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ABSTRACT OF DISSERTATION 
 
 
 
 

TUNING THE EFFECTIVE ELECTRON CORRELATION IN IRIDATE SYSTEMS 
FEATURING STRONG SPIN-ORBIT INTERACTION 

 
 The 5d transition metal oxides have drawn substantial interest for predictions of 
being suitable candidates for hosting exotic electronic and magnetic states, including 
unconventional superconductors, magnetic skyrmions, topological insulators, and Weyl 
semimetals.  In addition to the electron-electron correlation notable in high-temperature 3d 
transition metal superconductors, the 5d oxides contain a large spin-orbit interaction term 
in their ground state, which is largely responsible for the intricate phase diagram of these 
materials.  Iridates, or compounds containing 5d iridium bonded with oxygen, are of 
particular interest for their spin-orbit split Jeff = 1/2 state, which is partially filled without 
the presence of any additional electron correlation.  However, the comparable energetics 
between a small, finite electron correlation energy and the spin-orbit interaction make the 
band structure of iridates amenable to small perturbations of the crystalline lattice and ideal 
for exploring the interplay between these two interactions.   
 

While altering the spin-orbit interaction strength of iridium is tenably not feasible, 
the electron correlation energy can be tuned using a variety of experimental techniques.   In 
this dissertation, the electronic and magnetic properties of iridates at various electron 
correlation energies are studied by altering the epitaxial lattice strain, dimensionality, and 
the radius size of the A-site cation.  These parameters tune the effective electronic 
bandwidth of the system, which is inversely proportional to the effective electron 
correlation energy.  The lattice strain and the cationic radius size achieve this by altering 
the Ir-O-Ir bond angle between nearest neighbor Ir ions.  In the case of dimensionality 
tuning, the effective bandwidth is controlled via the coordination number of each Ir ion.  

 
In the first study, a metal-to-insulator transition is observed in thin films of the 

semi-metallic SrIrO3 as in-plane compressive lattice strain is increased.  This observation 
is consistent with the expectation of compressive lattice strain increasing the effective 
correlation energy; however, optical spectroscopy spectra reveal the increase is not 
sufficient for opening an insulating Mott gap.  In the second part, the effective correlation 
energy is adjusted using a dimensional confinement of the layered iridate Sr2IrO4.  Here, 
the coordination number of each Ir ion is reduced using an a-axis oriented superlattice of 
one-dimensional IrO2 quantum stripes, where several emergent features are revealed in its 



 

insulating Jeff = 1/2 state.  In the final study, the effective correlation is tuned in a series of 
mixed-phase pyrochlore iridate thin films, where the Ir atoms take a corner-shared 
tetrahedral configuration.  Here, a transition between conducting to insulating magnetic 
domain walls is revealed as the correlation energy is increased via A-site chemical doping.  
Each of these studies sheds light on the pronounced role the effective correlation energy 
plays in determining the local subset of phases predicted for iridates and related systems 
featuring strong spin-orbit interactions.  
 
KEYWORDS: iridates, electron correlation, spin-orbit interaction, low dimensional 

materials, thin film oxides   
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Chapter 1 Introduction 

1.1 Background 
 
In 1908, Heike Kamerlingh Onnes successfully liquified helium and thus was able to 

experimentally probe materials at temperatures as low as 1.5 K.  This experimental 

accomplishment allowed for the highly anticipated exploration of material properties at 

low temperature, which had been merely speculative before that point.  In just three years 

after his initial discovery, Onnes discovered an entirely new phenomenon at low 

temperature where the electrical resistance of mercury abruptly vanished around 4.2 K – a 

phase transition today known as superconductivity (5).  This sparked a revolution both 

experimentally and theoretically in the physics community; however, the progress forward 

remained daunting.  While many phenomenological models had been developed, it would 

be another 46 years from its initial discovery before a coherent microscopic theory of 

superconductivity is developed by Bardeen, Cooper, and Schrieffer known as BCS theory 

(6).  Experimentally, the task of finding materials with a higher superconducting transition 

temperature Tc seemed an exercise in futility, and before 1986 the highest recorded Tc was 

that of Nb3Ge at 23 K (7).  Although this was far from room temperature, the observations 

were consistent with BCS theory, namely that the superconducting gap energy Eg is 

relatively small for metals (Eg ~ 10-4 eV (8)) and weak thermal excitations are sufficient 

for quenching the superconducting state. 

 After 75 years from the initial discovery, Georg Bednorz and Karl Müller made 

another breakthrough in the field when they measured a superconducting transition at 35 

K in the room temperature, semiconducting oxide system of (BaδLa5-δ)Cu5O5(3-x), an 

increase of over 50% from the previous record (9).  Just one year later, Maw-Kuen Wu and 
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Chu Ching-wu measured a Tc of 93 K in the oxide of Y1+δBa1-δCuO4 (10), which was the 

first material observed to superconduct above liquid nitrogen temperatures.  Unlike the 

previous class of superconducting metallic alloys, these high-Tc oxides take a K2NiF4-type 

structure, i.e. effectively two-dimensional systems consisting of layered two-dimensional 

planes of CuO2 planes each separated by electronically inert rock salt layers.  The reduced 

dimensionality in this system allows for additional crystalline interactions to become 

relevant in the ground state Hamiltonian, such as the ‘on-site’ Coulomb repulsion or 

electron-electron interaction, which will be discussed in further detail throughout this 

thesis.  While the exact microscopic mechanism for the superconductivity in these systems 

is still contested, the new epoch in condensed matter physics following the observations in 

these materials with a large electron correlation energy goes undisputed.  In 1987, Georg 

Bednorz and Karl Müller were awarded the Nobel prize in physics, which was less than 

two years after their initial discovery (11). 

 The work in this thesis focuses on tuning the electron correlation in thin-films of a 

related oxide system known as the iridates, which consist of compounds featuring the 5d 

transition metal iridium coordinated by an octahedral oxygen environment.  This system 

features not only the Hubbard interaction relevant in the high-Tc cuprate materials, but also 

an additional spin-orbit interaction due to the large atomic number Z of iridium (𝐻𝐻𝑆𝑆𝑆𝑆  ∝

𝑍𝑍4).  The introduction chapters (Chapter 1 and Chapter 2) will describe the context of how 

these interactions emerge in iridate systems, and the experimental synthesis technique of 

pulsed laser deposition used in developing these crystals.  In the first study described in 

Chapter 3, the meta-stable phase of three-dimensional SrIrO3 is epitaxially stabilized on 

substrates of various lattice mismatch, and the effects of this bandwidth engineering are 
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clear in a metal-insulator transition observed in this compound’s electronic transport 

properties.  In the next study (Chapter 4), the two-dimensional analogue of SrIrO3, i. e. the 

layered Sr2IrO4 compound, is synthesized as a dimensionally confined superlattice material 

in the a-axis orientation.  From our structural and electronic characterizations, this 

superlattice approach effectively tunes this two-dimensional material into a superlattice of 

one-dimensionally confined stripes.  This study sets the ground work for a generalizable 

methodology for creating one-dimensional materials from two-dimensional layered 

materials.  And finally, in Chapter 5, a tuning of the effective correlation energy is 

performed on a series of mixed phase pyrochlore iridates, where the Ir-O network form 

corner-sharing tetrahedra of frustrated spin-configurations.  While these films have more 

defects than bulk single crystals, the magneto-conductance in these mixed-phase films is 

consistent with the expected spin-flip transitions for tuning Ueff and offers supporting 

evidence for the robust nature of several distinct topological states in these systems.   

Taken together, the studies of this dissertation illustrate the wide-range of electronic 

and magnetic properties accessible in iridates, where the multiple interactions are highly 

tunable by the underlying dimension and lattice structure.  While highly tunable systems 

are often times difficult for achieving a certain level of experimental dependency, they 

offer ample opportunity for studying a large variation of interesting phenomena and 

phases– and under the right experimental conditions, just might open the door for 

discovering the next pivotal breakthrough.           

