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THESIS

THE DRAG LANGUAGE

This thesis describes the Drag language.
Drag is a general purpose, gradually typed, lexically scoped, and multi-paradigm pro-
gramming language. The essence of Drag is to build the abstract syntax trees of the
programs directly and interactively.
Our work includes the language specification and a prototype program. The language
specification focuses on the syntax, the semantic model, and the type system. The
prototype consists of an interactive editor and a compiler that targets several plat-
forms, among which we focus on the LLVM platform in this thesis.
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Chapter 1 Introduction

1.1 Background and Terms

• Programming Language — In this thesis, we define programming language
in a wide sense – a software tool that interfaces between clients, usually humans,
and lower-level facilities, such as files or operating systems [1].

• Programming Paradigm — A programming paradigm is a style of com-
puter programming. Some widely-known paradigms include: the imperative
paradigm, which focuses on changing the states and the flow of control; the
functional paradigm, which models program execution as the evaluation of ex-
pressions; and the declarative paradigm, which views programming as stating
what is wanted but not necessarily how to compute it [1].

A programming language may implement many paradigms, like OCaml and
Scala. In this thesis, we call such a language multi-paradigm.

• IDE — An IDE, integrated development environment, is software that
helps programmers write programs. An IDE is often able to scan and parse
the source program to provide some aids for editing the programs, such as
autocompletion, grammar highlight, refactoring, and declaration jumping.Two
examples of IDEs are Visual Studio and IntelliJ. Some programming languages
are highly integrated into their IDEs — for instance, Matlab.

• AST — An AST, abstract syntax tree, is a representation of the abstract
syntax structure of a string-formed program. This representation serves as the
central data structure for all post-parsing activities during compilation [2].

• LLVM — The LLVM, low level virtual machine, is a compiler tool-chain. The
core of LLVM is its instructions set.

• S-expression — The S-expression, invented for the programming language
LISP [3], is a nested list structure that represents LISP programs and data
uniformly. An S-expression is recursively defined as

– an atom or

– (a . d), where a and d are S-expressions

1.2 Programming Language, Compiler and IDE

Drag is a programming language

Drag is a general purpose, gradually typed, lexically scoped, and multi-paradigm
programming language.
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Drag displays programs as graphical ASTs. Programmers write programs by
directly modifying the structures of the ASTs. The graphical AST suppresses the
complex textual details other langauge use, to ensure the simplicity and consistency of
syntax. The AST representation moves the programmer’s focus from textual details
to the structure of the program, thus emphasizing the logic and the computation
behind the program. In addition, the AST structure is capable of abstracting the
meaning of the programs of any paradigm and visualizing the meanings uniformly.

To ensure semantic safety of programs, the type system of Drag is able to infer
and check types. Our design of Drag benefits from both statically and dynamically
typed languages. The type system of Drag strictly enforces type rules by default.
Drag allows programmers to turn off the type system on a module-by-module basis
to achieve the flexibility of dynamic typing.

Drag is a compiler

The AST is a widely used intermediate representation in compilers. Because a com-
plete Drag program is ready for the target-code generation, Drag’s compiler skips
the two most time-consuming parts of the compilation — lexical scanning and syn-
tax parsing. This feature makes the compilation process light and fast, consequently
making further analysis and optimization more efficient.

Drag is an IDE

Our implementation includes a graphic user interface built on Java Swing.
Because Drag’s compiler skips scanning and parsing, the IDE of Drag is able to

statically analyse programs with lower cost than the IDE of textual programming
languages.

1.3 Research Contribution

Compared to classical textual programming languages, the two core advantages of
Drag are:

• AST-based syntax provides consistency and intuitiveness to make programs
readable

• interactive programming style provides the efficiency and power for pro-
gram analysis and optimization.

The first main contribution of this thesis is to use the AST as a graphical and
interactive programming language. We originally intended to build a graphical pro-
gramming language like an electronic circuit. We later discovered that the AST
structure enables an interactive programming style that avoids many troubles caused
by the parser.

