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NUCLEOTIDE EXCISION REPAIR: IMPACTS OF 
ENVIRONMENTAL CARCINOGENS AND ITS ROLE IN 

CANCER SUSCEPTIBILITY IN APPALACHAIN KENTUCKY 
 

Lung cancer is a particularly devastating disease, accounting for the most deaths 
among all cancer types in the United States.  Despite a reduction in the country’s 
smoking rates, cigarette smoking remains the number one risk factor for lung cancer.  
Additionally arsenic exposure, which occurs primarily through contaminated drinking 
water in the U.S., is associated with increased lung cancer incidence.  The nucleotide 
excision repair (NER) pathway is critical for maintenance of genomic fidelity, removing 
DNA lesions that could otherwise promote DNA mutations and drive carcinogenesis.  
Tobacco smoking introduces significant amounts of DNA damage and produces 
characteristic DNA mutations found in lung cancers of smokers, and arsenic increases 
lung cancer risk in smokers beyond the risk of smoking along.  The contributions of 
these chemicals to DNA damage and cancer have been well documented, but few 
studies have examined their effects on DNA repair pathways, particularly the nucleotide 
excision repair (NER) pathway.  Arsenic, while not directly mutagenic, promotes the 
carcinogenicity of other compounds including agents that produce DNA damage that is 
repaired by the NER pathway.  In this dissertation I investigated the effects of cigarette 
smoke condensate (CSC, a whole-smoke tobacco surrogate) and arsenic on NER.  I 
observed that CSC or arsenic treatment inhibited NER as measured by a slot-blot assay 
using UV-induced photolesions as model substrates to measure NER.  The abundance 
of Xeroderma Pigmentosum complementation group C (XPC), a critical NER protein, 
was significantly reduced in all lines treated with either chemical, while XPA protein was 
unaffected.  CSC and arsenic also affected RNA levels of certain NER genes.  Finally, 
proteasome-regulated XPC turnover was affected by CSC and arsenic treatment, 
suggesting a potential mechanism for XPC protein inhibition.  The observed impairment 
of NER by CSC is critically important in tobacco cancer etiology – CSC introduces DNA 
damage, some of which is repaired exclusively by NER, and CSC inhibits the NER 
pathway as well, providing a two-sided assault on cellular genetic fidelity.  I then 
adapted the NER assay to measure repair in lymphocytes isolated from human subjects 



of a study investigating the high incidence of lung cancer in Appalachian Kentucky.  I 
observed an age-dependent decline in NER efficiency that was modulated by subject 
smoking status and a reduced NER efficiency among current smokers in the lung 
cancer patient population compared to control subjects in the youngest age group, 
suggesting individual DNA repair capacity measured with this repair assay may be a 
biomarker for lung cancer susceptibility. 
 

KEYWORDS: Nucleotide Excision Repair, Cigarette Smoking, Arsenic, Lung Cancer, 
Appalachian Kentucky 
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Chapter 1 - Introduction 

1.1 Cancer in the United States 

 Cancer is defined by the National Cancer Institute as a general term for 

diseases in which abnormal cells divide uncontrollably and possess the potential 

to invade nearby tissues or remote locations in the body.  While several genes 

such as K-Ras and p53 are frequently mutated in cancer [1, 2], cancer is not the 

result of a singular genetic defect, but rather cancers arise through a multitude of 

DNA mutations that may be innate or acquired over a lifetime of exposure to 

DNA damaging agents.  Several cellular processes must be altered for a normal 

cell to undergo cellular transformation into a cancer cell, and the types of 

changes required for transformation have been well documented as hallmarks of 

cancer development.  These hallmarks initially included unlimited replicative 

potential, evasion of apoptosis, self-sufficiency with growth factors, resistance to 

growth inhibition, evasion of growth suppression, and angiogenesis [3].  More 

recently, additional hallmarks - avoiding host immune system and deregulating 

cellular energetics - as well as the enabling characteristics of inflammation and 

genomic instability or DNA mutation were added as contributors to the 

pathogenesis of many, if not all, cancers [4].  One of the enabling hallmarks of 

cancer, genomic instability, is a condition of high mutation frequency within the 

genome, and can be the result of DNA repair pathways not functioning properly.  

DNA is under significant pressure to repair the damage it is constantly subject to, 

as failure to do so may lead to an increase in DNA mutation frequency which can 
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promote (i.e. enable) all the cellular changes listed above and thus drive 

carcinogenesis. 

In the United States, cancer is responsible for the second most number of 

deaths among all causes, producing more annual deaths than the next five 

categories combined (http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm 2014 data).  

Only cardiovascular disease ranks higher than cancer.  Cancer is a disease of 

aging - the risk of developing cancer increases in both genders across all sites as 

individuals grow older [5]. The death rate from cancer has increased dramatically 

since the beginning of the last century [6], a result of increased longevity and 

dramatic declines in the conditions that previously produced high levels of 

mortality. From 1900 to 2010, the average U.S. life expectancy increased from 

47.3 to 78.7 years [7] , and during the same period of time cancer went from the 

eighth leading cause of death to the second. In 1900, conditions like pneumonia, 

tuberculosis, and GI infections were the greatest causes of death [6], but these 

conditions have all but been eliminated as causes of death in the United States 

today, contributing to the increase in life expectancy.  Indeed, the death rate 

produced by the top ten leading causes of death has dropped by almost 50% 

between 1900 and 2010. However, cancer and heart disease account for more 

deaths now than over a century ago.  In fact, cancer mortality rates have tripled 

in that time frame [6], and cancer has consistently been the second leading 

cause of death behind heart disease for the last 75 years [8]. Cancer incidence 

and death rates have dropped slightly in recent years from a peak in the early 

1990’s [5], but cancer still remains a significant health risk. 

http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
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Another contribution to the rise of cancer incidence and mortality in the 

U.S. over this time period is that the average age at which individuals are 

diagnosed with cancer across all types is 65 (http://seer.cancer.gov/statfacts/html/all.html).  

This is almost twenty years greater than U.S. life expectancy was at the 

beginning of last century [7].  Since our population is living longer, and since 

cancer rates increase with increasing age, more people now are at risk of 

developing cancer than ever before.  In recent years there has been a stalling of 

life expectancy growth  [9, 10] and a reduction in new cancer diagnoses, but 

there will still be an estimated 1.7 million new cancer diagnoses and about 

600,000 cancer-related deaths in 2016.  Over 14 million people are living with 

cancer in the United States as of 2013 (http://seer.cancer.gov/statfacts/html/all.html).   

1.1.1 Lung Cancer in the U.S. and Kentucky  

 Among the different types of cancer lung cancer produces the highest 

number of deaths in the U.S., three times more than the second leading cause of 

cancer mortality, colon cancer [5].  The five year survival curve for individuals 

diagnosed with lung cancer is 17.7% (2006-2012 data, 

http://seer.cancer.gov/statfacts/html/lungb.html).  This low overall survival is due in part to 

the average stage at diagnosis for lung cancer.  Over half of all lung cancers are 

stage three or worse upon first diagnosis [5].  Five year survival for patients with 

stage three lung cancer is under 5%.  In contrast, stage one lung cancers, while 

only 16% of diagnosed lung cancers, have a five year survival of over 50%.  This 

stresses the importance of early detection in lung cancers.  The fact that lung 

cancers are diagnosed at late stages more frequently than early stages 

http://seer.cancer.gov/statfacts/html/all.html
http://seer.cancer.gov/statfacts/html/all.html
http://seer.cancer.gov/statfacts/html/lungb.html
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contributes to a chilling statistic.  In the United States, the median age for lung 

cancer diagnoses is 70, and the average age at which those with lung cancer die 

is only 72 (http://seer.cancer.gov/statfacts/html/lungb.html). 

 Lung cancer is responsible for 27.7% of all estimated cancer deaths in the 

United States in 2015 and 34.8% of the estimated cancer-related deaths in 

Kentucky [5].  While the national age-adjusted rate of lung cancer incidence is 

62.74 per 100,000 individuals (based on 2009-2013 data; http://www.cancer-

rates.info/naaccr/), Kentucky’s rate is 50% higher than the national average, with 96.4 

lung and bronchus cancer diagnoses per 100,000 individuals (based on 2009-

2013 data) (Figure 1.1).  Lung cancer is not the only cancer that is causing health 

issues in Kentucky; the state has the highest age adjusted overall cancer 

incidence from 2009-2013 (http://www.cancer-rates.info/naaccr/) (Figure 1.2) and the 

highest over-all cancer death rate among all states [5] 

1.1.2 Smoking and lung cancer in Kentucky 

The primary risk factor in the United States for developing lung cancer is 

cigarette smoking [11].  According to the Centers for Disease Control and 

Prevention, 25.9% of Kentucky adults are current smokers (every day or some 

days) (https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/).  Kentucky’s 

percentage of current smokers was 10% higher than the national average of 

15.1% in 2015 and ranks first among all states for tobacco smoking incidence.  

Tobacco smoking is undoubtedly the principle risk factor for the development of 

lung cancer in Kentucky.  However, within the state there exists a geographical 

disparity of lung cancer incidences. The eastern portion of Kentucky lies within 

http://seer.cancer.gov/statfacts/html/lungb.html
http://www.cancer-rates.info/naaccr/
http://www.cancer-rates.info/naaccr/
http://www.cancer-rates.info/naaccr/
https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/
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the multi-state region of the United States called Appalachia.  In Kentucky, the 

Appalachian region has a higher lung cancer incidence than in the rest of the 

state (http://cancer-rates.info/ky/index.php), likely due to the high rate of tobacco use, 

which is greater than the rate in non-Appalachian Kentucky [12] and 60-80% 

higher than the national average.  When viewed on a county-by-county basis, the 

high lung cancer incidence counties cluster in the eastern portion of the state, the 

Appalachian region (Figure 1.2a).  By dividing the state into “Non-Appalachia” 

and “Appalachia” counties, it becomes clear that average lung cancer incidence 

of counties in the Appalachian region is over 20% higher than of those in the 

non-Appalachian region (Figure 1.2b).  Within the greater Appalachian region of 

the U.S., a higher cancer burden is observed across all sites compared to non-

Appalachian areas in the United States, particularly with regard to tobacco-

related cancers [13].   

While lung cancer rates in Appalachian Kentucky are primarily a result of 

tobacco smoking rates that are over 50% higher than the national average and 

greater than the rates in the rest of the state [12], there are clusters of counties in 

Kentucky with lung cancer rates that are higher than the rest of the state after 

controlling for gender, age, and smoking status [14], suggesting that additional 

factors may be contributing to the high lung cancer incidence (Figure 1.3).  Two 

of the three high lung cancer incidence clusters reside within Appalachian 

Kentucky, while a third cluster contains many counties that reside within a large 

metropolitan area and lung cancer rates may be high as a result of increased 

pollution associated with such a region. Additionally, a multi-state study of 

http://cancer-rates.info/ky/index.php
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Appalachian United States found that the increased lung cancer rates in coal 

mining areas within the region could not be explained by tobacco use alone [15], 

and the high lung cancer incidence clusters in Appalachian Kentucky are also 

areas of high coal production [14].  These studies open the possibility that some 

as yet undetermined factors are contributing to increased lung cancer incidence 

in Appalachian Kentucky and perhaps the greater Appalachian region.    

1.2 DNA Repair 

 DNA is a highly reactive, massively large molecule (a single human diploid 

cell contains almost seven billion nucleotides) that cannot be replaced if 

damaged. Instead, DNA must be repaired in response to the persistent damage it 

is subject to, or otherwise the damage may become permanent, which is the 

definition of a DNA mutation.  There are several types of DNA damaging agents 

including exogenous agents (such as UV light and tobacco smoke) and 

endogenous byproducts of normal cellular metabolism.  DNA can also undergo 

spontaneous nucleotide hydrolysis (producing abasic sites) and spontaneous 

deamination (which can produce base changes) [16, 17].  The reactivity of DNA 

is due in large part to the unsaturated ring structure of the DNA bases, producing 

a nucleophilic environment subject to reactions with electrophiles [18].  

Additionally, the negatively charged phosphodiester backbone attracts positively 

charged ions capable of reacting with DNA, including metal ions that can 

undergo proximal redox cycles (Fenton chemistry) to generate reactive oxygen 

species.  The typical result of DNA damage is a local disruption of standard 
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duplex structure, which forms the basis for recognition by DNA repair proteins 

across multiple DNA repair pathways. 

Humans possess three highly efficient DNA excision-repair pathways to 

preserve genomic integrity.  These pathways are nucleotide excision repair 

(NER), base excision repair (BER), and mismatch repair (MMR), and they are 

genetically conserved processes in eukaryotes whose disruptions often lead to 

increased genomic instability and ultimately increased cancer incidence.  In 

addition to these, there are pathways involved in repairing double-strand breaks, 

a type of damage that excision repair cannot address as a suitable template does 

not exist.  All of these processes are necessary to ensure proper genomic 

maintenance and cellular survival.   

The excision repair pathways are discussed in more detail below.  

Combined they respond to the majority of DNA damage cells face from 

exogenous and endogenous sources.  It should be noted that while all three 

pathways are critical and none can be fully complemented by the other two, NER 

is the sole focus of my dissertation.  The experiments laid out herein involve 

environmental factors that may promote carcinogenesis by producing lesions 

recognized by NER, interfering with normal NER function, or both.  While all 

three excision repair pathways are important for preventing DNA mutations that 

can promote carcinogenesis as I will describe below, the MMR and BER 

pathways were not the subjects of our research, and are included here to 

highlight the fact that mutations and polymorphisms in genes involved in all three 

excision repair pathways can increase cancer risk. 
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1.2.1 NER 

 NER is a versatile pathway that removes a wide variety of structurally 

diverse DNA lesions including those generated by metabolites of chemical 

carcinogens such as polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke 

as well as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-

4PPs) induced by exposure to UV light [19]. In mammals, at least 20 different 

protein factors participate in NER, including the XPA-G factors that are singly 

defective in the 7 corresponding complementation groups of the human disease 

Xeroderma Pigmentosum (XP).  NER efficiency is also regulated by the tumor 

suppressor factor p53 through transcriptional regulation of the XPC and DDB2 

gene products in response to DNA damage [20-23]. The NER pathway, also 

referred to as global genome nucleotide excision repair (GG-NER), is responsible 

for removing DNA damage from nontranscribed DNA. Damaged present in the 

transcribed strands of active genes are removed by transcription-coupled 

nucleotide excision repair (TC-NER) [24].  

The following is an abridged explanation of the steps in the NER pathway 

(reviewed quite well in [19, 25]).  The NER pathway is initiated when a helically 

distorting DNA adduct forms (Figure 1.4A).  The manner of recognition is 

different between two sub-pathways.  In GG-NER the DNA recognition protein is 

XPC [26].  In order to be able to respond to the multitude of DNA adducts that 

are substrates for NER, XPC, stabilized by its obligate binding partner HR23B, 

recognizes the helical distortion in DNA produced by an adduct [27] and binds to 

the undamaged strand opposite the lesion (Figure 1.4B).  Recent evidence 
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suggests that the rate limiting step in NER is the efficiency with which DNA 

damage can be recognized, implicating XPC as the rate limiting enzyme in GG-

NER [28-30].  As TC-NER functions exclusively on the transcribed strand of 

actively transcribed DNA, damage recognition during TC-NER is initiated when 

the RNA polymerase II complex is stalled by the DNA adduct, which stabilizes 

the CBS protein that is present in the complex and promotes recruitment of the 

subsequent NER machinery by CSB [24, 31, 32]. 

After damage recognition, the two pathways converge for the remainder of 

the repair process. Damage recognition proteins (XPC in GG-NER and CSB in 

TC-NER) recruit the TFIIH transcriptional complex containing the helicases XPB 

and XPD to the site of the damage.  XPB pries open the DNA and permits XPD 

to travel across the damaged strand, unwinding DNA until it stalls at the 

damaged nucleotide (Figure 1.4C) [33, 34].  The unwinding permits subsequent 

NER factors access to the DNA damage site, including the endonuclease XPG 

(which is recruited through interactions with TFIIH), the single strand binding 

protein RPA, and XPA (Figure 1.4D).  XPA is an indispensable component of the 

NER pathway, but the role it plays is still somewhat vague.  XPA can interact with 

a multitude of NER factors including XPC, THIIH, RPA, XPF/ERCC1, and more.  

It may serve to verify that all necessary factors are in place ahead of the DNA 

incision step.   The other directional endonuclease complex, XPF/ERCC1, is 

recruited to the damage site through interactions with XPA [35]. After recruitment 

of the XPF/ERCC1 complex, it cuts 5’ of the damaged nucleotide (Figure 1.4E)  

This 5’ incision produces a 3’ OH group that serves as a template on which a 
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polymerase can bind and begin synthesis of DNA to replace the damaged strand.  

After synthesis has begun, XPG performs the second single-stranded cut 3’ of 

the damaged site, releasing the damage-containing oligonucleotide (Figure 

1.4F).  The original integrity of the DNA is restored when the repair polymerase 

synthesizes an approximately 30 nucleotide segment of DNA and a DNA ligase 

seals the strand (Figure 1.4G) [36].  A recent investigation into the post-incision 

steps in NER reveals that the process is more complicated than previously 

thought.  While DNA polymerases δ and ε were initially thought to be the 

principle polymerases in the gap filling step, the error prone polymerase κ also 

plays a role in repair synthesis [37]. Further complicating the post-incision 

process, the ligase used to seal the nicked DNA after repair synthesis can be 

either DNA ligase I or IIIα, and which one is used may depend on the replicative 

status of the cell [38].   

 There are three primary inherited disorders resulting from mutations in 

NER genes in humans; xeroderma pigmentosum (XP), Cockayne syndrome 

(CS), and trichothiodystrophy (TTD) [39], although there are additional 

syndromes stemming from NER deficiencies, depending on the functional 

consequences of mutation in the repair protein  [40, 41].  Of the primary 

disorders, XP is characterized by extreme photosensitivity and a dramatically 

elevated incidence of skin cancer, as well as an increased internal cancer 

mortality [40].  The average age at diagnosis of nonmelanoma skin cancer for 

individuals with XP is 50 years sooner than the general population [40, 42].   
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While the disorder is rare (as infrequent as an estimated 1 in 1,000,000 in 

the U.S.), there are regions in the world where XP frequency is considerably 

higher. In Japan, for example, the frequency of XP-A in the general population is 

about 1 in 22,000 [43].  This high incidence also produces a carrier frequency of 

XP-A in Japan that is thought to be as high as 1 in 100.  The carriers of XP-A do 

not exhibit repair deficiencies, as measured by an unscheduled DNA synthesis 

(UDS) assay [44], nor do XP-A heterozygote mice show any increased incidence 

of tumor development compared to wildtype mice following UV exposure [45].  

However, there is some evidence to suggest that other XP heterozygotes may 

have an intermediate repair phenotype.  XP-C heterozygotes have reduced XPC 

RNA levels compared to genotypically normal individuals [46], and reduced 

expression of XPC has been associated with increased risk for developing 

certain head and neck cancers [47], suggesting that certain XP carriers may be 

at an increased risk for cancer development. 

Polymorphisms in NER genes have also been explored for their potential to 

contribute to cancer risk, which will be discussed in more detail in Chapter 5.  

Exploring the health consequences of NER gene heterozygosity or NER gene 

polymorphisms is part of a process of determining whether these variations exist 

in a population and can be used as biomarkers to predict cancer risk for 

individuals who may have suboptimal function of their nucleotide excision repair 

pathway. 
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1.2.2 MMR 

 The MMR pathway in eukaryotes is responsible for a 50-100 fold increase 

in DNA fidelity [48] by identifying single base mismatches or small 

insertions/deletions that result from improper DNA replication.  The pathway is 

remarkably similar across eukaryotes and prokaryotes, although it is modified in 

E. coli.  In bacteria, a homodimer of the MutS protein recognizes mismatched 

bases or small insertions/deletions [48].  This process is similar in eukaryotes, 

with three MutS homologs (MSH2, MSH3, and MSH6) forming the heterodimeric 

complexes MutSα (MSH2/MSH6) and MutSβ (MSH2/MSH3). MutSα recognizes 

single base mismatches and small insertion/deletion loops (IDLs) while MutSβ 

recognizes larger IDLs [49]. 

After recognition of the mismatch/IDL, a homodimer of the MutL protein is 

recruited in bacteria to nick the nascent strand near the site of the mismatch.  In 

eukaryotes, three heterodimer MutL homologs , MutLα, MutLβ, and MutLγ are 

formed by complexing MLH1 with PMS2, PMS1, and MLH3 respectively [50].  Of 

these, MutLα is believed to be responsible for the majority of MMR in eukaryotes 

[51].  Upon strand incision, an exonuclease (EXO1/UvrD in 

eukaryotes/prokaryotes) is recruited to remove the strand with the replicative 

error, a polymerase (Polδ/Pol III) fills in the gap, and a ligase seals the nick, 

completing the repair process. 

Human homologs of the bacterial MutL/S proteins are mutated in a 

number of cancers, including cancers arising from Lynch syndrome, an inherited 

cancer syndrome resulting from a germline mutation in one of the MMR genes 



13 
 

[52], primarily the MLH1 or MSH2 genes.  This is not surprising given MSH2 is 

present in both MutS complexes, and MLH1 is present in all three MutL 

complexes, and thus losing either of these proteins abolishes that component of 

the MMR pathway entirely.  The inherited mutation occurs in only one allele of 

the MMR gene, so a second somatic mutation is required, which is why the 

disorder manifests later in life, as opposed to the inherited NER disease XP.   

Only about 5% of colorectal cancers are a result of Lynch syndrome, but the 

disease also contributes to other cancers including endometrial, ovarian, and 

stomach cancers.  Of all hereditary nonpolyposis colon cancers, upwards of 90% 

are a result of a mutation or epigenetic silencing of a MMR gene [53].  There is 

also mounting evidence that, similar to what has been reported with NER genes, 

polymorphisms in MMR genes may also contribute to increased cancer risk [54-

56] 

1.2.3 BER 

 The BER pathway is responsible for detecting and eliminating a variety of 

DNA lesions targeted specifically to the purine and pyrimidine bases that 

compose the inner portion of the DNA complex.  Lesion recognition in the BER 

pathway is achieved through a number of glycosylases which recognize specific 

base modifications or abnormal base pairings.  After recognition, the glycosylase 

removes the modified base by cleavage of the N-glyosidic bond, but leaves the 

sugar moiety intact, producing an abasic site (often referred to as an AP site for 

apurinic/apyrimidinic).  The presence of an AP site recruits APE-1 (AP 

endonuclease 1) to cut the sugar-phosphate backbone at the abasic site’s 5’ end, 
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producing a 3’ hydroxyl site.  Once the DNA backbone is cleaved, DNA Pol β can 

use the 3’ hydroxyl to resynthesize the missing nucleotide.  Cleavage of the extra 

phosphate group (also by Pol β) and ligation of the DNA backbone (XRCC-

1/DNA ligase IV) finish the repair process.  When only one nucleotide is removed 

in this fashion, as is generally the case, the repair pathway is referred to as “short 

patch BER.”  Occasionally more nucleotides than the one recognized by the 

glycosylase are removed in a process known as “long patch BER.”   

Germline mutations in various glycosylases involved in BER have been 

associated with increased cancer risk.  A homozygous mutation in the NTHL1 

glycosylase is associated with increased colorectal cancer [57].  A compound 

heterozygous mutation of the glycosylase MYH, the human homolog of bacterial 

mutY, has been attributed to an inherited cancer disorder MAP (MUTYH 

associated polyposis) [58, 59].  

BER proteins downstream of the glycosylase are not traditionally 

inactivated in human cancers.  The remaining components of the core BER 

pathway (APE-1, Pol-β, FEN1, and DNA-ligase) are critical for life – knocking 

them out causes embryonic lethality [60], and as such a cell acquiring a mutation 

that inhibits any of these proteins is much more likely to die than to undergo 

carcinogenesis.  However, there is considerable evidence that polymorphisms in 

certain BER genes modulate cancer predisposition.  Abnormal estrogen 

metabolism can lead to an accumulation of depurinating adducts, leading to 

formation of AP sites [61].  Variation in BER efficacy due to genetic 

polymorphisms may affect the repair of these AP sites and perhaps contribute to 
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an increase in mutagenesis and ultimately breast cancer risk [62].  Multiple APE-

1 polymorphisms have been associated with increased breast cancer 

development [63].   

1.2.4 Concluding remarks on DNA repair 

 As I have described above, all three excision repair pathways - NER, 

MMR, and BER - are vital for maintenance of genomic fidelity.  A failure in any of 

these pathways can lead to corruption of the genetic code through induction of 

DNA mutations, producing an increase in cancer risk.  There are several ways in 

which a repair pathway’s efficiency can be reduced.  Polymorphisms producing 

semi-functional proteins can have negative effects on repair efficiency, as can 

expression level variations like those seen in some heterozygotes, or those seen 

when transcript levels of a repair gene are reduced.  Variations expression of 

repair proteins and polymorphisms in repair genes can and have been measured 

in general populations as indicators of individual relative risk of developing 

various types of cancers, which will be discussed in more detail in chapters 5 and 

6.  By their nature, expression studies and polymorphism studies are limited to 

the genes/proteins of interest.  Repair pathways, NER in particular, employ 

dozens of proteins to respond to DNA damage, and even more proteins are 

involved in regulating repair protein stability through post-translational 

modifications and expression levels through transcription regulation.  As a result, 

these experiments may not measure all the factors that contribute to an effective 

repair pathway’s performance.  Instead, an assay that measures the functional 

efficiency of a repair pathway would be a more effective indicator of individual 
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variations in repair efficiency and may be the most useful measure of an 

individual’s cancer development risk. 

