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Original Paper

Hyperhomocysteinemia-Induced Gene
Expression Changes in the Cell Types
of the Brain

Erica M. Weekman1,2,*, Abigail E. Woolums1,*, Tiffany L. Sudduth1,
and Donna M. Wilcock1,2

Abstract

High plasma levels of homocysteine, termed hyperhomocysteinemia, are a risk factor for vascular cognitive impairment and

dementia, which is the second leading cause of dementia. While hyperhomocysteinemia induces microhemorrhages and

cognitive decline in mice, the specific effect of hyperhomocysteinemia on each cell type remains unknown. We took separate

cultures of astrocytes, microglia, endothelial cells, and neuronal cells and treated each with moderate levels of homocysteine

for 24, 48, 72, and 96 hr. We then determined the gene expression changes for cell-specific markers and neuroinflammatory

markers including the matrix metalloproteinase 9 system. Astrocytes had decreased levels of several astrocytic end feet

genes, such as aquaporin 4 and an adenosine triphosphate (ATP)-sensitive inward rectifier potassium channel at 72 hr, as well

as an increase in matrix metalloproteinase 9 at 48 hr. Gene changes in microglia indicated a peak in proinflammatory markers

at 48 hr followed by a peak in the anti-inflammatory marker, interleukin 1 receptor antagonist, at 72 hr. Endothelial cells had

reduced occludin expression at 72 hr, while kinases and phosphatases known to alter tau phosphorylation states were

increased in neuronal cells. This suggests that hyperhomocysteinemia induces early proinflammatory changes in microglia

and astrocytic changes relevant to their interaction with the vasculature. Overall, the data show how hyperhomocysteinemia

could impact Alzheimer’s disease and vascular cognitive impairment and dementia.
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Introduction

Homocysteine is a nonprotein forming amino acid
involved in the production of both methionine and cyst-
eine. Mutations in the methylenetetrahydrofolate reduc-
tase or cystathionine beta synthase (CBS) genes or low
levels of vitamins B6, B9, and B12 can lead to increased
levels of plasma homocysteine (Mudd et al., 1964; Selhub
et al., 1993; Rozen, 1997; Lentz et al., 2000; Chen et al.,
2001), termed hyperhomocysteinemia (HHcy). HHcy is a
risk factor for both vascular cognitive impairment and
dementia (VCID) and Alzheimer’s disease (AD; Bostom
et al., 1999; Eikelboom et al., 1999; Van Dam and Van
Gool, 2009). Previous studies have shown that serum
homocysteine levels are inversely related to cognitive
function in patients with dementia and elevated levels

are more common in VCID patients than AD patients
(Miller et al., 2002; Clarke et al., 2003). While studies
have shown an association between homocysteine levels
and hippocampal atrophy, white matter lesions, and lacu-
nar infarcts, the mechanism of homocysteine-induced
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damage remains unknown (Vermeer et al., 2002; Firbank
et al., 2010).

Our group has been working on HHcy induction in
mice as a model of VCID. In both mouse and humans,
5 to 12 mM of homocysteine is considered normal, 12 to
30 mM is categorized as mild HHcy, 30 to 100 mM is mod-
erate HHcy, and anything above 100 mM is considered
severe HHcy. In C57BL/6 mice, dietary HHcy induction
through deficiency in vitamins B6, B9, and B12 and
enrichment in methionine results in homocysteine levels
between 50 and 80 mM, thus inducing moderate HHcy
(Sudduth et al., 2013). Microhemorrhages were the main
cerebrovascular pathology noted in the HHcy mice and
behavior testing showed significant cognitive deficits in
these mice. Moderate HHcy also induced a proinflamma-
tory phenotype, reduced cerebral blood flow, and
increased activity of matrix metalloproteinase 2 (MMP2)
and MMP9, which are known to degrade tight junctions
in the blood–brain barrier (Klein and Bischoff, 2011).

Dietary induction of HHcy in amyloid precursor protein
(APP)/PS1mice produces a comorbidity mousemodel with
aspects of both AD and VCID (Sudduth et al., 2014).
During the radial arm water maze, the comorbidity
mouse model displayed additive cognitive deficits.
Clinically, it has been shown that comorbidity patients
show an additive effect on test scores for memory and
executive function, thus making this a clinically relevant
model (Reed et al., 2007). Induction of HHcy in APP/PS1
mice produced a switch from an anti-inflammatory pheno-
type to a proinflammatory phenotype and significantly
increased MMP9 and MMP2 activity. While there were
not significant changes in total Ab levels, we did see a
change in the location of Ab, with more accumulating
around the vasculature. Finally, these comorbidity mice
had a significant increase in microhemorrhages.

It remains unclear from our in vivo studies what the
effects of homocysteine are on the individual cell types of
the brain, which could help us elucidate possible therapeutic
targets. To determine the cell specific effects of HHcy, we
took separate cultures of C8-D1A astrocytes, BV2 micro-
glia cells, primary endothelial cells, and N2a neuronal cells
and treated them with 50mM of homocysteine for 24, 48,
72, and 96hr. For each cell type, we analyzed the gene
expression of several cell type specific markers, inflamma-
tory markers, and MMP9 system markers.

