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ABSTRACT OF THESIS 

 

INTELLIGENT UAV SCOUTING FOR FIELD CONDITION MONITORING 

 

Precision agriculture requires detailed and timely information about field 

condition. In less than the short flight time a UAV (Unmanned Aerial Vehicle) can 

provide, an entire field can be scanned at the highest allowed altitude. The resulting 

NDVI (Normalized Difference Vegetation Index) imagery can then be used to classify 

each point in the field using a FIS (Fuzzy Inference System). This identifies areas that are 

expected to be similar, but only closer inspection can quantify and diagnose crop 

properties. In the remaining flight time, the goal is to scout a set of representative points 

maximizing the quality of actionable information about the field condition. This quality is 

defined by two new metrics: the average sampling probability (ASP) and the total 

scouting luminance (TSL). In simulations, the scouting flight plan created using a GA 

(Genetic Algorithm) significantly outperformed plans created by grid sampling or human 

experts, obtaining over 99% ASP while improving TSL by an average of 285%. 
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CHAPTER 1:  INTELLIGENT UAV SCOUTING FOR FIELD CONDITION 

MONITORING 

1.1   SUMMERY 

Precision agriculture requires detailed and timely information about field 

condition. In less than the short flight time a UAV (Unmanned Aerial Vehicle) can 

provide, an entire field can be scanned at the highest allowed altitude. The resulting 

NDVI (Normalized Difference Vegetation Index) imagery can then be used to classify 

each point in the field using a FIS (Fuzzy Inference System). This identifies areas that are 

expected to be similar, but only closer inspection can quantify and diagnose crop 

properties. In the remaining flight time, the goal is to scout a set of representative points 

maximizing the quality of actionable information about the field condition. This quality is 

defined by two new metrics: the average sampling probability (ASP) and the total 

scouting luminance (TSL). In simulations, the scouting flight plan created using a GA 

(Genetic Algorithm) significantly outperformed plans created by grid sampling or human 

experts, obtaining over 99% ASP while improving TSL by an average of 285%. 

1.2   INTRODUCTION 

Precision agriculture is receiving ever-increasing attention (Pierpaoli, Carli, 

Pignatti, Canavari, 2013) and is used for the assessment of inter- and intra-field 

spatial/temporal variations. Obtaining knowledge as to the various regions of a field such 

as crop growth status (Yu et al., 2013) is an important parameter that necessitates field 

monitoring. This shall allow the performance of the agricultural services, such as 

fertilizing, irrigation, insect and disease control, or logistics, in a proper, efficient time. 

Although remote sensing using satellites and aerial imagery have been used for 

monitoring the field condition (Hunt, Cavigelli, Daughtry, Mcmurtrey, Walthall, 2005; 

Yang, Everitt, Bradford, 2006; Inman, Khosla, Reich, Westfall, 2008), it brings up a 

number of issues. The information provided can only be utilized to evaluate the seasonal 

changes (long-term changes) of the crop growth, and is more suitable for large-scale 

analysis (Sakamoto et al., 2012; Zhang & Kovacs, 2012). Camera based observations, via 

UAV (Unmanned Aerial Vehicle), appears a viable solution to overcome the deficiencies 

associated with traditional methods of remote sensing (Miller, Adkins, Tully, 2017). Over 
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the last decade, the use of air-borne remote sensing has drastically increased in 

agriculture as it provides superior spatial/temporal flexibility and higher resolution 

images. 

Application of the remote sensing allows farmers to collect actionable information 

with regard to different zones of their field. For instance, envision solely a section of a 

field necessitates irrigating, spraying, or fertilizing, one can thus save both time and 

money by addressing the site-specific needs. To that end, remote sensing and 

geographical information systems (GIS) are relying on color classification (Wharton et 

al., 1988; Wu, 2000) of the imagery captured from a field, following the coverage of the 

field. This stems from the promising results of the spectral vegetation indices such as 

NDVI (normalized difference vegetation index). The NDVI has proven to be useful in 

providing information with respect to different characteristics of the various regions of a 

field such as water-stressed regions and grown crops regions (Peñuelas, Gamon, Fredeen, 

Merino, Field, 1994). This happens via the classification of a field into a variety of 

colors, representing zones with specific characteristics. However, the relatively short 

flight time provided by the commercial UAVs doesn’t allow either covering the entire 

field or obtaining high quality information of the field. The escalation of flight altitude 

(expansion of the camera’s field of view) can make the field’s complete coverage 

possible. Yet, the problem of lacking qualitative information due to low resolution of 

footage appears. As such, further and closer inspection is needed to better quantify or 

diagnose, such as the amount of spray application or irrigation for a specific region 

(Ehmke, 2013). Re-flight at lower altitude over a number of representative points of each 

color zone can provide high quality, actionable information as to the corresponding 

region.  

A flight plan over a set of representative points conventionally takes place 

through human-directed frameworks. For instance, a farmer divides up the field, like a 

grid, and routes the vehicle to visit the intersections as distinct points. Although the 

method allows setting the representative points deterministically, it is unknown which 

field condition each intersection evidences. Another approach is that a human expert 

picks a number of representative points and routes the vehicle. The method, however, 

requires either the UAV landing or hovering around, following the completion of the 
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coverage flight, until the operator specifies the points relevant to the different field 

conditions. Both these methods have the issue of efficient sampling and routing. This is 

not unexpected as it is impossible to accurately speculate how far the vehicle can fly, 

given the remaining energy level. 

Despite humans can easily classify colors and segment an image, machines find 

this task more challenging. As such, image segmentation plays an important role in 

computer vision applications. To segment an image, based on colors, basic approaches 

such as color space thresholding (Jain, Kasturi, Schunck, 1995) and nearest neighbor 

classification (Bruce, Balch, Veloso, 2000) define the segment shapes predicated on the 

data structures used by the algorithm. Whereas data-driven methods determine the 

segment shapes using the distribution of the samples to agree with the human perception 

of colors. There are a multitude of data-driven techniques for color segmentation, such as 

clustering classification (Sathya & Manavalan, 2011; Bora & Gupta, 2014), artificial 

neural network (Dong & Xie, 2005; Pujara & Prasad, 2013), region growing 

segmentation (Tseng & Chang, 1992), and human perception-based texture analysis 

(Chen, Pappas, Mojsilovic, Rogowitz, 2005). Fuzzy Logic in practical applications, such 

as remote sensing imagery (Baboo & Thirunavukkarasu, 2014), is a useful tool as an 

interface between logic and human perception (Freksa, 1994). Bhatia, Srivastava, and 

Agarwal (2010) used the Takagi-Sugeno fuzzy model to locate faces in an image. They 

implemented this technique using the HSV (Hue-Saturation-Value)  color model. The 

approach was characterized by its simplicity and inexpensive computation, as well as low 

false positive rates. Moreno-Cadenas, Gómez-Castañeda, Anzueto-Rios, and Hernández-

Gómez (2016) employed the Mamdani type FIS (Fuzzy Inference System) for region 

segmentation. They applied a weighted average method and used YCbCr color space to 

produce outputs with higher accuracy.  

RGB color space is perfect for machines, but it is not very human-friendly due to 

being perceptually inconsistent (Ganesan & Rajini, 2014). Another drawback of the RGB 

is the difficulty to separate the color information from the brightness. Other color models 

such as the HSV and HSL (Hue-Saturation-Lightness) are more convenient ways for the 

human to specify colors in software as these color spaces are closer to human perception 

of colors (Smith, 1978; Saxe & Foulds, 1996; Sobottka & Pitas, 1996). Additionally, the 
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distribution of a color, in these color spaces, is invariant with the variations of the 

brightness of illuminance (Chaves-González, Vega-Rodríguez, Gómez-Pulido, Sánchez-

Pérez, 2010).  

