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ABSTRACT OF DISSERTATION 

MULTIVARIATE ANALYSIS TO IDENTIFY POTENTIAL BIOMARKERS 
FOR PROGNOSIS AND TREATMENT RESISTANCE  

IN HEAD AND NECK CANCER PATIENTS 

It is estimated that nearly 50,000 individuals in the United States will be 
diagnosed with head and neck cancer in 2017 (American Cancer Society 
www.cancer.org). Ninety percent of oral cancers are head and neck squamous cell 
carcinoma (HNSCC). Major obstacles in the treatment of HNSCC are recurrence 
and treatment resistance, which contributes to increased mortality. Therefore, 
there is increased need to determine genetic alterations in HNSCC that may be 
ideal novel drug targets, and biomarkers to improve diagnostic and prognostic 
testing.  

Abnormal localization and overexpression of base excision repair protein 
and transcriptional regulator Apurinic/Apyrimidic endonuclease (APE1) has been 
associated with treatment resistance and poor prognosis. Therefore, we explored 
mechanisms for how APE1 contributes to treatment resistance and increased 
mortality in HNSCC. 

Because oxidative stress heavily influences APE1’s expression and 
transcriptional regulatory activities, we examined genes involved in oxidative 
stress management, including SOD3 and NRF2. PPARGC1A, a NRF2 
transcriptional co-activator, was also examined as our lab previously observed a 
link between APE1 and PPARGC1A expression. This previous work also revealed 
that APE1 suppressed gene expression of tumor suppressor, decorin (DCN).  

To examine possible mechanisms for how APE1 regulates expression of 
tumor suppressors and antioxidants, digital image analysis of 
immunohistochemistry staining was used to identify alterations in protein 
expression. Nuclear and total cellular protein expression of APE1, DCN, NRF2, 
PPARGC1A, and SOD3 were quantified in regions of proximal benign, carcinoma 
in situ (CIS) and invasive HNSCC. Patient survival analysis revealed that 
increased APE1, DCN, and PPARGC1A protein levels were significantly 
associated with reduced survival in CIS, benign, and invasive tissues respectively. 
Using multivariate analysis of protein expression, we identified that increased 
APE1 protein levels in the CIS of primary tumors were associated with the 

www.cancer.org


presence of cancer invaded lymph nodes.   Elevated DCN and SOD3 protein levels 
in benign tissue were associated with poorly differentiated tumors as was reduced 
PPARGC1A in CIS.   

Most importantly, potential prognostic biomarkers for use in early cancer 
development were identified. Identifying poor prognosis in early cancer 
development allows the possibility of improved treatment strategies, which could 
prevent invasive cancer development, and increase patient survival.  

KEYWORDS:  Head and Neck Squamous Cell Carcinoma, APE1, Digital Image 
Analysis, Biomarkers, oxidative stress, concomitant CIS with invasive  
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Chapter 1:   Multivariate Analysis To Identify Potential Biomarkers for 

Prognosis and Treatment Resistance in Head and Neck Cancer Patients 

1.1 Introduction 

1.1.1 Overview of head and neck cancer 

Head and neck cancer is the 8th most common malignancy in the United 

States, and an estimated 50,000 new cases will be diagnosed within the United 

States in 2017 (American Cancer Society www.cancer.org). Oral cancer 

disproportionally impacts Kentucky. Between 2009-2013, oral cancer incidence 

was roughly 1.2 fold higher than the national average and was highest in the nation 

(1,2) (Figure 1-1). The age-adjusted incidence rate of oropharyngeal cancer was 

11.3 per 100,000 people [95 % confidence interval (CI) 11.3 – 11.4] in the US and 

13.8 per 100,000 people [95 % CI 13.3, 14.2] in Kentucky. Kentucky also has 

increased mortality as a result of head and neck cancer, with 2.9 per 100,000 

deaths in the state versus 2.4 per 100,000 people in the nation (SEER & NPCR, 

Kentucky Cancer Registry) (1). 

Approximately 90 % of head and neck cancers are squamous cell 

carcinoma, which are referred to as head and neck squamous cell carcinoma 

(HNSCC)(3). Impacted areas include the mouth, tongue, pharynx, nasal cavity, 

and sinuses. Major risk factors include tobacco and alcohol usage, and human 

papillomavirus (HPV) infection. These cancers have a high rate of recurrence and 

often develop treatment resistance.  

www.cancer.org
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Figure 1-1: Disproportionate rates or oropharyngeal incidence and related 

mortality in the state of Kentucky  

The state of Kentucky has one of the highest incidence and mortality rates 

associated with oropharyngeal cancer. Kentucky has an age-adjusted incidence 

rate of 13.8 [95 % CI 13.3-14.2] compared to the national rate of 11.3 [95 % CI 

11.3-11.4]. Additionally, the mortality rate is increased at 2.9 [95 % CI 2.7-3.2] 

deaths per 100,000 people relative to the national rate of 2.4 [95 % CI 2.4-2.5] 

deaths per 100,000 people.  

(Figures generated by statecancerprofiles.cancer.gov on 10/19/16). 
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1.1.1.1 Current treatments for head and neck squamous cell carcinoma and 

their limitations 

Earlier stages of HNSCC are often successfully treated with surgery and 

radiation (4,5). Late stages can be resected and are typically treated with platinum-

based chemotherapy, and radiation (5,6). Surgical resection is frequently used in 

disease management, but procedures can lead to compromised function and 

severe cosmetic damage. When possible, minimally invasive procedures are 

performed using laser therapy, and robotic assisted surgeries (4).  

Radiation therapy occurs over the course of 7 weeks, with 5 doses of 2 Gy 

given over each week (4). However, radiation therapy is not without complications. 

Repeated radiation exposure damages healthy tissues, which can lead to delayed 

wound healing and can complicate recovery from any future operations (7-9). 

Radiotherapy can induce loss of function of the salivary glands, and thyroid. 

Patients may also experience dysphagia, forcing them to rely on feeding tubes (6). 

There are multiple chemotherapeutic options including platinum-based 

compounds, antimetabolites, and taxanes (5,10). The immunotherapy drug 

Cetuximab is used to inhibit epidermal growth factor receptor (EGFR), which is 

commonly overexpressed in head and neck cancers (5,11). However, these drugs 

are not without risk, and treatment resistance is still an issue. Chemotherapy drugs 

are notorious for causing severe gastrointestinal disruption leading to rapid weight 

loss, as well as a weakened immune system that leaves individuals prone to 

deadly infections (12). Despite the many treatment options to combat head and 

neck cancer, treatment resistance is common and contributes to increased 
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mortality. New and improved treatment options are needed to increase patient 

survival and quality of life. 

1.1.2 Understanding the role of oxidative stress in head and neck cancer 

1.1.2.1 Origin of oxidative stress and its impact on cellular components 

Oxidative stress has been implicated in the development of cancer. This is 

thought to be a result of damage to key cellular components such as RNA, lipids, 

proteins, and DNA (13-18). Oxidative stress occurs as a result of imbalance 

between reactive oxygen species (ROS) with the antioxidant systems responsible 

for ROS neutralization (19-21). These groups are composed of both radical and 

non-radical compounds. Free radicals contain unpaired electrons and in an effort 

to become stable, remove electrons from other molecules (22). This process leads 

to the formation of additional free radicals that must be neutralized in order to 

prevent further damage (22).  Non-radicals do not contain unpaired electrons. 

However, they can be converted into radical compounds. ROS radicals include 

superoxide (O-), hydroxyl (OH), alkoxyl radical (RO), and peroxyl radical (ROO) 

(22,23). Some of the non-radical ROS forms include hydrogen peroxide (H2O2), 

singlet oxygen (1O2), ozone (O3), and organic peroxide (ROOH) (22,23). ROS are 

generated during normal metabolic reactions due to oxidative phosphorylation in 

the mitochondria (20,24). In addition, reactive oxygen species are generated in 

response to exogenous sources such as ultraviolet light, ionizing radiation, and 

lifestyle factors such as tobacco and alcohol usage (25).  

Oxidative stress can damage critical cellular components including RNA, 

proteins, lipids, and DNA, and is thought to be involved in tumorigenesis. RNA is 
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particularly prone to oxidative damage due to its close proximity to ROS created 

by the mitochondria. Unlike DNA, RNA is single stranded and there are few repair 

mechanisms compared to what DNA has. Damaged RNA can result in abnormal 

protein synthesis, but little is known about its role in cancer (13,17,26,27). 

Oxidative stress can also inactivate and induce proteolysis of proteins, including 

inactivation of antioxidant proteins (28,29). This likely exacerbates levels of 

oxidative stress and further increases cellular damage. Oxidative stress causes 

lipid peroxidation. This can result in disruption of cellular membranes and lead to 

the formation of malondialdehyde (15,30). Malondialdehyde, an active carbonyl, 

creates protein and DNA adducts (15). Significantly elevated levels of 

malondialdehyde been reported in head and neck cancer patients, which was 

linked to increased recurrence, and reduced survival (16,31,32). Oxidative stress 

can therefore damage numerous cellular components and disrupt normal cell 

function. 

Oxidative stress can lead to DNA damage and cause the formation of single 

and double stranded DNA breaks. ROS damage the sugar-phosphate backbone 

of DNA, as well as pyrimidine and purine nucleotides (23,33). There are over 20 

known forms of oxidized DNA nucleotides (23,33). Guanine is the most commonly 

oxidized nucleotide as it has the lowest oxidation potential of all nucleotides (34). 

The most prevalent forms of oxidized guanine include 8-oxoguanine (8-oxoG), and 

2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) (20,34,35). Unrepaired 

DNA damage can lead to the formation of DNA mutations in key oncogenes and 

tumor suppressors, which contribute to tumorigenesis. 
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1.1.3 Repair of oxidative DNA damage  

Repair of oxidative DNA damage is essential in preventing tumor 

development. Oxidative damage of lipids, RNA, and proteins are detrimental to the 

cell, but can be more easily removed and replaced. Oxidative damage to DNA is 

much more critical as DNA is the instructional foundation from which all other 

cellular components are made. Mutations within key oncogenes and tumor 

suppressors contribute to tumorigenesis (36,37). Therefore, it is of the utmost 

importance to correct oxidative DNA damage in order to prevent the formation of 

DNA mutations.  

Base excision repair is largely responsible for repair of oxidative DNA 

damage including the repair of damaged nucleotides, abasic sites, and single 

strand breaks (Figure 1-2) (20,38-40). Damaged DNA bases are initially 

recognized by a family of enzymes called glycosylases (20,38-40). 

Apurinic/apyrimidic endonuclease 1 (APE1) then cleaves the phosphodiester bond 

in the sugar-backbone, which generates a 3’-OH termini (20,40,41). The 

deoxyribophosphodiesterase (dRpase) activity of polymerase beta creates a 5’-P 

through removal of the 5’-ribose moieties (20,38). Ligation occurs as the final step 

of base excision repair after polymerases fill in the break-site gap (20,40-44). Base 

excision repair is important in repairing oxidative DNA damage in order to prevent 

the formation of tumorigenic mutations. 
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Reproduced from Scott, T.L.; Rangaswamy, S.; Wicker, C.A.; and Izumi, T. 

Antioxidants & Redox Signaling. 2014. 20(4): 708-26. 

Figure 1-2:  Base Excision Repair 

A. DNA glycosylases recognize and remove damaged DNA bases. B. This leads 

to the creation of an abasic site or single strand break. C. APE1 processes 3’ ends 

and creates the 3’-OH termini necessary for DNA polymerase activity. D. DNA 

polymerase beta generates 5’-P termini through removal of 5’ribose moieties, and 

fills in the gap. E. Finally, DNA is ligated with DNA ligase I or III. 



  

 8 

1.1.4 Antioxidant mechanisms to combat oxidative stress 

Although there are numerous DNA repair pathways to prevent the formation 

of DNA mutations, cells also have complex antioxidant systems to neutralize 

oxidative stress in order to prevent damage. Superoxide anions (O-) are 

neutralized by the superoxide dismutase (SOD) family (22,45,46). They do so by 

dismutation of superoxide anions into oxygen and hydrogen peroxide (O-  O2 + 

H2O2) (22,46,47). The hydrogen peroxide formed is relatively stable compared to 

radical ROS compounds. However, it undergoes conversion to hydroxyl radicals 

through Haber-Weiss or Fenton reactions, which leads to more oxidative stress-

induced damage (22,23). To prevent the formation of hydroxyl radicals, hydrogen 

peroxide undergoes reactions involving the enzymes catalase and glutathione 

peroxidase. Catalase reduces hydrogen peroxide to water (H2O) and oxygen (O2) 

(2H2O2  2 H2O + O2) (22,46). Glutathione peroxidase along with antioxidant, 

glutathione (GSH), facilitates the conversion of hydrogen peroxide into water and 

glutathione disulfide (GS-SG), (2GSH + H2O2  H2O + GS-SG) (46). All of the 

above processes help to minimize oxidative stress and lessens its negative impact 

of cellular health.   

In humans, the superoxide dismutase family is comprised of 3 major 

isoforms including SOD1 (copper, zinc superoxide dismutase), SOD2 

(manganese-containing superoxide dismutase), and SOD3 (extracellular 

superoxide dismutase) (46-48). Alterations of superoxide dismutases are linked to 

significant pathologies including neurological and cardiac dysfunction, as well as 

cancer (48-51). SOD1 is primarily located within the cytoplasm (48). While the roles 
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of SOD1 in carcinogenesis have not been well clarified, alterations of SOD2 and 

SOD3 have been observed in cancer (51).  

SOD2 is predominantly located within mitochondria (48). SOD2 has 

conflicting results as to its role in cancer (31,48,52-55). Reduction of SOD2 has 

been reported in pancreatic cancers as well as in invasive breast cancers 

(52,54,56). Increased cellular proliferation of pancreatic cancer cells was observed 

with reduction of SOD2 (54). However, elevated SOD2 has also been reported in 

gastric and lung cancer (53,55,57). In patients with gastric cancer, increased SOD2 

was linked with increased lymph node metastasis, as well as reduced survival 

(52,53,55).  

SOD3 is associated with the extracellular matrix and is also secreted into 

blood plasma and synovial fluids (36,58,59). Though primarily extracellular, there 

are also reports of SOD3 localization in the cytoplasm and nucleus (60,61). 

Oxidative stress induces nuclear translocation of SOD3 and this has been 

proposed as a means to protect nuclear elements from oxidative stress-induced 

damage (60,62,63). Secretion of SOD3 into blood plasma may be a means to 

replenish cells where SOD3 has been depleted by chronic oxidative stress 

(36,58,64). This seems probable, as uptake of recombinant SOD3 has been 

observed in in vitro cellular studies (61,62). Superoxide dismutase activity was 

reduced in the serum of head and neck cancer patients (31). This reduced 

superoxide dismutase activity likely contributes to oxidative stress and cellular 

damage in individuals with head and neck cancer. These studies underscore the 

importance of SOD3 in the development and progression of cancer.  
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1.1.5 Field cancerization in head and neck squamous cell carcinoma 

Field cancerization contributes to the development of head and neck 

cancer. In 1953, Dr. Danely P. Slaughter first described the concept of field 

cancerization upon observation of the existence of multifocal squamous cell 

carcinoma in oral cancer. He posited this phenomenon occurs as a result of 

preconditioning by unknown carcinogens for long periods of time (65). With the 

discovery of DNA revealed only a few months prior to this 1953 paper, nothing was 

yet known as to the genetic underlying of this occurrence (66).   

Field cancerization is common in head and neck cancers, and occurs when 

tissue areas are repeatedly exposed to DNA damaging agents including tobacco, 

and alcohol (67,68).  This chronic exposure to DNA damaging agents leads to the 

formation of precancerous lesions within a field of tissue, which appears 

histologically normal (Figure 1-3)(67).  Due to the undetectable nature of these 

lesions, precancerous fields may not be fully excised during surgery. This 

remaining precancerous field can progress into secondary primary tumors. 

Secondary primary tumors are not directly related to the initial primary tumor, but 

may contain overlapping mutations (67-70). Criteria defines that a secondary 

primary tumor have at least 2 cm of normal tissue between tumors or that the 

second tumor occurs a minimum of 3 years after the initial tumor (69).  In addition, 

secondary field tumors that are more closely related to the initial primary tumor 

may develop (Figure 1-3). This extensive and histologically normal field of 

precancerous lesions are particularly problematic as it contributes to higher rates 

of disease recurrence (68,69).  
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Figure 1-3:  Field Cancerization 

Long-term exposure of tissues to DNA damaging agents such as tobacco, alcohol, 

and UV can lead to mutations in large areas of tissue forming a precancerous field. 

This field appears histologically margin and can extend well beyond surgical 

margins. This field can develop secondary primary tumors that are independent of 

the initial primary tumor. Secondary field tumors that are independent or due to 

field progression can also occur.  
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Field cancerization leads to development of multifocal lesions due to 

widespread exposure to DNA damaging agents (68,69). Field cancerization can 

lead to a concomitant (i.e. simultaneous) existence of carcinoma in situ (CIS) and 

invasive cancer(71). CIS is early stage cancer that involves only the epithelial cell 

layers, whereas invasive cancer has disrupted the basement membrane (71). 

Reduced recurrence free survival and overall survival were observed in patients 

with concomitant CIS and invasive (Stage T1) bladder cancer (71,72). However, 

concomitant CIS and invasive tumor is a little studied phenomenon in head and 

neck cancer and thus it is unclear as to its clinical significance.  

Several mechanisms have been proposed to explain the multifocal nature 

of head and neck cancer (67,73). It has been proposed that these tumors are 

monoclonal and are the result of intra-epithelia migration, or a transfer of sloughed 

cancer cells (67,73). It has also been proposed that these tumors are polyclonal, 

and developed more independent of one another (67,73). Either mechanism may 

explain the presence of concomitant invasive tumor with CIS. Both progressive 

genetic alterations that occur during intra-epithelial migration and the development 

of separate closely related cancerous tissues might result in concommitant CIS 

and invasive tumor within tissue fields. 
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1.1.6 Head and neck cancer risk factors and their contributions to 

oxidative stress 

1.1.6.1 Reduction of SOD3 is associated with increased susceptibility to 

tobacco induced oxidative stress 

Tobacco usage increases the risk of developing cancer including lung, 

pancreatic, and head and neck cancer (74,75). Tobacco combustion produces 

thousands of compounds, including nearly 100 carcinogens (74-79). Tobacco 

cigarettes produces free radicals that contribute to increased oxidative stress 

(22,23,79). This is supported by significantly increased levels of oxidative stress 

marker 8-hydroxy-2’-deoxyguanosine in smokers, and in bronchial epithelial cells 

treated with cigarette smoke extract (80). As previously mentioned, oxidative 

stress contributes to DNA damage. Uncorrected DNA damage can lead to 

mutations in critical oncogene and tumor suppressor genes, which can promote 

tumorigenesis.  

Members of the cellular antioxidant system including glutathione, and 

superoxide dismutases are crucial in minimizing the DNA damaging effects of the 

free radicals found in cigarette smoke (81-83). Overexpression of SOD3 reduced 

the levels of oxidative stress in mouse macrophages exposed to cigarette smoke 

extract (84). SOD3 levels are significantly increased in individuals having the 

SOD3 R213G mutation, which was associated with reduced incidence of chronic 

obstructive pulmonary disease in smokers (81,82,85,86). In addition, reduction of 

SOD3 was observed in lung cancer tissues as compared to matched normal 
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tissues (87). These studies highlight the importance of SOD3 in reducing the 

damaging effects of cigarette smoke.  

1.1.6.2 Human papillomavirus infection contributes to oxidative stress 

Human papillomavirus (HPV) is a growing risk factor for head and neck 

cancer and is associated with increased cellular proliferation and oxidative stress. 

HPV-associated oral cancers have increased 225% between 1988 and 2004 and 

this is thought to be associated with changing trends in sexual behaviors (88-92). 

High-risk HPV strains have been associated with several cancers including 70-

90% of oral cancers (88-99). Head and neck cancer development is linked to HPV 

strains 16 and 18, increased sexual activity, and younger populations (6).  HPV 

infects and replicates viral components within epithelial layers such as oral 

mucosal epithelia (100,101). High-risk strains of HPV encode viral proteins E6 and 

E7, which inactivate tumor suppressors p53 and retinoblastoma (Rb) (4,100-103). 

Inactivation of Rb induces overexpression of p16 (101,104). Typically, p16 inhibits 

cellular proliferation. However, the inactivation of tumor suppressor and cell cycle 

inhibitor Rb may override p16’s attempts in halting cellular proliferation (105,106). 

Overexpression of p16 protein as determined by immunohistochemistry 

(IHC), has been used as a surrogate marker for HPV infection. However, more 

direct methods including HPV in situ hybridization and PCR exist and these are 

often used to confirm p16 positive IHC results (4,6). There has been concern over 

the accuracy of using p16 as an indirect marker for HPV infection. Shi et al. 

analyzed 111 oral squamous cell carcinoma samples using IHC for p16, HPV16 in 

situ hybridization, and PCR amplification of E6 mRNA. IHC results for p16 were 
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significantly in agreement with HPV16 in situ hybridization, and PCR amplification 

of E6 mRNA. Ninety-two percent of IHC p16 positive samples were HPV16 in situ 

hybridization positive, and 86% had positive PCR amplification of E6 mRNA (107). 

These results support that p16 overexpression as determined by IHC is an 

accurate surrogate to identify HPV infection.  

Increased oxidative stress in HPV infected tissues has been attributed to 

the E6 and E7 viral proteins (25,104). Cervical cancer cells expressing E6 

exhibited higher levels of ROS and 8-oxoguanine as compared to E6-negative 

cells (102).  Transfection of E6 into oral keratinocytes induced higher levels of 8-

oxoguanine, and DNA fragmentation as indicated by increased comet tail length 

(102). Elevated ROS and superoxide levels were identified in HPV-positive head 

and neck cancer cells as compared to HPV-negative cells (25,104). Artificial 

expression of E6/E7 in HPV-negative head and neck cells led to increased levels 

of ROS, and DNA fragmentation as assessed by comet assay (104). These results 

support that HPV E6/E7 viral proteins promote oxidative stress and DNA damage 

in infected tissues. This damage can lead to tumorigenic mutations and the 

development of cancer. 

Patients with HPV-associated head and neck cancers have a more 

favorable prognosis, including increased survival and reduced rates of recurrence 

(108). Marur et al. demonstrated that patients with HPV-associated cancers have 

a 94 % [95% CI, 87-100] overall survival rate and 85 % [95% CI, 74-99] progression 

free survival rate in a 2 year period (6). HPV negative tumors were linked to only 

58 % [95% CI, 49-74] overall survival, and 53% [95% CI, 36-67] progression free 
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survival (6). This more favorable prognosis is likely due to increased treatment 

sensitivity, and earlier identification as compared to HPV-negative tumors(108).  

This improved treatment sensitivity is supported by increased DNA damage in 

HPV-positive head and neck cancer cells upon ionizing radiation (104). DNA 

damage was identified based on increased DNA fragmentation observed by DNA 

comet assay, and the presence of micronuclei (104). In addition, these studies 

demonstrated correlation between increased ROS and treatment sensitivity in 

HPV-associated cells and in cells where E6/E7 was artificially expressed (104). 

These observations may partly explain why HPV-associated head and neck 

cancers are more radiosensitive than HPV-negative tumors. Therefore, HPV is an 

important risk factor for the development of head and neck cancer, and HPV’s 

surrogate biomarker p16 aids in predicting treatment response. 

1.1.7 Head and neck cancer development is associated with an intricate 

network involving APE1 

1.1.7.1 Aberrant APE1 expression is linked to increased metastasis and 

treatment resistance, which contributes to reduced patient survival 

As a DNA repair protein, APE1 is predominantly located within the nucleus 

and mitochondria, and minimally so in the cytoplasm (20). However, aberrant 

overexpression and cytoplasmic localization have been identified in cancer tissues 

(109,110). This aberrant overexpression and cytoplasmic localization has been 

linked to metastasis, treatment resistance, and poor patient survival (20,109-112). 

