_f (5=-CTGTCCCATTTTGAGAGCTCC-3=) and aniA_check_r (5=-CCTTGTGCGGCGC
AATAG-3=) and immunoblotting analyses using polyclonal anti-AniA antiserum (67).

For complementation studies, the wild-type aniA allele was amplified with primers aniA_pGCC4_f
(5=-CTGTTAATTAAAAAAGGAAAACATTATCAAACGCC-3=) and aniA_pGCC4_r (5=-GCTAATGACGGGTATCCG
AT-3=). Subsequently, the PCR product was digested with PacI and cloned into the PacI- and PmeI-
digested pGCC4 vector under the control of the Plac promoter, and the pGCC4 vector carrying the PCR
product was introduced into the chromosome of FA1090 ΔaniA, creating the ΔaniA/Plac::aniA strain.

To generate a construct for overexpression and purification of a mutated, recombinant version of
AniA, AniA D137A H280A, site-directed mutagenesis was performed in consecutive reactions using as the
template pET28-aniA (36), primer pair D137A-F (5=-CGCACAACGTCGCCTTCCACGCCGCAA-3=) and
D137A-R (5=-TTGCGGCGTGGAAGGCGACGTTGTGCG-3=) and primer pair H280A-F (5=-GAACTTGGTGTCTT
CCTTCGCCGTCATCGGCGAAATCTTC-3=) and H280A-R (5=-GAAGATTTCGCCGATGACGGCGAAGGAAGACAC
CAAGTTC-3=), and a Q5 site-directed mutagenesis kit (NEB), per the manufacturer’s manual. The
presence of mutated sites in the plasmid obtained, pET28-aniAD137A H280A, was confirmed by
Sanger sequencing.

To generate pGCC4-aniAD137A H280A, the Gibson assembly method was used to replace wild-type
aniA with a fragment containing mutated sites. The fragment containing the mutation was amplified
using primers RAZ414 (5=-GAACCGCCGGCAGGCACGATGGTGCTTTGTACGTTTTCGTTAATCAG-3=) and
RAZ415 (5=-CTACCGCCGAAACGCCTGCAGGCGAACTGCCCG-3=) and pET28-aniAD137A H280A as the tem-
plate. Primers RAZ413 (5=-CGTGCCTGCCGGCGGTTC-3=) and RAZ416 (5=-GCGTTTCGGCGGTAGCTTGTG-3=)
and plasmid pGCC4-aniA were used to amplify the remaining fragment. Both fragments were gel purified
and mixed in equimolar proportions before the Gibson assembly master mix was added (NEB). pGCC4-
aniAD137A H280A was introduced into the FA1090 ΔaniA chromosome.

Protein purification. Overproduction of recombinant variants of AniA, including a wild-type protein
which lacks the N-terminal palmitoylation signal, sAniA (36), as well as mutated AniA, AniA D137A H280A,
was performed in Escherichia coli BL21(DE3) by addition of IPTG to a final concentration of 0.5 mM when
the cultures reached an optical density at 600 nm (OD600) of 0.5. Following 3.5 h of incubation, the
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bacteria were pelleted by centrifugation and the pellets were resuspended in lysis buffer (20 mM HEPES,
pH 7.5, 500 mM NaCl, 10 mM imidazole) supplemented with a Pierce protease inhibitor minitablet
(Thermo Scientific). Cells were lysed by passaging them five times through a French pressure cell at
12,000 lb/in2. Unbroken cells and cell debris were separated from the soluble protein fraction by
centrifugation at 16,000 � g for 30 min at 4°C. The supernatants obtained were passed through a
0.45-�m-pore-size membrane filter (VWR International) and applied to a nickel affinity column (Profinity
IMAC [immobilized metal affinity chromatography]; Bio-Rad). The columns were washed with 8 bed
volumes of lysis buffer and elution buffer (20 mM HEPES, pH 7.5, 500 mM NaCl, 250 mM imidazole) at
97:3 (vol/vol), and proteins were eluted with 5 bed volumes of elution buffer. Eluates were subjected to
dialysis against 20 mM HEPES, pH 7.5, supplemented with 0.1 mM cupric chloride dihydrate (EMD
Chemicals Inc.) twice for 1 h each time and subsequently overnight at 4°C. The purified sAniA and AniA
D137A H280A proteins were mixed with 10% glycerol and stored at �80°C.