With the classification of a field into a verity of color zones, each zone shall 

consist of a multitude of points evidencing the corresponding color zone. As the selection 

of a subset out of a large amount of data is a standard, established approach (Tominaga, 

1998), it allows a UAV to scout throughout the field and collect the information of 

interest, given the retractions of a UAS energy level.  

In this paper, following the planning of a near-optimal flight trajectory to cover a 

field completely, a knowledge-driven approach based on the human perception for colors 

is employed. This was to digitize and distinguish the field into a variety of the field 

conditions that various zones of the field evidenced, according to the high-altitude 

imagery captured. The approach exploited the FIS in the HSV color space to provide a 

fast, yet fairly accurate, point classification. The classification occurred based on the 

natural language rules of human intuition to allow simple modification of the 

classification criteria. To scout, a highly representative, dissimilar subset of points then 

was selected using the GA (Genetic Algorithm). This provided feasible nondestructive, 

automatic, and continuous close observation to obtain further information with regard to 

the field condition. The remainder of this paper is organized as follows. Section 2.1 

presents path planning for a field coverage. Section 2.2 introduces a color-based image 

classification according to the human perception. In section 2.3 the scouting approach is 

proposed, including sample generation, sample selection, and routing over the selected 

samples. Section 2.4 provides the experimental fields and tests designed in this research. 

Section 3 shows the comparison of simulation results, between the computerized 

sampling and currently in-use sampling, and discussions which lead to the conclusion in 

Section 4. 
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1.3   MATERIALS AND METHODS 

1.3.1   Coverage Path Planning 

1.3.1.1  Path Generation 

To plan an effective trajectory for a vehicle to cover a field entirely, 

predetermined path planning appears vital. An A-B line pattern was used to cover the 

field with the purpose of having neither overlap nor double coverage. In an A-B line 

pattern every path is represented by two nodes (Figure 1-1).  

  
 Figure 1-1. A-B line pattern through which each path is represented by two nodes 

Agricultural fields are normally decomposed into many working rows. Operations via an 

aerial vehicle can relax the constraint of travelling along those specific working rows. As 

such to generate a trajectory for the UAS, numerous parallel paths were created to cover 

the entire field. The working width of the paths was dependent upon the horizontal field 

of view (ℎ𝐹𝑂𝑉) of the mounted camera on the vehicle, 

ℎ𝐹𝑂𝑉 =  2 × (tan(𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑣𝑒𝑖𝑤) /𝑓𝑙𝑔𝑖𝑡ℎ𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒). To ensure the route trajectory for 

the vehicle was nearly optimal, an exhaustive search algorithm was employed. The 

vehicle travel direction,  , to the boundary direction, 𝜑, was changed in 10° intervals. A 

set of paths, 𝑃 = {𝑝1, … , 𝑝|𝑃|}, parallel to the longest edge of a field was considered as the 

initial solution. The objective of this path generation approach was to minimize the 

working time, min (𝑡𝑤𝑜𝑟𝑘𝑖𝑛𝑔). This happened through minimizing two parameters of 

working travel and number of turns. The equation for this minimization was as below: 

(1.1) 

𝑡𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ( ∑ 𝑡𝑝𝑖

𝑝𝑖∈𝑃

) + |𝑃| × 𝑡𝑡𝑢𝑟𝑛, 𝑖 = 1, … , |𝑃| 

where 𝑡𝑝𝑖
 is the amount of time to travel a path, 𝑝𝑖, 𝑡𝑡𝑢𝑟𝑛 is the time a UAV takes to 

deviate its direction towards the next node. In an autonomous flight, a turn necessitates 

the vehicle to reduce its velocity to come to a halt, and then to increase velocity to reach 

to the set velocity, 𝑣, i.e., 𝑡𝑡𝑢𝑟𝑛 =  ∆𝑡𝑑 + ∆𝑡𝑎 (Figure 1-2). 
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    𝒗  0        𝒗             𝒗 0    𝒗   

 
Figure 1-2. The UAV's velocity dynamics to take new direction 

1.3.2  Path Planning 

Following the generation of the paths, it is essential to route the UAV to fly along 

the paths. The mathematical representation of the nodes (waypoints) encompassing the 

field is equivalent to the classical Travelling Salesperson Problem (TSP). In the TSP a 

salesperson (a vehicle) starts from a designated depot and visits all the customers (nodes) 

only once. To apply this concept to the field coverage problem, not only are visiting all 

the customer essential, it is also required to cover the area along every pair of nodes, 

corresponding to a path. As such, a hard constraint was introduced to ensure that visiting 

either node of a path forces the vehicle to traverse all the way to the node at the other end 

of the path. The nodal representation makes the endpoints of paths to be {(2𝑞) ∪

(2𝑞 − 1)|𝑞 ∈ ℕ}. Let G = (N, E) be an undirected graph where 𝑁 =  {𝑛1, … , 𝑛|𝑁|} is the 

set of nodes (waypoints) to be visited by the vehicle, and 𝐸 = {(𝑛𝑎, 𝑛𝑏): 𝑛𝑎, 𝑛𝑏 ∈ 𝑁, 𝑎 ≠

𝑏} is the set of the arcs to connect the node a to node b, (𝑛𝑎, 𝑛𝑏). The solution for this 

problem takes the form of a permutation set of 𝑅𝑝 = 〈𝑛1, 𝑛2, … , 𝑛|𝑁|〉. The governing 

constraints to schedule the paths for the coverage of the field are:   

(1) Each pair of nodes, representing a path, are visited consecutively as either 

node is visited, i.e. {(2𝑞1, 2𝑞1 + 1) ∨ (2𝑞1 + 1,2𝑞1), (2𝑞2, 2𝑞2 + 1) ∨

(2𝑞2+1,2𝑞2), … , (2𝑞|𝑃|, 2𝑞|𝑃| + 1) ∨ (2𝑞|𝑃| + 1, 2𝑞|𝑃|)|𝑞 ∈ ℕ}, and 

(2) Each node is visited by the vehicle only once, i.e., |𝑅𝑝| = |𝑁|. 

For a standard TSP, another constraint applies that requires a route starts and ends 

at the same location (In the TSP notation, the depot is node 0), i.e.,  𝑛1 = 𝑛|𝑁|+1 = 0, and 

{𝑛2, … , 𝑛|𝑁|} ⊆ 𝑁\{0}. The coverage problem in this work differs with the standard TSP 

in this respect. As the initial coverage of the field completes, the vehicle starts scouting 

the field over a number of representative sample areas, rather than returning to the depot. 

The return to the deport occurs when the remaining energy disallow further scouting. As 
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such, the coverage routing is a double-depot variant of the classic TSP, with the second 

depot as stochastic.  

The objective of the path planning was to minimize the amount of time required 

for the field coverage, min (𝑡𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒).  

(1.2) 

𝑡𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (∑ ∑(𝑡𝑎𝑏 + 𝑡𝑡𝑢𝑟𝑛)𝑥𝑎𝑏

𝑏∈𝑁𝑎∈𝑁

) + 𝑡𝑡𝑎𝑘𝑒−𝑜𝑓𝑓 

where 𝑡𝑎𝑏 is travelling time associated with the arc (𝑛𝑎, 𝑛𝑏), and 𝑥𝑎𝑏 is a binary 

variable, which is 1 if the route, 𝑅𝑝, includes a connection between nodes a and b, and 0 

otherwise. To provide a solution for the TSP problem a recursive nearest neighbor (RNN) 

procedure was adopted (Sturm & Daudet, 2011).  

1.3.3   Color-Based Image Segmentation 

To classify the image segments into discrete sets of color classes an approach 

based on human perception was employed. As the HSV color space is more aligned with 

human perception of colors and avoids the influence of illuminance, the RGB color space 

of the produced image, using photogrammetry, was converted into the HSV color space. 