APE1 overexpression may be linked to increased oxidative stress. Oxidative stress 

is typical of the tumor microenvironment and previous research using mammalian 
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cell lines demonstrated that oxidative stress induces APE1 expression (19,113). 

Reduced levels of antioxidants are often observed within tumor tissues (52,114). 

This reduction in antioxidants may contribute to APE1 induction by through 

increased oxidative stress.  

Overexpression of DNA repair proteins in cancer may limit the DNA 

damaging effects of chemoradiotherapy that are needed to effectively kill tumor 

cells. Chemoradiotherapy is used to kill tumor cells by inducing DNA damage. 

Overexpression of DNA repair proteins may therefore increase repair of DNA 

damage induced by chemoradiotherapy, which may allow tumor cells to survive 

treatment. 

In addition to being a base excision repair protein, APE1 is also a redox 

dependent transcriptional regulator (39,115-119). APE1 regulates transcription of 

genes including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

kB), hypoxia inducible factor 1 (HIF1), and Nuclear Factor, Erythroid 2-Like 2 

(NRF2) (118). NF-kB is a prosurvival gene that is frequently upregulated in head 

and neck cancers and it has been associated with both treatment resistance and 

reduced patient survival (120). APE1 mediates hypoxia inducible factor 1 (HIF1) 

induction(118). HIF1-mediated induction of vascular endothelial growth factor 

(VEGF) leads to angiogenesis, which supports tumor growth (118). NRF2 is a 

transcriptional regulator that suppresses transcription of antioxidant genes such as 

SOD2 and SOD3 (121). Dr. Suganya Rangaswamy of Dr. Izumi’s lab previously 

conducted microarray analysis comparing gene expression in cells with wildtype 

APE1 levels and in cells deficient in APE1 (122). This previously published study 
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was conducted using mouse embryonic fibroblasts that are deficient in APE1. 

These fibroblasts were nullizygous for APE1, but contained a copy of the human 

APE1 gene in order to maintain cell viability (122,123). Increased APE1 expression 

was associated with increased levels of transcriptional co-activator, peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), and 

decreased levels of extracellular matrix protein, decorin (DCN) (122). Therefore, 

the redox transcriptional activities of APE1 may alter transcription of key tumor 

suppressor and antioxidant genes, which contributes increased tumor growth, 

metastasis, and reduced survival. 

1.1.7.2 Loss of decorin enhances tumor development 

DCN is a small, leucine-rich proteoglycan that acts as a tumor suppressor 

by preventing tumor growth and spread (124,125). Loss of DCN is associated with 

increased metastasis in patients having oral squamous cell carcinoma, lung, or 

breast cancer (126-132). DCN inhibits (VEGF-alpha) thereby inhibiting 

angiogenesis that is needed to support tumor growth (124,132). Increased VEGF-

alpha protein expression, microvessel density, and lymph node involvement was 

associated with low DCN protein expression within oral squamous cell carcinoma 

(132). DCN also inhibits metastasis through upregulation of E-cadherin, which is 

needed to maintain cell adhesion. Maintaining cell adhesion prevents the 

epithelial-mesenchymal transition necessary for metastasis (120,125,126). During 

epithelial-mesenchymal transition, cells return to a more stem-like state, allowing 

their migration to distant sites where new tumors can form (120). This has been 

supported by increased colorectal tumor development in DCN null mice, which had 
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significantly reduced E-Cadherin (120,125,133). Therefore, DCN is important in 

suppressing tumor development.  

1.1.7.3 PPARGC1A supports tumorigenesis and metastasis 

PPARGC1A is a transcriptional co-activator linked to mitochondrial 

biogenesis, oxidative phosphorylation, and has been implicated in tumorigenesis 

(134,135). The role of PPARGC1A in supporting tumorigenesis has been 

supported in Bhalla et al., which observed increased development of colon cancer 

in wildtype mice as compared to their PPARGC1A knockout counterparts (135). 

They also observed reduced tumor volume in mice injected with colon cancer cells 

that had PPARGC1A knockdown (135). Other studies in lung adenocarcinoma and 

oral squamous cell carcinoma have reported a paradoxical reduction of 

PPARGC1A in invasive tissues as compared to matched normal samples 

(134,136). LeBleu et al. discovered that PPARGC1A gene expression is increased 

in circulating cancer cells as compared to primary and metastatic tumors. They 

demonstrated that PPARGC1A knockdown inhibited metastasis without impacting 

cell proliferation within the primary tumor (137). Taken together, these studies 

support that increased PPARGC1A supports tumorigenesis and metastasis. 

1.1.7.4 NRF2 suppresses key antioxidant genes 

Nuclear Factor, Erythroid 2-Like 2 (NRF2) is a transcriptional regulator of 

antioxidant and cell proliferation genes (138,139). APE1 is a proposed NRF2 

regulatory protein (140-142). This regulatory link is supported with the observation 

of reduced NRF2 in cardiac tissue where APE1 was knocked down (140). In this 
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same study, physical interaction of NRF2 and APE1 was demonstrated in 

immunoprecipitation experiments (140). Increased NRF2-mediated transcription 

has been observed upon APE1’s interaction with NRF2 (141). This would support 

that APE1 may not only increase NRF2 expression, but also NRF2 activity. In 

contradiction, one study observed a negative regulatory link between APE1 and 

NRF2. Knockdown experiments performed in pancreatic cancer cell lines 

demonstrated increased NRF2 expression, as well as increased expression of 

NRF2 downstream targets (142). It should be noted that these experiments were 

performed in various pancreatic cancer cell lines, and there might be some form 

of cell type specific regulation. APE1 and NRF2 are both upregulated in HNSCC 

(143-146). Therefore, it is likely that a positive regulatory link between APE1 and 

NRF2 exists in head and neck tissues. 

As mentioned, NRF2 is an important regulator of antioxidant genes. SOD2, SOD3, 

and DCN gene downregulation was reported in type II alveolar cells with wildtype 

NRF2 as compared to their homozygous NRF2 knockout counterparts (121). 

Suppression of SOD2 protein was also observed in the skeletal muscle of aged 

wildtype mice as compared to the NRF2 homozygous knockout mice (147).  In 

addition, NFE2L2 transcription factor binding sites were identified in the DCN and 

SOD3 promoter regions (Table 1-1)(148-150). Therefore, increased NRF2 

expression and activity in HNSCC may increase suppression of superoxide 

dismutases leading to increased oxidative stress. 
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Table 1-1:  NFE2L2 transcription factor binding sites within the DCN, and 

SOD3 promoter regions 

 

 

 

 

NFE2L2 (MA0150.1) transcription factor binding sites were determined using 

LASAGNA-Search 2.0 with matrix-derived JASPER CORE models. NFE2L2 

consensus logo obtained from JASPER. 
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1.2 Experimental Rationale 

A major challenge concerning HNSCC is how to overcome treatment 

resistance and recurrence, which eventually leads to reduced patient survival 

(151). APE1 overexpression in tumors has been associated with metastasis, 

treatment resistance, and reduced patient survival (20,109-112). However, the 

mechanisms underlying this remain unclear. Previous microarray experiments 

suggest that APE1 significantly reduces gene expression of DCN (122). Reduced 

DCN expression has been associated with increased metastasis and mortality in 

cancer patients (126-132). The increased metastasis in patients with APE1 

overexpression may be due to APE1 suppressing DCN levels. To explore how 

APE1 may be suppressing DCN, we looked at APE1’s role as a redox dependent 

transcriptional regulator.   

There are studies supporting that APE1 can increase NRF2’s protein 

expression and transcriptional regulatory activity (140,141). Reddy et al. previously 

reported downregulation of DCN in NRF2 expressing cell lines (121). These 

observations warrant to test whether suppression of DCN by APE1 occurs 

indirectly through NRF2. In addition, NRF2 is linked to suppression of antioxidants 

SOD2, and SOD3 (121). PPARGC1A is a known co-activator of NRF2 and 

microarray analysis supports that APE1 positively regulates PPARGC1A gene 

expression (122). PPARGC1A as an NRF2 coactivator may support SOD2 

suppression by NRF2. However, there is evidence that PPARGC1A is a positive 

regulator of SOD2 (152). Therefore, we decided to clarify the regulatory link 

between PPARGC1A and SOD2.  
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Chapter 1 will explore the hypothesis that APE1 expression downregulates 

tumor suppressor and antioxidant proteins and in doing so contributes to increased 

tumor development (Figure 1-4). We aim to gain insight into how APE1 influences 

survival, and also to identify potential biomarkers that aid in predicting aggressive 

tumor phenotypes, and survival. To test the proposed model, I measured protein 

expression of APE1, DCN, NRF2, SOD3 and PPARGC1A within HNSCC samples 

obtained from patients treated at the University of Kentucky. Digital slide image 

analysis was used to measure protein expression in benign, CIS, and invasive 

tissue subtypes based on immunohistochemistry staining intensity. To further 

support our proposed model, gene correlation analysis was performed using 

transcriptome data obtained from TCGA.  
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Figure 1-4:  Proposed Mechanism for APE1's role in HNSCC 

I hypothesize that oxidative stress in the tumor microenvironment increases APE1 

levels. APE1 interacting with NRF2 drives suppression of DCN. NRF2 also leads 

to downregulation of SOD3. APE1 influences PPARGC1A driving SOD2 

suppression. Downregulation of antioxidants SOD2 and SOD3 further elevates 

oxidative stress driving further APE1 overexpression.  
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I performed analysis to identify potential biomarkers that could predict 

patient survival and aggressive tumor phenotypes including increased metastatic 

potential. Kaplan-Meier survival analysis was performed where we compared 

differences in protein and gene expression levels. To understand how alterations 

of these proteins contributed to reduced patient survival, differences in protein 

expression were analyzed in relation to various clinical factors such as the 

presence of lymph node invasion, p16 status, and tumor grade. Understanding 

how APE1 overexpression contributes to increased cancer mortality could lead to 

the development of new and improved treatment strategies. Biomarkers that 

identify high-risk patients, particularly at early stages of tumor development, can 

potentially improve patient survival. I will discuss in depth some of the major 

limitations of the experiments in chapter 1 as well as ways to improve this in the 

future. 

Chapters 2 and 3 are previously published first-author and co-first author 

manuscripts respectively (116,153). In chapter 2, we analyzed normal and cancer 

tissues to identify changes in genetic coordination between COP9 signalosome 

components and with components of the respiratory chain complex (153). Chapter 

3 discusses post-translational modification of APE1 by tumor suppressor Parkin 

(116). The last chapter will summarize the findings and significance of chapters 1, 

2, and 3. In addition, I discuss possible future directions to further develop the 

conclusions of this study. 
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1.3 Methods 

1.3.1 Chemicals and other reagents 

Antibodies used for this study include anti-APE1 (Santa Cruz, sc-55498), 

anti-DCN (Santa Cruz, sc-22753), anti-PGC1-alpha (Santa Cruz, sc-13067), anti-

SOD3 (Santa Cruz, sc-67088), and anti-NRF2 (ABcam, AB31163). Our lab has 

previously used Western blotting to confirm the specificity of the anti-APE1, anti-

DCN, anti-PGC1-alpha, and anti-SOD3 antibodies. Also utilized were anti-Ki67 

(Dako IR626) and anti-desmin (Dako IR606). The Markey Cancer Center 

Biospecimen and Tissue Procurement Shared Resource Facility (BSTP SRF) has 

validated all antibodies listed above. 

1.3.2 Head and neck squamous cell tissues and clinical data sets 

Head and neck squamous cell tissue samples and de-identified clinical data 

were obtained from 77 patients at the University of Kentucky’s Markey Cancer 

Center following IRB guidelines. Tissue specimens were obtained from the BSTP 

SRF.   

Clinical data associated with these tissues were obtained from the Kentucky 

Cancer Registry with the help of Dr. Eric Durbin. Clinical data sets included 

information regarding patient age at diagnosis, tobacco usage, p16 status, time of 

survival, pathology and clinical staging, histology, tumor grade, presence of lymph 

node invasion, and whether the patient originated from the central or Appalachian 

region of Kentucky. 
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1.3.3 Immunohistochemistry for Head and Neck Squamous Cell Tissues 

Formaldehyde-fixed paraffin embedded head and neck squamous cell 

carcinoma samples obtained from the BSTP SRF were used for 

immunohistochemistry. All samples were obtained prior to the patients starting 

chemoradiotherapy. Dana Napier of the BSTP SRF performed slide sectioning, 

and immunostaining.  

Tissue sections with 5-μm thickness were deparaffinized and rehydrated 

step-wise through decreasing concentrations of ethanol and finally water. Antigen 

retrieval was performed using a Biocare Medical decloaking chamber and Dako 

antigen retrieval buffer. Following washing with TBS-Tween, endogenous 

peroxidase activity was quenched using the Dako peroxidase-blocking reagent. 

Slides were washed again in TBS-Tween and incubated with primary antibodies at 

room temperature. Slides were then incubated with polymer linked secondary 

antibody, either mouse (Dako K4007) or rabbit (Dako K4003). Diaminobenzidine 

was used for 1-10 minutes to produce color. Slides were subsequently 

counterstained with Meyer’s hematoxylin, and ammonia was used to blue slides. 

Slides were dehydrated stepwise through increasing concentrations of ethanol and 

cleared with xylene before coverslip fixation.  

1.3.4 High-resolution digitization of Immunohistochemistry Slides 

High-resolution digital image scans of our slides were obtained using the 

Aperio Scanscope XT (Leica) located in the Markesbery Neuropathology lab of the 

Sanders-Brown Center on Aging. Slides were scanned at 20X magnification with 

a resolution of 0.5 micrometer/pixel, which is equivalent to 50,000 pixels per inch 
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(approximately 4 Giga Byte per slide). Immunohistochemistry staining was 

quantified using the Aperio ImageScope software (V 11.2.0.780) (154-156). 

Nuclear algorithm V9 was used to determine percentage of positively stained 

nuclei and calculated using the following formula [% total positive nuclei=(number 

of positive nuclei/total nuclei)*100%]. Total cellular staining was determined using 

the Positive Pixel Count algorithm V9 and calculated using the following formula 

[% total cellular staining=(number of positive pixels/total pixels)*100]. 

Dr. Yolanda Brill of the University of Kentucky’s Pathology department 

visually inspected hematoxylin and eosin stained slides and annotated regions of 

benign, carcinoma in situ, and invasive tumor regions within slide sections. Areas 

from these marked locations were then selected for analysis with the Aperio 

ImageScope software.  

1.3.5 Immunohistochemistry staining controls 

Dr. Brill with the assistance of Dana Napier examined the 

immunohistochemistry test slides to identify the staining conditions necessary to 

minimize background staining. Factors considered included antibody dilutions, 

incubation periods, as well as the pH of the epitope retrieval buffer.  

 The accuracy of the Aperio algorithms was assessed by measuring the 

staining of Ki-67 and desmin, which are known to be predominantly located within 

the nuclei and cytoplasm, respectively (Supplemental Figure C-1). Test slides 

probed with either Ki-67 or desmin antibodies were assessed with both the nuclear 

algorithm V9 and the positive pixel algorithm V9.  
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1.3.6 Pearson correlation coefficient analysis  

 Pearson correlation coefficient (r) analyses was performed using SPSS 23 

with significance determined as p < 0.05 (2-tailed). Pearson correlation coefficients 

are used to determine whether a positive or negative correlation between two 

factors exists. A positive correlation indicates that as one factor increases so does 

the second. A negative correlation indicates that as one factor increases, the other 

decreases. Data from 77 patients initially treated at the University of Kentucky were 

used to compare nuclear and total protein expression for individual proteins (for 

example APE1, SOD3) and between benign, carcinoma in situ, and invasive tissue 

subtypes.  

1.3.7 Univariate and multivariate analysis of protein expression data  

Both SAS and SPSS 23 statistical packages were used for statistical 

analysis. Dr. Li Chen of the Biostatistics and Bioinformatics Shared Resource 

Facility was instrumental in the univariate and multivariate statistical analysis. 

Initially, univariate mixed procedure was used to determine significance of protein 

changes across all 77 patient samples without regards to clinical data. Box and 

whisker graphs were generated with bars representing interquartile range, internal 

line representing the median, and whiskers representing the 95% CI. Multivariate 

mixed procedure was used to identify significant protein changes in respective 

clinical groups. Clinical data for the following were analyzed: p16 status, whether 

patients were from Appalachian Kentucky, tobacco usage, age at diagnosis, 

pathology stage, tumor grade, and presence of cancer infiltrated lymph nodes at 

the time of diagnosis. Overall p-values were generated based on linear mixed 
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models with tissue and each variable as covariates, and with compound symmetric 

covariance structure. Significance was determined as p<0.005 after adjusting for 

examining 10 markers simultaneously, and p<0.05 without adjusting for examining 

10 markers simultaneously. Categories where significance of the overall p-value 

was obtained were subjected to further analysis to determine significance of the 

variable effect (example benign, CIS, and invasive). Data were plotted with error 

bars representing standard error. 

1.3.8 Survival analysis 

The data from 77 different patients was used for survival analysis using 

protein expression data under Dr. Chen’s supervision. Days of survival were 

determined as days between date of diagnosis and date of death, which was then 

converted to months of survival.  

In order to perform Kaplan-Meier survival analysis, we first identified cutoff 

values for the proposed biomarkers based on previous research from other 

researchers (157,158). Cutoffs were determined for nuclear and total cellular levels 

for each individual protein and within each tissue subtype (example benign, CIS, 

and invasive). The quartiles of each biomarker were determined with low 

expression defined as the first quartile (Q1), and high expression defined as the 

third quartile (Q3). 

Survival curves based on the Kaplan-Meier estimator were generated in R 

3,3,1 GUI 1.68 Mavericks build 7238 (159). Additionally, xlsxjars, and rJava 

packages were used to import and generate the excel files needed for survival 

analysis (160-162). Survival, graphics and grDevices packages were used for 
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generation of Kaplan-Meier graphs (159,163). Log Rank (Mantel-Haenszel), and 

Peto & Peto modification of the Gehan-Wilcoxon test, were used to determine 

statistical significance (p<0.05) (159).   The Log Rank statistical test is sensitive in 

detecting differences in survival for long periods of time whereas the Wilcoxon test 

is better suited to detect differences at earlier time points (164).  

1.3.9 HNSCC gene expression analysis 

The Cancer Genome Atlas’s online data portal was used to acquire gene 

expression data (mRNASe12, level3) and de-identified clinical data (example 

survival time, pathology stage, anatomical location) from 520 patients having head 

and neck squamous cell carcinoma (https://cancergenome.nih.gov). Gene 

expression and clinical data were initially organized with programs using command 

line applications developed with Swift (Xcode ver. 6) (153). Genes of interest were 

further isolated from the original data set of 15,857 different genes.  

Gene expression data was utilized for correlation and survival analysis. 

Gene correlation was determined using TCGA RNA-Seq data from 43 matched 

non-neoplastic and HNSCC tissue. This data set was used to calculate Pearson 

correlation coefficients between individual genes (example APEX1, SOD3). For 

survival analysis based on gene expression, patient survival was compared 

between low expression (Q1) and high expression (Q3) of our genes of interest. 

Cutoff values were determined using same method as with protein expression. 

There were 44 patients in both low and high gene expression groups. 

http://cancergenome.nih.gov
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1.4 Results  

1.4.1 Differential protein and gene expression analysis in HNSCC 

In this study we examined whether and how APE1, DCN, PPARGC1A, 

SOD3, and NRF2 expression coordinated with one another, and how expression 

changed between non-neoplastic and HNSCC tissues. Analysis included gene 

expression analysis of data obtained from TCGA, and protein expression analysis 

based on IHC staining of HNSCC obtained from the University of Kentucky. TCGA 

database contains a large quantity of RNA-Seq data for HNSCC samples, 

approximately 10% of which have data from matched non-neoplastic tissues (153). 

Our lab previously reported the use of TCGA’s transcriptome database in the 

discovery of discoordinated gene expression of COP9 subunits with mitochondria-

related genes in cancerous tissues as compared to non-neoplastic tissue (Chapter 

2) (153). We applied the same methods to analyze expression of genes for APE1, 

DCN, PPARGC1A, SOD2, SOD3, and NRF2 changes in non-neoplastic and 

HNSCC tumor tissues. APE1 gene name is designated APEX1 and NRF2 gene 

name is designated NFE2L2. To investigate gene coordination, Pearson 

correlation coefficients were calculated between genes of interest in non-

neoplastic and tumor tissues.  

Because gene expression does not always directly correlate to protein 

expression, we examined protein levels of APE1, DCN, NRF2, SOD3, and 

PPARGC1A. To do so, we analyzed protein levels in tissue specimens from 77 

patients treated at the University of Kentucky’s Markey Cancer Center. To 

objectively measure IHC staining, we utilized digital slide image analysis using the 
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Aperio ImageScope software. This software was used to calculate total cellular 

and nuclear protein expression within benign, CIS, and invasive HNSCC. 

Importantly, a pathologist who specializes in head and neck cancer independently 

identified regions of benign, CIS, and invasive HNSCC. This helped ensure that 

regions were accurately analyzed, and minimized bias in selecting regions of 

analysis using the Aperio ImageScope software. Data from the protein expression 

levels in proximal benign, CIS and invasive tissue were converted into box and 

whisker plots. Bars represent the interquartile range, and whiskers represent the 

95% confidence intervals. To determine coordination between proteins and within 

each tissue type, Pearson correlation coefficients were generated.   

1.4.1.1 APE1 protein expression is upregulated in CIS, and invasive 

HNSCC 

 We first examined if APE1 expression increases in HNSCC, in order to 

confirm previous studies that demonstrated APE1 overexpression in tumor tissues 

(109,110,165). APE1 protein expression in benign, CIS, and invasive HNSCC was 

determined using digital image analysis of IHC staining. Protein expression 

analysis revealed significantly increased total cellular APE1 in CIS, and invasive 

tissues as compared to benign (p<0.001 for both). In addition, APE1 protein 

expression was significantly increased in invasive tissue as compared to CIS 

(p<0.05). Nuclear APE1 protein expression was also elevated in both CIS and 

invasive HNSCC (p<0.001, p=0.0023 respectively) (Figure 1-6). This confirms 

prior research that demonstrated increased APE1 in cancer tissues (109,110,165). 
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However, to the best of our knowledge this is the first study to observed increased 

APE1 protein expression in not only invasive HNSCC but also in CIS. 

1.4.1.2 APE1 protein expression is linked to reduced DCN protein levels in 

HNSCC 

  Based on our previous gene expression profiling using the wild-type and 

APE1-knockdown mouse embryonic fibroblasts described in the introduction and 

in Suganya et al. 2015 (122), we hypothesized that elevated APE1 leads to 

reduced DCN expression in HNSCC (Figure 1-4). To determine whether APE1 

expression corresponds to DCN suppression, we performed correlation analysis 

at both protein and gene expression levels. Total and nuclear DCN protein levels 

were determined in benign, CIS, and invasive HNSCC using digital image analysis 

of IHC staining. Total and nuclear DCN protein levels were significantly decreased 

in both CIS and invasive HNSCC as compared to benign tissue (p<0.001 for all) 

(Figure 1-5, Figure 1-6). APE1 protein expression corresponded to significantly 

decreased DCN protein expression in CIS (p<0.01) (Table 1-3). Unexpectedly, 

there was a positive correlation between total cellular APE1 and DCN protein levels 

in benign tissue. It is not clear as to why, but these results support dysregulation 

between APE1 and DCN expression in tumor tissues.   

We hypothesized that the reduction of DCN expression was a result of 

APE1’s redox transcriptional regulatory activity. To examine whether APE1 gene 

expression corresponded to decreased DCN gene expression, we calculated 

Pearson correlation coefficients using RNA-Seq data obtained from TCGA. Gene 

expression analysis revealed no significant link between APE1 and DCN (Table 1-
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2). This was unexpected as previously published microarray analysis in MEF cell 

lines exhibited significantly reduced DCN gene expression in mouse embryonic 

fibroblasts with wildtype APE1 as compared to cells with APE1 knockdown (122). 