1.2 Origin of the spin-orbit interaction 
 

For most atoms, the spin-orbit interaction is a small correction to the ground state 

Hamiltonian and, in the solid state, is usually dominated by other competing energies in a 
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crystalline lattice, such as the Coulomb interaction and crystal field splitting.  The spin-

orbit interaction is a relativistic effect that arises from the coupling between an electron’s 

magnetic moment due to spin 𝝁𝝁𝒆𝒆 and the magnetic field B an electron experiences while 

orbiting an atomic nucleus of charge Ze, where Z is the atomic number of the nucleus and 

e is the elementary charge.  From the rest frame of the electron, the magnetic field generated 

by the orbiting nucleus on the electron at distance r is given by the Biot-Savart law:           

 
𝑩𝑩 =  −

𝑍𝑍𝑍𝑍
𝑐𝑐
𝒗𝒗 × 𝒓𝒓
𝑟𝑟3

, (1.1) 

where −𝒗𝒗 is the velocity of the moving atomic nucleus.  Thus, the classical spin-orbit 

energy between the electron’s dipole moment and B is: 

 𝐻𝐻𝑆𝑆𝑆𝑆 = −𝝁𝝁𝒆𝒆 ∙ 𝑩𝑩   

 
                       =

𝑍𝑍𝑍𝑍
𝑚𝑚𝑐𝑐

𝝁𝝁𝒆𝒆 ∙ (𝒑𝒑 × 𝒓𝒓)
𝑟𝑟3

  

 
                 = −

𝑍𝑍𝑍𝑍
𝑚𝑚𝑐𝑐

𝝁𝝁𝒆𝒆 ∙ 𝒍𝒍
𝑟𝑟3

 . (1.2) 

Now substituting the magnetic moment of the electron (𝝁𝝁𝒆𝒆 = −(𝑍𝑍 𝑚𝑚𝑐𝑐⁄ )𝑺𝑺) and the 

quantized angular momentum L for l, the spin-orbit Hamiltonian becomes: 

 
          𝐻𝐻𝑆𝑆𝑆𝑆 =

𝑍𝑍𝑍𝑍2

2(𝑚𝑚𝑐𝑐)2
𝑺𝑺 ∙ 𝑳𝑳
𝑟𝑟3

 , (1.3) 

where a factor of 1/2, known as the Thomas factor, must be included in order to account 

for the noninitial rest frame of the electron as it orbits the nucleus (12).  To find the energy 

eigenvalues of this Hamiltonian, it must be rewritten in a basis that diagonalizes the 

Hamiltonian, i. e. 𝑺𝑺 ∙ 𝑳𝑳 must be rewritten to commute with 𝐻𝐻𝑆𝑆𝑆𝑆.  Considering the total 

angular momentum 𝑱𝑱 = 𝑳𝑳 + 𝑺𝑺, the Hamiltonian can be written as: 
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          𝐻𝐻𝑆𝑆𝑆𝑆 =

𝑍𝑍𝑍𝑍2

4(𝑚𝑚𝑐𝑐)2
1
𝑟𝑟3

 [𝐽𝐽2 − 𝐿𝐿2 − 𝑆𝑆2]. (1.4) 

Diagonalizing this Hamiltonian in this basis yields: 

           〈𝐻𝐻𝑆𝑆𝑆𝑆〉 = 𝐸𝐸𝑆𝑆𝑆𝑆   

 
        =  

𝑍𝑍𝑍𝑍2

4(𝑚𝑚𝑐𝑐)2
〈

1
𝑟𝑟3
〉 ℏ2  �𝑗𝑗(𝑗𝑗 + 1) − 𝑙𝑙(𝑙𝑙 + 1) −

3
4
�, (1.5) 

where s = 1/2 for spin-1/2 electrons.  Evaluating the expectation value of 1/r3 with n 

degenerate ground states yields: 

 
    〈

1
𝑟𝑟3
〉 =  

𝑍𝑍3

𝑎𝑎03
1

𝑛𝑛3𝑙𝑙(𝑙𝑙 + 1 2⁄ )(𝑙𝑙 + 1), (1.6) 

where 𝑎𝑎0 is the Bohr atomic radius (13).  Now substituting this result into Equation (1.5), 

the spin-orbit interaction energy becomes: 

 

     𝐸𝐸𝑆𝑆𝑆𝑆 =  
𝑍𝑍4𝑍𝑍2ℏ2

4(𝑚𝑚𝑐𝑐)2𝑎𝑎03
 
�𝑗𝑗(𝑗𝑗 + 1) − 𝑙𝑙(𝑙𝑙 + 1) − 3

4�
𝑛𝑛3𝑙𝑙(𝑙𝑙 + 1 2⁄ )(𝑙𝑙 + 1) . (1.7) 

From the leading factor, this calculation indicates that the spin-orbit energy becomes a 

significant interaction for atoms with large atomic numbers, i. e. 𝐸𝐸𝑆𝑆𝑆𝑆 ∝  𝑍𝑍4.  Hence, this 

effect is much more pronounced in compounds containing 5d transition metals, such as in 

the iridates, than in the smaller atomic numbers found in the 3d transition metals, such as 

in the cuprates.  It is also important to note that while other crystalline energies can be more 

accessibly tuned experimentally, the spin-orbit interaction is a fixed quantity dictated by 

the atoms.    While this interaction plays an important role in shaping the physics of iridate 

systems, it must also compete energetically with another important interaction known as 

the effective electron correlation energy.   
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1.3 The effective electron correlation energy 
 

For noninteracting band metals and insulators, the periodic potential of the crystalline 

lattice dictates the energy bands, and a material is considered a metal (insulator) if the 

highest occupied band is partially (fully) filled.  This Bloch band picture had been very 

successful in describing the electronic properties of many materials, but failed to describe 

the insulating behaviors observed in certain partially filled 3d transition metal oxide 

systems (14).  For these class of materials, the electron-electron correlation energy is more 

relevant in determining the electronic structure.  

The electron-electron correlation energy is the result of the Coulomb repulsion 

between electrons occupying the same atomic site on a crystalline lattice.  By Coulomb’s 

law, the electrostatic repulsion energy between two electrons occupying a single site is 

~ 𝑒𝑒2

𝑟𝑟
, with r being on the order of an angstrom.  This implies that strongly interacting 

systems have an energy cost on the order of several eV for multiple electron occupancy on 

a single site.  If this energy cost is larger than the Fermi energy, then a strongly interacting 

material with a partially filled valence band will fail to conduct.  These types of materials 

are known as Mott insulators and are largely responsible for the interesting phenomena 

observed in 3d transition metal oxides, such as high-Tc superconductivity and colossal 

magnetoresistance (1). 

The Hubbard model is a single-band Hamiltonian model which approximates the 

on-site Coulomb repulsion on crystalline lattices.  This model includes an electron-electron 

interaction term 𝐻𝐻𝑈𝑈 in the Hamiltonian and is written in a second quantization form as: 
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           𝐻𝐻𝑈𝑈 = 𝑈𝑈�𝑛𝑛𝑖𝑖↑𝑛𝑛𝑖𝑖↓
𝑖𝑖

, (1.8) 

 where 𝑛𝑛𝑖𝑖↑ (𝑛𝑛𝑖𝑖↓) is the number of electrons with spin up (down) on atomic site i, and U > 0 

is the repulsive interaction energy (15).  The Hubbard U gives an energetic cost to the 

ground state Hamiltonian for two electrons occupying the same site.  The total Hamiltonian 

of the interacting system includes two additional terms: 

           𝐻𝐻 = 𝐻𝐻𝑡𝑡 + 𝐻𝐻𝑈𝑈 − 𝜇𝜇𝜇𝜇, (1.9) 

where 𝐻𝐻𝑡𝑡 is the kinetic hoping term borrowed from the tight binding approximation and 

𝜇𝜇𝜇𝜇 is the electron fill factor.  In the second quantization form, 𝐻𝐻𝑡𝑡 can be written as: 

           𝐻𝐻𝑡𝑡 = −𝑡𝑡��𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑐𝑐𝑗𝑗𝑖𝑖 + 𝐻𝐻. 𝑐𝑐. �

〈𝑖𝑖𝑗𝑗〉

, (1.10) 

where the operator 𝑐𝑐𝑗𝑗𝑖𝑖 annihilates an electron at atomic site i and the operator 𝑐𝑐𝑖𝑖𝑖𝑖
†  creates 

an electron at nearest neighboring site j.  When acted on an atomic lattice, this term acts to 

move electrons between neighboring atomic sites with hopping amplitude t, which is 

proportional to the bandwidth of the system.  It is important to note the difference in sign 

between 𝐻𝐻𝑡𝑡 and 𝐻𝐻𝑈𝑈.  The kinetic term 𝐻𝐻𝑡𝑡  lowers the system’s energy by allowing electron 

hopping across neighboring sites, while the Hubbard interaction acts to localize single 

electrons on each atomic site and hence prevent hopping.  The dominating term will 

determine the electronic properties of the interacting system.  Due to the competing nature 

between these parameters, it is convenient to define an effective electron correlation energy 

Ueff ≡ 𝑈𝑈
𝑡𝑡
.  This Ueff can be tuned via the bandwidth of the system (proportional to t) and at 

a critical value, drive a half-filled metallic ground state into a gapped insulating state (see 

Figure 1.1).  The tuning of Ueff in this manner is important, as the bandwidth of a crystalline 
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lattice can be controlled using a variety of experimental techniques.  In the work pertaining 

to this thesis, the bandwidth is controlled using applications of lattice strain, crystalline 

dimensionality, and dopant size.  

