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RESEARCH Open Access

Lipophosphoglycan polymorphisms do not
affect Leishmania amazonensis
development in the permissive vectors
Lutzomyia migonei and Lutzomyia
longipalpis
Paula M. Nogueira1,2*†, Agna C. Guimarães2†, Rafael R. Assis1, Jovana Sadlova3, Jitka Myskova3, Katerina Pruzinova3,
Jana Hlavackova3, Salvatore J. Turco4, Ana C. Torrecilhas5, Petr Volf3 and Rodrigo P. Soares1

Abstract

Background: Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-
specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4

backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous
leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis
reference strains and their role during the development in three sand fly species.

Results: Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural
polymorphism in the LPG repeat units, possessing side chains with 1 and 2 β-glucose or 1 to 3 β-galactose,
respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and
could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose
residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi.

Conclusions: LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in
permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other
LPG-independent factors in this restrictive vector.

Keywords: Leishmania amazonensis, Lipophosphoglycan, Lutzomyia longipalpis, Lutzomyia migonei, Phlebotomus
papatasi, Vector-parasite interaction

Background
Leishmania amazonensis is the causative agent of local-
ized cutaneous leishmaniasis (LCL) and anergic diffuse
cutaneous leishmaniasis (ADCL). This species, found in
the Amazon basin, is transmitted by Lutzomyia flaviscu-
tellata (Diptera: Psychodidae), widely distributed in
South America [1, 2].

The surface of Leishmania spp. is covered by sev-
eral glycosylphosphatidylinositol (GPI)-anchored mole-
cules. Those glycoconjugates are important for
parasite survival either in vertebrate or invertebrate
hosts. Among these, the most studied is lipophospho-
glycan (LPG), a multivirulence factor covering the en-
tire protozoan surface and flagellum. Structurally,
LPGs have four domains: a conserved glycan core region
of Gal(α1,6)Gal(α1,3)Galf(β1,3)[Glc(α1)-PO4]Man(α1,3)-
Man(α1,4)-GlcN(α1) linked to a 1-O-alkyl-2-lyso-phos-
phatidylinositol anchor, a region of repeat units
Gal(β1,4)Man(α1)-PO4 and a small oligosaccharide
cap [3].
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Several biochemical analyses of LPG revealed intra
and inter-species polymorphisms in the sequence and
composition of sugars attached to repeat units. Early
studies determined that these interspecies variations
were important for attachment in the vector and for
virulence in the vertebrate hosts [3, 4]. In the Old World
species, intraspecific LPG variations were reported for
Leishmania major [5, 6], Leishmania tropica [7, 8] and
Leishmania donovani [9] and their ability to infect sand
fly species (Phlebotomus papatasi, Phlebotomus sergenti/
Phlebotomus arabicus and Phlebotomus argentipes) has
been reported. In the New World, purified LPG from 14
strains of Leishmania infantum displayed important
LPG polymorphisms (type I: no side-chains branching-
off the repeat units; type II: one β-glucose residue
branching-off the repeat units and; type III: 1–3 β-
glucose as side-chains). However, those LPG variations
did not affect the interaction with Lutzomyia longipalpis
[10, 11]. Our preliminary data suggested qualitative LPG
polymorphisms between two Le. amazonensis strains
(PH8 and Josefa) based on antibody recognition, but
they did not result in different activation in macrophages
and/or sand fly infection [12].
Sand fly species can be divided into restrictive and per-

missive vectors depending on their ability to support de-
velopment of various Leishmania species [13]. For
example, Ph. papatasi, the restrictive vector, can sustain
infection only with Le. major [4] and Leishmania tura-
nica [14], two parasites with LPG terminated by β-
galactosyl residues [15–17]. On the other hand, permis-
sive vectors, like Lu. longipalpis and Lutzomyia migonei,
can sustain infection of several Leishmania species; the
former supports the development of Le. infantum, Le.
amazonensis and Le. major (reviewed in [18]), whereas
the latter supports the infection of Le. amazonensis,
Leishmania braziliensis and Le. infantum [12, 19, 20].
The attachment of the parasite to a midgut receptor is