This difference may be due to heterogeneity of tissues versus an immortalized, 

monoculture cell line. Further work is needed to determine whether APE1 impacts 

DCN gene regulation.  

1.4.1.3 APE1 protein levels are linked to increased NRF2 protein levels 

We hypothesized that APE1 indirectly downregulates DCN and SOD3 by 

modulating NRF2’s transcriptional regulatory activity (Figure 1-3). APE1 is known 

to regulate NRF2 expression as well as increase NRF2’s transcriptional regulatory 

activities (140,141). We first determined overall changes of NRF2 protein 

expression in benign, CIS, and invasive HNSCC using digital image analysis of 

IHC slides. Total cellular NRF2 protein levels were increased in invasive HNSCC 

as compared to benign tissue (p<0.05) and to CIS (p=0.0002) (Figure 1-6). Gene 

expression coordination was investigated between NFE2L2, DCN, SOD2, and 

SOD3. To examine this coordination, we calculated Pearson correlation 

coefficients in non-neoplastic and tumor tissues using TCGA RNA-Seq data from 

patients with HNSCC. In non-neoplastic tissues, NFE2L2 gene expression was 

negatively correlated with DCN, SOD2, and SOD3 (p<0.01) (Table 1-2). This 

supports that NRF2 may negatively regulate transcription of DCN, SOD2, and 

SOD3. Additionally, we analyzed coordination between protein levels of NRF2, 

DCN, and SOD3. Overall, there was a trend toward negative correlation between 

nuclear NRF2 and DCN protein levels. However, NRF2 protein had a positive 
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correlation with nuclear DCN and SOD3 in invasive tissues (p<0.05). Overall, 

these results support that NRF2 may be involved in suppressing transcription of 

SOD2, SOD3, and DCN.   

Next, we explored coordination between NRF2 and APE1 protein 

expression in benign, CIS, and invasive HNSCC by calculating Pearson correlation 

coefficients. Investigation of protein expression demonstrated a positive 

correlation between nuclear APE1 and NRF2 in benign (p<0.01) and invasive 

tissue (p<0.01) (Table 1-3 A). Additionally, a positive correlation was found 

between nuclear APE1 protein levels in benign tissue and nuclear NRF2 protein 

levels in CIS (p<0.05) (Table 1-3 A). These results signify that increased APE1 

protein expression in benign and invasive tissue corresponds to increased NRF2 

protein expression in benign and invasive tissues. These initial results supported 

that APE1 may positively regulate NRF2 levels in HNSCC. 
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Figure 1-5: Representative images of Hematoxylin and Eosin, and IHC for APE1, DCN, NRF2, SOD3, and PPARGC1A 

in benign, carcinoma in situ, and invasive HNSCC  

Digital image scans of benign, carcinoma in situ, and invasive HNSCC from a single patient. Serial sections were used for 

hematoxylin and eosin (H&E) staining, and immunohistochemistry staining to detect APE1, DCN, SOD3, NRF2, and 

PPARGC1A. 
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Figure 1-6: Quantification of Total Cellular and Nuclear APE1, DCN, NRF2, SOD3, and PPARGC1A in benign, 

carcinoma in situ, and invasive HNSCC 
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Immunohistochemistry staining was analyzed with Aperio software to determine protein levels of APE1, DCN, NRF2, SOD3, 

and PPARGC1A in benign, CIS, and invasive HNSCC. Bars represent the interquartile range and whiskers represent the 

95% confidence intervals. Data is representative of 77 patients. 
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Table 1-2: Correlation of TCGA HNSCC gene expression 

RNA-Seq data from 43 matched non-neoplastic and HNSCC samples was 

obtained from TCGA. Pearson correlation coefficients were generated from this 

data to examine gene coordination between APEX1, DCN, SOD2, SOD3, NFE2L2, 

and PPARGC1A in non-neoplastic and HNSCC tumor tissues. ** Correlation is 

significant p<0.01 (2-tailed). *Correlation is significant p<0.05 (2-tailed). 
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Because gene expression analysis revealed no correlation between 

NFE2L2 and APEX1, the positive correlation observed between APE1 and NRF2 

protein expression may not be due to increased gene expression of NRF2 (Table 

1-2, 1-3). These results do not discount the possibilty of increased NRF2 activity 

through interaction with APE1, which has been observed in other systems (141). 

Future in vitro studies will be needed to confirm whether APE1 is increasing NRF2 

activity. Determining if APE1 increases NRF2 activity in head and neck cancer is 

necessary to understand how APE1 suppresses DCN and SOD3 in tumor tissues. 
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Table 1-3:  Pearson correlation analysis for APE1 and associated Factors in benign, CIS, and invasive HNSCC 
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Table 1-3: Pearson correlation analysis for APE1 and associated factors in benign, CIS, and invasive HNSCC (Cont.)
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Table 1-3: Pearson correlation analysis for APE1 and associated factors in benign, CIS, and invasive HNSCC (Cont.) 
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1.4.1.4 Suppression of superoxide dismutase upon increased APE1 

expression 

We hypothesized that APE1 drives SOD3 suppression in HNSCC (Figure 

1-4). We first determined whether SOD3 decreases in HNSCC in benign, CIS, and 

invasive HNSCC by using digital image analysis of IHC slides. Both total and 

nuclear SOD3 protein levels were decreased in CIS and invasive tissues as 

compared to benign tissues (p<0.0001). SOD3 protein levels were additionally 

reduced in invasive HNSCC as compared to CIS (p<0.05) (Figure 1-6)    

We next investigated correlation between APE1 and SOD3 protein levels in 

benign, CIS, and invasive HNSCC. Correlation between proteins was determined 

by calculating Pearson correlation coefficients. There was an overall trend of 

negative correlation between APE1 and SOD3 protein levels in tissue subtypes. A 

significant negative correlation was observed between total APE1 protein in benign 

tissue with total SOD3 protein in CIS (p<0.05) (Table 1-3 C). Additionally, there 

was a significant negative correlation between total APE1 and nuclear SOD3 

protein in benign tissue (p<0.05) (Table 1-3 B). Gene coordination between 

APEX1 and SOD3 had an overall negative trend. In non-neoplastic tissues, there 

was a slight negative correlation observed between APEX1 and SOD3 (p=0.09) 

(Table 1-2). There was also a negative correlation between APEX1 and SOD2 

gene expression in non-neoplastic tissue (p=0.059) (Table 1-2). This data partially 

supports that APE1 is involved in suppression of antioxidants SOD2 and SOD3. 

Larger data sets need to be analyzed to determine if there is a statistically 

significant reduction of SOD3 gene expression in tissues with elevated APE1. This 
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is important, as oxidative stress is known to induce APE1 expression. APE1 

suppressing superoxide dismutases and subsequent increased oxidative stress 

may further drive APE1 overexpression in tumor tissues. 

1.4.1.5 APE1 is positively linked to PPARGC1A gene and protein 

expression 

We examined whether APE1 is linked to altered PPARGC1A expression in 

HNSCC because our lab previously identified increased PPARGC1A expression 

in MEF cells with wildtype APE1 expression (122). First, we examined total cellular 

and nuclear PPARGC1A protein levels in benign, CIS, and invasive HNSCC using 

digital image analysis of IHC staining. We observed a significant decrease in 

nuclear PPARGC1A protein in cancerous tissues (p<0.001 benign versus invasive, 

p<0.05 benign versus CIS) (Figure 1-6). This reduction of PPARGC1A in tumor 

tissues supports previous research, which demonstrated loss of PPARGC1A 

protein in invasive tumor as compared to benign tissue (137).   

We next calculated Pearson correlation coefficients to investigate 

coordination between APE1 and PPARGC1A protein levels. There was a 

significant positive correlation of nuclear APE1 protein in invasive with nuclear 

PPARGC1A protein in both benign and invasive tissue (p<0.05) (Figure 1-6). A 

positive correlation was also observed between APE1 protein in CIS and 

PPARGC1A protein in benign tissue (Table 1-3). These results support a positive 

correlation between APE1 and PPARGC1A protein levels. Next, we investigated 

whether there was also a positive correlation between APEX1 and PPARGC1A 

gene expression. There was a significant positive correlation between APEX1 and 
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PPARGC1A gene expression in tumor tissue (p<0.05), but not in non-neoplastic 

tissues (Table 1-2). This suggests that APEX1 and PPARGC1A gene coordination 

becomes altered in cancerous cells. This positive correlation supports previous 

work performed in MEF cells (122).     

1.4.1.6 NRF2 gene expression is linked to reduced gene expression of 

DCN, SOD2, SOD3  

We hypothesized that NRF2 mediated transcriptional downregulation of 

DCN, SOD2, and SOD3 (Figure 1-3). Gene expression coordination was 

investigated between NFE2L2, DCN, SOD2, and SOD3. To examine this 

coordination, we calculated Pearson correlation coefficients in non-neoplastic and 

tumor tissues using TCGA RNA-Seq data from patients with HNSCC. In non-

neoplastic tissues, NFE2L2 gene expression was negatively correlated with DCN, 

SOD2, and SOD3 (p<0.01) (Table 1-2). This supports that NFE2L2 may negatively 

regulate transcription of DCN, SOD2, and SOD3. Additionally, we analyzed 

coordination between protein levels of NRF2, DCN, and SOD3. Overall, there was 

a trend toward negative correlation between nuclear NRF2 and DCN protein levels. 

However, there was a positive correlation between nuclear NRF2 and nuclear DCN 

protein levels in invasive tissue (p<0.05 (Table 1-3 A). In addition, there was a 

positive correlation between nuclear NRF2 and nuclear SOD3 in invasive tissue 

(Table 1-3 A).  
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1.4.2 Survival Time in relation to APE1, DCN, NRF2, SOD3, and 

PPARGC1A expression 

Biomarkers that predict patient survival may provide insight into novel drug 

targets, which could lead to improved therapeutics and increased patient survival. 

Therefore, we investigated whether APE1, DCN, NRF2, SOD3, or PPARGC1A 

expression could predict patient survival. To do this we performed Kaplan-Meier 

survival analysis using the protein expression data obtained from 77 patients with 

HNSCC. We first calculated the quartiles for each protein and within each tissue 

subtype. Survival was then compared between low protein expression (Q1) and 

high protein expression (Q3). We next examined survival of patients with stage 

T4a HNSCC with regards to APEX1, DCN, NFE2L2, SOD3, and PPARGC1A gene 

expression using TCGA RNA-Seq data. We then compared patient survival 

between low protein expression (Q1) and high protein expression (Q3).   

1.4.2.1 Patients with elevated APE1, and PPARGC1A expression had 

significantly shorter survival periods 

Previous research has observed reduced survival in patients whose tumors 

had aberrant APE1 expression (20,109-112). To confirm that reduced survival is 

associated with elevated APE1 levels, we created Kaplan-Meier survival plots for 

total cellular and nuclear APE1 protein expression in benign, CIS, and Invasive 

tissues. In CIS, increased total cellular APE1 protein was linked to decreased 

survival (LR p<0.05, GW p<0.05) (Figure 1-7). To the best of our knowledge, this 

is the first study where high APE1 protein expression in CIS was linked to 

decreased patient survival. We next determined whether elevated APE1 gene 
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expression was associated with reduced survival, as we had found with protein 

expression. Gene expression analysis using TCGA data for HNSCC (pathology 

stage T4a) also revealed reduced survival in patients with elevated APE1 (LR 

p=0.0148, GW p=0.0101) (Figure 1-8). Patients with high total PPARGC1A in 

invasive tissue had significantly reduced survival (LR p<0.05, GW p=0.0575) 

(Figure 1-7).  
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Figure 1-7: Top significant survival curves based on protein expression 
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Kaplan Meier survival curves were generated comparing low protein expression 

(Q1) versus high protein expression (Q3) in the samples of deceased patients. 

These graphs represent the top significant results as determined by LR: Mantel-

Haenszel Log-Rank, GW: Peto & Peto modification of the Gehan-Wilcoxon 

statistical tests  (p<0.05). A:  % Total Cellular APE1 protein expression in CIS B. 

% Nuclear DCN Protein Expression in benign tissue C. % Total Cellular 

PPARGC1A protein expression in invasive tissue.  
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Figure 1-8:  APEX1 gene expression survivals analysis  

 

RNA-Seq data from 520 patient samples were used to generate Kaplan Meier 

survival curves. Differences in survival were determined between individuals with 

low APE1 gene expression (Q1) versus high APE1 gene expression (Q3). 

Statistical significance was determined using LR: Mantel-Haenszel Log-Rank, and 

GW: Peto & Peto modification of the Gehan-Wilcoxon statistical tests.  
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1.4.2.2 DCN protein levels in benign tissue is linked to reduced survival 

We analyzed DCN protein expression to confirm previous reports that 

reduced DCN was linked to poor survival (126-132). To do so, we plotted Kaplan-

Meier survival curves for total cellular, and nuclear DCN protein levels in each of 

the tissue subtypes. There appeared to be reduced survival in patients with low 

DCN expression in CIS. However, there were too few events (i.e. patient deaths) 

to obtain a statistically significant result. We suspect that low DCN protein 

expression in CIS corresponds to reduced survival, but a larger data set will be 

needed to confirm the link between low DCN protein levels and reduced survival. 

Unexpectedly, overexpression of DCN in benign tissue was linked to poor survival 

(LR p=0.0493)(Figure 1-7).  

1.4.3 Multivariate analysis of protein expression within clinical groupings 

Clinical data from the patients whose samples were used for protein 

expression analysis were obtained from the Kentucky Cancer Registry. Major 

categories examined were p16 status, whether patients were from Appalachia 

Kentucky, tobacco usage, tumor grade, presence of cancer positive lymph nodes, 

age at diagnosis, tumor size, pathology stage, and location of primary tumor (Table 

1-4). Initially, overall p-values were calculated to identify significant differences of 

each protein within clinical groups (Table 1-5). For clinical factors that were found 

to have significant overall p-values, additional statistical analysis was performed 

to identify if there was significant difference at the variable effect (i.e. benign, CIS, 

invasive). There were no significant differences of APE1, DCN, NRF2, SOD3, or 

PPARGC1A regarding location of the primary tumor, tumor size, whether a patient 



54

was from Appalachia Kentucky, or upon comparing patients having pathology 

stage 2/3 versus stage IV (Table 1-5).  



 

 55
  

Table 1-4: Patient Demographics 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table represents demographics of the 77 patients whose samples were utilized for 

immunohistochemistry  
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Table 1-5: Overall P values for clinical analysis 

Values represent overall P-value for clinical analysis of patient P16 status, patient 

geographic location, tobacco usage, tumor grade, lymph node invasion, age at 

diagnosis, tumor size, pathology stage, and primary site location. These results 

were based on linear mixed models with tissue type and each variable as 

covariates and with compound symmetric covariance structure. They represent the 

overall p values for association of each variable across each biomarker and across 

benign, CIS, and invasive tissue. ** p<0.005 denotes significance after adjusting 

for examining 10 markers simultaneously. * p<0.05 denotes significance without 

adjusting for examining 10 markers simultaneously. 
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1.4.3.1 Elevated APE1 was associated with cancer invaded lymph nodes  

 It is estimated that at least 90% of cancer-related deaths are a direct result 

of metastasis (166). During metastasis, cancer cells break away from the primary 

tumor and spread throughout the body (166). This leads to compromised functions 

of vital organs, eventually leading to death. A biomarker that identifies increased 

risk for metastasis could improve patient survival by allowing physicians to tailor 

the aggressiveness of treatment, or increase surveillance in order to identify 

metastasis sooner.  

To identify a potential biomarker for increased risk for metastasis, we 

examined whether altered expression of our proteins of interest corresponded to 

the presence of cancer within a patient’s lymph nodes. Given that metastatic cells 

originate from the primary tumor, we compared protein expression changes in the 

primary tumors of patients who had lymph node invasion at the time of diagnosis 

to those that did not. Out of the cohort of 77 patients, 13.0% had no lymph nodes 

that were positive for cancer (n=10), and 16.9 % had 1 or more cancer positive 

lymph nodes (n=13). Excluded from analysis were individuals whose lymph nodes 

were not assessed at the time of sample collection (n=54)(Table 1-4). Biomarkers 

that predict aggressive phenotypes (i.e. lymph node invasion) would be most 

useful if identified in early tumor development, such as in CIS. To determine if 

alterations in CIS could be linked to the presence of lymph node invasion, we 

examined alterations in protein expression. There were significantly higher levels 

of both total and nuclear APE1 in CIS in patients that had lymph node invasion at 

the time of diagnosis (p<0.05) (Figure 1-9).     
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Figure 1-9:  Analysis of protein expression and presence of lymph node invasion at diagnosis.  

Nuclear and total cellular APE1, DCN, SOD3, NRF2, and PPARGC1A protein levels were determined in benign, CIS, and 

invasive HNSCC within the primary tumor. Values were compared between 10 patients with no lymph node invasion to 13 

patients that had lymph node invasion at the time of diagnosis. * Denotes statistical significance (p<0.05).  
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1.4.3.2 Altered expression of DCN, SOD3, AND PPARGC1A in patients with 

poorly differentiated tumors 

Tumor grade (i.e. the level of cellular differentiation) also influences 

prognosis. Tumor tissues vary between well differentiated, moderately 

differentiated and poorly differentiated. Well-differentiated tumors most closely 

resemble normal tissue, whereas poorly differentiated tumors are more stem-like 

(167). The latter of which is associated with poor patient survival. Our goal was to 

determine if altered expression of APE1, DCN, SOD3, NRF2, and PPARGC1A 

could identify patient prognosis, or understand how altered expression of these 

proteins influence tumor grade. Out of the cohort of 77 patients, 37.7 % had poorly 

differentiated tumors (n=29), and 32.5 % had moderately differentiated tumors 

(n=25). Excluded from analysis were individuals with unknown tumor grade (n=22) 

and an individual with a well-differentiated tumor (n=1)(Table 1-4). Benign tissue 

and CIS proximal to the invasive HNSCC were analyzed for protein expression as 

measured by immunohistochemistry staining intensity. 

DCN protein decreased in CIS, and invasive tissue as compared to benign. 

However, there was no significant difference of SOD3 protein expression between 

patients with moderately and poorly differentiated tumors. Unexpectedly, patients 

with poorly differentiated tumors had significantly higher levels of DCN protein in 

benign tissue as compared to patients with moderately differentiated tumors 

(p<0.05) (Figure 1-10). Poorly differentiated tumors had elevated total SOD3 in 

benign tissue (p<0.05)(Figure 1-10). Nuclear PPARGC1A was significantly 
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decreased in CIS tissue of patients with poorly differentiated tumors 

(p<0.05)(Figure 1-10). 

1.4.3.3 Alterations of SOD3 and PPARGC1A with tobacco usage 

Tobacco usage is associated with increased risk of numerous cancers 

including lung, and oral cancer (74,75). Lung and oral cancers have higher 

incidence rates in Kentucky as compared to the national average (1,2). This 

increased incidence of oral cancer is likely linked to Kentucky having higher 

tobacco usage compared to the rest of the U.S. Therefore, we examined whether 

tobacco use altered expression of our proteins of interest to identify how these 

changes could contribute to cancer incidence. Out of the cohort of 77 patients, 

58.4% were smokers (n=45), and 13.0% were never users of tobacco (n=10). 

Individuals with unknown tobacco usage (n=21) or with mixed tobacco usage (n=1) 

were excluded from analysis (Table 1-4). Total cellular SOD3 protein was 

significantly higher in the benign tissues of never users as compared to smokers 

(p<0.05) (Figure 1-11). However, upon tumorigenesis SOD3 protein decreased to 

similar rates between smokers and never users. Never users may have increased 

ability to combat oxidative stress in healthy tissues. Additionally, total and nuclear 

PPARGC1A protein levels were significantly lower in CIS tissue of never users 

(p<0.05) (Figure 1-11). 
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Figure 1-10: Analysis of protein expression and tumor grade at diagnosis.  

Nuclear and total cellular APE1, DCN, SOD3, NRF2, and PPARGC1A protein levels were in invasive HNSCC, as well as in 

benign and CIS. Differences in protein markers were assessed between 29 samples with poorly differentiated tumors to 25 

samples with moderately differentiated tumors. * Denotes statistical significance (p<0.05).  
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Figure 1-11: Analysis of protein expression and tobacco usage.  

Nuclear and total cellular APE1, DCN, SOD3, NRF2, and PPARGC1A protein levels were determined in benign, CIS, and 

invasive HNSCC. These protein levels were compared for differences between 45 smokers and 10 never users. *Denotes 

statistical significance (p<0.05). 
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1.4.3.4 Reduced SOD3 in p16 positive tumors  

Strains of human papillomavirus (HPV) have been associated with the 

development of oral cancer (6). As previously discussed in the introduction, p16 

overexpression is an accurate surrogate marker for HPV infection (107). Because 

HPV-induced p16 overexpression is linked to improved treatment response, 

pathologists routinely determine the p16 status of oral cancers (107,168). 

Therefore, we examined differences in APE1, DCN, NRF2, SOD3, and 

PPARGC1A protein expression between p16 positive and p16 negative tumors. 

Out of the cohort of 77 patients, 15.6% were p16 negative (n=12) and 39.0% were 

p16 positive. Thirty-five patients were excluded from analysis due to unknown p16 

status (Table 1-4). We observed no significant difference of APE1, DCN, NRF2, 

and PPARGC1A between p16 negative and p16 positive tissues. In benign tissue, 

there was significantly lower total cellular SOD3 protein in patients with positive 

P16 status (p<0.05) (Figure 1-12). Patients with positive p16 status also had 

reduced SOD3 protein in CIS, and invasive tissue as compared to patients with 

negative p16 status (Figure 1-12). However, this difference was not statistically 

significant. Although speculative, the increased oxidative stress that has been 

attributed to HPV may lead to depletion of antioxidant SOD3 in benign tissues 

(25,102,104).  
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Figure 1-12: Analysis of protein expression and P16 status.  

Nuclear and total cellular APE1, DCN, SOD3, NRF2, and PPARGC1A protein levels were determined in benign, CIS, and 

invasive HNSCC. Differences in protein levels were compared between 12 patients with p16 negative tumors and 20 

patients with p16 positive tumors. * Denotes statistical significance (p<0.05).  
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1.4.3.5 Delayed cancer onset in patients with higher SOD3  

Cancer is largely a disease of age. Every year of life leads to accumulation 

of genetic damage from oxidative stress that can lead to tumorigenesis. There has 

been increased interest in whether antioxidant supplements can reduce age 

related damage, and tumorigenesis (169).  Therefore, we examined if patients who 

developed cancer earlier in life had reduced levels of the antioxidant, SOD3. 

Tissue samples were obtained from patients whose ages ranged from 41 to 77 

(Table 1-4). Scatter plots were generated for total cellular or nuclear SOD3 levels 

in benign, CIS, and invasive HNSCC, with age as a continuous variable (Figure 1-

13). Individuals who developed cancer later in life were found to have significantly 

higher levels of total and nuclear SOD3 protein in benign tissue (p<0.05) (Figure 

1-13). It is unknown if these individuals maintained increased levels of SOD3 

throughout their life or if other factors contributed to their delayed cancer onset. 

Though speculative, the increased SOD3 levels in benign tissues may have 

delayed tumorigenesis by reducing oxidative stress in tissues. 
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Figure 1-13: Analysis of SOD3 Protein Expression and Age at Diagnosis. 

Total cellular and nuclear SOD3 protein levels were determined in benign, CIS, 

and invasive HNSCC. SOD3 protein levels were plotted against the patient’s age 

at diagnosis. * Denotes statistical significance (p<0.05). 
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1.5 Discussion 

1.5.1 Potential biomarkers for identifying aggressive tumor phenotypes 

One of the purposes of this study was to identify potential diagnostic and 

prognostic biomarkers for use with HNSCC. We examined if altered expression of 

APE1, DCN, NRF2, PPARGC1A, and SOD3 proteins correlated with reduced 

survival, presence of lymph node invasion, and tumor grade. Identifying 

biomarkers for these factors can alert physicians to individuals who are more likely 

to have aggressive forms of cancer. This knowledge may alter treatment 

strategies, and improve a patient survival. 