The fuzzy inference system (FIS), then, was utilized in order to classify the image colors 

presented in the HSV color space, through a fuzzy logic model. In this approach the 

segments are defined by linguistic terms. The HSV color space is characterized by three 

values of Hue, Saturation, and Value, which describe a pure color, the degree of a color 

dilution with white light, and the brightness of a color, respectively. Each of these 

parameters were defined as an antecedent variable. Consequently, the conquest variable 

was defined as the color label.  

For the fuzzy logic model utilized in this work 10 fuzzy sets as to Hue variable, 

𝑁𝐻𝐹𝑆 = {Red, Dark Orange, Light Orange, Yellow, Light Green, Dark Green, Aqua, 

Blue, Dark Purple, and Light Purple}, 5 fuzzy sets for Saturation variable, 𝑁𝑆𝐹𝑆 = {Gray, 

Almost Gray, Medium, Almost Clear, and Clear}, and 4 fuzzy sets for Value variables, 

𝑁𝑉𝐹𝑆 = {Dark, Medium Dark, Medium Bright, and Bright}, were defined (Figure 1-3). 

The Hue variable was normalized in the (0,360) interval, and the Saturation and Value 

spectrum were considered in the interval of (0,100). Additionally, all the membership 

functions were defined as triangular functions (Zadeh, 1965). The maximum points of the 
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membership functions with respect to the Hue variable were determined according to the 

visual color spectrum.  

 

 
Figure 1-3. Fuzzy sets defined as the input variables, a) Hue, b) Saturation, and c) Value 

To have the field segmentation according to human perception, fuzzy rules were 

defined based on human observations. For instance, the rule “Yellow ᴧ Almost Clear ᴧ 

Medium Dark ⟼ Olive Green“ was determined through manually classifying the color 

generated by the triple of the HSV. The Hue, Saturation, and Value values are associated 

with the value of maximum point for the membership function of the Yellow, Almost 

Clear, and Medium Dark fuzzy sets, respectively, i.e., H = 60, S = 75, and V = 50. 
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Finally, for the determination of crisp discrete values as the consequent part, the 

reasoning procedure took place according to a zero-order Takagi-Sugeno (Takagi & 

Sugeno, 1983; Takagi & Sugeno, 1985). The crisp discrete values consisted 13 distinct 

colors of Dark Orange, Gold, Yellow, Lime, Green, Dark Cyan, Blue, Pink, Magenta, 

Red, Black, Grey, and White. In aggregate, 200 fuzzy rules, |𝑁𝐹𝑅| = 𝑁𝐻𝐹𝑆| ×

|𝑁𝑆𝐹𝑆| × |𝑁𝑉𝐹𝑆|, were defined.  

1.3.4   Scouting Procedure 

1.3.4.1 Sample Generation 

Classifying the entire field according to the fuzzy logic system resulted in a 

spectrum of colors. In this work the primarily focus was places upon four specific colors 

of green, lime, yellow, and red indicating healthy and grown zone, healthy and 

undergrown zone, water stressed zone, and drown out zone (VanderLeest, Bergman, 

Darr, Murphy, 2016). Other colors associated with the non-zone of interest (ZOI) were 

disregarded. The luminance of point, then, was computed to determine their value. The 

luminance was achieved as the average of the largest and smallest R, G, and B color 

channels, i.e., 𝐿 =
1

2
(𝑀 + 𝑚) where M is max(R,G,B) and m is min(R,G,B). The 

luminance was normalized to the interval of (0,100). This generated a normal distribution 

with the mean corresponding to the highest value of the associated color (Figure 1-4).  

 

 
Figure 1-4. Normal distribution of the luminance of red index 
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Furthermore, to improve the probability that a point is a true representative of a 

specific ZOI, the area of each point was expanded. As such every block of points, 𝑚 × 𝑚 

points, was indexed as the index of the dominant feature. This reduced the number of 

points by a factor of 𝑚2, i.e., 𝑆𝑏𝑙𝑜𝑐𝑘 =  𝑆𝑎𝑙𝑙/𝑚2. Therefore, the luminance for each block 

point can be represented as: 

𝐿 = 

 𝑙11 𝑙12 … 𝑙1𝐽/𝑚  

𝑙21 𝑙22 … 𝑙2,𝐽/𝑚 

…
 

…
 

... …
 … 

𝑙𝐼/𝑚,1 𝑙𝐼/𝑚,2 … 𝑙𝐼/𝑚,𝐽/𝑚* 
* I indicates the max number of the pixels along the y axis 

and J is the max number of the pixels in the x axis  

For better indexing of each block, the most frequent color index constituting a 

block was chosen as the new index of the block. For blocks consisting of an equal 

number of color indices as the highest frequent indices, decision was made based on the 

previous block index to maintain consistent index; subsequent block index was taken into 

consideration, if it would be the case the previous block index was an index different than 

the current two dominant indices. In the event of inconsistency of the previous and 

subsequent block index with the current block, the current block was indexed according 

to the index of the first highest frequent color. The value of a block sample was 

determined based on the average value of the comprising samples. In this work, only 

blocks with the consistent index for all their comprising pixels were considered valid. 

Additionally, to squeeze the number of samples into the more representative samples of 

their corresponding feature, thresholding was applied on the luminance of the samples 

(Figure 1-5). 

 
Figure 1-5. Steps taken to generate samples for scouting 
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1.3.5   Sample Selection 

In order to collect sufficient information of a field a number of considerations are 

essential in the process of the sampling. First is to have highly representative samples 

from possibly all segments with different features. Second is the number of distributed 

samples through which more robust conclusion would be drawn. Additionally, efficient 

routing is another parameter that allows to visit the samples in an order to consume less 

energy.  

1.3.5.1 Conventional Approach 

To manually select samples from various regions of the field, two approaches 

were taken into consideration: grid sampling, human expert sampling. The grid sampling 

considered a fixed number of samples located in the intersection of each grid. In this 

method, the representative samples were selected based on their geographical location 

and their associations to different color zones was initially unknown. The vehicle started 

visiting the nearest sample to the last node, flown over while the field coverage, and 

followed a pre-determined route to visit all the samples associated with the grid 

intersection. When it would be the case that the battery was only sufficient to travel to the 

start node, the vehicle stopped sampling and traveled straightly to the depot. The human 

expert sampling took place in a drastically more promising, efficient manner. In this 

method, an agriculture engineer, who was experienced in agricultural operations, was 

asked to select meaningful samples. It was assumed, upon the field coverage, the vehicle 

communicates with a human expert to send the data associated with the covered area and 

to receive the position information of selected samples.  

A number of considerations were taken into account as to the human expert 

method. Unlike the grid sampling, the sampling was conducted consistently for different 

color zones in terms of quantity. The samples were selected given the location of last 

node, following the field coverage, and start depot corresponding to each scenario. This 

allowed the vehicle to visit more samples due to more efficient energy consumption. 

Additionally, the trajectory through which samples were visited was thoughtfully planned 

to contribute to less energy consumption.  

The human expert method of sampling also took place according to the 

importance of the color zones: equal-weight zones and non-equal-weight zones. For the 
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equal-weight zones, all samples assumed to have the same weight, and as such the equal 

number of samples associated with each color zone was selected. Whereas with regard to 

the non-equal-weight zones, each color zone was assumed carrying different weight, 

dependent upon the significance associated with its zone. This happened via taking 

various number of samples corresponding to each color zone.  

1.3.5.2 Computational Approach 

The computation-based approach necessitated a two-fold procedure to be 

effective: representative sample selection, and efficient routing of the selected samples.  

