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Abstract

During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the
continuum and emission-line variability became decorrelated during the second half of the six-month-long
observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the
campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band
appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then
declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the
Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the
spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial
covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our
preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective
optical depth of which increases during the anomaly. This model simultaneously explains all three observations:
the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.

Key words: galaxies: active – galaxies: individual (NGC 5548) – X-rays: galaxies – X-rays: individual
(NGC 5548)

1. Introduction

The Space Telescope and Optical Reverberation Mapping
(STORM) project intensively monitored the well-known active
galactic nucleus (AGN) NGC5548. As part of this project,
NGC5548 was observed with the Hubble Space Telescope

88 NSF Postdoctoral Research Fellow.
89 NASA Postdoctoral Program Fellow.
90 Einstein Fellow.
91 Carnegie-Princeton Fellow, Hubble Fellow.
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(HST) in 2014 for 180 days with a daily cadence, obtaining 171
usable epochs. The source was also monitored with Swift and in
the optical with ground-based observations. In addition, we
observed the source with Chandra four times during the HST
observing campaign. The goal of the STORM project was to
perform velocity-resolved reverberation mapping (RM) of the
optical and ultraviolet (UV) emission lines with fine time
sampling, long duration, and high signal-to-noise ratio (S/N)
spectra. The multiwavelength continuum observations were
performed to probe the structure of the accretion disk and to
track changes in the ionizing continuum of the source.

The HST (UV), Swift (X-ray), and ground-based (optical)
continuum and spectroscopic observations are presented in
Papers I–V (De Rosa et al. 2015; Edelson et al. 2015;
Fausnaugh et al. 2016; Goad et al. 2016, and Pei et al. 2017,
respectively). Reverberating-disk models for NGC 5548 are
presented in Paper VI (Starkey et al. 2017). As noted in Paper I
and discussed in detail in Paper IV (Goad et al. 2016), an
anomalous behavior of the broad UV emission lines was
observed during the campaign. For most of the campaign, the
broad UV emission lines responded to changes in the UV
continuum, as generally expected for broad-line reverberation.
However, there was a period of 60–70 days during the latter
half of the campaign when the UV lines did not reverberate
with the UV continuum. This was also accompanied by a
significant drop in the fluxes and equivalent widths of UV and
optical emission lines, to varying degrees.

Such an “anomaly,” when the continuum and emission-line
variability became decoupled, was not previously observed in
RM campaigns and demands explanation. Moreover, under-
standing the origin of the anomaly is critical to the robustness
of the RM technique, since it depends on the observed
continuum flux being a good proxy for the unobserved
extreme-UV (EUV) ionizing continuum. Here we present
X-ray spectra obtained as part of AGN STORM that provide
important clues to the origin of the anomaly. In Section 2, we
present analyses of Swift spectra. The Chandra observations
and spectral analyses are presented in Section 3. In Section 4,
we discuss how the appearance of a soft-X-ray excess a few
days before the anomaly may clarify its origin. Although NGC
5548 was observed intensively with XMM-Newton in the years
prior to the AGN STORM campaign (Kaastra et al. 2014;
Mehdipour et al. 2015, 2016; Cappi et al. 2016), a detailed
comparison with those data is beyond the scope of this paper.
Here we focus on Swift and Chandra data obtained during our
campaign.

2. SwiftObservations

2.1. Spectra and Analysis

Descriptions of the Swift observations, data reduction, and
time-series analysis are presented in Paper II. Here we present a
time-resolved spectral analysis. In Figure 1, we show the
0.3–10.0 keV spectra in nine time bins, from pre-anomaly
(days 1–54) to post-anomaly (days 150–170). The exposure
times for each period are given in Table 1. We see that the hard
X-ray continuum (2–10.0 keV) is constant over the period of
the observation, but the soft X-ray flux (below ∼0.8 keV)
increases from the pre-anomaly period (days 1–54) to days
55–75, peaks during days 75–85, and then fades during days
85–100. This is a model-independent result, suggesting that the

