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Abstract

Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the
atomic data used. With the goal of making the latest atomic data accessible to the community, we present
a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H I
Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we
focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the
circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic medium (IGM). We
provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength
determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22%
of the lines that have updated oscillator strength values, the differences between the former values and the updated
ones are 0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as
studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those
enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of
background galaxies will also benefit from our compilation.

Key words: atomic data – atomic processes – ISM: abundances – galaxies: abundances – quasars: absorption lines

Supporting material: machine-readable table

1. Introduction

Atomic spectroscopy is fundamental to the study of a wide
range of astrophysical environments. In the diffuse interstellar
gas in the Milky Way, the atoms are often in the ground state,
so that the resonant atomic transitions are of special interest.
The vast majority of these atomic transitions lie in the
ultraviolet. Space-based UV spectroscopy with a number of
missions has made it possible to observe these interstellar
transitions. Some of the earliest of these observations, carried
out with the Copernicus mission led to fundamental discoveries
such as the hot halo gas of the Milky Way (e.g., Rogerson
et al. 1973; York 1974; Spitzer & Jenkins 1975). Subsequent
missions such as the Far Ultraviolet Spectroscopic Explorer
further extended the study of interstellar and intergalactic gas
(e.g., Moos et al. 2000). The several generations of UV
spectrographs on the Hubble Space Telescope have vastly
increased the number of Galactic as well as extragalactic sight
lines probed for their neutral or ionized gas. For example, these
observations uncovered the existence and properties of low-
redshift Lyα forest clouds, as well as the covering fractions,
element abundances, temperatures, and kinematics of the
circumgalactic medium (CGM; e.g., Morris et al. 1991; Bahcall
et al. 1993; Savage & Sembach 1996 and references therein;
Kulkarni et al. 2005; Lehner et al. 2013; Tumlinson et al. 2013;
Som et al. 2015; Werk et al. 2016). Naturally, these
observations provide crucial constraints on models of galaxy
evolution, including the effect of outflows and inflows.
Furthermore, determinations of relative element abundances
in the interstellar medium (ISM) are important to understanding
dust depletions and thus, indirectly, the composition of dust
grains (e.g., Jenkins 2009 and references therein). Relative
element abundances in distant galaxies offer crucial windows

in understanding the cosmic evolution of dust, as well as the
evolution of stellar nucleosynthetic processes. On a larger
scale, observations of key ions in the intergalactic medium
(IGM) offer rich insights into the physical conditions in the
diffuse regions of the cosmic web, and the large-scale cosmic
processes influencing it.
In view of the sweeping consequences of atomic spectroscopy

for understanding the evolution of galaxies, ISM, CGM, and
IGM, it is important to be able to derive accurate physical
information from the spectra. This makes it essential to employ
as accurate atomic data as possible in translating the spectro-
scopic measurements into determinations of physical quantities.
Thanks to the extensive efforts of numerous theoretical and

experimental physicists, many improvements in the atomic data
relevant for astrophysical spectroscopy have been happening in
recent years. However, knowledge of many of these improve-
ments often does not trickle down to the community of
observational spectroscopists rapidly enough. For example, in
the CGM/IGM community, the most commonly used reference
for atomic data, by far, is Morton (2003). With the goal of
making the latest improvements accessible to the community,
here we present a compilation of oscillator strengths for key
transitions, including updates made since 2003. We focus, in
particular, on the ions that have been measured in ISM/CGM/
IGM studies for selected elements ranging from C to Pb. For
each of the selected elements, we list lines longward of the
Hydrogen Lyman limit at 911.753 Å, since, in this wavelength
region, the bound-free H absorption does not contribute much
to the ISM/CGM/IGM opacity. Atomic data for absorption
lines shorter than 911.753 Å from the ground level can be
found elsewhere, e.g., Verner et al. (1994) and Kallman &
Palmeri (2007).
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2. Description of Compiled Data

2.1. General Terminology and Definitions

Throughout this paper, we focus on the electric dipole (E1)
transitions. The absorption line corresponds to the transition
between the lower level l and the upper level u, with level
energies El and Eu, respectively. The statistical weights
(g J2 1= + , J being the total angular momentum of the state)
of the lower and upper levels are denoted gl and gu. In terms of
the energy levels, the vacuum wavelength Ritzl of the transition
is

E Ehc , 1Ritz u ll = -( ) ( )

where h is Planck’s constant,and c is the speed of light. The
Einstein transition probability (in s−1) for spontaneous
emission is denoted by Aul. The dimensionless absorption
oscillator strength flu is related to the E1 transition probability
Aul by

f g A g1.49919 10 2lu
16

vac
2

u ul ll= ´ - ( )

where vacl is in Å. The oscillator strengths compiled in this
paper were obtained from either experimental techniques or
theoretical calculations. In cases where oscillator strengths in
both the length and velocity forms are available, we tabulate
the length-form data becausethese are commonly used and
more reliable.

2.2. Tabulated Data

In Table 1, we present the data for each ionspecies
separately. These species and their ground levels are given in
table subheaders. Table 1 lists the following information for
each E1 line of interest.