Sample Selection 

Visiting all or many of the samples constituting the entire field is a time 

consuming task and results in redundant information. Given the battery life restriction, 

however, only a small fraction of the samples can be visited by the vehicle. As such, 

selecting a subset of the samples appears a viable solution. Let the subset of samples be a 

set of samples that creates a population 𝑆, 𝑆 = 〈𝑠1, 𝑠2, … , 𝑠|𝑆|〉 where each 𝑠 represents a 

selected sample. The governing constraints for the number of selected samples are: 

1) The routing of the samples starts from the last node flown over in the field 

coverage, 𝑛|𝑁|, and ends to the depot, 𝑛1, i.e., 𝑅𝑠 = 〈𝑛|𝑁|, 𝑠1, 𝑠2, … , 𝑠|𝑆|, 𝑛1〉. 

2) The total time to visit the entire subset of samples by the vehicle, and return to the 

depot must be less than or equal the remaining battery life time of the vehicle, i.e., 

𝑡𝑠𝑐𝑜𝑢𝑡𝑖𝑛𝑔 = {∑ ∑(𝑡𝑎𝑏 + 𝑡𝑡𝑢𝑟𝑛)𝑥𝑎𝑏

𝑏∈S𝑎∈S

} + 𝑡𝑙𝑎𝑛𝑑𝑖𝑛𝑔 < 𝑡𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

The next step was the creation of a fitness function that appropriately captures the 

optimization criteria of the problem. The primary parameter with a resulting efficient 

scouting is the total scouting luminance (TSL), 

(1.3) 

𝑇𝑆𝐿 =  ∑ ∑ 𝑤𝑖𝑗𝑙𝑖𝑗𝑥𝑖𝑗 , 𝑖 = 1, 2, … , 𝐼/𝑚 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝐽/𝑚 

𝑗∈𝑆𝑏𝑙𝑜𝑐𝑘𝑖∈𝑆𝑏𝑙𝑜𝑐𝑘

 

where 𝑥𝑖𝑗 is a binary variable, which is 1 if the selected samples, S, includes a the 

sample in the ith row and jth column, (𝑖, 𝑗), of the 𝑆𝑏𝑙𝑜𝑐𝑘, and 0 otherwise. 𝑤𝑖𝑗 is the weight 

assigned to the sample, (𝑖, 𝑗). Hence the goal is to maximization of the this parameter, 

max(𝑇𝑆𝐿). 
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The above fitness function increases the probability of the representativeness of 

selected samples. Another important parameter is to collect knowledge with regard to the 

all ZOIs. This necessitates improving the dissimilarity of the selected samples, i.e., 

(1.4) 

𝑠𝑎𝑚𝑝𝑙𝑒𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑘|𝑘∈𝑖𝑛𝑑𝑒𝑥  ∑ ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑆𝑖∈S

, 𝑖𝑛𝑑𝑒𝑥 = {𝑒, 𝑔, 𝑢, 𝑠} 

The added variable, k, allows to calculate the number of samples representing 

each color zone individually.  

Although having more samples provides more information as to the status of a 

field, evaluating each solution simply based on the number of samples is not suitable. 

There is a high likelihood to fail in the collection of knowledge with respect to one or 

more color zones. As such, a fitness function based on double objectives optimization 

was defined. 

(1.5) 

max(𝑧 × 𝑇𝑆𝐿 − (1 − 𝑧)(𝑠𝑎𝑚𝑝𝑙𝑒𝑚𝑎𝑥 − 𝑠𝑎𝑚𝑝𝑙𝑒𝑚𝑖𝑛)0.01𝑀 − (𝑀 − 𝑥𝑀)) , 𝑧|0 ≤ 𝑧 ≤ 1 

 

where z represents the focus is placed on the optimization of the TSL versus 

sample diversity (SD). Utilizing a weighting function enables adjusting the focus of the 

optimization for producers who may also want a balance between obtaining highly 

representative samples and equal amount of knowledge from the various ZOIs. In this 

project, the primary focus was on the selection of highly representative samples. In initial 

testing, a weighting value of 0.60 was found to provide sufficient optimization in sample 

selecting from all ZOIs while still selecting samples that maximized the TSL.  

Solution Method 

To provide solutions for the mathematical representation developed for the 

sample selection, a metaheuristic procedure based on Genetic Algorithm (GA) was 

employed. As with other meta-heuristics, like neural networks or tabu search, there are 

many implementations for the GA. This technique is an adaptive heuristic, population 

based, and stochastic search procedure to find approximate or near optimal solutions for 

optimization problems (Goldberg, 1989). Each chromosome in the population set is a 

possible solution for the problem. The algorithm creates a series of populations in each 

successive iteration using a selection mechanism, based on the fitness function. The GA 

exploits the intelligent random search within a solution space.  
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The GA utilized in this study used two primary operators as search mechanism: 

cross-over and mutation. Each chromosome was encoded into integers, representing the 

luminance of a number of samples. The number of comprising gens (selected samples) 

varied for each chromosome, dependent upon the energy level required to fly over the 

samples. To implement the algorithm, the best solution generated through the 

conventional approaches was taken into consideration as the initial population. Hence, 

the main focus was placed upon the operators, so the number of population created 

through the cross-over was 5% of the number of the block samples, i.e., |𝑃𝑐𝑟𝑜𝑠𝑠−𝑜𝑣𝑒𝑟| =

0.05 × |𝑆𝑏𝑙𝑜𝑐𝑘|. Population created using mutation was 20% as many number as the 

cross-over population, i.e., |𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛| = 0.2 × |𝑃𝑐𝑟𝑜𝑠𝑠−𝑜𝑣𝑒𝑟|.   

The GA was implemented in MATLAB. First, the algorithm determined all 

populations based on cross-over and mutation operators. Using this array of possible 

solutions, the algorithm then applied selection mechanism, based on the fitness value, to 

improve the prior individual solution. The best permissible gene string was selected 

unless the optimization criterion was not met, i.e., the fitness value was less than the 

global (prior) solution. Finally, a new solution was generated. This procedure was 

repeated with continuously improving solutions until 100 iterations had passed with no 

improvement. At this point, the algorithm halted and provided its best solution as the 

optimized selected samples. In preliminary experiments, the total number of iterations 

was usually between 300 and 400. 

Routing Over Selected Samples 

Upon the determination of samples to visit, it is vital to fly over the samples 

following a short, optimal trajectory. As with the path planning for the field coverage, 

visiting the selected samples can be viewed equivalent to the double-depot TSP— the last 

node flown over in the field coverage, 𝑛|𝑁|, and ends to the depot, 𝑛1. As to the 

constraints, however, the constraint (1) shall be relaxed as the primary goal is to merely 

fly over the sample areas. The objective of this TSP problem was also to minimize the 

time to visit the selected samples and return to the depot, min(𝑡𝑠𝑐𝑜𝑢𝑡𝑖𝑛𝑔). As such the 

fitness function was defined the same as the objective function.  

The GA was also employed to provide solutions as to routing the UAV over the 

selected samples. Unlike the GA procedure used for the sample selection, many 
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chromosomes (50 gene strings) were created as initial population. The cross-over and 

mutation operators, then, were applied, |𝑃𝑐𝑟𝑜𝑠𝑠−𝑜𝑣𝑒𝑟| = 0.8 × |𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙| and |𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛| =

0.2 × |𝑃𝑐𝑟𝑜𝑠𝑠−𝑜𝑣𝑒𝑟|, respectively. This procedure was repeated with continuously 

improving solutions until 50 iterations had passed with no improvement.  

This procedure to create solutions as to routing over the selected samples was 

embedded into the GA procedure of the sample selection. This allowed shortening the 

travel time and creating the opportunity to visit several more samples, in each iteration.  