The second contribution of this thesis is to present the specification of Drag and
its implementation. Our implementation is minimal but has all the vital parts, so
that people can easily extend Drag to explore their ideas.

2



Chapter 2 Language Specification

An elegant program is one that
is readable the first time by a
novice, not one that plays
unexpected tricks.

Raphael Finkel

2.1 Syntax and semantics

We designed the syntax of Drag to be easily parsed by both humans and machines.
Many classical programming languages tend to borrow the vocabulary and the

grammars from natural languages. This creates two major problems in programming:

• For humans - Because the language designers blend in their personal under-
standings of natural languages, the interpretation of the same piece of program
is experience-dependent.
For example, the API pop() for a LinkedList: in JAVA the pop() removes
the first element of the list instance and returns that element as the result of
the function, but in the Standard Library of C++, the similar pop back()
and pop front() operations only remove the first element and return void.

Similar pitfalls exist because that different language designers understand the
same words differently.

• For machines - Many programming languages unnecessarily imitate the gram-
mars of the natural languages, especially English. This fact creates the difficulty
that the machine needs to spend a considerable amount of time in scanning and
parsing to understand a program. This unnecessary cost lowers the efficiency
of the compilation and makes parsers difficult to write.

Some programming languages, for instance, the LISP family, build their syntax on
top of the S-expression, which is essentially an Abstract Syntax Tree. Compared to
the natural language imitators, the S-expression provides homoiconicity of programs
and data, consistency of syntax and efficiency of parsing.

Learning from the LISP family, we designed the Node-Tree-Symbol model for
Drag. The programmers directly build ASTs as the memory objects, not the S-
expressions in the string form. Programs of the Node-Tree-Symbol model are as
expressive and readable as S-expressions, and more efficient in parsing.

Node-Tree-Symbol

Every programming language has a set of strings as the reserved words. The pro-
grammers create the meanings of a new string by combining the existing strings using

3



the syntax rules. The reserved words have meanings by default; the compiler or the
interpreter sorts out the meanings of created strings.

Similarly, the fundamental elements, like strings, manipulated in Drag are called
nodes. Symbols stand for the meanings of nodes. A tree, the equivalent of a
piece of program in a classical programming language, is either a node or a group of
connected nodes.

A node implements a symbol

When writing a Drag program, the programmer creates a node by selecting a symbol.
A symbol consists of the information of:

• the name signature - a list of strings that determines the names of the input
and output ports of a node

• the type signature - a type variable that determines the types of the input
and output ports of a node

A node contains a list of ports, where a port is an interface for node connections.
Our prototype includes a small set of primitive symbols on arithmetic operations,

list operations, Boolean operations, the conditional expression operation and a few
statement operations. We write a symbol as SymbolName - 〈NameSignature〉
〈TypeSignature〉.

• cons - 〈cons car cdr〉 〈[a]←(a, [a])〉

• cdr - 〈cdr lst〉 〈[a]←([a])〉

• car - 〈car lst〉 〈a←([a])〉

• empty-list - 〈empty-list〉 〈[a]〉

• null? - 〈null? lst〉 〈bool←([a])〉

• add1 - 〈add1 operand〉 〈num←(num)〉

• sub1 - 〈sub1 operand〈 num←(num)〉

• * - 〈* operand1 operand2〉 〈num←(num,num)〉

• zero? - 〈zero? operand〉 〈bool←(num)〉

• less-than - 〈less-than operand1 operand2〉 〈bool←(num, num)〉

• greater-than - 〈greater-than operand1 operand2〉 〈bool←(num, num)〉

• = - 〈= operand1 operand2〉 〈bool←(a, a)〉

• true - 〈true〉 〈bool〉

• false - 〈false〉 〈bool〉

4



• and - 〈and operand1 operand2〉 〈bool←(bool, bool)〉

• or - 〈or operand1 operand2〉 〈bool←(bool, bool)〉

• not - 〈not operand〉 〈bool←(bool)〉

• cond-expr - 〈cond-expr cond consi alter〉 〈a←(bool, a, a)〉

• assign - 〈assign target source〉 〈stmt←(a,a)〉

• print - 〈print v〉 〈stmt←(a)〉

• stmt-list - 〈stmt-list stmts〉 〈stmt←([stmt])〉

The first string in the name signature determines the name of the symbol; the rest
of the strings in the name signature determine the names of the input parameters.
The length of the name signature of a symbol corresponds to the number of elements
in its type signature. The type system section presents more details about the type
signature.