1. Nuclear charge Z.
2. Ion spectroscopic notation.
3. Lower level.
4. Upper level.
5. Vacuum rest wavelength vacl in Å (where available).
6. Ritz wavelength Ritzl in Å.
7. Lower level statistical weight g .l
8. Upper level statistical weight g .u
9. Absorption oscillator strength f.
10. Logarithm of weighted oscillator strength, gflog .( )

11. Accuracy grade (uncertainty) of the oscillator strength f
according to the NIST atomic spectra database (Kramida
et al. 2015).

12. f-value data source.

2.3. Selection Rules

We wish to be as consistent as possible in selecting the lines
presented in Table 1. Hence we need to explain a selection
procedure for the tabulated lines. The following basic rules
were followed for selecting data sources in our tables or
providing any additional information.

1. For the species range, we consider elements with
Z6 30  and several other elements observed in the

ISM, such as Ga, Ge, Kr, andPb. Usually, we present
data for a few of the lowest ionization stages. The
selected ions have been observed in the ISM, CGM, and/
or IGM.

2. We tabulate lines with wavelengths 911.753 Åvacl > .
These are the vacuum wavelengths for all lines.

3. We give priority to the observed wavelength,which we
call vacl over the Ritz wavelength Ritzl . As a rule, the line
wavelength source is the NIST database (Kramida
et al. 2015). We have represented the Ritz wavelengths
from the NIST database to threedecimal places.

4. We tabulate absorption lines originating from the ground
level only. We do not tabulate lines originating from the
excited levels of the ground configuration or the ground
term even if their energies are just a few tenths of cm−1,
e.g., the C I, C II, andN II ions.

5. We tabulate only those lines that have f 0.001 . We
present no more than threesignificant figures for the
f-values becausewe suppose that is enough to reflect their
real accuracy.

6. Usually, we tabulate f-values from the newest sources
giving priority to the experimental data over the
theoretical values. In the cases where new data are not
significantly different from the older data, we choose to
rely on the older data preferring the most advanced
theoretical methods for data production. Those special
cases will be mentioned in Section 3.

The accuracy grades of the tabulated oscillator strengths f
were either derived from the original data sources or we
tabulated the grades given in the NIST database by Kramida

Table 1
Line Identifications, Observed Wavelengths vacl (Å), Ritz Wavelengths Ritzl (Å), Absorption Oscillator Strengths f, and Their Accuracy Grade for Key Transitions

Z Ion Lower level Upper level vacl Ritzl gl gu f gflog( ) Grade Source

6 C I 2s22p2 3P0 2s22p3s 3Po1 1656.928 1656.929 1 3 1.43E−1 −0.845 A FF06
6 C I 2s22p2 3P0 2s2p3 3Do

1 1560.310 1560.309 1 3 7.16E−2 −1.145 A FF06
6 C I 2s22p2 3P0 2s2p3 3Po1 L 1328.834 1 3 5.80E−2 −1.236 B FF06
6 C I 2s22p2 3P0 2s22p4s 3Po1 L 1280.135 1 3 2.61E−2 −1.583 B+ FF06
6 C I 2s22p2 3P0 2s22p3d 3Do

1 1277.245 1277.245 1 3 9.22E−2 −1.035 A FF06
6 C I 2s22p2 3P0 2s22p5d 3Do

1 1157.910 1157.910 1 3 2.12E−2 −1.674 L ZF02
6 C II 2s22p 2Po1/2 2s2p2 2D3/2 1334.532 1334.532 2 4 1.29E−1 −0.589 L FFT04
6 C II 2s22p 2Po1/2 2s2p2 2S1/2 1036.337 1036.337 2 2 1.19E−1 −0.624 L FFT04

Note. An estimated accuracy grade is listed for each oscillator strength where available, indicated by a code letter as given below: AAA 0.3%; 0.3% < AA 1%;
1% < A+ 2%; 2% < A 3%; 3% < B+ 7%; 7% < B 10%; 10% < C+ 18%; 18% < C 25%; 25% < D+ 40%; 40% < D 50%; E 50%> .

(This table is available in its entirety in machine-readable form.)
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et al. (2015). For this reason, some of the lines do not have
accuracy grades. In some cases, we were able to confidently
assign an accuracy grade through careful comparative analysis.
These instances and their justification are specifically docu-
mented within Section 3.