Crystallization, data collection, and structure solution. Crystallization trials were performed in the
vapor diffusion hanging-drop format using a mosquito crystal robot (TTP Labtech). Crystallization
solutions from JCSG core suites I to IV (Qiagen) were mixed with the protein solution at three different
ratios (0.05 �l protein plus 0.15 �l crystallization solution, 0.1 �l protein plus 0.1 �l crystallization
solution, 0.15 �l protein plus 0.05 �l crystallization solution). The initial crystals were harvested without
optimization using suitable cryoprotection solutions and flash-cooled in liquid nitrogen. All data were
collected at the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Ad-
vanced Photon Source, Argonne National Laboratory. The data were processed and scaled using the XDS
and XSCALE packages (69).

A 1.90-Å data set in space group P212121 was collected from a single crystal grown in 0.1 M Tris-HCl,
pH 8.5, 2.0 M ammonium dihydrogen phosphate (JCSG Core II-A11). The crystal was cryoprotected in
crystallization solution supplemented with 20% glycerol. Initial phases were determined by molecular
replacement using Phaser software (70) and the AniA structure (PDB accession number 1KBV) as a search
model (27). The model was rebuilt using the Coot program (71) and refined using the Phenix program
(72).

A 2.35-Å data set in space group I4122 was collected from a single crystal grown in 0.2 M potassium
thiocyanate, 20% PEG 3350 (JCSG core I-C9) and cryoprotected in crystallization solution supplemented
with 20% glycerol. The overall completeness of this data set was 84.8% due to the small crystal size and
radiation damage. The structure was solved using Phaser software and the AniA structure in space group
P212121 (PDB accession number 5TB7) as a search model. The structure was corrected using the Coot
program and refined using the Phenix program.

The quality of the structures was assessed using Coot and the MolProbity server (http://molprobity
.biochem.duke.edu) (73). The structural superpositions were performed using the Dali server (http://
ekhidna2.biocenter.helsinki.fi/dali/) (74). The structural figures were generated using the PyMOL molec-
ular graphics system (version 1.8; Schrödinger, LLC).

Immunoblotting. Expression of AniA was assessed in a panel of geographically, temporally, and
genetically diverse N. gonorrhoeae isolates, including commonly used laboratory strains FA1090 (65),
MS11 (75), 1291 (76), and F62 (77); clinical isolates LGB1, LG2, LG14, LG20, and LGB26, which were
collected from two public health clinics in Baltimore, MD, from 1991 to 1994 and differ in their porB
variable region types and pulsed-field gel electrophoresis patterns (36, 79); 13 isolates from patients
attending the Public Health-Seattle & King County, WA, Sexually Transmitted Disease clinic from 2011 to
2013 (the UW strains in Fig. 2) (44); and the 2016 WHO reference strains (46). All strains were cultured
concurrently on solid medium collected from GCB plates for 20 h in 5% CO2 at 37°C, and whole-cell
lysates were prepared in SDS sample buffer in the presence of 50 mM dithiothreitol, normalized by the
number of OD600 units, and separated in 4 to 20% mini-Protean TGX precast gels (Bio-Rad). The
immunoblotting analysis was performed using polyclonal rabbit antiserum against recombinant AniA (3).

Phage display. To identify peptide ligands interacting with AniA, two M13-based phage libraries,
Ph.D.-C7C and Ph.D.-12 (New England BioLabs), were used in biopanning experiments following proce-
dures described in a study reporting on the identification of peptide inhibitors targeting Clostridium
difficile toxins A and B (80). Magnetic Ni-NTA bead-based affinity capture was used to immobilize sAniA.
A preclearance step was included prior to each round of biopanning to remove Ni2� and plastic binders
from the phage pool (58, 80). The phages from each library (1010 PFU/ml) were incubated with magnetic
Ni-NTA agarose beads (250 �g capacity) at room temperature for 1 h. The supernatants of this solution
provided the precleared phage pool. For target immobilization, Ni-NTA beads (capacity, 50 �g) were
coated with 100 �g of sAniA. Unbound sAniA was washed away, and the precleared phage pool was
added. Following incubation, unbound phages were removed by washing 20 times with TBST (50 mM
Tris-HCl, pH 8.6, 150 mM NaCl, 0.5% Tween 20). Three rounds of biopanning were performed, with
increasing specificity being obtained by raising the Tween 20 concentration from 0.1% in the first
biopanning experiment to 0.5% in the subsequent two rounds during the wash step (64, 81). Elution of
phages was performed with 0.2 M glycine-HCl (pH 2.2). At the end of each round of selection, eluted
phages were titrated and amplified in E. coli ER2738 (NEB) per the manufacturer’s protocol. After the third
round, 24 phage plaques from each library were randomly selected. Phage DNA was purified as
recommended in the manufacturer’s protocol (NEB) and sequenced using 96 gIII sequencing primer
5=-CCCTCATAGTTAGCGTAACG-3=.