For instance, the cond-expr symbol, which contains the name signature 〈cond-
expr, cond, consi, alter〉 and the type signature 〈a←(bool, a, a)〉, can create a node
named cond-expr (which is the first string in its name signature) that returns an a
type and has three input ports named cond, consi and alter with the types bool, a
and a correspondingly.

The output port does not necessarily mean the result value of a function. For an
expression-typed node, which is like as a function, the output port is the result value.
For a statement-typed node, for example, the assignment operation, the node does
not return a value, the output port is used to organize the sequence of execution.

Connecting nodes builds a tree

The programmer may connect nodes when all the following conditions hold:

• The connection must connect an input and an output port.

• The output port and the input port of a connection must be on different nodes.

• A port may be involved in at most one connection.

• A connection must connect two ports with consistent types.

The above rules do not avoid the possibility of circular connections; the procedure
of condensing removes all circular connections.

A group of connected nodes builds a tree, which is known as a function or a
procedure in the classical programming languages. A tree has its own symbol table,
which holds the mappings from identifier names to their values, which the lexical
scoping section of this thesis addresses.
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Condensing a tree creates a symbol

The programmer initiates condensing to create a user-defined symbol based on the
current tree. Drag adds the created symbol to a proper symbol table, which is
discussed in the lexical scoping section.

Condensing starts after the programmer selects a root node of the tree. If the
output port of the root node involves a connection, Drag disconnects the connection.
This action prevents circular connections. The output port of the root node is the
output of the created symbol; the input symbols in the symbol table of the tree are
the inputs of the created symbol.

A tree is complete when all its input ports are connected, in other words, the
leaves of the tree are all identifier nodes that do not take input. Only a complete tree is
valid to condense.

Figure 2.1: the less program

Here is an example — the less program
in Figure 2.1, which is a complete tree with
two input symbols, var1 and var2, in its
symbol table.

In detail, the output port of less-than
connects to the cond port of the cond-expr
node, the output port of the upper
var1 connects to the consi port of the
cond-expr node, and the output port of
the upper var2 connects to the alter
port of the cond-expr node. The out-
put port of the lower var1 connects to the
operand1 port of the less-than node,
the output port of the lower var2 connects
to the operand2 port of the less-than
node.

Condensing the tree results in the sym-
bol: 〈name var1 var2〉 〈num←(num, num)〉, where name is specified by the user.

Lexical Scope and Fix Point

Lexical scope, which is also known as static scope and deep binding, was first intro-
duced by the Algol family [1]. The essential idea is to capture the environment of
a method when the method is elaborated. A typical implementation is to build a
closure that contains the method body and its environment, and to pass the closure
when the method is passed.

In regards to scoping, Drag provides the following three operations:

• add-new-binding — to introduce a new binding in the current scope, where a
binding maps from a variable name to an expression.

6



• switch-to-scope — to ask for a scope name, and then change the current scope
to a received name. Changing the scope means to switch the focus to another
method.

• create-fixpoint — to create a self-reference inside a scope.

In Drag, each tree contains a scope that contains the local mappings from the
identifier names to their values. In addition, each tree contains the information of its
non-local reference scope, the outer scope tree. Because each tree is bound to a unique
scope, we use the term tree and scope interchangeably in this thesis. An identifier
is visible to a tree if the identifier is in the tree or visible to the non-local reference
scope of the tree. The programmers can use only visible identifiers when writing
programs, so Drag disallows the use of free variables. The fix point operation is
needed to implement recursion under the scope rules of Drag. While the programmer
is introducing a method, the method is not visible to itself by default, because the
identifier of the method is not in its own symbol table and as the method is not
elaborated yet, the method is not visible to its non-local referencing environment.
The fix point operation creates a link in the symbol table of current method pointing
to the location in its non-local referencing environment. Thus, a method with a fix
point can refer to itself.