3. Comments and Assessment of Improved Data

In Table 1,wavelengths vacl are adopted from the NIST
database (Kramida et al. 2015). Theoretical f-values ftheor are
corrected for the inaccuracy in calculated level energies (or
wavelengths theorl ) by adjusting them according to the
observed values vacl , see Lykins et al. (2015):

f f . 3corr theor theor vacl l= ´ ( ) ( )

A significant part of the new transition data are utilized from
the theoretical calculation performed by Froese Fischer &
Tachiev (2004), where the multiconfiguration Hartree–Fock
(MCHF) method was applied to determine the transition data
for the neutrals and ions starting with the beryllium isoelec-
tronic sequence and finishing with the argon isoelectronic
sequence. The same MCHF approximation is applied to
produce data for the sodium to argon isoelectronic sequences
by Froese Fischer et al. (2006). This method is a reliable one
producing high-accuracy results, and it is difficult to exceed
their accuracy when dealing with large amounts of species. We
tabulate transition data from the above sources for the species
up to argon complemented with data from other sources for the
lines involving higher excited levels with n 4> . Another
source of oscillator strength f-values for ions with Z 20> is the
data list of Kurucz (2016). This is an online data list, which is
continuously updated with new results. We give the preference
to their newer data as opposed to the older values given in the
previous versions of this data list. We reference this source as
Kurucz (2016),though in many cases data have been produced
considerably earlier.

3.1. Carbon Species

For neutral carbon and the species C II and C III, we tabulate
theoretical data from the calculations of Froese Fischer and co-
workers published in Froese Fischer (2006), Zatsarinny &
Froese Fischer (2002), and Froese Fischer & Tachiev (2004).
These are very reliable data sources providing highly accurate
radiative transition data. For two lines in the lithium-like C IV,
which is outside the scope of the above-mentioned papers, we
adopt data from Yan et al. (1998) withan accuracy grade of A.
We performed an additional check for these two lines and
calculated transition data using our own codes utilizing the
Hartree–Fock (HF) and quasirelativistic (QR) approaches on a
very extensive configuration-interaction (CI) wavefunction
basis recently described by Kisielius et al. (2015). Our results
confirm the high accuracy of data from Yan et al. (1998); our
calculated f-values agree within a few tenths of a percent.

3.2. Nitrogen Species

Oscillator strengths are taken from Froese Fischer & Tachiev
(2004) for the species N I, N II, and N III. The NIST database
assigns them accuracy grades no worse than B. There is just
one line in our investigated wavelength range in the N IV ion. It
originates from the excited level 1s22s2p 3P1. However,it is rather
weak becauseit constitutes a spin-changing E1 transition. For the
lithium-like ion N V, we adopt data from Peach et al. (1988). For

the N V lines, we performed an accuracy check because these data
are coming from non-relativistic calculations. Our results, both in
the length and velocity forms of the E1 transition operator, agree
between themselves within 2% and do not deviate more than
0.5% from the results of Peach et al. (1988). This confirms a high-
accuracy grade of A assigned to oscillator strengths of the
tabulated absorption lines in the N V ion.

3.3. Oxygen Species

For the O I ion, data from Froese Fischer & Tachiev (2004)
are adopted for the lines connecting the excited states 2s22p33s,
3d, and 4s. For other lines not covered by Froese Fischer &
Tachiev (2004), we use data from Butler & Zeippen (1991) and
Hibbert et al. (1991). The latter is the same source used by the
NIST database, and the later investigation of Tayal (2009) just
confirms the reliability and high accuracy of their data.
Transition data from Tayal (2009) agree with oscillator
strengths f of Hibbert et al. (1991) within 10%. We also
tabulate oscillator strengths for two 2s–2p transition lines in Li-
like O VI determined by Peach et al. (1988). Likewise to the
situation described in Section 3.2, we have performed our own
calculation and can confirm a high-accuracy grade assigned to
these data by the NIST team.

3.4. Sodium Species

The oscillator strength f-values are taken from Froese Fischer
et al. (2006) for the lines 3s–np, (n = 3, 4),and we retain the
same accuracy grades as given by NIST. For the line 3s–5p, we
adopt the oscillator strength value determined by applying the
same MCHF approach B-spline method with non-orthogonal
radial orbitals by Froese Fischer (2002). It was proved for
neutral carbon by Zatsarinny & Froese Fischer (2002) that such
an approach produces reliable results for the high-nl lines.

3.5. Magnesium Species

For the lines representing resonance transitions from the
ground 3s2 state to the excited 3s3p and 3s4p states of the Mg I
ion, we use data from Froese Fischer et al. (2006) with
accuracy grades of A and B+. For the transition to the 3s5p
levels, more recent oscillator strength f data produced using a
B-splines method within MCHF by Zatsarinny et al. (2009) are
available, whereas for the lines representing transitions to
highly excited 3snp levels (6�n�8), we adopt data of
Chang & Tang (1990) becausemore recent data do not exist.
Oscillator strength values for Mg II are taken from Froese

Fischer et al. (2006). The accuracy of the data for the 3s–3p
lines has a very high A+ grade. Meanwhile, though the lines
3s–np (n 3> ) are in our investigated wavelength range
( 911.753vacl > ), only the transition to the 2p65p 2P3 2

o level
has f 0.001 satisfying our selection criteria. Other lines fall
short of that criteria,though their fine-structure level unre-
solved oscillator strengths are within that range.