Phage ELISA. Individual wells in 96-well transparent plates (Greiner-Bio) were coated with 100 �l of
100 �g/ml of sAniA suspended in 0.1 M NaHCO3, pH 8.6, and incubated overnight at 4°C in an airtight
humidified box. After incubation, excess target solution was shaken out and the wells were filled with
300 �l of blocking buffer (0.1 M NaHCO3, pH 8.6, 5 mg/ml bovine serum albumin). Following 2 h of
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incubation at 4°C, the blocking buffer was removed and the wells were washed six times with 200 �l of
TBST (50 mM Tris-HCl, pH 8.6, 150 mM NaCl, 0.5% Tween 20). Isolated individual phage amplifications
(1010 PFU) in 100 �l of TBST were incubated at room temperature for 1 h with rocking. All wells were then
cleared by shaking and washed six times with 200 �l of TBST. A solution containing anti-M13 HRP-linked
monoclonal antibodies (1:5,000 dilution in blocking buffer; NEB) was distributed at 200 �l per well, and
the plate was incubated with rocking at room temperature for 1 h. The wells were washed six times with
TBST and incubated by use of Turbo tetramethylbenzidine (TMB)-ELISA substrate for 30 min with rocking
at room temperature. To stop the reaction, 100 �l of 1.78 M H2SO4 was added to each well. A Synergy
HT plate reader (BioTek) measured the color intensity, and readings were compared to those in the
control wells, which underwent a treatment that was identical to that described above but that lacked
sAniA (designated the control), and to the signal from wild-type infectious virions that did not display
peptides, wild-type phage M13KE (1010 PFU; designated the wild type), derived from the phage display
cloning vector (NEB). Data from seven independent experiments are shown as means and standard errors
of the means (SEMs).

Measurements of nitrite reductase activity with purified AniA variants. Enzymatic activity
assessments with sAniA and AniA D137A H280A were performed on the basis of previous work (27, 41),
but a highly sensitive fluorometric assay for nitrite measurements that relies on the reaction of nitrite
with 2,3-diaminonaphthalene (DAN) to form the fluorescent product, 1-(H)-naphthotriazole, was used
(42). All reactions were conducted under anoxic or microoxic conditions. Fluorescence was measured at
an excitation wavelength of 360/40 nm and an emission wavelength of 460/40 nm at a gain of 50 using
a Synergy HT plate reader (BioTek). The sAniA and AniA D137A H280A activities are expressed as the
mean reaction rate (nanomoles of nitrite reduced per minute per microgram of protein) from at least 10
independent experiments over the course of a nitrite utilization assay (31).

Determination of peptide inhibitory concentrations. Synthetic peptides 12-5 (H-KHYYGGDTTTL
WGGGS-NH2), C7-3 (H-ACNYCRLNLWGGGS-NH2), C7-3m1 (H-ACNYSRLNLWGGGS-NH2), C7-3m2 (H-ACSY
CRLNLWGGGS-NH2), C7-3P (H-ACNFCRLNLWGGGS-NH2), C7-3A (H-ACNACRLNLWGGGS-NH2), and C7-
3Bio, which is a version of C7-3 biotinylated at the N terminus (biotinAhx-ACNYCRLNLWGGGS-NH2), were
acquired from Pepmic Co., dissolved in double-distilled H2O or dimethylformamide, and serially diluted
before addition to sAniA (1 �M). Nitrite measurements with DAN were performed as described above
after preincubation of samples for 1 h at room temperature. Control reactions consisted of sAniA alone
and AniA D137A H280A, treated in the same manner as the experimental samples. Reactions were
performed in at least 12 independent experiments. Percent inhibition was calculated using the formula
100 · {1 � [(x � y)/(z � y)]}, where x, y, and z are the concentrations of nitrite in samples containing sAniA
incubated with synthetic peptides, AniA D137A H280A, and sAniA, respectively. The data were analyzed
with a nonlinear log(inhibitor)-versus-response-variable slope (four-parameter) curve-fitting technique
(GraphPad) to obtain IC50s. All experiments were performed in at least 10 independent trials.