Figure 1.1: Possible metal-insulator transitions from the Hubbard model.  Along the 
vertical axis, the Ueff increases and at a critical point, opens a gap in the metallic ground 
state.  Traversing the horizontal axis from right to left, the filling factor is reduced, and a 
metal-insulator transition occurs at a particular point within the shaded region.  The region 
closest to the vertical takes a Mott insulating ground state.  This figure has been adopted 
from Ref. (1). 
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Chapter 2 Experimental methods  

Pulsed laser deposition (PLD) is a widely used method for growth of various thin-films, 

superlattices, and heterostructures (16,17).  It has been used extensively over the past two 

decades in the development of thin-films which exhibit interesting physical properties such 

as strongly-correlated electronic materials (18), high-temperature superconductors (19), 

colossal magnetoresistance materials (17), ferroelectrics (20), compound semiconductors, 

and nanocrystalline materials (21).  

PLD has remained popular for several reasons: it features the stoichiometric transfer of 

the target material to the film; it is compatible with both low and high vacuum pressure 

environments (≤ 0.5 Torr); and multiple materials can be easily added to a system for 

heterostructure synthesis.  Additionally, atomic-scale oxide thin-films and heterostructures 

grown by PLD are shown to be comparable to samples grown by molecular beam epitaxy 

(MBE) (22,23).  Reflection high-energy electron diffraction (RHEED) has been 

successfully used to monitor the film growth in real-time by measuring the structural 

reconstruction and number of unit-cell layers (24-27).  However, the requirement of low-

pressure operation and its inability to assess a material’s electronic structure are a few 

shortcomings of RHEED.  While advanced multiple-stage RHEED has overcome the first 

problem by increasing the maximum operational oxygen partial pressure to 0.5 Torr 

(28,29), there remains a huge demand for in situ monitoring of the electronic structure of a 

material during growth. Optical spectroscopic ellipsometry (SE), which is operational 

regardless of partial pressure, has been used as an alternative method to monitor a sample’s 

electronic structure in real-time (29-31).  However, SE is not used as frequently as RHEED 

since a complicated modeling process is required to analyze the SE data.  Moreover, when 
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in situ SE is performed without any additional supporting measurements, the results of the 

modeling process are difficult to validate due to multiple unknowns, e. g. fit parameters 

such as thin-film thickness and complex optical constants. 

2.1 Pulsed Laser Deposition System Overview 
  

Our PLD system with dual in situ SE and RHEED components is schematically 

drawn in Figure 2.1.  The vacuum chamber is custom-made (Rocky Mountain Vacuum 

Tech.) in order to optimize data acquisition and to enable simultaneous real-time in situ 

measurement of RHEED and Spectroscopic Ellipsometry (SE).  There are six ports 

specifically designed and implemented into this system to perform dual in situ RHEED and 

SE measurements.  Two of these ports are used by the RHEED electron gun and detector 

(Phosphor screen and CCD camera assembly).  They are positioned such that the electron 

beam is incident at a grazing angle to a substrate (sample) surface inside the chamber.  The 

other four ports are positioned such that in situ ellipsometry can be performed 

simultaneously with RHEED at the angles of either 65° (not pictured in Figure 2.1) or 75° 

to the substrate’s surface normal direction.  There is also an additional antireflection-coated 

quartz viewport for the pulsed excimer laser and is positioned such that focused laser beam 

pulses are incident to the target at an angle of 45°.  While conventional PLD systems have 

been designed to perform either in situ RHEED or SE, our system is optimized for the 

simultaneous monitoring of both RHEED and SE, which better equips us to interpret the 

in situ data as discussed below. 

The RHEED consists of an electron gun (Staib 30 kV model), a phosphor screen, 

and a charge-coupled device (CCD) camera (shielded from external light by a screen) 

attached to the PLD chamber.  The electron beam is incident to the surface of the substrate 
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at a grazing angle (≤ 3°) and the reflected electron beam is collected by the phosphor screen 

and is measured by the CCD camera. 

The SE (J. A. Woollam M-2000-210 in situ model) consists of light source and 

analyzer assemblies mounted to the PLD chamber.  White light from a broadband Xenon 

arc lamp is polarized in the SE source assembly by a linear polarizer and compensator.  The 

light beam reflects off the sample and is directed to a rotating analyzer in the SE analyzer 

assembly, which is sent to a spectrometer (monochrometer)/CCD detector through an 

optical fiber.  In our system, the SE source and analyzer assemblies can be mounted to the 

PLD chamber with an incident angle of either 65° or 75° relative to the sample’s normal 

axis, which are close to the Brewster angles and are good for characterizing many oxide 

thin-films (32,33).  The SE can take real-time dynamic scans every 25 ms in the spectral 

range of 210 – 1000 nm in wavelength (1.2 – 5.9 eV in photon energy).  The spectral range 

of the SE is chosen for oxide materials, which allows for the monitoring of optical 

Figure 2.1: Schematic drawing (left) and photograph (right) of the PLD system with dual 
in situ RHEED and spectroscopic ellipsometry components taking simultaneous 
measurements.  The RHEED gun, multiple target manipulator, and heater are contained 
within the vacuum chamber while the CCD camera, SE source, and analyzer assemblies 
are secured to external ports.      
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transitions between the correlated electron bands (Hubbard bands) and the charge-transfer 

transitions between the O 2p band and transition-metal d bands. 

In order to enable the simultaneous monitoring, the substrate holder (heater) is 

made rotatable with an adjustable (both tilting and height) z-axis stage so that the initial 

specular reflection of both RHEED and SE can be maximized.  During the growth of a 

thin-film, the RHEED and SE data are simultaneously and continuously taken (maximum 

data acquisition rate of up to 40 Hz) without the need of suspending growth.  The chamber 

is designed to enable sample alignment with the electron and photon beams by adjusting 

both the height and azimuthal angle of the sample holder.  This is essential to perform both 

RHEED and SE measurements simultaneously during the entire growth process (Figure 

2.1). 

2.2 Reflection high-energy electron diffraction (RHEED) 
 

Figure 2.2a-c and d show the RHEED diffraction patterns and intensity oscillations, 

respectively, taken during the growth of an LaMnO3+δ (LMO) thin-film on a single 

crystalline SrTiO3 (STO) substrate oriented such that (001) is out-of-plane.  At the initiation 

of the deposition process, the electron beam is incident at a grazing angle to an atomically 

flat STO substrate prepared using the method described in Ref. (34).  The oscillations of 

the intensity curve in Figure 2.2d show that LMO unit-cell layers are being deposited on 

the STO substrate, but the monotonic decay of the intensity curve indicates island growth 

is also occurring (layer-by-layer + island growth mode) (26,35).  In addition, this decay of 

the intensity is typically seen when there is a lattice mismatch between the thin-film and 

the substrate (36).  However, the time scale of the decay is much larger than that of the 

oscillations, so a reasonably smooth epitaxial growth of the LMO thin-film can be deduced 
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from the RHEED intensity pattern.  Additional ex situ measurements, such as atomic force 

Figure 2.2: In situ data taken simultaneously by RHEED and SE during the growth of a 
LMO thin-film on an STO substrate.  RHEED diffraction patterns taken at times (a) 0 s, 
(b) 250 s, and (c) 1080 s.  (d) The RHEED intensity oscillations of one of the diffraction 
peaks during the growth.  The two vertical lines indicate the start and finish of growth.  
Using the RHEED oscillations and the assumption of 1 oscillation/unit cell, the LMO can 
be reasonably estimated as being 6 nm thick during the first 400 s of growth.  The SE 
dynamical spectra taken of (e) 𝛹𝛹 and (f) 𝛥𝛥 at 0.5 Hz indicate the presence of the additional 
LMO band structure during its film growth at constant energy slices.  Surface topology of 
(g) STO substrate and (h) LMO thin-film taken ex situ by AFM indicate the growth was a 
combination of the layer-by-layer and island growth mode.  The growth conditions used 
during the deposition are an oxygen partial pressure PO2 of 30 mTorr with a substrate 
temperature Ts of 700°C. 
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microscopy (AFM) are also important in final thin-film characterization and aids in 

validating the measurements made by the in situ SE and RHEED.  According to the ex situ 