a crucial event to avoid passage with the digested blood
meal. The mechanisms of midgut attachment in restrict-
ive vectors is LPG-dependent [21] and involves midgut
galectin [22], while in permissive vectors it could be
LPG-independent [23, 24] or may involve midgut
mucin-like proteins [25].
The main vector of Le. amazonensis is Lu. flaviscutel-

lata. However, established laboratory colonies of this
species are not available. For this reason, Lu. migonei
has been used as a successful model for interaction with
Le. amazonensis [19]. Preliminary studies using Le. ama-
zonensis strains (PH8 and Josefa) showed that they could
survive for several days inside Lu. migonei [12]. However,
their ability to reach the stomodeal valve and accomplish
metacyclogenesis was not evaluated.
As a part of a wider project on the glycobiology of

New World species of Leishmania, we described a

detailed biochemical characterization of Le. amazonensis
LPGs and found intraspecific differences. The inter-
action of Le. amazonensis strains with permissive and re-
strictive vectors was performed. Additionally, the ability
of the Josefa strain, bearing terminal galactose residues
in its LPG, to survive in the restrictive vector Ph. papa-
tasi was evaluated.

Methods
Parasites, LPG extraction and purification
The Brazilian Le. amazonensis reference strain (IFLA/
BR/1967/PH8) was isolated from the sand fly Lu. flavis-
cutellata from Pará State, whereas the Josefa strain
(MHOM/BR/1975/Josefa) was isolated from a patient
from Bahia State, Brazil. Molecular PCR identification
was performed using primers for the HSP70 gene and
kDNA minicircle [26, 27]. For immunoblotting, Le.
donovani strain LD4 from Sudan (MHOM/SD/00/1S-
2D) and the Le. donovani Mongi strain from India
(MHOM/IN/1983/Mongi-142) were used as controls [9].
The strategy for purification and characterization of re-
peat units is depicted in Fig. 1a. Promastigotes were cul-
tured in M199 medium supplemented with 10% fetal
bovine serum (FBS). After the 6th day, stationary para-
sites were subjected to LPG extraction and purification
as described elsewhere [28]. Purified LPGs (5 μg) were
resolved by SDS-PAGE electrophoresis and transferred
to nitrocellulose membrane. Blots were probed with
monoclonal antibody (mAb) CA7AE (1:1000), that rec-
ognizes the unsubstituted Gal(β1,4)Man repeat units
[29] and LT22 (1:1000) that recognizes β-glucose/β-gal-
actose side chains [30]. After washing in PBS (3 ×
5 min), the membrane was incubated for 1 h with anti-
mouse IgG conjugated with peroxidase (1:10,000) and
the reaction was visualized using luminol substrate [31].

Fluorophore-assisted carbohydrate electrophoresis (FACE)
of polysaccharides and mono and capillary
electrophoresis (CE)
LPGs were subjected to mild acid hydrolysis (0.02 M
HCl, 5 min, 100 °C) to depolymerize the repeat units
and cap structures (Fig. 1a). Water-soluble fractions
were partitioned using 1-butanol and repeat units were
purified as previously described [10]. The neutral oligo-
saccharides from PH8 and Josefa repeat units were
labeled with 0.05 M ANTS (8-aminonaphthalene-1,3,6-
trisulfate) fluorophore and 1 M cyanoborohydride (37 °C,
16 h). Oligoglucose ladders (G1-G7) were used as stan-
dards. Sugars were subjected to FACE and the gel was vi-
sualized by a UV imager [7]. To confirm the sugars
branching-off the repeat units and the linkages, they were
treated with E. coli β-galactosidase in 80 mM Na3PO4,
(pH 7.3, 4 U, 16 h, 37 °C) and sweet almond β-glucosidase
in 200 mM ammonium acetate buffer (pH 5.0, 1 U, 16 h,
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37 °C) [31]. Samples were labeled with 0.02 M APTS (8-
aminopyrene-1,3,6-trisulfonic acid trisodium salt) in 15%
acetic acid in sodium cyanoborohydride buffer and incu-
bated overnight at 37 °C. Samples were run on CE at
25 kV for 20 min using reverse phase chromatography
started with 10 s and 5 psi pressure injection [11].
To access monosaccharide composition, LPGs from

both strains were subjected to strong acid hydrolysis
(2 M trifluoroacetic acid, 3 h, 100 °C) (Fig. 1a). Depoly-
merized and desalted monosaccharides were fluores-
cently labeled with 0.1 M AMAC (2-aminoacridone) in
5% acetic acid and 1 M cyanoborohydride. Labeled
sugars were subjected to FACE and the gel was visual-
ized under UV light. Monosaccharides (D-galactose, D-
glucose and D-mannose) (Sigma, St. Louis, MO, USA)
were used as standards [32].