1.3.6   Test Conditions 

The objectives of this work were pursued based on computer simulations. To that 

end, the developed procedure was tested on two real-world fields with different 

characteristics in terms of shape, size, and complexity. The first field was a non-convex 

shaped, 86-hectar field located at the Kossuth, Iowa [43.265,-94.016], on which soybean 

had been planted (Figure 1-6 a). The second field was a convex shaped, 133-hectar field 

at the Bremer, Iowa [42.697,-92.502], on which corn had been planted (Figure 1-6 b).  

 

a    b   

 
Figure 1-6. Test field located at a) Kossuth, b) Bremer, Iowa 

To cover each field, three variable parameters were defined. 1) the vehicle 

velocity (traveling at low velocity, 10 m/s, or high velocity, 15 m/s), associated to the 

kinematics of a UAS; 2), the starting location (three different locations where were more 

appropriate to initiate the mission), related to the geographical properties of the fields; 

and 3) the weight assigned to each color zone (twice as much as other color zones for that 
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of higher importance), associated with decisions as to the field condition. As such, 24 test 

scenarios were designed for each test field to assess all the combinations (Table 1-1).  

Table 1-1. Test scenarios designed for each field with respect to the vehicle velocity, the 

starting location of the mission, and the weight of each color zone  

Scenario 
Abbreviation* 

Vehicle 
Velocity 

(m)** 

Starting 
Location 

State 

Weight of Color Zone*** 

Healthy 
and 

Grown 

Healthy and 
Undergrown 

Water 
Stressed 

Drown-
Out 

V10S1We 10 1 1 1 1 1 

V10S1Wg 10 1 2 1 1 1 

V10S1Wu 10 1 1 2 1 1 

V10S1Ws 10 1 1 1 2 1 

V10S2We 10 2 1 1 1 1 

V10S2Wg 10 2 2 1 1 1 

V10S2Wu 10 2 1 2 1 1 

V10S2Ws 10 2 1 1 2 1 

V10S3We 10 3 1 1 1 1 

V10S3Wg 10 3 2 1 1 1 

V10S3Wu 10 3 1 2 1 1 

V10S3Ws 10 3 1 1 2 1 

V15S1We 15 1 1 1 1 1 

V15S1Wg 15 1 2 1 1 1 

V15S1Wu 15 1 1 2 1 1 

V15S1Ws 15 1 1 1 2 1 

V15S2We 15 2 1 1 1 1 

V15S2Wg 15 2 2 1 1 1 

V15S2Wu 15 2 1 2 1 1 

V15S2Ws 15 2 1 1 2 1 

V15S3We 15 3 1 1 1 1 

V15S3Wg 15 3 2 1 1 1 

V15S3Wu 15 3 1 2 1 1 

V15S3Ws 15 3 1 1 2 1 

* V represents Velocity (m/s); S represents Start/Stop location; and W indicates which color zone is 
weighted as the highest (e indicates equal weight for all samples, and g, u, and s are associated with 
the healthy and grown, healthy and undergrown, and water stressed zones, respectively. 
** The higher velocity of 15 m/s is the maximum velocity the DJI Ground Station Pro app allows to fly. 
*** This was conducted with respect to the healthy and grown zone, healthy and undergrown zone, 
and water stressed zone 

 

In order to classify various zones of each field the NDVI was employed. The 

NDVI is an index to monitor crop photosynthetic activity and health. This index can be 

calculated through the Near-Infrared (NIR) and Red imageries, 𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 −

𝑅𝑒𝑑/𝑁𝐼𝑅 + 𝑅𝑒𝑑. The NDVI images provided for the both fields in this work were 

derived by the Iowa Soybean Association. The Figure 1-7 represents colors in the NDVI 

images, while the field was grown for corn. 
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a b 

 
Figure 1-7. NDVI image created for the a) Kossuth field and b) Bremer field 

As to the grid approach, the Kossuth field constituted 10 intersections, with 

dividing up the entire field into 17 sub-regions. The samples located at the intersections 

included 2, 5, and 3 representatives of healthy and undergrown, water stressed, and 

drown out zones. This approach did not consist of a sample representing healthy and 

grown zones, respectively. The Bremer field also comprised of 9 intersections by its 

division into 17 sub-sections. The approach relied on 1, 2, 4, and 2 points representing 

the healthy and grown, healthy and undergrown, water stressed, and drown out zones, 

respectively. Whereas, the human expert selected consistently 3 samples associated with 

each color zone and doubled it for the color zones with higher weight.  

The UAV considered in this study as the test platform was the 2016 Mavic Pro 

(DJI, China) which uses lens with the FOV of 78.8° 28 mm  (DJI, 2017). Therefore, as 

the highest flight altitude set by the FAA is 400 feet, the ℎ𝐹𝑂𝑉 was calculated to be 200 

m. To implement the field tests, 30% of the battery life was maintained unused as return 

home energy (RHE). This level of RHE is set as default by DJI to allow the vehicle to 

return home and land in case of in-operation contingencies such as loss of control signals. 

The RHE level for the scenarios as to flying at slower rate on the Bremer field, however, 

was set at 15%, as the vehicle energy was consumed primarily for the initial coverage.  
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1.4   RESULTS 

1.4.1   Coverage Path Planning 

The coverage time of the Kossuth field and Bremer field are demonstrated in 

Figure 1-8 for 6 different scenarios: vehicles’ velocity of 10 m/s and 15 m/s at three 

different starting locations. The direction change of the parallel paths with respect to the 

field boundary reduced the number of paths, and accordingly the numbers of nodes were 

minimized to 10 and 14 nodes for the Kossuth and Bremer fields, respectively. The 

Kossuth field coverage was completed with the average consumption of 75% (883 s) and 

57% (666 s), of the permissible UAV’s battery life, while flying at low velocity, 10 m/s, 

and high velocity, 15 m/s, respectively. Even though, the total area of the Bremer field 

was 55% larger than the Kossuth field, the Bremer field coverage time was not that much 

longer (30% longer at both low and high velocities). This was due to the more regular 

shape of the Bremer field that enabled reducing the non-working travel time and the 

number of nodes. The position 2 of the starting location allowed completing the field in 

less time, approximately 3%, than the other positions, in both the Kossuth and Bremer 

fields (Figure 1-9). This stemmed from the minimization of non-working travel and 

overlap-area, due to the proximity of the vehicle to the first path created for the field 

coverage. The reduction was also for the efficient generation of nodes and the routing to 

cover the field. 
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Figure 1-8. Coverage time of the fields under various circumstances 

With the high flight velocity, the coverage time improved nearly 25% for both the 

Kossuth field and Bremer field. As with the field area ratio, the improvement was not 

consistent with the flight velocity ratio which was 50% faster than the low velocity. This 

was not unexpected, as the trajectory planned to cover the field generated nodes, 

regardless of the vehicle velocity, which were associated with the vehicle turns. These 

turns took 53 s for the Kossuth field and 74 s for the Bremer field (5.3 s per turn), to 

complete. As such, the time reduction, due to the increase in velocity, occurred solely on 

the portion of the time spent for forward travelling. The number of nodes depended upon 

a multitude of parameters such as the field area and the complexity of the field’s shape. It 

also depended on the flight altitude which determined the ℎ𝐹𝑂𝑉 that was the same for to 

cover both fields in this work, ℎ𝐹𝑂𝑉 = 200 𝑚 @ 400 𝑓𝑒𝑒𝑡 flight altitude. 

 

a b 

 
Figure 1-9. Route generated for the entire coverage of a) Kossuth field and b) Bremer 

field when the mission starts at the state 2 of starting locations 

1.4.2   Segmentation 

1.4.2.1 Fuzzy Logic-Based Color Classification 

The color-based classification of the Kossuth and Bremer fields, through the 

fuzzy logic model, are illustrated in Figure 1-10. Both fields were classified in 6 distinct 

color zones: Dark Orange, Gold, Yellow, Lime, Green, and Red. As displayed the color 

zones derived using the FIS correlate accurately with the NDVI mapping. Throughout the 

fields Yellow, Lime, Green, and Red color zones were respectively associated with 
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healthy and grown, healthy and undergrown, water stressed, and drown out zones. These 

zones made up 86% of the Kossuth field and 89% of the Bremer field. 