Figure 2.2 shows a tree of a recursive function, where fact refers to the tree.

Functions as the first-class objects

A first-class object means that the object can be passed as a parameter to a function
and returned as a value by a function [1]. In particular, a first class function can be
passed to functions and be returned by functions.

Drag allows all nodes to be the input of other nodes. In particular, Drag uses the
textttwrap operation to make function passing explicit.

7



Figure 2.2: factorial, a sample recursive function
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Figure 2.3: the default add1

Figure 2.4: the wrapped add1

The wrap operation distinguishes op-
erators and operands. A node is an oper-
ator by default. An operator means that
the node takes some inputs and gener-
ates an output. The programmer may
wrap a node to close all its input ports,
so that the node now takes no input and
generates itself as its output.

For instance, in Figure 2.3, the de-
fault add1 node, a function that ex-
pects a num input and outputs a num
value, is an operator; in Figure 2.4, the
wrapped add1 node, an identifier that
takes no input and outputs a function
value, whose type is 〈num ← (num)〉,
is an operand.

2.2 Type system

The concept of type system has evolved with the development of the concept of data
type in programming languages. Early assembler languages view type as a property
of a datum rather instead of a property of a datum container — the fundamental
difference was only between addresses and data. Pascal and later languages started
to shift the idea of type from what makes sense to machines to what makes sense to
programmers [1].

Recently, the term type system refers to a broader field of logic, mathematics
and philosophy. More than the application to programming languages, some re-
searchers focus on the connection between various lambda-calculi and logic, via the
Curry-Howard correspondence [4].

In Drag, we implement a simple type system that focuses on type checking and
type inference. Programmers do not need to decribe the type signature explicitly —
Drag is able to reason out the type of every node (within Drag’s current type system).
In addition, Drag maintains the tables that contain the mappings from symbols to
their types.

Type signature

Here we use t to represent a type variable; box to represent a dynamic type; expr
for an expression; num for a number type; str for a string type; bool for a Boolean
type; ← for a function, with its output on the left-hand-side and its inputs on the
right-hand-side; [t] for a list contains the elements of the type t homogeneously;
and () for a tuple; we use English letters, from a to z, for the expression types that
have not been explicitly “narrowed” yet.

9



Later parts of this sections talk about the details on the function type, the list
type and the dynamic type.

〈t〉 ::= box
| stmt
| 〈expr〉

〈expr〉 ::= num
| str
| bool
| 〈t〉 <- 〈tuple〉
| [ 〈t〉 ]
| 〈type-id〉

〈tuple〉 ::= ( 〈tuple-inner〉 )

〈tuple-inner〉 ::= 〈t〉 , 〈tuple-inner〉
| NULL

〈type-id〉 ::= a
| b
| ...
| z

The construction of a type variable

In order to let programmers write programs interactively, the type inference system
must be able to specialize and generalize types. For example, if the programmer
disconnects two nodes, then Drag must restore the state before the connections. A
more complex situation is that the types of the two nodes may be affected by some
other connections.

Thus in addition to unification, which is the typical specialization algorithm for
type inference, we slightly complicate the structure of a type variable so that Drag
can efficiently generalize the resulting types if necessary: A type variable has the
following members:

• type_was — what the type was when the node was first created

• unified_types — a list that points to the other type variables that is unified
with this type variable

• sig — a list that points to the related type variables of this type variable.
The signature of a function type contains the input types and output type; the

10



signature of a list type contains the element type; the signature of a type other
than function or list is an empty list.

• boxed? — a bool that indicates if this type is dynamic

Type rules

We describe type rules in the language of propositional logic. For each inference
rule, we write the goal below the line, and the premises above the line. We use the
symbol Γ for the general environment of types; Γ1,Γ2 for the result of combining two
environments; something :τ for something has the type τ ; cause ` consi for cause
entails consi.