3.6. Aluminum Species

We tabulate oscillator strength f-values for three ions, Al I,
Al II, and Al III. Here for the lines connecting the ground state
with the lower n 3, 4= levels, the theoretical data of Froese
Fischer et al. (2006) are adopted. They have accuracy grades of
B+ and A+. For the higher nl levels, we list theoretical
data from Mendoza et al. (1995), which were determined by
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non-relativistic R-matrix calculations. Furthermore, their data
for fine-structure levels were derived from the multiplet values
assuming a pure LS-coupling. Those data usually have rather
poor accuracy grades, thus further data improvement can
rectify this situation. For three lines of Al I,we adopt
experimental data of Vujnović et al. (2002) and Davidson
et al. (1990) and assign an accuracy grade of B.

3.7. Silicon Species

For the low-lying states of the 3s23p4s, 3s3p3, 3s23p3d odd-
parity configurations of Si I, we list f-values adopted from Froese
Fischer et al. (2006). As we have mentioned before, these
theoretical data are of high quality and reliability. It is necessary to
admit here that these values differ noticeably from the previous
oscillator strength values tabulated by Morton (2003). The case of
the lines involving higher levels is more complicated. Some
lines falling into our wavelength selection region are absent from
the NIST database,though their corresponding level energies
are presented there, e.g., the lines at 1568.617 ÅRitzl = ,

1763.661 ÅRitzl = , and 1873.103 ÅRitzl = . The oscillator
strength value for the line at 1589.173 ÅRitzl = is derived from
the non-relativistic R-matrix calculations of collision data for
several Si-like ions of Nahar & Pradhan (1993), which we
consider to beless accurate compared to the pure atomic structure
calculations or the experimental results. The E1 transition data for
the latter line are listed in Froese Fischer et al. (2006),though their

gflog( ) value of −2.16 differs noticeably from the experimental
log (gf )=−2.57 value from Smith et al. (1987). Additional
experimental data for higher nl levels comes from the measure-
ments of Smith et al. (1987) and from a critical compilation of
Kelleher & Podobedova (2008).

Bautista et al. (2009) have produced a benchmark data set for
the Si II ion by utilizing several theoretical approaches and
experimental data to determine reliable recommended absorp-
tion oscillator strengths for the levels of the 3s3p2, 3s23d, and
3s24s configurations. For the higher level of 3s24d at
989.873 Å, we list the experimental f-value of Curtis & Smith
(1974), which is close to the theoretical value f = 0.1849 from
Charro & Martin (2000), which also serves as a source for the
3s25s level data. For the ions Si III and Si IV, we list oscillator
strengths from Froese Fischer et al. (2006).

3.8. Phosphorus Species

For the lines connecting the ground state 3s23p3 S4
3 2
O with

the levels of P4 term of the excited configuration 3s23p2( P3 )4s
of P I, we adopt oscillator strengths from Froese Fischer et al.
(2006). Unfortunately, that work does not list data for the
transitions to the 3s23p2( P3 )3d P4 levels. Therefore, for these
levels, we resort to older theoretical data from Fawcett (1986).
The f-values for the lines at 1679.695, 1674.591, 1671.680ll
given by Froese Fischer et al. (2006) differ significantly, at
least by twoorders of magnitude from the previous data of
Fawcett (1986). Since the relative intensities for these three
3s–3p lines given by the NIST database are similar to those of
3p–4s lines at 1787.656, 1782.838, 1774.951ll , we believe
the data from Fawcett (1986) given its D accuracy rating can be
utilized for neutral phosphorus.

For the P II and P III lines, we list data from Froese Fischer
et al. (2006). Five more lines below 1153 Å that are unlisted in
the NIST database are entered in Table 1 for P II. These lines
originate from the absorption transitions from the ground level

to the levels 3p4s and 3p3d. We have derived their Ritz
wavelengths using level energies listed by Kramida et al.
(2015). The same process was performed for three P III lines
below 999 Å. The source of the transition data chosen for the
magnesium-like P IV and sodium-like P V is Froese Fischer
et al. (2006).

3.9. Sulfur Species

The main source of the data for the neutral sulfur lines
connecting the ground level 3s23p4 3P2 with the levels of the
excited 3d, 4d, 4s, 5s, and6s configurations are the theoretical
results of Deb & Hibbert (2008). As in Deb & Hibbert (2006),
the data from Deb & Hibbert (2008) agree very well with most
lines from the results of the B-spline calculations by Zatsarinny
& Bartschat (2006). They arealso close to the data produced
by Froese Fischer et al. (2006). Thus one has to be assured of
high quality and reliability of the listed f-values. We include the
line at 1474.5715 Ål = even though its f-value is lower
than our selection criterion f 0.001 as other theoretical
predictions put it above this criterion. The data from higher
configurations with the valence 5d, 6d, 7s, and 8s electrons are
taken from Biémont et al. (1998). That set of f-values was
deduced from a combination of laser lifetime measurements
and theoretical branching ratios. For the lines with 1241 Ål <
that connect the ground state with the upper levels located
above the first ionization limit at 83,559.1 cm−1, we choose
oscillator strengths from Deb & Hibbert (2008), which have an
accuracy grade of C.
For the S II lines,we list a data set from Kisielius et al.

(2014). The authors concluded that their data are in good
agreement with other theoretical data sets of Froese Fischer
et al. (2006) and Tayal & Zatsarinny (2010). For the S III, S IV,
and S VI lines, we list data from Froese Fischer et al. (2006).

