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 IMPLICATIONS OF THERMAL EVENTS ON THRUST EMPLACEMENT SEQUENCE
 IN THE APPALACHIAN FOLD AND THRUST BELT: SOME NEW VITRINITE

 REFLECTANCE DATAl

 SHARON E. LEWIS AND JAMES C. HOWER2

 Montana Bureau of Mines and Geology, Montana Tech, Butte, Montana 59701

 ABSTRACT

 Interpretation of existing geothermometry data combined with new vitrinite reflectance data, within the
 framework of a detailed composite tectonic setting, elucidates the evolution of structural sequencing of
 thrust sheets during the Alleghanian event in the Valley and Ridge Province in Virginia. That the Pulaski
 thrust sheet preceded the Saltville thrust sheet in the emplacement sequence, and that both reached
 thermal maxima prior to, or during, respective emplacement may be inferred from vitrinite and other
 geothermometry data. In contrast, the Narrows and St. Clair thrust sheets probably each attained their
 thermal maximum after emplacement. New vitrinite reflectance data are consistent with CAI and other
 temperature-sensitive information heretofore ascertained in the Valley and Ridge Province and support
 previously established maximum temperatures of ca. 200°C for strata of the Saltville thrust sheet as young
 as Mississippian. Rmax values from Mississippian coals in the Price Formation of the Saltville sheet, beneath
 but near the Pulaski thrust, range from 1.61% to 2.60%. At the structural front of the fold and thrust belt,
 a single Mississippian coal sample from the Bluefield Formation yields an Rmax value of 1.35%. Those coals
 showing highest Rmax values are more intensely fractured with secondary minerals filling the fractures.
 Warm fluids introduced during tectonic events may have played at least as important a role as that of
 combined stratigraphic and tectonic burial.

 INTRODUCTION

 Although fold and thrust belts typically are

 generated during a singular orogenic event,

 internally they are a composite of discrete
 structural sequences. Within crystalline por-

 tions of orogens, timing of metamorphism

 and plutonism is crucial for determining

 thrust sequences and docking order of ter-
 ranes, (e.g., Rast 1989; Dallmeyer et al.

 1986). For fold and thrust belts, deciphering

 the thermal history of sedimentary strata pro-

 vides similar, equally important data con-
 straining timing and the emplacement se-

 quence of thrust systems.

 The Appalachian Valley and Ridge Prov-

 ince is an example wherein geothermometry

 and related data, combined with an evolving
 understanding of the structural relationships

 of component thrust sheets, provide keys to

 Appalachian thrust belt evolution. Data from
 vitrinite reflectance (this study; Ingram and

 Rimstidt 1984), conodont alteration index

 ' Manuscript received September 8, 1989; ac-
 cepted July 31, 1990.

 2 University of Kentucky, Kentucky Center for

 Applied Energy Research, 3572 Iron Works Pike,
 Lexington, Kentucky 40511.

 [JOURNAL OF GEOLOGY, 1990, vol. 98, p. 927-942]
 © 1990 by The University of Chicago. All rights

 reserved.

 0022-1376/90/9806-0011$1.00

 (CAI) (Epstein et al. 1977), "illite crystallin-
 ity" and clay mineralogy (Zentmeyer 1985),

 and the level of organic maturation (Stanley

 and Schultz 1983) contribute independent in-

 dicators of conditions of subgreenschist fa-

 cies "metamorphism" in a portion of the Vir-
 ginia Valley and Ridge Province of the

 Southern Appalachians (figs. 1 and 2). This
 "metamorphism" constrains the time of em-

 placement of individual thrust sheets and
 thus relates to the overall thrust emplacement

 sequence as well.

 TECTONICS AND DISTRIBUTION OF STRATIGRAPHIC

 SEQUENCES

 Four major thrust systems (figs. 2 and 3),

 named for their lower bounding thrusts, jux-

 tapose Paleozoic strata between the meta-

 morphic rocks of the Blue Ridge Province

 (fig. 2) on the southeast and the Appalachian

 Plateau on the northwest, where the struc-

 tural front of the fold and thrust belt is
 marked by the axis of the Glen Lyn syncline
 (McDowell 1982) beneath the St. Clair thrust.

 The structural style and internal complexity

 of the Pulaski system, as depicted by Bartho-

 lomew (1987) and Schultz (1988), occupies an
 intermediate relationship between the struc-

 turally superjacent Blue Ridge thrust system

 and the more typical decollement thrust sys-

 tems of the Valley and Ridge farther west.

 Thrust sheets structurally below the Pulaski

 927
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 FIG. 1.-Map showing location of sample area
 relative to state and county boundaries.

 sheet neither possess the internal complexity

 exhibited by the Pulaski sheet (Lewis and

 Bartholomew 1989), nor have as much hori-
 zontal displacement as the Pulaski thrust

 sheet (Bartholomew 1987).