Overexpression of APE1 in cancer tissues has been previously associated 

with increased metastasis and reduced patient survival (20,109-112). In this study, 

we identified that increased APE1 protein expression in CIS was associated with 

decreased survival (Figure 1-7, Supplemental Figure C-2). Examining whether 

APE1 protein in CIS correlates to poor survival is important, because improvement 

of prognosis in the early stages of cancer may lead to improved treatment 

strategies that could potentially prevent the formation of invasive cancer. 

Additionally, this study identified that increased expression of total and nuclear 

APE1 protein within CIS of the primary tumor was significantly associated with the 

presence of lymph node invasion (Figure 1-9). Therefore, the reduced survival in 

patients with increased APE1 protein in CIS is likely linked to the significantly 

higher incidence of lymph node invasion in individuals with higher APE1 protein in 

CIS (Figure 1-7). Due to the effect of field cancerization, there is substantial 

overlap of mutations over a large tissue area. Because of this, early stage HNSCC 
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may reflect genetic alterations that are present in proximal invasive cancers. 

Therefore, identification of mutations associated with aggressive tumor 

phenotypes in CIS may be useful in predicting lymph node invasion. Recently there 

was a reported correlation between increased APE1 in the serum of individuals 

with gastric cancer and the presence of lymph node invasion (170).  

Analysis of gene expression in stage T4a HNSCC obtained from TCGA 

demonstrated that increased APE1 was associated with reduced survival (Figure 

1-8). This not only confirms that elevated APE1 is associated with significantly 

reduced survival, but also indicates that this alteration occurs at the transcriptional 

level. Further studies are needed to identify what increases APE1 transcription in 

cancer tissues. Doing so could identify measures that prevent the APE1 

overexpression that contributes to cancer progression and poor prognosis. This 

study supports our observation that increased APE1 is associated with lymph node 

invasion. Most importantly, these results support the potential of APE1 as a 

biomarker for identifying patients at risk for increased metastatic potential. 

Reduced DCN expression in tumors has been attributed to increased 

mortality in cancer patients (126-132). Although there was a clear trend of 

diminished survival in patients with low DCN protein expression in CIS, there were 

not enough events to determine statistical significance (Supplemental Figure C-

3). An increased sample size will be needed to confirm whether reduced DCN 

expression in cancer tissues is associated with significantly reduced survival. 

Unexpectedly, increased DCN protein expression in benign tissue was associated 

with reduced survival (Figure 1-7). The reduced survival in patients with increased 
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DCN protein in benign tissue may be related to our observation that DCN protein 

in benign tissue was significantly elevated in patients with poorly differentiated 

tumor tissues (Figure 1-10). These results were unexpected, as many studies 

have associated poor survival to decreased DCN expression. However, a 

differential proteomics study performed using breast cancer samples 

demonstrated that increased DCN expression in the stroma and epithelium was 

significantly associated with reduced overall survival (128). Thus, DCN protein 

expression in benign tissue may still be a valuable biomarker in HNSCC. 

Increased SOD3 expression in benign tissue proximal to the primary tumor 

was associated with poorly differentiated tumors (Figure 1-10). Although SOD3 

may be a valuable biomarker to identify patients who may be at risk for poorly 

differentiated tumors, it is unclear as to how increased SOD3 protein in benign 

tissue contributes to the development of poorly differentiated tumors. Although 

SOD3 is recognized as a tumor suppressor, the SOD3 rs699473 single nucleotide 

polymorphism has been associated with increased risk of high-grade or poorly 

differentiated prostate cancer as well as an increased risk for adult brain cancer 

(171-173). The exact role of how the SOD3 rs699473 polymorphism contributes to 

the development of poorly differentiated cancers is unclear (173). The SOD3 

rs699473 polymorphism is located within the SOD3 promoter region, but it is 

unknown whether this polymorphism alters SOD3 protein expression (173). To the 

best of our knowledge, there are no studies reporting this polymorphism within 

HNSCC. Given that this SOD3 rs699473 has been implicated in poorly 

differentiated tumors, future studies should examine whether this mutation is 
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prevalent in HNSCC and if it is associated with increased SOD3 expression in 

benign tissues.  

1.5.2 SOD3 as a potential therapeutic target for patients at high-risk for 

developing HNSCC  

Tobacco usage is linked to increased oxidative stress in tissues (22,23,79). 

Oxidative stress in lung tissues has been linked to depletion of the antioxidant, 

SOD3 (64). Because chronic oxidative stress contributes to the development of 

potentially oncogenic DNA mutations, we examined differences in SOD3 protein in 

smokers versus never users. SOD3 was significantly elevated in the benign tissues 

of individuals who never used tobacco as compared to smokers. Both groups of 

individuals had HNSCC. However, the reduced levels of SOD3 in smokers may 

further increase oxidative stress-induced cellular damage. As previously 

mentioned in the introduction, chronic oxidative stress can lead to both inactivation 

and depletion of SOD3 (29,64). In addition, we identified increased PPARGC1A 

protein in the CIS of smokers as compared to never users (Figure 1-11). Although 

the obvious step to prevent tobacco related lung and oral cancers is to avoid 

tobacco usage, the highly addictive nature of tobacco limits successful cessation. 

Therefore, understanding the changes that occur may allow for development of 

other preventative measures to reduce the cancer burden in this state and globally. 

Though speculative, supplementing the depleted SOD3 levels in smokers may 

reduce oxidative stress and subsequent cellular damage.   

HPV has been associated with increased oxidative stress within tissues 

(25,104). As previously mentioned, oxidative stress can lead to the depletion of 
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SOD3. We identified a significant decrease in SOD3 protein in the benign tissue 

adjacent to p16 positive tumors (Figure 1-12). Identifying which antioxidants are 

depleted in individuals at high-risk for HNSCC would support the development of 

treatments to supplement antioxidant levels to minimize the development of 

oncogenic mutations.  

Cancer development can occur at any stage in life, but is typically related 

to increased age. We identified that individuals who developed HNSCC later in life 

had increased SOD3 protein in benign tissue, whereas individuals with decreased 

SOD3 in benign tissue developed cancer at an earlier age. Though speculative, 

individuals with increased SOD3 expression may have had better protection 

against oxidative stress, which delayed cancer development. Supplementation of 

SOD3 in individuals with depleted SOD3 may protect against early cancer 

development.  

1.5.3 Network of APE1 and associated factors 

In this study, we examined how APE1 overexpression contributes to 

HNSCC development and decreased patient survival. We hypothesized that 

APE1’s role as redox dependent transcriptional regulator mediates suppression of 

tumor suppressors and antioxidants. Previous research by our lab found that DCN 

gene expression was suppressed by APE1 in mouse embryonic fibroblasts (122). 

Loss of DCN has been associated with increased metastasis and mortality (126-

132). Therefore, we hypothesize that tumor development is supported by 

decreased DCN expression in tissues overexpressing APE1. 



72 

We identified elevated APE1 expression in tumor tissues, which is 

consistent with previous observations (109,110). We also observed significantly 

increased APE1 protein expression in CIS. To the best of our knowledge, APE1 

overexpression has not been identified in the CIS of patients with HNSCC.  

APE1 protein overexpression in cancer tissues appeared to downregulate 

DCN. This was based on results demonstrating significant reduction of DCN 

protein in cancer tissues alongside increased APE1 protein expression in cancer 

tissues. There was also a significant negative correlation between APE1 and DCN 

protein levels in CIS. However, analysis using transcriptome data obtained from 

TCGA demonstrated no correlation between APEX1 and DCN gene expression in 

either non-neoplastic or HNSCC (Table 1-2). This contradicts our IHC results and 

previous results based on microarray analysis of mouse embryonic fibroblasts 

(122).  It is unclear as to why there was no significant correlation between APE1 

and DCN gene expression in HNSCC tissues. However, it is possible these 

differences are due to heterogeneity of tissues as compared to the immortalized, 

monoculture cell lines.     

We hypothesized that APE1 mediated downregulation of DCN and SOD3 

through NRF2’s transcriptional regulatory activity. This hypothesis was based on 

previous research supporting APE1 increases NRF2 activity, and research 

demonstrated NRF2-mediated downregulation of DCN, SOD2, and SOD3(121). 

We were able to observe a negative correlation of DCN and SOD3 protein levels 

in relation to APE1 protein levels. In addition, we observed a positive correlation 

between APE1 and NRF2 protein levels  (Table 1-3). An inverse relationship of 
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DCN, SOD2, and SOD3 gene expression relative to NRF2 was observed (Table 

1-2). Upon searching for transcription factor binding sites within the DCN and 

SOD3 promoter regions, we identified NRF2 binding sites in both DCN and SOD3 

promoter regions (Table 1-1) (148-150). Therefore, APE1 and NRF2 may be 

involved in reducing expression of DCN, SOD2, and SOD3. 

1.5.4 Limitations of this study 

1.5.4.1 Limitations in the efficiency of protein expression analysis 

The protein expression analysis performed in this study is not yet optimal 

for clinical usage. For this study, regions of benign, CIS, and invasive tumor had 

to be first marked on each hematoxylin and eosin stained slide by a pathologist. 

After immunohistochemistry staining, these regions had to be manually selected 

for analysis using the Aperio ImageScope software. Analysis produced numerous 

individual spreadsheets containing raw data, which needed to be carefully labeled 

with the specimen and regions of analysis. These spreadsheets had to be merged 

for each sample along with clinical data before any downstream analysis could be 

performed. There is a long time delay between initial slide staining and final results. 

Clinical testing must be rapid and accurate so as not to delay patient treatment, 

which could result in increased mortality. In order to be practical for clinical 

analysis, this process needs to be expedited without compromising data quality. 

Currently, Aperio ImageScope software contains an algorithm to automatically 

identify regions of tumor within a tissue sections. However, it is unknown whether 

this can accurately determine regions of CIS. It is likely that a separate algorithm 
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would need to be developed to automatically differentiate between benign, CIS, 

and invasive tissue.  

Samples were stained in large batches to minimize variance in staining that 

otherwise would bring difficulty in assessing significant changes in protein levels. 

This was important for preliminary identification of potential biomarkers. However, 

these conditions would not be likely in a clinical setting. Collected specimens would 

need to be assessed in a timely manner and would be stained individually or in 

small batches. Specific protein expression cut off values are needed to group 

patients as low or high risk.  

1.5.4.2 Limitations in obtaining clinical data from patients across the state 

Due to certain limitations of clinical data collection, we were unable to obtain 

details of all clinical data. The University of Kentucky is the only NCI designated 

cancer treatment center in the state of Kentucky and therefore has a substantial 

catchment area. This leads to many patients being initially assessed and treated 

at the university but with their follow-up care completed closer to home. Due to 

this, it is not always possible to obtain a patient’s complete medical records. P16 

status, tobacco usage, and lymph node assessment was not known for all patients 

included in this study. Significant results were still found in these categories even 

when excluding all unknowns. However, we may have obtained stronger statistical 

power if expanded. In addition, there were no details on administered treatments 

only as to whether a patient had chemotherapy, radiotherapy, and/or 

immunotherapy. We were therefore unable to clearly determine if protein 

expression correlated to a specific treatment resistance. To ensure access to 
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complete treatment history, future studies can include individuals whose entire 

treatment was performed at the University of Kentucky.  

1.6 Conclusions 

This study examined the role of APE1 in HNSCC development including 

inhibition of tumor suppressors and antioxidants. APE1 is a key base excision 

repair protein and is important in repairing oxidative DNA damage that may lead to 

oncogenic mutations (20,38-40). Paradoxically APE1 overexpression has also 

been reported to disrupt DNA repair coordination, and is associated with 

tumorigenesis due to increased genomic instability (174). This genomic instability 

has been attributed to accumulation of single strand breaks, which APE1 creates 

as a normal part of base excision repair (174). We identified increased APE1 

protein expression in early stage cancer, which supports that APE1 overexpression 

occurs early in tumor development (Figure 1-6). Though speculative, APE1 

overexpression in early stage cancer may increase genomic instability and 

subsequent mutations leading to progression to invasive cancer. Risk factors for 

head and neck cancer such as tobacco usage or HPV infection can increase 

oxidative stress within tissues. We propose that this oxidative stress disrupts the 

finely controlled balance of APE1 expression and contributes to tumorigenesis. 

Though not certain from this study, APE1 overexpression may lead to increased 

NRF2 activity. Increased NRF2 activity subsequently inhibits transcription of DCN, 

SOD2, and SOD3. NRF2 transcriptional co-activator PPARGC1A may support 

NRF2’s suppression of DCN, SOD2, and SOD3. The loss of antioxidants SOD2 
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and SOD3 leads to increased oxidative stress within the tumor microenvironment, 

which further drives APE1 overexpression (Figure 1-14). 

Although not all details of the ROS network were identified in this study, we 

did identify several potential biomarkers for use in patients with HNSCC. In this 

study, we identified biomarkers that were associated with aggressive tumor 

phenotypes such as shortened survival time, poorly differentiated cancer, and 

increased metastatic potential. Patient survival may be improved by the use of 

biomarkers that identify patients with aggressive tumor phenotypes. Physicians 

may more accurately tailor treatment, and increase surveillance of patients with 

aggressive tumor phenotypes. In addition, biomarkers can identify potential novel 

drug targets. APE1 inhibitors are currently being explored as to whether they can 

effectively sensitize tumors to chemoradiotherapy (175). Improved treatment 

strategy through characterization of tumor phenotypes, and identification of novel 

drug targets may improve patient survival.   

Digital image analysis of IHC slides allows the unique opportunity to 

objectively measure altered protein expression in proximal benign, CIS, and 

invasive tumors and often within the same slide. There are currently no clinically 

validated algorithms for automatic detection of CIS, and the methods used in this 

study are not timely enough to be used for clinical diagnostics. However, the 

development of new algorithms may allow for more accurate and rapid 

identification of biomarkers in the future.  
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Figure 1-14: Summary model of the role of APE1 and NRF2 in suppression 

of DCN, SOD2, and SOD3 

We propose that oxidative stress promotes APE1 overexpression. APE1 binding 

to NRF2 may increase NRF2’s transcriptional regulatory activities. NRF2 

suppresses transcription of DCN, SOD2, and SOD3. PPARGC1A as a coactivator 

potentially mediates NRF2’s inhibition of SOD2. Reduction of the superoxide 

dismutases contributes to increased oxidative stress, which further drives APE1 

overexpression. 
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Synopsis 

2.1.1 Background 

The COP9 signalosome, composed of 8 subunits, is implicated in cancer 

genetics with its deneddylase activity to modulate cellular concentration of 

oncogenic proteins such as IkB and TGFβ. However, its function in the normal cell 

physiology remains elusive. Primarily focusing on gene expression data of the 

normal tissues of the head and neck, The Cancer Genome Atlas (TCGA) database 

was used to identify groups of genes that were expressed synergistically with the 

COP9 genes, particularly with the COPS5 (CSN5), which possesses the catalytic 

activity of COP9. 

2.1.2 Results  

Expressions of seven of the COP9 genes (COPS2, COPS3, COPS4, 

COPS5, COPS6, COPS7A, and COPS8) were found to be highly synergistic in the 

normal tissues. In contrast, the tumor tissues decreased the coordinated 

expression pattern of COP9 genes. Pathway analysis revealed a high coordination 

of the expression of COPS5 and the other COP9 genes with mitochondria-related 

functional pathways, including genes encoding the respiratory chain complex. 

2.1.3 Conclusions 

The results indicate that mRNA expression data for the matched normal 

tissues available in TCGA are statistically reliable, and are highly useful to assess 

novel associations of genes with functional pathways in normal physiology as well 
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as in the cancer tissues. This study revealed the significant correlation between 

the expressions of the COP9 genes and those related to the mitochondrial activity. 

2.2 Introduction  

The constitutive Photomorphogenesis (CSN) 9, or COP9 signalosome, is a 

critical multi-functional structure in cells (176,177). COP9, originally discovered in 

Arabidopsis thalania as a negative regulator of photomorphogenesis, was later 

found to be highly conserved across many species (178,179). COP9 is a 450-550 

kDA holocomplex composed of 8 subunits whose official gene symbols are listed 

in Table 2-1 (176,180). COP9 has catalytic activity to remove Nedd8, a small-

ubiquitin like modifier, to regulate cullin-RING ubiquitin E3 ligases, and thus protein 

degradation pathways mediated by cullin complexes (176). COP9 regulates 

phosphorylation of proteins such as tumor suppressor p53, and neddylation 

essential to ubiquitin-mediated proteolysis of key proteins including tumor 

suppressor HIF-1α (181-185). Thus, COP9 has been an important focus in cancer 

genetics (180,185-188). 

Despite intense studies in the past, the exact essential role of COP9 still 

remains unknown largely due to COP9's promiscuous property to interact with a 

variety of cullin complexes and others, and to affect stabilities of a number of 

cellular factors. Additionally, subforms of COP9 complexes were reported 

(177,189,190). Dubiel et al. proposed that such flexible conformation enables the 

broad range of substrates.  
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Table 2-1: Nomenclature of mammalian COP9 genes 

Table contains protein and gene names for COP9 subunits, their gene ID and 

chromosomal location. 
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Among the 8 subunits, COPS5 is the most extensively studied subunit 

which has numerous critical functions including deneddylation reactions (176) 

(185). It is commonly over-expressed in cancers leading to increased 

deneddylation within cells (191). Other subunits have been shown to possess 

unique functions. For example, CSN1/GPS1 is involved in stabilization of p53 

(185,188). Over-expression of COPS2 is linked to chromosome instability 

(188,192). Both COPS2 and COPS3 knockout are embryonic lethal at E3.5 and 

E8.5 respectively (185,188). COPS6 is frequently over-expressed in cancer (185). 

COPS8 knockout is also embryonic lethal (E7.5) with impaired growth and 

differentiation (185). Although these reports convincingly indicate that all the 

subunits have essential functions in mammalian cells, how these reported 

functions contribute to COP9 activity remains largely unknown. 

Identification of functional groups with which COP9 signalosome may 

interact with in normal physiology may provide an important clue to understand 

how dysregulation of COP9 may facilitate tumorigenesis. 

Deficiency in even one subunit leads to COP9 destabilization. Down-

regulation of COPS5 in mouse embryonic fibroblasts drastically decreased the 

stability of COPS1, COPS3, and COPS8 (193-195). Therefore, it is plausible that 

coordinated expression of COP9 genes is needed to maintain necessary amounts 

of COP9 and imbalance may be associated with disease (196). To elucidate this 

possibility, a statistically adequate number of normal tissues must be analyzed with 

precision for their gene expressions. Using cultured cell lines is not appropriate for 

this investigation, because the cell lines established in vitro are all transformed and 
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thus expressions of the COP9 genes are likely altered from cells in normal in vivo 

conditions. 

 The Cancer Genome Atlas (TCGA) has procured specimens from more 

than 500 human tumor tissues from various cancers for comprehensive analyses 

of tumor tissues and advanced cancer genomics. Importantly, matched normal 

tissues have been analyzed for about 10% of each cancer type. Using the TCGA 

database, we elucidated the possibility that expression of the COP9 genes are 

synchronized in the normal cells, and such coordinated gene expression is 

impaired in tumors. We found that the quality of the data from normal tissues was 

sufficiently high to test this possibility. Indeed the COP9 gene expressions were in 

synergy in the normal tissues, but this fine coordination was lost in the tumor 

tissues. Furthermore, the analysis led to the unexpected observation that the 

expressions of the COP9 genes were highly synchronized with those involved in 

mitochondrial biogenesis, particularly those of respiratory chain complex. 

2.3 Methods  

2.3.1 Nomenclature of COP9 Genes  

Although the gene names from CSN1 to CSN8 are intuitive and have been 

accepted as the names for the COP9 subunits (197), the TCGA uses the official 

gene symbols (Table 2-1). For the simplicity, this study used the official gene 

symbols as the subunit names. 
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2.3.2 Data Obtained From TCGA 

The mRNA expression data of normal and tumor tissues were obtained 

through TCGA's online data portal site (http://cancergenome.nih.gov). The cancer 

tissues chosen for this study are 44 normal and 522 cases of head and neck 

squamous cell carcinoma, lung adenocarcinoma (50 normal and 502 tumor). 

Normalized gene expression results (mRNASeq2 level3) were collected. Each set 

of mRNA expression data contained 20,531 gene entries, which were linked to 

annotations through DAVID functional gene annotation database (Database for 

Annotation, Visualization and Integrated Discovery; https://david.ncifcrf.gov), 

yielding 20,154 analyzable gene lists. The information linked to the mRNA data is 

chromosome cytoband and gene ontology (GOTERM_BP_FAT, 

GOTERM_CC_FAT, GOTERM_MF_FAT, and KEGG_PATHWAY). 

Similarly, the de-identified clinical information including anatomical sites and 

smoking history were retrieved from TCGA. Data processing and analysis were 

carried out using R (ver 3.1.2) and series of command line programs developed 

with the Swift language using Xcode ver. 6. 

2.3.3 Generation of Correlation Coefficient Table Specific for Individual 

Genes 

Gene expression data of normal and tumor tissues from donors were 

assembled into a single table file consisting of columns of tissues and rows of 

genes. Genes that show zero mRNA values in more than 5% of the tissues 

analyzed were excluded. Pearson correlation coefficient (r) values between 

expressions of a target gene (example COPS5) and each of all the other genes 

http://cancergenome.nih.gov
https://david.ncifcrf.gov
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were determined, and the genes were then sorted based on r-values. Significance 

of r-values were assessed with p values calculated with cor.test function in R, i.e., 

cor.test (A, B, method = "Pearson", alternative = "two.sided") where A and B are 

two mRNA expression vectors with an equal dimension (= number of samples). 

Pair and boxplots were drawn for particular gene sets using R. 

2.3.4 Cytoband Plot and Generic Graphical Presentations 

 Genes ranked within 500 highest |r| values were pooled, and the cytoband 

information was processed into float values by the simple formula as following. For 

a gene with cytoband of ApB.N or AqB.N, a float value was generated by A - 

(B.N)/100 or A + (B.N)/100, respectively. For example, 8p11.2 was converted to 8 

- 11.2/100 = 7.888, and 8q11.2 was to 8.112. Values of (x, y) = (cytoband, r) was 

plotted using R. X and Y chromosomes were shown in one column as all analyzed 

genes mapped in X chromosome were also found in Y chromosome.  

2.3.5 Interpretation of Functional Gene Annotation 

Top 1000 genes with the highest |r| values were pooled with each gene 

accompanying gene ontology (GO) and KEGG pathway information. Over-

represented pathways are sorted by the p values based on binomial distribution: 1 

- pbinom (n, 1000, µ) (in R), where n is the actual count occurring in the 1000 

genes, and µ is the average of finding the particular pathways, and calculated with 

the whole gene set of 20,154. 
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2.3.6 Derivation of Enrichment Score (ES) 

The ES scores were calculated by the method described previously (198). 

For example, for ES of oxidative phosphorylation (KEGG pathway hsa00190), the 

COPS5 correlation coefficient table with gene annotations was scanned based on 

association with "hsa00190" to generate Phit - Pmiss. ES was provided as the 

maximum value of Phit - Pmiss as described (198). A histogram of ES values was 

calculated with randomly chosen Nh genes for iteration of 1000, and the distribution 

was used to assess the statistical significance. Enrichment scores and 

corresponding p values were calculated for all genes and then false discovery 

rates were determined as described above. 

