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Original Article

Rapamycin rescues vascular, metabolic
and learning deficits in apolipoprotein
E4 transgenic mice with pre-symptomatic
Alzheimer’s disease

Ai-Ling Lin1,2,3, Jordan B Jahrling4,6, Wei Zhang5,
Nicholas DeRosa4,6, Vikas Bakshi1, Peter Romero4,
Veronica Galvan4,6 and Arlan Richardson7

Abstract

Apolipoprotein E "4 allele is a common susceptibility gene for late-onset Alzheimer’s disease. Brain vascular and meta-

bolic deficits can occur in cognitively normal apolipoprotein E "4 carriers decades before the onset of Alzheimer’s

disease. The goal of this study was to determine whether early intervention using rapamycin could restore neurovascular

and neurometabolic functions, and thus impede pathological progression of Alzheimer’s disease-like symptoms in pre-

symptomatic Apolipoprotein E "4 transgenic mice. Using in vivo, multimodal neuroimaging, we found that apolipoprotein

E "4 mice treated with rapamycin had restored cerebral blood flow, blood–brain barrier integrity and glucose metab-

olism, compared to age- and gender-matched wild-type controls. The preserved vasculature and metabolism were

associated with amelioration of incipient learning deficits. We also found that rapamycin restored the levels of the

proinflammatory cyclophilin A in vasculature, which may contribute to the preservation of cerebrovascular function in

the apolipoprotein E "4 transgenics. Our results show that rapamycin improves functional outcomes in this mouse model

and may have potential as an effective intervention to block progression of vascular, metabolic and early cognitive deficits

in human Apolipoprotein E "4 carriers. As rapamycin is FDA-approved and neuroimaging is readily used in humans, the

results of the present study may provide the basis for future Alzheimer’s disease intervention studies in human subjects.
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Introduction

The Apolipoprotein E "4 allele (APOE4) is the major
genetic risk factor for Alzheimer’s disease (AD).1

Individuals that possess one or two APOE4 alleles
have a 4- to 8-fold increased risk of developing AD,
with an age of onset of AD occurring 7–15 years earlier
when compared to non-carriers.2 Cross-sectional stu-
dies in healthy young APOE4 carriers, who have
intact memory and are free of amyloid beta (Ab) or
tau pathology, have reported reductions in cerebral
metabolic rate of glucose (CMRGlc) in brain areas
later vulnerable to AD decades before the possible
onset of symptoms.3–7 Longitudinal studies further
showed that regional cerebral blood flow (CBF) is
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reduced in an accelerated manner in cognitively healthy
APOE4 carriers.3 Collectively, these findings indicate
that brain physiology is altered in APOE4 carriers
years before clinical markers such as Ab, tau pathology
and memory deficits appear.

Cerebrovascular impairments were proposed to be
an initiating event that leads to neuronal activity alter-
ation, proinflammatory cytokine production, Ab/tau
deposition, and memory loss.8–11 Therefore, preserving
cerebrovascular functions early in life in APOE4 car-
riers may be critical for preserving metabolic and cog-
nitive functions, slowing down AD progression, and
even preventing the onset of AD. The therapeutic and
preventive potential of preserving cerebrovascular func-
tion was highlighted by our recent studies. We showed
that rapamycin, a drug that extends lifespan by delay-
ing aging, restored cerebrovascular functions, including
CBF and vascular density in mice modeling AD.12,13

We also showed that the vascular restoration was asso-
ciated with reduced Ab and improved spatial learning
and memory in AD transgenic mice.12 These results
suggested that rapamycin could be an effective treat-
ment to restore cerebrovascular function and block or
attenuate the progression of established AD-like def-
icits in mice modeling AD.

In this study, our goal was to determine whether
rapamycin administered early in disease progression
would restore vascular and metabolic functions in the
young mice expressing human APOE4 genes.
Particularly, we wanted to identify if we could rescue
these functions in AD pre-symptomatic mice. We
hypothesize that declines of CBF and CMRGlc, in add-
ition to increased blood–brain barrier (BBB) leakage,
will precede cognitive impairments, and rapamycin can
rescue the vascular and metabolic deficits in the young
APOE4 carriers.