 Each major Valley and Ridge thrust sheet

 in southwestern Virginia has an endemic stra-

 tigraphy (fig. 4). Composite stratigraphic sec-

 tions compiled by Bartholomew (1987) for
 each thrust sheet permit reconstruction of

 stratigraphy intrinsic to that thrust sheet (fig.
 4). Reconstruction of the particular strati-

 graphic columns from which our samples,

 and other data pertinent to this discussion,

 were collected, is essential for evaluating

 possible effects of stratigraphic burial.
 Mississippian coals crop out adjacent to

 the present day leading edge of, and in win-
 dows through the Pulaski sheet. Between the

 outcrop belts, drill hole data (Bartholomew

 and Lowry 1979; Stanley and Schultz 1983)

 provide limited information on coals within

 the Saltville sheet below the Pulaski thrust
 (figs. 2 and 3). These coals occur within the

 lower 40 m of the upper Price Formation
 (Mississippian) (fig. 4), just above the marine

 to nonmarine transition; environments of de-

 position of the Price Formation are discussed

 by Kreisa and Bambach (1973) and White-

 head (1979). The lower and upper of the

 two principal recognized coal units are the

 "Langhorne," and the "Merrimac," respec-

 tively. Environments of deposition of these

 Price Formation coals are addressed by
 Brown (1983) and Zentmeyer (1985). Approx-
 imately 0.5 km of Mississippian rocks remain
 preserved stratigraphically above the coal-

 bearing strata (fig. 4), but structurally be-

 neath the Pulaski thrust in the Price Mountain
 window (fig. 3). Tournaisian (Early Mississip-

 pian) rocks are the youngest overridden

 strata exposed on the Saltville thrust sheet.

 Middle Ordovician limestones (CAI obtained
 by Epstein et al. 1977) on the Saltville thrust

 sheet are stratigraphically overlain by ap-
 proximately 3 km of strata, including coal-
 bearing Mississippian strata similar to that of

 the Price Mountain window (fig. 4).

 Mississippian coal also crops out along the

 southeastern flank of the structural front

 where, in the Glen Lyn syncline (fig. 4) north

 of Bluefield, West Virginia, preserved Penn-

 sylvanian and Mississippian stratigraphic

 overburden was at least 1.5 km (Cooper
 1961). Where limestones of the Mississippian

 Greenbrier Formation (Visean) are exposed

 close to the structural front, they lie strati-
 graphically beneath (fig. 4) approximately 1

 km of strata that includes the Bluefield For-
 mation (0.2 km), which contains the coal,

 plus part of the overlying Hinton Formation

 (0.8 km). No strata older than Devonian are
 exposed in this part of the Glen Lyn syncline,

 but the pre-Devonian stratigraphic section is
 probably similar to that above the structur-

 ally superjacent St. Clair thrust (fig. 4). On

 the St.Clair thrust sheet, approximately 2.5

 FIG. 2.-Generalized geologic map (modified after Bartholomew 1987 and Schultz et al. 1986) showing
 distribution of Mississippian-age strata and major thrust faults. Numbers in parentheses are Rmax values
 for surface sample locations and range of Rmax values for drill hole locations from table 1. YSF = Yellow
 Sulphur fault; 7.5 minute quadrangle abbreviations: NAR = Narrows, NEW = Newport, BLA = Blacks-
 burg, RN = Radford North, STA = Staffordsville, WF = White Gate, PUL = Pulaski. SE-NW line is
 the line of cross section in figure 3. Dark line within the shaded Mississippian outcrop belt on the Saltville
 thrust sheet follows the Price Formation coals. G-Greenbrier Formation in the Glen Lyn syncline.
 CO-Cambro-Ordovician strata; SD-Siluro-Devonian strata.
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 930  S. E. LEWIS AND J. C. HOWER

 km of Ordovician to Devonian strata strati-
 graphically overlie middle Ordovician lime-
 stones from which CAI was obtained by Ep-
 stein et al. (1977).

 VALLEY AND RIDGE THERMAL HISTORY

 Previous Work.-Campbell and others

 (1925) delineated the various Valley Fields on
 the basis of coal rank as defined by the "fuel
 ratio" (fixed carbon/volatile matter). By their
 definition, the Price Mountain (Montgomery
 County) and Pulaski (Pulaski County) fields
 fall into the semi-anthracite rank range. Coals
 from the Brush and Little Walker Mountain

 areas (both sampled by us) are described by
 them as including both semi-anthracite and
 low-volatile bituminous rank coals. Fields,
 not sampled for this study but described by
 Campbell and others (1925), southwest of the
 Price-Brush-Little Walker Mountains area in-
 clude semi-anthracites from the Max Mead-
 ows field (Wythe County) and low-volatile
 bituminous coals from Reed Creek (Wythe
 County), Lick Creek, and Bland (Bland
 County) fields. Their samples from the Lick
 Creek and Bland County fields are the only
 ones in the Narrows thrust sheet (below the
 Saltville fault). The data of Campbell and
 Others (1925) suggest that this field has the
 lowest rank coals from any of the Valley
 Fields. Farther west, out of the Valley Fields,
 Hower and Rimmer (1990) report that low-
 volatile bituminous coals from the Pocahon-
 tas basin in southern West Virginia-Virginia
 decrease in rank 15-20 km eastward from
 central Buchanan County, Virginia, toward
 the structural front and the St. Clair fault.

 Stanley and Schultz (1983) provided chemi-
 cal analyses for the major coal beds in W-
 6534 (Sunnyside test; our samples 8085-8087)
 and W-6535 (Merrimac test; our samples

 FIG. 4.-Stratigraphic columns showing relative
 stratigraphy on Pulaski (western Salem synclor-
 ium), Saltville, Narrows, and St. Clair thrust sheets
 and in Glen Lyn synclinorium (modified after Bar-
 tholomew 1987). P-Mc-Pennsylvanian-Mississip-
 pian clastic sequence; Mbf-Bluefield Fm;
 Mg-Greenbrier Fm; Mmc-Maccrady Fm; Mpr
 (u;l;c)-Price Fm (upper, lower, and Cloyd mem-
 bers); Dc-Chemung Fm; Ss-Silurian sand-
 stones; Oc-Ordovician clastic sequence;
 Ols-Middle Ordovician limestones; O-Ccb-Or-
 dovician-Cambrian carbonates; Cr-Rome Fm.