3.10. Chlorine Species

The data for the Cl I lines are taken from the recent
theoretical calculations of Oliver & Hibbert (2013). Their data
accuracy grade is C+. For the two lines in Cl II and three lines
of Cl III, we assume that the experimental data from Schectman
et al. (2005) are the best source. The accuracy of their f-values
is within 5% (or an accuracy grade of B+). We list an oscillator
strength from Froese Fischer et al. (2006) for a single line
of Cl IV.

3.11. Argon Species

For the lines of Ar I and Ar II,we recommend using
oscillator strengths from Froese Fischer et al. (2006). One
can safely assign the C+ accuracy grade to these data.

3.12. Potassium Species

For the spectra of neutral K I, we list four lines corresp-
onding to the resonance 4s–4p and 4s–5p transitions in the
valence shell. The lines to the higher np levels are relatively
weak and do not fall into our desired f-value range. The
parameters of lines caused by the 4s–4p transitions are
determined by Wang et al. (1997). Their data agree very well
with other high-accuracy measurements. They evaluate the
accuracy of f-values as 0.2% (AAA accuracy grade). Data for
the 4s–5p lines are from the measurements of Shabanova &
Khlyustalov (1985). Although their accuracy grade is unlisted,
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by comparing these data with the results of elaborated
relativistic calculations of Migdalek & Kim (1998), we
confidently assign them a grade of A.

3.13. Calcium Species

The data for the λ4227.92 line are taken from the high-
accuracy photoassociative measurements of Zinner et al.
(2000), which produces reduced uncertainties compared to
previous measurements. Their data have confirmed previous
level-crossing measurements of Kluge & Sauter (1974). Recent
theoretical values of Froese Fischer & Tachiev (2003) are also
close (within error bars) to the above experimental data. The
data for other resonance lines of neutral calcium are measured
by Parkinson et al. (1976). They used the hook method to
determine the gf-values of the 4s2–4snp absorption lines. These
data for most lines agree within 5% with other measurements,
e.g., Ostrovskii & Penkin (1961),Shabanova (1963), and
Mitchell (1975). The λ2722.450 line is the only exception, and
here the differences are much higher. Even though this line has
an f-value below our cut-off level, we list it in our table. The list
for Ca I contains lines up to 3p64s13p, while the transitions
for higher Rydberg levels fall below our cut-off criterion
of f 0.001 .

For the Ca II ion lines, we recommend recently determined
oscillator strengths from Safronova & Safronova (2011). Their
calculations used a high-precision relativistic method, where all
single and double, and partially triple excitations of Dirac–Fock
wavefunctions are included to all orders of perturbation theory.
The authors estimate the relative uncertainties of their
calculated oscillator strengths to be 0.9%.

3.14. Titanium Species

The majority of the data for the Ti I lines come from the
measurements of Lawler et al. (2013). They have used
the previously measured radiative lifetimes combined with the
branching fractions to yield absolute oscillator strengths. The data
agree closely with the NIST data;therefore, we consider it
appropriate to assign them respective accuracy grades, which are
no worse than B+. Some lines are missing in Lawler et al. (2013).
For those lines, we recommend the high-quality experimental data
from Blackwell-Whitehead et al. (2006) or data from the earlier
experiment of Smith & Kühne (1978).

For the Ti II ion lines, we list data from the recent paper of
Lundberg et al. (2016). The authors measured radiative level
lifetimes and used the pseudo-relativistic HF method to
determine oscillator strengths and theoretical lifetimes for the
measured levels. Their data agree within 10% with the earlier
theoretical data of Ruczkowski et al. (2014) and those from
Pickering et al. (2001b). For the Ti III transition data, we adopt
the theoretical results of Raassen & Uylings (1997). They
performed an orthogonal operator calculation for the electric
dipole transition integrals by means of the multiconfiguration
Dirac–Fock method including core polarization.

3.15. Chromium Species

For the lines connecting the ground state of Cr I with the
n=4 levels, the data chosen were produced by Sobeck et al.
(2007). The authors used branching fraction measurements
from Fourier transform spectra in conjunction with radiative
lifetimes to determine the transition probabilities. These data
are assigned an accuracy grade of B. For the transitions to the

3d55p,6p levels, we list data from Martin et al. (1988), which
are given accuracy grades of C.
For the three lines above 2050 Å in Cr II, the recommended

tabulated data are from the experimental work of Nilsson et al.
(2006). The accuracy grade for their data is B+. For other lines
of Cr II, we tabulate theoretical data from Raassen & Uylings
(1998), where oscillator strengths have been determined using
the orthogonal operator technique. Five listed lines of Cr III are
taken from Kurucz (2016).