The first three rules are for user-defined functions; the later rules are for primitive
functions.

rule name formula

abstract
Γ, (x : α) ` body : β

Γ ` (λ (x) body) : β ← (α)

apply
Γ ` rator : β ← (α) Γ ` rand : [α]

Γ ` (rator rand) : β

var
Γ(var) = α

Γ ` var : α

num (Axiom) Γ ` n : num

str (Axiom) Γ ` s : str

11



cons
Γ ` car : α Γ ` cdr : [α]

Γ ` (cons car cdr) : [α]← (α, [α])

car
Γ ` lst : [α]

Γ ` (car lst) : α← ([α])

cdr
Γ ` lst : [α]

Γ ` (cdr lst) : [α]← ([α])
cdr

empty-list Γ ` (empty-list) : [α]

null?
Γ ` lst : [α]

Γ ` (null? lst) : bool← ([α])

add1
Γ ` operand : num

Γ ` (add1 operand) : num← (num)

*
Γ ` operand1 : num Γ ` operand2 : num

Γ ` (∗ operand1 operand2) : num← (num, num)

less-than
Γ ` operand1 : num Γ ` operand2 : num

Γ ` (less-than operand1 operand2) : bool← (num, num)

greater-than
Γ ` operand1 : num Γ ` operand2 : num

Γ ` (greater-than operand1 operand2) : bool← (num, num)

12



=
Γ ` operand1 : num Γ ` operand2 : num

Γ ` (= operand1 operand2) : bool← (num, num)

true (Axiom) Γ ` true : bool

false (Axiom) Γ ` false : bool

and
Γ ` operand1 : bool Γ ` operand2 : bool

Γ ` (and operand1 operand2) : bool← (bool, bool)

or
Γ ` operand1 : bool Γ ` operand2 : bool

Γ ` (or operand1 operand2) : bool← (bool, bool)

not
Γ ` operand : bool

Γ ` (not operand) : bool← (bool)

cond-expr
Γ ` cond : bool Γ ` consi : α Γ ` alter : α

Γ ` (cond-expr cond consi alter) : α← (bool, α, α)

assign
Γ ` target : α Γ ` source : α

Γ ` (assign target source) : stmt← (α, α)

print
Γ ` v : α

Γ ` (print v) : stmt← (α)

13



Type checking and type inference

Drag provides an immediate error message when a programmer violates a type rule.
For each operation that modifies the trees, such as creation, connection and removal,
Drag checks type consistency and updates the involved type variables by applying the
type rules. The programmer may attempt an operation that violates the type rules,
like connecting a bool expression to the parameter position of the add1 operation.
This operation can not be completed and results in an error message. We expect this
curing-the-future-illness approach to be more effective than displaying error messages
during compile time and run-time.

The boxed type

Gradual typing mixes static checking and dynamic checking by assigning a dynamic
tag to a type variable and later making implicit conversions[5].

Via the boxed type, Drag incorporates gradual typing. Here we consider the code-
writing time, when type checking and type inference happens, as static. We consider
the run-time as dynamic. By definition, a boxed type in Drag is consistent with all
static typing rules and does not participate in type inference.

For example, if function f has the type 〈bool←box〉 and function g has the type
〈bool←a〉, the type of g after unifying with f is 〈bool←a〉.

Drag dynamically casts the boxed types to their underlying types and throws
run-time errors if the resulting types violate the rules.

14



Chapter 3 The Drag compiler

A classical compiler, at its simplest, consists of four parts: the lexical scanner, the
syntax parser, the semantic analyzer, and the code generator. In Drag, because the
source code is the AST, the syntax scanner and the semantic parser are not necessary.

Figure 3.1: classical compiler vs Drag’s compiler

To illustrate the distribution of the compilation time, we have tested three C
programs under the clang-3.5 compiler and plotted the result in Figure 3.2. In Figure

Figure 3.2: An example of the distribution of the compilation time

3.2, the summation of the bars of the same color is 100 percent. The figure indicates
that compiler all three programs spends more than 60 percent of the time in the
scanning and the parsing. Although this sample is small, both for compilers and
programs, a reasonable conjecture is that the scanner and the parser consume most
of the compilation time, which Drag avoids.