 FIG. 3.-Generalized SE-NW balanced cross section with probable restored Alleghanian configuration projected above present-day topography.

 PC-Price Fm coals; BC-Bluefield Formation coal; PMW-Price Mountain window; CW-Christiansburg window; P-Pennsylvania; M-Mississip-  pian; G-Greenbrier Fm; D-Devonian; OS-Ordovician-Silurian; OL-Middle Ordovician limestones; CO-Cambrian-Ordovician carbonates;  Cr-Rome Fm. Horizontal = vertical scale.
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 S. E. LEWIS AND J. C. HOWER

 8081-8084) cores. Volatile matter (daf)
 ranges from 12.6-19.2% for the Sunnyside
 coals and 12.3-16.7% for the Merrimac coals.

 If "coals" with greater than 20% ash (dry)
 are excluded, the range for coals from both
 cores is reduced to 12.6-14.9% volatile
 matter.

 Sample Locations.-Vitrinite reflectance

 and anisotropy values (table 1) were deter-
 mined for 29 samples from 11 separate loca-
 tions in Montgomery and Pulaski counties in
 Virginia and for one sample from northwest-
 ern Giles County, Virginia (figs. 1 and 2).
 Price Formation coals were sampled from
 both the outcrop belt and drill core holes just
 northwest of the trace of the Pulaski thrust

 and from the Price Mountain window. All
 samples, except one, are from the upper

 (nonmarine) member of the Early Mississip-
 pian (Tournaisian) Price Formation. The ex-

 ception (8063) is from the Middle Mississip-

 pian (Visean) nonmarine Bluefield Formation
 on the overturned southeastern limb of the
 Glen Lyn syncline near the Virginia-West
 Virginia border in Giles County, Virginia
 (fig. 2).

 Coal Characteristics and Rank.-Vitrinite

 maximum-reflectance and anisotropy (Rmax -
 Rmean/Rmax) values of Mississippian-age coal
 samples for this study are given in table 1.
 These coals generally are within the range for
 semi-anthracite rank (see Davis 1978, for de-
 lineation of rank by reflectance) but exhibit
 variations both vertically and geographically.
 The top coal from Coal Bank Hollow #1
 (8065) and the three coals from Lick Run #5
 (8071-8073) are within the low volatile bitu-

 minous range; two of the lower coals from
 Coal Bank Hollow #1 (8066; 8068) are transi-
 tional from low volatile bituminous to semi-
 anthracite in rank. The upper coal from the
 State Highway 100 (8061) outcrop shows a
 medium volatile bituminous reflectance value

 (1.30% Rmax), which is likely the consequence
 of surface weathering of that coal (Ingram
 and Rimstidt 1984) and not an indication of

 actual rank. The sample (8063, table 1) from

 the Bluefield Formation also has a medium
 volatile bituminous reflectance (1.35% Rmax).

 Surficial processes may have reduced the
 true rank here as well, because the sample
 was obtained within only 30 cm of the surface
 of the exposure.

 The presence of probable epigenetic miner-
 als was determined by optical examination of
 the coals (comments column of table 2), sup-
 plemented by reconnaissance X-ray diffrac-
 tion analysis of low-temperature ashes (K. A.
 Frankie and F. L. Fiene 1983 pers. comm.).
 Aside from quartz and kaolinite, potential
 epigenetic minerals include sulfides: pyrite,
 marcasite, and sphalerite (fig. 5); and carbon-

 ates: calcite, magnesite, dolomite, ankerite,
 and siderite. Carbonates occur as both veins
 and cements between brecciated coal frag-

 ments (fig. 6). Chlorite (composition un-

 known) occurs from trace amounts up to 20%
 in several ashes. Illite "crystallinity" (M. R.
 Bayan 1989 pers. comm.), determined for a
 variety of lithologies from the "Merrimac"
 seam (from a core that included our samples
 KCER 8081-8084), generally falls near the
 diagenesis/anchizone transition, as would be

 expected based on the vitrinite maximum re-
 flectances of the associated coals in that core
 (2.13-2.60% Rmax). Illite composition, partic-

 ularly the presence of NHI = illite common
 in higher rank coals, can complicate the inter-
 pretations of "crystallinity" (Juster et al.
 1987; Daniels and Altaner 1990; Daniels et al.
 1990).

 Geothermometry: Depth Indicators.-

 Conodont alteration index values (CAI) (Ep-
 stein et al. 1977; Harris 1979) provide the
 most extensive geothermometry data avail-
 able for the entire Valley and Ridge Province.
 CAI values are highest on the southeastern-
 most thrust sheets and decrease successively
 northwestward (fig. 6). Middle Ordovician
 rocks on the Pulaski sheet yield CAI values
 up to 5 and generally are between 4 and 5.
 Regionally, on the Saltville thrust sheet, CAI
 values range from 3 to 4 in Middle Ordovician
 limestones, whereas, in Middle Ordovician
 limestones in the St. Clair thrust sheet, CAI
 values range from 2 to 3 (Epstein et al. 1977;
 Harris 1979). In Mississippian limestones
 near the structural front beneath the St.Clair

 thrust, CAI values (Epstein et al. 1977; Har-
 ris 1979) are 2-2.5 except locally near Glen
 Lyn, Virginia where they reach 3 or higher.

 Within part of our sampling area, Zentmeyer
 (1985) used CAI values of Epstein et al.
 (1977) plus her study of clay mineralogy
 (dickite/kaolinite) and "illite crystallinity" to
 suggest a temperature range of 150°C to

 932
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 TABLE 1

 LOCATION AND VITRINITE REFLECTANCES OF VALLEY FIELD COAL SAMPLES

 Vitrinite Reflectance Anistropy

 Rmax-Rmean/ Depth of Base

 Sample Location Rmax s.d. Rmean s.d. Rmax (m) Comments  Bluefield Fm.