2.4 Results 

2.4.1 A single gene expression analysis 

COPS5 (official gene symbol of CSN5) is responsible for the 

deneddylation activity of the COP9 signalosome, and also known as Jab1 to 

activate c-Jun (Jun-activating/binding protein). Thus, most COP9 studies have 

focused on the activity of COPS5 (199) and its influence on biological activities 

including tumorigenesis. Because of the pivotal role of COPS5 for the COP9 

signalosome in mammalian cells, this study primarily focused on COPS5 to 

investigate the possibility of coordinated expression of the COP9 subunits in the 

normal and tumor tissues. Our primary interest was the head and neck squamous 

cell carcinoma (HNSCC), where effects of smoking and influences of major genetic 

factors, including p53, p16, AKT1 and K-Ras could be addressed due to its 
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established cancer etiology involving these genes. In addition, HNSCC data in 

TCGA included a few distinct anatomical sites including oral cavity, tongue and 

larynx, and thus effects of tissue sites for the gene expression could be elucidated 

with the clarified clinical record. Therefore, this study mainly focused on the 

HNSCC. For the simplicity, the official gene symbols will be used in this study 

instead of more commonly used protein names (Table 2-1). 

 Expression of the COPS5 gene was examined using the data of 44 normal 

head and neck tissues available in TCGA. COPS5 expression in normal tissues 

showed mean value of 1261.0 with standard deviation (sd) 328.83 and coefficient 

of variation (sd/mean) 0.26. As a comparison, mean coefficient of variation of the 

15,660 gene set was calculated, and found to be 0.693 (± 0.575). Therefore, the 

COPS5 gene expression appeared to be relatively stable among normal oral 

tissues. 

2.4.2 Coordinated expressions of the COP9 genes in normal tissues  

Expression patterns of COPS5 and other COP9 genes were elucidated by 

comparing correlation coefficients (expressed as r thereafter), using the RNA 

expression data (RNAseqV2 level 3). High positive correlations were found among 

the COP9 gene expressions. Specifically, relative to COPS5, all the other COP9 

genes except COPS7B showed statistically significant positive r-values (Table 2-

2 and Figure 2-1). GPS1/CSN1 showed a smaller r-value than the others, namely 

COPS2, COPS3, COPS4, COPS6, COPS7A, and COPS8. The lower correlation 

of gene expression of GPS1 vs. COPS5 was found to be a  
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Table 2-2: Correlation of expression of COP9 genes in normal oral tissues 

Pearson correlation coefficients were calculated using RNA expression data 

collected from TCGA. Data from 44 patient specimens were analyzed. P values 

were calculated as described in methods.  
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Figure 2-1: Pair-wise plot of expressions of COP9 genes 

The RNA expression results from normal 44 oral tissues are plotted. 1: GPS1, 2: 

COPS2, 3: COPS3, 4: COPS4, 5: COPS5, 6: COPS6, 7A: COPS7A, 7B: COPS7B, 

8: COPS8. 
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Figure 2-2: Expressions of COP9 genes in normal oral tissues 

The RNA expression levels (y-axis) of COP9 genes from 44 normal oral tissues 

are shown. Horizontal lines in the boxes: median values. Top and bottom whiskers 

denote the first and the third quartile (Q1 and Q3). Outliers (> Q3 + 1.5 * (Q3 - Q1) 

and < Q1 - 1.5 * (Q3 - Q1)) are shown as individual dots. 
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general characteristic through our analyses in this study. However, the positive 

correlation between GPS1 and COPS5 was still statistically significant (p = 0.011). 

In addition to the low r-value relative to the other COP9 genes, the level of 

COPS7B expression was significantly lower compared to COPS7A (Figure 2-2).  

These results indicated that the expressions of COP9 genes were 

synchronized in human normal oral tissues. Leppert et al. recently observed that 

mRNA levels of COP9 genes were regulated by an miRNA let-7 for synchronization 

(196). To probe the importance of the regulatory mechanism by miRNA, the TCGA 

miRNA dataset was used to determine the gene expression correlation of COP9 

genes and the let-7 miRNA species (Table 2-3). There were statistically significant 

negative correlations between let-7 isoforms (7a, 7b, 7c, 7e, 7f-2, 7g) and COP9 

genes (GPS1, COPS5, COPS6, and COPS8), which was consistent with previous 

work. 
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Table 2-3: Correlation of let-7 miRNA and COP9 genes 

 

 

 

 

The let-7 expression profile was obtained from TCGA for the matched normal and 

tumor tissues of head and neck. Correlation coefficients for individual let-7 

isoforms relative to COP9 genes are shown. (*) Asterisks indicate statistical 

significance (p < 0.05). 
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2.4.3 Loss of synergistic expressions of the COP9 genes in cancer tissues 

 To determine whether the synergistic expressions of the COP9 genes are 

maintained in the cancer tissues, 42 tumor tissues matched to the normal cases 

were pooled (2 normal cases could not be matched based on the id tag), and 

determined their correlation coefficients (Table 2-4). High positive r-values were 

observed among COP9 genes in normal tissues as expected. In contrast, the 

correlations of expressions among COP9 genes diminished in the matched tumor 

tissues (Table 2-4 and Table 2-5). Moreover, the negative effect of let-7 miRNA 

observed in the normal tissue dataset was diminished in the matched tumor tissues 

(Table 2-3). These results demonstrated that the coordinated expression of COP9 

genes was lost in these tumor tissues. 

2.4.4 Validation of the results with subgroups (age, anatomical sites, and 

smoking history) 

HNSCC is an age-related disease. The majority of specimens in TCGA are 

from elderly patients (median = 61; the first quartile = 53, the third quartile = 69), 

and less than 4% of the patients are younger than 40 years old. Thus, the loss of 

the coordination of the COP9 gene expressions may be due to the age-related 

degeneration of the coordination. However, we analyzed the COP9 expression in 

the 31 tumor tissues that were 42 years old or younger to the 30 tumor tissues that 

were 80 years old or older (Table 2-6 A and B). With this analysis, we found similar 

loss of the coordinated expressions in specimens from both the young and elderly 

patients. In addition, there were no significant differences of the expression levels 

of each COP9 gene between the young and RNA-Seq data 
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Table 2-4: Loss of coordinated COP9 gene expression in HNSCC 

 

 

 

Normal and matched HNSCC tissues (sample number = 42) were compared for 

their correlation coefficient values among the COP9 genes. 
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Table 2-5: Loss of synchronized expression between COPS5 and the other 

COP9 genes in tumor tissues. 

 

 

 

To support the result of Table 2-4, which included 42 cases of matched head and 

neck tumor tissues, 2 additional normal head and neck tissues were included to 

calculate correlation of expressions among the COP9 genes. To compare the 

results with the tumor specimens, correlation coefficients of COP9 genes versus 

COPS5 (rCOPS5) were determined from randomly selected 44 tumor specimens 

from the entire pool of 511. The calculations were repeated for 10,000 times to 

obtain their averages and standard deviations. The distributions followed normal 

distribution pattern, which were used to compare the difference from rCOPS5 of 

normal tissues. 
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from young (30 specimens) and elder patients (31 specimens) were used to 

calculate the correlation coefficients among the COP9 genes in aged populations 

(Table 2-6 C). Therefore, we conclude that the age is not a factor that affected the 

low coordination of the COP9 genes in the tumor specimens.   

The oral tissues in TCGA were taken from different anatomical sites (oral 

cavity, tongue, etc.). The synergistic expression of COP9 subunit genes may vary 

depending on the exact site of oral tissues. To assess this possibility, the data set 

was arranged into subgroups based on the sites. The major groups were the oral 

cavity (14 specimens) and the oral tongue (13 specimens). The data sets of the 

two subgroups were used to determine correlation coefficients of the COP9 genes. 

These values were similar to those of the entire dataset  (Supplemental Table 2-

7 and Table 2-8), indicating that the synergistic expressions of the COP9 genes 

are maintained regardless of the sites of the oral tissues. Similarly, there appeared 

to be no clear effects of smoking, because analyzing the normal tissues from 

eleven current smokers identified highly similar synergistic RNA expressions of 

COP9 genes (Table 2-9). 
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Table 2-6: Loss of COP9 expression coordination in tumor tissues 

independent of age. 

 

 

 

 

RNAseq data from young (30 specimens) and elderly patients (31 specimens) 

were used to calculate the correlation coefficients among the COP9 genes. 
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Table 2-7: Synchronized COP9 expression in normal oral cavity tissues 

14 normal tissues from the oral cavity were pooled based on the clinical data in 

TCGA, and correlation coefficients as well as p values for COPS5 were calculated 

as described in the main article. 

Table 2-8: Synchronized COP9 expression in normal tongue tissues 

Data based on the 13 normal tongue tissues were pooled based on the clinical 

data in TCGA, and correlation coefficients as well as p values for COPS5 were 

calculated as described in the main article. 
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Table 2-9: Synchronized COP9 expression in normal oral tissues of smokers 

 

 

11 normal tissues from smokers were pooled based on the clinical data in TCGA, 

and correlation coefficients as well as p values for COPS5 were calculated as 

described in the main article. 
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2.4.5 Chromosome mapping of genes with expressions highly correlated 

with COPS5 

To elucidate the tumor-associated disintegration of the COP9 gene 

expression in detail, we focused on the COPS5 gene. We generated a "correlation 

table" of the COPS5, in which expressional correlation coefficients relative to the 

COPS5 gene (rCOPS5) were calculated for all the analyzable genes (about 14,000 

genes). By cross-referring the results to gene ontology provided with DAVID, we 

noticed that genes with high rCOPS5 of the tumor tissues were mapped in the same 

chromosomal location as the COPS5 gene (8q13.2, Table 2-1). We thus 

speculated that the loss of the coordination of the COP9 expressions in the tumor 

tissues was not due to unpredictably disorganized expressions of the COP9 

subunit genes, but rather there was a dominant effect of the physical locations of 

the genes on their expressions. To illustrate this possibility, chromosomal locations 

of 500 genes with top |rCOPS5| values were plotted based on the chromosome 8 

based on the cytoband (Figure 2-3, top). The genes with high |rCOPS5| in the normal 

tissues were distributed through all the chromosomes; among the top 100 genes, 

only 7 genes were mapped at 8q, near the COPS5 chromosomal location (8q13.2). 

In contrast, genes with high |rCOPS5| in the tumor tissues were concentrated near 

COPS5's chromosomal region (Figure 2-3, bottom); 56 genes out of the top 100 

genes were bound to 8q.  

We sought to assess the chromosomal cis-effect on the COPS5 gene 

expression more objectively. To this end, we determined the enrichment score (ES) 

(198) based on the |rcops5| for the genes located within 1 mega base pairs  
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Figure 2-3: Chromosomal mapping of genes with highly synchronized 

expression with the COPS5 gene. 

 

The 500 highest ranked genes based on |rCOPS5| were pooled, and mapped on to 

chromosomal locations based on their cytoband information. In the top panel, a 

cartoon denotes the chromosome 8 (at 8 in x-axis) where the COPS5 gene is 

located (8q13). The major grid marks on the x-axis (1 - 22 and X/Y) depict location 

of centromeres dividing p and q arms at the left and the right sides, respectively. 

X and Y chromosomes are combined, because all genes analyzed in the figure are 

mapped in both X and Y. 
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(Mbp) from the COPS5, and obtained a p-value based on the null hypothesis that 

these ES values were not different from that calculated for genes outside 1 Mbs 

from the COPS5. We have also determined such ES values for all the genes in the 

chromosome 8 to determine false discovery rate (FDR, q). The ES value for the 

COPS5 with the tumor tissues (ES = 0.65, p = 0.02, q = 0.043) was significantly 

higher than that with the normal tissues (ES = 0.39, p = 0.27, q = 0.49). The 

procedure was applied for the other COP9 genes, and revealed significant links to 

the chromosomal cis-effect in case of the tumor tissues (Table 2-10). Therefore, 

we conclude that the COP9 expression in the tumors is disintegrated because the 

chromosomal cis-effect becomes a dominant force to express each subunit gene. 

Furthermore, these results indicated that analysis of the COP9 expressions in the 

normal tissues rather than tumor tissues is pivotal for understanding the COP9's 

role in vivo, and such an analysis is possible using the RNA-Seq data in the normal 

tissues available from TCGA. 
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Table 2-10: Effect of relative distance in chromosomes on the gene 

expression correlation 

Nh: number of genes found within 1 Mbp of each COP9 gene; mean, sd, p and q 

values were determined as described in materials and methods. Overall, highly 

significant ties of the gene expression correlation with the chromosomal locations 

were found in tumor tissues, while in normal tissues there were no such effects of 

the chromosomal locations on the gene expression co-expression (except for 

GPS1 and COPS6). 



 

  
104 

2.4.6 Pathway analysis based on KEGG and GO revealed association of 

COPS5 expression with mitochondrial pathways  

 Genes that belong to particular cell pathways may be over-represented in 

the COPS5 correlation coefficient table. Identifying such pathways should provide 

important clues as to COP9's roles under the normal physiology. Based on the 

results above, such functional association should be elucidated with the data 

derived from normal tissues, and the large pool of high-quality gene expression 

data in the TCGA database prompted us to investigate this possibility. Genes with 

the top 1,000 |rCOPS5| values in the normal tissues were pooled, and functional 

pathways available through GO and KEGG database were associated to each 

gene (Supplemental Table D-1). The GO and KEGG pathways were then ranked 

based on the over-representation, and the 20 most over-represented pathways are 

shown in Table 2-11 (the expanded list is shown in Supplemental Table D-2). 

Unexpectedly, the pathways belonged to those related to mitochondrial functions 

and components. For example, 61 genes belonging to the oxidative 

phosphorylation KEGG pathway (hsa00190) were among the genes with high 

expression correlation with COPS5 out of 106 total genes (p < 1.1e-16). A number 

of GO pathways involving mitochondrial functions were also found among the over-

represented pathways. These included respiratory chain (GO:0070469), 

mitochondrial electron transport (GO:0006120), NADH dehydrogenase activity 

(GO:0003954), mitochondrial respiratory chain complex I (GO:0005747). In fact, 

all of the 20 most over-represented pathways are directly related to major 

mitochondrial and energy derivation functions. 
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Table 2-11: Association of COPS5 with mitochondrial pathways in normal 

oral tissues 
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Dataset includes the top 1000 functional pathways found in high correlation with  

Found: number of genes in a particular GO or KEGG pathway found in the top 

1000 rCOPS5 list; Expected: number of expected genes to yield p < 0.05 appearing 

in 1000 genes based on the average appearance per gene (µ); µ values were 

calculated by the total appearance of individual pathways in the entire gene list of 

20,154. P values were calculated using binomial distribution in R. Expected 

occurrences in a list of 1000 genes to provide p < 0.05 are listed.  
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At the time this study was carried out, gene ontology database had not yet linked 

COPS5 to any of mitochondrial-related pathways. Expression values were 

examined in pair-plots for COPS5 and mitochondrial genes of the five highest 

rCOPS5, NDUFB6, MRPS36, ATP5F1, TMEM126A, NDUFB3 (Figure 2-4). The 

results illustrate high integrity of the data and the coordination of the expression of 

the COPS5 with the mitochondria related genes. 

Dependency on the anatomical sites and smoking history were tested with 

the same subgroups as described above (Supplemental Table D-3). The mRNA 

expression data from the two major anatomical sites, oral cavity and oral tongue, 

resulted in almost identical over-representation of the mitochondrial pathways with 

COPS5. The same conclusion was made with the subgroup containing only the 

current smokers.  
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Figure 2-4: Pair-wise plot for RNA expression 5 mitochondrial genes 

The five genes with the highest rCOPS5 in the normal oral tissues are plotted. 1: 

COPS5, 2: NDUFB6, 3: MRPS36, 4: ATP5F1, 5: TMEM126A, 6: NDUFB3. 
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2.4.7 Alteration of COPS5 expression coordination in cancer tissues  

 The gene expression coordination between the COPS5 gene and the 

mitochondrial pathways was elucidated with tumor tissues (Table 2-13 and 

Supplemental Table D-4). Although a few GO pathways related to mitochondrial 

functions were over-represented, major pathways associated with the COPS5 

expression were those involved in ribosome processing and RNA binding as well 

as membrane lumen pathways. 

 The possibility that tissues from a particular anatomical site with high 

dysregulation caused the bias was addressed. Oral cavity, tongue, and larynx are 

the major 3 sites that together contribute to about 80% of the donated head and 

neck cancer tissues. COPS5-associated GO and KEGG pathways were 

determined for the tissues from the particular sites, and confirmed that correlation 

of COPS5 expression with mitochondria associated genes were not as 

predominant as in the normal tissues. 

 To further support the finding, enrichment score (ES) was calculated for 

the genes in the oxidative phosphorylation KEGG pathway (hsa00190) using RNA-

Seq data of 44 normal head and neck tissues deposited in TCGA (198) (Figure 2-

5 A). The obtained ES value, 0.797, was much higher than the average ES value 

based on randomly assigned gene pools (Figure 2-5 B).  

 In addition, ES values corresponding to all the other KEGG pathways were 

calculated for the 42 matched normal and tumor tissues (Table 2-14). The ES 

values of the oxidative phosphorylation pathway (hsa00190) were found to be 

among the highest. The ubiquinone biosynthesis pathway generated the highest 
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Table 2-12: Loss of coordinated expression of COPS5 with mitochondria 

related genes in the tumor tissues 

The analysis was carried out in the same way as for Table 2-11 
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Figure 2-5: Enrichment score for KEGG oxidative phosphorylation pathway 

(A) The enrichment score was calculated for the oxidative phosphorylation KEGG 

pathway (hsa00190). Genes are aligned on x-axis based on their correlation 

coefficients to the COPS5 expression. The hsa00190 pathway contained 106 

genes in the entire list. (B) 106 randomly selected genes were used to calculate 

ES using the rCOPS5 gene list as in A. The histogram was generated by iteration of 

1000 times. The arrow indicates the ES for hsa00190.  
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Table 2-13: Enrichment scores for the COPS5 gene on KEGG pathways 

All KEGG pathways found in the entire gene list of TCGA RNA expression 

database (199) were individually scanned through the rCOPS5 alignment, and the 

maximum (ES) as well as minimum (Phit - Pmiss) were calculated as previously 

described (198). The KEGG pathways that generated the 10 highest ES values 

are shown. Nh: number of genes belonging to a KEGG pathway in the entire list. A 

p value for a particular KEGG pathway with an Nh (= No) was determined using 

mean and standard deviation obtained by the following method. No genes were 

randomly selected from the rCOPS5 list and calculated an ES value, which was 

reiterated for 1,000 times to generate the mean and standard deviation of ES. 
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ES value, which is an essential factor in the respiratory chain and requires 

phenylalanine  (generating the second highest ES) for its synthesis. Thus, the 

enrichment of genes involved in mitochondria-related pathway based on the 

COPS5 correlation was exceptionally high.  

 To elucidate the significance of the COP9 coordination with oxidative 

phosphorylation compared to other genes, we calculated ES values relative to the 

hsa00190 KEGG pathway for the entire gene list in the RNA-Seq data of the 

matched normal and tumor tissues to obtain FDR (Table 2-15, 2-16). Except for 

the COPS7B gene, all the COP9 subunit genes showed highly significant 

correlations with the genes in the oxidative phosphorylation pathway. Remarkably, 

while most of the genes belonging to the oxidative phosphorylation pathway 

resulted in the high ES/low FDR values, the COP9 genes (except for COPS7B) 

were ranked comparably with these genes. Again, the p as well as FDR values 

were increased for all the COP9 genes with the tumor specimen set, indicating that 

tumor tissues have lost the link of COP9 expression to the oxidative 

phosphorylation related genes. Taken all together, there results imply that the 

normal physiological function of the COP9 may be inseparable from the 

mitochondrial activity 

2.4.8 Analysis of gene expression of other cancers in TCGA  

 Finally, the question was addressed whether the association of the 

expressions of COP9 genes with those of mitochondrial genes was unique in head 

and neck tissues. To probe this, the RNA expression data of TCGA for the lung 

squamous cell carcinoma tissues were analyzed. Tumors originating from  
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Table 2-14:  ES for COP9 genes for all KEGG pathways 

 

 

 

 

For each COP9 gene correlation coefficient table, ES values were calculated for 

all KEGG pathways. Mean, standard deviation (sd), p and q values were calculated 

as described in the method section. Extremely high correlations of the COP9 

genes (except for GPS1 and COPS7B) found in normal tissues were decreased 

significantly in tumor tissues (especially for COPS2 and COPS5). 
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Table 2-15:  ES for COP9 genes for the oxidative phosphorylation pathway 

ES values for all genes in RNAseq data were calculated for the oxidative 

phosphorylation KEGG pathway (hsa00190). Mean, standard deviation (sd), p and 

q values were calculated as described in the method section. 

The extremely high correlations of the COP9 genes with hsa00190 were found 

among normal tissues, whereas such correlations were decreased significantly 

among tumor tissues, especially for the COPS4, COPS5, and COPS7A genes.  
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the lung upper airway epithelia share similarity with HNSCC in its etiology and its 

involvement of smoking as an important risk factor. First, the synergistic 

expression pattern of COP9 genes in the normal tissues (n = 50) was examined, 

and found to be highly synergistic with one another (Table 2-16 and Figure 2-2). 

Exceptions were GPS1 and COPS7B, which showed lower correlation coefficients 

to other COP9 factors. The high positive correlations were again lost in the tumor 

tissues. These results showed a remarkable coincidence with those of head and 

neck normal and tumor tissues. 

The functional pathway analysis with the entire gene list resulted in the 

high correlation of the COPS5 expression with the mitochondrial genes 

(Supplemental Table D-4). Unlike the case of head and neck squamous cell 

carcinoma, however, the coordinated expression of COP9 and the mitochondrial 

genes was maintained well in the lung squamous cell carcinoma tissues 

(Supplemental Table D-4). 

2.5 Discussion 

Cancer genetics and analyses of the TCGA database mainly focus on 

the loss of genomic integrity. Mutations and single nucleotide polymorphism in 

DNA show the high rate of permanent alteration of the genome, epigenetic 

modification of the genome, RNA and miRNA expression alterations. TCGA data 

sets are available publicly for these types of analyses. The database is highly 

reliable and allowed us to examine cancer genomics with more than 500 tumor 

specimens (200).  
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Table 2-16: Synchronized expression of the COP9 genes in the matched 

tissues of normal and lung squamous cell carcinoma 

 

 

 

The analysis was carried out in the same way as for Table 2-3. 
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In addition to the tumor specimens, data from about 40 to 50 normal tissues 

are made available for most types of cancers with a notable exception for 

glioblastoma. Although the data sizes are smaller than those for the cancer tissues, 

they are arguably one of the most comprehensive data for genomics of human 

specimens of non-disease status with pathological scrutiny, which should provide 

valuable information for elucidating functions of a gene under the normal 

physiology. We hypothesized that a synergistic expression of genes may be 

observed in the normal tissues, when expressions of a group of genes need to be 

coordinated for their proper cellular activities. COP9 signalosome is an ideal 

subject to test this possibility, because all 8 subunits are essential for the proper 

COP9 function; deficiency in one of the COP9 genes decreased stability of the 

other subunits and caused lethality (199,201). In this study the COP9 signalosome 

genes showed highly synergistic expressions in the normal head and neck tissues, 

except for GPS1 and COPS7B. Remarkably, these characteristics, including the 

lower r-values for GPS1 and COPS7b, were maintained well even in the lung and 

breast (data not shown) normal tissues. The coordinated expression of the COP9 

genes decreased in the tumor tissues. Therefore, this coordination could not have 

been detected by analyzing tumor tissues. Likewise, because all cells cultured in 

vitro are under non-physiological conditions and thus transformed at some extent, 

it would have been difficult to obtain convincing evidence for the expression 

correlation of the COP9 subunit genes based on in vitro cell biological studies 

alone. 
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It is interesting to observe the lowest coordination of GPS1 expression 

compared to the other COP9 components (excluding COPS7B). Besides being a 

subunit of COP9, GPS1 is known for its function in suppression of G-protein and 

mitogen-activated signal transduction in mammalian cells (202). This COP9-

independent function quite likely requires a regulation of the GPS1 gene separate 

from the other COP9 genes. 

COPS7B not only had the lowest r-value, but also significantly lower 

expression compared to COPS7A (Figure 2-2). While COPS7A and COPS7B 

genes are encoded in different human chromosomes, chromosome 12 and 2 

respectively, there is a high homology between COPS7A and COPS7B in the 

amino acid sequence (78% identical). Thus, COPS7B may have only a minor 

functional role for COP9, which may be compensated by COPS7A.  