Whole-cell nitrite utilization studies. N. gonorrhoeae FA1090 ΔaniA/Plac::aniA and ΔaniA/Plac::D137A
H280A were grown to an OD600 of �1.0, gently spun down, decanted, and resuspended in GCBL. Cell
suspensions were incubated in the absence or presence of synthetic peptides 12-5, C7-3, C7-3m1, and
C7-3m2 (0.15, 0.3, and 0.6 mM) at 37°C for 30 min. Subsequently, 0.1 mM sodium nitrite was added and
the samples were transferred into an anaerobic chamber. After 1 h, nitrite consumption was measured
using the Griess reagent (Biotium) as previously described for an N. gonorrhoeae nitrite reductase
whole-cell assay (31). Absorbance (OD545) values were measured using a Synergy HT plate reader
(BioTek), and the nitrite concentration was assessed against a nitrite standard prepared in GCBL. Percent
inhibition was calculated using the formula 100 · {1 � [(x � y)/(z � y)]}, where x, y, and z are the
concentrations of nitrite in samples containing FA1090 ΔaniA/Plac::aniA incubated with synthetic pep-
tides, ΔaniA/Plac::aniA D137A H280A, and ΔaniA/Plac::aniA, respectively. Experiments were performed on
at least three separate occasions, and means with SEMs are reported.

Determination of MIC50. N. gonorrhoeae 1291 (82) cells were grown on GCB for 18 to 22 h at 37°C
in the presence of 5% atmospheric CO2. Bacteria were inoculated into GCBL supplemented with 0.042%
sodium bicarbonate and incubated with shaking at 37°C for 3 h. Then, the culture was diluted to a
concentration of approximately 5 � 105 CFU/ml in brain heart infusion (BHI) broth supplemented with
10% (vol/vol) Levinthal’s base, 1% (vol/vol) IsoVitaleX, and 2 mM sodium nitrite (31) containing serially
diluted synthetic peptides C7-3, C7-3m1, and C7-3m2. Cultures were incubated anaerobically at 37°C for
18 h, serially diluted, and spotted onto GCB for CFU enumeration. The MIC50 was defined as the minimum
concentration of the peptide that reduced the mean number of CFU by 50% in comparison to that for
the vehicle (dimethyl sulfoxide)-treated culture. Experiments were performed in biological triplicate.

Open state of AniA homotrimer structure. Normal mode analysis (NMA) is a method for charac-
terizing the motions of macromolecules based on basis vectors (normal modes), which describes the
flexibility of the molecule (83–85). The visual inspection of the 20 lowest-frequency normal modes
computed by the elNémo server showed that the first four lowest frequencies of the normal mode of
vibrations corresponded to the largest-amplitude motions of the extended and collapsed conformations
of the AniA structure (86, 87). Therefore, these modes were used for generating alternative conforma-
tional transitions of the protein. To generate alternate conformations of AniA, we started from the
structure of AniA in the P212121 space group (PDB accession number 5TB7) and displaced the protein
along the subspace defined by the first low-frequency mode. Such movements were made to generate
a more extended state transition (conformation) of the whole structure. Next, the resulting protein
conformation defined by the amplitude of variation was energy minimized. The resulting structure was
then submitted to the elNémo server, the normal modes were computed, and the protein was displaced
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again using the second-lowest new normal mode. This process was repeated until the protein structure
was opened using the fourth-lowest normal mode.