Materials and methods

Animals

One-month-old female wild-type (WT, C57BL/6) and
APOE4 transgenic mice were purchased from the
Jackson Laboratory (Bar Harbor, Maine, USA).
These mice express human APOE4 under the direction
of the human glial fibrillary acidic protein (GFAP) pro-
moter and do not express endogenous mouse APOE.
We chose females because they have higher incidence
for getting AD than males.14 WT mice were fed with
control diet (WT-control), whereas APOE4 transgenic
mice were fed with either control diet containing only
microencapsulating materials or with diet supple-
mented with microencapsulated rapamycin at 14mg
per kg food, which is roughly equivalent to 2.24 mg/
kg/mouse/day based on the assumption that an average

mouse weights 30 g and consumes 5 g of food per day.
Diet was given for six months. Body weight was mea-
sured once a week. Twenty-one mice per group were
used in the study. Six mice per group were used for
imaging; the other 15 were used for both behavioral
and biochemical assays. All animal experimental proto-
cols were approved by the Institutional Animal Care
and Use Committee at the University of Texas Health
Science Center at San Antonio, and in compliance with
the ARRIVE guidelines.15

Study timeline

Figure 1 shows the study timeline. We designed the
study based on the pathological developments reported
in previous studies: vascular defects begin to show at
two weeks of age, followed by neuronal dysfunction at
four months of age,8,16 and memory decline at 12
months of age.17,18 Rapamycin was given to the
APOE4 mice after baseline CBF was measured. Post-
treatment CBF was measured longitudinally after 1, 3,
and six months of feeding. BBB integrity was evaluated
at the final time point (seven months of age). Neuronal
function was assessed by measuring CMRGlc at seven
months of age. Behavioral tests began at seven months
of age and were completed by eight months. After com-
pletion of behavioral studies, mice were euthanized and
their tissues were dissected for use in biochemical
determinations.

Vascular and metabolic neuroimaging

Mice (N¼ 6 per group) were anesthetized with 4.0%
isoflurane for induction and then maintained in a
1.2% isoflurane and air mixture using a facemask.
Heart rate (90–130 bpm), respiration rate, and rectal
temperature (37� 0.5�C) were continuously monitored.
A water bath with circulating water at 45–50�C was
used to maintain the body temperature. Heart rate
and blood oxygen saturation level were recorded
using a MouseOx system (STARR Life Science,
Oakmont, PA, USA) and maintained within normal
physiological ranges.

Magnetic resonance imaging (MRI) experiments
were performed on a 7T magnet (Bruker Biospec,
Billerica, MA, USA). CBF was measured using the con-
tinuous arterial spin labeling techniques. Paired images
were acquired with field of view
(FOV)¼ 12.8� 12.8mm2, matrix¼ 64� 64, slice thick-
ness¼ 1mm, 12 slices, labeling duration¼ 2100ms,
repetition time (TR)¼ 3000ms per segment, and echo
time (TE)¼ 15ms.12 We used manganese (Mn)-
enhanced MRI to determine BBB integrity as Mn
does not penetrate BBB under normal conditions.
Manganese (II) chloride tetrahydrate (Sigma-Aldrich,
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St. Louis, MO, USA) was dissolved in saline and
injected intraperitoneally in the volume of 0.25ml and
dosage of 70mg/kg. The animals were then released
back to their cage with free access to water and food.
Imaging was acquired after 5–6 h of Mn injection using
RARE: FOV¼ 12.8� 12.8mm2, matrix¼ 128� 128,
slice thickness¼ 1mm; 20 slices, TR¼ 170ms, and
TE¼ 5ms. BBB integrity was determined by comparing
the impaired and normal area (ratio) of the region of
interest.

We used 18FDG positron emission tomography
(PET) (Focus 220 MicroPET, Siemens, Nashville,
TN, USA) to determine CMRglc. 0.1mCi of 18FDG
dissolved in 1ml of physiologic saline solution was
injected through the tail vein. Forty minutes were
allowed for 18FDG uptake before scanning. Emission
data were acquired for 20min in a three-dimensional
(3D) list mode with intrinsic resolution of 1.5mm. The
3D PET data were then rebinned into multiple frames
of 1-s duration and reconstructed for each frame using
a 2D filtered back projection algorithm. Decay and
dead time corrections were applied to the reconstruc-
tion process. CMRGlc was determined using the mean
standardized uptake value calculation.19