To our knowledge, one of the approaches in this study, using the exact 

physical map of the transcription start sites available from the Ensemble genome 

database, has not been applied previously to elucidate effects of the relative 

locations of genes on the gene expression correlations. In this study, we used this 

approach to find the chromosomal locations of the genes as a dominant factor 

causing the loss of the coordinated expressions of the COP9 genes. This cis-effect 

was not found in the normal tissues in most genes, an indication that expression 

of most genes in normal tissues are regulated based on their functions and 

independently from their chromosomal locations. Therefore, important implications 

derived from this analysis are that 1) analyzing tumor tissue data may not identify 

a function of a protein family such as COP9, and 2) the qualities of the normal 
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tissue data available in TCGA are high enough to help identifying unknown 

expressional linkages with functional pathways. Although the primary focus of this 

study was COP9 expression profiling, we expanded the analysis of the influence 

of the chromosomal location for all the genes that were analyzable in the RNA-Seq 

data, and the data for cancer genes (hsa05200) are shown in Supplemental Table 

D-5. It may be interesting to elucidate whether these proto-oncogenes show tight 

association with the chromosomal locations in other types of tumor tissues 

available in TCGA. 

The observation that the expression of the COPS5 gene (and therefore the 

other COP9 genes) was synchronized with those involved in mitochondrial function 

was unexpected. The correlation coefficients of the COPS5 and top ranked genes 

such as NDUFB6 and MRPS36 (Figure 2-4) were remarkably high with statistical 

significance. Moreover, not only a handful of genes involved in mitochondria but 

also the total pathway analysis revealed that mitochondria-related cellular 

functions and pathways were predominantly over-represented in the COPS5 

correlation coefficient table. Although there have not been reports that show direct 

function of COP9 for mitochondria, correlation analyses with the genes of which 

functions have been extensively studied (i.e. TP53 and CDKN2A) linked these 

genes with predicted cellular functions. These results validate the approach in this 

study and support the prediction that the COP9 signalosome has a novel functional 

link to mitochondrial activities (Supplemental Table D-6).  

Few studies have linked COP9 to mitochondria-related cellular activities. 

Jab1/COPS5 was previously identified as an apoptosis inducing factor through 
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modulation of mitochondrial BH3-domain containing protein BclGs (203). A study 

found that in Neurospora crassa, 3 subunits of the COP9 were required to recover 

from deficiency of alternative oxidase function, which is important for mitochondrial 

function (204). However, no follow-up studies have been carried out for 

mammalian cells. On the other hand, pathways involved in ribosomal functions 

were associated with the COPS5 expression in the tumor tissues. The significance 

of this link is currently unclear. However, the COP9 structure is homologous to 

translation initiation factor 3 (eIF3), another high-ordered complex in the cells 

(205), and our speculation is that COPS5 may have an overlapping function in the 

protein synthesis in transformed cells. 

The quantity and quality of the genomics database will only be improved. 

The present study underscores the importance and usefulness of examining the 

genomics of normal tissues. The results would provide novel functional links of a 

gene, which was not possible by analyzing the data set of pathophysiological 

specimens. This approach can reasonably be applied to other genes to identify 

pathways that have not been known due to scarce information for genomics 

information of normal tissues. 
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2.6 Conclusions  

The present study investigated COPS5 gene expression using the TCGA 

database. The analysis revealed the highly synergistic mRNA expression pattern 

among COP9 genes in normal oral tissues. The coordination was abrogated in the 

tumor tissues, and the regulatory mechanism was taken over by a cis-acting gene 

regulation. Further analysis revealed an unexpected expression correlation 

between the COPS5 gene and a number of mitochondria-related genes, 

postulating the possible functional role of the COP9 signalosome for mitochondrial 

activities. The quality of the RNA expression data available in TCGA is high enough 

to allow us gene expression analysis in normal tissues to identify gene functions 

under normal physiology, which may not be recognized by the data obtained from 

tumor tissues. 
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3.1 Synopsis  

Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein crucial 

for repair of oxidized DNA damage not only in genomic DNA but also in 

mitochondrial DNA. Parkin, a tumor suppressor and Parkinson's disease (PD) 

associated gene, is an E3 ubiquitin ligase crucial for mitophagy. While DNA 

damage is known to induce mitochondrial stress, Parkin's role in regulating DNA 

repair proteins has not been elucidated. In this study, we examined the possibility 

of Parkin-dependent ubiquitination of APE1. 

Ectopically expressed APE1 was degraded by Parkin and PINK1 via 

polyubiquitination in mouse embryonic fibroblast cells. PD-causing mutations in 

Parkin and PINK1 abrogated APE1 ubiquitination. Interaction of APE1 with Parkin 

was observed by co-immunoprecipitation, proximity ligation assay, and co-

localization in the cytoplasm. N-terminal deletion of 41 amino acid residues in 

APE1 abrogated the Parkin-dependent APE1 degradation. These results 

suggested that Parkin directly ubiquitinated N-terminal Lys residues in APE1 in the 

cytoplasm. Modulation of Parkin and PINK1 activities under mitochondrial or 

oxidative stress caused moderate but statistically significant decrease of 

endogenous APE1 in human cell lines including SH-SY5Y, HEK293, and A549 

cells. Analyses of glioblastoma tissues showed an inverse relation between the 

expression levels of APE1 and Parkin. These results suggest that degradation of 

endogenous APE1 by Parkin occur when cells are stressed to activate Parkin, and 

imply a role of Parkin in maintaining the quality of APE1, and loss of Parkin may 

contribute to elevated APE1 levels in glioblastoma. 
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3.2 Introduction 

Oxidatively damaged DNA is primarily repaired by DNA base excision 

repair. In the mammalian DNA base excision repair pathway, apurinic/apyrimidinic 

(AP) endonuclease (APE1) incises DNA upstream of AP sites to generate single-

strand breaks (SSBs) with 3’-OH termini for subsequent DNA repair synthesis 

reactions (206).  APE1 is shown to be essential during mouse embryonic 

development and is the only active AP-endonuclease in mammals. Studies also 

demonstrated that APE1 was indispensable for cultured cells (123,207), although 

recent studies demonstrated that cells derived from a B lymphocyte line could 

survive without APE1 (208,209). APE1 also functions as a gene expression 

regulator by redoxically activating oncogenic and pro-survival transcription factors 

such as AP-1 and NF-κB, and is also involved in gene regulation necessary for 

calcium homeostasis (39,117). Therefore, APE1 is a pro-survival multifunctional 

protein. Drug and radiation resistance of tumor tissues have been linked to 

increased APE1 expression (165,210-213). 

APE1 is post-translationally modified by phosphorylation, acetylation, and 

ubiquitination (115,214-219). APE1 was found to be ubiquitinated by MDM2 

(220,221), the major p53 regulator (222,223). However, APE1 ubiquitination was 

later observed in mouse embryonic fibroblast defective of MDM2 (220), implying 

existence of backup activities for APE1 ubiquitination other than MDM2. 

Meisenberg et al. identified UBR3 as another E3 ubiquitin ligase for APE1 (224). 

Properly maintained mitochondrial membrane potential is critical to meet 

cellular energy demands through oxidative phosphorylation. Electron leaks from 
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the respiratory chain complexes result in the generation of superoxide (O2-). The 

mitochondrial superoxide dismutase is extremely efficient in scavenging O2- (225), 

and thus cells at normal growth conditions maintain the oxidative stress at a 

manageable level. This status quo may be broken by exogenous reagents, 

genotoxic stresses, and gene mutations that impair mitochondria (226-228). 

Damaged mitochondria elevate intracellular reactive oxygen species (ROS), and 

result in further impairment of mitochondria (229). To avoid this vicious cycle, a 

salvaging process named mitophagy is initiated to break down damaged 

mitochondria and generate new mitochondria (230). It is becoming apparent that 

mitophagy is modulated by DNA damage responses. Recent studies found that 

activation of poly (ADP-ribose) polymerase 1 (PARP1) by DNA strand breaks plays 

a pivotal role in the energy metabolism (231,232). In the process of DNA repair, 

oxidative DNA damage are converted to DNA strand breaks as intermediate 

lesions (233). The suppression of mitophagy by the activated PARP may be a self-

feedback system during the repair of endogenous DNA damage. However, 

understanding the interplay among factors for mitophagy and DNA repair proteins 

is far from complete. 

During mitophagy, proteins in damaged mitochondria are degraded via 

polyubiquitination, which is mainly carried out by Parkin, a RING domain-

containing E3 ubiquitin ligase (234). PINK1 (PTEN-induced-kinase 1) is a critical 

activator of Parkin (230,234). PINK1 phosphorylates ubiquitin and Parkin (235)   

(236-238) and recruits Parkin from cytoplasm to mitochondrial surfaces to facilitate 

ubiquitination of its target proteins such as mitofusin 2 (Mfn2), Miro, and VDAC1 



 

  
127 

(239,240). Mutations in the Parkin and the PINK1 genes cause mitochondrial 

degeneration and are associated with Parkinson’s disease and glioblastoma 

(GBM) (230,241,242). 

Considering that Parkin expression is induced by p53 (243,244) which 

enhances APE1 ubiquitination (221), it is possible that Parkin ubiquitinates APE1. 

Moreover, a recent proteomics study for identifying Parkin's substrates and 

interacting proteins revealed APE1 as one of possible targets of Parkin (245). 

These observations prompted us to investigate the activity of Parkin for APE1 

ubiquitination. In this study, we investigated functional and physical interactions 

between APE1, Parkin, and PINK1. 

3.3 Materials and Methods  

3.3.1 DNA, Cell Culture And Transient Transfection  
 

All cDNAs in plasmid expression vectors used in this study are of humans. 

Expression vectors for YFP-Parkin (23955) and cMyc-PINK1 (13314) (246,247) 

were obtained from Addgene. Non-tagged wild-type (wt) PINK1 was then cloned 

by PCR amplification into pcDNA3.1 (Invitrogen). The full-length human Parkin and 

its specific E2 ligase UbcH7 were cloned for this study by PCR cloning from quick 

cDNA clone (Clontech) using Phusion Taq DNA polymerase (NEB) with 

appropriate primers synthesized (Integrated DNA Technology) into the 

pcDNA3.1Zeo (+) expression vector (Invitrogen). Mutations (R275W and C431F in 

Parkin and G309D in PINK1) were introduced by PCR subcloning. The pBi16, a 

mammalian expression vector with a flippase recognition target (FRT) site and a 

doxycycline (Dox) inducible-dual promoter (248), is a generous gift from Dr. 



128 

Grabczyk. The human Parkin and PINK1 cDNAs were cloned into pBi16 (named 

pBi16-PaPi, Figure 3-1) for inducing both proteins together with doxycycline. All 

sequences of DNA amplified by PCR were confirmed by DNA sequencing (ACGT 

Inc. and GenScript Inc). 

MEFla, a mouse embryonic fibroblast cells, deficient in mouse Ape1 

(mApe1) and expressing hAPE1 was described previously for its extremely low 

APE1 expression (122). The MEFla cells were cultured in DMEM High Glucose 

medium (Hyclone) supplemented with 10% fetal bovine serum (Gemini Inc.), 1% 

penicillin/streptomycin, 1% L-glutamine (Hyclone). SH-SY5Y (a human 

neuroblastoma) and A549 (a human lung adenocarcinoma) were purchased from 

ATCC. The HEK293 derivative T-Rex 293 was purchased from Invitrogen. The T-

Rex 293 cells were transfected with pBi16-PaPi and pOG44 expressing flippase 

(Flp). 293/pBI16-PaPi (293-PaPi) stable transfectants were selected with 150-

µg/mL hygromycin. The 293-PaPi cells were plated on 60 mm dishes (1x106/dish). 

After overnight incubation, Parkin and PINK1 were induced with 2 µg/mL 

doxycycline. At the same time, drugs indicated in the results were added in the 

culture medium, and together incubated for 16 hours. Cells were then harvested 

for immunoblot analyses. 

For transient transfection, cells were plated on 60 mm dishes at 4x105 - 

1x106 and incubated for overnight. Lipofectamine 2000 (Invitrogen) was used for 

transfection using OptiMEM-I (Invitrogen) with the vendors’ manual. PINK1 siRNA 

was purchased from Applied Biosystems. Introduction of siRNA was standardized 

for minimum cytotoxicity as the following method. Semi-confluent SH-SY5Y cells 
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were suspended in the DMEM medium at 1x107 cells/mL, and mixed with 200 nM 

siRNA. Cell/siRNA suspensions in 0.1 cm cuvettes were then electroporated using 

ECM 830 square wave electroporation system (BTX) at 920V, 120 µF, 2 pulses at 

0.1 sec interval. After 15 minutes at room temperature, cells were transferred to 

100 mm dishes (Corning) containing complete DMEM-High Glucose media 

(Gibco) and incubated for 72 hours. When necessary, 10 µM carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) was added after 48 h, and further incubated for 

24 hours (total 72 hours after the electroporation). Cells were then harvested and 

examined with immunoblot. 

3.3.2 Immunoblot (Western blot) assay 
 

Whole cell extracts were prepared from cells detached by scraping after 

being washed with PBS twice, and resuspended in RIPA buffer (249) 

supplemented with proteinase inhibitor cocktail (Roche) and 40 µM MG132. After 

adjusting protein concentration, the extracts were run in 10% acrylamide SDS-

PAGE, transferred to PVDF membrane (Bio-Rad), and blotted with appropriate 

antibodies. SDS-PAGE samples were run with a pre-stained protein size marker 

(NEB, P7709). 
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Figure 3-1: Dual expression vector pBi16-PaPi  

The human Parkin and PINK1 cDNA were cloned into pBi16 [1] and stably 

integrated using FRT site-directed recombination in the T-Rex 293 cells by 

hygromycin B (HygB) selection (Invitrogen). pCMV*: doxycycline-inducible CMV 

promoter; pOG44: Flp site-specific recombinase expression vector (Invitrogen). 
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3.3.3 Detection of Ubiquitinated APE1 in A549 

Histidine hexamer-tagged ubiquitin (6xHis-ub) cDNA was transfected with 

APE1, Parkin, and PINK1 in A549 cells and incubated for 24 hours. The cells were 

lysed in the binding buffer (20 mM Tris pH 8.0, 0.5 M NaCl, 0.1 % NP-40, 10 mM 

imidazole) with 40 μM MG132 (Sigma) and proteinase inhibitor cocktail without 

EDTA (Roche). The crude cell extracts (total fraction) were incubated with Ni-NTA 

magnetic beads (Qiagen) for 15 minutes at 4 ̊C, washed with the binding buffer, 

and eluted with binding buffer with 120 mM imidazole. The total and eluted (His-

tagged protein-enriched) fractions were analyzed by immunoblot using anti-APE1 

antibody. 

3.3.4 Analysis of Localization of YFP-Parkin and APE1 

MEFla cells were spread on coverslips a day before DNA transfection. The 

cDNA carrying YFP-Parkin and APE1 were co-transfected in the same way as 

described above, and incubated for 24 hours. If necessary, MG132 was added and 

incubated. Cells were incubated in the presence of Mitotracker Red (Invitrogen), 

fixed in 3.7% formaldehyde, and then permeabilized in PBS containing 0.2% 

TritonX-100 for 15 minutes. After washing with PBS twice, cells were blotted with 

anti-APE1 antibody, stained with anti-mouse IgG antibody conjugated to Alexa 

Fluor 488 (Invitrogen) followed by DAPI staining, and mounted on glass plates with 

Vector Lab mounting reagent. Cells were then analyzed with Leica TSP SP5 

Confocal Microscope confocal microscopy at the Imaging Core facility of University 

of Kentucky. 
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3.3.5 Co-Immunoprecipitation (CO-IP) of Recombinant APE1-FLAG and 
Parkin  

 
E. coli BLR (DE3) strain (EMD Biosciences) was transformed with a pRSF-

Duet1 derivative (EMD) carrying Parkin and either of APE1-FLAG or APE1 

(negative control) cDNAs. The cells were grown until OD600 reached 0.6 to 0.8, 

and then expressions of the proteins were induced with 0.5 mM IPTG (Fisher) at 

16˚C for 16 hours (220,250). Cells were lysed in a co-IP buffer (120 mM NaCl, 

2mM EDTA, 0.1mM EGTA, 0.05% NP40, 1 mM DTT, 50mM HEPES pH 7.9) 

supplemented with proteinase inhibitor cocktail (Complete Ultra Mini, Roche). After 

centrifugation for 20 minutes at 4˚C, small portions of supernatants were kept 

separately as total fractions (inputs), and the remaining samples were subjected 

to immunoprecipitation with agarose resin conjugated to the anti-FLAG antibody 

M2 (Sigma). The resin was washed in the co-IP buffer, and eluted in 100 µg/mL 

FLAG peptide (Sigma), and both total and IP fractions were analyzed by 

immunoblotting using anti-APE1 and anti-Parkin antibodies. 

3.3.6 Proximity Ligation Assay (PLA) 
A549 cells were spread on coverslips and incubated for overnight before 

transfection of the APE1 and Parkin cDNA. The cells were then incubated with 1 

μM Mitotracker RED for 1 hour and fixed in 100% methanol at -20˚C and then in 

100% ice-cold acetone. 

 The samples were processed according to the OLINK Bioscience DuoLink In 

Situ protocol. Briefly, the coverslips were rehydrated in PBS (pH7.5) containing 

0.1% Triton X-100 (v/v) for at least 30 minutes at room temperature. The samples 

were then blocked with 5% BSA in PBS+ Triton X-100 for 30 minutes. The primary 
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antibodies were applied (1:200 ms-anti-parkin, 1:250 rb-anti-APE1) and incubated 

overnight at 4°C in a humidity chamber; all other incubations were carried out in a 

37°C humidity chamber unless otherwise noted. The samples were washed and 

incubated with the Duolink secondary antibodies (anti-mouse and anti-rabbit IgG) 

for 1 hour. After washing, the samples were incubated with the ligation reaction 

mixture for 30 minutes, washed, and then further incubated with the green 

amplification reagent for 90 minutes. After the final wash, the samples were 

mounted with Duolink In Situ mounting medium containing DAPI. The fluorescent 

signals in the cells were analyzed using an Olympus inverted fluorescence 

microscope. 

3.3.7 Tissue Extract Preparation  
Snap-frozen GBM specimens were obtained from male patients (50-75 

years old) in accordance with IRB regulations. Whole cell lysates of the tissues 

were prepared using the Fisher Cryo-homogenizing system. Briefly, the samples 

were disaggregated through grinding with a clean pre-chilled mortar and pestle. 

The samples were then transferred to a micro-centrifuge tube and RIPA buffer, 

containing 40 μM MG132 and protease inhibitors, was added to an approximate 

concentration of 10 mg/μL pre-ground weight. The samples were then centrifuged 

to collect large debris, and the supernatant was used to prepare a stock in SDS-

PAGE loading buffer and to determine final protein concentration. The SDS-PAGE 

stock was sonicated and incubated at 70° C for 5 minutes and stored at -80° C 

until use. Before SDS-PAGE, the samples were diluted to a final concentration of 

3 μg/μL in SDS-PAGE loading buffer. 
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3.3.8 Immunohistochemistry for GBM and Control Tissues  
A combined total of 17 GBMs and control brain tissues were obtained from 

the Markey Cancer Center Biospecimen and Tissue Procurement Shared 

Resource Facility (BSTP SRF). Formaldehyde-fixed paraffin embedded 5 μm 

sections were deparaffinized in xylene and rehydrated stepwise using graded 

ethanol and finally water. Dako antigen retrieval buffer was used with a Biocare 

Medical decloaking chamber for antigen retrieval following the manufacturer’s 

protocol. Dako peroxidase blocking reagent was used to inhibit endogenous 

peroxidase activity. Sections were incubated with primary antibody for 1 hour at 

room temperature: APE1, Parkin. Next, sections were incubated with polymer 

linked secondary antibody, either mouse (Dako K4007) or rabbit (Dako K4003) for 

30 min at room temperature followed by development with diaminobenzodine. 

Following washing, slides were counterstained with Meyer’s hematoxylin and 

allowed to Blue in ammonia water before dehydration in graded ethanol. Slides 

were incubated in xylene before affixing coverslip.  

High-resolution digital image slides of GBM and control brain tissue were 

obtained by scanning with the Aperio ScanScope (Leica) at 20x magnification. 

Aperio ImageScope software V 11.2.0.780 and the software’s algorithms for 

Positive Pixel Count V9 and Nuclear V9 were used to analyze these images for % 

total intensities for APE1 and Parkin in tissue and nuclear localization respectively. 

3.3.9 Chemicals and Other Reagents  
CCCP and MG132 were purchased from Sigma. Antibodies used in this 

study are those for APE1 (Santa Cruz, sc-55498), PINK1 (Novus BC100-494 and 

Protein Tech 23274-1-AP), Parkin (Santa Cruz, sc-32282), β-tubulin (Santa Cruz, 
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sc58884), GAPDH (Invitrogen, AM4300), p53 (Santa Cruz, sc-126). Pre-stained 

protein molecular weight marker was purchased from New England Biolab 

(P7709). 

3.4 Results 

3.4.1 Direct Involvement of Parkin in APE1 ubiquitination 

To test whether APE1 is ubiquitinated by Parkin, protein extracts from A549 

expressing histidine hexamer-tagged ubiquitin (His-Ub), APE1, Parkin and PINK1 

were subjected to enrichment of His-Ub through nickel resin purification (251). 

Monoubiquitinated as well as polyubiquitinated APE1 were detected in the His-Ub 

enriched fraction when Parkin was expressed (Figure 3-2 A lane 2 vs. lane 1). 

The results indicated Parkin was capable of ubiquitinating APE1. The His-Ub 

diminished when PINK1 was co-expressed while intact APE1 decreased (lane 3 

v.s. lane 4), suggesting that PINK1 was required for polyubiquitination and 

degradation of APE1. 

To understand functional requirements of Parkin and PINK1 for APE1 

ubiquitination, a mouse embryonic fibroblast cell line MEFla (MEFlowAPE1) was 

transiently transfected with Parkin, PINK1, and APE1. APE1 levels were not 

altered when either Parkin or PINK1 was expressed alone (Figure 3-2 B lanes 3 

and 4 v.s. lane 2) (122). However, expressing both Parkin and PINK1  
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Figure 3-2: Functional requirements for APE1 ubiquitination 
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(A) Detection of monoubiquitinated and polyubiquitinated APE1. A549 was 

transfected with APE1 (lane 1), APE1 and Parkin (lane 2), His-tagged Ubiquitin 

(His-Ub), APE1, and Parkin (lane 3), His-Ub, APE1, Parkin, and PINK1 (lane 4). 

Total protein lysates and eluted fractions (enriched with His-Ub) were analyzed 

with APE1 antibody as described in Materials and Methods. (B) MEFla transfected 

with 1: empty vector, 2: APE1, 3: APE1 and PARKIN, 4: APE1 and PINK1, 5: APE1, 

PINK1, and PARKIN, 6: APE1, PINK1, PARKIN with 10 μM MG132 for 6 hours. (C) 

MEFla transfected with APE1, PCNA, p53 without (ctrl) or with Parkin and PINK1 

(PaPi) and the stabilities of APE1, PCNA, p53 were monitored after 24 hours. (D) 

Mutant Parkin (275 = R275W, 431 = C431F) and PINK1 (309 = G309D) were co-

transfected in MEFla as shown in the table. Protein levels were examined after 24 

hours incubation. MG132 was at 3 µM for 16 hours. (E) The WT (full-length) or 

ND20 (N-terminal 20 a.a. truncation) APE1 was co-transfected with Parkin and 

PINK1 in MEFla. Lane 6: MG132 was added at 3 µM for overnight incubation. 