In addition, because Drag obtains type information at the code-writing time, it
saves time during type checking, which contributes to a portion of the IR generation
measure of Figure 3.2.
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The current implementation of Drag targets on LLVM. The following parts of this
chapter include (1) a brief introduction to LLVM and (2) the LLVM code generator
of Drag.

3.1 LLVM

LLVM is an open-source library for building compilers. It provides facilities for build-
ing both front-ends (from high-level languages to the LLVM instruction set) and
back-ends (from the LLVM instruction set to machine code). We choose LLVM be-
cause (1) the low level virtual machine provides a balance between run-time efficiency
and cross-platform availability (2) there are many tools based on LLVM for program
analysis and optimization (3) the modular design of LLVM divides the compiler into
many passes, thus providing the simplicity of building optimizers of a compiler, and
(4) LLVM provides informative error messages.

The instructions set

The core of LLVM is its instruction set. Some features of the LLVM instruction set
include:

• The instructions are register-based, but without machine-specific constraints
like the number of physical registers, existence of a pipeline and traps.

• The memory includes a stack, a heap and the global area.

• Values are transferred between the memory and the registers by load and
store operations; objects are allocated on the stack and heap by alloca and
malloc operations, respectively.

• Instructions use three-address code.

• The registers are in static single-assignment-form — a register can be assigned
once at most; each instruction implicitly generates a register to hold the result
value.

• Strict type rules are enforced on the registers.

Registers

Registers store the result of instructions and organize the sequence of instructions. In
the current implementation, a global counter keeps track of the number of registers;
Drag records each register’s name and type. The register name is a number that
is taken from the state of the global counter. The register types in our current
implementation include i32, i8*, and function pointers. Here i32 stands for a
32-bit register, which is often an integer; i8* stands for pointer of an 8-bit register,
which is used for a void pointer; a function pointer is in the form of out(in)*. For
example, i32(i32)* points to a function that takes a 32-bit integer and generates
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a 32-bit integer. The LLVM instruction set distinguishes local and global registers
by appending % or @ to the front of the register name, respectively.

3.2 Code generator

Because the LLVM instruction set is purely imperative, the functional programming
parts of Drag need some extra work to generate, compared to the imperative program-
ming part. The extra work includes creating the lists and representing higher-order
functions.

List and higher-order functions

To implement a homogeneous and polymorphic list, we use void pointers.
First we define the pair structure. Each pair has a head and a tail, where the

head is a void pointer to a value and the tail is a pointer to another pair.

%struct.pair = type { i8*, %struct.pair* }

To build a list, given a head and a tail, Drag converts the head and the tail to
void pointers, records the types of the head and the tail, and then generates a pair
pointer that constructs the list using a library function that is defined as following.
To establish a firm relationship between the primitive Drag function, cons, and the
LLVM code it generates, we choose cons for the name of our library function as well.
We also choose the same names for car and cdr.

define %struct.pair* @cons(i8* %car, i8* %cdr) #0 {
%1 = alloca i8*, align 8
%2 = alloca i8*, align 8
%new_pair = alloca %struct.pair*, align 8
store i8* %car, i8** %1, align 8
store i8* %cdr, i8** %2, align 8
%3 = call noalias i8* @malloc(i64 24) #2
%4 = bitcast i8* %3 to %struct.pair*
store %struct.pair* %4, %struct.pair** %new_pair, align 8
%5 = load i8** %1, align 8
%6 = load %struct.pair** %new_pair, align 8
%7 = getelementptr inbounds %struct.pair* %6, i32 0, i32 0
store i8* %5, i8** %7, align 8
%8 = load i8** %2, align 8
%9 = load %struct.pair** %new_pair, align 8
%10 = getelementptr inbounds %struct.pair* %9, i32 0, i32 1
store i8* %8, i8** %10, align 8
%11 = load %struct.pair** %new_pair, align 8
ret %struct.pair* %11

}

To fetch from a list, including car, which fetches the head, and cdr, which
fetches the tail, Drag gets the void pointer of the head or the pair pointer of the tail
then converts the type of the pointer to the recorded type.

The library function car is defined as following.