Sand fly colonies
The Lu. migonei and Lu. longipalpis sand flies were ini-
tially captured from the Brazilian cities of Baturité (04°
19′41"S, 38°53′05"W), Ceará State, and Jacobina (11°10′
50"S, 40°31′06"W), Bahia State, respectively. Phleboto-
mus papatasi originate from South East Turkey. Labora-
tory colonies of the three sand fly species were
maintained at Charles University, Prague, Czech Republic
as previously described [33].

Experimental infections of sand flies
Sand fly females were infected through the chick-skin
membrane on a mixture of promastigotes and heat-
inactivated rabbit blood; the final concentration of para-
sites was 1 × 106 promastigotes/ml. The experiments
were conducted with six sand fly-Leishmania

Fig. 1 Procedures for the characterization of Le. amazonensis LPG repeat units and sand fly infections. a Purified LPGs were subjected to mild acid
hydrolysis to depolymerize the repeat units and cap structures. Water-soluble fractions were partitioned using 1-butanol, treated with alkaline
phosphatase (15 mM Tris buffer, pH 9.0, 1 unit, 16 h, 37 °C) and desalted by passage through a two-layered column of AG50W-X12 over AG1-X8.
The desalted repeat units were subject to FACE analysis and enzymatic treatments with β-glucosidase, β-galactosidase to CE analysis. Additionally,
the repeat units were subjected to strong acid hydrolysis (2 M trifluoroacetic acid, 3 h, 100 °C) and FACE assays to access monosaccharide
composition. b Six combinations of Le. amazonensis strains (PH8 and Josefa) with Lu. longipalpis, Lu. migonei and Ph. papatasi were performed. Those
were evaluated on days 1 and 5–6 post-infection (PI) for intensity, localization and morphometry
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combinations as depicted in Fig. 1b: Lu. migonei-PH8,
Lu. migonei-Josefa, Lu. longipalpis-PH8 and Lu. longi-
palpis-Josefa, Ph. papatasi-PH8 and Ph. papatasi-Josefa.
Terminal β-galactosyl residues were determinant for Le.
major attachment to PpGalec in Ph. papatasi [22]. Since
those sugars were also present in Josefa LPG, the ability
of this strain to sustain infection in this vector was also
checked compared to glucose-containing LPG from the
PH8 strain.
Blood-engorged females were separated, maintained at

26 °C and dissected on days 1 and 5–6 post-infection
(PI). Individual guts were placed into a drop of saline
and examined microscopically for the localization and
intensity of Leishmania infections. Parasite loads were
graded according to [23] as light (< 100 parasites per
gut), moderate (100 to 1000 parasites per gut) and heavy
(> 1000 parasites per gut). The experiments were re-
peated two times using the same vector/strain combina-
tions. Data were evaluated statistically by means of the
Fisher’s exact or Chi-square (χ2) tests using SPSS statis-
tics version 23 software.

Morphometry
Parasite smears from midguts of the three sand fly spe-
cies infected with Le. amazonensis strains were obtained
on days 1 and 5–6 PI. The midguts were carefully dis-
sected using fine needles and each part was separated
and respective parasites counted. Slides were fixed with
methanol, stained with Giemsa, examined under a light
microscope with an oil-immersion objective and photo-
graphed with an Olympus D70 camera. For morphom-
etry, body length, body width and flagellar length of 240
randomly selected promastigotes from six midgut
smears were measured for each sand fly species and time
interval using Image-J software. The morphological
forms were distinguished based on the criteria of
Sádlová et al. [34] and Rogers et al. [35]: (i) short necto-
monads: body length < 14 μm and flagellar length < 2
times body length; (ii) long nectomonads: body length ≥
14 μm; (iii) metacyclic promastigotes: body length <
14 μm and flagellar length ≥ 2 times body length. Data
were evaluated statistically by analysis of variance using
SPSS statistics version 23 software.