AFM topographic images of the sample before and after the growth, the thin-film still 

retains the step terraces of the substrate (see Figure 2.2g and h).  Hence, the thin-film’s 

surface roughness is on the atomic scale and can be neglected in SE modeling even though 

the growth is not a perfect layer-by-layer growth.  The RHEED patterns and intensity 

oscillations can be used to monitor the film’s surface reconstruction and the number of 

unit-cell layers, respectively.  These RHEED measurements of the thin-film deposition 

give indispensable information to validate the model used in extracting the optical 

constants from the SE spectra, as described in Section 2.3 below.  In our test growth, we 

observed clear RHEED intensity oscillations during the first 400 s of the deposition, 

corresponding to the LMO thin-film having a thickness of roughly 6 nm (15 unit-cells of 

LMO). 

2.3 Optical spectroscopic ellipsometry 
 

Polarized light from the in situ SE is incident upon the sample, and the two 

polarization states parallel (p) and perpendicular (s) to the plane of incidence are each 

changed separately according to the complex Fresnel reflection and transmission 

coefficients 𝑅𝑅�𝑖𝑖 and 𝑇𝑇�𝑖𝑖, where 𝑖𝑖 = 𝑝𝑝, 𝑠𝑠 for 𝑝𝑝-polarized and s-polarized light, respectively 

(37).  These coefficients directly determine each reflected polarization’s attenuation |𝑅𝑅𝑖𝑖| 

and phase change 𝛿𝛿𝑖𝑖.  The light beam is then sent through the SE’s rotating analyzer and 

the resulting intensity modulation is measured by a CCD array detector.  The modulated 

signal can be fit to a Fourier series whose first two coefficients are determined by the 

Hadamard method.  These coefficients, along with the initial p- and s- polarization state 
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intensities, are used to find the relative attenuation �𝑅𝑅�𝑝𝑝� �𝑅𝑅�𝑠𝑠��  and phase change shift 𝛿𝛿𝑝𝑝 −

𝛿𝛿𝑠𝑠 of the reflected light beam.  In ellipsometry, it is convenient to define  

 
tanΨ ≡  

�𝑅𝑅�𝑝𝑝�
�𝑅𝑅�𝑠𝑠�

 (2.1) 

 Δ ≡  𝛿𝛿𝑝𝑝 − 𝛿𝛿𝑠𝑠 (2.2) 

 𝜌𝜌 ≡ 𝑅𝑅�𝑝𝑝 𝑅𝑅�𝑠𝑠⁄ = tanΨ𝑍𝑍𝑖𝑖Δ. (2.3) 

The angles Ψ and Δ are the ellipsometer angles measured by the SE and represent the 

differential changes in amplitude and phase experienced upon reflection by the two p- and 

s- polarization components.  The tanΨ and cosΔ are measured for the full spectral range 

of the light source (1.2 – 5.9 eV).  During the growth of a thin-film on a substrate, the in 

Figure 2.3: Full SE spectral scans taken from 1.2 eV to 5.9 eV are shown at times (a) 0 s , 
(b) 500 s, and (c) 1090 s during the LMO film deposition.  By applying the appropriate 
model, the real-time optical constants, dielectric functions, and thickness evolution can be 
extracted from these spectra. 
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situ SE can take dynamic full spectra at 40 Hz.  Figure 2.2e and f show the real-time 

evolution of Ψ and Δ at four arbitrary photon energies as measured by our in situ SE for 

the same LMO thin-film grown on an STO substrate as discussed above.  Figure 2.3 shows 

full SE spectral scans of this growth at times 0 s, 500 s, and 1090 s.  Since our test growth 

of an LMO thin-film on an STO substrate is slow, we are able to achieve reasonably good 

data by choosing an acquisition rate of 0.5 Hz.  Using these measured values of Ψ and Δ, 

the real-time optical constants, dielectric functions, and the LMO film thickness can be 

obtained through a modeling process described below. 

The growth rate of the thin-film can be independently monitored by both the 

RHEED and SE (see Figure 2.4c), acting as an experimental control for consistency 

between the two measurement devices.  To find real-time film thickness and optical 

constants of the sample from the SE, the ellipsometry angles Ψ and Δ are used as input 

parameters to an appropriate sample model.  The biggest advantage of simultaneous 

monitoring lies in the ability to use RHEED’s diffraction and intensity patterns to choose 

and validate appropriate models which can be used in analyzing the in situ SE spectra.  The 

comprehensive model analysis required to interpret SE data has been a formidable task to 

accomplish in real-time measurements since it is rather difficult to obtain both thickness 

and optical parameters of thin-films using only SE data.  Since we can obtain the 

information of a thin-film’s growth mode and thickness by RHEED, we can bring more 

credibility to the SE spectral modeling process used for extracting the optical parameters 

from the SE spectra.  

 From Section 2.2 Reflection high-energy electron diffraction (RHEED), the 

RHEED intensity curve (Figure 2.2d) and RHEED diffraction patterns (Figure 2.2a-c) 
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indicate a ‘layer-by-layer + island’ growth of LMO on the STO substrate with surface 

roughness on the atomic scale.  We confirmed these results with ex situ AFM as illustrated 

in Figure 2.2h.  These measurements reasonably justify modeling this sample as a thin, 

isotropic smooth layer (layer 1) on an isotropic substrate (layer 2) in an isotropic ambient 

(layer 0).  When an appropriate model is applied, the optical constants and film thickness 

can be found from SE spectra.  The complex Fresnel reflection coefficients for this three-

phase system are found and are related to the SE spectra (Ψ and Δ) by Eq. (2.3) (see 

Appendix Fresnel reflection coefficients for isotropic single slab model for calculation 

details).  From this relation, the thin-film’s complex index of refraction 𝜇𝜇1 (𝜇𝜇 = 𝑛𝑛 + 𝑖𝑖𝑖𝑖) 

and thickness can be numerically calculated at any time during the growth using proper 

initial values at each photon energy.  Figure 2.4a and Figure 2.4b show the distinguishable 

n and k spectra for the LMO thin-film and substrate both extracted at the end of the growth 

period.   

Figure 2.4c shows the real-time thickness of the LMO thin-film monitored by both 

SE and RHEED.  From the RHEED intensity oscillations, the number of deposited LMO 

crystal layers is measured and the thickness is calculated by assuming each LMO unit cell 

has a thickness of ~3.95 Å (38).  Note that we used this thickness information acquired 

from RHEED to obtain the initial input parameters in our SE modeling process.  The SE 

and RHEED thickness curves each yield consistent linear deposition rates of ~ 0.238 Å/s 

and ~ 0.208 Å/s, respectively.  Therefore, SE and RHEED collectively enable the overall 

film thickness to be determined in real-time during the entire growth process.  Although 

the RHEED oscillations disappear after c.a. 400 s of growth, the same SE model is applied 

during the entire deposition.  Both the SE and RHEED result in consistent thickness in the 
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initial growth of the LMO thin-film, and SE can be used for thickness monitoring when the 

RHEED oscillations disappear, offering another advantage of simultaneous in situ 

monitoring.  For example, if the LMO thin-film grown on STO described above was 

deposited in a chamber with only SE, there would be no knowledge of the film’s real-time 

thickness during growth.  Note that various ex situ characterizations are still very important 

but cannot provide real-time information during growth. 