17



define i8* @car(%struct.pair* %aPair) #0 {
%1 = alloca %struct.pair*, align 8
store %struct.pair* %aPair, %struct.pair** %1, align 8
%2 = load %struct.pair** %1, align 8
%3 = getelementptr inbounds %struct.pair* %2, i32 0, i32 0
%4 = load i8** %3, align 8
ret i8* %4

}

The library function cdr is defined as following.

define i8* @cdr(%struct.pair* %aPair) #0 {
%1 = alloca %struct.pair*, align 8
store %struct.pair* %aPair, %struct.pair** %1, align 8
%2 = load %struct.pair** %1, align 8
%3 = getelementptr inbounds %struct.pair* %2, i32 0, i32 1
%4 = load i8** %3, align 8
ret i8* %4

}

LLVM provides function pointers. We use function pointers to implement higher
order functions.

Code generation

The code generator starts at the root node of the tree, recursively visits the children
of the node, aborts if it finds a unconnected node, and generates a string of LLVM
instructions as it proceeds. Each node has two states that affect the result of the
code generation: userDefinedP and wrappedP.

userDefinedP

Drag has a set of primitive symbols, which contain the methods for code generation.
The nodes of such symbols directly translate into strings. If the code generator
reaches a node of a non-primitive symbol, it recurses on the definition of that symbol
from the symbol table. The generated string from the symbol is appended to the
front of the string generated from the current tree.

wrappedP

As discussed in the language specification chapter, a wrapped node acts as an iden-
tifier. The generated string of a wrapped node is the identifier name of the node; the
generated string of an unwrapped node follows the above-mentioned pattern — the
code generator recursively visits the children of the node.
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Chapter 4 IDE

4.1 User interface

We wrote the graphic user interface of Drag in Java Swing. Here we present the draft
and the actual view of the user interface in Figures 4.1 and 4.2 respectively.

Figure 4.1: the draft of the user interface
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Figure 4.2: the view of the user interface
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Java Swing

Java Swing is built on the Java Abstract Window Toolkit (AWT). Swing components
are platform-independent and support a pluggable look and feel. The component
architecture is called the Model-Delegate model, simplified from the Model-View-
Controller model.

The Java AWT provides an interface between a Java program and the local ma-
chine. Each graphical API in AWT corresponds to a peer API in the operating
system. Java AWT only provides a limited number of graphical APIs. Based on
AWT, Java Swing extends the library. Consequently, the run-time efficiency of a
Swing GUI is slightly lower than an AWT GUI, which is the cost of its powerful and
ample APIs.

Components and containers

A Swing container is a component that holds a group of components. The contain-
ment hierarchy starts at a single top-level container. The abstract class JComponent
is the superclass of all components, except for the four top-level container compo-
nents: JFrame, JApplet, JWindow and JDialog. The JComponent class inherits the
Component class in the AWT package and provides the painting infrastructure and
methods to handle keyboard presses. The add() API lets the Swing programmer to
add another JComponent into the hierarchy.

Frames and panels

The JFrame class provides a top-level titled window with a few basic facilities to
maximize, minimize and close. The JPanel class provides a window to hold other
components.

Some components

JLabel displays text. JTextField and JTextArea display editable text. JTextField
is single-lined and JTextArea is multi-lined. JButton is a clickable component. It
reacts to keyboard and mouse events. JTree is displays a tree structure.

Events

A Java Swing GUI is event-driven. Events enable interaction between the user and the
GUI. Java Swing handles events in an ActionListener model. The Swing programmer
binds a JComponent to an event-action by calling addActionListener().

Layout managers

LayoutManager is an interface in the Java AWT package, with several implementa-
tions. A LayoutManager is used to locate and tailor the components in a container
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component, and a LayoutManager may overwrite the position and size of the com-
ponents. The Swing programmer binds components to a LayoutManager by calling
setLayout().

Canvas

The canvas is where the Drag builds programs. Drag displays a node as a block
of white background with the node name and the node ports shown. A connection
between nodes is displayed as a white line.