1.3 Tobacco smoking and DNA damage 

 It has been over 50 years since the initial publication of the Surgeon 

General’s first report on the health consequences of cigarette smoking with an 

emphasis on lung cancer, and since that reporting tobacco smoking rates have 

been on the decline in the United States [11].  While adult smoking rates are 

down from over 40% when the report was published to about 15% today, tobacco 

use continues to be a considerable health hazard in the United States, with an 

estimated 36.5 million people still smoking in 2015 [64].  Tobacco smoking 

remains the number one risk factor for lung cancer development despite the drop 

in rates, with smoking contributing to approximately 80-90% of lung cancers [11]. 

Tobacco smoke contains over 70 known human carcinogens [65, 66] including a 

number of polycyclic aromatic hydrocarbons (PAH) [67]. Perhaps the most well 

researched of the PAH chemicals in tobacco smoke is benzo[a]pyrene (B[a]P).  

Through a three stage process involving cytochrome p450s (usually CYP1A1 or 

CYP1B1) and microsomal epoxide hydrolase, B[a]P is metabolized by into one of 

many isoforms of benzo[a]pyrene-7-8,dihydrodiol-9,10-epoxide (BPDE) [68, 69]. 

BPDE is a DNA reactive compound that covalently binds to guanines at the N2 

position [70-72] and causes predominantly G to T transversion mutations if left 

unrepaired [73].  While the BPDE adduct is a substrate for the nucleotide 

excision repair pathway [74, 75], failure to remove the adduct leads to increased 

mutation formation which drives carcinogenesis. 
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The relationship between NER and B[a]P mutagenesis is dependent on a 

cellular response that occurs when NER fails to remove the adduct. When NER 

is unable to process the lesion before DNA replication occurs, a low fidelity 

lesion-bypass polymerase is recruited to synthesize DNA across from the 

adducted guanine [76].  In yeast, the bypass polymerase is able to correctly 

insert cytosine about 75% of the time, but 14% of all insertions across from (+)-

trans-anti-BPDE-N2-dG, the predominant stereoisomer of BPDE [71], were 

adenine [76].  This mismatch, upon another round of replication, would produce a 

G-T transversion mutation in one of the daughter cells.  An increase in DNA 

damage burden or a decrease in NER function could result in an increased 

persistence of the DNA adduct, increasing the need for the lower fidelity 

replicative polymerase and thereby increasing the rate of mutation formations.   

The significance of this one carcinogen out of the scores present in 

tobacco smoke can be seen in the mutational signature of the p53 gene in lung 

cancers from tobacco smokers.  The tumor suppressor gene p53 is mutated in 

around 60% of human lung cancers [77].  BPDE adducts produce mutational 

hotspots in P53 in vitro that are at the same major codons mutated in human 

lung cancers (including codons 157, 158, 245, 248, and 273) [78, 79], suggesting 

that P53 mutations observed in lung cancers are produced at least in part by 

unrepaired BPDE adducts.  Our current understanding as to why BPDE lesions 

are found at these hotspots relates to the presence of CpG islands in the P53 

gene.  It has been observed that p53 is methylated at all CpG dinucleotides 

within the exon 5-8 coding region, the same location of the mutational hotspots 
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mentioned above [80]. These methylated CpGs are preferential targets for BPDE 

adduct formation [81], providing further evidence that connects tobacco smoking, 

via BPDE adduct generation, to the P53 mutational spectra observed in lung 

cancers of smokers.  Therefore, the relationship between tobacco smoking and 

lung cancer involves DNA damage produced by tobacco smoke that the NER 

pathway has not repaired, resulting in damage tolerance mechanisms of certain 

lesion bypass polymerases that increase the potential for mutagenesis.  

1.4 Another factor for lung cancer in Kentucky - Arsenic 

 There are of course many more risk factors for the development of lung 

cancer.  One such risk factor is arsenic exposure, which is associated with 

increases in cancer risk at several organ sites, including the lung [82, 83].  The 

relationship between arsenic exposure and cancer risk will be discussed in 

greater detail in chapter 4.  In the United States there are several routes of 

arsenic exposure, including contaminated drinking water, occupational exposure, 

and even as a component in tobacco smoke.  Arsenic exposure increases the 

risk for developing lung cancer, among many others.  Interestingly, arsenic is not 

a direct mutagen [84], and the mechanism most commonly proposed for its 

carcinogenicity is a co-carcinogenic function, increasing the carcinogenic 

potential of other agents.   

 As mentioned above, there is an increased incidence of lung cancer in 

Appalachian Kentucky relative to the rest of the state that cannot be fully 

explained by a higher incidence smoking.  There are many possible explanations 

for this disparity.  The high incidence could be a consequence of higher smoking 
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quantity (the amount the smokers in the region smoke), exposure to other cancer 

causing agents such as radon or heavy metals, a genetic predisposition to 

cancer development that is over-represented in the region, or some combination 

of these and other factors.  One possible explanation for the increased incidence 

could be related to arsenic exposure in the region.  High levels of arsenic have 

been observed in well waters central Appalachia, including Eastern Kentucky 

[85], as well as in shale outcroppings in the region [86].  Appalachian Kentucky 

contains high levels of arsenic found in coal deposits [87-89].  A process of coal 

mining in the region known as mountaintop removal may introduce arsenic into 

local water systems [90]. This arsenic could find its way into unregulated private 

water wells, which has the potential to produce locally high arsenic exposure.  

Indeed, areas in which coal mining has been associated with high incidence of 

lung cancer include the greater Appalachian region [15] as well as a 

southeastern region of Kentucky within Appalachia [14], suggesting that arsenic, 

or some other component of Appalachian coal, may contribute to lung cancer 

rates in the region. 

 Mechanistically, several hypotheses have been put forth to explain arsenic 

carcinogenesis including inhibition of DNA repair pathways, promoting the 

carcinogenesis of other compounds, and this will be discussed in greater extent 

in chapter 4.  As tobacco smoke is the greatest risk factor in lung cancer 

development, and since it is well established that tobacco smoke generates DNA 

damage repaired by NER that contributes to lung cancer risk in smokers, if 

arsenic was able to inhibit of the repair of tobacco smoke-induced DNA damage 
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(via an inhibition of the NER pathway), that would exacerbate the damage, 

increase its mutagenic potential, and ultimately increase lung cancer risk. 

1.5 Research Hypothesis 

My research centers on the impact of environmental factors on the 

nucleotide excision repair pathway and the consequences of variations in NER 

efficiency with regards to cancer risk, particularly lung cancer risk in Appalachian 

Kentucky.  Tobacco smoking is undoubtedly the primary factor in the 

development of lung cancer.  Tobacco smoke produces DNA damage that is 

eliminated by the nucleotide excision repair pathway.  A reduction in the 

efficiency of the NER pathway could result in a reduction in the repair of DNA 

damage caused by tobacco smoke and an increase in the risk of developing lung 

cancer.  Based on those observations, I propose that tobacco smoke 

condensate, used as a surrogate for whole tobacco smoke, inhibits NER 

function, which may be an additional mechanism through which it promotes 

carcinogenesis.  Chapter 3 will address this hypothesis using lung cells in a cell 

culture model.  As mentioned above, another lung carcinogen, arsenic, increases 

the carcinogenicity of other DNA damaging agents. I propose that arsenic inhibits 

NER function, which may be one mechanism of the carcinogenesis of arsenic.  

Chapter 4 will address this hypothesis using lung and skin cells in a cell culture 

model   

The results of the cell culture studies coupled with the high lung cancer 

incidence in eastern Kentucky prompted an epidemiological study to address the 

following hypothesis: the increased lung cancer incidence in Appalachian 
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Kentucky is due in part to an impaired NER efficiency of individuals in the region, 

which may be a consequence of environmental exposure from agents such as 

tobacco smoke and arsenic.  In other words, we hypothesize that individuals with 

lung cancer in Appalachian Kentucky have reduced NER efficiency relative to 

individuals without lung cancer in the region.  To address this hypothesis, a DNA 

repair assay was adapted to measure the efficiency of NER in a human 

population, and the process of confirming the reliability of this assay is presented 

in chapter 5, along with the effect of experimental variables on the measurement 

of NER efficiency in the study population.  Chapter 6 focuses on the population 

demographic factors that impacted the measurement of the efficiency of NER in 

a study population.  Lastly, in chapter 7 I address unanswered questions from the 

previous chapters, and I present the findings of a comparison of the efficiency of 

NER between lung cancer cases and healthy controls. Additionally, I discuss how 

this study will help establish guidelines for proper case-control comparisons 

using the NER repair assay in the future. 

  



22 
 

Figure 1.1 Lung cancer and total cancer incidence in the United States. 
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Figure 1.1. Lung cancer and total cancer incidence in the United States.  (A) 

Map of lung cancer incidence in the United States.  Lung cancer rates for each of 

the 50 states are shown.  Dark red states indicate a high incidence of lung 

cancer.  Kentucky has the highest age-adjusted incidence of lung cancer in the 

country at 96.41 cases per 100,000 people, over 50% higher than the national 

average of 62.74.  (B) Map of cancer incidence in the United States.  Aggregate 

cancer rates at all sites for each of the 50 states are shown.  Dark red states 

indicate a high incidence of lung cancer.  Kentucky has the highest age-adjusted 

incidence of cancer at all sites in the country at 520.88 cases per 100,000 

people, compared to the national average of 457.  Data is from 2009-2013, and 

is from the NAACCR (http://www.cancer-rates.info/naaccr/)  
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Figure 1.2 Variation in lung cancer frequency within Kentucky.  
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Figure 1.2. Variation in lung cancer frequency within Kentucky.  (A) Lung 

cancer rates for each of the 120 counties within Kentucky are shown.  Dark red 

counties indicate a high incidence of lung cancer.  The high incidence counties 

are present throughout the state but are at the greatest density in the far-eastern 

region, the area known as Appalachia. (B) A breakdown of cancer incidence in 

Kentucky between counties designated as Appalachian or non-Appalachian 

shows the burden of lung cancer is considerably higher (by about 20%) in 

Appalachian Kentucky as compared with the rest of the state. 

  



26 
 

Figure 1.3. Clusters of high lung cancer incidence in Kentucky.   

 

 
Figure 1.3. Clusters of high lung cancer incidence in Kentucky.  Lung cancer 

rates cannot be explained by smoking incidence in certain regions of Kentucky.  

Using a spatial scanning statistic that groups together counties in an expanding 

radius from a central point, Christian et al. 2011 discovered three clusters of 

counties in Kentucky whose average lung cancer rate was higher than the state 

average after correcting for smoking, age and gender.  Two of these clusters 

(clusters 1 and 2) lie within Appalachian Kentucky. 
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Figure 1.4. Steps in the Global Genomic Nucleotide Excision Repair  

(GG-NER) pathway.  
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Figure 1.4. Steps in the Global Genomic Nucleotide Excision Repair  

(GG-NER) pathway.  (A) A bulky, helically distorting DNA adduct forms. (B) DNA 

damage recognition protein XPC, complexed with its binding partner HR-23B recognizes 

the distortion in DNA caused by the adduct and binds on the undamaged strand 

opposite the adduct. (C) Binding of XPC promotes recruitment of the TFIIH complex, 

which uses dual helicases (XPB and XPD) to unwind the DNA, forming a single stranded 

bubble.  (D) Opening of the DNA promotes recruitment of several proteins the complex, 

including the endonuclease XPG, the single-strand DNA binding protein RPA, and XPA, 

which functions to confirm the presence of all the components necessary to perform 

subsequent steps.  (E)  ERCC1-XPF endonuclease is recruited to the damage site and it 

cuts 5’ to the DNA adduct on the damaged strand.  (F) After the 5’ incision a DNA 

polymerase (normally delta or epsilon) is recruited to the site along with RFC and PCNA 

to resynthesize the gap produced by the endonucleases.  XPG then cuts 3’ of the 

damage site, releasing the single stranded oligonucleotide containing the damage site. 

(G)  The sugar-phosphate backbone is sealed by DNA ligase I or III to complete the 

repair process.  
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Chapter 2 - Experimental Methods 

2.1 Cell Culture 

The human lung fibroblast cell line IMR-90 (obtained from the American 

Type Culture Collection) was grown in minimal essential medium (Eagle) 

containing Earle’s salts (Mediatech) supplemented with 0.1 mM non-essential 

amino acids (Lonza), 2 mM glutamine (Mediatech), 100 units/ml penicillin, 100 

µg/ml streptomycin and 10% fetal bovine serum (Sigma).  

The human bronchial epithelial cell line, BEAS-2B (obtained from the 

American Type Culture Collection), was grown in Dulbecco’s Modified Eagle’s 

Medium supplemented with 2 mM glutamine, 100 units/mL penicillin, 100 µg/mL 

streptomycin and 10% heat inactivated fetal bovine serum.   

Cultures of primary mouse keratinocyte cells were isolated as described 

[91].  Briefly, cells were taken from the epidermis of newborn C57BL/6J mice 1-3 

days after birth and grown in keratinocyte growth media composed of an equal 

volume of low calcium (LoCal) media containing (MEM Eagle with Earle’s salt, 

without calcium, 8% chelexed FBS, 2 mM glutamine, 100 units/mL penicillin, 100 

µg/mL streptomycin, 0.25 µg/mL fungizone and 0.06 mM CaCl2 and fibroblast 

conditioned LoCal medium. In order to condition the LoCal medium, primary 

mouse fibroblast cells were grown in it until confluent, and the medium was 

removed, filter sterilized with a 0.22 micron filter, and stored in minus 80°C until 

use.  All cell lines were maintained in a 5% CO2 incubator at 37ºC. 
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2.2 Preparation of CSC  

Cigarette smoke condensate (CSC) was prepared using the University of 

Kentucky Reference 3R4F Cigarettes as previously described (Hsu et al 1991).  

Briefly, the particulate phase of smoke was collected on Cambridge filters using a 

30-port smoking machine (Borgwaldt) under standard Federal Trade Commission 

conditions, [92]  dissolved in DMSO at a concentration of 40 µg/µl, and stored in 

small aliquots at -80oC.  At the time of use, aliquots were thawed in a 37°C water 

bath and discarded after use. 

2.3 Treatment of cells with CSC  

IMR-90 cells were grown to confluency prior to treatment and then treated 

with CSC for 24 h unless otherwise stated.  BEAS-2B cells were seeded at a 

density of 1.2 million cells per 10 cm plate, allowed to grow for 24 h and log 

phase cells were then treated with CSC for 16 h. The growth of BEAS-2B cells 

does not exhibit contact inhibition so studies could not be performed using 

confluent cultures.  For both cell lines, control (mock treated) cells were treated 

with DMSO, the solvent used for the preparation of CSC, at a volume equal to 

that used for the highest dose of CSC in each experiment.   

2.4 Treatment of cells with sodium arsenite 

IMR-90 and mouse keratinocyte cells were grown to confluency and then 

treated with arsenite for 24 h unless otherwise stated.  Control (untreated) cells 

were treated by adding comparable volumes of water, the solvent used to 

dissolve sodium arsenite, to the medium.  In the repair assays, sodium arsenite 

was added to the medium for the duration of the repair interval. 
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2.5 Treatment of cells with MG-132 

MG-132, a potent inhibitor of proteasome mediated proteolysis, was 

prepared from a 2mM stock solution from EMD Bioscience (catalog # 475791) 

stored at -20ºC.  The solution was thawed immediately prior to treatment and 

diluted for use.  To investigate how changes in the abundance of XPC protein are 

influenced by UV-C irradiation, confluent IMR-90 cells were treated with MG-132 

for 4 h prior to irradiation.  The cells were irradiated with 20 J/m2 UV-C and either 

lysed immediately or returned to medium containing MG-132 for incubation after 

UV.  XPC levels were examined using the Western method described above. To 

investigate a potential involvement of the proteasome in the turnover of XPC 

after cells are treated with CSC or arsenite, confluent IMR-90 cells were treated 

with the indicated concentrations of CSC or arsenite for 16 h in the presence or 

absence of MG-132.  After treatment, cells were counted and lysed, and XPC 

levels were measured by Western Blotting. 

2.6 Analysis of cell viability for CSC and arsenite treatments 

Cultured cells were grown and treated with CSC or arsenic as described 

above. After the appropriate treatment duration, cells were trypsinized, washed 

with chilled PBS, centrifuged, and resuspended in 10 mL of chilled PBS. Cells 

were counted in triplicate (at minimum) for each dose using trypan blue dye 

exclusion.  

2.7 Isolation and cryopreservation of peripheral blood mononuclear cells 

PBMCs were isolated from blood samples using standard Ficoll density 

gradient centrifugation methods [93].  Upon receipt, the blood was warmed to 
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room temperature, diluted 1:1 in serum-containing medium, (90% RPMI, 10% 

FBS) and layered onto the density gradient.  The samples were centrifuged in an 

Allegra X-22R centrifuge (400g, 25ºC, 30 m), and the PBMC cell layer (buffy 

coat) was extracted and washed in serum containing medium.  The cells were 

counted, pelleted, and resuspended in 4ºC freezing medium (50% FBS, 40% 

RPMI, 10% DMSO) at a density of 5 x 106 cells/ml [94].  The cells were placed in 

a Mr. Frosty, a storage device that uses isopropanol to slowly reduce the 

temperature of the freezing medium, and then stored overnight in a -80°C freezer 

before placing into a liquid nitrogen jacketed tank for long-term storage in the 

Biospecimen and Tissue Procurement Shared Research Facility (BSTP SRF).   

2.8 Thawing and stimulation of peripheral blood mononuclear cells 

 Samples of PBMCs were removed from liquid nitrogen storage and 

incubated at 37°C.  When the solution thawed, the cells were immediately 

transferred to tubes containing 37ºC thawing medium (50% FBS, 50% RPMI) at a 

ratio of 1 ml thawed cells to 10 ml of thawing medium.  An aliquot of cells was 

incubated with Trypan blue dye to evaluate cellular viability (which was greater 

than 90%). The remainder of the cells were then centrifuged (1200 RPM, 10 

minutes) to pellet the cells.  The supernatant was then removed and the cells 

were resuspended at a density of 1 million cells/ml of growth medium (20% FBS, 

80% RPMI, pen/strep and glutamine) containing the mitogen 

phytohaemagglutinin (PHA-P, from Sigma Aldrich) at a concentration of 10 µg/ml. 

PBMCs were then incubated at 37° C in 5% CO2 for 72 h and the repair assay 

was performed as described below. In the absence of PHA, which stimulates 
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cellular growth and division, we found that lymphocytes are not proficient in NER, 

similar to a previous observation that CPD repair was significantly impaired in 

unstimulated cells [95]. 

2.9 Measurement of NER – the immunoblot assay 

The removal of 6-4PPs and CPDs from total genomic DNA was measured 

using an immunoblot assay as previously described [96, 97] with some 

modifications. Cells were grown and treated with CSC or arsenic (when testing 

the impact of these agents on NER) as described above.  They were then 

washed twice with PBS and irradiated with UV-C light to introduce photolesions; 

20 J/m2 UV-C to measure the removal of 6-4 PPs and 2 J/m2 UV-C to measure 

the removal of CPDs. After irradiation, cells were either lysed immediately or 

after incubation for increasing periods of time to permit repair.  When testing the 

impact of CSC or arsenic on repair, the respective chemical was added back into 

the medium for the repair period after irradiation.  DNA was isolated using a 

Promega wizard genomic DNA isolation kit.  The concentration of the DNA 

samples from each time-point was measured using a fluorometer and Hoechst 

dye, which emits blue fluorescence when bound to dsDNA. The DNA was then 

denatured and equal amounts of DNA from each time-point were loaded onto a 

Hybond nitrocellulose membrane (Biorad) using a slot blot apparatus (100-200 

ng of DNA per slot for the detection of 6-4 PPs and 20 ng of DNA per slot for 

detection of CPDs). The membrane was baked in a vacuum oven at 80oC for 1 h, 

treated with 5 % nonfat dry milk (Blotto, Santa Cruz Biotechnology) in TBST (10 

mM Tris pH 8.0, 150 mM NaCl and 0.1% Tween-20) for 1 h, and incubated 
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overnight at 4o with mouse monoclonal antibodies (1:10,000 dilution) specific for 

either 6-4 PPs or CPDs (CAC-NM-DND-002, CAC-NM-DND-001, Cosmo Bio 

USA) in 1% dry milk and TBST.  The following day, the membrane was washed 

extensively with TBST and then incubated with goat anti-mouse horseradish 

peroxide-conjugated secondary antibodies (1:10,000 dilution, Thermo Scientific) 

in 1% dry milk and TBST for 2 h at room temperature. After washing, 

chemiluminescence (ECL – Plus, GE Healthcare Bio-Sciences Corp) and 

fluorimaging were used to detect the photolesions.  Image Quant computer 

software was employed to quantify the signal detected by the phosphorimager.  

The percent repair at each time point was calculated by dividing the signal 

strength of the slot-blot band obtained at each repair time point by the signal 

strength of the band obtained at the zero time point. For most membranes, a 

DNA ladder of irradiated DNA was used as an internal control for uniformity of 

slotting, antibody incubation and development with chemiluminescence.  

Unirradiated samples of DNA were also loaded to detect any nonspecific binding 

of the antibodies to DNA which in general was found to be insignificant.  

The immunoblot assay used to measure NER functions by inducing DNA 

damage and measuring clearance over time of the induced lesions.  The 

damaging agent used in the experiment was UV-C light, which introduces DNA 

photolesions.  Biologically, UV-C is absorbed by the ozone layer and as a result 

humans are almost never exposed to this wavelength of light.  Our rationale 

behind using this wavelength of light instead of UV-B/A was the quantity of 

photolesions introduced by UV-C from a given voltage is much higher than higher 
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wavelength UV bulbs.  This allows us to rapidly introduce DNA damage in a short 

period of time, minimizing the time cells are out of medium, and essentially 

eliminates the potential for repair to begin during the course of treating the cells 

with the damaging agents.  This is also why a chemical agent was not used to 

introduce DNA damage in the NER assay.  A variety of chemicals including BaP, 

acrolein, and AAF produce DNA damage that the NER complex would recognize 

and repair.  However, these chemicals require time to be absorbed into the cell, 

to reach the DNA, and to adduct to the DNA, and some even require cellular 

metabolism to become reactive to DNA, capable of binding and generating a 

DNA adduct.  Therefore, these chemicals require a significantly longer incubation 

time in the cellular medium than it takes to irradiate cells (30 seconds).  During a 

longer incubation period, the NER pathway is actively NER attempting to remove 

the DNA damage as it is being introduced.  A baseline damage point for all 

treatments is thus hard to achieve as any negative effect on repair would change 

the amount of DNA lesions present at “time zero” between treatments. 

2.9.1 Immunoblot assay for lymphocytes 

Lymphocytes stimulated with PHA were placed into 10 cm tissue culture 

plates at a density of 1 million cells per 1 ml stimulation medium (80% RPMI, 

20% FBS, 10 µg/mL PHA) and irradiated with 20 J/m2 UV-C to introduce 6-4 PP 

lesions. Cells were either lysed immediately after irradiation or after a period of 

time to permit repair of the damaged DNA.  At three points after irradiation (1, 2, 

4 hours) a portion of the irradiated cells were harvested and lysed.  The 

remainder of the repair assay was then carried out in the same fashion as 

described in section 2.9. 
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2.10 Western blot analysis  

The effect of CSC treatment on the abundance of XPC, XPA, and β-actin 

proteins in IMR-90 cells and BEAS-2B cells and the effect of arsenic treatment 

on the abundance of XPC, XPA, and β-actin proteins in IMR-90 cells and mouse 

keratinocyte cells were determined by Western blotting using mouse monoclonal 

antibodies (XPA for mouse cells: ab65963, Abcam;  XPA for human cells: sc-

56813; XPC: sc-74411, Santa Cruz Biotechnology; β-actin: A3854, Sigma). Cells 

were treated with different concentrations of CSC, sodium arsenite, or mock 

treated as described above for 24 h unless stated otherwise.  After treatment, 

cells were washed with PBS and trypsinized. Approximately five million cells 

were collected by centrifugation for each treatment, washed with PBS and stored 

at -20o or -80oC. Each sample of frozen cells was thawed on ice, resuspended in 

200 µl RIPA buffer (50 mM Tris (7.4), 150 mM NaCl, 1% NP-40, 1 mM EDTA, 

0.25% Na-Deoxycholate) containing 0.6 mM PMSF, 1% Protease Cocktail 

Inhibitor (Sigma) and 2 units of DNase 1 (New England BioLabs), lysed by 

sonication, centrifuged at 13,500 G to remove debris, and the amount of protein 

in each of the supernatants was quantified using the Bradford method.  