 

a b 

 
Figure 1-10. Color-based segmentation using the fuzzy inference system for the a) 

Kossuth field and b) Bremer field  

The computational time to perform the FIS was in an order of magnitude of a few 

seconds, on an Intel i7 processor. This low computation complexity was stemming from 

the constant number of the reasoning rules in the model, and the fact that the 

classification of each pixel was conducted with the same constant complexity. As such 

this knowledge-driven model can be implemented on mobile autonomous vehicle for 

real-time application. 

1.4.3   Scouting 

1.4.3.1 Sample Generation 

Table 1-2 represents the number of possible samples generated for the Kossuth 

and Bremer fields. The area of each block point, due to stitching the components, was 16 

m (n = 4). This reduced the number of points by a factor of 16. The elimination of the 

points with inconsistent indices in their comprising components substantially decreased 

the number of points, by 65% and 87.6% for the Kossuth and Bremer fields, respectively. 

Following the determination of the valid samples, the samples corresponding to the Dark 

Orange and Gold color zone were removed. The last step of the generation of 

representative points maintained 32.5% and 22% of the total samples, for the Kossuth 

and Bremer fields, respectively (Table 1-2). 
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Table 1-2. Number of generated samples 

Test Fields 
Point Area 

(m2) 
# of Total 

Points 
# of Valid 

Points 
# of Valid & of 
Interest Points 

# of Points with 
High Luminance* 

Kossuth Field 16 53350 18675 17355 17354 

Bremer Field 16 86221 19302 19003 19003 

* High luminance samples are determined after truncating the spots through thresholding. 

The distribution of the valid representative samples for the color zones of interest 

is displayed in Figure 1-11. As shown, in both fields the healthy and grown points 

outnumbered the other types of points, approximately 75% of the entire samples. 

Whereas the respective percentage of the healthy and undergrown, water stressed, and 

drown out samples were 12.6%, 7.5%, and 6.2% for the Kossuth field and 2.3%, 2.5% 

and 17.9% for the Bremer field.   

a b 

 
Figure 1-11. Samples considered as valid representatives of each color zone a) Kossuth 

field and b) Bremer field 

1.4.4   Sample Selection 

1.4.4.1 Farmer Approaches 

Tables 1-3 and 1-4 represent the results of the two approaches that were employed 

as current farmers methods for sampling. The human expert sampling consistently 

outperformed the grid sampling method in terms of the number of samples visited, given 

the same amount of flight time remained following the field coverage. This increase 

occurred, regardless of the type of the samples, by up to 120% for the Kossuth field and 
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55% for the Bremer field. However, in both approaches the vehicle used its energy up to 

a nearly equal level that the remaining energy was insufficient to travel over the next 

samples. The highest remaining energy in Kossuth field was 42s, following the grid 

sampling and 32s, following the human expert sampling, in the event of not visiting the 

entire samples. Whereas in the Bremer field, the remaining energy increased to be 52s 

and 51s for the grid and human expert samplings. This was expected as the Bremer field 

was nearly 55% larger than the Kossuth field, and as such travelling over the next sample 

area was necessitating more energy.  

Unlike following the grid sampling, the number of samples visited in the human 

expert sampling varied, for the scenarios that the entire samples were not visited, 

dependent on which color zone had higher fitness weight. This arose from the fact that 

the human expert paid a rigorous attention to the selection of the samples highly 

representative of each ZOI, while the grid sampling method was invariant to the color 

zone weights. The human expert sampling also resulted in visiting higher representative 

points corresponding to the ZOIs, in nearly all scenarios, by up to 8%.
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Table 1-3. Scouting though farmer approaches for Kossuth field 

Test 
Scenarios 

RHE 
(%) 

Grid Sampling Human Expert Sampling 

# of 
Samples 

ASP TSL 
SD 
(%) 

Remaining 
Energy (s) 

# of 
Samples 

ASP TSL 
SD 
(%) 

Remaining 
Energy (s) 

V10S1We 30 7 0.88 6.13 75 4 8 0.95 7.63 100 14 

V10S1Wg 30 7 0.88 6.13 75 4 7 0.95 6.63 75 28 

V10S1Wu 30 7 0.88 6.13 75 4 7 0.95 6.65 100 19 

V10S1Ws 30 7 0.88 6.13 75 4 8 0.95 7.63 100 13 

V10S2We 30 8 0.89 7.12 75 28 12 0.96 11.54 100 1 

V10S2Wg 30 8 0.89 7.12 75 28 11 0.95 10.44 100 25 

V10S2Wu 30 8 0.89 7.12 75 28 11 0.97 10.69 100 32 

V10S2Ws 30 8 0.89 7.12 75 28 12 0.97 11.62 100 15 

V10S3We 30 5 0.97 4.84 75 42 9 0.96 8.64 100 21 

V10S3Wg 30 5 0.97 4.84 75 42 9 0.95 8.52 100 23 

V10S3Wu 30 5 0.97 4.84 75 42 10 0.96 9.64 100 1 

V10S3Ws 30 5 0.97 4.84 75 42 11 0.97 10.62 100 11 

V15S1We 30 10 0.91 9.10 75 252 12 0.97 11.60 100 260 

V15S1Wg 30 10 0.91 9.10 75 252 15 0.96 14.35 100 198 

V15S1Wu 30 10 0.91 9.10 75 252 15 0.97 14.58 100 199 

V15S1Ws 30 10 0.91 9.10 75 252 15 0.97 14.51 100 220 

V15S2We 30 10 0.91 9.10 75 288 12 0.96 11.54 100 293 

V15S2Wg 30 10 0.91 9.10 75 288 15 0.94 14.13 100 253 

V15S2Wu 30 10 0.91 9.10 75 288 15 0.97 14.53 100 258 

V15S2Ws 30 10 0.91 9.10 75 288 15 0.96 14.46 100 260 

V15S3We 30 10 0.91 9.10 75 246 12 0.95 11.45 100 267 

V15S3Wg 30 10 0.91 9.10 75 246 15 0.95 14.22 100 221 

V15S3Wu 30 10 0.91 9.10 75 246 15 0.96 14.44 100 225 

V15S3Ws 30 10 0.91 9.10 75 246 15 0.96 14.41 100 243 

* V represents Velocity (m/s); S represents Start/Stop location; and W indicates which color zone is weighted as 
the highest (e indicates equal weight for all samples, and g, u, and s are associated with the healthy and grown, 
healthy and undergrown, and water stressed zones, respectively. 
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Table 1-4. Scouting though farmer approaches for Bremer field 

Test 
Scenarios 

RHE 
(%) 

Grid Sampling Human Expert Sampling 

# of 
Samples 

ASP TSL 
SD 
(%) 

Remaining 
Energy (s) 

# of 
Samples 

ASP TSL 
SD 
(%) 

Remaining 
Energy (s) 