Drag tries to display the most frequently used information during programming
in the canvas — the visible symbols and the structure of the focused function. This
information displays at the center of the screen, so that the users can get information
almost without any cost. The other panels display less frequent information, such as
type signatures and editing history, so the user is able to get this information at a
relatively low cost — a shift of a glimpse. Information that is not likely to be useful,
like the implementation details of some other functions, needs more effort to retrieve
— typing in the name and clicking the retrieve button.

The user can move a node by click-and-drag with the left mouse button. The
user can activate the context menu by right clicking on a node. The context menu
provides several operations: delete the node, make the node a root node, wrap the
node, add input to the symbol of the node and box the node. The user can disconnect
two connected nodes by right clicking the line between the nodes.

The symbol tree display shows the tree containing the visible symbols, where a
symbol is the child node of its nonlocal reference environment. Left clicking on a
symbol that has children expands/folds the branch. Left clicking on a symbol that
does not have a child creates a node of that symbol. Right clicking on a symbol
actives a context menu that provides the operations of creating a fixed point of the
symbol and switching to the scope of the symbol.

We implement the canvas by extending the JPanel class of Java Swing and the
symbol tree by extending the Tree class of Java Swing. We implement the mouse
reaction by extending the MouseInputAdapter and MouseMotionListener
classes of Java AWT.

Menu bar

The menu bar contains a textbox, a button to reset the user interface, a button to
retrieve a target symbol, a button to create a variable, a button to create a constant,
a button to run the program, and a button to generate target code.

The textbox is for general input, for example, a variable name. When the user
clicks on the retrieveSymbol button, Drag starts to search for the symbol whose
name matches the string in the textbox and switches to the scope of the symbol
if found. When the user clicks on the newVar button, Drag tries to create a new
variable whose name is the string in the textbox in the current scope and then adds
the created symbol to the symbol tree if successful.
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Info panel

The info bar contains a textbox for the type signature. The type signature, the
string in the textbox, updates when the user places the mouse over different nodes
or symbols on the canvas.

Message panel

The message panel contains feedback, such as switching scopes, important type signa-
tures, computation results and error messages. The background color of the message
panel changes when the feedback is nontrivial. We categorize the nontrivial feedbacks
into two groups, negative and positive. The background color turns to red for nega-
tive feedback, including a connection that violates the type consistency, searching for
a symbol that does not exist and creating a duplicated symbol; the background turns
to green for positive feedback, including the computation result or the generated code.
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Chapter 5 Conclusion and further work

5.1 Conclusion

This thesis introduces the Drag programming language, which allows the programmer
to build abstract syntax trees graphically and interactively. The purpose of Drag is
to make programming simple and accessible.

We developed the node-symbol-tree model for the syntax and semantics of
Drag. Drag tries to express information uniformly to gain consistency and readability.
Drag is a multi-paradigm programming language, and our current implementation
focuses on functional programming. Drag integrates both static type checking and
dynamic type checking. The interactive style moves static type checking from compile
time to writing-code time, which makes debugging easier. The type system of Drag
is able to infer types.

Drag has a lighter and more efficient compiler than the classical programming
languages.

The graphical user interface of Drag builds on Java Swing. The idea of the user
interface design is to help the user focus on important elements during programming
and neglect the less important elements.

5.2 Direction of future work

Type system

We would like to introduce a few more powerful features to the type system of Drag.
We have implemented some ideas of recursive types and polymorphism but have not
formalized the ideas yet. We are thinking about adding the feature of dependent type
so that we can extend Drag to the realm of theorem proving.

User interface

We notice the low efficiency of editing in Drag. Compared to the classical program-
ming languages, Drag does not make a good use of the keyboard, which provides
editing efficiency for professionals. Adding keyboard short cuts is one option. We
would probably learn from the popular editors, like Vim, and integrate their shorcuts
and editing styles into Drag.

Support of proof systems

The Curry-Howard correspondence reveals that there is a strong connection between
computer programs and mathematical proofs [4]. We are considering enriching Drag
for representing a the mathematical proof system. We believe the graphical and
interactive style of Drag can make proof theory more accessible to programmers.
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