Expression of PINK1 in lanes 3 and 5 was confirmed separately from lane 6 which 

otherwise caused a halo effect. (F) ND41 (41 a.a. N-terminal truncation) APE1 was 

examined after Parkin and PINK1 expression. 
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caused a marked APE1 decrease (Figure 3-2 B lane 5; also in Figure 3-2 D lane 

3, Figure 3-2 E lane 3E, and Figure 3-2 F lane 2). p53 is a well-known target of 

ubiquitination by other E3 ubiquitin ligases (252-254). We tested whether p53 was 

also efficiently ubiquitinated by Parkin. However, the stability of p53 was unaffected 

by Parkin and PINK1 (Figure 3-2 C). Similarly, proliferating cell nuclear antigen 

(PCNA), highly susceptible to mono- and poly-ubiquitination (254), was not 

modified by Parkin (Figure 3-2 C). The unaltered stabilities of p53 and PCNA as 

well as β-tubulin and β-actin indicated a high specificity of the reaction of Parkin 

on APE1. Incubating cells with a 26S proteasome inhibitor MG132 restored the 

APE1 level (Figure 3-2 D, lane 4 v.s. lane 3). 

The Parkin polypeptide contains two RING domains (Figure 3-3). R275W 

and C431F missense mutations, which are located in the first and second RING 

domains in Parkin respectively (Figure 3-3), abrogate its E3 ligase activity and 

cause early onset Parkinson’s disease (255,256). These Parkin mutants failed to 

degrade APE1 (Figure 3-2 D lanes 5 and 9; Table 3-1). PINK1 carrying G309D 

missense mutation is defective in its kinase activity (Figure 3-3), and incapable of 

activating Parkin (247,255,257). The G309D PINK1 did not activate APE1 

degradation (Figure 3-2 D lane 6; Table 3-1). These results suggested that the 

ligase activity of Parkin was required for APE1 degradation, for which the kinase 

activity of PINK1 was also critical. 
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Figure 3-3: Parkin, PINK1, and APE1 Functional Domains  
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3.4.2 Interaction of APE1 with Parkin 

Sarraf et al. recently identified proteins interacting with Parkin and their 

possible ubiquitination sites, and APE1 was found to be a protein interacting with 

Parkin through its N-terminal segment, i.e., 20-30th amino acids from N-terminus 

(245). To probe the importance of the N-terminal region of APE1 for the stability, 

MEFla cells were transiently transfected with N-terminally truncated APE1, ND20 

and ND41 (N-terminal 20 and 41 amino acids deletions), along with Parkin and 

PINK1. While ND20 APE1 was efficiently degraded by Parkin (Figure 3-2 E and 

Table 3-1), ND41 APE1 was significantly more resistant to Parkin dependent 

degradation compared to those of the full-length and ND20 APE1 (Figure 3-2 F 

and Table 3-1). It is likely that APE1 is mainly ubiquitinated at the amino acid 

residues 20-41 which contains two Lys clusters (24K-25K-27K and 31K-32K-35K), 

which is consistent with the previous studies showing that the N-terminal residues 

contained major ubiquitin acceptor Lys residues catalyzed by MDM2 and UBR3 

(221,224). 

In the normal condition, APE1 in MEFla was localized predominantly in the 

nuclei (Figure 3-4 A, control). When the cells were treated with MG132, 

cytoplasmic APE1 was visibly increased 3 hours after the treatment, and became 

indistinguishable from the nuclear APE1 after overnight incubation of the cells with 

MG132 (Figure 3-4 A). The major fraction of Parkin is present in the cytoplasm 

(240). 
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Table 3-1: Effect of Parkin and PINK1 on the stability of APE1 

 

 

 

Relative APE1 intensities (%) in MEFla with the wild-type or mutant Parkin and 

PINK1 expressions were calculated by comparing with those without Parkin nor 

PINK1. aAPE1 amounts were normalized by β-tubulin, and compared with that 

without Parkin and PINK1. Values based on more than three independent 

experiments. bP values by Student's t-test. Each value (more than three 

experiments) calculated with the result of the first row (with wt-APE1, wt-Parkin, 

and wt-PINK1). 
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Figure 3-4: Interaction of APE1 with Parkin in the cytoplasm 
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(A) Accumulation of APE1 in the presence of MG132. MEFla cells expressing the 

wild-type APE1 were incubated with MG132 for indicated time periods. MG132 

concentrations were 40 µM (0 - 3 hours) and 3 µM (overnight). APE1 was labeled 

with anti-APE1 antibody and AlexaFluor 488 and analyzed in fluorescence 

microscopy. (B) MEFla transfected with APE1 and YFP-Parkin were incubated with 

MG132 40 µM for 3 hours, fixed, labeled with anti-APE1 and AlexaFluor 633 

(shown in purple), and then analyzed by confocal microscopy. Z-series pictures 

were taken for a detailed analysis (Figure 3-5). (C) Proximity ligation assay (PLA) 

between APE1 and Parkin in A549. A549 expressing APE1, Parkin, PINK1 as 

indicated. APE1 and Parkin specific antibodies were used to probe the interactions 

of the two proteins as described in Materials and Methods. Positive signals were 

seen only in the cells co-transfected with APE1, Parkin, and PINK1 (bottom panel 

shown with arrows). MT: fluorescent signals by MitoTracker Red (Invitrogen). (D) 

Co-immunoprecipitation of APE1 and Parkin. Parkin and APE1 (lane 1) or Parkin 

and APE1-FLAG (lane 2) co-expressed in E. coli BLR were subjected to 

immunoprecipitation using FLAG antibody, and the total and eluted fractions were 

analyzed in immunoblot using APE1 and Parkin antibodies. 
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Figure 3-5: Colocalization of YFP-Parkin and APE1 

MEFla cells were transfected with YFP-Parkin and APE1, and incubated in 40 µM 

MG132 for 3 hours Cells were then stained with MitoTracker Red, anti-APE1 and 

anti-IgG-AlexaFluor 633, and then analyzed by confocal microscopy (Leica) to 

analyze co-localization of YFP-Parkin and APE1. Colors in Merged pictures: red: 

MitoTracker Red, green: YFP-Parkin, blue: APE1. Z-series photographs showing 

co-localization of YFP-Parkin and APE1. 
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The possibility of cytosolic co-localization of APE1 with Parkin was 

elucidated, using YFP-Parkin and APE1. After MG132 treatment, APE1 was found 

to be co-localized with YFP-Parkin in the cytoplasm (Figure 3-4 B and Figure 3-

1). The cytoplasmic co-localization of APE1 and YFP-Parkin suggested that the 

physical interaction occurred in the cytoplasm. This possibility was examined with 

proximity ligation assay (PLA) (233). Antibodies specific to APE1 and Parkin were 

used to label the two proteins and signals were detected when the two proteins 

were in the proximate location to each other (Figure 3-4 C). The PLA signal was 

detected when APE1 and Parkin were co-expressed. Importantly, the PLA was 

observed mainly in the cytoplasm but not in the nuclei or inside of mitochondria. 

The absence of Parkin-APE1 interaction in the nuclei is consistent with the 

cytosolic localization of Parkin in previous studies (258-260). To test whether APE1 

directly interacts with Parkin without involvement of other cellular factors such as 

ubiquitin or PINK1, recombinant Parkin was expressed with APE1 or with FLAG-

APE1 simultaneously in E. coli, and performed FLAG-immunoprecipitation to 

detect Parkin in the FLAG-APE1 enriched fraction. Parkin was specifically detected 

in the FLAG-APE1 containing fraction (Figure 3-4 D). The result indicated that 

APE1 directly interacts with Parkin. Co-immunoprecipitation of Parkin by ND41 

APE1-FLAG was significantly decreased (Figure 3-6) compared to that by full-

length APE1, indicating that the N-terminal segment is pivotal for the interaction. 

However, it should be noted that Parkin signal was not completely disappeared in 

the ND41-FLAG IP fraction, and we  
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Figure 3-6: APE1 and Parkin Interaction 

Interaction of full-length and ND41 APE1 with Parkin. Parkin and APE1-FLAG, or 

Parkin and ND41 APE1-FLAG, were co-expressed in E. coli BLR, and FLAG 

immunoprecipitation was carried out as described in the Materials and Methods. 

Ratios of [Parkin]/[APE1] in the IP fraction was determined using the signal 

intensities. Relative ratios for the full-length APE1 versus ND41 APE1 was 

2.61±0.62 p < 0.5). Total 3 immunoprecipitation experiments were carried out to 

determine the mean and standard deviation. 



 

  
147 

could not exclude the possibility that the downstream APE1 polypeptide is also 

involved in the interaction of APE1 with Parkin. 

3.4.3 Ubiquitination and Degradation of Endogenous APE1 by Parkin and 
PINK1 
To examine the effect of Parkin expression on endogenous APE1, a lung 

adenocarcinoma cell line A549 was transiently co-transfected with Parkin and its 

cofactors (255,261-264), namely, Uba1 (E1 ligase), UbcH7 (Parkin-specific E2 

ligase), and PINK1 (Figure 3-7 A). The level of endogenous APE1 decreased in a 

does-dependent manner (Figure 3-7 B). Densitometry of the immunoblot revealed 

that the level of the endogenous APE1 was down to 60% of the control cells 

transfected with the vector plasmid DNA alone. 

Levels of the endogenous p53 and PCNA as well as housekeeping proteins 

β-tubulin and GAPDH were unaltered by the expression of Parkin and its cofactors 

(Figure 3-7 B). These results indicated a high specificity of the reaction of Parkin 

on APE1, consistent with the results with the ectopically expressed proteins 

(Figure 3-7 C). Total protein extracts from A549 were analyzed for ubiquitination 

of endogenous APE1. A specific band appeared at the position for 

monoubiquitinated APE1 after cells were transiently transfected with Parkin 

(Figure 3-2 C). Therefore, endogenous APE1 was ubiquitinated and degraded by 

Parkin. 

Inducible expression of Parkin and PINK1 without transient transfection 

would provide a more refined experimental condition. To achieve this, a derivative 

of HEK 293 cell line 293-PaPi was used. The 293-PaPi is a stable transfectant of 

HEK293, and enables simultaneous induction of Parkin and  
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Figure 3-7: Parkin targets APE1 for degradation 

(A) Expression of Parkin and its cofactors, Uba1, UbcH7, Parkin and PINK1 in 

A549. A549 was transfected with (-) empty vector alone or (+) the vectors carrying 

Parkin, PINK1, Uba1, and UbcH7 cDNAs. β-tub: β-tubulin. Note that there was no 

change in the Uba1 probably due to its abundance. (B) A549 cells were transfected 

with cDNA expression vectors for ubiquitin, UBA1, UBCH7, Parkin, and PINK1. 

Amount of each DNA: 1: 0 µg, 2: 0.17 µg, 3: 0.35 µg, 4: 0.7 µg. Empty vector DNA 

(vec) was added to each to make the total amount of DNA equal among samples. 

Cells were then incubated for 16 h, and harvested for immunoblot examination. (C) 

A549 transfected with vector alone (1) or ubiquitin, Uba1, UbcH7, Parkin and 

PINK1 as in (B) and incubated with MG132 (3 μM for 16 hr), and APE1 (middle) 

and its ubiquitinated forms (top), as well as β-tubulin (bottom) were analyzed by 

immunoblot separately. 
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PINK1 by doxycycline from a bidirectional promoter (248) (Figure 3-1). Induction 

of Parkin and PINK1 (Figure 3-8 A) did not alter APE1 or β-tubulin while Mfn2 

decreased clearly (Figure 3-8 B). Because Parkin's E3 ligase function is active at 

mitochondria, the 293-PaPi cells were treated with H2O2 to increase APE1 in 

mitochondria(265). Treatment of the cells with H2O2 decreased APE1 to 

approximately 70% of the control while the amount of β-tubulin was still unchanged 

(Figure 3-8 B). Although the change of APE1 level by H2O2 in the doxycycline-

treated 293-PaPi was statistically significant, doxycycline or H2O2 alone did not 

show significant difference from the untreated control cells (Figure 3-8 B). These 

results indicated that degradation of APE1 by Parkin was limited compared to the 

transiently expressed APE1, suggesting that a large portion of APE1 is not in 

contact with the Parkin and PINK1 without induction of stresses such as oxidative 

stress.  

3.4.4 Loss of Parkin is associated with elevated APE1 levels in GBM  
 

Parkin deficiency has been associated with GBM (241,242). To elucidate 

the correlation between Parkin and APE1 in brain tumors, expression levels of 

Parkin and APE1 in both GBM and non-neoplastic brain tissues were examined. 

Qualities of the monoclonal antibodies for Parkin and APE1 were confirmed in 

Western blot to detect the corresponding proteins specifically (Figure 3-9 A). 

Interestingly, the GBM tissues showed increased APE1 levels while decreasing the 

Parkin levels (Figure 3-9 A). Parkin and APE1 levels were examined in detail by 

immunohistochemistry (Figure 3-9 B). Parkin levels in the non-neoplastic brain 

tissues were higher than those of GBM tissues (Figure 3-9 C, p = 0.0009),  
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Figure 3-8: Effect of Parkin and PINK1 co-expression on APE1  

(A) Parkin and PINK1 expressions examined in 293-PaPi cell lysates after 16 

hours of treatment without (lane 1) or with (lane 2) doxycycline (2 µg/mL). (B) (Top) 

Immunoblot for APE1, Parkin, Mfn2, and β-tubulin levels in 293-PaPi cells treated 

with doxycycline for 16 hours. CCCP: 10 µM; H2O2: 50 µM. (Bottom) Averages of 

APE1/β-tubulin ratios with the treatments as indicated. *p < 0.05. (C) SH-SY5Y 

cells were incubated with DMSO only (-) or with 10 µM CCCP (+), and incubated 

for 24 hours at 37˚C and analyzed by immunoblot. In the right panel, SH-SY5Y 

cells were differentiated by the 5-days treatment with 10 µM retinoic acid (RA), and 

then incubated with 10 µM CCCP for 24 hours. (D) Scrambled control (lanes 1 and 

2) or PINK1 siRNA (lane 3) were electroporated in SH-SY5Y, and the level of APE1

was examined after 72 hours incubation with 24 hours treatment of DMSO (lanes 

1 and 3) or 10 µM CCCP (lane 2). 
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Figure 3-9: Parkin and APE1 expressions in GBM 
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 (A) Five glioma and one non-neoplastic (from epilepsy surgery) brain tissues were 

processed for protein extraction and analyzed in immunoblot assays. (B) 

Representative results of immunohistochemistry from non-neoplastic (Control) and 

GBM tissues. Magnifications: 1x, 5x, and 20x. (C) Total levels of APE1 (Left panel) 

and Parkin (Middle panel) were measured and normalized by nuclear counts using 

Aperio analytical software (Leica), and are shown as box plots for the non-

neoplastic (N) and GBM brain tissues. (Right panel)  Parkin levels were divided 

by APE1 levels of the corresponding tissues, and the calculated ratios are plotted. 

Each box plot shows the median value (bold horizontal line), the first and third 

quartile (box), and 1.5x interquartile range (whiskers). Individual values are also 

shown as circles. The p values (Student's t-test) are 0.009, 0.0025, 0.0013 for the 

left, middle, and the right panel, respectively.   
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while APE1 signals were higher in GBM tissues than the non-neoplastic tissues (p 

= 0.0025). Parkin/APE1 ratios were calculated, and were significantly lower in the 

GBM tissues than in the non-neoplastic brain tissues (Figure 3-9 C, p = 0.0013). 

Notably, the variance of Parkin/APE1 ratios was significantly lower than that of 

either APE1 or Parkin levels, implying that the loss of Parkin and the gain of APE1 

expression during the tumorigenesis are associated with each other. 

3.5 Discussion  

APE1 is primarily known for repair of oxidized and alkylated DNA damage, 

but also is an important gene expression regulator that activates transcription 

factors such as AP-1 and NFκB (119). Both APE1 functions are pro-proliferation 

and advantageous to cell survival, which explains elevated APE1 expression in 

tumor tissues. Indeed, tumor cells with high APE1 levels acquire drug and radiation 

resistance (165,210-213). Therefore, identifying factors that control APE1 levels 

should provide information relevant to the cancer therapeutics, particularly those 

causing cytotoxicity via DNA damage generation. 

We speculated a possible role of Parkin for controlling intracellular levels of 

APE1, because (1) backup E3 ligase activity was detected in cells defective in 

MDM2 (220), (2) Parkin is induced by p53, and (3) a proteomics study detected 

APE1 as a possible substrate of Parkin (243-245). The present results show that 

Parkin is a quite efficient and highly specific E3 ligase to ubiquitinate APE1. The 

examination of mutant Parkin and PINK1 supports that the ubiquitination reaction 

is dependent on the E3 ligase activity of Parkin and the kinase activity of PINK1. 

Evidence for the direct interaction of APE1 with Parkin was obtained with co-
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immunoprecipitation of APE1 and Parkin and by proximity ligation assay. Based 

on these results, we conclude that Parkin directly ubiquitinates APE1. While 

monoubiquitinated APE1 was readily detected by MDM2 and UBR3 (221,224), 

detection of monoubiquitinated APE1 catalyzed by Parkin and PINK1 was 

relatively difficult. This observation implies that monoubiquitinated APE1 

immediately undergoes polyubiquitination process by Parkin, and APE1 is 

efficiently degraded after the reaction by Parkin. Inhibiting the 26S proteasome by 

MG132 resulted in increase of monoubiquitinated APE1 in a manner dependent 

on Parkin and PINK1. Thus, Parkin with its cofactors Uba1, UbcH7, and PINK1 

ubiquitinates directly, and degrades APE1 through 26S proteasome more 

efficiently than those processed by MDM2 and UBR3. 

While ND20 APE1 (N-terminal 20 a.a. truncation) was degraded by Parkin 

as effectively as the full-length APE1, the stability of ND41 APE1 in the presence 

of Parkin and PINK1 was significantly increased. The results indicated that the N-

terminal polypeptide between 20 to 40 amino residues in APE1 is important for the 

Parkin-dependent ubiquitination. 

The N-terminal 60 amino acid segment in APE1 is not defined well 

functionally and structurally. This domain is unique in the mammalian AP 

endonuclease (266), and is dispensable for the AP-endonuclease activity (267), 

and thus it has been speculated that the N-terminal domain has an 

uncharacterized function unique to mammalian cells. In this context, it is interesting 

that the segment is rich in Lys, the major acceptor for acetylation and 

ubiquitination. The N-terminal segment between 20 and 41 amino acid residues 
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contains six Lys residues, namely, 24K, 25K, 27K, 31K, 32K, and 35K. Acetylation 

of APE1 at these Lys residues was reported (39,215,219,268). These N-terminal 

Lys residues were also the main ubiquitin acceptors for MDM2 and UBR3 E3 

ligases (221,224). Based on a recent quantitative proteomics study, the APE1 

segment 18-RTEPEAKKSKTAA-30, containing Lys 24, 25 and 27, was identified 

to be a possible target of ubiquitination catalyzed by Parkin (245). Therefore, Lys 

residues in the N-terminus may be essential for the post-translational modifications 

that modulates APE1's gene regulatory function (39) and for altering its stability by 

polyubiquitination. 

Although activating Parkin resulted in decrease of endogenous APE1 in 

three cell lines, SH-SY5Y, A549, and 293-PaPi, it should be noted that Parkin was 

active on endogenous APE1 only when stressful conditions (CCCP and H2O2) 

were invoked. We speculate that the modest effect of Parkin on endogenous APE1 

is due to the fact that the majority of endogenous APE1 is compartmentalized in 

the nuclei, which may prevent Parkin from reacting on APE1. Stresses induced in 

the cells activated Parkin system (CCCP in SH-SY5Y) or facilitated mitochondrial 

localization of APE1 from nuclei (H2O2 in 293) (265). Although endogenous APE1 

significantly decreased in A549 without any treatments, transient transfection is 

known to induce stress responses (269,270). Thus, APE1 ubiquitination by Parkin 

is unique in that the main site of the reaction is the cytoplasm, which is supported 

by the proximity ligation assay. In contrast, APE1 ubiquitination by MDM2 and 

UBR3 occurred mainly in the nuclei (220,224). It should be noted that APE1 was 

co-purified with mitochondria, but majority of this APE1 fraction was found to be on 
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the surface of mitochondria (271), which is the major platform for the Parkin driven 

protein degradation. However, it is highly plausible in the event of mitophagy, APE1 

in the mitochondria becomes the target of Parkin as well. 

Although APE1 has been studied for its activities in the nuclei, there is an 

increasing interest in APE1‘s presence in the cytoplasm and its cancer-promoting 

effect (109,272,273). Kakolyris et al. found that APE1 was present in the cytoplasm 

of the normal human tissues (274). More recently, malignant cancer cells in the 

lung exhibited cytoplasmic APE1 at unusually high levels, and was linked to a poor 

prognosis of cancer treatment (109). Vascott et al. found that treatment of cells 

with an APE1 inhibitor E3330 caused cytoplasmic translocation of APE1 (275). 

Frossi also found that H2O2 induced translocation of APE1 into mitochondria (265). 

These studies suggest a cellular mechanism to export APE1 from nuclei. Based 

on these previous studies and present results, it is postulated that APE1 

ubiquitination by Parkin is active in the cytoplasm, in which damaged APE1 

proteins are ubiquitinated and degraded by Parkin to protect cells from undergoing 

malignant transformation. Meanwhile, undamaged, properly folded APE1 in the 

nucleus may be protected from this salvage system by the compartmentalization.  

Originally identified as a gene of which deficiency is responsible for PD, 

Parkin was recently reported as a tumor suppressor gene of which loss of 

heterozygosity was frequently found in GBM (241). Analysis of Parkin and APE1 

expressions in normal and GBM specimens revealed that Parkin/APE1 ratios 

(expression of Parkin relative to that of APE1) in the GBM tissues were uniformly 

low, while those in the non-neoplastic brain tissues showed much higher values 
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and larger variance than those in GBM. This observation implies a correlation 

between the loss of Parkin and the high expression of APE1 in the brain tumor 

tissues. It is possible that a lack of Parkin activity either by loss of heterozygosity 

or by p53 mutation may lead to deficiency in regular APE1 degradation, and may 

accumulate in the cytoplasm as well as in the nuclei. However, the results do not 

determine whether Parkin deficiency is the direct cause of high APE1 activities in 

GBM, or vice versa. More recently, Hu et al. reported that melanoma specific 

inactivation of the Parkin gene (276). According to the study, melanoma specific 

Parkin alterations were observed at significantly high odds ratios over healthy 

control tissues. The alterations included copy number variations, splicing 

mutations, and putatively inactivating mutations including N273S, R275W, and 

P437L which are adjacent to the missense mutations that cause early onset 

Parkinson's disease (R275W and C431F). Further studies are necessary to 

investigate whether Parkin is crucial for the tight regulation of the intracellular level 

and subcellular distribution of APE1 to prevent cells from becoming malignant 

tumors. 
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Chapter 4:    Summary and Future Directions 

4.1 Summary 

Genetic alterations have long been linked to tumorigenesis. In the first 

study, we discuss the discovery of potential biomarkers for head and neck cancer, 

and a potential mechanism for how APE1 mediates inhibition of antioxidants and 

tumor suppressors. In the second study, we discuss using TCGA transcriptome 

database to identify genetic alterations between matched normal and tumor 

tissues. In addition, we discuss the discovery of a dominant physical effect that 

leads to synchronization of genes at the same chromosomal location. In the third 

study, we identified that Parkin and PINK1 are necessary for ubiquitination and 

degradation of APE1. The loss of Parkin was associated with aberrant APE1 in 

glioblastoma multiforme. 

4.1.1 Chapter 1 summary 

The study in chapter 1 identified multiple, potential biomarkers for use in 

HNSCC. Most importantly, we identified potential biomarkers in the early stages of 

cancer that were associated with lymph node invasion, poorly differentiated 

tumors, and decreased survival (Figure 1-7, 1-9, 1-10). This is important because 

identifying patients with poor prognosis in the early stages of cancer allows the 

best opportunity to prevent progression to invasive cancer. Biomarkers that predict 

patient survival, and aggressive phenotypes may lead to improved patient survival. 

By alerting physicians to patients at high-risk for worsened prognosis, treatment 

strategies could be altered to improve patient survival. Additionally, identifying 

these factors provides insight into novel treatment targets. Researchers are 
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already exploring the use of APE1 inhibitors to overcome the treatment resistance 

associated with APE1 overexpression (175).   