V10S1We 15 3 0.91 2.72 75 22 4 0.96 3.82 100 12 

V10S1Wg 15 3 0.91 2.72 75 22 4 0.96 3.82 100 12 

V10S1Wu 15 3 0.91 2.72 75 22 4 0.96 3.82 100 7 

V10S1Ws 15 3 0.91 2.72 75 22 4 0.96 3.82 100 2 

V10S2We 15 5 0.89 4.45 75 12 6 0.95 5.69 100 16 

V10S2Wg 15 5 0.89 4.45 75 12 5 0.94 4.72 100 21 

V10S2Wu 15 5 0.89 4.45 75 12 7 0.96 6.69 100 8 

V10S2Ws 15 5 0.89 4.45 75 12 5 0.96 4.82 75 6 

V10S3We 15 4 0.90 3.60 50 21 5 0.96 4.81 75 17 

V10S3Wg 15 4 0.90 3.60 50 21 5 0.96 4.81 75 17 

V10S3Wu 15 4 0.90 3.60 50 21 5 0.97 4.85 75 23 

V10S3Ws 15 4 0.90 3.60 50 21 5 0.97 4.83 75 9 

V15S1We 30 9 0.92 8.27 100 30 12 0.95 11.44 100 34 

V15S1Wg 30 9 0.92 8.27 100 30 12 0.93 11.20 100 6 

V15S1Wu 30 9 0.92 8.27 100 30 12 0.96 11.55 100 12 

V15S1Ws 30 9 0.92 8.27 100 30 12 0.96 11.56 100 21 

V15S2We 30 9 0.92 8.27 100 52 12 0.96 11.48 100 57 

V15S2Wg 30 9 0.92 8.27 100 52 13 0.95 12.30 100 21 

V15S2Wu 30 9 0.92 8.27 100 52 12 0.97 11.59 100 51 

V15S2Ws 30 9 0.92 8.27 100 52 11 0.96 10.58 100 46 

V15S3We 30 9 0.92 8.27 100 31 12 0.95 11.44 100 45 

V15S3Wg 30 9 0.92 8.27 100 31 14 0.94 13.11 100 3 

V15S3Wu 30 9 0.92 8.27 100 31 14 0.96 13.44 100 1 

V15S3Ws 30 9 0.92 8.27 100 31 13 0.96 12.49 100 12 

* V represents Velocity (m/s); S represents Start/Stop location; and W indicates which color zone is weighted as the 
highest (e indicates equal weight for all samples, and g, u, and s are associated with the healthy and grown, healthy 
and undergrown, and water stressed zones, respectively. 
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Furthermore, the TSL achieved through the human sampling and routing 

consistently increased compared to the grid routing. The average improvements were  

53% and 38%, with standard deviations of 26% and 12%, for the Kossuth and Bremer 

fields, respectively (Figure 1-12 and Figure 1-13). The improvement maintained a 

constant pattern in the event all the samples were visited, as for the Kossuth field with the 

vehicle velocity at 15 m/s. Whereas in case of the uncompleted visits the magnitude of 

the improvement varied dependent solely upon how the human expert decided on 

samples’ locations and routing. Additionally, the improvement of the TSL is directly and 

linearly impacted by the increase in the samples numbers. The marginal increase in the 

TSL improvements, compared to the improvements of the samples numbers, came from 

the betterment of the samples (being more representative of their corresponding zones) 

selected by the human picker (Figure 1-12 and Figure 1-13).    

 
Figure 1-12. The percentage of TSL improvement through the Human Expert Routing 

compared to the Grid Routing approach for Kossuth field 
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Figure 1-13. The percentage of TSL improved through Human Expert Routing compared 

to Grid Routing approach for Bremer field 

A representative example route of the grid and human expert approaches have 

been displayed in Figure 1-14 and Figure 1-15. As to the Kossuth field, the route 

represents a scenario in which the UAV began the mission at the position 2 as the start 

location, flying at 10 m/s, and the fitness weight considered for the water stressed zone 

was twice as much as other zones (V10S2Ws). Following the grid sampling, the vehicle 

visited the first eight intersections and returned to the depot, as it lacked energy to visit 

the next samples. The intersections visited by the vehicle consisted of the healthy & 

grown, healthy & undergrown, and water stressed zones, but not the drown out zone. As 

such the sample diversity accounted for 75%. Whereas, following the human selected 

samples encompassed all four zones of interest (a SD of 100%). For this instance, the 

high emphasis was put on the water stressed zones. As such this zone accounted for 5 

samples out of 12 visited samples.  

The route with respect to the Bremer field (Figure 1-15) demonstrates a scenario 

in which vehicle traveled at 15 m/s (V15S3Wu). The high velocity enabled the vehicle to 

visit all the intersections, then return to the depot, with some energy remained. Following 

the human determined samples and route, however, the vehicle was unable to visit the 

last sample due to the insufficient power. As the last sample lay on the flight path to the 
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depot, a quick shot at lower altitude was collected without letting the vehicle decelerate 

and focus on the sample area. The higher fitness weight was placed on the healthy & 

undergrown zones, so the number of corresponding samples consisted of 6 out of the 14 

visited samples. 

                  a 

 
                  b 

 

 
Figure 1-14. Conventional approach for Kossuth field through a) grid routing b) human 

expert routing for the V10S2Ws scenario 
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                  a 

 
                  b 

 

 

Figure 1-15. Conventional approach for Bremer field through a) grid routing b) human 

expert routing for the V15S3Wu scenario 

Table 1-5 represents a comparison of the average results of the two approaches 

assumed to be employed by farmers, when the vehicle traveled at different velocities. 

Each component is the average of the 12 different scenarios, with different starting 

location and weight for the color zones.  The human expert sampling significantly 
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outperformed the grid routing approach. The sample The human expert sampling 

consistently consumed the vehicle energy more efficiently to scout, as the number of 

visited samples significantly increased, by 43% on average, and less energy was retained 

at the end of missions. This method also made it possible to sample from every individual 

color zone of interest, and as such to achieve more comprehensive information with 

regard to the field condition. 
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Table 1-5. Average sampling properties in different velocities through the farmers’ methods 

Test 

Field 

Velocity 

(m/s) 

Grid Sampling Human Expert Sampling 

# of 

Samples 
ASP TSL 

SD 

(%) 

Remaining 

Energy (s) 

# of 

Samples* 
ASP TSL* 

SD 

(%) 

Remaining 

Energy (s) 

Kossuth 

10 7 0.9 6.0 75 25 
10 

(43%) 
0.96 

9.2 

(52%) 
98 17 

15 10 0.9 9.1 75 262 
14 

(40%) 
0.96 

13.7 

(50%) 
100 241 

Bremer 

10 4 0.9 3.6 67 18 
5 

(25%) 
0.96 

4.7 

(31%) 
90 13 

15 9 0.9 8.3 100 38 
12 

(33%) 
0.95 

11.9 

(43%) 
100 26 

* Numbers in percent quantify the percentile improvement by the human expert routing over the grid routing 
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1.4.4.2 Computational Approach 

The computerized-based optimized sampling always outnumbered the farmers 

methods in sample selection (Table 1-6). The samples selected were highly representative 

of their corresponding color zones, i.e., having ASP approximately equal to 1.00. 

Additionally, the samples were selected from all color zones of interest, which provided a 

relatively thorough information as to the field condition. As demonstrated, in all of the 

scenarios for both Kossuth and Bremer fields, the remaining energy level were less than 5 

s flight. This indicated the approach was highly efficient in terms of energy consumption, 

and ensured visiting more samples. 