Materials and Methods

C8-D1A Cell Culture

C8-D1A cells were obtained directly from American Type
Culture Collection (Catalogue No. CRL-2541, Manassas,
VA). Cells were grown in 75 cm2 flasks in DME
media containing 10% fetal bovine serum and 1% peni-
cillin-streptomycin (Life Technologies, Carlsbad, CA)

until approximately 80% confluency was reached, usually
after 7 days.

BV2 Cell Culture

BV2 cells, originally developed by Elisabetta Blasi et al.
(1990; courtesy of Dr. Linda Van Eldik), were grown in
petri dishes in DME media with nutrient mixture F12
containing 10% fetal bovine serum, 1% serum
L-glutamate, and 1% penicillin-streptomycin (Life
Technologies, Carlsbad, CA) until approximately 80%
confluency was reached, usually after 3 days.

Primary Endothelial Cell Culture

C57BL/6 mouse primary brain microvascular endothelial
cells were obtained directly from Cell Biologics
(Catalogue No. C57-6023, Chicago, IL). Cells were
grown in 75 cm2 flasks coated with a gelatin-based coat-
ing solution (Cell Biologics, Chicago, IL). Endothelial
cell media containing vascular endothelial growth
factor, endothelial cell growth supplement, heparin, epi-
dermal growth factor, hydrocortisone, L-glutamine, an
antibiotic-antimycotic solution, and fetal bovine serum
(Complete Mouse Endothelial Cell Medium w/ Kit, Cell
Biologics, Chicago, IL) was used to grow the endothelial
cells to approximately 80% confluency.

N2a Cell Culture

N2a cells (courtesy of Dr. John Gensel; Olmsted et al.,
1971) were grown in 75 cm2 flasks in Opti-MEM media
containing 40% DME media, 10% fetal bovine serum,
and 1% penicillin-streptomycin (Life Technologies,
Carlsbad, CA) until approximately 80% confluency was
reached, usually after 3 days.

HHcy Treatment

Once the cells reached 80% confluency, the cells were
trypsinized and resuspended in 10mL of media with
serum. For the BV2 and N2a cells, 100 mL of cells were
placed in each well of a six-well plate. For the C8-D1A
cells, 500 mL of cells were placed in each well of a six-well
plate. For the endothelial cells, 1mL of cells were placed
in a 25 cm2 flask coated with a gelatin-based coating
solution (Cell Biologics, Chicago, IL). For all cells, the
volume in each well or flask was brought up to 2mL with
media containing serum.

Once the cells reached 60% to 70% confluency, media
with serum was replaced with serum-free media for 24 hr
to avoid unwanted stimulation by serum components.
To determine the optimal dose of HHcy, BV2 cells were
treated with either 5 mM, 15 mM, 50 mM, or 100 mM of
homocysteine (Sigma, St. Louis, MO) for 24 hr. Based
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on the results in Figure 1(a), 50 mM was used to treat all
cell types since each cell would be exposed to the same
levels in vivo.

After 24 hr in serum-free media, each cell type was
treated with either 50 mM homocysteine or remained in
serum-free media as a control for 24, 48, 72, or 96 hr.
Media was changed every 2 days. Media was aspirated
and cells were rinsed in 1X DPBS (Life Technologies,
Carlsbad, CA) and frozen at �20� until RNA isolation.
Cell treatments were run at least twice for each cell line in
groups of two or three (N¼ 4 to 6 per group).

Cell viability was determined at 48 and 96 hr for each
cell type. The media from each well or flask was com-
bined with the trypsinized cells and resuspended in 2mL

of media. After 500 mL of the resuspended cells was com-
bined with 500 mL of trypan blue (Amresco, Solon, OH),
10 mL of this mixture was loaded on a hemocytometer.
The number of dead and live cells were counted from four
grids and averaged.

All cells were incubated at 5% CO2 at 37
�C.

Quantitative Reverse Transcription Polymerase
Chain Reaction

Total mRNA was extracted from the frozen cells using
cells scrapers in lysis buffer from the RNeasy Mini-kit
(Qiagen, Valencia, CA). The subsequent steps of the
extraction were done according to the manufacturer’s

Figure 1. Homocysteine dose response and cell viability. Relative gene expression of (a) proinflammatory and (b) anti-inflammatory

markers in BV2 microglial cells after 24 hr of treatment with homocysteine. Data are shown as a fold change from control-treated cells.

Cell viability of (c) astrocytes, (d) microglia, (e) endothelial cells, and (f) neuronal cells after treatment with 50 mM of homocysteine for 48

and 96 hr. ** indicates a p value< .01 compared with control-treated cells for that time point.

Weekman et al. 3



instructions. The Biospec-Nano Spectrophotometer
(Shimadzu, Kyoto, Japan) was used to quantify the
nucleic acid concentration of each sample. cDNA was
transcribed using the High Capacity kit (ThermoFisher,
Walthan, MA) according to the manufacturer’s instruc-
tions. The cDNA was produced using the VeritiTM 96-
well Thermocycler (Applied Biosystems, Grand Island,
NY) through heating and annealing cycles.