We examined for differences in protein expression with regards to clinical 

factors such as survival rates, presence of lymph node invasion, tumor grade, and 

age at diagnosis. We identified reduced protein levels of antioxidant SOD3 in the 

benign tissues in smokers, and in individuals with p16 positive tumors (Figure 1-

9, 1-11, 1-12). Both tobacco usage and HPV are associated with increased 

oxidative risk. Depletion of antioxidants likely led to increased oxidative stress and 

cellular damage, which supported tumor development. We also observed that 

individuals with increased SOD3 protein in benign tissue, typically developed 

cancer later in life (Figure 1-13). Therefore, treatments that upregulate SOD3 in 

individuals with depleted SOD3 may delay cancer development in high-risk 

patients such as tobacco users.  

In chapter 1, we examined possible mechanisms for how APE1 

overexpression contributes to tumor development and treatment resistance. 

Previously, APE1 gene expression has been linked to decreased gene expression 

of tumor suppression DCN in mouse embryonic fibroblasts (122). Because loss of 

DCN has been associated with increased metastasis and mortality, we examined 

if and how APE1 suppresses DCN expression in HNSCC (124-132). Focusing on 

APE1’s redox dependent transcriptional regulator activities, we examined the 

relationship between APE1 and factors involved in antioxidant pathways including 

NRF2, PPARGC1A, SOD2, and SOD3. Importantly, we identified that APE1 

protein levels are significantly elevated in CIS. Overexpression of APE1 has been 
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linked to genomic instability (109,110). Therefore, overexpression of APE1 in CIS 

may lead to increased genomic instability, which allows CIS to progress to invasive 

cancer. Though speculative, therapeutics that regulate APE1 levels may prevent 

patients with early stage cancers from ever developing invasive cancer. We 

identified a negative correlation between NRF2 gene expression and expression 

of DCN, SOD2, and SOD3. In addition, we observed diminished SOD2 and SOD3 

gene expression in cancerous tissues. Decreased expression of these important 

antioxidants may lead to increased oxidative stress within tissues and in turn drive 

further APE1 overexpression.    

4.1.2 Chapter 2 summary 

In chapter 2, we utilized TCGA transcriptome database to identify genes 

that were coordinated synergistically with genes of the COP9 signalosome. The 

COP9 signalosome is involved has been implicated in tumorigenesis. In particular, 

the deneddylase activity of CSN5 regulates key proteins associated with cell cycle 

control including tumor suppressor p53 (180).   Despite the COP9 signalosome 

being studied, little is known about its role in normal tissues. Therefore, this study 

examined COP9 signalosome gene coordination in matched normal and tumor 

tissues to identify if gene coordination differs between normal and tumor tissues. 

Analysis in normal tissues identified significantly coordinated expression of COP9 

genes to that of genes involved in mitochondria-related functional pathways. 

Because this coordination was lost in the matched HNSCC tissues, we speculated 

that COP9 signalosome function is required for coordinated mitochondrial activity. 
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The COP9 signalosome is also associated with regulating DNA repair 

pathways. Although unpublished, observations made by the Izumi lab support a 

functional link between APE1 and the COP9 signalosome as COP9 subunits were 

found to interact with APE1. Additionally USP15, a deubiquitinase that is 

associated with COP9, demonstrated a specific deubiquitinase activity on mono-

ubiquitinated APE1. Recent studies found that COP9 can regulate nucleotide 

excision repair (277,278). These observations including ours indicate that the 

COP9 signalosome is an important cellular factor in the cellular stress response 

and oncogenesis. This study highlights the usefulness of the transcriptome data of 

the matched normal and tumor tissues accessible in TCGA, as the association of 

COP9 genes and mitochondrial gene expression would not have been identified 

using traditional cell culture systems.  

 Another unique knowledge we obtained in chapter 2, was the effects of 

chromosomal location on gene expression correlation in tumor tissues. In this 

study, highly synchronized to the COPS5 subunits were enriched in physical 

proximity to the COPS5 gene had the highest correlation relative to the COP9 

genes. This dominant chromosomal cis-effect on gene expression coordination 

may be another mechanism by which gene expression becomes altered in cancer 

tissues. Use of this technique may identify gene expression linkages that promote 

tumor development and treatment resistance. 

4.1.3 Chapter 3 summary 
 
 In chapter 3, we identified post-translational modification of APE1 by tumor 

suppressor Parkin. As in other cancers, APE1 overexpression is linked to 
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treatment resistance and increased mortality of patients with glioblastoma 

multiforme (165,210,211). Parkin is a tumor suppressor and E3 ubiquitin ligase 

(234). Ubiquitination of APE1 is critical for APE1’s function, and degradation (116). 

Therefore, we hypothesized that Parkin’s E3 ubiquitin ligase function regulates 

APE1 protein levels. In this study, we identified interaction between APE1 and 

Parkin. We identified that Parkin along with PINK1, are needed for efficient APE1 

degradation through post-translational modification. Using digital image analysis 

of immunohistochemistry slides; we identified an inverse relationship between 

Parkin and APE1 in glioblastoma multiforme (Figure 3-9). APE1 overexpression 

in glioblastoma multiforme is linked to treatment resistance and increased mortality 

(116). The loss of Parkin in glioblastoma multiforme likely prevents proper 

degradation of APE1, contributing to APE1 overexpression. Therapeutics 

increasing Parkin expression may restore normal ubiquitination and degradation 

of APE1, which would normalize APE1 expression. Normalization of APE1 

expression may restore treatment sensitivity and increase patient survival. 

4.2 Future directions 

4.2.1 Explore if APE1 gene has a dominant physical effect on the 
transcription of nearby genes In HNSCC 

 
 In chapter 2, we identified a dominant cis-chromosomal effect of COP9 

genes on transcription of nearby genes (153). Using TCGA transcriptome data 

from tumor tissues, we identified that COPS5 gene expression was highly 

correlated with genes in the same chromosomal region. This correlated gene 

expression is thought to be a result of a dominant physical effect of the physical 
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gene location. Therefore, we hypothesize that there is a chromosomal cis-effect 

with genes located near APE1 and that this may upregulate expression of genes 

that contribute to cancer development, and treatment resistance.        

To examine the presence of a chromosomal cis-effect of genes having the 

same chromosomal location of APE1, we employed techniques utilized in chapter 

2. A preliminary examination was performed using TCGA transcriptome data from

matched normal and HNSCC tumor samples. This analysis revealed highly 

correlated expressions of genes involved in DNA repair, and drug-resistance 

relative to APE1. This correlation was observed in HNSCC tissues, but not in non-

neoplastic tissues (Figure 4-1, Table 4-1). Multiple genes involved in DNA repair 

were significantly correlated to APE1 in tumor tissues including poly ADP-ribose 

polymerase (PARP2), SPT homolog facilitates chromatin remodeling subunit 

(SUPT16H), methyltransferase like 3 (METTL3), and protein arginine 

methyltransferases (PRMT5) (Table 4-1).  SUPT16H is involved in the chromatin 

reorganization needed to allow DNA repair proteins to access DNA damage sites 

(279). METTL3 and PRMT5 methyltransferases are involved in recruitment of DNA 

repair factors to DNA damage sites (280,281). Therefore, these genes may 

facilitate increased DNA repair capabilities and contribute to treatment resistance. 
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Figure 4-1: Synchronized gene expression of genes involved in DNA repair 

and cisplatin-resistance  
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Pairwise plots were generated for DNA repair proteins APEX1 and SUPT16H, as 

well as TOX4. The later of which is implicated in cisplatin-resistance. Genes are 

located near 14q11. Data was obtained from TCGA for matched non-neoplastic 

and HNSCC tumors (n=43).   
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Table 4-1:  Synchronization of DNA repair and survival genes physically 

located near APE1 in HNSCC 

Correlation 
Coefficient Relative 

to APE1  

Gene Mbps Non-
neoplastic Tumor Role in 

Repair Reference 

PARP2 -0.112 -0.266 0.802** BER, DSBR Scott et al. 2014 
(20) 

APEX1 0.000 1.000 1.000** 
BER, Redox 

gene 
regulation 

Seibold et al. 
2015 (283) 

SUPT16H 0.896 0.171 0.845** HR Oliveira et al. 
2014 (279) 

TOX4 1.021 -0.113 0.743** Cisplatin- 
resistance 

Bounaix Morand 
du Puch et al. 

2011 (282) 

METTL3 1.043 -0.008 0.512* NER Xiang et al. 2017 
(280) 

PRMT5 2.465 0.322 0.639** HR Clarke et al. 2017 
(281) 

Correlation coefficients were generated for genes involved in DNA repair and cell 

survival relative to APE1. Mbps: location in Chr 14 relative to APEX1. 42 matched 

non-neoplastic and tumor tissues. Role in Repair:  BER: DNA base excision repair; 

DSBR: DNA double-strand break repair; HR: DSBR via homologous 

recombination; NER: DNA nucleotide excision repair. *p < 1E-3 in; **p < 1E-6. No 

genes in non-neoplastic tissues demonstrated statistically significant correlation.  
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If APE1 overexpression induces expression of genes involved in DNA 

repair, then cells may have enhanced DNA repair capabilities. This increased DNA 

repair may minimize the DNA damaging effects of chemoradiotherapy, which is 

necessary to kill tumor cells. In addition, we found that APE1 was significantly 

correlated to TOX high mobility group box family member 4 (TOX4), which has 

been implicated in cisplatin drug resistance (282). Cisplatin is commonly used in 

the treatment of head and neck cancers.  

Overexpression of APE1 has been linked to cisplatin resistance, which 

contributes to poor patient outcome (284). The dominant chromosomal cis-effect 

observed between APE1 and TOX4 may be one way that APE1 is contributing 

towards treatment resistance (Table 4-1) (210). It is likely that tumors lose 

coordinated gene regulation and that the chromosomal location becomes a 

dominant factor in regulating gene expression. Newer research has established 

that genes are encapsulated locally in a chromosomal conformation named 

topologically associated domains (TADs) that consist of transcriptionally regulated 

units (285,286). Alterations of TAD structures were associated with tumorigenesis. 

Identifying TAD structures specific to HNSCC may identify tumors that are more 

sensitive to certain cancer treatments, which could improve patient survival. 

4.2.2 Assessing if APE1 increases NRF2 activity to promote 

downregulation of DCN, and SOD3 

In chapter 1, we originally hypothesized that APE1 suppressed DCN and 

SOD3 indirectly through NRF2. The proposed model in this study is largely based 

on correlative analysis of protein and gene expression data. This model could be 
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more firmly supported by the addition of in vitro experiments including promoter 

assays and chromatin immunoprecipitation. Despite a positive correlation between 

APE1 and NRF2 protein expression, no correlation was observed between APE1 

and NRF2 gene expression (Table 1-2, Table 1-3). However, APE1 is known to 

interact with NRF2 and increase NRF2’s transcriptional regulatory activity (141). 

APE1 may still modulate expression of DCN and SOD3 by increasing NRF2 

activity. In chapter 3 we utilized the proximity ligation assay technique to detect 

interaction between APE1 and Parkin in cell lines (116). This same technique can 

be used in fixed tissues. To support our hypothesis that NRF2 interacts with APE1, 

the proximity ligation assay in HNSCC tissue samples can be used to identify 

interaction between APE1 and NRF2. Although APE1 and NRF2 physical 

interaction supports that APE1 binds to NRF2 and potentially increases NRF2 

activity, more direct in vitro assays are needed to confirm this. Using head and 

neck cancer cell lines, I would perform immunoprecipitation to confirm APE1 and 

NRF2 binding. In addition, I would need to assess if transcription of known NRF2 

downstream targets are decreased in cells with wildtype APE1 as compared to 

cells with loss of APE1.  

We propose that NRF2 suppresses transcription of DCN, SOD2, and SOD3. 

This was supported by our results where we identified negative gene correlation 

between NRF2, DCN, and SOD3 (Table 1-2). As previously mentioned in the 

discussion section of chapter 1, there are NRF2 binding sites within the promoter 

region of DCN, and SOD3 (Table 1-1). Chromatin immunoprecipitation assay 

(ChIP) is a technique commonly used to assess binding of proteins to specific DNA 
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regions. In addition, transcription of DCN, and SOD3 can be measured using 

luciferase promoter assay in cells with wildtype NRF2 and NRF2 knockdown. 

These assays combined can confirm whether NRF2 binds to DCN, and SOD3 

promoter regions, and whether the presence of NRF2 is associated with decreased 

transcription of DCN, and SOD3.    

Previous studies have supported that NRF2 suppresses SOD2 (121). We 

observed a negative correlation between NRF2 and SOD2 gene correlation in 

HNSCC (Table 1-1). However, it is not clear how NRF2 mediates SOD2 

suppression. Unlike SOD3, transcription factor binding site analysis demonstrated 

no NRF2 binding site within the SOD2 promoter regions. PPARGC1A is a known 

transcriptional coactivator of NRF2 (287). If NRF2 is suppressing SOD2 gene 

transcription, it is possible that PPARGC1A is modulating this effect. However, 

studies have reported a positive regulatory role between PPARGC1A and SOD2 

(152). If NRF2 is suppressing SOD2 gene expression, PPARGC1A may enhance 

this through acting as an NRF2 coactivator. To examine whether PPARGC1A 

enhances NRF2-mediated inhibition of SOD2, transcription of SOD2 should be 

assessed using luciferase promoter assay in cells with wildtype PPARGC1A and 

PPARGC1A knockdown.    

Copyright © Christina Ann Wicker 2017



170 

Appendix A:   List of Supplemental Figures and Tables 

Supplemental Figures 

Supplemental Figure C-1:  Ki-67 and Desmin as representative controls for nuclear and 

total cellular staining. ............................................................................................. 173 

Supplemental Figure C-2:  APE1 survival analysis:  low versus high protein expression

 ............................................................................................................................. 174 

Supplemental Figure C-3:  PPARGC1A survival analysis: low versus high protein 

expression ............................................................................................................ 175 

Supplemental Figure C-4:  DCN survival analysis: low versus high protein expression176 

Supplemental Figure C-5:  SOD3 survival analysis: low versus high protein expression

 ............................................................................................................................. 177 

Supplemental Figure C-6:  NRF2 survival analysis: low versus high protein expression

 ............................................................................................................................. 178 

Supplemental Figure C-7:  Gene expression survival analysis for APEX1, PPARGC1A, 

DCN, SOD1, SOD2, and SOD3 ............................................................................ 179 



  

171 
 

 

 

Supplemental Tables 

 

Supplemental Table D-1:  The COPS5 correlation coefficient table list includes 1000 

highest |r| values relative to the expression of COPS5 in the normal and tumor 

tissues of head and neck....................................................................................... 180 

Supplemental Table D-2:  GO and KEGG pathways that are over-represented in the 

normal and tumor oral tissues based on the COPS5 correlation coefficient table. 

(XLSX 147 kb) ....................................................................................................... 180 

Supplemental Table D-3: GO and KEGG pathways over-represented by COPS5 

expression correlation in the two major anatomical sites in the head and neck (oral 

cavity and tongue). ................................................................................................ 180 

Supplemental Table D-4:  GO and KEGG pathways over-represented in the normal and 

tumor lung tissues based on the COPS5 correlation coefficient table. ................... 180 

Supplemental Table D-5: Genes under the chromosomal cis-effect in the HNSCC 

tissues................................................................................................................... 180 

Supplemental Table D-6:  KEGG pathway analysis for the TP53 genes ...................... 180 

 

 

 

  



  

172 
 

Appendix B:   List of Abbreviations

 



173 

Appendix C:   Supplemental Material for Chapter 1 

Supplemental Figure C-1:  Ki-67 and Desmin as representative controls for nuclear 

and total cellular staining.  

IHC for Ki-67 and Desmin were analyzed to determine the accuracy of Aperio’s nuclear, 

and the positive pixel count algorithm used for total cellular protein.  
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Supplemental Figure C-2:  APE1 survival analysis:  low versus high protein 

expression 

Graphs represent the top significant Kaplan Meier survival curves comparing low vs. high 

protein expression. Top Row:  % Nuclear APE1 protein expression in benign, CIS, and 

invasive tissue. Bottom Row:  % Total Cellular APE1 protein expression in benign, CIS, 

and invasive tissue. * Denotes significance p<0.05 LR: Mantel-Haenszel Log-Rank, GW= 

Peto & Peto modification of the Gehan-Wilcoxon statistical tests.  
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Supplemental Figure C-3:  PPARGC1A survival analysis: low versus high protein 

expression 

Graphs represent the top significant Kaplan Meier survival curves comparing low vs. high 

protein expression. Top Row:  % Nuclear PPARGC1A protein expression in benign, CIS, 

and invasive tissue. Bottom Row:  % Total Cellular PPARGC1A protein expression in 

benign, CIS, and invasive tissue. * Denotes significance p=0.057 LR: Mantel-Haenszel 

Log-Rank, GW= Peto & Peto modification of the Gehan-Wilcoxon statistical tests.  
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Supplemental Figure C-4:  DCN survival analysis: low versus high protein 

expression  

Graphs represent the top significant Kaplan Meier survival curves comparing low vs. high 

protein expression. Top Row:  % Nuclear DCN protein expression in benign, CIS, and 

invasive tissue. Bottom Row:  % Total Cellular DCN protein expression in benign, CIS, and 

invasive tissue. * Denotes significance p<0.05LR: Mantel-Haenszel Log-Rank, GW= Peto 

& Peto modification of the Gehan-Wilcoxon statistical tests.  
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Supplemental Figure C-5:  SOD3 survival analysis: low versus high protein 

expression 

Graphs represent the top significant Kaplan Meier survival curves comparing low vs. high 

protein expression. Top Row:  % Nuclear SOD3 protein expression in benign, CIS, and 

invasive tissue. Bottom Row:  % Total Cellular SOD3 protein expression in benign, CIS, 

and invasive tissue. * Denotes significance p<0.05LR: Mantel-Haenszel Log-Rank, GW= 

Peto & Peto modification of the Gehan-Wilcoxon statistical tests.  
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Supplemental Figure C-6:  NRF2 survival analysis: low versus high protein 

expression 

Graphs represent the top significant Kaplan Meier survival curves comparing low vs. high 

protein expression. Top Row:  % Nuclear NRF2 protein expression in benign, CIS, and 

invasive tissue. Bottom Row:  % Total Cellular NRF2 protein expression in benign, CIS, 

and invasive tissue. * Denotes significance p<0.05 LR: Mantel-Haenszel Log-Rank, GW= 

Peto & Peto modification of the Gehan-Wilcoxon statistical tests.  
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Supplemental Figure C-7:  Gene expression survival analysis for APEX1, 

PPARGC1A, DCN, SOD1, SOD2, and SOD3 

Survival analysis was performed and compared low versus high gene expression in 

patients with pathology stage T4a HNSCC. Gene expression data obtained from TCGA 

database. * Denotes significance p<0.05 LR: Mantel-Haenszel Log-Rank, GW= Peto & 

Peto modification of the Gehan-Wilcoxon statistical tests.   
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Appendix D: Chapter 2 Supplemental Material 

Excel files for supplemental tables D-1 through D-6 can be found here: 

https://doi.org/10.1186/s12864-016-3313-y 

Supplemental Table D-1:  The COPS5 correlation coefficient table list includes 1000 

highest |r| values relative to the expression of COPS5 in the normal and tumor tissues of 

head and neck. 

Supplemental Table D-2:  GO and KEGG pathways that are over-represented in the 

normal and tumor oral tissues based on the COPS5 correlation coefficient table. (XLSX 

147 kb) 

Supplemental Table D-3: GO and KEGG pathways over-represented by COPS5 

expression correlation in the two major anatomical sites in the head and neck (oral cavity 

and tongue). 

Supplemental Table D-4:  GO and KEGG pathways over-represented in the normal and 

tumor lung tissues based on the COPS5 correlation coefficient table.  

Supplemental Table D-5: Genes under the chromosomal cis-effect in the HNSCC tissues 

Supplemental Table D-6:  KEGG pathway analysis for the TP53 genes 

https://doi.org/10.1186/s12864-016-3313-y
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Appendix E: Chapter 1 Summary of Conclusions 

Overall protein expression (Figure 1-6): 

• Nuclear and total APE1 increased in CIS and more so in invasive tissue.

• Nuclear and total DCN decreased in CIS and invasive.

• Slight increase in total NRF2 in invasive as compared to benign.

• Nuclear and total SOD3 decreased in CIS and more so in invasive.

• Nuclear PPARGC1A decreased in CIS and invasive.

Correlation of Protein Expression (Table 1-3): 

• There was a positive correlation with total cellular APE1 and DCN in benign tissue

(p<0.05). However, there was a negative correlation in CIS (p<0.01). This suggests

loss of coordination between APE1 and DCN within the tumor environment.

• Positive correlation between total cellular PPARGC1A and SOD3 in invasive

(p<0.05) as well as between nuclear PPARGC1A and SOD3 (p<0.01).

• Positive correlation between nuclear APE1 and NRF2 in benign (p<0.01) and

invasive tissue (p<0.05). Additionally there is a positive correlation between

nuclear APE1 in benign tissue with nuclear NRF2 in CIS (p<0.01). This supports

the link between APE1 and NRF2 expression.

• There was a positive correlation found between nuclear NRF2 and PPARGC1A

protein expression in benign tissue (p<0.01). This was also observed between

nuclear NRF2 in invasive and PPARGC1A in CIS (p<0.05). Total NRF2 in benign

with total PPARGC1A in benign, and invasive (p<0.01). As well as total NRF2 in

CIS tissue with total PPARGC1A in benign and invasive (p<0.01) as well as CIS

(p<0.05).
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• A significant negative correlation was observed between total APE1 in benign with

total SOD3 in CIS (p<0.05). Additionally, there was a significant negative

correlation between total APE1 and nuclear SOD3 in benign tissue (p<0.05).

Correlation of gene expression (Table 1-2): 

• Comparing APEX1 in non-neoplastic tissue to SOD3 in non-neoplastic, there was

a negative correlation observed (p=0.09). There was also a negative correlation

between APEX1 and PPARGC1A in non-neoplastic tissues (p=0.095).

• There was a negative correlation between APEX1 in tumor and SOD3 in non-

neoplastic tissue (p=0.059). There was a positive link between APEX1 with

PPARGC1A in tumor (p<0.05).

• DCN in non-neoplastic tissue was positively associated with SOD3 in tumor

(p<0.01). This positive correlation was maintained between DCN and SOD3 in

tumor tissues (p<0.01).

• In non-neoplastic tissue, NFE2L2 had a negative correlation with DCN, SOD3,

SOD2, and PPARGC1A (p<0.01).

Multivariate analysis of clinical factors: 

• Elevated total and nuclear DCN as well as total SOD3 in benign tissue of patients

with poorly differentiated tumors. Decreased PPARGC1A in CIS tissue of patients

with poorly differentiated tumors (Figure 1-10).

• Elevated total and nuclear APE1 in CIS tissue within the primary tumor of patients

who also had lymph node invasion (Figure 1-9).

Survival Data with Protein Expression: 

• Significantly reduced survival in patients with high total APE1 in CIS tissue (LR

p=0.0243, GW p=0.0326) (Figure 1-7).

• Patients with high total PPARGC1A in invasive tissue had significantly reduced

survival (LR p=0.0281, GW p=0.0575)(Figure 1-7).
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• High nuclear DCN in benign tissue was linked to reduced survival (LR p=0.0493)

(Figure 1-7).

• Low levels of total SOD3 in invasive tissue was linked to reduced survival (LR

p=0.0797, GW p=0.0377) (Figure 1-7).

Survival data based on gene expression in T4a HNSCC 

• Significantly reduced survival with high APE1 gene expression in pathology stage

T4a tissues (LR p=0.0148, GW p=0.0101) (Figure 1-8).

• There was no significant difference in survival in the gene expression of NRF2,

DCN, PPARGC1A, SOD1, SOD2, or SOD3 in pathology stage T4a tissues (Figure

C-7).
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