Alternatively, cells were counted, pelleted, directly lysed in loading dye and 

samples were loaded based on cell number.  Samples containing 100 µg of 

protein were mixed with loading dye, boiled at 100oC for 5 min, resolved in 8% 

(XPC/Actin) or 12% (XPA/Actin) SDS-PAGE gels and transferred to a PVDF 

membrane (Bio-Rad). The membranes were incubated for one h with 5% nonfat 

dry milk in TBST for blocking.  For XPC and ß Actin, the upper half of the 
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membrane was probed with a 1:1,000 dilution of XPC antibody and the lower half 

with 1:100,000 dilution of ß Actin antibody and incubated overnight at 4o C. The 

membrane was then washed extensively with TBST and incubated for 2 h with 

1:5,000 diluted HRP-conjugated goat anti-mouse antibodies (GE Healthcare Bio-

Sciences Corp) at room temperature. After extensive washing with TBST, the 

binding of antibodies was detected using enhanced chemiluminescence (ECL – 

Plus, GE Healthcare Bio-Sciences Corp) and fluorimaging. For XPA and ß Actin, 

the full membrane was probed with 1:1,000 dilution of XPA antibody overnight at 

4o C. Washing and development for XPA was performed in the same manner as 

XPC. The membrane was then stripped using a stripping buffer (Pierce) at 37o C 

for 15 min, washed with TBST, blocked and probed with ß Actin antibody. The 

amount of XPC or XPA in each lane was normalized to the amount of ß Actin in 

the same lane. 

2.11 Real-time PCR 

The effect of CSC or arsenite on the expression of XPC, XPA DDB2 

(arsenite only), and GAPDH RNA in IMR-90 cells was measured using Real-

Time PCR. Confluent cells were treated as described with CSC, arsenite, or their 

respective controls for 24 hours, washed with PBS, trypsinized, centrifuged, 

washed with PBS and pelleted. Total RNA was isolated from one million cells for 

each treatment using a GenElute mammalian total RNA Miniprep kit (Sigma). 

The RNA 6000 Nano Chip kit from Agilent was used to determine the quality and 

concentration of RNA isolated from the cells. For each treatment, 1.5 µg of RNA 

was reverse transcribed to cDNA using random primers and a high capacity 
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cDNA RT kit (Applied Biosystems). Primer sets specific to each gene were 

identified using the Universal Probe Library (Roche), and synthesized by 

Integrated DNA Technologies. Reactions were carried out on a Roche 

LightCycler 480 system using a 96-well plate format. Each reaction contained 1X 

Master Mix, 100 nM fluorescent reporter probe, 200 nM of each forward and 

reverse primer and 5 µl of cDNA (diluted 1:10). Samples were first incubated for 

10 min at 95oC followed by 40 cycles of amplification (95o C for 15 s denaturation 

and 60o C for 1 min annealing).  An equal volume of 1:10 diluted cDNA from 

each experimental treatment was mixed together to create the DNA that was 

used as a standard. Serial dilutions of mixed cDNA (1:1, 1:10, 1:100, 1:1,000, 

and 1:10,000) were used to create a standard curve. The expression levels of 

RNA in the treated cells were determined by comparing the crossing point (CP) 

values of the treated cells with the CP values of a standard curves for the 

corresponding gene or RNA. The crossing point is cycle of amplification during 

which the fluorescence of a sample achieves a threshold fluorescence above 

background. The amounts of XPC, XPA, or DDB2 RNA were normalized to the 

amounts of GAPDH RNA for each treatment. 
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Chapter 3 
 

Exposure of Human Lung Cells to Tobacco Smoke Condensate 
Inhibits the Nucleotide Excision Repair Pathway 

PLoS One. 2016 Jul 8;11(7):e0158858. doi: 10.1371/journal.pone.0158858. eCollection 2016 
 

3.1 Introduction 

Lung cancer is a deadly disease and a leading cause of cancer-related 

mortality in the US and in the world [98-100]. In 2012, the most recent year data 

is available, lung cancer accounted for 1.8 million cases of cancer and 1.6 million 

deaths worldwide [101, 102]. Exposure to tobacco smoke is the predominant risk 

factor for the development of lung cancer and it is estimated to account for 85-

90% of all lung cancer cases [103, 104]. It is also associated with the formation 

of tumors at additional sites in the body that are not directly exposed to smoke 

including the bladder, pancreas, liver, stomach and bone marrow [11, 105]. 

Tobacco use remains prevalent in certain regions of the world [106] and while its 

use has declined in the US, approximately 50% of newly diagnosed lung cancers 

occur in former smokers [103]. Hence, lung cancer and other forms of cancer 

associated with tobacco smoke exposure remain a tremendous health burden in 

the US and world-wide. Continued elucidation of the molecular mechanisms that 

lead to the formation of cancers associated with tobacco smoke is essential for 

prevention, treatment and identification of individuals who are at greatest risk for 

the development of cancer.  

Thousands of compounds have been identified in the vapor and 

particulate phases of cigarette smoke and they include carcinogens, co-

carcinogens, mutagens and tumor promoters. Approximately 70 of these 

https://www.ncbi.nlm.nih.gov/pubmed/?term=holcomb+csc
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compounds have been classified as carcinogens [66, 104]. Different classes of 

chemical carcinogens are present in tobacco smoke including the polycyclic 

aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P), 

dibenz[a,h]anthracene and dibenzo[a,l]pyrene. The DNA-reactive metabolites of 

PAHs are considered to be among the primary tobacco smoke carcinogens [67, 

104].  Metabolic activation of these and other chemical compounds found in 

tobacco smoke can generate intermediates that react with DNA bases and 

produce DNA adducts. Hence, DNA adducts are likely continually formed in the 

lung tissues of people who smoke, and if they are not removed by DNA repair 

processes, their persistence could lead to the formation of mutations. Many 

different types of genetic alterations are found in lung cancer and they include 

point mutations, genomic rearrangements, amplifications and large scale 

insertions and deletions. Mutations in KRAS and TP53 are frequently found in 

lung tumors and lung tissues of smokers [103, 107, 108], and the accumulation 

of mutations in these and other important oncogenes and tumor suppressor 

genes are driving forces in the development of lung cancer. 

PAH-induced DNA damage is removed by the nucleotide excision repair 

(NER) pathway [74, 75, 109-113] and hence, NER activity is likely critical to the 

prevention of carcinogen-induced mutations that contribute to neoplasia 

associated with smoke exposure. NER is a versatile pathway that removes a 

wide variety of structurally diverse DNA lesions including those generated by 

metabolites of chemical carcinogens as well as those generated by exposure to 

ultraviolet (UV) light. The cyclobutane pyrimidine dimer (CPD) and 6-4 
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photoproduct (6-4 PP), produced by UV light, are model substrates commonly 

studied when measuring NER activity as they are rapidly generated by a brief 

exposure to UV light [25]. In mammals, at least 20 different protein factors 

participate in NER, including the XPA-G factors that are singly defective in the 7 

corresponding complementation groups of the human disease, xeroderma 

pigmentosum (XP).  The tumor suppressor factor p53 also impacts NER 

efficiency probably by transcriptional regulation of the XPC and DDB2 gene 

products [20, 21, 114, 115]. The NER pathway is comprised of two sub-pathways 

that differ in their mechanism of damage recognition: global genomic NER (GG-

NER) which can remove damage from anywhere in the genome and 

transcription-coupled NER (TC-NER) which selectively removes damage from 

the transcribed strands of expressed genes.  In GG-NER, DNA damage 

recognition is accomplished by XPC, which is stabilized by its binding partners 

RAD23B, and CENTRIN2 [26].  In TC-NER, damage is recognized by the stalling 

of the RNA polymerase complex at the site of damage (reviewed in [24]).  After 

DNA damage recognition, many of the subsequent steps are the same for GG-

NER and TC-NER. The helicase activities of TFIIH produce additional unwinding 

of DNA where upon the endonuclease activities of the XPF/ERCC1 complex and 

XPG produce single-strand incisions flanking the damaged site.  The original 

integrity of the DNA is restored after an approximately 30 nucleotide region of 

DNA containing the lesion is removed, and the gap is filled by pol δ or pol ε, 

using the undamaged strand as a template (reviewed in [25]). 
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Several different types of animal models have been used to investigate 

the molecular mechanisms of lung cancer development caused by exposure to 

tobacco smoke. Unfortunately, many smoke inhalation studies have had limited 

success [116-118]. The A/J mouse model has been used extensively but it is 

confounded by the spontaneous lung tumors in control animals, need for long 

smoke exposure and recovery regimens, low tumor induction by smoke 

inhalation and responses that do not adequately mimic those found in humans 

exposed to tobacco smoke [116, 119]. Greater tumor incidence has been 

achieved by exposing female B6C3F1 mice to lifetime, whole-body mainstream 

tobacco smoke [118, 120].  The utilization of mice with targeted disruptions in 

tumor suppressor genes or oncogenes associated with lung cancer development 

in humans may yield improved animal models and additional mechanistic insights 

[121].  

As animal models for tobacco smoke exposure have had limited success, 

cigarette smoke condensate (CSC) has been used as a surrogate for cigarette 

smoke exposure to study its effects in model cell culture systems [105]. It is the 

particulate phase of cigarette smoke collected on Cambridge filters and 

resuspended in DMSO. It is mutagenic and genotoxic and produces several 

different types of mutations including point mutations, deletions, loss of 

heterozygosity (LOH),  microsatellite instability, sister chromatid exchanges and 

micronuclei [122-127]. It introduces DNA damage [127-130]. It also induces 

human and mammalian cell transformation [131-133] and tumor formation when 

applied to mouse skin [134-136]. While it is well established that cigarette smoke 
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introduces a variety of different types of DNA damage, it is less clear how smoke 

exposure influences DNA repair efficiency and DNA damage response pathways. 

Loss of DNA repair capability results in increased mutagenesis and 

carcinogenesis. In mouse models, deficiencies in NER have been associated 

with tumorigenesis at many organ sites including the lung [137]. Compared to 

normal mice, NER-deficient mice have a higher incidence of lung tumors when 

exposed to B[a]P [138, 139] and XPC-deficient mice have elevated levels of 

spontaneous lung tumors [140]. By extension, even a partial loss of NER 

efficiency in people is likely to increase mutagenesis and cancer incidence, 

particularly in cases of chronic DNA damage induction, as occurs in the lung 

tissue of smokers.  

We have studied the effects of CSC on the NER pathway using an 

immuno-slot blot assay to measure NER in two human lung cell lines; IMR-90 

and BEAS-2B.  We find a dose-dependent inhibition of the efficiency of NER 

when both cell lines are treated with increasing concentrations of CSC. 

Additionally, the impact of CSC on the abundance of various NER proteins and 

their respective RNAs was investigated.  We find that the abundance of XPC 

protein is significantly reduced when cells are treated with increasing 

concentrations of CSC, while the abundance of XPA protein is unaffected by 

treatment. Both XPC and XPA RNA levels are modestly affected by CSC 

treatment. Finally, a possible mechanism in which CSC inhibits XPC expression 

by altering protein turnover was investigated.  Our results provide evidence for 

the first time that CSC can directly interfere with the normal NER process, both in 
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terms of overall efficiency as well as at the protein and RNA level of NER factors, 

suggesting a possible new manner by which tobacco smoke may promote 

carcinogenesis.   

3.2 Statistical Considerations 

All statistical evaluations were done using Graph Pad Prism 6.  For the 

experiments comparing multiple treatments to a control, a 1-way ANOVA with a 

Holm-Sidak test for multiple-comparison was employed.  For the experiments 

comparing one treatment to a control, a Student’s T-test was employed. For all 

analyses, p<0.05 was used as the threshold for significance.  Statistical 

significance is described in the results section and not presented on the images 

as some graphs contained too many significant treatments to indicate on the 

graphs. 

3.3 Results 

3.3.1 CSC inhibits NER in IMR-90 cells 

We first investigated the effects of CSC on the NER pathway by studying 

a human lung fibroblast cell line, IMR-90.  The effect of CSC on cell viability was 

evaluated by treating cells with a range of different doses, 0 to 200 µg/ml, for 24 

h. No significant effect on viability was observed even after treatment of cells with 

200 µg/ml, the highest concentration of CSC used (Fig. 3.1A).  NER was studied 

using an immuno-slot blot assay that measures the removal of 6-4PPs or CPDs 

introduced by UV irradiation. These lesions are repaired exclusively by NER in 

human cells and 6-4PPs are model substrates to measure NER efficiency in total 

genomic DNA. In untreated cells, 6-4PPs are rapidly removed from DNA with the 
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majority of lesions removed within 3 h after UV irradiation. Treatment with CSC 

inhibits the removal of 6-4PP lesions in a dose-dependent fashion and the 

inhibition was statistically significant for all doses of CSC used (except 60 µg/ml) 

at one or more time points (Fig. 3.1B-C).  In general, NER in CSC treated 

samples was slowed but reached completion within 24 h after UV irradiation 

except when cells were treated with the highest dose of CSC, where both the 

kinetics and extent of repair were reduced. In contrast to the rapid removal of 6-

4PPs from genomic DNA found in untreated IMR-90 cells, the removal of CPDs 

in untreated cells was much slower. This observation of slow and inefficient 

removal of CPDs is similar to what other investigators have previously found in 

human cell lines using comparable doses of UV light [141, 142].  Treatment with 

CSC had only a minor inhibitory effect on the removal of CPDs (Fig. 3.1D-E), 

with a statistically significant difference only observed at the 48 h time point 

(p=.0435). The significance of this inhibition is difficult to evaluate since it was 

only seen at 48 h after UV irradiation. While the IMR-90 cells were studied in a 

confluent state, small differences in the amount of DNA replication at the 48 h 

time point could contribute to the differences in repair measured in the CSC-

untreated and treated samples.  

3.3.2 CSC reduces the abundance of XPC but not XPA protein in IMR-90 

cells 

The effect of CSC on the abundance of XPC and XPA protein was 

determined by western blotting using whole cell lysates of IMR-90 cells treated 

with 120, 160 and 200 µg/ml of CSC for 24 h. These are the same doses and 
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treatment time used to study the effects of CSC on NER. Whole cell lysates from 

mock treated cells (DMSO) were used as controls. The abundance of XPC 

protein was reduced in IMR-90 cells treated with increasing concentration of CSC 

for 24 h (Fig. 3.2A-B); XPC protein levels were reduced by 56% in cells treated 

with 200 µg/ml of CSC. The reduction in XPC protein compared to the mock 

treated cells was statistically significant in all treatments.  In contrast, there was 

not any statistically significant change in the abundance of XPA protein in cells 

treated with CSC (Fig. 3.2C-D).  The amounts of XPC and XPA proteins were 

normalized to the amounts of β actin present in each lane.  

3.3.3 A timecourse of CSC treatment shows a correlation between the 

reduction of XPC protein and the inhibition of NER 

Treatment of IMR-90 cells with CSC for 24 h inhibits NER and results in 

reduced expression of XPC protein. To measure the kinetics of these inhibitions, 

cells were treated with 200 µg/ml of CSC and the abundance of XPC protein was 

measured at 4 h intervals over a 24 h period and NER was measured after 

treatment with CSC for 8 h intervals over a 24 h period. A reduction in XPC 

protein compared to untreated cells was observed as early as 8 h and it was 

maximally inhibited by 16 h. The inhibition was statistically significant for all 

timepoints except 4 h (Fig. 3.3A-B).  Significant inhibition of NER was observed 

at all treatment times beginning with the 8 h treatment (Fig. 3.3C-D). NER was 

maximally inhibited with the longest length of treatment, 24 h, and a statistically 

significant difference from cells not treated with CSC was observed for all repair 

timepoints.  
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3.3.4 CSC modestly reduces XPC and XPA RNA levels in IMR-90 

The effect of CSC treatment on the abundance of XPC or XPA RNA in 

IMR-90 cells was measured using the same doses of CSC that were used to 

evaluate its effect on protein levels. No statistically significant changes in the 

abundance of XPC RNA were observed when cells were treated with 120 µg/ml 

or 160 µg/ml CSC, whereas a modest but statistically significant decrease was 

observed when cells were treated with 200 µg/ml of CSC (Fig. 3.4).  XPA showed 

modest, but significant, reduction in RNA expression across all CSC treatments.   

3.3.5 CSC inhibits NER and reduces the abundance of XPC protein in 

BEAS-2B cells 

We also investigated the impact of treatment with CSC on NER in a 

bronchial epithelial cell line, BEAS-2B.  We chose BEAS-2B cells due to the 

relevance of epithelial cells as sites of lung cancer formation, as they are the 

cells that line the respiratory tract and directly interact with inhaled carcinogens.  

The effect of CSC on cell viability was evaluated by treating cells with the same 

dose range chosen for IMR-90 viability (Fig. 3.5A).  Some toxicity was observed 

for BEAS-2B cells treated with CSC compared to little or no toxicity observed in 

IMR-90 cells (Fig. 1A). BEAS-2B were actively replicating at the time of 

treatment, and as a result they were likely more sensitive than IMR-90 cells to 

the toxicity of CSC. The effect of CSC on NER was then studied by measuring 

the removal of 6-4PPs after treatment with 175 µg/ml CSC for 16 h (Fig. 3.5B).  

In cells not treated with CSC, NER was rapid and efficient. Treatment with CSC 

resulted in significant inhibition of the removal of 6-4 PPs at all three time points 
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(Fig. 3.5C).  BEAS-2B cells were also treated with different doses of CSC for 16 

h and probed for XPC and XPA protein expression (Fig 3.5D).  A reduction in the 

abundance of XPC protein, but not XPA, was observed across the range of 

treatments of BEAS-2B cells with CSC (Fig 3.5E); similar to our findings in IMR-

90 cells.   

3.3.6 The reduction of XPC protein in IMR-90 cells by CSC treatment is 

mediated through the proteasome 

After observing that treatment of IMR-90 cells with CSC results in a 

significant reduction in the abundance of XPC protein, we investigated the 

potential influence of CSC treatment on ubiquitin mediated turnover of XPC.  UV 

irradiation induces ubiquitination of XPC protein [143] and XPC protein 

abundance has been previously linked to ubiquitin modification. After UV 

irradiation, XPC protein levels quickly drop in a proteasome dependent manner 

[144-146], although this appears to be both temporary and UV-dose dependent 

[143].  We also addressed this by treating IMR-90 cells with MG-132, which 

permits ubiquitin-linkages but prevents ubiquitin-mediated proteasomal 

degradation, and then exposing those cells to UV irradiation.  XPC levels were 

reduced after UV exposure, but in the presence of MG-132, this reduction was 

significantly diminished (Fig, 3.6A).  This confirms that UV-mediated XPC protein 

levels are altered in a proteasome-dependent manner.  We then asked whether 

the observed inhibition of XPC by CSC was also mediated by the proteasome.  

We treated IMR-90 cells with CSC in the presence of MG-132 for 16 h and 

observed that the reduction in XPC protein level produced by treatment with CSC 
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alone was almost completely abrogated by the addition of MG-132 (Fig. 3.6B).  

120 µg/ml CSC reduced XPC expression in the absence of MG-132, but in the 

presence of 1 and 5 µM MG-132, CSC did not inhibit XPC protein expression, 

suggesting that the inhibition of XPC protein expression by CSC requires 

functional proteasomal activity. 

3.4 Discussion 

In this study, we find that cigarette smoke condensate, a surrogate for 

tobacco smoke exposure, can inhibit NER function and reduce the expression of 

XPC, a key protein required for DNA damage recognition in the NER pathway. 

Consequently tobacco smoke exposure can affect the integrity of DNA in two 

fundamentally different ways. It is well established that it can introduce DNA 

damage, an important contributor to lung carcinogenesis. However, our findings 

indicate that, in addition, it can also inhibit the DNA repair pathway that is 

essential for the removal of some of the carcinogenic DNA damage introduced by 

smoke carcinogens. Hence, cells of the lung exposed to smoke would likely 

suffer an even greater DNA damage burden than previously held. Certain 

individual constituents of tobacco smoke have been implicated in inhibiting DNA 

repair.  Acrolein, a combustion product of cigarette smoke, has been shown to 

inhibit the nucleotide excision repair pathway and it inhibits XPC expression in a 

proteasome-dependent fashion [147-149].  In addition, arsenic, a metal 

constituent of tobacco smoke, has been found to reduce XPC expression [150]. 

Together, these studies suggest that components of tobacco smoke can impact 

lung carcinogenesis by inhibiting NER. CSC can also inhibit the base excision 
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repair (BER) pathway, which repairs oxidative DNA damage, another type of 

tobacco smoke damage [130, 131].  Hence, it will be important to investigate how 

tobacco smoke-induced alterations in different DNA repair pathways contribute to 

lung carcinogenesis.  

DNA damage recognition is an early, key step in NER and several studies 

suggest that DNA damage recognition by XPC is or can be the rate-limiting step 

in the pathway. Reduced expression of XPC has been associated with reduced 

repair of UV-induced photoproducts [151] and increased cancer incidence [47, 

152].   Biochemical and cellular studies indicate that the binding affinity of XPC 

for the DNA lesion or the time it takes XPC to find the DNA lesion may be the 

specific rate limiting step [28-30]. Conversely, complementation of an XPA 

deficient cell line with very low levels of XPA protein fully restores DNA repair 

activity [153] and XPA becomes rate limiting only when levels are reduced by 

over 90% [154, 155]; these studies suggest that the participation of XPA protein 

is usually not a rate limiting step in NER.  We find that treatment of cells with 

CSC inhibits NER and there is a concomitant reduction in XPC protein while XPA 

protein levels remain unchanged. If XPC protein is rate limiting in NER, then the 

inhibition of NER by CSC may be a direct consequence of the reduction in XPC 

protein. Additional genetic studies that manipulate the abundance of XPC during 

or after CSC treatment are needed to more directly establish the relationship 

between CSC induced alterations in XPC protein levels and its inhibition of NER. 

We find that treatment with CSC results in only a modest reduction in the levels 

of XPC RNA and it is only detected well after the amounts of XPC protein are 
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reduced. This suggests that most of the reduction in XPC protein produced by 

treatment with CSC is not caused by a reduction in XPC RNA. Lastly, an 

additional protein, UV DNA Damage Binding Protein 2 (UV-DDB2), is specifically 

required for the recognition and removal of CPDs in cells and functions in the 

turnover of XPC that can impact the removal of both CPDs and 6-4PPs. We 

attempted to examine the effect of CSC treatment on the abundance of DDB2 

but were unsuccessful in identifying an antibody that yielded results specific to 

the protein. 

Previous studies have demonstrated that XPC protein is polyubiquitinated 

after exposure to UV light and its polyubiquitination is mediated by the UV-DDB-

Ubiquitin ligase complex [143, 145, 156].  There are at least two distinct types of 

ubiquitin modifications to XPC following UV-induced DNA damage.  A lysine-48-

linked polyubiquitin linkage appears to promote degradation of XPC by the 

proteasome [157].  In contrast, a lysine-63-linked ubiquitination of XPC can be 

critical for the removal of XPC from the lesion site and allow downstream NER 

factors access to the DNA damage [158].  In addition, although the type of 

ubiquitin linkage was not determined, ubiquitin modification of XPC can actually 

increase its binding affinity for undamaged DNA [143]  XPC is also modified by 

sumoylation in response to UV damage [145] and inhibition of this modification 

reduces XPC stability after UV irradiation.  XPC SUMO modification has been 

implicated in promoting lysine-63 mediated XPC polyubiquitination [158, 159].  A 

recent report revealed seven unique UV-induced ubiquitination sites on XPC 

[160]. All of these studies demonstrate the complexity of the post-translational 
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modifications to XPC in response to DNA damage and they likely represent [81] 

the intricacies of regulating such an important and complex pathway.   

We observe that treatment with CSC results in a reduction in the 

abundance of XPC protein in the absence of UV damage, and that this reduction 

is reversed when cells are treated with MG-132.  This suggests that the reduction 

in the abundance of XPC protein produced by exposure to CSC is a 

consequence of enhanced proteasome-dependent turnover of the protein that is 

mediated by ubiquitination. XPC is intrinsically unstable as a monomer [161] and  

knocking down one of its binding partners, HR23B, promotes XPC degradation in 

a proteasome dependent manner [162].  Studies have also found that 

ubiquitination and proteasome-dependent turnover of XPC is important in 

maintaining steady-state levels of the protein in the absence of DNA damage 

[163]. In addition, the deubiquitinating enzyme USP-7 removes a UV-induced 

polyubiquitin chain from XPC that would otherwise target it for proteasome-

mediated degradation [146].  Hence, HR23B and USP-7 both function to stabilize 

XPC by inhibiting ubiquitin-mediated degradation. Since treatment with CSC can 

result in the introduction of different forms of DNA damage (discussed below), it 

is possible that the induced turnover of XPC by the proteasome is mediated 

through the introduction of certain types of DNA damage. Additional studies are 

needed to determine if CSC-mediated turnover of XPC functions by promoting 

ubiquitination or inhibiting deubiquitination and to characterize the sites of 

ubiquitination. CSC has been previously shown to enhance the proteasome-

mediated turnover of Akt, a protein kinase [164], which together with our studies 
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may indicate that smoke exposure can impact multiple pathways by targeting 

specific proteins to the proteasome for degradation.  

The assay used to measure NER in this study measures the introduction 

and removal of UV light-induced photoproducts. We chose to use this approach 

because it provides a method to rapidly introduce DNA damage and it precisely 

quantitates the kinetics of removal of a model substrate for the NER pathway. 

Moreover, the use of UV light as a DNA damaging agent is not confounded by 

variations in cellular uptake or metabolic activation as can be the case when 

using chemical agents to introduce DNA damage. It is likely that CSC would 

inhibit the removal of other substrates for NER but additional studies are required 

to investigate its effect on the removal of chemical modifications to DNA 

introduced by tobacco smoke.  Tobacco smoke contains a number of compounds 

capable of producing DNA lesions, several of which are repaired by the NER 

pathway, including BPDE.  The BPDE lesion can be particularly important in the 

etiology of smoking-related lung cancer, as the G-T transversion signature 

mutation of BPDE [70, 76, 81, 105, 165] is found more frequently in at CpG 

mutational hotspots in the P53 gene of lung tumors from smokers compared with 

lung tumors from non-smokers [78, 166, 167].  Mice exposed topically to B[a]P 

develop skin tumors with the same signature mutations in p53 [168].  Hence, 

measuring the effect of CSC on the removal of BPDE adducts is important to 

directly demonstrate that tobacco smoke exposure inhibits the repair of DNA 

damage introduced by the tobacco smoke itself. In our study, it is likely that any 

adducted base damage directly introduced by the CSC treatment was very small 



54 
 

compared to the levels of photoproducts introduced by UV irradiation. Thus, it is 

unlikely that the inhibition of NER by CSC treatment was due to a competition 

between different types of DNA damage introduced during the experiments or 

titration of the NER pathway by damage directly introduced by CSC.  