Quantitative Reverse Transcription Polymerase Chain
Reaction (RT-PCR) was performed using the Fast-
TaqMan Gene Expression kit (Life Technologies,
Carlsbad, CA) in 96-well plates. In each well, 1mL of the
appropriate gene probe (Life Technologies, Carlsbad, CA)
listed in Table 1 was added to 10 mL of the Fast-TaqMan
reagent along with 0.5mL of cDNA and 6.5mL of RNAse-
free water for a final volume of 18mL. Real-time RT-PCR
was performed using the ViiATM7 Real-Time PCR system
(Applied Biosystems, Grand Island, NY). All genes were
normalized to the 18S rRNA gene. Fold change was deter-
mined using the –��Ct method and the homocysteine trea-
ted cells were compared with the control cells of the
appropriate time point.

Analysis

Data are presented as mean� SEM. Statistical analysis
was performed using the JMP statistical analysis software

program (SAS Institute, Cary, NC). Student’s t-test were
performed and statistical significance was assigned when
the p-value was< .05.

Results

To determine the dose response to homocysteine, BV2
cells were treated with 5, 15, 50, or 100 mM of homo-
cysteine for 24 hr (Figure 1(a) and (b)). Treatment of
BV2 cells with 50 mM of homocysteine, which is con-
sidered moderate HHcy, resulted in the highest gene
expression levels of several pro- and anti-inflammatory
markers, specifically interleukin 1 beta (IL1b), interleu-
kin 1 receptor antagonist (IL1Ra), cluster of differenti-
ation 86 (CD86), and transforming growth factor beta
1 (TGFb1); therefore, 50 mM was used uniformly across
all cell types. Importantly, in our mice, we achieve 50
to 80 mM levels of homocysteine in plasma (Sudduth
et al., 2013; Weekman et al., 2016). Cell viability for
each cell type was also determined after exposure to
homocysteine for 48 or 96 hr. Astrocytes had a slight
decrease in cell viability only at 48 hr, but this was not
significant (Figure 1(c)). At 48 hr, there was a slight
increase in microglia cell viability when exposed to
homocysteine, and this became significant by 96 hr
(Figure 1(d)). Endothelial cells had a significant
increase in cell viability at 48 hr but decreased at
96 hr (Figure 1(e)). At both 48 and 96 hr, neuronal
cells had slight increases in cell viability after treatment
with homocysteine; however, this was not significant
(Figure 1(f)). Most importantly, no significant cell
death was observed with homocysteine treatment in
any of the cell types studied.

We also determined changes in the gene expression of
several pro- and anti-inflammatory markers when astro-
cytes, microglia, endothelial cells, and neuronal cells were
exposed to homocysteine. Astrocytes show no significant
changes in the proinflammatory marker tumor necrosis
factor alpha (TNFa; Figure 2(a)). However, there was a
significant decrease in the anti-inflammatory marker
IL1Ra at 48 hr when compared with controls. There
was also an overall trend for decreased IL1Ra up to
72 hr, but levels increased again at 96 hr. The other
anti-inflammatory marker, TGFb1, was slightly increased
at 48 hr but decreased at 72 hr.

Microglia cells treated with homocysteine had a sig-
nificant increase in the proinflammatory marker IL1b and
a slight but nonsignificant increase in TNFa at 48 hr
(Figure 2(c)). There was also a significant increase in
the anti-inflammatory marker TGFb1 at 48 hr. Levels
of IL1b, TNFa, and TGFb1 were decreased at 72 hr
and again at 96 hr when compared with 48 hr homocys-
teine-treated cells (Figure 2(c) and (d)). At 72 hr, IL1Ra
levels were significantly increased when compared
with controls and when compared with 48 hr

Table 1. Genes for Real-Time PCR.

Gene of interest PMID Taqman ID

IL1b NM_008361.3 Mm.222830

TNFa NM_013693.3 Mm.1293

IL1Ra NM_031167.5 Mm.882

CD86 NM_019388.3 Mm.1452

TGFb1 NM_011577.1 Mm.248380

MRC1 NM_008625.2 Mm.2019

MMP3 NM_010809.1 Mm.4993

MMP9 NM_013599.3 Mm.4406

TIMP1 NM_001044384.1 Mm.8245

AQP4 NM_009700.2 Mm.250786

GFAP NM_001131020.1 Mm.1239

KCNJ10 NM_001039484.1 Mm.254563

KCNMA1 NM_001253358.1 Mm.343607

PECAM1 AK037551.1 Mm.343951

CLDN5 NM_013805.4 Mm.22768

OCEL1 NM_008756.2 Mm.4807

COL4a5 NM_001163155.1 Mm.286892

APP NM_001198823.1 Mm.277585

GRN NM_008175.4 Mm.1568

GSK3b NM_019827.6 Mm.394930

PPP2CA NM_019411.4 Mm.00479816
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homocysteine-treated cells. Levels of IL1Ra were signifi-
cantly decreased by 96 hr when compared with 72 hr
homocysteine-treated cells. The other anti-inflammatory
marker, CD86, had slight increases up to 72 hr and a

decrease at 96 hr that was significantly different from
the 72 hr homocysteine-treated cells.