3.16. Manganese Species

For the manganese lines, we adopt the experimental
oscillator strength values from Blackwell-Whitehead et al.
(2005, 2011). Their accuracy grade is B+ for the lines with

4000 Ål > , and C+ for the lines below 3000 Å. Unfortu-
nately, oscillator strengths for most Mn I lines listed in our table
were not measured in the above experiments. For these lines,
we tabulate older data from Martin et al. (1988) or data from
Kurucz (2016).
New data for some selected Mn II lines in Table 1 are listed

from Den Hartog et al. (2011) who experimentally measure
radiative lifetimes and branching fractions to derive transition
probabilities and oscillator strengths. Other data come either
from similar experimental work of Kling & Griesmann (2000)
or from the configuration-interaction calculations of Toner &
Hibbert (2005).

3.17. Iron Species

Lines for three iron ions are listed in Table 1. For lines with
2913l > Å, our oscillator strength source is Blackwell et al.

(1979), who measured absorption oscillator strengths and
reported an accuracy of 0.5%. NIST assigns an accuracy grade
of A for most of those lines. For the lines below 2913 Å, our
data come from the measurements of O’Brian et al. (1991).
They employed time-resolved laser-induced fluorescence to
measure radiative lifetimes and derived oscillator strengths by
measuring branching fractions. Their accuracy grades are
slightly worse compared to those of Blackwell et al. (1979).
For the remaining lines below 2260 Å, we list the data of
Banfield & Huber (1973), who used the hook method to
determine oscillator strengths in Fe I. Although the accuracy
grade of their data is not as high, these oscillator strengths are
substantially reliable.
Our main source for the Fe II lines above 2000 Å is the

experimental data from Bergeson et al. (1996). The authors
have measured branching ratios with a Fourier transform
spectrometer and with a high-resolution grating spectrometer.
The resulting measurements were used to derive transition
probabilities for 56 lines. Another group of listed lines was
theoretically studied by Raassen & Uylings (1998). Their
accuracy grade is lower. These two sources are complemented
by experimental oscillator strengths from Pickering et al.
(2001a) and the critical compilation of Fuhr & Wiese (2006).
For the Fe III ion line at 1122.5 Å,we tabulate the theoretical
oscillator strength from Deb & Hibbert (2009).

3.18. Cobalt Species

Oscillator strengths for all but one of the Co I lines are taken
from the recent measurements of Lawler et al. (2015). They
derived oscillator strengths from experimental branching
fractions combined with radiative lifetimes from laser-induced
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fluorescence measurements. The NIST database assigns accur-
acy grades of B or B+ for their data. A rather weak line at
λ2436 is taken from Cardon et al. (1982), where absolute
oscillator strengths were determined using the hook method.
Data for the Co II lines come from the calculations using the
orthogonal operator technique by Raassen et al. (1998) and
the measurements of Mullman et al. (1998a, 1998b). In general,
the data for Co II have relatively low accuracy grades. For the
lines of Co III,we tabulate oscillator strengths from the Kurucz
online data list (Kurucz 2016).

3.19. Nickel Species

For the Ni I lines, we list oscillator strengths from new
measurements of Wood et al. (2014), where f-values were
determined by combining measured branching fractions and
radiative lifetimes. Most of these data are assigned high-
accuracy grades (from B+ to B). Missing data are covered by
the measured oscillator strengths obtained by the hook and
absorption methods from Huber & Sandeman (1980). Their
data accuracy evaluation is lower compared to that of Wood
et al. (2014). NIST lists only a single line for transitions of
Ni II. We tabulated oscillator strengths from the recent CI
calculation of Cassidy et al. (2016). The authors state that it is
difficult to provide a measure of the uncertainties for the large-
scale CI calculations, which would cover all transitions.
Nevertheless, they consider that their data are the best currently
available and meet the accuracy demands for astrophysical
applications. We do not assign any accuracy grades to these
data,though they can be considered as having an accuracy
grade of B.

3.20. Copper Species

The source of oscillator strength data for the resonance 4s–
4p lines in Cu I is a critical compilation of oscillator strengths
for neutral ions by Doidge (1995). The data for the transitions
3d–4p and 4s–5p are adopted from Hannaford & McDonald
(1978). The oscillator strengths were determined from atomic
absorption measurements of the radiation emitted from a
copper hollow-cathode lamp. The oscillator strengths for the
remaining lines 4s–np n 6( ) comes from the calculation of
Çelik et al. (2015).

Three lines listed for Cu II originate from the transitions
involving the ground level 3p63d10 1S0 and the levels with
J=1 from the configuration 3d94p. Their data source is either
the theoretical data from Donnelly et al. (1999) or from the
beam-foil experimental data of Brown et al. (2009), which were
given an accuracy grade of B.