3.5 Conclusions 

Cigarette smoking remains the highest risk factor for lung cancer 

development in the United States and the world.  However, not all smokers 

develop lung cancer.  Our results suggest that CSC, a commonly accepted 

surrogate for tobacco smoke exposure, inhibits the NER pathway, increasing the 

persistence of lesions in DNA.  In addition, CSC reduces the abundance of XPC 

protein, a key protein required for DNA damage recognition in NER, and this 

reduction is likely produced by targeting XPC to the proteasome for degradation. 

It is well established that variations in DNA repair capacity contribute to cancer 

risk, and our findings indicate that inhibition of NER is another mechanism by 

which smoking may contribute to development of lung cancer. Therefore, it may 

be prudent to consider measuring individual DNA repair capacity as a means of 

evaluating lung cancer risk, particularly among people who have other risk 

factors. 
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Figure 3.1. CSC inhibits NER in IMR-90 human lung fibroblasts. 
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Figure 3.1. CSC inhibits NER in IMR-90 human lung fibroblasts. (A) Cell 

viability after CSC treatment. Confluent IMR-90 cells were treated with CSC (or 

mock treated with DMSO) with the concentrations shown for 24 h and the 

percentage of viable cells was measured using Trypan blue dye exclusion. The 

data represent the mean ± SE (Standard Error) from four independent 

experiments (except for 60 µg/ml CSC which included two independent 

experiments). (B) Removal of 6-4 PPs. Cells were treated with the concentrations 

of CSC shown or with DMSO for 24 h and irradiated with 20 J/m2 UVC to 

introduce photolesions. After irradiation, cells were either lysed immediately or 

after incubation in medium containing CSC or DMSO for the times (h) shown to 

permit repair.  The immunoblot assay to detect 6-4 PPs was performed and 

samples were loaded in duplicate for each repair time point. (C) Removal of 6-4 

PPs. A graphical representation of results obtained from multiple immunoblots 

measuring the removal of 6-4 PPs is shown. Each data point represents the 

mean ± SE of three repeats from two independent experiments.  (D)  Removal of 

CPDs. IMR-90 cells were treated with 200 µg/mL CSC or with DMSO for 24 h 

and irradiated with 2 J/m2 UVC to introduce photolesions.  After irradiation, cells 

were either lysed immediately or after incubation in medium containing CSC or 

DMSO for the times shown to permit repair.  An immunoblot assay to detect CPD 

lesions was performed and samples were loaded in triplicate for each time point.  

(E) Removal of CPDs. A graphical representation of results obtained from 

multiple immunoblots measuring the removal of CPDs is shown.  Each data point 

represents the mean ± SE of three repeats from two independent experiments. 
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Figure 3.2. CSC reduces the abundance of XPC, but not XPA, protein in 
IMR-90 cells. 
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Figure 3.2. CSC reduces the abundance of XPC, but not XPA, protein in IMR-

90 cells. (A) Cells were treated with different concentrations of CSC as shown for 

24 h, and the abundance of XPC was examined by western blot analysis.  (B) A 

graphical representation of multiple western blots for XPC expression is shown.  

The data presented are the mean ± SE from two repeats each of three independent 

experiments, and XPC expression was normalized to β-actin. (C) Cells were 

treated as shown for 24 h, and the abundance of XPA was measured by western 

blot analysis.  (D) A graphical representation of multiple western blots for XPA 

expression is shown. The data presented are the mean ± SE of three repeats from 

three independent experiments, and XPA expression was normalized to β-actin.   
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Figure 3.3. The impact of CSC on XPC protein and NER efficiency depends 

on treatment duration.  
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Figure 3.3. The impact of CSC on XPC protein and NER efficiency depends 

on treatment duration. (A) IMR-90 Cells were treated with 200 µg/ml of CSC for 

the times indicated and XPC expression was examined by western blot analysis.  

(B) A graphical representation of multiple western blots examining the time course 

of inhibition for XPC expression after CSC treatment is shown. The data presented 

are the mean ± SE of three repeats from one experiment, and XPC expression 

was normalized to β-actin.  (C) Results of an immunoblot showing the time course 

of the effect of CSC on repair of 6-4 PPs in IMR-90 cells.  Cells were treated with 

200 µg/mL CSC for 8, 16, or 24 h (or DMSO for 24 h) and irradiated with 20 J/m2 

UVC to introduce photolesions.  After irradiation, cells were either lysed 

immediately or after incubation in medium containing CSC or DMSO for the times 

shown (3, 6 and 8 h) to permit repair.  An immunoblot assay was performed and 

samples were loaded in duplicate to measure the removal of 6-4 PPs.  (D) A 

graphical representation of multiple immunoblots for 6-4 repair is shown.  Each 

data point represents the mean ± SE of three repeats from one experiment.  
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Figure 3.4. The effect of CSC on the abundance of XPC and XPA RNA in IMR-

90 cells.  

 
 

Figure 3.4. The effect of CSC on the abundance of XPC and XPA RNA in IMR-

90 cells. Cells were treated with the indicated concentrations of CSC (or DMSO) 

for 24 hours. RNA was isolated and Real Time PCR was performed as described 

in the methods section. The expression of XPC or XPA RNA was normalized to 

GAPDH RNA for each treatment. The data presented are the mean ± SE of one 

analysis from three independent experiments. 
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Figure 3.5. CSC inhibits NER and the abundance of XPC protein in BEAS-2B 

cells. 
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Figure 3.5. CSC inhibits NER and the abundance of XPC protein in BEAS-2B 

cells. (A) Cells were treated with the concentrations of CSC shown for 16 h and 

the percentage of viable cells was measured using Trypan blue dye exclusion. The 

data presented are the mean ± SE of four biological experiments.  (B) Cells were 

treated with 175 µg/mL CSC (or DMSO) for 16 h, and irradiated with 20 J/m2 UVC 

to introduce photolesions.  After irradiation, cells were either lysed immediately or 

after incubation in medium containing CSC or DMSO for increasing periods of time 

to permit repair.  An immunoblot assay was performed and samples were loaded 

in duplicate to measure the removal of 6-4 PPs. (C) A graphical representation of 

multiple immunoblots for 6-4 repair is shown.  Each data point represents the mean 

± SE of four repeats from one experiment.  (D) Cells were treated with the different 

concentrations of CSC shown for 24 h, lysed, and the abundance of XPC and XPA 

were examined by western analysis. (E) A graphical representation of multiple 

western blots for XPC and XPA protein is shown.  The data presented are the mean 

± SE of two repeats from two independent experiments for XPC and three repeats 

of one experiment for XPA.  XPC and XPA values were normalized to β-actin. 
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Figure 3.6. Involvement of the proteasome in the reduced expression of XPC 

protein in IMR-90 cells after treatment with UV or CSC. 
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Figure 3.6. Involvement of the proteasome in the reduced expression of 

XPC protein in IMR-90 cells after treatment with UV or CSC. (A) Cells were 

treated with 10 µM MG-132 or untreated for 4 hours, and then irradiated with 20 

J/m2 UV-C.  After irradiation, cells were either lysed immediately or after 

incubation for increasing periods of time in the same type of medium as was 

used for the pretreatment; medium containing MG-132 or not containing MG-132. 

XPC expression was measured using Western blot analysis.  (B) A graphical 

representation of the experiments from (A) is shown.  XPC expression was 

normalized to β-actin.  The data presented are the mean of two repeats from one 

experiment.  The percent XPC protein was calculated by comparing post-UV time 

points to the appropriate 0 h (MG-treated or not MG-treated) time point.  

Treatment with MG-132 for 4 h had a negligible impact on XPC expression 

before irradiation, so both 0 h values were set to 100%. (C) Cells were treated 

with a combination of CSC and/or MG-132 at the indicated concentrations for 16 

h.  XPC levels were measured by Western blot analysis and normalized to Actin. 

(D) A graphical representation of the average obtained from two different blots for 

the experiments in (C) is shown; treatment with 3 µM MG-132 was not included.  

XPC expression was normalized to β-actin. 
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Chapter 4 

Inorganic arsenic inhibits the nucleotide excision repair pathway 
and reduces the expression of XPC protein 

http://dx.doi.org/10.1016/j.dnarep.2017.02.009 

4.1 Introduction 

 Inorganic arsenic is a metalloid found in moderate levels in the Earth’s 

crust. It is one of the world’s oldest known carcinogens [169] and it is classified 

as a class I carcinogen [170]. Humans can be exposed to arsenic by drinking 

contaminated water [171], inhaling certain substances in occupational settings 

[170], ingesting contaminated food (summarized in [172]) and using tobacco 

products [173]. It is estimated that approximately 200 million people in the world 

are exposed to drinking water contaminated with potentially harmful levels of 

arsenic [174]. In the US, exposure to contaminated drinking water occurs in 

many regions throughout the country [175]. According to the Agency for Toxic 

Substances and Disease Registry (ATSDR), arsenic ranks number one on the 

priority list of hazardous substances found at National Priority List sites 

(http://www.atsdr.cdc.gov/SPL/index.html). 

Exposure to arsenic increases the risk for cancer development at multiple 

organ sites including the skin [176-178], lung [179, 180], liver (summarized in 

[181]), and bladder [182].  Arsenic has been used for centuries for a range of 

medicinal purposes, and topical treatment with an arsenic compound called 

Fowler’s solution (discovered in 1786) was used to treat a host of diseases 

including malaria, syphilis, asthma, chorea, eczema, and psoriasis [183]. It was 

over one hundred years later that Hutchison proposed that Fowler’s solution was 

http://dx.doi.org/10.1016/j.dnarep.2017.02.009
http://www.atsdr.cdc.gov/SPL/index.html
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a human skin carcinogen [184].  Correlations between arsenic exposure and 

internal cancer development were first observed in regions of the world where 

populations were exposed to levels of arsenic between 10-100 fold greater than 

the 2002 EPA standard and current World Health Organization Guideline level of 

10 µg/L in drinking water [185].  In these regions of the world, such as parts of 

Bangladesh, India, China, Argentina, Chile, and other countries (Reviewed in 

[175]), high arsenic contamination in the water is a consequence of local 

geographical deposits of the metal and poor procedures for decontaminating 

water.  In the US, exposure to arsenic is generally more moderate. However, it 

has been estimated that arsenic concentrations exceed 20 µg/L in 5% of 

regulated water systems [175] and arsenic exposure in the US has been 

tentatively linked to skin [186], bladder [187] and lung cancers [83].  Interestingly, 

arsenic has also been adopted as a chemotherapeutic agent, with arsenic 

trioxide (ATO) used with success to treat acute promyelocytic leukemia [188-

190].  

Arsenic exposure likely contributes to cancer development by multiple 

mechanisms. Evidence indicates that arsenic impacts genotoxicity, although it 

does not directly interact with DNA to produce DNA damage (reviewed in [84]). 

Rather than directly producing DNA damage, arsenic is often considered a co-

carcinogen that influences the mutagenicity and carcinogenicity of other agents.  

Co-treatment of cells with arsenic and UV light results in a reduction in the 

removal of photoproducts produced by UV light [191-193] and an increase in 

mutation rates produced by UV light [193-196].  Co-treatment of cells with 
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arsenic increases the levels of DNA adducts produced by benzo[a]pyrene diol-

epoxide (BPDE) which is a metabolite of benzo[a]pyrene (B[a]P), a compound 

present in tobacco smoke [197, 198]. Consistent with this observation, arsenic 

reduces the removal of BPDE adducts [199, 200] and increases the frequency of 

mutations formed by BPDE [201]. These observations are directly relevant to the 

types of cancer associated with exposure to arsenic; specifically, arsenic 

increases non-melanoma skin cancer and lung cancer incidences in humans for 

which UV light and tobacco smoke exposure, respectively, are risk factors [177, 

202]. 

Several studies have investigated how arsenic may act as a co-

carcinogen using mouse models.  When added to drinking water, arsenic 

enhances the production of DNA damage and the mutagenicity of topically 

applied B[a]P, but it does not produce mutations or DNA damage in the absence 

of B[a]P [203, 204].  Arsenic increases the multiplicity and size of skin tumors 

produced by dimethylbenz[a]anthracene (DMBA), a polycyclic aromatic 

hydrocarbon (PAH), but it does not alter skin carcinogenesis in the absence of 

DMBA [205, 206].  It also greatly increases the formation of UV-induced skin 

tumors in hairless mice [207], but it does not induce tumor formation in the 

absence of UV damage [208]. 

Many of the agents that arsenic interacts with as a co-mutagen or co-

carcinogen, including UV light and tobacco smoke, produce DNA lesions that are 

removed by the nucleotide excision repair (NER) pathway. UV light produces 

cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs), both 
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substrates for NER [209].  Tobacco smoke contains several classes of chemicals 

which can react with DNA, forming adducts that are removed by NER. Multiple 

polycyclic aromatic hydrocarbons (PAHs) from combustion of tobacco (as well as 

fossil fuels and other organic matter) produce bulky, DNA distorting adducts that 

are generally repaired by NER. PAH-induced adducts include (+)-trans-BPDE-

N2-dG, the primary stereoisomeric adduct formed by B[a]P, which is clearly 

removed by NER (reviewed in [75]).  Tobacco smoke also contains a class of 

aromatic amines called 4-aminobiphenyls (4-ABP) which can produce DNA 

adducts recognized by NER, including N-(deoxyguanosin-8-yl)-4-aminobiphenyl 

(dG-C8-ABP) [210]. 

The NER pathway removes helix-distorting DNA lesions which can cause 

mutations and drive carcinogenesis.  This is clearly illustrated by decades of 

investigation of the disease Xeroderma Pigmentosum (XP). Patients with XP are 

deficient in NER and have greatly elevated levels of skin cancer and other forms 

of cancer [40, 42, 211].  In mammals, at least 20 different proteins participate in 

NER, including the XPA-G factors that are singly defective in the 7 corresponding 

complementation groups of XP [25, 212, 213].  The tumor suppressor factor p53 

also impacts NER efficiency probably by transcriptional regulation of the XPC 

and DDB2 genes [20, 21, 114, 115].   NER, sometimes referred to as global 

genomic NER (GG-NER), can remove damage from anywhere in the genome.  A 

subpathway of NER called transcription-coupled NER (TC-NER) selectively 

removes damage from the transcribed strands of expressed genes.  These two 

pathways differ in their mechanism of DNA damage recognition.  In NER, DNA 
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damage recognition is accomplished by XPC, which is stabilized by its binding 

partners RAD23B and CENTRIN2 [26] and is assisted by the UV-damaged DNA 

binding protein DDB2 (the product of the XPE gene).  In TC-NER, damage is 

recognized by the stalling of the RNA polymerase complex at the site of damage 

(reviewed in [24]).  After DNA damage recognition, the subsequent steps are the 

same for NER and TC-NER. The multi-subunit complex TFIIH contains helicase 

activities that produce additional unwinding of DNA, which produces double-

strand/single-strand DNA junctions.  After DNA unwinding several NER 

components are recruited to the site of the lesion, including XPA, which is likely 

used to verify the presence of the DNA lesion and that the required NER factors 

are present for the subsequent steps of the pathway.  Next, the endonuclease 

activities of the XPF/ERCC1 complex and XPG produce single-strand incisions 

flanking the damaged site.  The original integrity of the DNA is restored after an 

approximately 30 nucleotide region of DNA containing the lesion is excised, and 

the gap is filled by pol δ or pol ε, using the undamaged strand as a template, with 

DNA ligase IIIα or DNA ligase I filling in the final nick in the DNA (reviewed in 

[25]). 

The molecular mechanisms by which arsenic may act as a co-carcinogen 

are under debate.  One possibility is that arsenic inhibits the removal of DNA 

damage produced by carcinogens such as UV light and certain compounds 

present in tobacco smoke, thus exacerbating their mutagenic effects. NER has 

been suggested as a candidate pathway since it removes the DNA damage 

introduced by these agents [150, 200, 214-217].  In the present study, we have 
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examined the impact of arsenic (as the trivalent ion arsenite) on NER using an 

immuno-blot assay to directly measure DNA lesions specifically removed by 

NER.  NER function was inhibited with increasing concentrations of arsenite in 

both human fibroblasts and mouse keratinocytes.  Additionally, NER protein and 

RNA levels were measured in both cell types in response to arsenite treatment, 

and a concentration-dependent decrease in XPC protein and XPC, XPA, and 

DDB2 RNA levels was observed.  Finally, a possible mechanism in which 

arsenite inhibits XPC protein expression by altering protein turnover was 

investigated.  Our findings support the hypothesis that arsenic can promote 

carcinogenesis by interfering with the NER-specific repair of DNA damage 

introduced by other carcinogens, and provides insights into how arsenic may 

additionally function as an anti-cancer drug, especially in tandem with DNA 

damage-inducing chemotherapeutics. 

4.2 Results 

4.2.1 Statistical considerations 

All statistical evaluations were done using Graph Pad Prism 6.  All 

experiments involved comparing multiple treatments to a control, and therefore a 

1-way ANOVA with a Holm-Sidak test for multiple-comparison was employed.  For 

all analyses, p<0.05 was used as the threshold for significance.   

4.2.2 Arsenite inhibits NER in primary mouse keratinocyte cells 

 We investigated the impact of treatment with arsenite on NER in primary 

mouse keratinocytes.  Arsenic can be a co-carcinogen in skin cancer 

development and squamous cell and basal cell carcinoma originate from 



72 
 

keratinocytes located in the skin.  First, the effect of arsenite on mouse 

keratinocyte cell viability was evaluated across a range of arsenite exposures 

(Fig. 1A).  Toxicity was moderate across the treatment range, with the highest 

exposure producing ~50% toxicity.  After examining the effects of arsenite on cell 

viability, the effect of arsenite on NER was studied using an immuno-slot blot 

assay that uses lesion-specific antibodies to measure the removal of 6-4 PPs or 

CPDs introduced by UV irradiation.  These lesions are removed exclusively by 

NER in rodent and human cells, although CPDs are a poorer substrate for NER 

and require a longer period of time to be removed from DNA [218, 219].  In cells 

exposed to arsenic, they were pretreated with arsenic for 24 h, irradiated with UV 

and arsenic was added to the medium for the duration of the repair interval. In 

keratinocytes not treated with arsenite, 6-4 PPs were rapidly removed from DNA, 

with the majority of lesions removed within 4 h after UV irradiation. In contrast, 

treatment with arsenite resulted in a concentration-dependent inhibition of the 

removal of 6-4 PPs compared to untreated cells (Fig. 1B).  20 µM arsenite 

significantly inhibited 6-4 PP removal at the 8 and 24 h timepoints, while 40 µM 

arsenite significantly inhibited 6-4 PP removal at the 4, 8, and 24 h timepoints.  

Arsenite treatment also inhibited the removal of CPDs in mouse keratinocytes 

(Fig. 1C).  The UV-C dose used to measure the removal of CPDs was 

considerably lower than that used to measure removal of 6-4 PPs (2 J/m2 

compared to 20 J/m2) since CPDs are introduced at a much higher frequency 

than 6-4 PPs. 20 µM arsenite significantly inhibited the removal of CPDs at the 
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48 h timepoint, and the 40 µM treatment significantly inhibited the removal of 

CPDS across all of the timepoints measured. 

4.2.3 Arsenite reduces the abundance of XPC, but not XPA, protein in 

primary mouse keratinocyte cells 

The effect of arsenite on the abundance of XPC and XPA was determined 

by western blotting using whole cell lysates isolated from mouse keratinocytes 

treated for 24 h with the indicated concentrations of arsenite (Fig 2A). The 

amounts of XPC and XPA at each concentration are presented in reference to 

their amounts in untreated cells, with normalization for the amount of β-actin 

present in the same lane (Fig. 2B-C). The abundance of XPC was reduced in 

cells treated with increasing concentration of arsenite (Fig. 2B); XPC levels were 

reduced by 40% in cells treated with 10 µM arsenite, the lowest concentration 

tested.  The reduction increased to 59% and 81% for the 20 and 40 µM arsenite 

treatments.  The amount of reduction compared to untreated cells was 

statistically significant for each concentration of arsenite administered. In 

contrast, the abundance of XPA was not significantly affected by arsenite 

treatment, except at the highest exposure (Fig. 2C).   

4.2.4 Arsenite inhibits NER in IMR-90 cells 

 We also investigated the effects of arsenite on the NER pathway by 

studying the human lung fibroblast cell line, IMR-90.  First, the effect of arsenite 

on cell viability was evaluated by treating cells with the indicated concentrations 

for 24 h (Fig. 3A). Treatment with arsenite produced some moderate toxicity at 

exposures ≥15 µM, with 40 µM producing an approximate 50% reduction in 
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viability.   NER was studied as described.  Treatment with ≥20 µM arsenite 

resulted in a concentration-dependent inhibition of the removal of 6-4 PPs 

compared to untreated cells.  The removal of 6-4 PP lesions was significantly 

slowed in all the arsenite treatments, across all timepoints measured (except As-

20 at 2, 4 and 6 h) (Fig. 3B). No significant effect on the removal of 6-4 PPs was 

observed when cells were treated with 10 µM arsenite for 24 h (data not shown).   

Second, IMR-90 cells were treated for a longer period of time, 48 h,  with a 

reduced range of arsenic concentrations (0-15 µM arsenite) and cell viability and 

the removal of 6-4 PPs was measured (Supplemental Fig. 1). When cells were 

treated with arsenic for 48h, the medium was removed after 24 h of treatment 

and replaced with fresh medium containing the same concentration of arsenic. 

Treatment of cells with 10 or 15 µM arsenite for 48 h produced little toxicity 

(Supplemental Fig. 1A) but resulted in a significant inhibition of the removal of 6-

4 PPs compared to untreated cells at all timepoints except the 3 h timepoint of 

the 10 µM arsenite treatment (Supplemental Fig 1B).  At these lower doses, the 

amount of inhibition observed was similar, likely due to technical limitations of the 

assay to differentiate small differences in NER efficiency. Thus, we observe that 

arsenic inhibits the removal of 6-4 PPs after treatment with higher concentrations 

for 24 h and after treatment with lower concentrations for 48 h.  The impact of 

arsenite on the removal of CPDs was also investigated.  When cells were treated 

with 20 or 40 µM arsenite for 24 h and irradiated with 2 J/m2 UV light, the 

removal of CPDs was inhibited in a statistically significant fashion at multiple 
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timepoints (12 and 48 h timepoints for 20 µM arsenite, all timepoints for 40 µM 

arsenite) (Fig. 3C). 

4.2.5 Arsenite reduces the abundance of XPC, but not XPA, protein in IMR-

90 cells 

The effect of arsenite on the abundance of XPC and XPA was determined 

by western blotting using whole cell lysates isolated from IMR-90 cells that were 

treated for 24 h with different concentrations of arsenite.  Whole cell lysates 

isolated from untreated cells were used as controls. The amounts of XPC and 

XPA were normalized to the amount of β-actin in the same lane. The abundance 

of XPC was reduced in IMR-90 cells treated with increasing concentrations of 

arsenite (Fig. 4A); XPC levels were reduced by 40% in cells treated with 10 µM 

arsenite, the lowest exposure tested.  Inhibition increased to 70 and 85% for the 

20 and 40 µM arsenite treatments.  The reduction in the abundance of XPC in all 

three treatments compared to untreated cells was statistically significant (Fig 4B).  

XPA levels were also examined after arsenite treatment (Fig 4C).  In contrast to 

XPC, only the highest concentration of arsenite produced a modest but 

significant 25% reduction in the abundance of XPA (Fig 4D).  

4.2.6 Arsenite reduces XPC, XPA, and DDB2 RNA levels in IMR-90 cells 

The effect of arsenite treatment on the abundance of XPC, XPA, and 

DDB2 RNA in IMR-90 cells was measured by real-time PCR, using the same 

treatment conditions used to evaluate its effect on protein levels.  Arsenite 

significantly reduced RNA expression of all three genes in a concentration-

dependent fashion (Fig. 5).  Changes in the abundance of XPC and XPA RNA 
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were observed at 20 and 40 µM arsenite, whereas DDB2 expression was 

severely reduced even at the lowest exposure, 10 µM arsenite. 

4.2.7 The reduction of XPC protein in IMR-90 cells by arsenite treatment is 

mediated through the proteasome 

 After observing that treatment of IMR-90 cells with arsenite results in a 

significant reduction in the abundance of XPC protein, we investigated the 

potential influence of arsenite treatment on ubiquitin-mediated degradation of 

XPC.  As XPC is modified by ubiquitin [143, 145, 156], we hypothesized that 

arsenite may inhibit XPC abundance in a manner that is regulated by the 

proteasome.  To test this hypothesis, we treated IMR-90 cells with arsenite in the 

presence or absence of the proteasomal inhibitor MG-132 for 16 h and measured 

XPC by Western blotting (Fig. 6A).  In cells treated with arsenic alone, we 

observed a reduction in XPC expression similar to the levels seen in Fig. 4A. 