 

Table 1-6. Scouting results for all the scenarios through computation approach 

Test 
Scenarios 

Kossuth Field Bremer Field 

# of 
Samples 

ASP TSL 
SD 
(%) 

Remaining 
Energy (s) 

# of 
Samples 

ASP TSL 
SD 
(%) 

Remaining 
Energy (s) 

V10S1We 19 0.98 18.77 100 3 13 1.00 12.99 100 4 

V10S1Wg 17 0.99 16.99 100 1 16 0.99 15.89 100 1 

V10S1Wu 20 0.99 19.99 100 1 14 0.99 13.97 100 1 

V10S1Ws 18 0.99 17.99 100 4 13 0.99 12.99 100 1 

V10S2We 17 0.99 16.99 100 5 14 0.99 13.99 100 2 

V10S2Wg 22 0.99 21.99 100 1 16 0.99 15.99 100 1 

V10S2Wu 22 0.99 21.99 100 1 14 0.99 13.97 100 1 

V10S2Ws 21 0.99 20.99 100 2 17 0.99 16.95 100 1 

V10S3We 18 0.99 17.99 100 1 11 0.95 10.40 100 3 

V10S3Wg 21 0.99 20.96 100 1 13 0.99 12.99 100 1 

V10S3Wu 19 0.99 18.99 100 4 11 0.99 10.99 100 2 

V10S3Ws 20 0.99 19.99 100 2 12 0.99 11.98 100 1 

V15S1We 48 0.99 47.99 100 3 25 0.99 24.97 100 1 

V15S1Wg 55 0.99 54.95 100 1 25 0.99 24.97 100 1 

V15S1Wu 54 0.99 53.97 100 1 21 0.99 20.97 100 1 

V15S1Ws 51 0.99 50.99 100 1 28 0.99 27.97 100 1 

V15S2We 50 0.99 49.99 100 2 24 0.99 23.76 100 1 

V15S2Wg 54 0.99 53.96 100 1 31 0.99 30.97 100 1 

V15S2Wu 54 0.99 53.99 100 2 25 0.99 24.97 100 2 

V15S2Ws 54 0.99 53.99 100 1 26 0.99 25.97 100 1 

V15S3We 53 0.99 52.98 100 1 26 0.98 25.63 100 4 

V15S3Wg 55 0.99 52.93 100 1 27 0.99 26.96 100 2 

V15S3Wu 52 0.99 51.97 100 1 24 0.99 23.98 100 2 

V15S3Ws 55 0.99 54.93 100 1 21 0.99 20.97 100 1 

* V represents Velocity (m/s); S represents Start/Stop location; and W indicates which color zone is 
weighted as the highest (e indicates equal weight for all samples, and g, u, and s are associated with 
the healthy and grown, healthy and undergrown, and water stressed zones, respectively. 

 

The TSL as an interesting and important parameter which quantifies how well 

sampling and routing performed was also improved (Figure 1-16 and Figure 1-17), 
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compared to the farmers’ methods. The improvement stemmed from the increase in both 

the number of samples and the expressiveness of the samples. The magnitude of the TSL 

improvement varied based on the vehicle velocity. This was due to the direct impact of 

the number of samples on the TSL, which increased as the vehicle velocity increased 

(Table 1-7). The TSL change rate, however, was not dependent upon the vehicle velocity. 

For the Kossuth field, with the increase in velocity (from 10 to 15 m/s) the TSL 

improvement escalated as well (from 112% to 285% improvement, on average), whereas 

for the Bremer field this increase reduced the TSL improvement (from 189% to 112%, on 

average). This was expected as a multitude of causes affect the TSL change rate such as 

the distribution of color zones, the number of highly representative samples, and the size 

of a field. 

 

Figure 1-16. TSL improvement through computation compared to the HER, for the 

Kossuth field 
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Figure 1-17. TSL improvement through computation compared to the HER, for the 

Bremer field 
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Table 1-7. Average sampling properties in different velocities through computational routing 

Test 

Field 

Velocity 

(m/s) 

Human Expert Sampling Computational Sampling 

# of 

Samples 
ASP TSL 

SD 

(%) 

Remaining 

Energy (s) 

# of 

Samples* 
ASP TSL* 

SD 

(%) 

Remaining 

Energy (s) 

Kossuth 

10 10 0.96 9.2 98 17 
20 

(100%) 
0.99 

19.5 

(112%) 
100 2 

15 14 0.96 13.7 100 241 
53 

(279%) 
0.99 

52.7 

(285%) 
100 1 

Bremer 

10 5 0.96 4.7 90 13 
14 

(180%) 
0.99 

13.6 

(189%) 
100 2 

15 12 0.95 11.9 100 26 
25 

(108%) 
0.99 

25.2 

(112%) 
100 2 

* Numbers in percent quantify the percentile improvement using the computational routing 
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Figure 1-18 demonstrates the sampling and routing computed through the GA 

technique for the scenarios discussed on the Figure 1-16 and Figure 1-17. The 

improvements in the number of visited samples were predominantly arisen from the fact 

of reducing travel time. Unlike the human determined routing, the computerized 

generated routes avoided unnecessary deviations to visit more samples within the same 

time window as the farmers’ methods. This approach attempted to travel over the nearest 

samples with the highest probability of being representative to the corresponding color 

zone. As such there were less meanderings in the route, which made it appear mostly 

similar to a straight path rather than a random-walk path created by the human expert.  

a 

   
b 

 
Figure 1-18. A representative example sampling and routing through the computational 

approach for a) Kossuth field (V10S2Ws scenario) and b) Bremer field (V15S3Wu 

scenario) 
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The local search characteristic of the GA technique allowed the consideration of a 

various number of samples at each iteration (Figure 1-19). The samples in each iteration 

were evaluated through the two separate fitness functions to ensure the maximization of 

the TSL and the minimization of the route which flies over the samples and then returns 

to the start location. The number of iterations in which the solution betterment took place 

varied according to the number of samples, the remaining energy, and the vehicle 

velocity.  
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Figure 1-19. The improvement of the initial solution over iterations through the computational approach for a) Kossuth field 

(V10S2Ws scenario) and b) Bremer field (V15S3Wu scenario) 
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CHAPTER 2:  CONCLUSION AND FUTURE WORK 

2.1   CONCLUSIONS 

This thesis proposes, and evaluates by simulation, a new approach for obtaining 

detailed and timely information about field condition. The approach centers on packing 

two conceptually separate flight plans into a single aerial survey conducted by a UAV. 

To quickly obtain NDVI imagery for the entire field, the first flight plan begins at 

the UAV launch location and follows established paths to photograph the entire field at 

the maximum allowed altitude. The route taken is determined by a recursive nearest 

neighborhood algorithm ordering the established paths and taking into account the 

camera view coverage. The photogrammetry occurs at the highest altitude (set by the 

FAA at 400 feet) and velocity (determined by the particular UAV; for the DJI Mavic Pro, 

15 m/s). Despite high velocity along an efficient route, a large fraction of the total 

permissible flight time is spent in this portion of the flight: 57% for an 86-hectar field and 

87% for a 133-hectar field. 

The second portion of the flight begins where the first part ended, and ends at the 

original UAV launch site. The goal of this second flight plan is to scout a set of 

representative points maximizing the quality of actionable information about the field 

condition. A zero-order, Takagi-Sugeno fuzzy logic model was employed to classify each 

point in the field using the NDVI imagery mapped into an HSV color space. The model 

performed accurately (was in agreement with human visual perception of colors) to 

distinguish a variety of discrete categories of field conditions that various zones of the 

field evidenced. Six zone types were distinguished, but over 86% of the fields were of 

four types with obvious significance: healthy and grown, healthy and undergrown, water 

stressed, and drown out. The fitness of potential flight plans for sampling representative 

points was judged based on a metric combining the new ASP and TSL quality measures. 

The scouting flight plan is thus created by a GA optimizing the choice of which points to 

visit, and the order in which to visit them, while still allowing the UAV to safely return to 

the launch site. 

This new approach was evaluated by simulation and comparison with grid 

sampling and human expert sampling – competing approaches currently in use. A total of 

48 scenarios were evaluated: all combinations of two fields, two different UAV 
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velocities, three different launch sites, and four different fitness weightings of relative 

zone importance. The ASP improved to be highly representative of the corresponding 

zones, being approximately 100%. The TSL also improved substantially, 50% to 350%, 

with an average up to 285% over field/velocity pairings.  

2.2   FUTURE WORK 

This extremely positive simulation result has not yet been confirmed by actual 

UAV flights, which would be the next step. 
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