Endothelial cells only had a significant decrease in the
anti-inflammatory marker mannose receptor C Type 1 at

Figure 2. Neuroinflammation markers. Relative gene expression changes for pro- and anti-inflammatory markers in (a) astrocytes,

(c) microglia, (e) endothelial cells, and (g) neuronal cells. Data are shown as a fold change from control-treated cells for that time point.

*indicates a p value< .05 and ** indicates a p value< .01 compared with control-treated cells for that time point. p values for homocysteine-

treated comparisons for (b) astrocytes, (d) microglia, (f) endothelial cells, and (h) neuronal cells. Significant differences are shown in bold.

Weekman et al. 5



96 hr when compared with 48 hr homocysteine-treated
cells (Figure 2(e) and (f)).

Neuronal cells treated with homocysteine had a slight
increase in TNFa at 48 hr but was only significant when
compared with 24 hr homocysteine-treated cells
(Figure 2(g) and (h)). The anti-inflammatory markers
(IL1Ra, CD86, and TGFb1) showed increased levels
with a significant peak at 72 hr when compared with con-
trols. CD86 and TGFb1 were significantly decreased at
96 hr when compared with 72 hr homocysteine-treated
cells. It should be noted that while the fold changes for
these inflammatory markers are dramatic, the qPCR
cycle numbers were high, indicating the expression level
was extremely low in these neuronal cells.

The MMP9 system has been implicated in the tight
junction breakdown leading to microhemorrhages in
AD and VCID; therefore, we assessed the changes in
the gene expression levels of the MMP9 system markers
in response to homocysteine. In astrocytes, there was a
slight increase in MMP3 expression over 96 hr, but this
was not significant (Figure 3(a)). However, MMP9
expression was significantly increased at 48 hr when com-
pared with controls. Levels of MMP9 were significantly
decreased again at 72 and 96 hr when compared with the
48 hr treated homocysteine cells (Figure 3(b)). Tissue
inhibitor of matrix metalloproteinase 1 (TIMP1) gene
expression levels increased over time, with 96 hr being
significantly increased when compared with controls
and when compared with 24 and 48 hr homocysteine-
treated cells.

Microglia had slightly increased MMP9 levels at 24 hr,
but this was not significant (Figure 3(c)). Levels of
MMP9 were significantly increased at 72 hr when com-
pared with controls and when compared with 24, 48, and
96 hr homocysteine-treated cells (Figure 3(d)). TIMP1
levels were significantly increased at 96 hr when compared
with controls and when compared with 48 and 72 hr
homocysteine-treated cells.

Endothelial cells treated with homocysteine had sig-
nificantly increased levels of MMP3 at 48 hr when com-
pared with controls (Figure 3(e)). However, MMP9
levels, while slightly increased at 24 hr, were significantly
decreased at 48 and 96 hr when compared with 24 hr
homocysteine-treated cells (Figure 3(f)). Levels were
returned to normal at 72 hr. TIMP1 was only slightly
increased at 48 hr with no significant changes. Neuronal
cells only had slight increases in both MMP9 and TIMP1
at 72 hr with levels returning to normal at 96 hr
(Figure 3(g) and (h)).

Astrocytes treated with homocysteine show a trend for
decreased aquaporin 4 (AQP4) levels up to 72 hr and then
increase again at 96 hr; however, this was not significant
when compared with controls (Figure 4(a)). Glial fibril-
lary acidic protein levels increased up to 72 hr and then
decreased at 96 hr, but again this was not significant when

compared with controls. The adenosine triphosphate
(ATP)-sensitive inward rectifier potassium channel 10
(KCNJ10) had significantly increased gene expression
levels at 24 hr when compared with controls. However,
by 48 and 72 hr, levels were significantly decreased when
compared with the 24 hr homocysteine-treated cells
(Figure 4(b)). Levels of KCNJ10 were significantly
increased at 96 hr when compared with 72 hr homocys-
teine-treated cells. Another potassium channel, potassium
calcium-activated channel subfamily M alpha 1
(KCNMA1) was slightly decreased at 72 hr, but was
not significant.

Endothelial cells treated with homocysteine showed no
changes in platelet endothelial cell adhesion molecule 1
gene expression levels over the 96 hr (Figure 4(c)).
Claudin-5 levels had increasing levels with a peak at
72 hr. Levels of claudin-5 were significantly decreased at
96 hr when compared with 72 hr homocysteine-treated
cells (Figure 4(d)). Occludin levels were significantly
decreased at 48 hr when compared with controls but
levels were significantly higher at 72 hr when compared
with 48 and 96 hr homocysteine-treated controls.
Collagen Type IV alpha 5 had decreased levels with a
peak at 72 hr. Levels were significantly increased at
96 hr when compared with 24, 48, and 72 hr homocys-
teine-treated cells.