When cells were co-exposed to arsenic and MG-132, the reduction in XPC 

expression was eliminated, and expression levels were maintained at a level 

similar to untreated cells (Fig. 6B).  These findings suggest that proteasomal 

degradation of XPC is at least partially responsible for the observed reduction in 

XPC protein levels upon treatment with arsenite.   

4.3 Discussion 

In this study, we use an immuno slot-blot method to directly measure the 

removal of UV photoproducts and we find that arsenic, in the trivalent form of 

sodium arsenite, inhibits the efficiency of NER.  Treatment with arsenite 

significantly inhibits the removal of 6-4 PPs and CPDs in two different cell types; 
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human IMR-90 lung fibroblasts and primary mouse keratinocytes.  In addition, we 

find that treatment with arsenite reduces the abundance of XPC protein and 

XPC, XPA and DDB2 RNA. Others have investigated the effects of arsenic on 

the efficiency of NER using a variety of different assays. Arsenite has been found 

to interfere with the production of repair-related DNA strand breaks in general 

and alters DNA incision and ligation frequencies in human fibroblasts exposed to 

UV light, more indirect measurements of NER [214-217]. An early observation of 

an inhibitory effect of arsenite on the efficiency of NER was made studying the 

removal of thymine dimers using chromatography in a Chinese hamster ovary 

(CHO) cell line measured 24 h after UV irradiation [192].  More recently, arsenite 

treatment of human lymphoblastoid TK6 cells was found to slow the removal of 

UV-induced DNA damage as measured by the Comet assay 2 h after UV 

irradiation [193] and arsenite treatment of a mouse keratinocyte cell line was 

found to delay the removal of 6-4 PPs introduced by solar simulated UV radiation 

[191]. Therefore, our findings extend and add to the understanding of how 

arsenic alters NER and possibly contributes to arsenic-mediated carcinogenesis. 

We observed some increase in cellular toxicity when cells were treated 

with different concentrations of arsenic.  While the inhibition of NER can sensitize 

cells to cell death and apoptosis [220-222], it is unclear how apoptosis or cell 

death may impact the efficiency of NER.  There was a 10 fold difference in the 

doses of UV light used in our experiments to measure the removal of 6-4 PP and 

CPD lesions (20 J/m2 for 6-4 PPs and 2 J/m2 for CPDs).  However, we found that 

the inhibition of NER found after treatment with arsenic was significant regardless 
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of whether the cells were treated with a lower or higher dose of UV light; this 

suggests that the inhibition of NER in response to treatment with arsenic was not 

solely brought about changes in toxicity. In addition, when we treated cells with 

lower concentrations of arsenic for a longer period of time, 48 h instead of 24 h, 

toxicity was markedly reduced, but we still observed a significant inhibition in 

removal of 6-4 PPs.  

Our observations of the impact of arsenic on cellular expression of NER 

proteins and RNA levels also extend previous studies. Treatment of human skin 

fibroblasts with arsenic reduced the expression of XPC and DDB2 at both the 

protein and RNA levels, but the efficiency of NER was not measured [150].  We 

observe that treatment with arsenic significantly reduces XPC protein in human 

IMR-90 lung fibroblasts and primary mouse keratinocytes but we were unable to 

measure DDB2 protein since we were unsuccessful in identifying an antibody 

that yielded results specific to the protein. We also observe a reduction in XPC, 

XPA, and DDB2 RNA levels in IMR-90 cells treated with arsenic. Our observation 

of a reduction in XPA RNA but not XPA protein after treatment with some 

concentrations of arsenic might be due to a relatively high abundance of XPA 

protein or low turnover of the protein. Interestingly, arsenic exposure has also 

been linked to a reduction in RNA levels of several NER genes in a human 

population, including ERCC1, XPF, and XPB, but not XPA (XPC and DDB2 RNA 

levels were not measured) [223].   

Several studies have proposed mechanisms by which arsenic can inhibit 

NER function.  One study observed that arsenic reduces the expression of XPC 
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(and DDB2) protein and RNA in human skin fibroblasts, and these reductions 

also correlated with a reduction in the recruitment of XPC to sites of DNA 

damage [150].   The mechanism by which arsenic reduced XPC expression or 

whether treatment with arsenic impacted the efficiency of the removal of DNA 

damage was not explored, in contrast to our study. Additionally, arsenic inhibits 

the removal of BPDE adducts in A549 human lung cells and it can displace zinc 

from a peptide representing the zinc finger domain of XPA at high exposures (as 

judged by 19% zinc release when the peptide was treated with 100 µM arsenite) 

[199].  Since the zinc finger domain has been shown to be important for the 

function of XPA in NER [224], arsenic may disrupt NER by altering the structure 

of XPA, but additional studies are needed to explore these findings. In addition, 

methylated metabolites of arsenite were found to be considerably more efficient 

than the parental arsenical in displacing zinc from XPA, and inhibited the removal 

of BPDE lesions at lower concentrations [199].  

We observe that treatment with arsenic inhibits NER function and reduces 

XPC expression.  XPC is ubiquitylated in response to UV-induced DNA damage 

[143, 145, 156].  There are multiple ubiquitin modifications to XPC following the 

introduction of UV-induced DNA damage. These include a lysine-48-linked 

polyubiquitin linkage that appears to promote degradation or recycling of XPC 

[157] and a lysine-63-linked ubiquitination of XPC that can be critical for the 

removal of XPC from the damaged site to allow downstream NER factors access 

to the DNA damage [158].  The deubiquitinating enzyme USP-7 is responsible for 

removing a UV-dependent ubiquitin linkage to XPC, and this promotes XPC 
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stability [146].  We tested whether the reduction of XPC protein expression that 

we observe after treatment of IMR-90 cells with arsenic is related to proteasomal 

turnover of XPC.  We observe that the proteasomal inhibitor MG-132 abrogated 

the effects of arsenite in reducing XPC protein levels. This indicates that the 

reduction in the abundance of XPC produced by exposure to arsenic is, at least 

in part, a consequence of enhanced proteasome-dependent turnover of the 

protein that is mediated by ubiquitination.  Additional studies are needed to 

determine if arsenic-mediated turnover of XPC functions by promoting 

ubiquitination or inhibiting deubiquitination and to characterize the sites of 

ubiquitination. Furthermore, arsenic’s effects on the proteasome may not be 

limited to altering the expression of XPC and may have an influence on the 

stability of other proteins and pathways.   

Given our observation that XPC RNA is also reduced by arsenite 

treatment, arsenic-mediated reduction in XPC expression may not be solely a 

result of increased proteasomal turnover of XPC.  However, inhibiting 

proteasomal activity with MG-132 fully restored XPC expression in the presence 

of arsenic, indicating that proteasomal turnover of XPC is responsible for the 

majority of the observed reduction of XPC protein abundance.  Had the reduction 

in XPC levels by arsenic treatment been primarily a consequence of reduced 

transcript levels, MG-132 would not have been able to restore XPC expression to 

levels seen in untreated cells.  Additionally, treatment with MG-132 alone did not 

result in an increase in XPC abundance. This suggests that the steady state 

turnover of XPC is fairly low in undamaged cells, and this observation is 
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consistent with results of a previous study where XPC levels were unchanged for 

up to nine hours when XPC turnover was inhibited [225].  Consequently, the 

increase in XPC protein in cells treated with MG-132 and arsenic relative to cells 

treated with arsenic alone is not a result of MG-132 increasing XPC above basal 

levels, but rather a function of inhibiting the turnover of XPC mediated by arsenic.  

Nevertheless, the relative contributions of the reduction in XPC RNA and the 

increase in XPC turnover to the overall arsenite-dependent reduction in XPC 

needs further study.   

We studied the effects of arsenic on the NER pathway in light of previous 

associations made between exposure to arsenic and elevated frequencies of 

lung and skin cancer in humans [176, 179] and elevated frequencies of skin 

cancer in UV-exposed mice [207, 208]. The primary risk factor for lung cancer is 

exposure to tobacco smoke and the primary risk factor for skin cancer is 

exposure to solar UV irradiation. Tobacco smoke introduces many types of DNA 

damage, including the highly studied PAHs such as B[a]P.  BPDE, the ultimate 

metabolite of B[a]P, produces large bulky adducts that are recognized and 

removed by the NER pathway [75, 109, 111].  BPDE adducts produce a 

characteristic mutational signature, and this signature is found more frequently in 

lung cancers of smokers than non-smokers [78, 166, 167].  Sun exposure 

introduces DNA lesions which are also recognized by NER [25, 209].  In non-

melanoma skin cancer, mutational signatures characteristic of exposure to UV 

light are observed in the p53 gene and are present at mutational hotspots [226], 

indicating that these NER substrates can be causative in the production of non-
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melanoma skin cancer.  Melanocytes are more resistant to UV induced 

cytotoxicity than are keratinocytes, the epidermal skin cells responsible for most 

non-melanoma skin cancers.  This difference may explain the observation that 

arsenic increases the cancer incidence of non-melanoma skin cancers [227] 

while the relationship between arsenic and melanoma development is less 

clearly established [228, 229].  Since deficiencies in the removal of BPDE 

adducts or UV-induced photolesions by NER result in increased mutation levels, 

the inhibition of NER by arsenite could explain how arsenic can act as a co-

carcinogen in smoking-related lung and UV-related skin cancers.  

In general, humans are exposed to arsenic for a substantial period of time, 

such as when they are exposed to contaminated drinking water (which can occur 

for years), or when they are treated with arsenic-based chemotherapies (which 

can occur for several weeks [188]). In contrast, treatment of cells in culture 

usually involves a single, much shorter exposure to arsenic which often 

necessitates the use of higher than physiological concentrations to observe 

measurable effects. Chronic treatment of cells with low concentrations of arsenite 

can induce cellular transformation [230-233], global DNA hypomethylation [231-

234], local DNA hypermethylation [234, 235], alterations in chromatin structure 

and splicing patterns [230], and increases in oncogenic gene expression [232, 

236].  Recent research has indicated that chronic arsenic exposure alters 

methylation patterns of DNA repair factors involved in NER, leading to reduced 

RNA expression of ERCC1 and ERCC2 [237].  These epigenetic changes likely 

contribute to arsenic-mediated carcinogenesis, but chronic treatment of cells in 
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culture with lower, physiological concentrations would likely complicate 

investigations and interpretations of direct effects on DNA repair.  Additional 

studies in human populations are important to determine if chronic exposure to 

lower concentrations of arsenic through contaminated drinking water or arsenic-

based chemotherapy inhibits the efficiency of NER in a human populations.  

Several previous studies, some described above, and our study have 

investigated the effects of arsenic on NER using single treatments of at least 10 

µM arsenic [150, 192, 199, 200]. These concentrations are higher than what 

humans would usually encounter during long term chronic exposure to 

contaminated drinking water. However, they are within the range of 

concentrations used to sensitize chemo-resistant cells to killing by 

chemotherapeutic agents such as doxorubicin [238], paclitaxel [239], erlotinib 

[240], and cisplatin [241].  Of particular interest is the finding that arsenic 

treatment sensitizes chemo-resistant cancer cells to killing by cisplatin. Cisplatin 

generates DNA adducts that are substrates for NER. Hence, co-treatment with 

arsenic may sensitize cells to cisplatin by inhibiting the NER pathway [241]. The 

same study also found that treatment with arsenic reduced expression of XPC, 

and that disruption of the XPC gene in the absence of arsenic treatment 

sensitized the chemo-resistant cancer cells to killing by cisplatin.   These studies 

and our study suggest that disruption of the NER pathway by treatment with 

arsenic should be explored to enhance the efficacy of chemotherapeutic agents 

used to treat cancer.   
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While several studies have indicated that arsenic increases the mutation 

frequency of other carcinogens such as UV-light [193-196] and components of 

tobacco smoke [201, 203], relatively few studies have investigated the impact 

arsenic plays on the types of mutations found in co-exposed systems.  While not 

a measurement of mutagenesis, co-exposure of arsenic and benzo[a]pyrene 

increased the frequency of adducts produced by benzo[a]pyrene in mice [204].  

In cultured CHO cells, co-treatment with arsenic and UV-light increases mutation 

frequency by a factor of two relative to cells exposed to UV-light alone, and the 

mutational spectrum in the co-treated cells retained a UV-signature [242]. Very 

few studies have examined the spectra of mutations produced in human skin 

cancers related to human exposure to arsenic.  In one single study of an arsenic-

exposed population of skin cancer patients, the mutations found in p53 were at 

different codons than the normal hotspots seen in the p53 gene of UV-induced 

skin cancers [243]. However, all the tumor samples in this single study were 

obtained from areas of the body not generally exposed to sunlight, and hence it 

is unlikely that UV light played any major role in the etiology of these tumors.  

Consequently, it is clear that additional studies are important to investigate the 

mutational spectra found in skin tumors derived from sun exposed areas of the 

body in individuals exposed to arsenic. These studies should aid in 

understanding whether the alterations to the efficiency of NER that we have 

observed in our study also occur in humans exposed to arsenic, and if so, 

whether they play a role in increasing mutational burden and the risk of 

developing cancer.   
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Fig 4.1. Arsenic inhibits the removal of 6-4 PPs and CPDs in primary mouse 
keratinocytes. 
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Figure 4.1.  (A) Primary mouse keratinocytes were treated with the indicated 

concentrations of arsenite for 24 h and the percentage of viable cells was 

measured using Trypan blue dye exclusion. The data represent the mean ± SE 

(Standard Error) from two independent experiments.  (B) Primary mouse 

keratinocytes were treated with the indicated concentrations of arsenite for 24 h, 

irradiated with 20 J/m2 UV-C, and incubated in the same concentration of As-

containing medium for the times shown. An immuno slot-blot assay was 

performed and removal of the 6-4 PP lesion was measured.  A graphical 

representation of the results obtained from multiple immunoblots measuring the 

removal of 6-4 PPs is also shown. Each data point represents the mean ± SE of 

4-5 repeats of one biological experiment (5 repeats of 0 and 10 doses, 4 repeats 

for 20 and 40 doses).  (C) Primary mouse keratinocytes were treated with the 

indicated concentrations of arsenite for 24 h, irradiated with 2 J/m2 UV-C, and 

incubated in the same concentration of As-containing medium for the times 

shown. An immuno slot-blot assay was performed and the removal of CPDs was 

measured.  A graphical representation of the results obtained from multiple 

immunoblots measuring the removal of CPDs is also shown. Each data point in 

the graph represents the mean +/- SE of three repeats from one independent 

experiment.  Treatments with arsenic that produced a significant difference (P 

<0.05) compared to the control treatment are designated with an asterisk.  For 

the repair assay, each treatment was compared to the untreated cells at the 

same timepoint after irradiation. 
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Figure 4.2. Arsenic reduces XPC, but not XPA, protein in primary mouse 

keratinocytes. 

 

Figure 4.2. (A) Primary mouse keratinocytes were treated with the indicated 

concentrations of arsenite for 24 h, and the abundance of XPC and XPA protein 

was examined by western blot analysis.  Graphical representations of multiple 

western blots for XPC (B) and XPA (C) protein are shown. The data presented 

are the mean ± SE from two repeats each of one independent experiment, and 

the amount of XPC or XPA protein were normalized to β-actin.  Treatments with 

arsenic that produced a significant difference (P <0.05) compared to the control 

treatment are designated with an asterisk. 
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Figure 4.3. Arsenic inhibits the removal of 6-4 PPs and CPDs in IMR-90 
human lung fibroblasts 
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Figure 4.3. (A) IMR-90 cells were treated with the indicated concentrations of 

arsenite for 24 h and the percentage of viable cells was measured using Trypan 

blue dye exclusion. The data represent the mean ± SE from seven independent 

experiments. (B) IMR-90 cells were treated with the indicated concentrations of 

arsenite for 24 h, irradiated with 20 J/m2 UV-C, and incubated in the same 

concentration of As-containing medium for the times shown.  An immuno slot-blot 

assay was performed and removal of the 6-4 PP lesion was measured.  A 

graphical representation of the results obtained from multiple immunoblots 

measuring the removal of 6-4 PPs is also shown.  Each data point in the graph 

represents the mean +/- SE of four repeats from one experiment. (C) IMR-90 

cells were treated with the indicated concentrations of arsenite for 24 h, irradiated 

with 2 J/m2 UV-C, and incubated in the same concentration of As-containing 

medium for the times shown. An immuno slot-blot assay was performed and the 

removal of CPDs was measured.  A graphical representation of the results 

obtained from multiple immunoblots measuring the removal of CPDs is also 

shown. Each data point in the graph represents the mean +/- SE of at least three 

repeats from one experiment (two repeats of one experiment for the 40 µM 

dose).  Treatments with arsenic that produced a significant difference (P <0.05) 

compared to the control treatment are designated with an asterisk. For the repair 

assay, each treatment was compared to the untreated cells at the same 

timepoint after irradiation.    
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Figure 4.4. Arsenic reduces the abundance of XPC, but not XPA, protein in 
IMR-90 cells.  

 

Figure 4.4. (A) IMR-90 cells were treated were treated with the indicated 

concentrations of arsenite for 24 h, and the abundance of XPC was examined by 

western blot analysis.  (B) A graphical representation of multiple western blots for 

XPC expression is shown.  The data presented are the mean ± SE from two 

repeats each of three independent experiments, and XPC expression was 

normalized to β-actin. (C) IMR-90 cells were treated with the indicated 

concentrations of arsenite for 24 h, and the abundance of XPA was measured by 

western blot analysis.  (D) A graphical representation of multiple western blots for 

XPA expression is shown. The data presented are the mean ± SE of three 

repeats from three independent experiments, and XPA expression was 

normalized to β-actin.  Treatments with arsenic that produced a significant 

difference (P <0.05) compared to the untreated cells are designated with an 

asterisk. 
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Figure 4.5. The effect of sodium arsenite on the abundance of XPC and XPA 

RNA in IMR-90 cells. 

 
Figure 4.5. IMR-90 cells were treated with the indicated concentrations of 

arsenite for 24 h. RNA was isolated and Real Time PCR was performed as 

described in the methods section. The expressions of XPC, XPA, and DDB2 

RNA were normalized to GAPDH RNA for each treatment. The data presented 

are the mean ± SE of two repeats of three independent experiments for XPC, 

and XPA, and one repeat of three independent experiments for DDB2.  

Treatments with arsenic that produced a significant difference (P <0.05) 

compared to the untreated cells are designated with an asterisk. 
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Figure 4.6. Involvement of the proteasome in As-mediated XPC inhibition

 
Figure. 4.6. (A) IMR-90 cells were treated with a combination of arsenite and/or 

the proteasome inhibitor MG-132 at the indicated concentrations for 16 h.  XPC 

levels were measured by Western blot analysis and normalized to Actin. (B) A 

graphical representation of multiple Western blots for XPC is shown.  The data 

presented are the mean of two repeats from two experiments (except MG-only 

treatments, which are the mean of two treatments of one experiment), and XPC 

expression was normalized to β-actin.   
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Supplemental Table 4.1. Primers used in quantitative real-time PCR 

analysis  

 

S. Table 4.1. Multiple primer pairs were used to measure XPC and XPA RNA 

expression, and the resulting analysis did not produce any measurable difference 

between primer pairs within a single gene, so both primer pairs were included in 

the analysis of these genes.  
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Supplemental Figure 4.1. Extending arsenite treatment time enhanced 

arsenite impairment of 6-4 PP removal 
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S. Figure 4.1 A) IMR-90 cells were treated with the indicated concentrations of 

arsenite for 48 hours with the medium changed every 24 hours and the 

percentage of viable cells was measured using Trypan blue dye exclusion. The 

data represent the mean ± SE (Standard Error) from three measurements of one 

independent experiment.  (B) IMR-90 cells were treated with the indicated 

concentrations of arsenite for 48 hours, irradiated with 20 J/m2 UV-C, and 

incubated in the same concentration of As-containing medium for the times 

shown. A representative slot blot and a graph of multiple immunoblots measuring 

removal of 6-4 PP are shown.  Each data point in the graph represents the mean 

+/- SE of three repeats from one independent experiment. Asterisks denote a 

significant difference between the treated sample and the control at a given 

timepoint, as measured by a 1-way ANOVA with a multiple comparison 

correction. 
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Chapter 5 

Establishment of a reproducible measure of individual NER 

efficiency in peripheral blood mononuclear cells  

5.1 Introduction 

Nucleotide Excision Repair (NER) is a multi-protein complex designed to 

repair a variety of exogenous and endogenous DNA lesions and prevent 

mutation formation [244].  The NER pathway is divided into two sub-pathways 

that recognize different components of the genome.  Global genomic NER (GG-

NER) utilizes the XPC protein in complex with HR23B and Centrin-2 to recognize 

a remarkable array of DNA damage found on non-transcribed DNA, which is the 

majority of DNA [26].  Damage present on the transcribed strand of DNA is 

recognized by an RNA polymerase stalling at a transcription blocking lesion, 

leading to recruitment of downstream factors in the transcription-coupled NER 

(TC-NER) sub-pathway (reviewed in [24]).  After DNA damage recognition, both 

pathways use common factors for the remaining steps.  The TFIIH transcriptional 

complex is recruited to the site of damage to unwind the DNA around the lesion, 

with two helicases creating further opening the DNA, which permits subsequent 

NER factors to assemble at the site of the lesion.  Two endonucleases, 

XPF/ERCC1 and XPG, then nick the damaged strand on the 5’ and 3’ sides of 

the lesion, respectively.  The oligonucleotide containing the DNA adduct is 

removed and a DNA polymerase resynthesizes the gap using the undamaged 

strand as a template [25]. The NER pathway is described in more detail in 

chapter 1. 
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Individuals suffering from xeroderma pigmentosum (XP), one of three rare 

genetic disorders associated with deficiencies in NER, exhibit a pronounced 

increase in cancer incidence, both external and internal [25], with certain types of 

skin cancer showing incidence rates over a thousand fold greater than the 

general population [245].  XP is a hereditary autosomal recessive disorder, with 

XP A-G subtypes corresponding to the XPA-XPG proteins involved in NER [246].  

The frequency of XP varies greatly between geographical regions, with a 

frequency of approximately 1 in 1,000,000 in Western Europe and the United 

States [247] but 1 in 22,000 in Japan [43].  Carriers of XP have been studied to 

determine the health consequences of this heterozygosity.  XP-A heterozygotes 

have proficient DNA repair faculties [44], while XP-C heterozygotes have an 

intermediate phenotype regarding XPC mRNA and protein expression [46].  This 

may explain why low levels of XPA can correct the UV sensitivity of XP-A 

deficient cell lines [153] while reduced XPC expression correlates with reductions 

in repair of UV-induced photo-damage [248] and increased cancer risk for certain 

head and neck cancers [47] .  Another study of the impact of NER gene 

expression levels on head and neck cancer risk indicated that XPC expression 

did not correlate to increased cancer risk, while ERCC1, XPB, XPG, and CS-B 

levels did [249], indicating that expression levels of individual NER factors may 

not be the most appropriate marker for cancer risk. 

In addition to expression levels of NER factors, polymorphisms in genes 

involved in NER have also been examined for their potential to contribute to 

cancer susceptibility.  The polymorphism frequency of XP genes varies 
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considerably (reviewed in [250]), so it is hard to give a single estimate of XP 

polymorphism frequency.  Despite that, XP polymorphism frequency is 

sufficiently large to contribute to the population variation in DNA repair capacity 

[251, 252]. Recent meta-analyses have reached different conclusions regarding 

XP gene polymorphisms and cancer risks, with some showing certain XP 

polymorphisms contribute to carcinogenesis [253-255], while others show no 

relationship [256] or conflicting results from the same polymorphism between 

studies [250, 257].  While certainly not conclusive, these results suggest that 

certain XP gene polymorphisms may contribute to increased cancer incidence.  

These studies also indicate there is a potential for many different genetic 

polymorphisms to contribute to cancer risk. Given this, polymorphisms in one or 

even a handful of genes may not fully reveal and individual’s cancer 

susceptibility.  Instead, measuring DNA repair is an aggregate measure of 

steady-state NER function and as a single value can be used as indicator of 

individual cancer risk. 

Previous studies have investigated DNA repair capacity (DRC) in isolated 

lymphocytes using methods including the host-cell reactivation assay [246, 258-

260] and the comet assay [94, 261-263].  Several studies have used the 

measurement of DRC in circulating lymphocytes as an indicator of individual 

cancer risk [259, 264-266].  These lymphocytes are used as surrogate cells when 

investigating DRC in a target tissue because of the non-invasive manner by 

which they can be obtained and because target tissue may have undergone 

exposure-mediated somatic changes [19].  Additionally, a positive correlation 
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between DRC in lymphocytes and target tissues in XP patients has been 

observed [267], reinforcing the utility of lymphocytes as an appropriate measure 

of patient DRC.   

Current research on DNA repair of isolated human lymphocytes often 

employs the host cell reactivation (HCR) assay, which functions by measuring 

repair of a damaged plasmids transfected in to the cell.  The HCR assay also 

requires transcription of the reactivated gene on the plasmid that is being 

measured as an indicator of effective repair, involving other pathways beyond 

DNA repair in order to measure repair.  The immuno-blot assay we have adapted 

to work with isolated lymphocytes accurately and reproducibly measures NER 

efficiency directly, and the lesions introduced are done so in a stochastic manner 

that does not involve cellular uptake or metabolism.  Also, the output value from 

a host-cell reactivation assay is a percentage of activity of the reporter gene. It 

does not provide any information about NER kinetics  

An additional method for measuring DNA repair in isolated lymphocytes, 

the Comet assay, can be adapted to specifically measure repair of UV-induced 

photolesions.  The comet assay uses an electronic charge to separate double-

stranded DNA from single-stranded DNA.  Greater quantities of DNA damage 

produce larger amounts of single-stranded DNA.  In order to make the assay 

specific to one type of DNA damage, like UV-induced photolesions, damage-

specific endonucleases can be added.  T4 endonuclease V cuts at sites of UV-

induced CPDs, and as such provides a manner with which one can adapt the 

Comet assay to specifically measure the amount of CPDs present in a cell.  