soft excess is likely related to the anomaly. In Figure 2, we
have reproduced Figure 1(e) from Paper IV; the black points
show the percentage difference in the C IV flux. The red points
show the percentage difference in count rate at ≈0.55 keV.
This again shows that the soft excess increases on days 55–75,
just before the start of the anomaly (on day ∼75), peaks during
days 75–85, and then fades. This also shows that there is some
delay of about 20 days between the period of high soft-excess
and the period of the anomaly.
In order to perform the spectral modeling and to quantify the

soft excess, we divided the Swift observations into two parts,
which we call pre-anomaly and anomaly spectra (days 0.4 to
54.5=JD 2, 456, 690.4189 to 2, 456, 744.5088, and days 55.4
to 84.9=JD 2, 456, 745.3676 to 2, 456, 774.9165, respectively).
A Galactic column density of NH=1.69×1020 cm−2 (Dicky &
Lockman 1990) was included in all the models. We simulta-
neously fitted both the spectra with an absorbed power-law
model, adding a blackbody (BB) component to parameterize the
soft excess. The parameters of the power-law slope (photon index
Γ) and normalization were tied for the two spectra (as justified by
Figure 1), but the intrinsic absorption and BB parameters were
allowed to vary. The fit showed that the BB temperature is the
same in the two spectra, so we tied the temperature and fitted the
spectra again. The resulting fit was good (c =n 1.162 for 1001
degrees of freedom).
In their model of the entire XMM-Newton observing

campaign, Cappi et al. (2016) found an additional scattered
soft X-ray component dominated by narrow emission lines,
with 8% of the total soft X-ray flux. This soft component was
constant over the whole campaign, so it cannot be responsible
for the variable soft excess we see here. Nonetheless, we added
a similar component to our model (XSPEC model apec) with
flux as in Cappi et al. (2016) and found no improvement to the
fit (c =n 1.162 for 1001 degrees of freedom). The best-fit
spectra are shown in Figure 3 and the model parameters are
given in Table 2 along with the flux in the soft X-ray excess
after correcting for absorption. The soft excess is significantly
stronger in the anomaly spectrum. The intrinsic spectrum
(without the instrument response) is shown in the bottom panel
of Figure 3; the absorbed power law, BB, and scattered
emission-line components are shown as dotted lines.
While a BB component describes the soft excess well,

“warm Comptonization,” in which seed photons from the
accretion disk are Compton upscattered by an optically thick
hotter corona is likely a more realistic model. Thus, we also
tried to fit the soft excess with a warm Comptonization model
(compTT in XSPEC), together with an absorbed power law.
We fixed the model parameters (seed photon temperature,
corona temperature, and optical depth) to the parameters in
Mehdipour et al. (2015), allowing only the normalization to
vary between the pre-anomaly and anomaly spectra. The
resulting fit was worse (c =n 1.332 for 1015 degrees of
freedom; Δχ2=189 compared to the BB fit) and significant
negative residuals were observed below 1 keV; in particular,
the warm Comptonization model did not adequately fit the
spectral turnover below 0.5 keV. We could improve the fit by
adding another cold absorber at the source (best fit
NH= (4.7± 0.7)×1020 cm−2), resulting in c =n 1.22 for
1014 degrees of freedom. Hence, if warm Comptonization is
the correct description of the soft excess, it will have to lie
behind this absorbing medium. The best-fit normalizations are
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given in Table 3 and the fit is shown in Figure 4; as expected,
the normalization is significantly higher during the anomaly.
Alternatively, the change in soft excess could be a result of a
changing optical depth of the corona, as shown by Page et al.
(2004). We therefore fixed the normalization to the pre-
anomaly value and allowed only the optical depth to vary. As
expected, we find significantly higher optical depth during the
anomaly (Table 3). A warm Comptonized corona with variable
optical depth is our preferred model for reasons discussed in
Section 4.2.
When we fit the warm Comptonization model to the post-

anomaly spectrum (days 150–170), the normalization is 29±2
as compared to 22±1 in the pre-anomaly spectrum and
50±2 during the anomaly. At late times, the soft excess has
dropped significantly and is close to the excess in the early
phase. While there is some delay with respect to the emission-
line anomaly and the continuum transitions are not very sharp
(as we see in Figure 1), this strengthens our assertion that the
increase in the soft-excess is likely the cause of the anomaly.
For the rest of the paper, we focus only on spectra before and
during the anomaly.