 8063

 Price Fm.

 8057  8060  8058  8059  8061  8062  8065  8066  8067  8068  8069  8064  8071 I  8070 I  8072 I  8085  8086  8087  8073 1  8075 1  8074 1  8076 1  8077 1  8078 1  8081  8082  8083  8084

 NOTE.-wth = weathered.

 3len Lyn  Foster Mining Co.  Empire Mine  Route 11  Weldon  Route 100  Route 100  Coal Bank Hollow #1  Coal Bank Hollow #1  Coal Bank Hollow #1  Coal Bank Hollow #1  Coal Bank Hollow #1  3t. Valley Mine Dump  Lick Run #5  Lick Run #5  Lick Run #5  /DMR W-6534  /DMR W-6534  /DMR W-6534  Price Mountain #6  Price Mountain #6  Price Mountain #6  ?rice Mountain #6  ?rice Mountain #6  'rice Mountain #6  VDMR #3  IDMR #3  VDMR #3  IDMR #3

 1.35
 2.20  2.39  2.56  2.33  2.18

 1.30  1.92
 2.03  2.20  2.00  2.12  2.13

 1.61  1.61  1.98
 2.28  2.38  2.21  2.28  2.26  2.07  2.39  2.19  2.40  2.13  2.19  2.52  2.60

 12 1.21 14  12  11  17  13  13
 09

 12  10  16
 94  25

 16
 07

 13  13  13  15  10  15  10  16  13  14  16  13  16  13
 09

 2.05  2.21  2.40  2.16  2.01
 1.20  1.81  1.92

 2.02
 1.84  1.99  1.96  1.51  1.53  1.88

 2.13  2.16
 1.97

 2.10  2.10
 1.92

 2.27  2.08  2.25  2.00  2.01  2.35  2.35

 14
 20  22

 19
 24

 11  14  14
 25  16  23  19  09  14  16  18  24  22  17  16  18  17  18  19  17  19  20  24

 wth  wth, lower  wth, upper

 103
 068  075  590  073  078  078  069  064  084  080  061  080  062  048  061  066  092

 109
 047  071  073  051  063  063  061  082  067  096

 surface  surface  surface  surface  surface  surface  surface

 3.3  4.1  7.7

 10.7  12.3

 surface

 7.4  9.0

 10.0

 363.9  364.9  369.7

 19.7
 26.4  27.2  33.9  33.6  34.1

 367.9  380.5  427.1  435.6
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 TABLE 2

 MINERALOGY OF VALLEY FIELD COAL SAMPLES

 Sample Rutile Pyrite Marcasite Calcite Mg-Calcite Dolomite Ankerite Siderite Quartz Kaolinite Illite Chlorite Feldspar Others

 T A A C

 Bluefield Fm.

 8063

 Price Fm.

 8057  8060  8058  8059  8061  8062  8065  8066  8067  8068  8069  8064  8071  8070  8072  8085  8086  8087  8073  8075  8074  8076  8077  8078  8081  8082  8083  8084

 T T  T T  T T  C C

 T  T

 T T  T  T  T T  T T  T  T T

 T

 C

 1
 Ta

 T  T

 Ta

 C Ta,b  T

 C T

 T  T

 T T

 T

 C T

 T

 T T

 T  A

 C C  A C  T

 T  T  C  T

 T T

 T  T

 C T  A T

 NOTE.-T = <1%; C = 1-5%; A = >5%. 1 = sphalerite observed microscopically; 2 = marcasite observed microscopically.

 Gypsum.  Zircon.

 T  T T  T  T  T  T  T  T  T  T T  T  T  T T  T T  T  T  T T  T C  T T

 T

 T T  T  T T  T T  T T  T T

 T

 A A  A A A  A C A  A A C  A A  A A A T  A A  A A  A A  A C A T  A A A T  A A  A A T  A A C  A A C  A A C C  A A C T  A A  A C T T  A C A C  A A A T  A A  A C  A A  A C A C  A C A C  A A C T  C C

 T

 T  T  T  T  T  A  T

 T  T  T  T  T  T  T 1,2  T 1,2  T 2

 2
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 THERMAL EVENTS ON THRUST EMPLACEMENT SEQUENCE

 FIG. 5.-Photomicrograph of carbonate cement in corpocollinite breccia.

 FIG. 6.-Diagram depicting predeformational strata along line of cross section shown in figure 2, with
 inferred isothermal lines based on temperature ranges from CAI values and vitrinite reflectance values.
 CAI values along line of cross section supplied by A. G. Harris. PC-Price Mountain coals; BC-Bluefield
 coal; SC-St. Clair thrust; N-Narrows thrust; S-Saltville thrust; P-Pulaski thrust. Dashed tempera-
 ture-range bars projected into line of section. Approximate 2° regional dip on Middle Ordovician limestone
 (solid lines) from regional decollement dip of Harris et al. (1981).

 200°C for heating of the Price Formation
 coals.