Molecular modeling of peptide binding with AniA. The multiple conformational states of the
peptides were generated using OMEGA software (Open Eye Scientific Software) and molecular dynamics
(MD) simulations (88). The docking poses of the multiconformations of peptide structures (ligands) were
performed using 4Dshape� software (Chem Design Solutions LLC) (89, 90). The docking strategy
exhaustively docked/scored all possible positions of each ligand (each peptide conformation) in the AniA
binding site. The rigid docking roughly consisted of two steps: shape fitting and application of
optimization filters. During the shape fitting, the ligand (peptide structure) was placed into a 0.5-Å-
resolution grid box encompassing all active-site atoms (including hydrogen atoms) using the smooth
Gaussian potential. Two optimization filters were subsequently processed: rigid-body optimization and
optimization of the ligand pose in the dihedral angle space. The pose ensemble was filtered to reject
poses that did not have sufficient shape complementarity with the active site of the protein. In separate
docking runs, the binding poses of the ligand structure were refined by MD simulations followed by free
energy calculations using the Sander module from the Amber12 package (91) as previously described
(92–95). The AniA-peptide binding complex was neutralized by adding appropriate counterions and was
solvated in a rectangular box of TIP3P (transferable intermolecular potential with 3-points model) water
molecules with a minimum solute wall distance of 10 Å (96). The solvated systems were energy
minimized and carefully equilibrated. These systems were gradually heated from a temperature of 10 K
to one of 298.15 K in 50 ps before an MD simulation was run. The MD simulations were performed with
a periodic boundary condition in the NPT ensemble (ensemble in which number of atoms, pressure, and
temperature are constant) at a temperature of 298.15 K with Berendsen temperature coupling and a
constant pressure (pressure, 1 atm) with isotropic molecule-based scaling. A time step of 2.0 fs was used,
with a cutoff of 12 Å being used for the nonbonded interactions, and the SHAKE algorithm was employed
to keep all bonds involving hydrogen atoms rigid (97). Long-range interactions were handled using the
particle mesh Ewald (PME) algorithm (98). During the energy minimization and MD simulations, only the
ligand (peptide) and residue side chains in the binding pocket were permitted to move. We used this
constraint to prevent any changes in the AniA structure due to the presence of residues in the loops on
the top of the protein active site. A residue-based cutoff of 12 Å was utilized for noncovalent interactions.
MD simulations were then carried out for �10.0 ns. During the simulations, the coordinates of the system
were collected every 1 ps. The last 20 snapshots of the simulated structure of the MD trajectory were
used to perform the binding free energy calculations.

Binding free energy calculation. The stable MD trajectory obtained for each AniA-peptide complex
was used to estimate the binding free energy (ΔGbind) by using the Sietraj program (99). The program
calculates the solvated interactions energies (SIE) using five terms and three parameters that were fitted
to reproduce the binding free energies of a data set of 99 ligand protein complexes by Naim et al. (99).
Sietraj is a substitute for the molecular mechanism/Poisson-Boltzmann surface area (MM/PBSA) method
(100).

Biolayer interferometry. The binding affinity of C7-3Bio, a biotinylated C7-3 peptide (biotinAhx-
ACNYCRLNLWGGGS-NH2), to sAniA was assessed by biolayer interferometry on an OctetRed 96 system
(ForteBio, Menlo Park, CA). C7-3 was first dissolved in dimethylformamide to a final concentration of 1.2
mM and finally in kinetic buffer (ForteBio) to a final concentration of 20 �g/ml. Streptavidin (SA)
biosensors (ForteBio) were loaded with C7-3Bio peptides for 10 min. Unloaded tips were used as a
control. The sAniA samples were prepared in kinetic buffer at concentrations of 50, 100, 500, and 1,000
nM. The baseline was established for 240 s, and the association and dissociation steps were performed
for 500 s. Experiments were performed in three biological replicates with curve fitting using a 2:1
(heterogeneous ligand) model, and KD value calculations were completed using Octet data analysis
software (version 9).

Statistical analyses. Statistical analyses were performed using one-way analysis of variance followed
by Dunnett’s multiple-comparison test with GraphPad Prism software (version 6). Differences were
considered significant when P was �0.05.

Accession number(s). The PDB accession numbers of the newly solved P212121 and I4122 crystals are
5TB7 and 5UE6, respectively.
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