Results
Characterization of LPG repeats units
Purified LPGs from Le. amazonensis strains were differ-
entially recognized by the mAbs CA7AE and LT22
(Fig. 2a-d). As shown in Fig. 2a-b, the LPG from the
PH8 strain and respective controls (LD4 and Mongi)
were recognized by CA7AE and LT22. However, a differ-
ent recognition profile was observed for the Josefa strain
since its LPG was recognized by LT22 (Fig. 2d) but not

by CA7AE (Fig. 2c), indicating the presence of side-
chains branching-off the repeat units.
Confirming the previous immunoblotting profiles,

both Le. amazonensis strains displayed a distinct
oligosaccharide profile of their neutral repeat units
(Fig. 3a). The repeat units of the PH8 strain exhib-
ited higher disaccharide content, represented by Gal-
Man (G2 position) that is common to all LPGs,
which explains their reactivity against CA7AE (Fig.
2a). The FACE analysis also revealed up to 1 and 2
side-chains in their structures (Fig. 3a). On the other
hand, the repeat units of the Josefa strain showed up
to 1 to 3 side-chains, and no Gal-Man disaccharide
was detected (Fig. 3a). This profile elucidates the ob-
served lack of recognition by CA7AE (Fig. 2c) and
the positive reaction against LT22 (Fig. 2d), suggest-
ing that most, if not all, repeating units contained
side-chains.
The monosaccharide profile of the PH8 strain revealed

galactose and mannose, common to all LPGs, and high
content of glucose (Fig. 3b). These data confirmed the
presence of glucose as side-chains, as previously indi-
cated by immunoblotting. The Josefa strain, however, ex-
hibited only galactose and mannose as monosaccharides
(Fig. 3b).

Fig. 2 Immunoblotting of purified lipophosphoglycan (LPG). Purified
LPG (10 μg per lane) from promastigotes of Le. amazonensis PH8 (a
and b) and Josefa (Jos) (c and d) strains were incubated with the
antibody CA7AE (1:1000) (a and c) and LT22 (1:1000) (b and d). The
LPGs purified from Le. donovani LD4 and Mongi strains were used as
positive controls
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Confirming the FACE analysis, the dephosphorylated
repeat units from the PH8 strain consisted of a di-
(67%), a tri- (30%) and a tetrasaccharide (3%) (Fig. 4a).
The trisaccharide and tetrasaccharide were susceptible
to treatment with β-glucosidase (Fig. 4b). These data are
consistent with the structure of the trisaccharide as
Glc(β)Gal(β1,4)Man and the tetrasaccharide as
Glc2(β)Gal(β1,4)Man. The LPG of the Josefa strain
showed a small amount of di- (9%), an abundance of tri-
(29%) and tetra- (57%), and again a small amount of
pentasaccharide (5%) (Fig. 4c). The minimal disaccharide
content supports the non-reactivity by CA7AE (Fig. 2c).
Interestingly, this LPG was not susceptible to β-
glucosidase treatment (Fig. 4d), indicating that another
sugar is terminating the repeat units. After β-
galactosidase treatment, we observed the disappearance
of side-chains confirming the presence of β-galactoses
(Fig. 4e). These results confirmed that both strains pos-
sess intraspecific polymorphisms (Fig. 5).

Sand fly infections and morphometry
The development of Le. amazonensis strains was studied
in Lu. migonei, Lu. longipalpis and Ph. papatasi on days
1 and 5–6 PI. During the early phase of infection (on
day 1 PI), the infection rates were fully comparable in all
parasite-vector combinations; more than 82% of females
were infected and moderate or heavy intensities of infec-
tions were observed in majority of females. Parasites
were in the endoperitrophic space within the blood meal
surrounded by the PM. On days 5–6 PI, both Le. amazo-
nensis strains could establish heavy late stage infections
with the colonization of the stomodeal valve in permis-
sive vectors Lu. longipalpis and Lu. migonei. In contrast,
in Ph. papatasi the infections were lost during
defecation of bloodmeal remnants (Figs. 6 and 7).
Since no infection was developed in Ph. papatasi after

defecation, morphological analysis was performed on Le.
amazonensis parasites derived from Lu. migonei and Lu.

longipalpis infections on days 1 and 5–6 PI. Both strains
accomplished metacyclogenesis in both vectors. Interest-
ingly, Lu. longipalpis infections with PH8 strains resulted
in a higher percentage of metacyclic forms compared to
Lu. migonei by days 5–6 PI (P < 0.0001) (Fig. 8).