Figure 1. Swift spectra in different time bins. Note the increase in the soft
excess from the pre-anomaly phase, peaking at days 75–85 (red) and then
decreasing. This is a model-independent result, and suggests that the change in
the spectral energy distribution of NGC5548 is responsible for the anomaly.
The inset shows 0.3 to 1.5 keV spectra for clarity.

Table 1
Swift Exposure Times

Days Julian Dates Exposure Time (ks)

0–55 2, 456, 690.4189–2, 456, 744.5088 58
55–75 2, 456, 745.3676–2, 456, 764.7642 32
75–85 2, 456, 765.6905–2, 456, 775.5760 7
85–100 2, 456, 776.0284–2, 456, 790.6312 20
100–110 2, 456, 791.0273–2, 456, 800.3587 12
110–120 2, 456, 800.8177–2, 456, 810.5546 14
120–135 2, 456, 810.8812–2, 456, 825.5525 10
135–150 2, 456, 825.9454–2, 456, 840.2837 16
150–170 2, 456, 840.2768–2, 456, 859.7580 15

Figure 2. NGC5548 light-curve. The black points show the percentage deficit
in the C IV flux (reproduced from Figure 1(e) of Paper IV). This shows
the onset of the anomaly around day 75 of the campaign. The red points show
the percentage excess in the Swift count rate at ≈0.55 keV (as in Figure 1). We
see that the soft excess increases before the start of the anomaly, peaks during
the period of anomaly and then declines.

Figure 3. Top: Swift spectra: anomaly (black) and pre-anomaly (red) fit with an
absorbed power law plus a blackbody model. An additional scattered
component is also included. Bottom: the Ef (E) intrinsic spectra (without
folding in the instrument response); the three model components are shown as
dotted lines.

4

The Astrophysical Journal, 846:55 (9pp), 2017 September 1 Mathur et al.



2.2. Alternative Models

It is possible that the observed spectral shape (the “soft excess”)
is an artifact of a partially covering cold absorber. We therefore
tried to fit the soft excess with a partial covering power-law model.
The best-fit absorption column densities in the two spectra were
found to be the same within the uncertainties, so we refitted the
two spectra after tying the column densities. As expected, the
absorber covered the continuum source more during the pre-
anomaly period (covering fraction 0.91± 0.01) and less during the
anomaly (covering fraction 0.75± 0.02). However, this fit is worse
(c =n 1.42 for 1003 degrees of freedom) than the BB model, with
obvious residuals in the soft X-ray spectrum. As seen in Figure 5,
the partial covering absorber model does not adequately account
for the excess flux in the soft X-ray band in the anomaly spectrum,
or the spectral turnover below ∼2 keV. Thus, the dominant
parameter describing the change in soft excess between pre-
anomaly and anomaly spectra cannot be the covering factor.

Alternatively, the apparent soft “excess” could result from
the recovery of the soft X-ray spectrum through a warm
absorber. NGC5548 is known to have an X-ray warm
absorber, detected even in low-resolution spectra (e.g., Nandra
et al. 1993; Mathur et al. 1995). We therefore tried to fit the
Swift spectra with an absorbed power-law model modified by a
warm absorber. We used PHASE (Krongold et al. 2003) to
model the warm absorber. The parameters of this model are
ionization parameter U, total column density NH, velocity v,
and microturbulent velocity σ. Given the low resolution of the
spectrum, we fixed v to match the galaxy redshift and σ was
fixed to 200kms−1. Thus, the free parameters of the warm
absorber model were U and NH. Once again, we fitted the two
spectra simultaneously, keeping the power-law parameters tied.
The fit was good (c =n 1.12 for 1003 degrees of freedom) and
the results of this fit are given in Table 4. The absorber NH was
found to be similar in the two spectra, and as expected, the

Table 2
Fits to Swift Spectra: Absorbed Power-law Plus Blackbody Modela,c

Obs ID BB(kT)b BBNorm BBFlux Intrinsic Absorption Photon Indexb Power-law Normb

keV 10−5 0.1–2 keV NH Γ 10−3

phkeV−1s−1cm−2 10−12ergcm−2 s−1 1022cm−2 phkeV−1s−1cm−2

Anomaly 0.12±0.005 4.5±0.2 3.7 0.66±0.05 1.49±0.04 5.9±0.3
Pre-anomaly 0.12±0.005 1.7±0.1 1.4 1.13±0.06 1.49±0.04 5.9±0.3

Notes.
a A scattered component is also included in the fit (see the text).
b Power-law parameters and BB temperature are tied for both the data sets.
c cn

2 for the joint fit is 1.16 for ν=1001 degrees of freedom.