3.21. Zinc Species

The oscillator strength for the 4s2 1S0–4s4p
1Po1 line of Zn I is

taken from the Hanle-effect experiments of Kowalski & Träger
(1976), which have confirmed the earlier level-crossing
technique results of Lurio et al. (1964). Later beam-foil
spectroscopy measurements of Martinson et al. (1979) give
very similar f-values ( f 1.55 0.08=  ). These measurements
are consistent with recent theoretical data, e.g., Froese Fischer
& Zatsarinny (2007) and Głowacki & Migdałek (2006). For the

1589l line, we tabulate the oscillator strength from the line list
of Kurucz (2016). The NIST database lists a rather strong line
at 1109.1l with no transition identification or Ritz wavelength.
Analyzing the level list, we can assume that this line originates

from the transition 3d–4p with 1108.316 ÅRitzl = , though this
wavelength noticeably differs from the measured one. Thiscan
be explained by the fact that the level 3d94s24p 3P1

o lies in the
continuum, above the ionization limit.
Oscillator strengths for Zn II are taken from the quasirela-

tivistic calculations of Kisielius et al. (2015). Their data are
consistent and agree with other theoretical data within a range
of 10%.

3.22. Gallium Species

Tabulated data for neutral gallium lines are from a new
compilation of Shirai et al. (2007) with an unlisted line for the
4p1/2–7d3/2 transition data taken from the relativistic many-
body perturbation theory calculation of Safronova et al. (2006).
These two data sources tabulate oscillator strengths differing by
approximately 10% for most of the listed lines. For the λ1414
line of Ga II, we tabulate an oscillator strength from the low-
energy beam-foil measurements of Andersen et al. (1979),
which have 8% measurement errors (i.e., an accuracy grade of
B). Later theoretical data confirm the reliability of the listed
experimental data, see, e.g., McElroy & Hibbert (2005),
Jönsson et al. (2006), and Chi & Chou (2014). Oscillator
strength values for two lines of the Ga III ion are from the
compilation of Shirai et al. (2007).

3.23. Germanium Species

There are no new reliable original oscillator strength data
sources for the germanium species following Morton (2003),
except for the compilation of Fuhr & Wiese (2005). For the
Ge I lines, we tabulate experimental oscillator strengths of
Li et al. (1999). Their experiment measured natural level
radiative lifetimes by employing time-resolved UV laser-
induced fluorescence from a laser-produced plasma and
determined branching fractions by an inductively coupled
plasma emission spectrometry technique. The derived oscillator
strengths have accuracy grades of B or B+. For the Ge II lines,
we list theoretical f-values from Biémont et al. (1998). For the
Ge III ion, we list two 4s2–4s4p transition lines. The 3Po1 spin-
forbidden line oscillator strength is tabulated from the empirical
predictions of Curtis (1992). The resonance line f-value for
the 1Po1 level was experimentally determined by Andersen et al.
(1979) utilizing beam-foil spectroscopy. The oscillator
strengths for Ge IV are adopted from the beam-foil measure-
ments of Pinnington et al. (1981).

3.24. Krypton Species

For the Kr I lines we tabulate experimental oscillator
strengths from Chan et al. (1992). They measured photo-
absorption f-values using the dipole (e e, ) method. The
oscillator strengths have accuracy grades of B or B+. The
reliability of their data was confirmed by recent B-spline
calculations of Zatsarinny & Bartschat (2009). The oscillator
strengths for Kr II were derived from the selective pulsed
monochromatized synchrotron radiation experiment of Lauer
et al. (1999), where lifetimes of the 4s4p6 2S1 2 states were
measured. For the Kr VI line,we list data from MCHF
relativistic calculation of Pagan et al. (1996),where adjust-
ments were made to the electrostatic parameters in order to
improve theoretical level energies and gf-values.
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3.25. Lead Species

We list data for the Pb II lines. The oscillator strength for the
1682l line is adopted from Quinet et al. (2007), where

transition probabilities were calculated in a relativistic multi-
configuration Dirac–Fock approach and the accuracy of the
results was assessed by a new experimental determination of
the radiative lifetime for the 7s1 2 level. Other listed data are
from Safronova et al. (2005). The authors obtained radiative
transition data using relativistic many-body perturbation
theory. The remaining data for the 10s1 2 and 9d3 2 levels
are adopted from the ab initio relativistic Hartree–Fock
calculations of Colón & Alonso-Medina (2001).

4. Discussion

A complete version of Table 1 is available online in a
machine-readable version. Table 1 can also be obtained on
request as a formatted PDF table from the authors (Romualdas.
Kisielius@tfai.vu.lt, fcashman@email.sc.edu). In the printed
version of this paper, we list just a few lines from the carbon
species to facilitate understanding of the form and contents of our
data list.

In Table 2, we explain the source abbreviations used in
Table 1. For easier guidance, we also tabulate the ion list from
which oscillator strength values f were sourced.

Table 1 lists 576 transitions. For 400 of these transitions, we
have listed updated oscillator strength determinations. Of these,
60 transitions, though listed either in Morton (2003) or in the
NIST database Kramida et al. (2015), previously had no
oscillator strength value reported. Figure 1 shows a comparison
of the updated and former oscillator strengths. Table 3
compares updated oscillator strength values to their former
values for 340 lines. For 171 of these transitions, the new
f-values are smaller than the old values, while for 157
transitions, the new f-values are larger. The differences from
the old values are usually smaller for the stronger transitions
with log f 0.5- . The differences are 0.2 dex for 12%» of
the lines with changed f-values, and 0.1 dex for 22%» of the
lines.