Neuronal cells treated with homocysteine had slight
increases in APP and granulin at 48 hr but levels
decreased at 72 hr and further decreased at 96 hr
(Figure 4(e)); however, none of these changes were sig-
nificant. Both glycogen synthase kinase 3 beta (GSK3b),
serine/threonine-protein phosphatase 2A (PPP2CA), and
KCNMA1 had increased gene expression levels up to
72 hr but decreased at 96 hr when compared with 72 hr
homocysteine-treated cells (Figure 4(f)). KCNJ10 had
significantly increased levels at 48 hr when compared
with controls and levels were significantly decreased at
72 hr when compared with 48 hr homocysteine-treated
cells.

Discussion

HHcy is a risk factor for both VCID and AD, the two
most common forms of dementia. Our lab has developed
a mouse model that induces HHcy to model VCID. In
this mouse model, we see cognitive deficits, an increase in
microglial staining, a proinflammatory phenotype, and a
significant increase in microhemorrhages (Sudduth et al.,
2013). While we know the overall effect of HHcy on the
brain, there is limited information on the cell specific
effects of HHcy. We took cell cultures of astrocytes,
microglia, endothelial cells, and neuronal cells and trea-
ted them with homocysteine to determine gene expression
changes specific to each cell type. Astrocytes showed a
decrease in two potassium channels and aquaporin 4
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with lows at 72 hr. Microglia cells showed an initial
increase in proinflammatory markers at 48 hr but then
an increase in anti-inflammatory markers at 72 hr.
Endothelial cells showed an increase in claudin-5 up to
72 hr but a decrease in occludin at 48 hr. Neurons treated
with homocysteine showed an increase in two potassium

channels, GSK3b and PPP2CA as well as increases in
anti-inflammatory markers with peaks at 72 hr.

Inflammation has been implicated as a possible mech-
anism for vascular damage in VCID (Rosenberg, 2009)
and induction of HHcy in mice to model VCID has
shown a proinflammatory response (Sudduth et al.,

Figure 3. MMP9 system markers. Relative gene expression changes for MMP9 system markers in (a) astrocytes, (c) microglia,

(e) endothelial cells, and (g) neuronal cells. Data are shown as a fold change from control-treated cells for that time point. * indicates a

p value< .05 and ** indicates a p value< .01 compared with control-treated cells for that time point. p values for homocysteine-treated

comparisons for (b) astrocytes, (d) microglia, (f) endothelial cells, and (h) neuronal cells. Significant differences are shown in bold.

Weekman et al. 7



2013), which can activate MMPs and lead to vascular
breakdown and cognitive impairment. Inflammation has
also been implicated in the disease process of AD and our
comorbidity mice show a switch from an anti-inflamma-
tory phenotype to a proinflammatory phenotype (Wyss-
Coray et al., 2001; Herber et al., 2004; Kitazawa et al.,
2005; Shaftel et al., 2007; Lee et al., 2010; Montgomery
et al., 2011; Sudduth et al., 2012, 2014). Both microglia
and astrocytes are capable of secreting inflammatory

cytokines and proteases (Dong and Benveniste, 2001;
Hanisch, 2002) in response to a variety of different sti-
muli, thus controlling the inflammatory phenotype.
When treated with HHcy in vitro, microglia produce
higher levels of several proinflammatory markers at
48 hr, which is similar to the proinflammatory response
seen in vivo in our chronic HHcy mouse studies. By 72 hr,
however, these levels of proinflammatory markers are
reduced and there is an increase in an anti-inflammatory

Figure 4. Cell-specific markers. Relative gene expression changes for cell-specific markers in (a) astrocytes, (c) endothelial cells, and

(e) neuronal cells. Data are shown as a fold change from control-treated cells for that time point. * indicates a p value< .05 and ** indicates

a p value< .01 compared with control-treated cells for that time point. p values for homocysteine-treated comparisons for (b) astrocytes,

(d) endothelial cells, and (f) neuronal cells. Significant differences are shown in bold.
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marker. While our mouse models show a proinflamma-
tory phenotype when on diet for 6 months, this cell data
suggest that long-term exposure to HHcy would ultim-
ately result in a switch to an anti-inflammatory pheno-
type. Astrocytes, neurons, and endothelial cells show a
limited inflammatory response to HHcy with slight
increases in anti-inflammatory markers around 48 and
72 hr. This shows that only microglia, rather than both
microglia and astrocytes, are the inflammatory phenotype
mediators when HHcy is present.

One of the major proteases involved in tight junction
breakdown is MMP9 (Lee et al., 2003; Jickling et al.,
2014), which can be activated via inflammation, specifically
the proinflammatory cytokines TNFa and IL1b (Galis et al.,
1994; Vecil et al., 2000). Our VCID mouse model shows a
significant increase in activation of MMP9 as well as
increases in TNFa and IL1b, providing a possible mechan-
ism for the increase in microhemorrhages seen in the mouse
model (Sudduth et al., 2013, 2014). Our in vitro data show
that at 48hr, astrocytes and endothelial cells are the major
sources of MMP9 and MMP3, respectively. The increases
seen in the MMP system, in particular MMP9, are parallel
to those seen in the mouse model of HHcy. Treatment of
individual cell types with homocysteine has provided insight
into the major sources of MMP9 at different time points.