To obtain the electronic properties of the thin-film, the optical constants n and k can 

be converted into the complex dielectric function 𝜀𝜀̃(𝜀𝜀1, 𝜀𝜀2) using the following relations: 

Figure 2.4: An isotropic single slab model is applied to the SE spectra to obtain the thin 
film’s real-time optical constants and thickness information.  The optical constants from 
1.2 – 5.9 eV for the (a) LMO thin-film N1(n,k) and (b) STO substrate N2(n,k) obtained from 
the in situ SE spectra at the end of the growth period.  (c) Real-time thickness of LMO 
thin-film during the growth as determined independently by RHEED and SE.  The 
measurements are self-consistent and support the validity of the model used to extract the 
optical constants and thickness from the SE spectra. 
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 𝜀𝜀1 =  𝑛𝑛2 − 𝑖𝑖2 (2.4) 

 𝜀𝜀2 = 2𝑛𝑛𝑖𝑖, (2.5) 

where 𝜀𝜀1 and 𝜀𝜀2 are the dispersion (real) and absorption (imaginary) components of the 

thin-film’s complex dielectric function, respectively.  The real-time dielectric functions 

can show the time evolution of bandgap energies and optical transitions during the entire 

deposition process.  Figure 2.5 displays the complex dielectric function of the film at 100 

s, 300 s, and 1090 s during the growth.  The dispersion 𝜀𝜀1 and absorption 𝜀𝜀2 depend strongly 

on the thickness of the LMO thin-film.  The d-d transitions at about 1.5 eV are initially 

suppressed during the growth.  An appreciable spectral weight transfer in this narrow 

energy range of 1 eV – 6 eV is also apparent from Figure 2.5.  At this moment, it is not 

clear what physical mechanism governs the thickness dependent spectral weight transfer, 

which is left for future study.  The important point is that the simultaneous use of RHEED 

Figure 2.5: Real-time dielectric function of thin-film at various times during growth.  The 
(a) dispersion 𝜀𝜀1and (b) absorption 𝜀𝜀2 coefficients as obtained by applying Equations (2.4) 
and (2.5) to the SE optical constants extracted at 100 s, 300 s, and 1090 s. 



20 
 

and SE enable us to model and extract the real-time dielectric functions of thin-films by 

reducing the number of unknown variables using the thickness information obtained from 

RHEED. 

 Note that the high temperature optical properties measured at the growth 

temperature (~ 700 ºC) are closely related to the thin-films’ low temperature electronic 

properties and give us important information about their electronic structure (39).  For 

example, although band gap energies usually decrease with increasing temperature, they 

are material specific and are altered much more significantly by factors such as dopants or 

electronic structural change than by thermal effects.  Note that, Kamaras et al. (40) 

demonstrated that depleting the oxygen content in YBaCuO7-δ thin-films will change the 

films from a superconducting to a non-superconducting state; however, little temperature 

dependence was found in the optical spectra of these thin-films.  Since in situ optical 

spectra are also sensitive to doping or thin-film thicknesses, we might be able to monitor 

important parameters such as oxygen deficiencies in oxide thin-films (30).  If there is a 

change in the dielectric functions (and bandgap energies) during growth, we need a rather 

sophisticated model to extract the optical parameters quantitatively.  However, it is still 

possible to monitor the change qualitatively using a simple model.  For example, in our 

growth of LMO, changes in the thickness dependence of the complex dielectric functions  

are observed even by using a simple thin, isotropic smooth layer-model (see Figure 2.5).   

Our simultaneous real-time RHEED and SE technique can be effectively used for 

growing thin-films with targeted properties.  For instance, tuning electronic properties such 

as band-gap energies can be done during the growth by directly monitoring the sample’s 

optical spectra SE and adjusting the growth parameters during deposition.  If a solid 
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understanding of the relationship between the dielectric functions and the surface 

reconstruction of a thin-film layer is established, then the RHEED diffraction patterns will 

provide insight to choose a proper model for the SE data.  These more elaborate real-time 

SE models are left for development and implementation in future work.   

This dual in situ system is advantageous for several reasons.  The SE spectral range 

is appropriately chosen to effectively probe various optical transitions of transition metal 

oxide thin-films, which give insight into the electronic band structure and its real-time 

change.  The in situ measurements are non-destructive and are free from sample 

degradation due to atmospheric surface-interface layers.  Fast, simultaneous measurements 

performed by the RHEED and SE allow the entire thin-film growth process to be observed 

and characterized.  Finally, even though a model analysis is a formidable task to obtain the 

optical parameters and dielectric functions of thin-films, the simultaneously obtained 

RHEED data can validate a model for SE analysis, which gives this system a significant 

advantage over physical vapor deposition systems featuring only a single in situ monitoring 

technique.   
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Chapter 3 Strain-induced metal-insulator transition in 3D SrIrO3 thin films 

 

Orthorhombic SrIrO3 is a correlated metal whose electronic properties are highly 

susceptible to external perturbations due to the comparable interactions of spin-orbit 

interaction and electronic correlation.  We have investigated the electronic properties of 

epitaxial orthorhombic SrIrO3 thin-films under compressive strain using transport 

measurements, optical absorption spectra, and magneto-resistance.  The metastable, 

orthorhombic SrIrO3 thin-films are synthesized on various substrates using an epi-

stabilization technique.  We have observed that as in-plane lattice compression is increased, 

the dc-resistivity (ρ) of the thin films increases by a few orders of magnitude, and the dρ/dT 

changes from positive to negative values.  However, optical absorption spectra show 

Drude-like, metallic responses without an optical gap opening for all compressively-

strained thin films.  Transport measurements under magnetic fields show negative 

magneto-resistance at low temperature for compressively-strained thin-films.  Our results 

suggest that weak localization is responsible for the strain-induced metal-insulator 

transition for the orthorhombic SrIrO3 thin-films. 

 

3.1 Motivation 
 

Perovskite SrIrO3 is the three-dimensional end member of the Ruddlesden-Popper 

(R-P) series iridates, Srn+1IrnO3n+1, whose electronic structure is tunable from a three-

dimensional correlated metal, i. e. SrIrO3 (n = ∞), to a two dimensional Jeff = 1/2 Mott 

insulator, i. e. Sr2IrO4 (n = 1) (41).  The insulating state emerges when an octahedral crystal 

field splits the degenerate 5d levels into eg and t2g bands; the partially filled t2g bands (Leff  
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= 1) are further split into the Jeff = 3/2 and Jeff = 1/2 bands by the strong spin-orbit coupling 

inherent in iridium ions.  The Mott gap opens in the Jeff = 1/2 band if the on-site Coulomb 

interaction becomes energetically comparable to or larger than the bandwidth.  In SrIrO3, 

there are six nearest neighbor Ir atoms, while in Sr2IrO4 there are only four.  This reduction 

of coordination number of Ir 5d orbitals reduces the bandwidth and opens a gap in the 

partially filled Jeff = 1/2 band in Sr2IrO4.  Hence, the metal-insulator transition in the R-P 

series iridates is driven by a dimensionally controlled decrease in bandwidth. 

In this study, we have investigated whether a metal-insulator transition can also 

occur in epitaxial SrIrO3 thin films via a strain-induced reduction in bandwidth.  While the 

Ir-O bond length is rigid and difficult to change, the Ir-O-Ir bond angle can be readily 

affected by lattice strain (42,43).  As schematically illustrated in Figure 3.1, when the Ir-

O-Ir bond angle is decreased by compressive strain, the electronic hopping integral 

between Ir 5d orbitals is reduced, and hence the bandwidth decreases.  This reduction in 

bandwidth can induce a metal-insulator transition either by opening a Mott gap, similar to 

Sr2IrO4 (41), or by creating a localized band below the mobility edge due to disorder (44).  

We have grown epitaxial SrIrO3 (SIO) thin films on various substrates with close lattice 

mismatch.  We find that as in-plane compression increases, the metallic SIO thin films 

become insulating.  Optical absorption spectroscopy indicates that all SIO thin films have 

a metallic Drude-like response and lack the presence of an optical gap, despite the 

insulating transport behavior.  Transport measurements under magnetic field display a 

negative magneto-resistance (MR) behavior in the insulating SIO thin films.  Hence, the 

strain-induced metal-insulator transition is due to weak localization.  Our results 
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demonstrate that the electronic properties of perovskite SIO thin films can be manipulated 

by compressive lattice strain. 

3.2 Sample synthesis 
 

We have grown orthorhombic SIO epitaxial thin films on several substrates with 

various compressive strains using pulsed laser deposition.  The thermodynamically stable 

phase of bulk SIO crystals is the hexagonal 6H-BaTiO3 structure at ambient conditions, 

and the orthorhombic phase can be stabilized using a high-pressure synthesis (45,46).  