Table 3
Swift Spectra: Warm Comptonization Fit Parametersa,b

Spectrum Optical Depth Normalization

Anomaly 22.34±0.16 50.34±1.85
Pre-anomaly 20.55±0.15 22.09±0.94

Notes.
a Power-law parameters are tied for both the data sets.
b The warm corona temperature was fixed at 0.15 keV and the seed photon
temperature to 0.74 eV. Only one parameter (optical depth or normalization)
was allowed to vary at a time.

Figure 4. As in Figure 3, but fit with a warm Comptonization model.

Figure 5. The Swift spectra fitted with a partial covering absorber model. This
is clearly a poor fit compared to the models shown in Figures 3 and 4.

Table 4
Swift Spectra: PHASE Fit Parametersb

Spectrum Log U Log (NH/cm
−2) Photon Indexa

Γ

Anomaly −0.3±0.03 22.12±0.01 1.42±0.02
Pre-anomaly −0.4±0.01 22.18±0.01 1.42±0.02

Notes.
a Power-law parameters are tied for both the data sets.
b cn

2 for the joint fit is 1.1 for ν=1003 degrees of freedom.
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warm absorber in the anomaly spectrum is more ionized
(higher U), leading to the apparent excess in the soft X-ray
band. The warm absorber column density, however, is
unusually large (logNH (cm−2)≈22.2). The warm absorber
column density in NGC5548 has varied from about log NH

(cm−2)=20.3 to logNH (cm−2)=21.7 (Mehdipour et al. 2015).
While a significant increase in the column density is possible, it is
also possible that the column density is actually lower, and there
is an additional soft-excess component; we cannot distinguish
between these two models. Warm absorbers with low ionization
parameter are clearly related to UV absorption lines (e.g., Mathur
et al. 1994, 1995, 1998; Monier et al. 2001; Krongold et al.
2003, 2005, 2007; Kaspi et al. 2004), so variability of the UV
absorber (G. Kriss et al. 2017, in preparation) may help
distinguish between the two possibilities. As noted below, in
Section 4.2, the warm absorber model alone cannot explain the
anomaly, so a variable warm absorber is unlikely to be the correct
model of the soft excess.

As noted in Section 1, NGC5548 was monitored intensively
with XMM-Newton in 2013–2014. The source appeared in a
highly obscured state then (Kaastra et al. 2014), with a column
density ∼1023 cm−2. In our STORM campaign, the absorption
column density was over an order of magnitude lower
(∼1022cm−2). A detailed spectral analysis of XMM-Newton
observations of NGC5548 is presented by Cappi et al. (2016),
who modeled the spectra with six different components: a
power-law continuum; a cold reflection component; a soft
thermal Comptonization emission model; a scattered emission-
line component; a warm absorber; and up to two high column
density partial covering “obscurers.” Given the S/N of our
Swift observations, it is not possible to fit the spectra with such
a complex model and deduce meaningful information. More-
over, our interest is to understand the difference between the
pre-anomaly and anomaly spectra. It is possible that the
observed changes in the soft excess are caused by a
combination of changes in multiple components. We cannot
constrain these multiple components; instead, we have looked
for a dominant model that describes the soft-excess variability.
During the XMM-Newton campaign, the dominant variability
component in the 0.3–0.8 keV range of soft excess was the
covering fraction of the obscurer as reported by Mehdipour
et al. (2016), but Cappi et al. (2016) show that the normal-
ization of the Comptonization component was also important.