The response of cell specific genes to homocysteine
can also generate therapeutic targets for treatment of
VCID. In astrocytes, AQP4, KCNJ10, and KCNMA1
were decreased, similarly peaking at 72 hr. These potas-
sium channels and AQP4 channel are associated with
homeostatic control of potassium buffering, water bal-
ance, and are located at the astrocyte end-feet (Price
et al., 2002; Simard and Nedergaard, 2004; Butt and
Kalsi, 2006). We have shown a disruption in these chan-
nels and other astrocytic end-feet channels in our VCID
mouse model (Sudduth et al., 2017). The fact that HHcy
can directly influence the expression of these channels
was surprising and could highlight unique cellular mech-
anisms underlying the in vivo astrocytic disruptions pre-
viously observed. The decreases seen in these astrocytic
end-feet genes could lead to disruption of the neurovas-
cular unit and blood flow to these damaged areas, con-
tributing to the cognitive decline seen in our mouse
model. Endothelial cells also play a major role in the
neurovascular unit by maintaining the tight junctions
that make up the blood–brain barrier. Interruption of
these tight junctions and consequently the blood–brain
barrier can lead to microhemorrhages that damage the
surrounding brain tissue. Treatment of endothelial cells
showed a significant decrease in occludin, a major tight
junction protein, at 48 hr. Homocysteine also induced an
increase in claudin-5 gene expression levels which could
compensate for the lowered occludin levels. However,
while the gene expression of claudin-5 is increased, it
may not equate to increased protein levels or even

localization of the protein to the tight junctions.
These disruptions in tight junctions could provide
another mechanism via which HHcy causes microhe-
morrhages and cognitive decline by directly affecting
tight junction gene expression levels, as opposed to
our previous hypothesis that this was mediated by
MMP degradation of tight junctions. HHcy is also a
risk factor for AD (Van Dam and Van Gool, 2009),
which is characterized by amyloid plaques and tangles
made of hyperphosphorylated tau (Braak and Braak,
1995). APP and granulin, which are associated with
AD and frontotemporal dementia, respectively, are not
altered in neuronal cells when exposed to homocysteine,
suggesting an alternate mechanism in which HHcy
increases the risk of AD. There are alterations in the
tau kinase GSK3b as well as changes in the tau phos-
phatase PPP2CA in the neuronal cells exposed to homo-
cysteine. While these increases may cancel each other
out, the gene expression changes may not lead to
equal changes in protein levels or even protein activity
for each. Further studies would be required to determine
these changes in protein levels or activity, and provide a
possible link between HHcy and AD. We have not
observed significant tau changes in the mouse model
of HHcy, but these data indicate that a more careful
examination of tau state may be required.

The responses of specific cell types to homocysteine pro-
vide a starting point for future studies that could identify a
wide variety of targets for AD and VCID therapeutics. For
example, targeting microglia to reduce the release of proin-
flammatory cytokines could help reduce MMP9 activation
leading to a decrease in tight junction breakdown.
Astrocytic end-feet present another possible target to help
reduce neurovascular damage and cognitive decline.
GSK3b or PPP2CA could also be targeted to help reduce
the risk of developing tauopathies in HHcy patients. The
gene changes seen here have the potential to be biomarkers
for VCID as well, and when compared with gene changes
seen in AD, possible biomarkers for patients with VCID
and AD. Other future studies would include cell specific
functional changes in response to HHcy and interactions
between cell lines when homocysteine is present.

Summary

Whether through genetic mutation or low levels of several
B vitamins, increasing the levels of homocysteine in the
brain can lead to gene expression changes in the major
cell types of the brain, which can contribute to vascular
cognitive impairment.

Acknowledgments

The authors would like to thank Dr. John Gensel for providing the

N2a cell line and Dr. Linda Van Eldik for providing the BV2 cell

line for this study.

Weekman et al. 9



Author Contributions

E. M. W. and A. E. W. performed the data collection and analysis,

interpreted the data, and prepared the manuscript. T. L. S. assisted

in data collection. D. M. W. conceived of the studies, analyzed, and

interpreted the data and edited the final manuscript. All authors

have approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

Research reported in this manuscript was funded by fellowship

F31NS092202 (EMW) and grants 1RO1NS079637 and

1RO1NS097722 (DMW) from the National Institutes of Health.

The content is solely the responsibility of the authors and does

not necessarily represent the ocial views of the National Institutes

of Health.

References

Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., & Bistoni, F.

(1990). Immortalization of murine microglial cells by a v-raf/v-

myc carrying retrovirus. J Neuroimmunol, 27, 229–237.

Bostom, A. G., Rosenberg, I. H., Silbershatz, H., Jacques, P. F.,

Selhub, J., D’Agostino, R. B., Wilson, P. W., . . . Wolf, P. A.

(1999). Nonfasting plasma total homocysteine levels and

stroke incidence in elderly persons: The Framingham Study.

Ann Intern Med, 131, 352–355.

Braak, H., & Braak, E. (1995). Staging of Alzheimer’s disease-

related neurofibrillary changes. Neurobiol Aging, 16, 271–278;

discussion 278–284.

Butt, A. M., & Kalsi, A. (2006). Inwardly rectifying potassium

channels (Kir) in central nervous system glia: A special role

for Kir4.1 in glial functions. J Cell Mol Med, 10, 33–44.