However, orthorhombic SIO phases can be stabilized as epitaxial thin films on pseudo-

Figure 3.1: Schematic diagrams showing the relationship between compressive strain and 
bandwidth reduction. (top panel) In-plane compressive strain will cause the Ir-O-Ir bond 
angle 𝜃𝜃 to decrease. (bottom panel) By reducing the bandwidth, the correlated metallic 
band structure of SrIrO3 (left) can turn insulating either by (upper) a Mott gap opening or 
(lower) localized states (emphasized in dark gray) forming below the mobility edge. 
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cubic perovskite substrates (47,48).  Four single-crystal substrates are used: MgO (001), 

GdScO3 (110) (GSO), SrTiO3 (001) (STO), and (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) (LSAT) 

with in-plane pseudo-cubic lattice constants of 4.21, 3.96, 3.90, and 3.87 Å, respectively.  

During the deposition, the substrate temperature is 700 °C in an oxygen partial pressure of 

100 mTorr.  The samples are post-annealed and cooled in a 1 Torr oxygen atmosphere.   

Figure 3.2a shows 𝜃𝜃-2𝜃𝜃 X-ray diffraction data for all the SIO thin films used in this 

study, and all thin films have the correct 00l orientation with respect to the substrate 

normal.  As the in-plane lattice parameters are decreased from MgO to LSAT, the 00l thin 

film peaks are shifted to lower angles, indicating an out-of-plane (c-axis) expansion of the 

SIO unit cell.  This is consistent with an in-plane compressive strain causing an elongation 

along the c-axis.  The SIO thin film thicknesses are found to be around 20 nm using X-ray 

reflection fringes.  The rocking curves in Figure 3.2b are taken of the 002 film reflection.  

The thin films grown on GSO, STO, and LSAT have full widths at half maximum less than 

0.08°, indicating high crystallinity.  X-ray reciprocal space maps of the (pseudo-cubic) 

103-reflection in Figure 3.2c show the SIO thin films on GSO, STO, and LSAT are 

coherently strained.  As the compressive strain increases from GSO to LSAT, the 103 film 

reflection shifts downward, which is consistent with the 𝜃𝜃-2𝜃𝜃 scans in Figure 3.2a.  The 

SIO thin film on MgO is relaxed due to the large lattice mismatch (~5%), and this sample 

is expected to emulate properties of unstrained (‘bulk’) SIO.  The lattice parameters are 

found using the reciprocal space reflection peaks (Qi = 2π/dhkl, where i ≡ ⊥ or // and dhkl is 

the spacing between appropriate reflection planes (hkl)).  Figure 3.2d shows the change of 
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in-plane (a) and out-of-plane (c) lattice parameters as a function of the substrate in-plane 

Figure 3.2: X-ray diffraction scans confirming the epitaxial growth of perovskite SIO thin 
films.  The films are grown on MgO (black), GSO (blue), STO (green), and LSAT(red): 
(a) 𝜃𝜃-2𝜃𝜃 diffraction scans show correct 00l oriented film peaks, (b) rocking curve 𝛥𝛥𝜔𝜔 scans 
about the film’s 002-reflection, and (c) reciprocal space maps around the 103-reflection 
(pseudo-cubic notation) of the substrates.  (d) The out-of-plane c and in-plane a lattice 
constants of the strained SIO thin films and (e) the ratio c/a as a function of substrate in-
plane lattice. 
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lattice constant.  The ratio c/a quantifies the tetragonal distortion due to strain present in 

the SIO thin films, with c/a > 100% corresponding to compressive strain.  Figure 3.2e 

shows the thin films grown on LSAT, STO, and GSO are compressively strained with a 

tetragonal distortion, and the SIO thin film on MgO is relaxed with a cubic structure. 

3.3 Transport properties 
 

Figure 3.3 shows temperature dependent resistivity curves ρ(T), which indicate a 

large dependence on compressive lattice strain.  The resistivity of each strained SIO thin 

film systematically increases with in-plane compression.  The resistivity of the SIO films 

are of the same order of magnitude as the resistivity measured in a polycrystalline, high 

pressure synthesis study of SIO (~ 2 mΩ cm at room temperature) and other SIO thin film 

studies (46,49-51).  In addition to an increase in resistivity, the SIO films synthesized on 

Figure 3.3: Resistivity versus temperature (upper panel) of SIO films grown on MgO, 
GSO, STO, and LSAT substrates.  The resistivity increases with in-plane compression.  
The room-temperature normalized resistivity (bottom panel) clearly shows the strain-
dependence of the transport, and the insulating regions of SIO on STO and LSAT are fit 
(dashed lines) with a weak localization model (see Equation (3.1)). 
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STO and LSAT have an upturn in their resistivity curves at 175 K and 225 K, respectively.   

The room temperature-normalized resistivity curves are shown in the bottom panel of 

Figure 3.3.  The resistivity of the relaxed SIO on MgO has a positive slope (dρ/dT) for all 

temperatures from 4 to 300 K, which is expected for metallic behavior.  The positive slope 

is reduced for the thin film grown on GSO and becomes increasingly negative for the thin 

films grown on STO and LSAT.  To gain a phenomenological understanding of the 

insulating regions, resistivity data (< 225 K) of SIO grown on STO and LSAT are fit with: 

 𝜌𝜌 =  𝜌𝜌0 − 𝛼𝛼𝑇𝑇3 4⁄ + 𝛽𝛽𝑇𝑇
3
2 (3.1) 

where 𝜌𝜌0,𝛼𝛼, and 𝛽𝛽 are the fit parameters for remnant resistance, three dimensional weak 

localization and inelastic scattering due to electron-boson interactions, respectively 

(52,53).  Weak localization is a disorder driven effect due to quantum interference of the 

conducting charge carriers at defect sites (54).  The weak localization coefficient 𝛼𝛼 for the 

SIO thin film on LSAT is twice as large as the fit coefficient for the thin film grown on 

STO, as shown in Table 3.1.  Based on the lattice parameters obtained from the X-ray 

diffraction data, the compressively strained SIO thin films are not oxygen deficient, 

eliminating a potential source of defect scattering.  Although further experimental 

characterizations are needed to fully understand the defects, one possible mechanism is 

misfit dislocations caused by compressively straining the SIO films, which would lead to 

weak localization.  The exact physical origin should be explored in future studies.  This 

weak-localization model fit is similar to a previous study of compressively strained SIO 

perovskite films of similar thickness grown on LaAlO3 substrates (53). 
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Table 3.1: SIO thin film summary: tetragonal distortion (𝑐𝑐
𝑎𝑎
) from reciprocal space maps; 

weak localization 𝛼𝛼
𝜌𝜌0

 and electron-boson scattering 𝛽𝛽
𝜌𝜌0

 fit parameters from transport; and 
plasma frequency 𝜔𝜔𝑝𝑝,  interband absorption 𝜔𝜔𝑜𝑜,𝛽𝛽, and carrier density n from Drude-
Lorentz fit of absorption spectra. 

 

3.4 Optical properties 
 

Optical absorption spectroscopy provides insight into understanding the electronic 

band structure and free carrier dynamics of thin films.  It also offers a method of 

determining the insulating gap energy by measuring the photon energy of zero absorption 

coefficient.  Optical transmission spectra 𝑇𝑇(𝜔𝜔) of our samples are taken at room 

temperature using a Fourier-transform infrared spectrometer (for spectra regions between 

50 meV – 0.6 eV) and a grating-type spectrophotometer (for spectra regions between 0.5 

– 6 eV).  This spectral range is sufficient for measuring transmittance spectra down to the 

Reststrahlen band of each respective substrate, which is the lowest energy limit for 

transmission spectra.  The optical absorption spectra 𝛼𝛼(𝜔𝜔) of SIO thin films are obtained 

  Transport Absorption Spectra 

Substrate 𝑐𝑐/𝑎𝑎  

(%) 

𝛼𝛼/𝜌𝜌0  

(𝐾𝐾−3/4) 

𝛽𝛽/𝜌𝜌0  

(10−5 𝐾𝐾−3/2) 

𝜔𝜔𝑝𝑝 

(eV) 

𝜔𝜔𝑜𝑜,𝛽𝛽  

(eV) 

𝑛𝑛 

( 1022 𝑐𝑐𝑚𝑚−3) 

MgO 100 - - 10 0.91 7.7 

STO 102 0.003 3.66 7.4 0.79 4.0 

LSAT 103 0.006 5.33 2.6 0.79 0.49 
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using 𝛼𝛼(𝜔𝜔) = −1
𝑡𝑡

ln�𝑇𝑇(𝜔𝜔)𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒 𝑇𝑇(𝜔𝜔)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒⁄ �, where t is the thin film 

thickness.  According to Fermi’s golden rule, 𝛼𝛼(𝜔𝜔) is proportional to the product of the 

transition probability amplitude and joint density of states.  Therefore, the ith interband-

transition peak position 𝜔𝜔0,𝑖𝑖 in 𝛼𝛼(𝜔𝜔) corresponds to the energy difference between bands, 

and the corresponding peak width 𝛾𝛾𝑖𝑖 is proportional to the bandwidth.  SIO thin films 

grown on MgO and GSO substrates are known to show a Drude-like response at energies 

in the infrared, an interband optical transition 𝜔𝜔𝑜𝑜,𝛽𝛽 ~ 0.8 eV from the Jeff = 3/2 band to the 

Jeff = 1/2 band, and a higher energy charge transfer from O 2p bands to Ir 5d bands (41,50).   