Discussion
Leishmania amazonensis, a member of the Leishmania
mexicana complex, is one of the most studied Leish-
mania species. It is an excellent model for immunology,
molecular biology and chemotherapy. This species is
often associated with treatment failure, being naturally
resistant to the first line chemotherapy drugs [36]. How-
ever, studies involving Le. amazonensis glycoconjugates
and their interaction with sand fly vectors are still
scarce.
The LPGs are implicated in a variety of functions in

the sand flies including attachment to a microvilli recep-
tor in Old World Ph. papatasi (restrictive) [37]. Early in
vitro studies reported the role of interspecies LPG poly-
morphisms in the specificity during sand fly-Leishmania
interactions [4]. In this study, Ph. papatasi midguts were
recognized only by Le. major phosphoglycan (PG),
whereas those from Ph. argentipes (permissive) were rec-
ognized by PGs from several species. Later, several in
vitro studies demonstrated that those models are con-
sistent while using natural vector-Leishmania pairs not
only in Old World but also in New World vectors. For
example, the interaction with PGs from New World Le.
infantum and Le. braziliensis adversely affected parasite
attachment in permissive Lu. longipalpis and restrictive
Lutzomyia intermedia/Lu. whitmani [10, 38–40]. How-
ever, in vitro system limitations appear while using unnat-
ural sand fly-Leishmania combinations including the
attachment of Le. braziliensis (New World) promastigotes
to Ph. papatasi (Old World) midguts [41]. To circumvent
such limitations, in this study we have performed experi-
ments using in vivo models with previously tested

Fig. 3 Fluorophore-assisted carbohydrate electrophoresis (FACE) of lipophosphoglycan (LPG) repeat units and monosaccharides of Le. amazonensis
(PH8 and Josefa strains). a FACE analysis of dephosphorylated repeat units of PH8 and Josefa strain. Lane Std1: oligoglucose ladder represented
by G1-G7; Lane PH8: repeat unit of PH8 strain; Lane Josefa: repeat unit of Josefa strain. b FACE of monosaccharides from LPG repeat units
after strong acid hydrolysis. Lane Std2: monosaccharide standards (Man = mannose, Glc = glucose, Gal = galactose); Lane PH8: PH8 strain;
Lane Jos: Josefa strain
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Fig. 4 Capillary electrophoresis (CE) analyses of dephosphorylated LPG repeat units from Le. amazonensis strains (PH8 and Josefa).
Designations above the peaks are retention times in minutes as well as di, disaccharide; tri, trisaccharide, etc. a LPG PH8 strain repeat
units. b LPG PH8 strain treated with β-glucosidase. c LPG Josefa strain repeat units. d LPG Josefa strain treated with β-glucosidase. e LPG
Josefa strain treated with β-galactosidase
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permissive sand flies known to become infected with Le.
amazonensis [12, 19, 20].
In the New World species of Leishmania, LPG varia-

tions were only studied in Le. infantum. In this species,
polymorphisms in the glucose levels were not important
for in vivo infectivity to Lu. longipalpis [11]. However, this

sugar was important for in vitro interaction of Le. infan-
tum (PP75 strain) with the midguts of Lu. longipalpis [10].
Consistent with our previous observations, a more de-

tailed biochemical analysis of LPG using FACE and CE
from Le. amazonensis strains revealed important intra-
specific polymorphisms. The LPG of the PH8 strain

Fig. 5 Schematic diagram of Le. amazonensis LPG structures of promastigotes from PH8 and Josefa strains. The repeat units contain the
Gal(β1,4)Man(α1)-PO4 as backbone structure. For PH8 strain, the LPG bears sugar branch substitutions of one or two β-glucose residues, while in
Josefa strain most of the side chains are terminated in β-galactoses. The precise locations of the sugar side chains in the repeat unit domain are
not known