 Using cathodoluminescence, Grover and
 Read (1983) described a complex cementa-
 tion history with different generations of ce-

 ments in Middle Ordovician ramp carbonates
 from across the Valley and Ridge Province
 in Virginia. Earlier-formed, dull calcite and
 ferroan dolomite cements reflect burial dia-
 genesis conditions of subtidal carbonate beds

 during the Late Devonian to early Mississip-

 pian in the foreland basin and are associated
 with hydrocarbons and temperatures from

 75°C to 135°C. They concluded that the youn-

 gest, clear, dull cements that fill tectonically

 generated fractures probably formed in asso-

 ciation with Alleghanian tectonism, probably
 at higher temperatures and greater depths

 (200°C to 300°C and 5 to 7 km, from Epstein

 et al. 1977). They found burial cements to be
 best-developed in the southeastern versus the

 northwestern portion of the Valley and Ridge

 Province. Dorobek (1987, p. 510) discusses

 the hinterlandward increase in the propor-
 tion of late dolomite cement, plus formation

 of fluorite, in Siluro-Devonian Helderberg

 Group carbonate rocks of the central Appala-
 chians. He concluded that the formation of

 late dolomite cement plus fluorite took place
 ". . just prior to and during late Paleozoic

 935
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 S. E. LEWIS AND J. C. HOWER

 deformation" at temperatures in the 200°C

 range. Elliot and Aronson (1987) found that
 the extent of illitization of mixed-layer illite/
 smectite in Ordovician-age K (potassium)-

 bentonites near, and west of, the structural

 front was similar, regardless of inferred depth
 of burial of the K-bentonites. They attributed

 the illitization to exposure to hot brines ex-
 pelled during Alleghanian tectonism farther
 southeast.

 Burial.-Regional reconstruction of pre-

 erosion stratigraphy would restore at least 4
 km of Cambrian through Mississippian (lower

 Price Formation) strata, a section similar to

 that preserved in the western Salem synclino-
 rium portion of the Pulaski thrust sheet (Bar-

 tholomew 1987), structurally above the Price
 Mountain window (figs. 3 and 4). Replacing

 an additional 2-3 km of late Paleozoic strata

 (removed by erosion) would suggest ca. 7 km

 of rock atop the Price Mountain coals on the
 Saltville thrust sheet. The 7 km of strata

 would include: 2-3 km of eroded late Paleo-

 zoic strata; the preserved (4 km) Cambrian

 through (lower) Mississippian column above

 the Pulaski thrust; plus the thickness of the

 upper Price and Maccrady formations (0.5

 km) below the Pulaski thrust (figs. 3 and 4).

 Indicated burial depths (this study; Epstein

 et al. 1977; Zentmeyer 1985) are consistent

 with the total known stratigraphic thickness

 above Mississippian coal-bearing strata (on

 their respective thrust plates) plus known
 stratigraphic thickness from structurally su-

 perjacent thrust sheets. Thus Middle Ordovi-
 cian limestones on the Saltville sheet were
 beneath ca. 9-10 km of strata.

 The Mississippian Greenbrier Formation is

 only 0.4 km below the coal in the Bluefield
 Formation (fig. 4), but these rocks were likely

 buried to a greater depth beneath the struc-

 turally higher St. Clair thrust sheet originally

 containing about 3.5-4 km of Cambrian-Mis-

 sissippian strata above the overturned limb

 of the Glen Lyn syncline in the Glen Lyn area

 (fig. 3).

 Comparison with Other Areas.-The di-

 vergence between maximum and mean vitrin-

 ite reflectances (anistropy) is considered a

 signature of the tectonic history of coal meta-

 morphism (Hower and Davis 1981; Levine

 and Davis 1989a, 1989b). Reflectance aniso-

 tropy of the Mississippian-age Valley Field

 semi-anthracites studied here is significantly

 less than that of semi-anthracites from the

 Bernice Field (one of the North-Central

 fields) in Sullivan County, Pennsylvania
 (Hower 1978). The Bernice semi-anthracites

 occupy an apparent stable tectonic setting on

 the Allegheny Plateau and represent the high-

 est rank found among coals involved only in
 plateau tectonics. Hower (1978) and Hower

 and Paxton (1979) interpreted the depth of

 burial for the Bernice Field to be about 3.5-4
 km, similar to burial of nearby fields of lower

 rank, and the rank to be a consequence of a
 higher paleogeothermal gradient than in fields

 to the northwest. Upon further consideration

 of sandstone porosity, Paxton (1983) pro-

 posed that the depth of burial of Pennsylva-
 nian coals increased progressively from the

 North-Central fields to the Northern Anthra-

 cite Field with little change in paleogeother-
 mal gradient through the region. The Bernice

 semi-anthracites would have been metamor-

 phosed at a depth of about 5.7-6 km accord-
 ing to his revised model. Our range of 4.5-7

 km of restored depositional strata plus struc-

 tural overburden above the Mississippian

 coals of the Saltville thrust sheet approxi-

 mates the depth of burial for Bernice Field

 coals determined by Hower (1978) and

 Hower and Paxton (1979). [The difference in

 anisotropy for the Valley Field coals com-

 pared to those of the Bernice Field could be

 due to either greater burial depth (as sug-
 gested by Paxton 1983) for Bernice Field

 coals or to shorter burial/heating time for

 Valley Field coals.]

 DISCUSSION

 Available data suggest that the Valley and

 Ridge Province, as well as adjacent areas, ex-

 perienced maximum thermal effects during
 the Alleghanian orogeny (cf. Epstein et al.
 1977; Grover and Read 1983). Vitrinite re-

 flectance data of Mississippian coal, CAI
 values (of Ordovician-Mississippian lime-

 stones), and cathodoluminescence patterns

 of carbonate cements (in Ordovician and

 Siluro-Devonian strata) are all consistent

 with a heating maxima increasing hinterland-

 ward across the Valley and Ridge Province.