Despite the compressively strained thin films having a negative dρ/dT behavior, the 

absorption spectra in Figure 3.4 show all the SIO films have a Drude-like response at low 

Figure 3.4: Optical absorption spectra of SIO films grown on MgO, STO, and LSAT 
substrates.  The dashed black lines are Drude-Lorentz fits using the Drude model and two 
Lorentz oscillators: for the interband 𝛽𝛽 absorption (~0.8 eV) and for the charge transfer. 
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energies, which suggests a metallic behavior.  The absorption coefficient 𝛼𝛼(𝜔𝜔) is 

proportional to the extinction coefficient k by 𝛼𝛼(𝜔𝜔) = 2𝑘𝑘𝑘𝑘
𝑐𝑐

, which is nonlinearly related to 

the dielectric function by: 𝑖𝑖 =  �1
2

(√𝜀𝜀1 − 𝜀𝜀2 − 𝜀𝜀1), where c is the speed of light and 𝜀𝜀1 

and 𝜀𝜀2 are the real and imaginary parts of the complex dielectric function, respectively.  

The absorption spectra for all samples are fit to the Drude model for the low energy metallic 

response, a Lorentz oscillator for the interband β transition, and a second Lorentz oscillator 

for the higher energy charge transfer transition.   

In the Drude model, the complex dielectric function is given by 𝜀𝜀�̃�𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑒𝑒(𝜔𝜔) = 𝜀𝜀1 +

𝑖𝑖𝜀𝜀2 = 1 − 𝑘𝑘𝑝𝑝

𝑘𝑘2+𝑖𝑖𝑘𝑘𝑖𝑖
, where the two fit parameters are the plasma frequency 𝜔𝜔𝑝𝑝 and the 

scattering rate 𝛾𝛾.  As summarized in Table 3.1, the free charge carrier density n for each 

SIO film is found using 𝜔𝜔𝑝𝑝 = (𝑛𝑛 𝑍𝑍2 (𝑚𝑚∗𝜀𝜀0)⁄ )
1
2, where e is the elementary charge,  𝑚𝑚∗ is 

the effective mass of an electron, and 𝜀𝜀0 is the permittivity of free space.  S. J. Moon et al. 

reported a frequency-dependent mass enhancement of SIO’s conducting carriers only at 

low energies, and the effective mass approaches the free electron mass me around 0.08 eV 

(41).  Therefore, in our spectral range (> 0.2 eV) it is assumed 𝑚𝑚∗ = 𝑚𝑚𝑒𝑒, and the free charge 

density n is found to be 7.7 × 1022 𝑐𝑐𝑚𝑚−3, 4.0 × 1022 𝑐𝑐𝑚𝑚−3, and 4.9 × 1021 𝑐𝑐𝑚𝑚−3 for SIO 

grown on MgO, STO, and LSAT, respectively.  Although both compressively strained SIO 

films feature insulating properties, all films have free carrier concentrations of the same 

order of magnitude, albeit smaller than that of most metals.  The carrier density of SIO on 

MgO is also verified using a room temperature Hall measurement and is found to be 

7.3 × 1022 𝑐𝑐𝑚𝑚−3, which is in agreement with the n found in the optical spectra and 

supports the assumption 𝑚𝑚∗ = 𝑚𝑚𝑒𝑒.  The absorption peak 𝜔𝜔𝑜𝑜,𝛽𝛽 around 0.8 eV remains 



32 
 

relatively constant for all SIO films; however, the peak width 𝛾𝛾𝛽𝛽 of the relaxed SIO on 

MgO is larger than 𝛾𝛾𝛽𝛽 of each compressively strained film on STO and LSAT.  This is 

consistent with the expectation of in-plane compressive strain causing a decrease in the Ir-

O-Ir bond angle and therefore decreasing the bandwidth, albeit not large enough to open 

an insulating band gap.  If the Ir-O bond length had decreased in compressively strained 

SrIrO3 films, the peak widths would increase and conduction would be enhanced, which is 

opposite to the behavior observed in our thin films.  Therefore, the Ir-O-Ir bond angle 

rather than the Ir-O bond length in SrIrO3 thin films is more energetically favorable to alter 

by epitaxial, compressive strain. 

3.5 Magneto-resistance measurements 
 

The SIO thin films grown under compressive strain (on STO and LSAT) exhibit a 

negative magneto-resistance (MR) behavior at low temperatures while the MR of the SIO 

thin film grown on MgO shows a positive B2 behavior [MR (%) = 100 × 𝑅𝑅(𝐵𝐵)−𝑅𝑅(0)
𝑅𝑅(0)

, where 

𝑅𝑅(0) and 𝑅𝑅(𝐵𝐵) are thin film resistance for zero and non-zero magnetic field B, 

respectively].  For each sample, the MR response is qualitatively isotropic in the following 

field and thin film orientations: 𝐵𝐵 ∥ 𝑐𝑐,𝐵𝐵 ⊥ 𝐼𝐼 (Figure 3.5) and 𝐵𝐵 ⊥ 𝑐𝑐,𝐵𝐵 ⊥ 𝐼𝐼, where I is the 

in-plane current and c is the out-of-plane film axis.  The positive B2 MR is typical for 

simple metals and is observed for the unstrained SIO on MgO.  The negative MR for the 

compressively strained thin films grown on STO and LSAT is consistent with the data 

reported in Ref. (53).  The MR data supports the picture in Figure 3.1 that weak localization 

causes the insulating behavior of compressively strained SIO thin films.  For weak 

localization, time reversal symmetry must be preserved.  By applying magnetic fields, a 

phase shift occurs in the electronic wave functions.  Hence, this asymmetrical phase shift 
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between forward and backscattered electrons suppresses the interference, i.e. weak 

localization, and results in a decrease in the resistance under magnetic fields, which is a 

negative MR behavior (54). 

3.6 Summary 
 

Epitaxial SrIrO3 thin films have been synthesized on various substrates inducing in-

plane compressive strain and film relaxation.  Relaxed SIO is metallic for all temperatures 

while the strained thin films have an increase in their resistivity as a function of 

compression.  Weak localization corrections are fit to the resistivity curves of the SIO thin 

films with insulating properties.  Although the compressively strained films exhibit 

insulating properties, the optical absorption spectra of all SIO thin films have a Drude-like 

metallic response at low energies.  The Jeff = 3/2 absorption peak is centered around 0.8 

eV, and the bandwidth decreases with in-plane compressive strain.  This implies that 

compressive strain induces an in-plane rotation of the oxygen octahedra causing a decrease 

in bandwidth, but fails to open an insulating bandgap.  The positive, quadratic MR for the 

relaxed SIO film is typical for metals, and the negative MR of the compressively strained 

Figure 3.5: Magneto-resistance (MR) versus magnetic field taken at 5 K, 30 K, and 175 K 
for SIO films grown on MgO, STO, and LSAT.  The SIO on MgO displays typical 
metallic B2 behavior.  The compressively strained films grown on STO and LSAT have 
negative MR, supporting weak localization. 
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films is indicative for insulating samples due to weak localization.  As schematically 

summarized by Figure 3.1, these results demonstrate the effect of lattice strain on the 

electronic structure of SIO, and the role of weak localization in obtaining insulating states 

in strongly correlated, metallic systems.  This offers an important progression in our 

understanding of similar 5d transition metal oxide systems and heterostructures with strong 

spin-orbit coupling and electron correlation. 
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Chapter 4 Creating 1D quantum stripes from 2D layered materials 
 

   

One-dimensional (1D) quantum systems, which are predicted to exhibit novel states of 

matter in theory, have been elusive in experiment.  In this study, we develop a superlattice 

method of creating artificial 1D quantum stripes, which offers dimensional tunability from 

two- to one-dimensions.  As a model system, we have fabricated 1D iridium (Ir) stripes 

using a-axis oriented superlattices of a relativistic Mott insulator Sr2IrO4 and a wide 

bandgap insulator LaSrGaO4, both of which are crystals with layered structure.  In addition 

to the successful formation of 1D Ir-stripe structure, we have observed 1D quantum-

confined electronic states from optical spectroscopy and resonant inelastic x-ray scattering.  