Behavioral testing

Spatial memory was assessed using the Morris water
maze paradigm. Mice (N¼ 15 per group) were pre-
screened for neurodevelopmental deficits and were
admitted into the study only if they exhibited intact

vision, swimming, and climbing abilities and had no
other overt sensorimotor deficits as determined by a
battery of neurobehavioral tasks performed before test-
ing. Experimenters were blind with respect to genotype
and treatment. Briefly, mice were subjected to a series
of four trials in which they were released into a light-
colored tank filled with opaque water whitened by the
addition of non-toxic paint at 24.0� 1.0�C. Their task
was to locate a 12� 12 cm submerged platform (1 cm
below the water surface) by utilizing visual cues. The
water tank was surrounded by opaque dark panels with
black-and-white geometric designs, as well as with dif-
ferent geometric designs placed at four locations at the
inner edge of the pool 10 cm above the edge of the
water to serve as internal cues. Animals were guided
to the platform if they failed to locate it within 60 s,
and they were required to remain on the platform for 15
to 20 s. Animals were then removed and placed in a dry
cage under a warm heating lamp. Approximately 15 to
20min later, each animal was subjected to a second trial
using a different release position, and this was repeated
for a total of four trials per day. This procedure was
repeated for four days maintaining the position of the
platform constant but changing the release points used
each day. Twenty-four hours after completing training,
a 45-s probe trial was administered in which the plat-
form was removed from the pool. The number of times
that each animal crossed the former location of the
platform was determined as a measure of retention.
During the course of testing, animals were monitored
daily and their weights recorded weekly. Performance

Figure 1. Experimental design and timeline. APOE4 transgenic mice can have vascular defects as early as two weeks (0.5 months of

age);8 metabolic/synaptic dysfunctions at four months of age;8 memory decline at 12 months of age.17,18 We obtained female mice at

one month of age to test the hypothesis that restoring vascular functions can further impede the decline of metabolic and cognitive

functions. After baseline cerebral blood flow (CBF) was measured, rapamycin diet was continuously supplied for six months. CBF was

measured longitudinally using MRI after 1, 3, and 6 months of feeding. At the end-point of the study (i.e. mice at 7 months of age),

blood–brain barrier (BBB) integrity was evaluated using MRI and cerebral metabolic rate of glucose (CMRGlc) was measured by PET

(N¼ 6). A separate group of mice (N¼ 15) underwent behavioral assessment with Morris water maze (MWM). After MWM, mice

were sacrificed and brain tissues were used for mechanistic pathway analyses using Western blot.
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was recorded by a computer-based video tracking
system (Water2020, HVS Image, Buckingham, UK).
Data were analyzed offline by using HVS Image and
processed with Microsoft Excel.

Brain microvasculature isolation and
Western blotting

After behavioral testing, animals were euthanized by
isoflurane overdose followed by cervical dislocation.
Microvasculature was isolated and prepared as
described previously12 with the exception that penicillin
was excluded from the MCDB131 media. Brain micro-
vasculature lysates were used for Western blot analyses.
Briefly, right hemibrains were removed and flash frozen
on dry ice, then homogenized into powder in liquid
nitrogen and finally solubilized via sonication in cell
lysis buffer (Cell Signaling Technology, Danvers, WA,
USA) containing protease inhibitor cocktail (Roche
Diagnostics, Indianapolis, IN,USA). The homogenates
were centrifuged at 12,000 r/min for 15min. Protein
concentrations of lysates were determined using the
Bradford method (Bio-Rad Laboratories, Hercules,
CA,USA). Lysates were resolved by SDS-PAGE
(Invitrogen, Temecula, CA, USA) under reducing con-
ditions and transferred to a nitrocellulose membrane,
blocked with 5% bovine serum albumin in Tris-
buffered saline containing 0.1% Tween 20 (TBS-T) at
room temperature for 1 h, and subsequently incubated
overnight at 4�C in 5% BSA/TBS-T containing rele-
vant primary antibodies as follows: Rabbit anti-
NF-kB (Cell Signaling Technology, 8242, 1:1000),
rabbit anti-GAPDH (Thermo Scientific, TAB1001,
1:2000), rabbit anti-cyclophilin A (CypA) (Abcam,
ab42408, 1:1000). Blots were washed three times for
5min in TBS-T and then incubated at room temperature
with the appropriate horseradish peroxidase-conjugated
secondary antibodies. Membranes were then washed
four times for 5min in TBS-T and incubated for 1min
with Amershaw ECL Western Blotting Detection
Reagent (GE Healthcare, Waukesha, WI, USA) and
exposed to film (Kodak, Rochester, NY, USA).
Densitometry was performed using ImageQuant soft-
ware (GE Healthcare, Waukesha, WI, USA).