 However, the signature of this thermal event

 varies as a function of intensity, character,

 and timing across the Valley and Ridge in
 Virginia. Relationships among the thermal

 event, mineral precipitation in carbonates
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 and coal, and regional structural features

 serve to delineate some components of the
 relative emplacement sequence of the thrust

 sheets.

 Thermal Event Relative to Thrust Sheet

 Emplacement.-The Pulaski thrust sheet

 consistently shows higher-rank CAI values
 (4-5: Epstein et al. 1977; Harris 1979; Orn-
 dorff et al. 1988) than those thrust sheets to

 the west. Disruption of CAI values (Epstein
 et al. 1977; Harris 1979) indicates that the

 Pulaski sheet was emplaced after its peak

 thermal event as Harris (1979, p. 9) noted:

 ". . . in the southeastern part of the basin,

 isograds are disrupted and irregular, because
 late Paleozoic thrusting has severed and tele-

 scoped original metamorphic isograd pat-

 terns." Our data suggest its emplacement

 was just prior to, or during, the event affect-

 ing the Saltville thrust sheet. Because of the

 large transport distance (ca. 100 km, Bar-

 tholomew 1987), the thermal event affecting

 the Pulaski thrust sheet could be, but is not
 required to be, different from those that af-

 fected the forelandward part of the Valley
 and Ridge Province.

 On the Saltville thrust sheet, geother-

 mometry indicators (CAI and vitrinite re-

 flectance) imply relatively high temperatures
 well up into the Mississippian section (fig. 6).

 Although rocks of the Saltville thrust sheet
 were subjected to a thermal maximum after

 emplacement of the Pulaski thrust sheet, the

 rather steep thermal gradient from the Salt-
 ville thrust sheet to the structurally lower
 Narrows thrust sheet, suggests significant

 offset of isotherms by the Saltville thrust (fig.

 6). The existence of this thermal break is also
 implied by the data of Campbell and Others
 (1925), who found significantly lower rank

 coals on the Narrows as compared to the

 Saltville thrust sheet. The Saltville thrust

 sheet was thus emplaced during or slightly

 after its own thermal peak.

 Both the Narrows and St. Clair thrust

 sheets show lower CAI values (3.5) in Middle
 Ordovician-Devonian strata than either the

 superjacent Saltville or Pulaski thrust sheets

 (Epstein et al. 1977). CAI values are some-
 what higher (4-4.5) from the Lower Cam-
 brian Knox Group both within the Narrows
 sheet and from structurally slightly below the

 Narrows thrust sheet in the Bane dome. The
 latter values are indicative of temperatures of

 190° to 230°C (Perry et al. 1979), whereas the

 former values are indicative of 150° to 175°C
 (Epstein et al. 1977). Locally, near Glen Lyn,

 Virginia, anomalously high CAI values (3.5

 in Mississippian Greenbrier Formation and 4
 in Upper Ordovician Martinsburg Formation)

 are from an area where the St. Clair thrust
 sheet is structurally very thin.

 Thermocline and Its Cause.-The hinter-

 landward-increasing thermocline could result

 from:(1) stratigraphic thickening to the south-

 east; (2) progressive hinterlandward struc-

 tural burial by stacking of multiple thrust

 sheets as proposed by Levine (1986) for the
 Pennsylvania anthracites and also discussed
 by Epstein et al. (1977); and/or (3) an undis-

 cerned (fluid-laden) heat source to the south-

 east, similar to the proposed heat source for

 Pennsylvania anthracites (Daniels et al. 1990;

 Daniels and Altaner 1990).

 Stratigraphic burial certainly influenced

 geothermometry signatures within the Valley

 and Ridge thrust sheets. Total preserved

 stratigraphic thicknesses above the Middle

 Ordovician limestones from successive thrust

 sheets show a hinterlandward decrease (figs.

 3 and 4) from about 4.5 km near the Glen Lyn

 above the Middle Ordovician limestones near

 Glen Lyn to about 3 km near Price Mountain.

 But more likely estimates of total thickness

 determined using a predeformational dip of

 ca. 2° (Bartholomew 1987; Harris et al. 1981)
 are ca. 5.5-6 km of strata above the Middle

 Ordovician limestone near Price Mountain
 compared with ca. 5 km at Glen Lyn (fig.
 6). Regardless, reconstructed thicknesses are

 similar enough that if stratigraphic burial
 were the sole or dominant control, geother-

 mometry values should be relatively uniform

 across the area.

 In some instances, structural burial influ-

 enced geothermometry signatures. Along the

 structural front of the fold and thrust belt (150
 km west of our area), O'Hara et al. (1990)

 found lower Rmax values above the Pine

 Mountain thrust, as opposed to slightly

 higher Rmax values below the thrust sheet in
 samples from equivalent coal units, indicat-
 ing emplacement of the Pine Mountain thrust

 sheet prior to the thermal peak. At Glen Lyn

 a similar relationship is inferred along the

 structural front, although the front differs

 structurally from the Pine Mountain thrust.

 Here, the weathered, and hence minimum
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 (see Ingram and Rimstidt 1984), 1.35% Rmax
 value (1.21% Rmean) for Bluefield coal is
 somewhat low compared with a nearby

 anomalously high CAI index of 3.0 (Epstein
 et al. 1977) from the Mississippian Greenbrier

 Formation (400 m below the Bluefield). Both

 are high for simple stratigraphic burial be-
 neath <2 km of Mississippian and Pennsylva-
 nian strata. They are, however, compatible

 with the added burial depth beneath the
 structurally higher St. Clair thrust sheet con-
 taining about 3.5-4 km of Cambrian-Missis-

 sippian strata above the overturned limb of
 the Glen Lyn syncline in this area.