100 
 

However, the 6-4 PP lesion is repaired much more proficiently than the CPD 

lesion in human cells, and as such greater variations in removal of the 6-4 PP 

lesion can be seen in a shorter period of time than compared to removal of the 

CPD lesion. 

Recent work in our lab has provided insights into how the NER pathway 

can be modified by exposure of cells in culture to certain carcinogens such as 

tobacco smoke [268] and arsenic (Chapter 4).  These studies suggest that 

human exposure to these agents may contribute to changes in NER efficiency, 

but a human study has not been performed using the same repair assay, and it is 

unknown what other factors may affect NER efficiency in a human population.  

Herein we report our findings pertaining to the establishment a novel method for 

measuring DRC in isolated lymphocytes using an assay to measure NER 

efficiency, specifically the sub-pathway known as global genomic NER, using a 

modified immuno-slot blot repair assay.  We found reproducible measurements 

of NER efficiency across multiple repeated measures from the same sample, as 

well as between experiments performed on multiple batches of lymphocytes 

isolated from the same individual and even between different blood draws from 

the same individual.  Additionally, we observed a distribution of repair values in 

our study population that was similar to DRC distributions found using the HCR 

assay. Our findings suggest this method is a reliable measurement of individual 

DNA repair capacity and that it is capable of capturing population variation in 

DNA repair, which indicate that the measurement of NER efficiency may be a 
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suitable biomarker of cancer risk and may be used to study the effect of 

environmental exposures on NER efficiency. 

5.2 Results 

5.2.1 Statistical analysis 

The immunoblot repair assay provided a repair curve that showed the 

percentage of 6-4 PPs removed at different timepoints after irradiation.  We 

determined that the most effective way to present this data was to create a single 

value that could explain the repair efficiency of each individual.  We chose to 

calculate a half-life statistic, a value that represented the time, in hours, that was 

required by each individual to remove 50% of the introduced photolesions.  

Briefly, an immunoblot (Fig. 5.1A) is used to calculate the percentage of 

photolesions that have been removed at each timepoint, and these values are 

plotted on a linear axis (Fig. 5.1B).  This is then converted from percentage 

lesions removed to percentage lesions remaining, and those values are plotted 

on a log-scale y-axis (Fig. 5.1C).  When a log-scale axis plot such as this 

produces a linear graph, the data is best fit to an exponential decay curve.  So, 

an exponential decay regression analysis was performed and used to calculate 

“half-life.” The process of calculating this value from the regression analysis is 

explained in detail in chapter 6. 

Normality tests for population distribution of half-life were performed using 

SAS 9.3 software, and comparisons of half-lives between populations were done 

using Graph Pad Prism 6, using a 2-sided Student’s T-test with a threshold of 

significance of P < 0.05. 
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5.2.2 Study population 

 The subjects for this study were part of a case-control study examining 

lung cancer rates in Appalachian Kentucky.  Lung cancer patients of the case-

control study were identified through the Kentucky Cancer Registry, and healthy 

control subjects were identified from the Kentucky voter registration records.  

Control subjects were age and gender matched to the lung cancer cases using a 

frequency matching method.  All participants were required to be over 17, and 

had to have no prior history of cancer diagnosis, excepting stage I or II non-

melanoma skin cancers.  They were required to have a working phone, to be 

willing to consent to an in-person interview, and to be able to speak English 

without the use of an interpreter.  The individuals whose lymphocytes were 

analyzed for repair represent a random sampling of the subjects in the case-

control study at a 1:3 ratio of lung cancer cases to control subjects.  In all, 42 

cancer patients and 156 control subjects were analyzed for DRC.  A greater 

number of subjects provided blood samples, but low lymphocyte yields from the 

blood or high non-lymphocyte contamination of the buffy coat prevented us from 

performing the repair analysis on those samples.  Initially, additional 6 lung 

cancer subjects were part of the study population, but they received radiation 

therapy.  After it was determined that those who received radiation therapy had a 

significantly different (higher) average half-life than those who did not, they were 

removed from the study population.  In fact, only 25% of samples from individuals 

who received radiation therapy were stimulated and provided a measurable 

repair value – the remainder had insufficient lymphocyte yields to perform the 
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stimulation or did not respond properly to the stimulation process.  We also 

evaluated half-life values from individuals who received chemotherapy and those 

who had undergone surgery related to their lung cancer, and neither of those 

populations had a different half-life than the remainder of the cancer subjects, so 

they remained in the study (Supplemental Figure 5.1).  Additionally, a smaller 

second study of 33 lung cancer patients from Kentucky was analyzed using the 

same repair assay, and the data from that assay was used to confirm the levels 

of experimental variation in individual DRC measurements.  The repair assay 

was performed blindly to reduce any potential biases in conducting the repair 

experiments. A statistician with information about the demographics of the study 

participants provided us with a list of samples to stimulate that was age and 

gender matched between cases and controls (although some exclusions after the 

analysis shifted the gender distribution slightly). The identification of the subjects 

as lung cancer cases or controls was withheld until the analysis was completed, 

and were revealed after completion of the repair analysis in order to perform 

comparisons between cases and controls, which will be discussed in Chapter 7. 

5.2.3 Experimental variation of repair capacity 

 Of the 198 samples analyzed, the average coefficient of variation (CV, 

standard deviation/average) of the half-life was 11%, slightly higher than a 

reported CV using HCR as a measure of repair in isolated lymphocytes [258], but 

considerably lower than more recent reporting of  23% [266] and 26.2% [269].  

The population showed a wide range of NER efficiency, with half-lives ranging 

from 1.5 to10.7 hours.  The average and standard deviation are 4.17 and 1.77 
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hours respectively.  A distribution of the data indicates that the data seems fairly 

normally distributed with a slight right tail (Fig. 5.2A).  However, a Kolmogorov-

Smirnov (K-S) statistical test for normality indicates that it is not normally 

distributed (p < 0.01).  Certain statistical analyses such as ANOVA assume a 

normal distribution (although they can tolerate minor deviations from normality) 

and therefore skewed data are often transformed with a mathematical operation 

(such as a natural-log transformation) to normalize the data set.  The distribution 

of the natural-log transformed half-life values (Fig. 5.2B) is normally distributed 

using the same K-S test for normality (p > 0.150).  Thus, when needed, a normal 

data set can be generated from the half-life values produced by the repair assay, 

strengthening value of the repair assay as it relates to the types of analyses that 

can be performed on the half-life values generated. 

5.2.4 Replication of the repair assay 

 Experimental reproducibility is critical.  We performed two independent 

stimulations of lymphocytes isolated from twelve study participants (7 from the 

larger study and 5 from a smaller, second study).  These stimulations were 

tested independently for their half-life, and Table 5.1 shows the half-life and 

standard error of these repeat stimulations, along with a p-value from a Student’s 

T-test comparing the two half-life values.  The first and second stimulations of 

these lymphocytes produced half-life values that were not statistically different.  

Of particular interest, one study participant (individual 12 in Table 1) had blood 

drawn on two separate occasions, and the repeat stimulations came from these 
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separate blood draws, suggesting the half-life value from the repair assay is 

reproducible across different blood draws of the same individual. 

5.2.5 Impact of different experimental parameters on NER efficiency 

 We examined the effect of three recovery parameters - blood volume, 

lymphocyte yield, and DNA recovery – on the half-life value produced by the 

repair assay.  The lymphocyte yield is the number of cells in a milliliter of blood 

counted before the cells are frozen for storage, and the DNA recovery is the 

concentration of DNA recovered from the first timepoint in the repair assay 

divided by the number of cells stimulated for that timepoint.  These three factors 

had quite large ranges: the volume of blood collected for the study ranged from 

5.5 ml to 18.1 ml, the amount of lymphocytes recovered from this blood ranged 

from 0.76 to 5.84 million cells/ml blood, and the DNA recovery ranged from 0.41 

to 4.07 micrograms of DNA/million cells.   With these large ranges, particularly 

the lymphocyte and DNA recoveries, it was unknown what effect, if any, they 

might have on the reliability of the assay.  These recovery parameters were 

plotted against the half-life of each individual in the study.  A graph showing the 

relationship between blood volume and half-life (Fig. 5.3A) indicates there is no 

significant impact on half-life due to the blood volume. A linear regression 

analysis of the scatter plot provided an R2 value of 0.0148 (p = 0.09).  Likewise, a 

comparison of lymphocyte recovery to half-life (Fig. 5.3B) also indicates that cell 

recovery did not have a significant impact on half-life.  A linear regression 

analysis provided an R2 value of 0.018 (p = 0.06).  Interestingly, a plot of DNA 

recovery verses half-life showed a minor reduction in half-life (increase in repair) 
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with increasing DNA recovery (Fig. 5.3C).  While technically significant (p = 

0.037), the linear regression equation indicates that an increase in DNA recovery 

of 2 µg DNA per 1 million cells stimulated (over half of the entire range of DNA 

recoveries in the study) only produces a 1-hour increase in half-life, and it is 

unclear whether the DNA recovery was a cause or a result of changes in NER 

efficiency. 

5.2.6 Impact of the time delay between blood draw and lymphocyte 

isolation on NER efficiency 

Previous reports have suggested that there is an optimal maximum time 

delay between blood draw and lymphocyte isolation, in order to maximize post-

thaw cell viability and response to mitogen stimulation.  This delay is the most 

important factor affecting cellular recovery and viability [270], with lymphocyte 

recovery dropping substantially when samples sit for 24 hours rather than 8 

hours before isolation.  It was unknown, however, how this delay would affect 

cellular DNA repair using our repair assay, so we compared the time delay 

between blood draw and lymphocyte isolation to several experimental 

parameters.  Increasing the time delay increased the number of cells recovered 

per milliliter of blood provided (Fig. 5.4A).  This may be misleading, however, as 

non-monocyte contamination may have increased in the buffy coats of samples 

that were delayed in their shipment [271].  Prolonged storage of blood alters 

granulocyte buoyancy and impairs proper separation from mononuclear cells by 

use of a density gradient, increasing granulocyte contamination in the monocyte 

buffy coat layer [272].  Increasing processing time also reduced DNA recovery at 
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the first timepoint in the repair assay, perhaps a consequence of a reduced 

response to mitogen stimulation in samples with longer processing time (Fig. 

5.4B).  Despite the change in cell count at isolation and DNA recovery during the 

repair assay, there was no change in NER efficiency based on processing time 

(Fig. 5.4C).  

The majority of samples (n = 179) had time delays that clustered around 

24 hours. A small number of samples (n = 19) had time delays that clustered 

around 48 hours, a result of a shipping issue that was corrected after the sample 

collections were underway.  As most studies do not exceed a 24 hours 

processing delay, this provided a unique opportunity to observe the 

consequences of such a delay on the outcome of the DNA repair assay. There 

was a substantial increase in cellular recovery in the samples that sat a day 

longer compared to those that did not (3.14 vs 2.14 million cells/ml blood, 

p<0.0001) (Fig. 5.4A). Additionally, there was a substantial decrease in the 

average DNA recovery in the samples that sat longer compared to those that did 

not (1.04 vs 1.51 µg/million cells, p=0.002) (Fig. 5.4B).  These changes in 

recovery did not have an effect on DNA repair, however. The average half-life of 

the samples that took an extra day to process was not significantly different than 

those isolated after being kept on ice one night.  The samples that did not have 

an extra day delay had an average half-life of 4.16 hours with a standard 

deviation of 1.80 hours, compared to those that did have an extra day delay, 

which had an average half-life of 4.27 hours with a standard deviation of 1.44 

hours (p=0.80) (Fig. 5.4C).    
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5.2.7 Impact of storage time and storage and isolation dates on NER 

efficiency 

After isolating the lymphocytes from the blood samples, the cells were 

stored in liquid nitrogen.  The duration of the storage varied from a few days to 

almost three years, as experimental parameters were still being established 

when the lymphocyte collection began.  Samples therefore remained in liquid 

nitrogen storage until the stimulation protocol was fully completed, and were 

removed in batches for stimulations.  Previous DRC studies using the host-cell 

reactivation assay have suggested that the length of time the lymphocytes are 

cryopreserved could potentially modulate DNA repair [260, 273], so the time 

between lymphocyte isolation and stimulation was compared to half-life of each 

individual in the study population to look for a possible relationship.  Half-life was 

not impacted by the length of lymphocyte storage in liquid nitrogen (Fig. 5.5A).  A 

linear regression analysis of the scatter plot produced an R2 value of 0.128 (p 

=0.113).  Additionally, we examined the chronology of our isolations and 

stimulations to determine if some factor, such as a change in the batch of some 

processing material, may have caused a temporal change in our repair assay, as 

temporal variation in DRC had been previously suggested [273].  Across three 

years of isolations and stimulations, there was little impact in half-life based on 

when the sample was isolated or when the sample was stimulated for repair (Fig. 

5.5B-C).  Linear regression analyses of the graphs of isolation date and 

stimulation date plotted against half-life produced R2 values of 0.0016 (p = 0.576) 

and 0.0147 (p = 0.089) respectively. 
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5.3 Discussion 

Measuring individual DNA repair capacity (DRC) from isolated 

lymphocytes in a human population as a means of estimating cancer risk was 

first proposed 25 years ago [258].  The classical methods employed to measure 

individual DRC from isolated lymphocytes have been the host-cell reactivation 

assay and variations on the comet assay [274-277].  Our findings indicate that 

DNA repair capacity can be measured using an alternative assay to those 

presently available, employing cellular machinery to repair DNA damage. The 

DNA repair assay utilized here is designed to monitor the removal of DNA lesions 

introduced by UV-C exposure.  These lesions are removed exclusively by the 

nucleotide excision repair pathway, making the assay a specific measure of NER 

efficiency.  We have reported here the successful implementation of this repair 

assay on a human population for the first time. 

We examined the impact of several factors that had the potential to 

confound our measurement of NER efficiency.  As this assay had not been 

implemented in a human population before, it was necessary to measure the 

reliability of the repair assay.  To that end, we tested recovery parameters, 

temporal fluctuation on the repair process, and multiple stimulations of the same 

samples to look at how well the half-life measure of NER efficiency performed.  

We observed that the processing time, stimulation and isolation dates, and time 

between stimulation and isolation did not contribute to a significant variation in 

NER efficiency, as measured by the repair assay endpoint, half-life.  Additionally, 

blood volume and lymphocyte recovery did not have an impact on half-life.  Blood 
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volumes as low as 5 ml provided NER efficiency measures that were no different 

than 15 ml samples. This is important as it provides us with an idea of how much 

biological material must be consumed in order to get a reliable measure of NER 

efficiency from an individual.   

The time required to process the samples after the blood was drawn did 

not significantly impact NER efficiency.  It did, however, have a significant impact 

on two other experimental parameters, cell recovery per volume of blood and 

DNA recovery per number of cells stimulated.  The cell recovery was increased 

and the DNA recovery was decreased as processing delay increased.  We 

observed that samples whose processing time was one day longer than the 

normal time had a higher incidence of red blood cell contamination in the buffy 

coat during lymphocyte isolation.  Based on the observation that samples with 

potential contaminating cells were difficult to stimulate, we concluded that DNA 

from nucleated cells present in the sample was causing the difficulty with our 

stimulation.  Not all samples that were delayed an extra day during the shipping 

process were affected in this manner, and those unaffected seemed to have no 

discernable difference in repair compared to samples shipped properly, but the 

increased incidence of a failure to stimulate among samples that did have 

extended shipping time highlights the importance of proper shipping time in order 

to maximize the success of the DNA repair assay. 

Our results here indicate that NER efficiency can be directly measured 

from isolated lymphocytes from blood samples, preferably when the isolation 

occurs within 24 hours of the blood draw.  This is a longer period of time than 



111 
 

most studies, as previous measures of DNA repair from isolated lymphocytes 

have typically drawn blood at the same location where lymphocytes are isolated 

and cryopreserved, or the shipping time has been kept to a minimum.  Our 

findings indicate that a study in which blood samples are provided remotely and 

shipped to a central location for processing can achieve a reproducible measure 

of repair.  

5.4 Conclusions 

The ability of our cells to remove DNA damage in a timely manner is 

paramount to survival.  The NER pathway responds to an array of environmental 

and endogenous mutagens, repairing damaged DNA and preventing cancer-

causing mutations from forming.  We observed a wide range in individual NER 

efficiencies within the study population.  Fluctuations in repair efficiency may 

provide an early indicator for cancer risk.  Those individuals with a low NER 

efficiency may be at a higher risk of failing to repair DNA damage, which could 

result in an increased risk of developing cancer.  
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Table 5.1 Repeated measurement of NER efficiency in isolated PBMCs  

 

 

Table 5.1 Lymphocytes from twelve individuals were stimulated two different 

times and DRC was measured for each stimulation.  Half-life values are the 

average of three repeated slot blots of the same DNA.  Half-life and standard 

error (SE) are both in units of hours.  P-value taken from a two-sided Student’s T-

test. 
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Figure 5.1 DNA repair assay performed on lymphocytes isolated from 
whole blood 

 
 
Fig 5.1 (A) The results of one slot blot from the DNA repair assay.  Equal 

amounts of DNA isolated from each indicated timepoint after irradiation are 

slotted in duplicate, and an antibody specific to 6-4 PPs is used to visualize 

removal of DNA damage over time.  (B) The percent 6-4 photoproducts removed 

are calculated from three repeats of the slot-blot per individual, with the average 

repair and standard error at each timepoint plotted on the graph.  (C) The percent 

repair values are converted into % 6-4 photoproducts remaining at each 

timepoint, and the average and standard error values are plotted as shown.  

From this data, an exponential decay regression analysis was performed to 

generate the half-life (and standard error) values shown. 
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Figure 5.2 The distribution of NER efficiency across the study population.  

 
  



115 
 

Fig 5.2 (A) A Histogram of half-life distribution across the entire population is 

shown, as well as the average and standard deviation of the population half-life.  

The NER efficiency of the study population has a predominantly Gaussian 

distribution but is skewed towards slower repair values (right tailed).  The 

Kolmogorov-Smirnov (KS) test for data normality indicates that the half-life 

values are not normally distributed (p < 0.0001).  (B) In order to produce a 

normally distributed data set, a natural log transformation of the data was 

performed, and a histogram of the natural log transformed data is shown, along 

with the average and standard deviation of the transformed half-life of the study 

population.  The KS normality test confirms that the natural log-transformed half-

life values are normally distributed (p = 0.3807) 
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Fig. 5.3 The impact of collection parameters on half-life. 

 
 

Fig 5.3 (A) A scatter plot of blood volume verses half-life shows a slight reduction 

in half-life with increasing sample volume, but the trend is not significant.  A linear 

regression analysis of the data produced an R2 value of 0.0148 (p =0.09). (B) A 

scatter plot of lymphocyte recovery verses half-life shows a slight increase in 

half-life with increasing lymphocyte recovery, but the trend is not significant.  A 

linear regression analysis of the data produced an R2 value of 0.018 (p =0.06).  
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Figure 5.4 The impact of processing delay on experimental parameters. 
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Fig 5.4 (A) A scatter plot of processing delay verses lymphocyte recovery shows 

a significant increase in cells recovered with increasing processing delay.  A 

linear regression analysis of the data produced an R2 value of 0.0859                 

(p =0.00003). (B) A scatter plot of processing delay verses DNA recovery 

indicates that higher delay times significantly reduce DNA recovery, perhaps as a 

result of an increase in non-lymphocyte cell contamination with increasing 

processing delay.  A linear regression analysis of the data produced an R2 value 

of 0.0555 (p = 0.0008). (C) A scatter plot of processing delay verses half-life 

shows that despite changing recovery parameters, the time delay between blood 

draw and lymphocyte isolation does not have any impact on half-life.  A linear 

regression analysis of the data produced an R2 value of 0.000011 (p = 0.963).  
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Figure 5.5 The impact of storage time and processing dates on half-life. 
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Fig 5.5 (A) A scatter plot of processing delay verses half-life shows that despite 

changing recovery parameters, the time delay between blood draw and 

lymphocyte isolation does not have any impact on half-life.  A linear regression 

analysis of the data produced an R2 value of 0.0128 (p = 0.113).  (B) A scatter 

plot of isolation date verses half-life shows no temporal effect on the repair 

endpoint.  A linear regression analysis of the data produced an R2 value of 

0.0016 (p =0.576). (C) A scatter plot of stimulation date verses half-life shows no 

significant change in half-life across the two year period in which stimulations 

were performed.  A linear regression analysis of the data produced an R2 value 

of 0.0147 (p = 0.089). 
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Supplemental Fig. 5.1 The impact of cancer treatment therapies on half-life. 
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Supplemental Fig. 5.1 (A) Lung cancer subjects were placed into groups based 

on whether or not they received a particular treatment – radiation therapy, 

chemotherapy, or surgery. Half-life values and standard errors were determined 

for each population and are shown.  (B) A subset lung cancer subjects were 

separated into groups of individuals who received a particular treatment and 

those who received no treatment.  Half-life values and standard errors are 

shown. (C) P-values were obtained by comparing individuals who did or did not 

receive a particular type of treatment (as shown in (A). (D) P-values were 

obtained by comparing individuals who received a particular treatment and those 

who received no treatment at all (as shown in (B)). 
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Chapter 6 

Variations in nucleotide excision repair efficiency in a human 

population 

6.1 Introduction 

Maintenance of genomic fidelity is critically important to the survival of 

living organisms.  DNA damage, from endogenous and exogenous sources, is a 

constant, huge burden on the cell.  If left unrepaired, this damage can result in 

DNA mutations, leading to an increase in cancer risk, or the damage can trigger 

apoptotic cell death, an event associated with organismal aging.  In humans, 

several multi-protein pathways contribute to the maintenance of genomic fidelity, 

including the nucleotide excision repair (NER) pathway [213].  The NER pathway 

is responsible for recognizing and removing a wide variety of structurally diverse 

DNA lesions.  Substrates for NER include adducts generated by metabolites of 

chemical carcinogens such as polycyclic aromatic hydrocarbons in tobacco 

smoke, UV-induced photoproducts, and platinum adducts formed by the 

chemotherapeutic agent cisplatin [19].  

In humans, more than twenty different proteins are involved in the NER 

pathway.   These proteins include the XPA-G factors that are singly defective in 

seven corresponding complementation groups of the human disorder Xeroderma 

Pigmentosum (XP) [25].  The tumor suppressor factor p53 also impacts NER 

efficiency, likely through transcriptional regulation of the XPC and DDB2 gene 

products, both of which are DNA damage recognition proteins [20, 21, 114, 115]. 

The NER pathway is comprised of two sub-pathways that differ in their 
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mechanism of damage recognition: global genomic NER (GG-NER) which 

recognizes and removes DNA damage from anywhere in the genome and 

transcription-coupled NER (TC-NER) which selectively removes damage from 

the transcribed strands of actively transcribed genes.  In GG-NER, DNA damage 

recognition is accomplished by XPC, which recognizes helically distorting lesions 

and is stabilized by its binding partners RAD23B, and CENTRIN2 [26, 27].  

Additionally DDB2 assists XPC in recognition of certain DNA photolesions such 

as the cyclobutane pyrimidine dimer [142], which is not as well recognized as the 

6-4 photoproduct (6-4 PP) by XPC [34].  In TC-NER, damage is recognized by 

the stalling of the RNA polymerase complex at the site of damage during 

transcription (reviewed in [24]).  After the DNA damage recognition step, many of 

the subsequent steps are the same for GG-NER and TC-NER. The helicase 

activities of TFIIH produce additional unwinding of DNA where upon the 

endonuclease activities of the XPF/ERCC1 complex and XPG produce single-

strand incisions flanking the damaged site.  The original integrity of the DNA is 

restored after an approximately 30 nucleotide region of DNA containing the 

lesion is removed, and the gap is filled by pol δ or pol ε, using the undamaged 

strand as a template (reviewed in [25]).  

Genetic deficiencies in NER are the origins of rare human disorders 

including Xeroderma Pigmentosum (XP), Cockayne Syndrome, and 

Trichothiodystrophy [39].  Of these, XP is characterized by dramatically 

increased skin cancer rates as well as increased internal neoplasms [40, 211, 

278].  While XP is rather uncommon, polymorphisms in NER genes can have 
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much greater incidences [257, 279, 280]. Several of these polymorphisms have 

been associated with increased risk of developing cancer, including colorectal 

[281], prostate [282], liver [283], esophagus [284], lung [285], and skin cancers 

[279, 286].  In addition, the expression levels of several NER proteins have been 

associated with increased cancer risk [249, 287]. 

As these studies show, there are many factors controlling the proteins 

involved in NER that have the potential to contribute to cancer risk.  As such, a 

functional analysis of population variation in DNA repair capacity may be of 

greater value in predicting cancer risk. To this end, several studies have 

employed functional assays to investigate the variation in DNA repair within a 

human population.   The two most common methods of measuring population 

distribution of DNA repair have been using the Comet assay [274, 277, 288] and 

the host cell reactivation (HCR) assay [258, 259, 269, 289].  The Comet assay 

relies on measuring the presence of DNA strand breaks as an indicator of DNA 

repair.  Combining a damage source with an endonuclease specific to an adduct 

generated by that, such as the use of bacterial T4 endonuclease V to cleave at 

sites of CPDs, allows the Comet assay to measure the repair of a specific GG-

NER substrate [290]. The HCR assay, on the other hand, measures repair of a 

transcriptionally active gene, typically on a transfected plasmid, via detection of 

the gene product, and as a result the HCR assay is actually measuring the TC-

NER subpathway of NER. 