Blood glucose measurement

Chronic rapamycin feeding has been reported to cause
glucose intolerance in mice.20 To determine whether
rapamycin might cause adverse effects on blood glu-
cose, we collected blood samples when the mice were
sacrificed. Blood sample was collected in 500 ml lithium
heparin 12.5 IU Terumo Capiject Capillary blood col-
lection tubes (Vacutainer K2 EDTA) to avoid blood
coagulation. 1–2ml of blood sample was used to

measure blood glucose level using a blood glucose
meter and a test strip (Clarity Plus, Boca Raton, FL).

Statistics. Statistical analyses were performed using
GraphPad Prism (GraphPad, San Diego, CA, USA).
Significance of differences among means was deter-
mined using one-way analysis of variance (ANOVA)
followed by Bonferroni’s post hoc test. Significance of
differences between means in pairwise comparisons
between experimental groups was done using
Student’s t-test. Values of P< 0.05 were considered
significant.

Results

Rapamycin restored brain vascular functions
of APOE4 mice

Figure 2(a) shows the CBF maps of the WT-control
and pre-treated APOE4 mice at one month of age.
Compared to the WT mice, the APOE4 mice had a
20% reduction in global CBF (P¼ 0.0049). After one
month of rapamycin treatment, the APOE4-Rapa group
showed significant increases in CBF (Figure 2(b)). The
CBF increments were prominent over time – after six
months of treatment, the APOE4-Rapa mice showed
no significant difference in global CBF compared to
the WT-control mice (Figure 2(c)). In contrast, CBF
of APOE4-control mice remained low over time. We
also did regional CBF analyses on cortex, hippocam-
pus, and temporal lobe. Figure 2 (d) to (f) shows the
results at the end-point. The APOE4-control group had
dramatically decreased CBF in cortex (�33%,
P¼ 0.0036), hippocampus (�25%, P¼ 0.0037), and
temporal lobe (�38%, P¼ 0.0024), relative to the
WT-control group. However, these regional CBF
reductions were not found in the APOE4-Rapa mice.

In addition to CBF deficits, the APOE4-control mice
also exhibited loss of BBB integrity at seven months of
age, The BBB leakage, shown by manganese contrast,
was found in the temporal lobe (Figure 2(g)). The mice
showed an impaired/normal area ratio of 0.31� 0.04.
Rapamycin significantly improved the BBB integrity –
APOE4-Rapa mice reduced the ratio to 0.09� 0.01
(P¼ 0.0056).

Rapamycin restored brain metabolic functions
of APOE4 mice

Figure 3(a) shows CMRGlc maps of the three groups
obtained at seven months of age. Similar to the patterns
found in CBF, APOE4-control mice had dramatic
reductions of CMRGlc in the cortex (Figure 3(b)),
hippocampus (Figure 3(c)), and temporal lobe
(Figure 3(d)). Rapamycin was able to rescue the
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Figure 3. Rapamycin restoring brain metabolic functions of APOE4 mice. (a) CMRGlc maps of mice at seven months of age; the color

code indicates the level of CMRGlc in a linear scale. Quantitative CMRGlc in the (b) cortex; (c) hippocampus; and, (d) temporal lobe of

the three groups of mice. Data are presented as mean� standard error of the mean. **P< 0.01; ***P< 0.001;

n.s.: non-significant; APOE4: apolipoprotein E4.

Figure 2. Rapamycin restoring brain vascular functions of APOE4 mice. (a) Representative baseline (pre-treated) CBF images of a

WT-control and APOE4-control mice. The color code indicates the level of CBF in a linear scale; (b) comparison of CBF between pre-

and one-month-post-treatment of a APOE4 mouse; (c) the time course of the global CBF changes among the three groups; (d) cortical

CBF (in ml/g/min) of the mice at seven months of age; (e) hippocampal CBF (in ml/g/min) of the mice at seven months of age; (f)

temporal lobe CBF (in ml/g/min) of the mice at seven months of age; (g) BBB leakage (indicated by the arrows) of the mice at seven

months of age. Data are presented as mean� standard error of the mean. *P< 0.05; **P< 0.01; ***P< 0.001;# no difference between

WT-control and APOE4-Rapa.

n.s.: non-significant; APOE4: apolipoprotein E4.
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metabolic deficits. CMRGlc of the APOE4-Rapa mice
had no significant differences in the three measured
areas when compared to the WT-control mice.