Chen, Z., Karaplis, A. C., Ackerman, S. L., Pogribny, I. P., Melnyk,

S., Lussier-Cacan, S., Chen, M. F., Pai, A., John, S. W., Smith,

R. S., Bottiglieri, T., Bagley, P., Selhub, J., Rudnicki, M. A.,

James, S. J., & Rozen, R. (2001). Mice deficient in methylene-

tetrahydrofolate reductase exhibit hyperhomocysteinemia and

decreased methylation capacity, with neuropathology and

aortic lipid deposition. Hum Mol Genet, 10, 433–443.

Clarke, R., Harrison, G., Richards, S, & Vital Trial Collaborative

Group. (2003). Effect of vitamins and aspirin on markers of

platelet activation, oxidative stress and homocysteine in

people at high risk of dementia. J Intern Med, 254, 67–75.

Dong, Y., & Benveniste, E. N. (2001). Immune function of astro-

cytes. Glia, 36, 180–190.

Eikelboom, J. W., Lonn, E., Genest, J. Jr., Hankey, G., & Yusuf, S.

(1999). Homocyst(e)ine and cardiovascular disease: A critical

review of the epidemiologic evidence. Ann Intern Med, 131,

363–375.

Firbank, M. J., Narayan, S. K., Saxby, B. K., Ford, G. A., &

O’Brien, J. T. (2010). Homocysteine is associated with hippo-

campal and white matter atrophy in older subjects with mild

hypertension. Int Psychogeriatr, 22, 804–811.

Galis, Z. S., Muszynski, M., Sukhova, G. K., Simon-Morrissey, E.,

Unemori, E. N., Lark, M. W., Amento, E., & Libby, P. (1994).

Cytokine-stimulated human vascular smooth muscle cells syn-

thesize a complement of enzymes required for extracellular

matrix digestion. Circ Res, 75, 181–189.

Hanisch, U. K. (2002). Microglia as a source and target of cyto-

kines. Glia, 40, 140–155.

Herber, D. L., Roth, L. M., Wilson, D., Wilson, N., Mason, J. E.,

Morgan, D., & Gordon, M. N. (2004). Time-dependent reduc-

tion in Abeta levels after intracranial LPS administration in APP

transgenic mice. Exp Neurol, 190, 245–253.

Jickling, G. C., Liu, D., Stamova, B., Ander, B. P., Zhan, X., Lu,

A., & Sharp, F. R. (2014). Hemorrhagic transformation after

ischemic stroke in animals and humans. J Cerebr Blood Flow

Metabol, 34, 185–199.

Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N., & LaFerla,

F. M. (2005). Lipopolysaccharide-induced inflammation exacer-

bates tau pathology by a cyclin-dependent kinase 5-mediated

pathway in a transgenic model of Alzheimer’s disease.

J Neurosci, 25, 8843–8853.

Klein, T., & Bischoff, R. (2011). Physiology and pathophysiology

of matrix metalloproteases. Amino Acids, 41, 271–290.

Lee, D. C., Rizer, J., Selenica, M. L., Reid, P., Kraft, C., Johnson,

A., Blair, L., Gordon, M. N., Dickey, C. A., . . . Morgan, D.

(2010). LPS-induced inflammation exacerbates phospho-tau

pathology in rTg4510 mice. J Neuroinflammation, 7, 56.

Lee, J. M., Yin, K. J., Hsin, I., Chen, S., Fryer, J. D., Holtzman, D.

M., Hsu, C. Y., & Xu, J. (2003). Matrix metalloproteinase-9 and

spontaneous hemorrhage in an animal model of cerebral amyl-

oid angiopathy. Ann Neurol, 54, 379–382.

Lentz, S. R., Erger, R. A., Dayal, S., Maeda, N., Malinow, M. R.,

Heistad, D. D., & Faraci, F. M. (2000). Folate dependence of

hyperhomocysteinemia and vascular dysfunction in cystathio-

nine beta-synthase-deficient mice. Am J Physiol Heart Circ

Physiol, 279, H970–H975.

Miller, J. W., Green, R., Mungas, D. M., Reed, B. R., & Jagust, W.

J. (2002). Homocysteine, vitamin B6, and vascular disease in

AD patients. Neurology, 58, 1471–1475.

Montgomery, S. L., Mastrangelo, M. A., Habib, D., Narrow, W. C.,

Knowlden, S. A., Wright, T. W., & Bowers, W. J. (2011).

Ablation of TNF-RI/RII expression in Alzheimer’s disease

mice leads to an unexpected enhancement of pathology:

Implications for chronic pan-TNF-alpha suppressive therapeutic

strategies in the brain. Am J Pathol, 179, 2053–2070.

Mudd, S. H., Finkelstein, J. D., Irreverre, F., & Laster, L. (1964).

Homocystinuria: An Enzymatic Defect. Science, 143,

1443–1445.

Olmsted, J. B., Witman, G. B., Carlson, K., & Rosenbaum, J. L.

(1971). Comparison of the microtubule proteins of neuroblast-

oma cells, brain, and Chlamydomonas flagella. Proc Natl Acad

Sci USA, 68, 2273–2277.