 Thermal Event and Coal Metamor-

 phism.-In addition to the overburden added

 by the Pulsaki sheet to coals of the Saltville

 sheet, the Pulaski thrust may have exerted

 some control on the movment of hydrother-
 mal fluids. Daniels and Altaner (1990) and

 Daniels et al. (1990) considered similar mech-

 anisms in the Pennsylvania anthracite fields.
 Progressive foreland-directed movements of

 thrust sheets, combined with fluid expulsions

 associated with orogenic uplift to the east,

 may be mechanisms contributing to the

 movement of thermal fluids. Such hydrother-

 mal waters may originate in overpressured

 zones and can contain high concentrations of
 metals such as lead and zinc (Jones 1977).

 Cathles and Smith (1983) and Oliver (1986)
 attributed Mississippian Valley-type ore de-
 posits such as in the Illinois-Kentucky Fluor-

 spar District, to periodic expulsion of brines
 from geopressured zones. Among our un-

 weathered samples, carbonate fracture-filling

 mineralization is present only in coals with

 Rmax >1.95%, suggesting that mineralizing
 fluids may have played a role in the metamor-

 phism. Intense fracturing of some coals,

 noted in this study as well as by Campbell

 and Others (1925) and Stanley and Schultz

 (1983), may have provided conduits for the
 fluids.

 Campbell and others (1925) noted signifi-

 cant rank differences between the Langhorne

 (12.0-12.9% volatile matter, daf) (see re-

 flectance analysis for KCER 8060) and the
 Merrimac (21.6% volatile matter, daf) coal

 beds in the Empire Mine (where they are only

 about 4 m apart), Little Walker Mountain

 Field, Pulaski County. Campbell and Others

 (1925), a proponent of thrust pressure as a

 prime contributor to organic metamorphism,

 attributed the differences in rank to differ-
 ences in resistance to thrusting between the
 fractured Merrimac and the hard, resistant
 Langhorne. Bustin (1983), in a study of coals
 involved in thrusting in the Cordilleran fold

 and thrust belt in Montana, Alberta, and Brit-

 ish Columbia, found no evidence for any sig-
 nificant fault influence on metamorphism.

 However, O'Hara et al. (1990) did document
 some evidence for localized shear-influenced

 heating in coals on the Pine Mountain thrust

 sheet in southeastern Kentucky. Rmax values

 (this study) from a different locality but from

 the same seams Campbell and Others (1925)

 examined in the Empire mine (samples

 8061-8062, Route 100; table 1) show an in-
 verse relationship in rank where the fractured

 Langhorne is the locus of a small footwall

 thrust associated with the Pulaski fault and

 has significantly higher rank than the rela-

 tively undeformed Merrimac seam. Inasmuch

 as most of the fractured samples show evi-

 dence of fluid-borne post-fracture mineraliza-

 tion, we believe the observed rank differ-

 ences are more likely due to differences in

 accessibility to fluid flow at the time of meta-
 morphism. Considering the effects of thermal

 perturbations induced by hydrothermal flu-
 ids, conventional arguments for estimation of

 depth of metamorphism using rank gradients

 and inferred temperature gradients must be
 used with deliberate caution in areas of fluid-

 borne post-fracture mineralization.
 Late-stage fracture-filling carbonate ce-

 ments, plus fluorite or sulphides, in nearby

 Valley and Ridge carbonates (Grover and

 Read 1983; Dorobek 1987), along with the

 epigenetic minerals associated with breccias

 and fracturing of Valley Field coals, appear

 to be part of an extensive (maximum temper-

 ature ca. 200°C) fluid movement event (such

 as depicted by Morton 1985; Garven and

 Freeze 1984; Oliver 1986) during Alleghanian

 deformation. These fluids likely had a major

 effect on coal metamorphism and diagenesis

 as a whole, especially in the southeastern-

 most Valley and Ridge Province. Temporal/

 spatial association between probable Alle-

 ghanian fracturing and mineral-laden fluids

 might be comparable with models similar to

 earthquake-generated, locally dilational, min-

 eralized zones (Sibson 1987), although orien-

 tation of the stress field here would be en-

 tirely different from that associated with
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 transform fault zones such as the San An-

 dreas. Here, the creation of localized subhor-
 izontal dilational zones with preferred fluid
 movement essentially parallel to bedding
 planes would have been favored. Both Clen-

 denin and Duane (1990) and Leach and
 Rowan (1986) discuss the role of tectonically
 derived fluids in the formation of Mississippi
 Valley-type ore deposits. Clendenin and

 Duane (1990) ascribe a major role to "seismic
 pumping" of hot fluids during faulting. Simi-

 lar mechanisms would foster pervasive redis-

 tribution [and perhaps "boiling" conditions,

 such as described by Sibson (1987)], of inter-
 stitial fluids.

 Age of Thermal Event.-K-Ar ages of illiti-
 zation determined by Elliot and Aronson

 (1987) suggest a minimum 30 m.y. duration
 (303-273 Ma) for heating time. The 303 Ma
 K-Ar date, which Elliot and Aronson (1987)
 indicate is their oldest mean age of illitiza-

 tion, comes from significantly west of the Pu-

 laski sheet; hence, movement on the Pulaski
 thrust may have begun prior to the 300 Ma

 oldest age of illitization. Thus the age span

 for the western Valley and Ridge thermal
 event is compatible with Alleghanian as de-
 fined by the Valley and Ridge thrusting event.