Rapamycin attenuated incipient spatial learning
deficits of APOE4 mice

WT-control and APOE4-Rapa groups progressed
indistinguishably with regard to a progressive decrease
in latency to reach the platform, a measure of spatial
learning, during the training phase of the Morris water
maze task. APOE4-control animals, however, showed
significantly increased latencies on day 2 compared to
all other experimental groups (Figure 4(a)), a behav-
ioral pattern common to other mouse models of
AD12,13,21 and suggestive of delayed learning. All
groups reached criterion (Figure 4 (a) and (b)) at day

3 and did not display significant deficits in their ability
to retain the spatial information acquired (Figure 4(c)).
Our data suggest that APOE4 transgenic mice started
to show incipient learning deficits at seven months of
age, and treatment with rapamycin early in the progres-
sion of AD-like disease may abrogate subtle signs of
impaired spatial learning.

Rapamycin did not change anxiety level
of APOE4 mice

Both groups of APOE4 transgenic animals exhibited a
slower mean swim speed compared to WT-controls on
day 1 (Figure 4(d)). This could be explained by
increased floating, a measure of depressive-like behav-
ior, or lack of motivation (Figure 4(e)). We also
observed that APOE4 mice, regardless of treatment,

Figure 4. Rapamycin ameliorates incipient learning phenotypes of APOE4 mice. (a) Time in seconds to reach a hidden platform.

Time F (3, 117)¼ 37.51, P< 0.0001; Treatment F (2, 39)¼ 0.496, P¼ 0.613; Interaction F (6, 117)¼ 5.919, P< 0.0001; (b) total

distance swam during trial. Distance F (3, 117)¼ 30.06, P< 0.0001; treatment F (2, 39)¼ 0.079, P¼ 0.024; interaction F (6,

117)¼ 5.704, P< 0.0001; (c) number of times mice crossed over the platform location in the probe trial. n.s., P¼ 0.091; (d) average

swim speeds during training. Speed F (3, 117)¼ 0.416, P¼ 0.742; treatment F (2, 39)¼ 1.59, P¼ 0.217; interaction F (6, 117)¼ 4.986,

P< 0.0001; (e) percent of trial spent floating. Time floating F (3, 117)¼ 0.821, P¼ 0.485; treatment F (2, 39)¼ 2.601, P¼ 0.087;

interaction F (6, 117)¼ 1.19, P¼ 0.316; (f) percent of trial spent in thigmotaxis. Time in thigmotaxis F (3, 117)¼ 39.25, P< 0.0001;

treatment F (2, 39)¼ 5.92, P¼ 0.006; interaction F (6, 117)¼ 2.212, P¼ 0.047. Data are presented mean� standard error of the mean

of 4 trials/animal/day. All asterisks (*) indicate a significant difference between WT-control vs. APOE4-control, all pound signs (#)

indicate a significant difference between APOE4-control vs. APOE4-Rapa, and all money signs ($) indicate a significant difference

between WT-control vs. APOE4-Rapa. Behavioral data were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons

test.

APOE4: apolipoprotein E4.
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spent a higher percentage of trial time engaged in
thigmotactic swim on day 2, suggesting a genotype
effect resulting in increased anxiety (Figure 4(f)).

Rapamycin did not affect body weight and blood
glucose level of APOE4 mice

Table 1 shows the end-point body weight data (mice at
7–8 months of age) and the blood glucose level of the
mice. Neither of the measures showed statistical differ-
ences among the three groups (P> 0.5).