In our STORM campaign, the soft excess can be modeled as
a BB, a warm absorber, a warm Comptonizing medium behind
a thin veil of matter, or a combination of all these models;
the Swift spectra cannot discriminate among these models.
However, the dominant variability is not caused by the
covering fraction or the column density of an absorber. As
we discuss further in Section 4, the warm Comptonization
model naturally explains several aspects of the UV anomaly,
so this is our preferred model. While a change in the

normalization of the warm Comptonization model can
adequately describe the spectral difference between the pre-
anomaly and anomaly spectra, our preferred model is of the
change in the effective optical depth (Section 4). Thus, we see
that the shape of the X-ray continuum changed during the
anomaly phase, not just the normalization; this was clear from
the model-independent spectra shown in Figure 1, and the
spectral modeling confirms the same. Recently, Gardner &
Done (2017) studied optical/UV variability of NGC5548 and
argued that a soft excess is required to understand the observed
continuum lags; the observation of a soft excess with Swift and
Chandra (Section 3) is consistent with this expectation.

3. Chandra Observations and Analysis

As a part of the HST campaign, we also observed NGC5548
with the Chandra Low Energy Transmission Grating (LETG)
and ACIS-S on four occasions from 2014 February to 2014
June for 5ks each. The observation details are given in
Table 5. The LETG was placed in front of the detector to avoid
pile-up; obtaining high-resolution grating spectra was not the
goal of these short 5ks exposures. We analyzed the data using
standard CIAO tools (version 4.7 and caldb version 4.6.7). All
the observations were reprocessed using the Chandra repro
task, which results in enhanced data quality and better
calibration. We extracted the zeroth-order source and back-
ground spectra using the CIAO tool specextract, which also
builds proper response (RMFs) and effective area (ARF) files
required for analysis. We analyzed the spectra using both
XSPEC and the CIAO fitting package Sherpa. We binned the
spectra to 25 counts minimum per channel using ftool grppha.
It was clear that in the hard X-ray band (2–8 keV) the spectra

are very similar, but at softer energies they show differences,
similar to what we found in Swift spectra. Thus, we fit the
Chandra spectra with an absorbed power-law model, as we did
for Swift spectra, with the results shown in Figure 6. Once
again we see that there is a clear soft excess in Chandra
observations II (day 57=JD 2, 456, 747) and III (day
93=JD 2, 456, 784), which were taken just before and during
the anomaly. Observations I and IV took place when the source
was in its normal state, and they show no soft excess. The
appearance of the soft excess in observations II and III once
again suggests that it may be related to the anomaly.
We fit the Chandra spectra with the same series of models

discussed above, primarily to determine if they are consistent
with the Swift results despite their lower S/N. The models that
fit the Swift data well also fit the the Chandra data well, and the
partial covering power-law model is a poor model of the
Chandra spectra as well (c =n 2.322 for ν=63 degrees of
freedom), with the fit yielding a covering fraction of unity.

Table 5
NGC5548 Chandra Observation Log

Obs. ID Date of Observation JD Exposure Time

I 15659 2014 Feb 3 2, 456, 692 (pre-anomaly) 5 ks
II 15660 2014 Mar 30 2, 456, 747 (just before anomaly) 5 ks
III 15661 2014 May 6 2, 456, 784 (during anomaly) 5 ks
IV 15662 2014 Jun 23 2, 456.832 (post-anomaly) 5 ks
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4. Results

4.1. Soft-excess

Ever since the discovery of soft X-ray excesses (Singh et al.
1985), there has been a debate about their origin and physical
nature. The possible explanations have been narrowed down to
(1) reflection of the hard X-ray source by the accretion disk
(e.g., Crummy et al. 2006); (2) an additional Comptonizing
medium around the accretion disk (e.g., Ross et al. 1992); or
(3) thermal emission from an accretion disk. Understanding the
nature of the soft excess is important because of its potentially
large luminosity and because it is an integral part of the
accretion process. Though no correlation has been found
between the strength of the soft-excess and the black hole mass
or its luminosity (e.g., Bianchi et al. 2009), multiwavelength

studies have revealed a possible correlation of the UV slope
with the soft-excess strength and shape (e.g., Walter &
Fink 1993; Atlee & Mathur 2009). From the multiwavelength
campaign studying Mrk509, Mehdipour et al. (2011) found
that the soft X-ray excess is correlated with the thermal optical-
UV emission from the accretion disk and is not correlated with
the 2–10 keV X-ray power law. This favors Comptonization of
UV/optical photons by a hot plasma for the origin of the soft
excess.
In NGC5548, the soft excess was previously detected in

2000 during an unobscured period, but the source was heavily
absorbed during 2013 (Kaastra et al. 2014) and the soft-excess
was modeled as a Comptonized corona (Mehdipour et al.
2015). The soft excess observed during our campaign is well
modeled as a BB (an optically thick corona would emit like a

Figure 6. Chandra spectra with the best-fit absorbed power-law model. The soft excess is apparent in observations II and III.
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BB), but the anomaly is better explained by the warm
Comptonization model, as discussed below, so this is our
preferred explanation.