Fig. 6 Experimental infections of Le. amazonensis (PH8 and Josefa strains) in Lu. longipalpis (L. lon.), Lu. migonei (L. mig.) and Ph. papatasi (P. pap.).
Rates and intensities of infections were evaluated microscopically on days 1 and 5–6 post-infection (PI), and were classified into three categories:
light (< 100 parasites/gut), moderate (100–1000 parasites/gut), or heavy (> 1000 parasites/gut). Data are representative of two experiments
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Fig. 7 Localization of Le. amazonensis (PH8 and Josefa strains) in Lu. longipalpis (L. lon.), Lu. migonei (L. mig.) and Ph. papatasi (P. pap.). Localization
of infections in vectors (stomodeal valve, SV; abdominal midgut, AMG; thoracic midgut, TMG; cardia and endoperithrophic space) was evaluated
microscopically on days 1 and 5–6 post-infection (PI). Data are representative of two experiments

Fig. 8 Morphological forms (metacyclics, short promastigotes, elongated nectomonads and procyclic promatigotes) of Le. amazonensis (PH8 and
Josefa strains) during development in Lu. longipalpis (L. lon.) and Lu. migonei (L. mig.). Morphological forms of Leishmania parasites in vectors were
evaluated microscopically on days 1 and 5–6 post-infection (PI). Data are representative of two experiments and were evaluated statistically by
analysis of variance. P < 0.05 was considered statistically significant
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displayed β-glucose residues as side-chains whereas the
Josefa strain had β-galactose residues (Fig. 5). The β-
glucose residues are commonly found in the New World
species of Leishmania including Le. mexicana [42], Le.
infantum [10] and Le. braziliensis [31]. Those β-glucose
residues in Le. infantum procyclic were downregulated
after metacyclogenesis resulting in loss of in vitro inter-
action with the midgut of Lu. longipalpis [10]. Surpris-
ingly, the occurrence of β-galactose residues as side-
chains in the Josefa strain of Le. amazonensis was
detected for the first time in a New World Leishmania
species. This sugar is often observed in the Old World
Leishmania species including Le. major [15], Le. tropica
/Leishmania aethiopica [5, 7] and Le. turanica [17]. Un-
like Le. major and Le. turanica, Le. amazonensis Josefa
strain with β-galatosylated LPG could not survive inside
Ph. papatasi. This phenomenon could be explained by
other LPG-independent mechanisms, probably related to
the distance of the sand fly-Leishmania pair used (Old
vs New World) or other molecules involved. Together
with LPG, glycoprotein 63 (GP63) was also evaluated in
Le. mexicana/Le. amazonensis - Lu. longipalpis attach-
ment in vivo [43] or in vitro [44]. A recent study demon-
strated that both glycoconjugates could be determinant
for inhibiting in vitro parasite attachment in Lu. longi-
palpis and Lu. intermedia [40].
Several studies have already described the differenti-

ation of Le. amazonensis, Le. braziliensis and Le.
infantum in New World sand fly species including
Lu. longipalpis and Lu. migonei [12, 19, 20, 45]. Con-
sistent with those observations, both Le. amazonensis
strains could survive defecation of permissive vectors
Lu. longipalpis and Lu. migonei, establish late-stage
infections, and colonize anterior midgut reaching the
stomodeal valve. This is a strong indication that the
parasite could attach and migrate towards the mouth
parts for subsequent transmission. More importantly,
both strains accomplished metacyclogenesis. This
morphological transformation was more pronounced
in Lu. longipalpis infected with the PH8 strain, prob-
ably due to the higher permissiveness of this species.
This sand fly can sustain a wide variety of pathogens,
including viruses, non-Leishmania protozoans and
even helminths (reviewed in [18]).

Conclusions
In combination with previous studies, the LPG poly-
morphism in Le. amazonensis did not affect infection of
the three sand fly species tested. To our knowledge, the
biochemical data obtained from the Josefa strain repre-
sents the first description of a galactosylated LPG in a
New World Leishmania species. However, these residues
were not sufficient for survival in Ph. papatasi.
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