Rapamycin restored CypA levels in
cerebrovasculature of APOE4 mice

Previous studies have shown that compared to other
allele variants, APOE4 carriers exhibit weaker APOE
binding to low-density lipoprotein 1 in brain, resulting
in increased levels of CypA and nuclear factor-kB (NF-
kB) and subsequent BBB breakdown in APOE4 trans-
genic mice.8 To determine whether rapamycin may

restore BBB integrity by blocking this pathway, we
measured CypA and NF-kB levels in cortical and in
cerebrovascular compartments of WT as well as con-
trol- and rapamycin-treated APOE4 mice. We found
that the total CypA levels (in tissue and vasculature)
among the three groups were similar. However, the
APOE4-control group had significantly lower CypA
levels in brain tissue (Figure 5 (a) and (b)), but dramat-
ically higher CypA levels in vasculature compared to
the WT-control group (Figure 5(c) and (d)), suggesting
a re-distribution of CypA, and an increased inflamma-
tion in the vasculature of mice expressing the APOE4
gene. Notably, cerebrovascular CypA levels, however,
were restored to WT levels in APOE4-Rapa animals. A
similar trend was also observed with NF-kB levels but
did not reach statistical significance (Figure 5 (e) to (h)).

Discussion

We demonstrated that cerebrovascular deficits occur
early in mice with the APOE4 genotype. At one
month of age, the APOE4 mice already show significant
CBF reductions in the whole brain and in regions
involved in higher order of cognitive functions, includ-
ing hippocampus and temporal lobe. BBB impairment
was also found in the temporal lobe. This is consistent
with human studies, which suggest that AD pathology
evolves early in temporal lobe.22,23 We also found sig-
nificantly decreased glucose metabolism in the APOE4
mice. This is in good agreement with an ample body of
literature demonstrating that APOE4 carriers exhibit

Figure 5. Rapamycin restoring CypA levels in brain vasculature of APOE4 mice. (a,b) Immunoblots of cortical CypA lysates and the

corresponding quantitative analyses; (c,d) immunoblots of microvascular CypA lysates and the corresponding quantitative analyses;

(e,f) immunoblots of cortical NF-kB lysates and the corresponding quantitative analyses; (g,h) immunoblots of microvascular NF-kB

lysates and the corresponding quantitative analyses. Data are presented as mean� standard error of the mean. *P< 0.05.

CypA: cyclophilin A; NF-kB: nuclear factor-kb.

Table 1. Body weight and blood glucose level of the mice.

Mice Body weight (g) Blood glucose (mg/dL)

WT-control 27.3� 0.4 122.4� 11.3

APOE4-control 26.9� 0.6 109.9� 14.7

APOE4-Rapa 27.8� 0.2 117.7� 16.2

Note: Data are presented as Mean� SEM.
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mitochondrial dysfunction and an overall reduction of
glucose metabolism in the brain.4,5,7 As glucose metab-
olism is highly associated with neuronal activity,24 our
results indicate that the APOE4 mice displayed both
neuronal and synaptic dysfunctions, consistent with
previous reports.8 Neuronal integrity is critical for cog-
nitive functions, including memory and learning abil-
ity.25 In line with this, we observed a transient but
significant delay in learning difficulty in the MWM in
the APOE4-control mice, though it was overcome with
repeated training. Collectively, consistent with human
studies, we found that vascular and metabolic defects
occur early in life and long before irreversible memory
loss in APOE4 mice.3–7

We further demonstrated that rapamycin was suffi-
cient to restore brain vascular functions in young
APOE4 mice. The APOE4-Rapa group had restored
CBF and BBB integrity after six months of treatment.
These vascular restorations were associated with the
reduced CypA levels in the vasculature. CypA is a
proinflammatory cytokine and that has previously
been shown to have deleterious effects on the vascular
system in mice lacking murine APOE with aortic
aneurysms and atherosclerosis.8 CypA causes BBB
breakdown by activating the NF-kB-matrix-metallo-
proteinase-9 (MMP9) pathway.8,11,26 We also observed
a trend toward increased vascular NF-kB in the
APOE4-control group, though it did not reach statis-
tical significance when compared to that of the WT-
control and APOE4-Rapa groups. This could be
because the mice were still young and the pathology
was not yet fully developed. Our results suggest that
down-regulating CypA activity in cerebrovasculature
alone has significant protective effects on vascular
integrity and that these changes may be sufficient to
improve cognitive outcomes.

Our findings indicate that rapamycin was able to
inhibit endothelial CypA and restore its distribution
between brain tissue and the vasculature. This is con-
sistent with previous findings that rapamycin binds to
and inhibits the rotamase activity of FKBP-12 of cyclo-
philin.27 Using cyclosporin A, an immunosuppressant
similar to rapamycin, Bell et al.8 also observed CypA
inhibition and subsequent restoration of cerebrovascu-
lar functions in mice with the APOE4 genotype.