Price, D. L., Ludwig, J. W., Mi, H., Schwarz, T. L., & Ellisman, M.

H. (2002). Distribution of rSlo Ca2þ-activated Kþ channels in

rat astrocyte perivascular endfeet. Brain Res, 956, 183–193.

Reed, B. R., Mungas, D. M., Kramer, J. H., Ellis, W., Vinters, H.

V., Zarow, C., Jagust, W. J., & Chui, H. C. (2007). Profiles of

neuropsychological impairment in autopsy-defined Alzheimer’s

disease and cerebrovascular disease. Brain, 130, 731–739.

Rosenberg, G. A. (2009). Inflammation and white matter damage in

vascular cognitive impairment. Stroke, 40, S20–S23.

10 ASN Neuro



Rozen, R. (1997). Genetic predisposition to hyperhomocysteine-

mia: Deficiency of methylenetetrahydrofolate reductase

(MTHFR). Thromb Haemost, 78, 523–526.

Selhub, J., Jacques, P. F., Wilson, P. W., Rush, D., & Rosenberg, I.

H. (1993). Vitamin status and intake as primary determinants of

homocysteinemia in an elderly population. JAMA, 270,

2693–2698.

Shaftel, S. S., Kyrkanides, S., Olschowka, J. A., Miller, J. N.,

Johnson, R. E., & O’Banion, M. K. (2007). Sustained hippo-

campal IL-1 beta overexpression mediates chronic neuroinflam-

mation and ameliorates Alzheimer plaque pathology. J Clin

Investig, 117, 1595–1604.

Simard, M., & Nedergaard, M. (2004). The neurobiology of glia in

the context of water and ion homeostasis. Neuroscience, 129,

877–896.

Sudduth, T. L., Wilson, J. G., Everhart, A., Colton, C. A., &

Wilcock, D. M. (2012). Lithium treatment of APPSwDI/

NOS2-/- mice leads to reduced hyperphosphorylated tau,

increased amyloid deposition and altered inflammatory pheno-

type. PLoS One, 7, e31993.

Sudduth, T. L., Powell, D. K., Smith, C. D., Greenstein, A., &

Wilcock, D. M. (2013). Induction of hyperhomocysteinemia

models vascular dementia by induction of cerebral microhemor-

rhages and neuroinflammation. J Cerebr Blood Flow Metabol,

33, 708–715.

Sudduth, T. L., Weekman, E. M., Brothers, H. M., Braun, K., &

Wilcock, D. M. (2014). Beta-amyloid deposition is shifted to the

vasculature and memory impairment is exacerbated when

hyperhomocysteinemia is induced in APP/PS1 transgenic

mice. Alzheimers Res Ther, 6, 32.

Sudduth, T. L., Weekman, E. M., Price, B. R., Gooch, J. L.,

Woolums, A., Norris, C. M., & Wilcock, D. M. (2017). Time-

course of glial changes in the hyperhomocysteinemia model of

vascular cognitive impairment and dementia (VCID).

Neuroscience, 341, 42–51.

Van Dam, F., & Van Gool, W. A. (2009). Hyperhomocysteinemia

and Alzheimer’s disease: A systematic review. Arch Gerontol

Geriatr, 48, 425–430.

Vecil, G. G., Larsen, P. H., Corley, S. M., Herx, L. M., Besson, A.,

Goodyer, C. G., & Yong, V. W. (2000). Interleukin-1 is a key

regulator of matrix metalloproteinase-9 expression in human

neurons in culture and following mouse brain trauma in vivo.

J Neurosci Res, 61, 212–224.

Vermeer, S. E., van Dijk, E. J., Koudstaal, P. J., Oudkerk, M.,

Hofman, A., Clarke, R., & Breteler, M. M. (2002).

Homocysteine, silent brain infarcts, and white matter lesions:

The Rotterdam Scan Study. Ann Neurol, 51, 285–289.

Weekman, E. M., Sudduth, T. L., Caverly, C. N., Kopper, T. J.,

Phillips, O. W., Powell, D. K., & Wilcock, D. M. (2016).

Reduced efficacy of anti-abeta immunotherapy in a mouse

model of amyloid deposition and vascular cognitive impairment

comorbidity. J Neurosci, 36, 9896–9907.

Wyss-Coray, T., Lin, C., Yan, F., Yu, G. Q., Rohde, M.,

McConlogue, L., Masliah, E., & Mucke, L. (2001). TGF-

beta1 promotes microglial amyloid-beta clearance and reduces

plaque burden in transgenic mice. Nat Med, 7, 612–618.

Weekman et al. 11


	University of Kentucky
	UKnowledge
	12-3-2017

	Hyperhomocysteinemia-Induced Gene Expression Changes in the Cell Types of the Brain
	Erica M. Weekman
	Abigail E. Woolums
	Tiffany L. Sudduth
	Donna M. Wilcock
	Repository Citation
	Hyperhomocysteinemia-Induced Gene Expression Changes in the Cell Types of the Brain
	Notes/Citation Information
	Digital Object Identifier (DOI)


	Hyperhomocysteinemia-Induced Gene Expression Changes in the Cell Types of the Brain