 Moreover, it largely overlaps other radiomet-

 rically constrained Alleghanian deformation

 in the Appalachians such as in the Kiokee

 belt (315-295 Ma) and in the South Carolina
 slate belt as determined by 40Ar/39Ar data
 (Dallmeyer et al. 1986). Also, Sinha et al.
 (1989) place the Permo-Carboniferous (Al-

 leghanian) igneous activity of the Piedmont

 at 330-270 Ma.

 Thrusting and Metamorphism of Virginia

 Valley and Ridge.-If the total duration of
 the heating event was pre- to syn-thrusting,

 the Blue Ridge thrust sheet could not have
 extended as far as the Price Mountain win-

 dow, which is 10-12 km forelandward of its

 present-day trace (see above-surface projec-

 tion, fig. 3), for any significant period of time;

 or if it did, it did not affect geothermometry

 signatures, because added overburden should
 have resulted in both higher vitrinite reflect-
 ance values (Mississippian) and higher CAI
 values (Ordovician), as well as a difference
 in other temperature indicators. Thus, at the
 time of peak "metamorphism," rocks of the
 Price Mountain window lay (as shown in fig.
 3) beneath the Pulaski thrust sheet, but not

 beneath both it and the Blue Ridge thrust
 sheet. Structural limitations are also im-
 posed on the Glen Lyn syncline, for if the
 Narrows thrust sheet had extended this far
 forelandward overtop the St. Clair thrust
 sheet for any significant length of time, the
 structurally doubled thickness would have re-
 sulted in significantly higher Rmax values.

 The distribution of low volatile bituminous

 Rmax values (fig. 2; sample numbers 8065 and

 8070-8072) suggests that vitrinite reflectance

 may decrease slightly just northwest of the

 present day Pulaski thrust trace. This small

 difference, if significant, could have resulted

 from (1) especially rapid erosion of the over-
 lying Pulaski sheet from that region, perhaps
 because of significant tilting of the southeast

 limb of the Sinking Creek anticline during

 Saltville thrust propagation (fig. 3); (2) struc-

 tural thinning of the Pulaski sheet because

 the Pulaski fault ramped from the Cambrian
 Rome Formation upward to a stratigraphic-

 ally higher glide horizon (fig. 3); and/or (3)

 differential access for warm fluids escaping

 from tectonic highlands to the east. Mecha-
 nisms (1) or (2) may have been operative with

 limitations (cf. Edman and Furlong 1987;

 Warner and Royse 1987). They discussed

 thermal effects from emplacement of superja-

 cent thrust sheets but did not consider the
 role of introduced fluids, which may not have

 been pertinent to their examples. We favor
 differential fluid access to be at least as im-

 portant, if not the dominant, reason for the
 observed variations because, in our samples,
 fractures allowing fluid access produce con-
 trasting effects over several meters. This in-

 terpretation is compatible with Grover and

 Read (1983) and Dorobek (1987).
 The forelandward sequencing of thrusts

 (Pulaski followed by Saltville and more west-

 erly thrusts) supports Perry's (1978) interpre-
 tation that Appalachian thrust development

 was from the hinterland toward the foreland.
 CAI isograds north of the Roanoke recess are

 not offset (Harris 1979); hence (1) two sepa-
 rate thermal events affected the central and

 southern Appalachians, or (2) the heating
 event in the central Appalachians north of the

 recess continued throughout thrusting, or (3)
 the thrust movement there occurred before

 the thrusting west of the Pulaski-Staunton
 thrust system in the southern Appalachians

 where CAI isogrades are offset (Harris 1979).
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 The last alternative is in contradistinction to

 the conclusion of Bick (1986) that foreland-
 ward of the Pulaski-Staunton fault, northern
 Appalachian thrusting post-dates southern

 Appalachian thrusting. Bick's interpretation

 is possible if (1) either two separate thermal
 events occurred, or if (2) the thermal event

 affected the central Appalachians for a sig-
 nificantly longer period of time.

 CONCLUSIONS

 1) Rmax values from Mississippian-age Price

 Formation coals range from 2.07% to 2.60%
 in the Price Mountain window, and from

 1.61% to 2.56% in Saltville thrust sheet rocks

 beneath the present day leading edge of the
 Pulaski thrust. These Rmax values are compat-
 ible with CAI values and other geothermome-

 try indicators (Epstein et al. 1977; Ingram and

 Rimstidt 1984; Zentmeyer 1985), which sug-

 gest temperatures of Alleghanian "metamor-
 phism" of 200 ±25°C on the Saltville thrust

 sheet. Depth-of-burial for the coals was at

 least 4.5 km, and more likely 6-7 km, as

 reconstructed from both stratigraphic and
 structural data. The Pulaski thrust sheet was

 emplaced before the thermal maximum was

 attained in the Saltville thrust sheet.

 2) Temperatures of ca. 200°C were main-

 tained higher in the stratigraphic section

 (Mississippian strata) on the Saltville thrust

 sheet than on the both the subjacent Narrows

 and St. Clair thrust sheets. The steep temper-
 ature gradient across the Saltville thrust sug-
 gests both significant displacement on the
 Saltville thrust and that the respective ther-
 mal maxima were attained on both the Pu-
 laski and Saltville thrust sheets prior to, or
 during, their emplacement above the more
 westerly Valley and Ridge thrust sheets.
 Thermal maxima on the Narrows and St.
 Clair thrust sheets were probably reached
 post-emplacement.

 3) Local variation in Rmax values within the

 Saltville thrust sheet and decrease of Rmax
 from southeast to northwest may, locally at
 least, be influenced as much by the tempera-
 ture of, and access to, fluids expelled during

 Alleghanian tectonism as by either strati-
 graphic or tectonic burial.
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