4.2. Understanding the UV Anomaly

The X-ray spectra provide a possible explanation for the UV
anomaly. First, the X-ray spectra rule out variable absorption as
the cause of the anomaly. If anything, the absorption was lower
during the anomaly. It is possible that the EUV ionizing
continuum source was obscured, while the X-ray source was
not, but that is unlikely since the X-ray continuum source size
in AGNs appears to be smaller than that of the UV/EUV (e.g.,
Mosquera et al. 2013). Partial covering of the continuum fits
the data poorly and is unlikely to be the cause of the anomaly.

The second important fact is that the UV emission-line flux
decreased during the anomaly. This suggests that the EUV
ionizing continuum flux decreased during the anomaly (as
discussed in Paper IV; the ionization potential of C III is 47.9 eV
and that of Si III is 33.5 eV). This cannot be explained by a change
in the warm absorber because the warm absorber in the anomaly
spectrum is more ionized (higher U), requiring an increase in the
EUV continuum during the anomaly. Thus, our preferred scenario
is that of the intrinsic change in the soft X-ray spectrum.

The observed changes can be naturally explained by the
warm Comptonization model. In this model, the UV disk
photons are Compton upscattered to soft X-ray energies by the
optically thick corona. In a normal situation, where the UV and
soft X-ray fluxes are correlated, higher UV flux leads to more
input photons for Comptonization, so more soft X-rays; we can
describe this as a change in the normalization of the model.
What we have, however, is the opposite situation during the
anomaly: the EUV flux decreases, while the soft X-ray flux
increases. Perhaps the EUV photons are depleted from the flux
seen by the BLR, but are Comptonized into soft X-rays. This
could be due to either a true change in the optical depth or an
increase in the region covering the UV/EUV-emitting region,
which could be considered an increase in the “effective optical
depth” of the corona. The BLR is then deprived of the ionizing
photons, so the emission-line and UV continuum variability are
decoupled (the “anomaly”). The increase in the effective
optical depth in the anomaly spectrum is Δτ=1.8, implying a
reduction in the EUV flux by approximately e−Δ τ or 16.5%.
Interestingly, the observed deficit in the C IV broad emission-
line flux during the anomaly is of a similar amplitude (Figure1
(e) and 2 in Paper IV).

Thus, the warm Comptonization model can simultaneously
explain all three observations (the UV emission-line flux decrease,
the soft-excess increase, and the emission-line anomaly), so it is
our preferred model. We do not understand why the corona may
change its physical structure in this way; observations such as
these provide motivations for further theoretical work on the
structure of the accretion disk and the corona. Notably, an
anomalous continuum behavior has been seen before. In 3C273,
there was one epoch of XMM-Newton observations when the UV
flux decreased but the X-ray flux increased (Page et al. 2004),
while the source otherwise behaved normally.

5. Conclusion

In this paper, we report on analyses of Swift and Chandra
X-ray spectra taken during the HST monitoring campaign of
NGC 5548 that help us understand the UV anomaly reported in

Paper IV. We show that obscuration of the continuum source is
unlikely to be the cause of the anomaly. Instead, the spectral
energy distribution of the continuum changed during the
anomaly, as seen in the X-ray spectra. A possible scenario may
be that the warm Comptonizing corona covered more of the
accretion disk during the anomaly, depleting EUV photons,
while increasing the soft X-ray excess. The decrease in the
ionizing continuum then leads to the emission-line anomaly. In
order to understand the finer details of the anomaly, detailed
photoionization models will be necessary. These results
demonstrate the importance of contemporaneous X-ray spectra
to interpreting high-quality RM data. We suggest that future
RM campaigns in the optical and/or UV include an X-ray
component as well.
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