A breakdown of the accuracy grades for all 576 oscillator
strengths is given in Figure 2. Approximately 37% of the
oscillator strengths have an accuracy grade worse than 10%,
while approximately 11% of the oscillator strengths have an
accuracy grade worse than 25%. Figure 2 highlights the need
for obtaining more accurate oscillator strength values for these,
as well as for obtaining the accuracy grades for the 24% of the
oscillator strengths that are currently without a grade.

We encourage future studies of interstellar, circumgalactic,
and intergalactic absorption lines to use the revised oscillator
strengths compiled here. This is especially important for the

22%~ of the lines where the improvements of 0.1> dex are
larger than the typically quoted measurement uncertainties in
metal column densities (usually 0.05< dex for non-saturated
lines observed with state-of-the-art high-resolution spectro-
graphs used for such studies, e.g., Keck High-resolution
Spectrograph, VLT UV Echelle Spectrograph, Magellan
Inamori Kyocera Echelle spectrograph). It would also be
useful to confirm the oscillator strengths of the 43 transitions of
C I, Si I, P II, S I, Cl I, Ti I, Ti II, Mn I, Mn II, Fe II, Ni II, Kr I,
and Pb II for which the differences in the oscillator strengths are
0.2 dex. Such improvements in atomic data are crucial to

Table 2
References Abbreviated in Table 1

Abbreviation Citation Ion

AEP79 Andersen et al. (1979) Ga II, Ge III

BFI09 Brown et al. (2009) Cu II

BGF98 Biémont et al. (1998) S I

BH73 Banfield & Huber (1973) Fe I

BIP79 Blackwell et al. (1979) Fe I

BLN06 Blackwell-Whitehead
et al. (2006)

Ti I

BMQ98 Biémont et al. (1998) Ge II

BMW96 Bergeson et al. (1996) Fe II

BPN11 Blackwell-Whitehead
et al. (2011)

Mn I

BQP09 Bautista et al. (2009) Si II
BXP05 Blackwell-Whitehead

et al. (2005)
Mn I

BZ91 Butler & Zeippen (1991) O I

C92 Curtis (1992) Ge III

CAE15 Çelik et al. (2015) Cu I

CAM01 Colón & Alonso-Medina (2001) Pb II

CCG92 Chan et al. (1992) Kr I

CHR16 Cassidy et al. (2016) Ni II
CM00 Charro & Martin (2000) Si II
CS74 Curtis & Smith (1974) Si II
CSS82 Cardon et al. (1982) Co I

CT90 Chang & Tang (1990) Mg I

D95 Doidge (1995) Cu I

DH01 Donnelly & Hibbert (2001) Fe II

DH08 Deb & Hibbert (2008) S I

DH09 Deb & Hibbert (2009) Fe III

DHB99 Donnelly et al. (1999) Cu II

DHL11 Den Hartog et al. (2011) Mn II

DVD90 Davidson et al. (1990) Al I
F86 Fawcett (1986) P I

FF02 Froese Fischer (2002) Na I

FF06 Froese Fischer (2006) C I

FFT04 Froese Fischer & Tachiev (2004) C II; III, N I, II, III; O I

FFT06 Froese Fischer et al. (2006) Na I; Mg I, II; Al I, II, III;
Si I, III, IV;

P I, II, III, IV, V; S III, IV, VI;
Cl IV; Ar I, II

FW06 Fuhr & Wiese (2006) Fe II

HBG91 Hibbert et al. (1991) O I

HM78 Hannaford & McDonald (1978) Cu I

HS80 Huber & Sandeman (1980) Ni I
K16 Kurucz (2016) Fe II, Cr III, Mn I, Co III,

Zn I

KG00 Kling & Griesmann (2000) Mn II

KKF14 Kisielius et al. (2014) S II

KKF15 Kisielius et al. (2015) Zn II

KP08 Kelleher & Podobedova (2008) Si I
KT76 Kowalski & Träger (1976) Zn I

LGW13 Lawler et al. (2013) Ti I
LHE16 Lundberg et al. (2016) Ti II
LLV99 Lauer et al. (1999) Kr II

LNP99 Li et al. (1999) Ge I

LSC15 Lawler et al. (2015) Co I

MCL98 Mullman et al. (1998a) Co II

MEL95 Mendoza et al. (1995) Al I
MFW88 Martin et al. (1988) Cr I, Mn I

MLZ98 Mullman et al. (1998b) Co II

NLL06 Nilsson et al. (2006) Cr II

NP93 Nahar & Pradhan (1993) Si I
OH13 Oliver & Hibbert (2013) Cl I
OWL91 O’Brian et al. (1991) Fe I

PBI81 Pinnington et al. (1981) Ge IV
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obtain accurate element abundances in distant galaxies, which
are needed to quantitatively test models of cosmic chemical
evolution. Indeed, improved atomic data will be invaluable for

accurately interpreting the large samples of spectra of high-
redshift quasars, gamma-ray bursts, and star-forming galaxies
that will be enabled by future extremely large telescopes.
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lines denote deviations of±0.1 dex and±0.2 dex, respectively, from the black line.
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