We have employed a modified immunoblot assay to measure NER 

efficiency in isolated peripheral blood mononuclear cells (PBMCs) in a human 
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population.  The repair assay measures the removal of a UV-induced 

photolesion, the 6-4 photoproduct.  The 6-4 photoproduct (6-4 PP) and 

cyclobutane pyrimidine dimer (CPD) DNA adducts, produced by UV light, are 

model substrates for measuring NER activity as they are rapidly generated by a 

brief exposure to UV light and are repaired exclusively by NER in humans [25].  

6-4 PPs are repaired much more quickly than CPDs, likely due to the degree with 

which the two lesions are recognized by NER [291], and as such we chose to 

measure 6-4 PP removal in individuals to maximize detection of variations in 

NER efficiency.  

We explored the efficiency of NER in individuals residing in the 

Appalachian region of Kentucky in preparation for a larger case-control study 

investigating lung cancer incidence in the region.  Appalachian Kentucky has 

some of the highest cancer rates in the nation, including a lung cancer rate 

(109.2 per 100,000, http://cancer-rates.info/ky/index.php) that is almost double the 

national average (59.4 in 100,000, https://nccd.cdc.gov/uscs/toptencancers.aspx).  We 

observed an age-dependent reduction in NER efficiency in the study population, 

and a slight tendency for females to have higher NER efficiencies than males.  

We also observed that the age-dependent reduction of NER efficiency can be 

modulated by smoking status.  These findings will aid in implementing this repair 

assay in future studies investigating the relationship between DNA repair and 

cancer susceptibility. 

 

 

http://cancer-rates.info/ky/index.php
https://nccd.cdc.gov/uscs/toptencancers.aspx
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6.2 Results 

6.2.1 Statistical Analysis 

The results of three slot blots obtained from a single biological repair 

experiment were averaged and used to calculate the NER half-life value for each 

individual. When the percentage of adducts remaining at each time point was 

plotted using a log scale, the individual plots were largely linear indicating that 

the data exhibit an exponential decay pattern. Therefore, we performed an 

exponential decay regression analysis of the averaged values for the percentage 

of adducts remaining that we obtained in each experiment using Sigma Plot and 

the equation:𝑓𝑓(𝑥𝑥) = 𝐴𝐴𝑒𝑒−𝑏𝑏𝑏𝑏.  In this equation, 𝑓𝑓(𝑥𝑥) is the percentage of 6-4 PPs 

remaining at time 𝑥𝑥.  Setting 𝑓𝑓(𝑥𝑥) equal to 50% and solving for 𝑥𝑥, which is the 

time taken to remove 50% of the 6-4 PPs, produces the equation: 𝑥𝑥 = -ln(50/A)/𝑏𝑏.  

The regression analysis provided the exponential decay variables (A and b) 

necessary to calculate the half-life value.   

The difference in average NER efficiency between age groups was 

evaluated by a 1-way ANOVA trend analysis and the difference in average NER 

efficiency between groups separated by smoking status or gender were evaluated 

by a 1-way student’s T-test.  When comparing NER efficiency and subject age as 

a continuous variable, a linear regression analysis was performed on the data and 

the coefficient of determination (R2) obtained from that regression analysis was 

used to obtain the Pearson correlation coefficient (R).  A multiple comparison 

analysis was performed between age, gender, and smoking and their combined 

effects on NER efficiency.  Lastly, an interaction effect was examined evaluating 
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the impact of smoking and gender on the effect of subject age on NER efficiency.  

In all cases, the threshold for significance was P < 0.05.  All statistical analyses 

were performed using the Graph Pad Prism 6 and SAS 9.3 software. 

6.2.2 Study Population 

Individuals were identified from Kentucky voter registration records of the 

5th Congressional District of Kentucky located within the region defined as 

Appalachian Kentucky.  All participants were required to be over the age of 17 

years and have no previous diagnosis of cancer, with the exception of stage I or 

stage II non-melanoma skin cancer.  Participants were required to have a working 

phone and be willing to consent to an in-person interview held in at their residence 

without the use of an interpreter.  A detailed questionnaire which included 

questions about smoking history, work history, and medical history was 

administered by an employee of Kentucky Homeplace, who also drew blood 

samples.  The blood samples were transferred into sodium heparin-coated tubes, 

placed on ice and shipped overnight by courier to the Biospecimen and Tissue 

Procurement Shared Research Facility (BSTP SRF) at the University of Kentucky 

and then distributed to Dr. Mellon’s laboratory for the isolation of PBMCs. 

6.2.3 Study population demographics 

 Subject recruitment numbers for this study as well as several population 

demographics are shown in Table 6.1. The average age of the study population, 

61.7 years, is high due to the frequency matching of these individuals to a group 

of lung cancer patients for a larger case-control study.  There are an equal number 

of males and females in the study population.  Study participants were assigned 
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to one of three smoking groups based on a questionnaire that asked whether they 

were current smokers, former smokers (a history of smoking, but no smoking in 

the last 6 months), or never smokers (less than 100 cigarettes in their lifetime).   

Half of the participants reported being never smokers (n = 79, 50.6%), while the 

other half were either current (n= 26, 16.7%) or former (n= 51, 32.7 %) smokers.  

This distribution of cigarette usage in our study population is consistent with 

recently reported data for smoking status and smoking history among individuals 

residing in Appalachian Kentucky,  the geographical area in which all of our study 

participants lived [12]. 

6.2.4 Measurement and distribution of NER efficiency in the study 

population 

 We measured the efficiency of NER in each person within our study 

population using PBMCs isolated from individual blood samples and an immuno-

slot blot method to quantify the introduction and removal of 6-4 PPs produced by 

irradiation with UV light. We chose to utilize the removal of 6-4 PPs from live cells 

as a representation of NER efficiency in people because a number of 

biochemical, cellular and animal studies have shown that 6-4 PPs are model 

substrates for NER [292-296].  We chose PBMCs to study because acquiring 

blood from donors is relatively less invasive than acquiring most solid tissue 

samples. In addition, most assays that measure NER function/activity require 

viable cells but they have not been successful when applied to solid tissue 

samples. The time course of 0 – 4 h was established in preliminary studies using 

blood samples obtained from healthy volunteers at the University of Kentucky 
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who removed most 6-4 PPs during this time period after treatment of PBMCs 

with 20 J/m2 UV-C. The dose of 20 J/m2 was chosen to achieve a strong 

antibody-dependent chemiluminescence signal well above background levels 

using 100 ng of DNA per slot and to also achieve a strong signal since PBMCs 

are grown in suspension rather than as a monolayer which necessitated 

irradiating them in the presence of growth medium.  

Representative immuno-slot blots illustrating the kinetics and extent of 

repair in three different subjects are shown (Fig. 6.1A). For each subject, three 

independent slot-blots were performed and the results were averaged to 

calculate the percentage of 6-4 PPs removed at each time point (Fig. 6.1B). 

Since our goal was to compare the efficiency of NER among all individuals in our 

study, we chose to use the results obtained from all 3 repair time points to 

calculate a single value for lesion half-life; the time it took for each individual to 

remove 50% of the 6-4 PPs introduced into the DNA of their PBMCs. To achieve 

this, the percentage of 6-4 PPs remaining at each time point was calculated and 

plotted using a logarithmic y-axis. This produced a linear response (Fig. 6.1C) 

and confirmed that the data fit an exponential decay model.  An exponential 

decay regression analysis was performed on the data as described in the 

methods section.  The half-lives for the individuals shown ranged from 1.57 h to 

3.45 h (Fig. 6.1C). This analysis was performed on 156 subjects and a histogram 

of these results illustrates the range and the distribution of NER efficiency across 

the population (Fig. 6.2A).  The population had an average half-life of 4.24 h, with 

a standard deviation of 1.70 h. Small half-live values indicate faster NER while 
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larger half-life values indicate slower NER. The half-life values ranged from the 

fastest, 1.52 h, to the slowest, 10.71 h. These results clearly show that the 

efficiency of NER can significantly differ among different individuals. It is unlikely 

that differences in NER efficiency can be attributed to differences in the 

introduction of UV damage. Identical conditions were followed for the irradiation 

of all samples and the intensity of the slot-blot band for the 0 h time point 

provided an indication of the uniformity of the introduction of damage across 

samples.  

The distribution of half-lives across this population shows a largely 

Gaussian distribution with some skewing towards the slower values, as expected 

given the nature of the repair assay.  Proficient repair values would be clustered 

around a peak value, and deficiencies in repair would produce larger half-life 

vaues and generate a right-skewed tail. According to the Kolmogorov-Smirnov 

(KS) test for a normal (Gaussian) distribution, the half-life values are not 

completely normally distributed (p < 0.01). The null hypothesis of the KS test 

states that the data are normally distributed, and thus a “significant” p-value 

means the data are not normally distributed.  Certain statistical analyses such as 

ANOVA and T-tests require (assume) a Gaussian distribution so we performed a 

natural-log transformation of the data and tested for normality. This is a common 

approach to normalize a slightly skewed distribution. The resulting distribution is 

normal (p > 0.15) as evaluated by the KS test (Fig. 6.2B). We performed several 

comparisons of NER efficiency between subpopulations using either the 

untransformed or transformed data sets and the results were similar regarding 
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trends and significance.  Hence, we chose to present the analysis of the non-

transformed data set in subsequent figures and all tables since a half-life value 

represented in hours rather than the natural-log of the hours is biologically more 

relevant.  

6.2.5 The efficiency of NER is reduced with increasing subject age 

 We investigated the relationship between NER efficiency and the age of 

each individual.  Initially, the study population was separated into three different 

age groups and the average half-life obtained from each age group was 

compared (Fig 6.3a).  NER efficiency slowed with increasing subject age when 

subjects were stratified into the three age groups shown, as indicated by an 

increase in half-life across these age groups.  A one-way ANOVA analysis 

examining the trend of increasing half-life with age showed that this trend was 

significant (p = 0.0023). Additionally, we examined the relationship between 

subject age and NER efficiency when age was evaluated continuously instead of 

in discrete groups.  A graph of the half-life value plotted against age for each 

individual in the study is shown (Fig 6.3b).  A linear regression analysis of this 

data produced a coefficient of determination (R2) value of 0.655.  The Pearson 

score (R = .2559) indicates a significant relationship between subject age and 

half-life (p = 0.0013) using the continuous measurement of subject age. 

 Factors such as lymphocyte and DNA recovery were also evaluated for 

their potential to modulate the observed effect of subject age on NER efficiency 

and were determined to have minimal impact (data not shown, but similar work 

was done in chapter 5 and a similar conclusion was drawn for that population). 
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6.2.6 The relationship between NER efficiency and other population 

demographics 

We investigated whether the smoking status of each individual could 

influence their efficiency of NER.  There is some limited evidence that current 

smokers may have faster repair than former or never smokers [289, 297, 298], 

although these experiments utilized the HCR assay and therefore measured TC-

NER.  A graph of the average half-lives and their standard deviations found for 

current, former and never smokers is shown (Fig 6.4a).  The current smoking 

population has a faster half-life (3.83 h) than the former (4.37 h) and never 

smoking (4.28 h) populations, although the difference is not statistically 

significant (p = 0.0914).  However, the group of current smokers also has a lower 

average age than the other two groups, and since we have found that subject 

age influences that efficiency of NER, the faster NER found in current smokers is 

less pronounced after accounting for age (See below and Table 6.1).  As the 

difference in smoking groups was most pronounced between current smokers 

and “non-current” that was the comparison that was presented.  Comparisons 

between individual groups, including current vs former and current vs never have 

even higher p-values than those between current and non-current smokers as a 

result of diminished sample sizes. 

The impact of gender on NER efficiency was also investigated.  Previous 

studies have suggested slight increases in DNA repair capacity in males 

compared with females [273, 299].  In our study, however, females had a 

somewhat faster NER efficiency than males, as indicated by an average half-life 
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of 4.12 ± 1.66 h for females compared to 4.35 ± 1.74 h for males (Fig 6.4b).  This 

difference was not statistically significant (p = 0.2029) using a 1-way student’s T-

test. However, this trend was present in every subpopulation examined; females 

had a faster NER efficiency than males in all three age groups and all three 

smoking groups, although these differences were not statistically significant, 

perhaps due to small sample sizes (Table 2).   

6.2.7 The reduction in NER efficiency with increasing subject age is not 

seen in all subpopulations 

As with the total population, the male and female populations both show a 

trend of decreasing NER efficiency (increasing half-life) with increasing subject 

age (Fig 6.5a and 6.5b), and the trend is significant in both males and females.  

The strength of the relationship was stronger in the male population than the 

female population, as evident in the p-values for age associated decline in NER 

efficiency in males (p = 0.013) and females (p = 0.038).  However, separating the 

study participants by smoking status reveals that only current and former 

smokers show an age-dependent decline in NER efficiency (Fig 6.6a and 6.6b 

respectively) while non-smokers show no such trend (Fig 6.6c).  Supplemental 

table 6.1 contains the R2 values and p-values derived from linear regression 

analysis of graphs of the relationship between age and NER efficiency in each 

population. Since non-smokers do not show an age-dependent decline in NER 

efficiency, the smoking status of individuals (in addition to their age) must be 

accounted for when drawing meaningful comparisons of NER efficiencies 

between groups of individuals, such as in case-control studies. 
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6.2.8 Multivariable analysis confirms efficiency of NER is effected by 

subject age 

 We performed a multivariable regression analysis to determine which 

factors were significant modulators of NER efficiency when examined together.  

As indicated in Table 1 in the “adjusted p-value column”, subject age remains the 

only significant factor effecting NER efficiency when age, gender, and smoking 

status are all considered (p = 0.0138).  The analysis indicates that neither gender 

(p = 0.2005) nor smoking (p = 0.3987) are significant contributors to variation in 

NER efficiency.  The multivariable regression analysis did not alter the 

significance of age or gender on NER efficiency, but the p-value for smoking 

(which compared current smokers to former and nonsmokers) changed from 

0.0914 to 0.3987, likely due to the large difference in ages between the smoking 

groups (current smokers were considerably younger than former/never smokers).  

Since subject age had a large effect on NER efficiency, the difference in ages 

between the smoking groups was ultimately responsible for most of the 

difference in NER efficiency between smoking groups.  As the male and female 

populations had very similar ages, the multivariable regression analysis did not 

change the p-value for the effect of gender on NER efficiency.  Finally, an 

interaction effect was incorporated into the multivariable regression analysis to 

evaluate the impact of smoking status and gender on the observed age effect on 

NER efficiency.  Smoking status (p = 0.0226) had a significant impact on the 

observed age-dependent effect on NER efficiency, while gender (p > 0.80) did 
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not.  This finding is consistent with our observation that both the male and female 

population showed a strong reduction in NER efficiency with increasing age. 

 We also examined the relationship between lymphocyte and DNA 

recovery and the effect of subject age on NER efficiency.  Similar to the results 

presented in chapter 5, these two collection parameters did not have any 

significant impact on the subject age-dependent modulation of NER efficiency. 

6.3 Discussion 

Nucleotide Excision Repair is a critical pathway involved in removal of 

DNA damage that would otherwise promote mutations and increase cancer risk.  

We have established that this assay can reproducibly measure individual NER 

efficiency, as well as measure across a large range of values in a population.  

NER efficiency was measured in a rural population in Appalachian Kentucky, an 

area that suffers high cancer rates, poor overall health, and limited access to 

healthcare.  The objectives of the study were to determine how NER efficiency 

was distributed across a population when measured using this assay and 

establish whether this repair assay could measure differences in DNA repair 

between individuals or groups of individuals in a population. The study population 

exhibited a wide range of NER efficiencies, with almost an order of magnitude 

separating the half-lives of the fastest and slowest repairing individuals.  The 

range of repair values is consistent with HCR ranges, which also can exhibit an 

order of magnitude difference between the smallest and largest values [300].  We 

observed a significant decline in DNA repair specific to the NER pathway with 

increasing age of study subjects, both male and female. We also found that 
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smoking status impacts the age-dependent decline in NER efficiency. This 

information will guide further implementation of the repair assay for use in 

measuring NER efficiency as a potential biomarker of cancer susceptibility. 

In addition to contributing to cancer risk, defective DNA repair may have a 

role in the process of aging.  Aging can be viewed as a reduction in biological 

functions that occurs with time as a result of an accumulation of somatic DNA 

damage [301, 302].  This is due in part to an increase in genomic instability  

(reviewed in [303]).  There are two primary factors that regulate genomic stability; 

the rate of DNA damage induction and the efficiency of DNA repair.  A reduction 

in DNA repair would promote an increase in genomic instability, promoting 

cellular and potentially organismal aging. 

Genetic deficiencies in NER lead to increases in an aging phenotype, 

including premature cell death and reduced lifespans, in both humans [42, 213, 

304] and mice [305, 306].  These studies use repair deficient systems and thus 

show the consequences of impaired NER, but they do not provide information on 

the relationship between normal DNA repair and aging.  Several studies have 

investigated the relationship between proficient DNA repair and aging (reviewed 

in [307]).   Early studies using the unscheduled DNA synthesis (UDS) assay 

found that UV-induced DNA damage was repaired more slowly with increasing 

age in rats [308] and more slowly in later passages of WI-38 human lung cells 

compared to earlier passages [309]. A decline in NER efficiency, as measured by 

reduced removal of UV-induced photolesions, with increasing donor age was 

observed in cultured human dermal fibroblasts [310].   
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A number of studies have explored the relationship between DNA repair 

and aging in isolated lymphocytes in a human population using the host-cell 

reactivation assay (HCR). However, as stated above, this assay measures TC-

NER, and the results of these studies have been quite varied.  DNA repair 

capacity (DRC) was reduced with increasing subject age in a study of lung 

cancer patients [260].  In contrast, other studies have shown that DRC 

decreased with age in healthy individuals but increased with age in cancer 

patients [311, 312].  DRC has also decreased with increasing subject age 

regardless of cancer status in both groups significantly [259], or only significantly 

in the control population [313-315].  Some studies have reported that age did not 

contribute significantly to DRC in either the case or control populations [273, 

316], and DRC has even remained unchanged in controls while increasing with 

age in cancer patients [299].   

The previous findings from human population studies suggest that the 

current understanding of the relationship between DNA repair capacity and 

subject age from isolated lymphocytes in a human population is not complete.  

We saw a very strong influence of age on NER efficiency, and we also observed 

that this effect was modulated by smoking status (as indicated by the significance 

of the interaction variable of smoking and age on NER).  It is possible that this 

interaction may explain some of the disparities in the age effect on DNA repair 

seen in these studies – if smoking status is not uniform across age groups it may 

obscure the effect of subject age on DNA repair.   
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Our findings indicate that subject age must be properly matched when 

comparing NER efficiency between populations, as when exploring the effect of 

DNA repair on cancer susceptibility.  Additionally, while smoking status did not 

significantly alter NER efficiency, it had a significant impact on the age-

dependent decline in NER efficiency. As a result, we propose that smoking status 

should also be consistent both between study populations and across age 

groups within the same population in order to most accurately measure 

differences in NER efficiency between populations.  
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Table 6.1 Factors affecting NER efficiency 

 

 

Table 6.1 Demographic information and NER efficiency are provided for the 

indicated groups in the study population.  P-values from comparisons of half-lives 

between different subpopulations are shown. For comparing half-life values 

across the three age groups, the p-value was obtained from a 1-way ANOVA 

trend analysis.  For comparing half-life values in groups based on smoking status 

or gender, the p-value was obtained from a 1-way Student’s T-test. The adjusted 

p-value is the result of a multivariable regression analysis that factored age, 

smoking status, and gender.  The interaction effect p-value was derived from the 

multivariable regression analysis and indicates whether the indicated variable 

had a significant influence on the observed effect of subject age on NER 

efficiency. 
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Table 6.2 Influence of gender on NER efficiency in various study 

populations. 

 

 

Table 6.2 A comparison of NER efficiency between males and females in 

different groups of the study population. Females tend to repair faster than males 

across all populations measured, but the difference is not significant.   
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Figure 6.1 DNA repair assay performed on lymphocytes isolated from three 

different subjects
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Figure 6.1 (A) A slot-blot from each of three individuals in the study is shown.  

(B) The percent 6-4 photoproducts removed are calculated from three repeats of 

the slot-blot per individual, with the average repair and standard error at each 

timepoint plotted on the graph.  (C) The percent repair values are converted into 

% 6-4 photoproducts remaining at each timepoint, and the average and standard 

error values are plotted as shown.  From this data, an exponential decay 

regression analysis was performed to generate the half-life (and standard error) 

values shown for each individual. 
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Figure 6.2 The distribution of NER efficiency across the study population 
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Figure 6.2 (A) A Histogram of half-life distribution across the entire population is 

shown, as well as the average and standard deviation of the population half-life.  

The study population’s NER efficiency has a mostly Gaussian distribution but is 

slightly skewed towards slower repair values.  The Kolmogorov-Smirnov (KS) 

normality test indicates that the half-life values are not normally distributed (p < 

0.01).  (B) In order to produce a normally distributed data set, a natural log 

transformation of the data was performed, and a histogram of the natural log 

transformed data is shown, along with the average and standard deviation of the 

transformed half-life of the study population.  The KS normality test confirms that 

the natural log-transformed half-life values are normally distributed (p > 0.15) 
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Figure 6.3 NER efficiency is reduced with increasing subject age 
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Figure 6.3 (A) A graph of the average half-life and standard error for the 

population separated into three age groups shows an increase in half-life with 

increasing subject age. A 1-way ANOVA trend analysis for increasing half-life 

produced a p-value of 0.0023. (B) A scatter plot of the half-life vs subject age of 

each individual in the study also shows an increase in half-life with increasing 

subject age.  A linear regression analysis of the data produced an R2 value of 

0.0655 (p = 0.0013) 
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Figure 6.4 The effect of smoking status and gender on NER efficiency 
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Figure. 6.4 (A) The effect of smoking status on NER efficiency.  The average 

half-life and standard error from each of the three smoking groups in the study 

are plotted on the graph.  The current smokers have a faster NER efficiency 

compared to the other smoking groups, but the difference is not significant (p = 

0.0914). (B) The effect of gender on NER efficiency. The average half-life and 

standard error of females and males in the study are plotted on the graph.  

Female subjects have a moderately faster NER efficiency than males, but this 

difference is not statistically significant (p = 0.2029). 
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Figure 6.5 NER efficiency decreases with subject age in both genders in the 

study population 
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Figure 6.5 Scatter plots of the distribution of half-life compared to subject age for 

male (A) and female (B) subjects in the study population are shown.  Regression 

analysis of the scatter plots of subject age verses half-life provided R2 values of 

0.0792 (p = 0.013) and 0.0554 (p = 0.038) for males and females respectively, 

indicating a significant relationship between age and NER efficiency in both 

populations. 
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Figure 6.6 The age-dependent decline in NER efficiency depends on 

smoking status 
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Figure 6.6 Scatter plots of the distribution of half-life compared to subject age for 

current (A), former (B), and never smoker (C) subjects in the study population are 

shown.  Regression analysis of the scatter plots of subject age verses half-life 

provided R2 values for the current and former smoking populations of 0.4759 (p = 

0.0001) and 0.1059 (p = 0.02) respectively, indicating a significant relationship 

between age and NER efficiency in both populations.  The regression analysis 

performed on the non-smoking population, however, produced an R2 value of 

0.0026 (p = 0.655), indicating there is no decline in NER efficiency with 

increasing subject age in the non-smoking population. 
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Supplemental Table 6.1 Strength of association between subject age and 

NER efficiency in different study populations 

 

S. Table 6.1 A linear regression analysis of subject age and NER efficiency was 

performed for the study population as well as several subpopulations in the 

study.  Both genders overall show a strong age effect on NER efficiency, as do 

the current and former smoking populations, but the males and females in the 

never-smoking population do not.  
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Chapter 7 

Unanswered questions, a case-control study, and a future 

direction for the NER functional assay 

7.1 Did reduced XPC expression impair NER? 

 I have presented my findings indicating that the efficiency of the 

Nucleotide Excision Repair pathway can be impacted by environmental factors 

such as tobacco smoking and arsenic and by epidemiological factors like age 

and possibly even gender.  The variations in NER efficiency observed in the 

previous chapters may increase the risk of cancer development. Numerous 

reports indicate that defective NER [40, 211, 278], reduction in expression of 

NER factors [249, 287], polymorphisms in NER genes [279, 281, 283-286], and 

variations in (TC) NER efficiency within a population [259, 312, 317] all contribute 

to cancer risk.   

We observed a reduction of XPC protein and RNA levels that was 

concurrent with a reduction in NER efficiency in cells treated with either CSC or 

arsenic.  One important question remains unanswered: Is the inhibition of NER 

produced by CSC or arsenic a consequence of the reduction of XPC?  Loss of 

XPC eliminates functional GG-NER [245, 318], and evidence suggests that 

reduction in expression may also inhibit repair of UV-induced 6-4 PPs [245] and 

ultimately increase cancer risk [47, 152], but we need a clear demonstration that 

this occurred in the cell lines that were tested.   