In addition to endothelial CypA inhibition, we pre-
viously showed that rapamycin restores vascular func-
tions via mammalian target of rapamycin (mTOR)
pathway.12 In symptomatic hAPP (J20) mice, a mouse
model of AD, mTOR inhibition with rapamycin
increased the activity of endothelial nitric oxide syn-
thase (eNOS) and led to the release of NO, a vasodila-
tor. The subsequent increase in CBF observed in the
hAPP (J20) mice was dependent on NOS activity.

In that study, we also found that restoration of CBF
and cerebrovascular density were associated with
improved cognitive function and lower brain Ab
levels.12 The findings of the present study are a nice
compliment to our previous findings as here we dem-
onstrate that attenuation of mTOR restores vascular
function12,24 in APOE4 transgenic mice. That APOE
is intricately linked to Ab clearance only furthers our
suggestion that mTOR-mediated regulation of cerebral
vasculature may be a crucial target in mitigating AD-
like cognitive deficits.

Cerebrovascular integrity is highly coupled with
brain glucose metabolism.28–30 In line with this, we
observed restored CMRGlc in the APOE4-Rapa mice.
Glucose utilization plays a critical role in sustaining
neurotransmission31 and memory formation.32 As
such, rapamycin-mediated restoration of glucose
metabolism may play a role in the restoration of the
observed incipient learning and memory deficits in
APOE4 mice.

Notably, rapamycin did not reduce anxiety level of
APOE4 mice, however. Regardless of treatment,
APOE4 mice displayed increased floating in the
MWM on day 1 and spent a longer amount of time
in thigmotactic swim on day 2. Interestingly, despite
increased anxiety compared to the WT-controls, the
APOE4-Rapa mice did not express the learning deficits
exhibited by the APOE4-control mice. We suggest that
these differences are due to the rapamycin-induced vas-
cular and metabolic restorations. Previous studies
showed that cognition is highly associated with CBF
and CMRGlc levels,33–36 and preserving brain hemo-
dynamics and metabolism are critical for optimizing
brain health.37,38 Consistent with the literature, we
found that preserved cognition was reflected by
the preservation of both CBF and CMRGlc in the
APOE4-Rapa mice.

Taken together, our results suggest that rapamycin
may delay or even block early events in the progression
of physiological and cognitive deficits in APOE4 mice.
In the future, it will be important to investigate whether
rapamycin could also restore memory in old APOE4
mice after the onset of significant memory loss. One
limitation of the study was that the APOE4 transgenic
mice do not generate Ab, a hallmark of AD. Thus, the
pathology observed in the mouse model does not fully
reflect that of human AD. In the future, transgenic
mouse models with APOE4-specific changes in Ab
accumulation would be helpful to further identify rapa-
mycin effects on clearing Ab in APOE4 carriers.39

This study may have tremendous translational
potential since rapamycin has been approved by the
FDA and vascular/metabolic neuroimaging is readily
used in humans.40–42 Moreover, rapamycin has been
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applied for various uses in humans since 1999 and as
such the toxicity profiles are well characterized.43,44

Similar findings were also recently reported in
humans. Mannick et al.45 reported that low doses of
rapamycin significantly improved immune functions
in the elderly with minimal side effects.45 This informa-
tion, combined with the fact that rapamycin and rapa-
logues have been used for cancer treatment,46,47 make
rapamycin therapy an attractive candidate for future
applications from normal aging to age-related neurode-
generative disorders.48

In summary, our findings indicate that abnormal
vascular and metabolic functions precede irreversible
cognitive decline in APOE4 carriers. Thus, identifying
the timeframe of brain physiology changes and inter-
vening early are critical to impede the development of
AD pathology and thus prevent the onset of AD. The
studies herein suggest rapamycin may be effective at
mitigating the early vascular deficits associated with
AD. Using neuroimaging, we were further able to
non-invasively detect the vascular and metabolic
changes that precede cognitive dysfunction in young
APOE4 mice and were also able to restore these physio-
logical and cognitive functions through mTOR inhib-
ition. As rapamycin is FDA-approved and
neuroimaging is readily used in humans, this study
may have tremendous translational potential regarding
future prevention trials.
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