 There are at least two experimental systems that could be implemented to 

test the hypothesis that NER function was inhibited in the cell lines examined as 
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a consequence of XPC inhibition.  NER function could be measured in cells 

where XPC is artificially reduced in the absence of CSC or arsenic.  Small 

interfering RNA (siRNA) specific to XPC can knock down XPC expression [151].  

Stable transfection of the siRNA with an inducible promoter could be used to 

reduce the level of XPC to a level that is similar to what was observed in 

treatments of CSC or arsenic.  If reducing XPC in this manner produces a similar 

reduction in the removal of the photolesions we studied in the presence of CSC 

or arsenic, then the hypothesis would be supported.   

 The shortfall of this experiment, modulating XPC levels in the absence of 

the chemicals responsible for the observed reductions of XPC, is that any 

additional mechanisms of NER inhibition that CSC/arsenic may have employed 

that we have not yet quantified would be lost.  Therefore, if reducing XPC levels 

in the cell lines examined does not inhibit NER efficiency in the same manner 

that CSC/arsenic did, we are left not knowing whether this is because the XPC 

reduction was unrelated to repair inhibition or simply one of multiple changes the 

chemicals produced that combined to inhibit NER. 

Alternatively, overexpressing XPC as a means to protect the cell from the 

inhibitory effects of CSC or arsenic on NER would also provide evidence that 

XPC levels are responsible for the inhibition of NER seen in the treated cells.  

This experiment runs up against the issue of XPC toxicity, however.  As indicated 

in chapter 3, XPC is a highly regulated protein that has considerable post-

transcriptional modifications, including ubiquitylation.  Maintaining low levels of 

XPC is important, as XPC actively scans chromosomes looking for DNA damage.  
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Overexpression of XPC and its binding partner HR23B produced significant 

toxicity, likely by interfering with DNA metabolism by binding to a wide range of 

DNA structures [162].  Overexpressing XPC sensitizes p53-deficient cells to DNA 

damage-induced apoptosis [319], which may be a useful tool in combatting 

therapy resistant tumors, but it complicates the repair assay by potentially 

exaggerating the apoptotic effect of the DNA damage-inducing UV.  Additionally, 

a conditional, ubiquitous oxerpression of mus210, an XPC homolog, reduced 

average lifespan in fruit flies by almost 50% [320]. Therefore, overexpressing 

XPC in a cell containing endogenous XPC poses some challenges.  

7.2 XPC expression as a biomarker for cancer risk 

After determining that NER function and XPC expression could be 

impacted by CSC and arsenic, both known human lung carcinogens, we 

explored the hypothesis that XPC expression in human lung tissue may be a 

biomarker for cancer risk.  We proposed that XPC expression may be reduced in 

lung cancer tissue, relative to non-neoplastic adjacent tissue, and this reduction 

could be a driving force behind the lung carcinogenesis.  XPC expression level 

reduction could be a result of exposure to environmental agents like tobacco 

smoke or arsenic, similar to what was observed in our cell culture studies. 

Alternatively, XPC levels may be impacted by a mutation or an epigenetic 

change that results in reduced expression of XPC, reducing the ability of the 

NER pathway to function and perhaps ultimately driving the formation of the 

cancer.  Using immunohistochemistry, lung tissue samples acquired from 

biopsies of lung cancer patients were stained for XPC protein.  In a small pilot 
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study, nuclear XPC content was reduced in cancer tissue relative to non-

neoplastic adjacent tissue in the same slide.  However, we were unable to 

replicate our initial findings, and as such we could not draw any conclusions 

regarding the relationship between XPC expression and lung cancer.   

7.3 A more complete biomarker of cancer susceptibility 

Using the protein level of a repair gene such as XPC as a biomarker for 

cancer risk would be more easily accomplished from a bio-specimen that is more 

easily obtained, such as blood.  However, it would be prudent to establish a few 

other things first.  As the cancer risk associated with variations in protein 

expression of certain NER factors has produced inconclusive results thus far 

(see chapter 5), it may be more productive to evaluate the relationship between 

the efficiency of the NER pathway in cells isolated from blood and cancer risk 

first, and then look for a relationship between this efficiency and expression 

levels of certain proteins like XPC.  As an assay that measures NER efficiency is 

more involved than a simple expression study, it is less feasible to use the 

efficiency of NER as a predictor of cancer risk in a high-throughput fashion.  

However, it is critical that the correlation between NER efficiency and cancer risk 

be established as well as a strong relationship between, for example, XPC 

expression and NER efficiency, as this increases the strength of association 

between XPC expression (a more easily measured value than NER efficiency) 

and cancer risk.  

With that in mind, we participated in a large scale case-control study 

designed to investigate the causes of the large incidence of lung cancer in 
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Appalachian Kentucky.  Several investigators were involved in the study, and 

several hypotheses were tested to determine what was responsible for this 

cancer incidence.  Previous work done by members of the group had determined 

that, even though smoking rates are higher in Appalachian Kentucky than the 

rest of the state, several geographical areas had lung cancer incidences higher 

than the state average after adjusting for smoking [14].  At the time of this writing, 

the analyses performed by the other investigators are not complete, and as such 

I will not include their findings.   

Based on our findings from cell culture experiments that the carcinogenic 

chemicals CSC and arsenic inhibited NER efficiency as indicated in chapters 3 

and 4, we hypothesized that variations in NER efficiency between individuals 

could be a risk factor for cancer development.  The study was designed to 

provide blood samples from lung cancer subjects and age/gender matched 

control subjects.  Lymphocytes would be isolated from the blood samples and a 

repair assay would be performed.  Unfortunately, the number of lung cancer 

cases that were evaluated (42) was insufficient to produce the power necessary 

to draw any conclusions about potential differences in repair between the cancer 

and control groups.  Additionally, as we explored the variables that could 

potentially impact NER efficiency, we observed that age, smoking, and gender all 

had a role to play in determining individual NER efficiency (as discussed in 

chapter 6).  Since the study was not designed to have equal representation of 

smokers between cases and controls, the power of the study was even further 
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reduced, as comparing cases and controls after adjusting for smoking status 

reduced the sample sizes even further.  

Instead, we chose to report the findings of the population distribution of 

NER efficiency from the control group only, drawing inferences as to how a case-

control study should be designed in the future.  The study was designed to match 

lung cancer case and cancer-free control subjects on the basis of age and 

gender.  It did not require that they be smoking matched.  The results of our 

study indicate that the different smoking groups did not have statistically different 

average half-lives.  However, the observed effect of age and NER efficiency was 

modulated by smoking.  This means that an appropriate study design should 

include an even distributions of smokers between the cases and controls.  It also 

means that smoking incidence should also be evenly distributed across the range 

of subject ages for both cases and controls, as doing otherwise would produce 

an uneven effect of subject age on NER efficiency between the populations.  To 

our knowledge, no such adjustment has been made in any population studies 

that evaluate DNA repair from human lymphocytes. 

Even though we did not have a sufficient lung cancer subject sample size 

to properly compare cases and controls in our Appalachian Kentucky study, we 

did analyze NER efficiency in 42 lung cancer subjects.  One of our most 

significant findings in the control population, that NER efficiency was significantly 

reduced with increasing subject age (Figure 6.3), was not significant in the case 

population (Figure 7.1) or any of the subpopulations (males, females, current or 

former smokers).  This could be a consequence of selection bias – if reduced 
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NER efficiency is indeed a risk factor for the development of lung cancer, then 

lung cancer patients may not show a reduction in NER efficiency with increasing 

subject age, as the younger population is already presenting a reduction in NER 

efficiency.  If that is the case, then the age-dependent reduction in NER 

efficiency seen in the control population could be absent in the case population. 

The observation that the lung cancer population did not show a reduction 

with NER efficiency with increasing age suggests that comparisons between 

cases and controls may be more meaningful at lower age groups, before the 

control population experiences an age dependent reduction in NER efficiency.   

Indeed, the younger case population (individuals under 50 years old) had a 

slower NER efficiency than the younger control population, but the difference 

was not significant (Figure 7.2).  As expected, since the case population does not 

show a reduction in NER efficiency with age, the NER efficiency in the case 

population is actually greater than the control population in the second and third 

age groups (although it is only significant in the middle age group).  An important 

observation was that all of the lung cancer cases under 50 years old were current 

smokers. Since we observed that subject smoking status impacted NER 

efficiency via an interaction effect with subject age, we concluded that the 

smoking distribution needs to be comparable between groups.  As such, we 

compared the NER efficiency of the current smoking case subjects to the current 

smokers in the control group (Figure 7.3).  In the youngest age group, the case 

subjects had a significantly slower NER efficiency than the youngest current 

smoking control subjects.  However, the sample sizes in this limited analysis are 
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quite small, only 7 cases and 7 controls.  A larger study that includes greater 

representation of individuals under the age of 50 would be desired to obtain a 

more meaningful comparison between cases and controls using this repair 

assay.  Separating the study participants by age group and smoking status is not 

typically done in population studies evaluating DNA repair as a biomarker of 

cancer risk, and although these results are from smaller than desired sample 

sizes, they suggest that both smoking status and age play a role in individual 

NER efficiency.  Since we have observed a reduction in NER efficiency with 

increasing subject age among the control population, but not the case population, 

this assay may most informative in case-control studies on younger individuals.  

As cancer is a disease of aging, detecting cancer risk early is a very useful 

preventative tool. 

Ultimately, the goal of measuring DNA repair, be it by measuring 

polymorphisms in DNA repair genes, by measuring levels of proteins involved in 

DNA repair, or with an assay to determine individual DNA repair efficiency, is to 

use this measurement as a biomarker of cancer susceptibility in a healthy 

population.  As stated above, there have been considerable efforts to use the 

association of repair gene polymorphisms and cancer incidence as a predictor for 

cancer risk.  The drawback to these sorts of studies is that genetic 

polymorphisms do not tell the whole story – they cannot provide a measure of 

how efficiently the expressed proteins would interact in a repair process that 

requires the concerted efforts of dozens of individual factors.  Measuring protein 

levels also has this limitation.  While there may be statistically significant 
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associations between the levels of various proteins involved in DNA repair and 

cancer risk, it is also possible that an individual who has normal levels of the 

measured proteins has a deficiency elsewhere that increases cancer risk.  The 

best way to capture the whole picture of an individual’s cancer risk is to perform a 

functional assay to measure the ability of their DNA repair machinery to remove 

DNA damage.  We have successfully implemented a functional assay to 

measure NER efficiency in a human population, and from that study we have 

discovered insights into the factors that modulate NER efficiency.  Primary 

among these factors is subject age, and related to that is that observation that 

smoking interacts with subject age to regulate NER efficiency. 

Previous studies have observed an age effect on DNA repair (albeit TC-

NER via the host-cell reactivation assay) in isolated lymphocytes, and there has 

been some evidence that smoking status may affect repair as well, but the 

interplay between these two factors has not, to our knowledge, been observed 

before.  We found that non-smokers, who were (mostly) cancer free in our study, 

did not show an age dependent reduction in NER efficiency, while current and 

former smokers did (Table 7.1).  This was a rather unexpected finding, since the 

total study population (n = 198) and the control only population (n = 156) each 

show a significant reduction in NER efficiency with increasing subject age.  In 

other words, the smoking population, which represented about half of the control 

subjects and over half of the total subject population, had such a strong age-

dependent reduction in NER efficiency that it effectively masked the lack of an 

age-dependent response in the non-smokers.  Additionally, the total female 
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population did not have a significant age-dependent decline in NER efficiency, 

but the control female population did.  This was a result of the female case 

subjects who did not have an age-dependent reduction in NER efficiency and 

therefore masked the age-dependent reduction in NER efficiency in the control 

female population when they were grouped together in the “total female” 

population.  These findings highlight the importance of determining not only what 

factors effect NER efficiency in a population before a comparison between cases 

and controls can be done, but additionally the findings suggest that variables can 

interact with each other to contribute to the distribution of NER efficiency within a 

population and that these interactions must also be properly understood and 

corrected for when measuring NER efficiency in a case/control study as a marker 

of cancer susceptibility in a population.  

7.4 The relationship between metal exposure and NER efficiency in a 

human population 

 Our investigation of the levels of NER efficiency in an at-risk population in 

Appalachian Kentucky, a population where lung cancer rates are greater than 

expected based on smoking prevalence, also included collecting environmental 

exposure data.  Of principle interest was the potential exposure to arsenic, an 

established human lung carcinogen, and the relationship between any exposure 

and NER efficiency.  Since we had observed that arsenic, in an acute, high 

concentration exposure, could reduce NER efficiency in multiple cell culture 

models, we hypothesized that arsenic exposure in a human population could also 

result in a reduction in NER efficiency.  A U.S. study found that individuals with 
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toe-nail arsenic levels above a certain threshold (0.114 µg arsenic/1 gram nail) 

had a significant association with small-cell and squamous-cell carcinoma of the 

lung compared with those in the lowest exposure group [83].  A previous study 

indicated that residents of Appalachian Kentucky had significantly higher toenail 

arsenic levels than a non-Appalachian reference county, with over a quarter of all 

samples exceeding the 0.114 µg/g threshold [321]. We ran a similar comparison, 

looking at lung cancer risk in the highest exposed population compared to the 

lowest exposure group, and determined that there was no appreciable increase 

in cancer incidence (odds ratio ).  The arsenic exposure levels in the reference 

study were considerably higher than those seen in the Appalachian Kentucky 

study, which may make meaningful comparisons based on arsenic nail levels 

difficult.  About 22% of the nail samples in the reference study, across cases and 

controls, had arsenic nail levels above the threshold indicated above.  In our 

study, only 11% of the subjects whose lymphocytes were analyzed for repair had 

toenail arsenic levels above the same threshold.  Even though the levels of 

arsenic in the nails were low, we also investigated the relationship between 

arsenic nail levels and the efficiency of NER (Fig 7.4 A).  We found no trend in 

half-life values with increasing arsenic concentrations in subject toenails.  In 

general, toenail metal analysis revealed that there was little exposure to toxic 

metals such as arsenic, cadmium, lead, and nickel (data not shown).  These low 

levels, while certainly a positive for the individuals in the region, make any 

analysis of the effects of heavy metal exposure difficult.  We therefore shifted 

focus to look at the effect of essential trace metals, such as selenium, 
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manganese, chromium and iron, on the efficiency of NER for any potential 

protective effects.  Although we saw no relationship between chromium and 

selenium levels in toenails and NER efficiency, we observed a positive 

correlation between the efficiency of NER and toenail concentrations of both 

manganese and iron in a statistically significant manner (Fig 7.4 B/C).  Iron is an 

essential cofactor for all three mammalian DNA polymerases and is required by 

the NER factor XPD to facilitate its helicase activities [322].  Manganese is used 

by SOD2 to reduce oxidative damage in the mitochondria, where the superoxide 

radical is generated during mitochondrial respiration.  Oxidation of NER factors 

has been implicated as a mechanism through which oxidative damage may 

inhibit NER [323].  It follows then that, within the non-toxic range of 

concentrations of these two metals, higher levels of iron and manganese could 

promote DNA repair, and indeed we observed an increase in the efficiency of 

NER with increasing toenail concentrations of manganese and iron.  We then 

chose to examine the relationship between the efficiency of NER and nail metal 

exposure between individuals who had the highest exposure of a given metal to 

the remainder of the population (Table 7.2).  When comparing the toenail 

samples containing the highest concentrations of manganese or iron 

(approximately top 10%) to the remainder of the samples, the high metal level 

groups had a greater DNA repair rate (reduced half-life) compared to the 

remainder of the study population (Fig 7.5 A/B).  In the case of manganese, the 

difference was statistically significant.  When subjects were grouped based on 

their toenail arsenic levels, on the other hand, there was no difference in NER 
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efficiency between the two groups (Fig 7.5 C).  In this case, the cutoff used was 

close to the level (0.114 µg As/g nail) that produced a significant risk for 

developing certain lung cancers [83]. 

7.5 Future directions 

 The NER pathway is vital to the prevention of DNA mutations that drive 

carcinogenesis.  The efficiency of the pathway fluctuates within a population, 

both as a consequence of an age-dependent decline in NER efficiency as well as 

the existence of many polymorphisms in the genes involved in NER.  Additional 

environmental factors may also contribute to variations in NER efficiency.  Less 

efficient NER faculties could result in increased mutational burdens, and 

individuals who are subject to higher levels of DNA damage (like smokers) would 

be at an even higher risk of developing cancer should their NER efficiency be 

low.  It is this premise that has drawn us into investigating the NER pathway as 

potential biomarker for cancer susceptibility.  Our efforts exploring the causes for 

increased lung cancer incidence in Appalachian Kentucky produced mixed 

results.  Overall, there was no reduction in NER efficiency in the lung cancer 

subjects compared to the control subjects.  After observing that these two 

populations showed very different responses to increasing subject age as it 

related to NER efficiency, and after concluding that smoking had a dramatic 

effect on the observed age-dependent decline in NER efficiency, we determined 

that both smoking and age must be controlled for when performing a case-control 

study using our measurement of NER efficiency.  Unfortunately, correcting for 

age and smoking status reduced the sample size of the only population that 
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showed any substantial difference in NER efficiency between cases and controls, 

young smokers.   

 In addition to the hypothesis that reduced NER efficiency could increase 

lung cancer risk in the Appalachian Kentucky population, there were two 

additional hypotheses that were developed after cell culture work determined that 

environmental factors, namely tobacco smoke (condensate) and arsenic, could 

inhibit the efficiency of NER.  We hypothesed that (1) tobacco smoke or (2) 

arsenic could cause a reduction in the NER efficiency of individuals within the 

study population who were exposed to these environmental agents.  This then 

extends the hypothesis that reduced NER efficiency could increase cancer risk to 

include a possible explanation as to how the NER efficiency of individuals could 

be reduced.  As this was the first time the repair assay was used to measure 

NER efficiency in a human population, there is no external reference point to 

compare the measures to, and it is therefore impossible to determine if 

individuals in Appalachia as a whole have reduced NER efficiency compared to 

those outside the region.  Further studies are required to compare NER efficiency 

measured in this study to populations outside the region.  Rather, the study 

permitted comparisons of NER efficiency between lung cancer cases and 

controls, as well as between individuals who were and were not exposed to 

various environmental agents.  The results of the comparison of half-lives 

between cases and controls has been laid out above.  The impact of tobacco 

smoke on NER efficiency was not what was expected.  As detailed in chapter 6, 

the different smoking populations did not have statistically different average half-
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lives, after adjusting for the difference in ages between the populations.  The cell 

culture work suggested that tobacco smoke could potentially inhibit NER 

efficiency, and as such a hypothesis was established that posited that smokers in 

Appalachia would have a reduced NER efficiency as a consequence of their 

smoking.  Instead, the current and former smokers had faster rates of repair 

relative to the non-smoking population, although the difference was not 

significant, and was likely highly influenced by the disparity in average ages of 

the smoking populations (See Table 6.1).  The other hypothesis cultivated by the 

cell culture studies that applied to the human population study on NER efficiency 

was related to arsenic exposure.  Arsenic, in cultured skin and lung cells, 

reduced NER efficiency.  It was hypothesized that this would occur in the human 

population study, that individuals exposed to arsenic would have reduced NER 

efficiency.  This was tied to an additional hypothesis that arsenic levels in the 

region were sufficiently high to increase lung cancer incidence in exposed 

individuals.   

Neither of these turned out to be the case.  Arsenic levels were quite low 

in the nail samples from individuals in the Appalachian study, and there was no 

correlation between arsenic levels and either cancer incidence or NER efficiency.  

Given the low level of exposure, it would not be prudent to conclude that arsenic 

is not a risk factor for lung cancer development, but rather that this population 

lacked sufficient exposure to arsenic to observe any affect it might have on lung 

cancer risk.  The same can be said for the impact of arsenic exposure on NER 

efficiency.  There is no comparable study that investigated NER efficiency as it 
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correlates to arsenic exposure in a human population, so the conclusion that 

arsenic levels were insufficiently high to perform a comparison with NER 

efficiency will have to remain based on the fact that arsenic levels were not high 

enough to increase lung cancer risk.   

Rather than try to draw conclusions regarding the impact of heavy metal 

exposure on NER efficiency when exposure was quite low, another opportunity 

presented itself within the metal data collected.  Essential trace metal exposure 

data was also collected, and there were sufficient levels of several of these 

metals to examine their relationship to NER efficiency.  As indicated in section 

7.4, manganese and iron showed a positive relationship with NER efficiency in a 

statistically significant manner.  While it was not part of the hypothesis relating to 

lung cancer incidence in the region, the positive association between NER 

efficiency and manganese and iron levels provides evidence that this measure of 

NER efficiency can be correlated to environmental exposures.  The positive 

association between essential trace metals and NER efficiency may pave the 

way for further studies of the relationship between NER efficiency and metal 

exposure in individuals who have higher levels of exposure to toxic metals like 

arsenic, cadmium, nickel, and lead.   

Ultimately, NER efficiency may be a useful tool in predicting cancer risk, 

especially among individuals who are already at increased risk due to factors like 

smoking or excessive sun exposure.  The repair assay discussed herein needs 

to be validated in a large case-control study with appropriate matching 

conditions.  Age, smoking status, and perhaps even gender should all be 
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considered when establishing a case-control study that measures NER efficiency 

as an indicator of cancer risk.  As cancer is a disease of aging, and since cases 

and controls showed dramatically different age-dependent changes in NER 

efficiency, measuring NER efficiency using the technique described herein would 

like be most effective in a younger population.  As it is designed to provide a 

measure of cancer risk, those individuals with poor NER efficiency would be able 

to take that knowledge and perhaps decide to mitigate their risk by reducing 

exposure to DNA damaging agents such as sunlight and tobacco smoke.  

Knowing you are at a high risk for developing cancer may be the incentive 

needed to make a lifestyle change, avoiding additional risk factors, which will 

reduce the risk of developing cancer.  
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Table 7.1 The effect of subject age on NER efficiency in different 

populations of the study 

 

Table 7.1 Subject age was plotted against half-life for each individual in a given 

population and a linear regression analysis was performed.  The R2 value and 

subsequent P-value derived from the R2 value are shown in Table 7.1 for the 

total, control, and case populations as well as further divisions within each of 

these groups.
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Table 7.2 Half-life values of individuals in high metal exposure populations 

compared to the remainder of the population 

 

Table 7.2 Individuals who had toenail levels of arsenic, manganese, or iron 

above cutoffs representing approximately the 90th percentile for each metal we 

compared to those below the cutoff for each metal.  The sample size, half-lives, 

and standard deviation are shown for each population, along with a p-value from 

a 2-way Student’s T-test comparing the half-lives of individuals above and below 

the cutoff for each metal are shown. 
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Figure 7.1 NER efficiency is not affected by subject age in lung cancer 

subjects
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Figure 7.1 Scatter plots of the distribution of half-lives compared to subject age 

is shown for (A) the total lung cancer population, (B) the current smokers with 

lung cancer, (C) the former smokers with lung cancer, (D) the male subjects with 

lung cancer, and (E) the female subjects with lung cancer. All populations show 

no significant reduction in NER efficiency with increasing subject age.  

Regression analysis of the scatter plots provided R2 values of 0.0496, 0.0025, 

0.0256, 0.0650, and 0.0002 for the total, current smoking, forming smoking, 

male, and female populations, respectively.  The associated p-values were all 

non-significant (see table 7.1). 
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Figure 7.2 NER efficiency in cases verses controls separated by age group 

Figure 7.2  (A) A graph of the mean +/- standard error for half-life in each age 

group separated by case and control subjects.  (B) A table of the results shown in 

(A).  When comparing the cases to control at each age group, the controls have 

a greater NER efficiency in the youngest age group (although not significantly), 

while they have a reduced NER efficiency in the middle and oldest age groups 

compared to the cases. 
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Figure 7.3 NER efficiency in current smoking cases verses controls 

separated by age group 

 
Figure 7.3  (A) A graph of the mean +/- standard error for half-life of current 

smokers in each age group separated by case and control subjects.  (B) A table 

of the results shown in (A).  When comparing the cases to control at each age 

group, the controls have a greater NER efficiency in the youngest age group (p = 

0.0307), while they have a lower NER efficiency in the middle and oldest age 

groups compared to the cases (p = 0.1689 and 0.0316 for middle and oldest age 

groups, respectively). 
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Figure 7.4 The relationship between NER efficiency and toenail metal 

concentration in a human population 
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Figure 7.4 (A) A scatter plot of the half-life vs toenail arsenic levels shows no 

correlation.  A linear regression analysis of the data produced an R2 value of 

0.0012 (p = 0.667).  (B) A scatter plot of the half-life vs toenail manganese levels 

shows a reduction in half-life with increasing manganese concentration.  A linear 

regression analysis of the data produced an R2  value of 0.0265 (p = 0.045). (C) 

A scatter plot of the half-life vs toenail iron levels shows a reduction in half-life 

with increasing iron concentration.  A linear regression analysis of the data 

produced an R2  value of 0.0333 (p = 0.026).  
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Figure 7.5 NER efficiency of individuals in the study population separated 

into high and low metal exposure for Mn, Fe, and As 
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Figure 7.5 (A) A graph of the average half-life and standard error from 

individuals above and below 1 µg Manganese / 1 g toenail is shown. (B) A graph 

of the average half-life and standard error from individuals above and below 30 

µg Iron / 1 g toenail is shown. (C) A graph of the average half-life and standard 

error from individuals above and below 0.125 µg Arsenic/ 1 g toenail is shown.  

These cutoffs roughly separate the population into a 10% high exposure 

population and the remaining 90% of the population for each metal exposure. 
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