Since this 1D superlattice approach can be applied to a wide range of layered materials, it 

opens a new era of 1D science. 

4.1 Motivation of study 
 

An ideal one-dimensional quantum-stripe consists of an infinite linear chain of bonded 

atoms, wherein the interactions between each atom’s electrons are restricted to the single 

dimension of the chain (55).  One-dimensional (1D) order spontaneously emerges at the 

onset of quantum phase transitions in the form of charge/spin density waves in 

multiferroics, superconductors, and as edge and surface states in topologically non-trivial 

systems (56-62).  An experimental approach for investigating such phenomena is to 

dimensionally tune these systems to one dimension until a critical phase transition is 

reached, as conducted similarly in Ruddlesden-Popper series compounds from three to two 

dimensions (1).  While many successful strategies have been demonstrated for chemically 

synthesizing 1D nanostructures, direct atomic-layer control between two and one 
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dimension(s) is generally considered unavailable (63).  Additionally, the quantum 

confinement of conventionally two dimensional materials to one dimension can reveal 

hidden electronic and magnetic properties.  For example, SrCuO2, i.e. 1D chain compound, 

shows novel spin-charge separation, which is absent in its 2D counterpart, Sr2CuO2Cl2 

(Ref. (64)).  Despite the promising outlook for 1D materials, experimental progress remains 

in its infancy, hampered by its reliance on the few materials with intrinsic 1D structure 

(65). 

4.2 Methodology of 1D stripe synthesis 
 

In this new approach of synthesizing 1D quantum systems, dimensionally-confined 

stripe-superlattices are constructed from in-plane oriented 2D layered crystals.  Layered 

transition metal oxides of the form A2BO4 consist of 2D layers (BO2) in the ab-plane that 

are stacked along the c-axis.  Such materials are considered 2D since each consecutive 

plane is well separated by an electronically inert rock salt layer (AO) and offset by a half 

unit cell.  Compounds with this K2NiF4-type structure can be epitaxially grown such that 

the 2D layers are oriented parallel to the surface normal direction, i.e. a-axis orientation 

(66-68).  The crux of our idea is that the dimensionality of the 2D layered materials in this 

a-axis orientation can be tuned by restricting the number of monolayers m grown along the 

in-plane direction (Figure 4.1a).  For instance, if only a single monolayer is grown, i.e. m 

= 1, then the 2D planes become 1D stripes.  To achieve a volume suitable for experimental 

characterizations, superlattice structures can be grown consisting of alternating layers of m 

monolayers of BO2 and n monolayers of an inert, wide bandgap material also containing 

the K2NiF4 symmetry (A′2B′O4).  In this manner, the 2D planes can be incrementally tuned 

to 1D quantum stripes. 
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We have implemented this idea in synthesizing 1D IrO2 stripes using in-plane 

Figure 4.1: Conceptual diagram of turning a 2D layered material into a 1D quantum stripe 
superlattice.  a) The leftmost panel shows the in-plane structures of two transition-metal 
oxides, A2BO4 (above) and A′2B′O4 (below), with the K2NiF4 symmetry.  Each red (gray) 
square contains transition-metal ions B (B′) at its center and an oxygen atom at each of its 
4 vertices.  The number of BO2 monolayers m corresponds to the horizontal rows of red 
squares, i.e. the stripes.  Low-dimensional stripe phases approaching 1D (e.g. m = 3, 2, 1) 
can be created by alternating the layers between m monolayers of BO2 and a constant 
number of B′O2 monolayers (such as 5 in the schematic).  The 1D quantum-stripes are 
achieved in the m = 1 case depicted in the rightmost panel.  b) Schematic diagrams of a-
axis oriented (Sr2IrO4)m/(LaSrGaO4)5 superlattices for m = 3, m = 2 and m = 1 for realizing 
the low-dimensional quantum stripes of IrO2 (red squares) on LaSrGaO4 (100) substrates.  
The 1D IrO2 stripes run parallel to the b-axis and are dimensionally confined by the wide 
bandgap LaSrGaO4 layers (grey octahedra). 
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oriented superlattices of Sr2IrO4 and the wide bandgap insulator LaSrGaO4 (Eg = 3.8 eV) 

(Figure 4.1b and Figure 4.2).  We have used a-axis oriented LaSrGaO4 (100) as both the 

substrate and insulating sublayers.  The samples in this study are 30 superlattice-unit-cells 

thick, and each superlattice unit cell consists of m monolayers of Sr2IrO4 and 5 monolayers 

of LaSrGaO4.  To synthesize the 1D superlattice structures, we have used our customized 

pulsed laser deposition (PLD) system in order to optimize monolayer-controlled deposition 

of Sr2IrO4 and LaSrGaO4 (see Ref. (69) for detailed growth methods).  For a monolayered 

controlled growth, it is important to maintain a slow growth rate of Sr2IrO4 and LaSrGaO4 

layers, ca. 200 laser pulses per monolayer.  The growth parameters of the deposition require 

an oxygen partial pressure (PO2) of 10 mTorr, a substrate temperature of 700 ˚C, and laser 

(KrF excimer, λ = 248 nm) fluence of 1.2 J/cm2.  The superlattice growth is monitored 

Figure 4.2: Schematic detailing the atomic and geometric configurations of Sr2IrO4 and 
LaSrGaO4 unit cells.  The 2D planes in Sr2IrO4 and LaSrGaO4 consist of an array of 
octahedra, which each corner-share oxygen atoms in the ab-plane and centrally contain the 
transition metal Ir or Ga, respectively.  The 2D planes are each separated by a rock salt 
layer of SrO for Sr2IrO4 and (La,Sr)O for LaSrGaO4, and adjacent planes are each offset 
by a half unit cell.  For our 1D m = 1 structure, one monolayer (a half unit cell) of Sr2IrO4 
is deposited along the a-axis followed by 5 monolayers (four and a half unit cells) of 
LaSrGaO4.   
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using RHEED (see Figure 4.3), and the deposited monolayers of both LaSrGaO4 and 

Sr2IrO4 show distinct axis-dependent diffraction patterns during the entire deposition, 

which indicate the proper structural confinement required for creating the 1D IrO2 stripe-

structures. 
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Figure 4.3: RHEED monitor during m = 4 growth.  The in-plane anisotropy of the 
(Sr2IrO4)4/(LaSrGaO4)5 superlattice induces distinct axis dependent RHEED diffraction 
patterns and intensity fluctuations for monitoring the c-axis (top panel) and b-axis (bottom 
panel).  The RHEED intensity and diffraction patterns remain relatively stable, indicating 
the superlattice retains structural integrity during the deposition. 
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While there have been many previous investigations on the unique spin-orbit 

coupled Jeff = 1/2 Mott insulating state present in the 2D layered iridate Sr2IrO4 (70-73), 

there are no previously studied or discovered 1D iridate systems to date.  Recent studies on 

2D Sr2IrO4 also have revealed interesting phenomena such as the presence of excitonic 

quasiparticles and indications of new superconducting ground states for doped samples 

(74-77).  Using structural and electronic characterizations of x-ray diffraction, high-

resolution scanning transmission electron microscopy (STEM), optical spectroscopy, and 

resonant inelastic x-ray scattering, we have confirmed that both 1D structural and 

electronic confinement is achieved for this system.  Our experimental observations are also 

consistent with the calculations of density functional theory.  These results imply that this 

method can be extended to any 2D layered material and thereby allow for tunability to 1D 

quantum structures previously disregarded in experimental one-dimensional science. 

4.3 Structural evidence of 1D confinement  
 

The 1D stripe-structures of our superlattice samples have been confirmed by x-ray 

diffraction and high-resolution STEM.  Figure 4.4a shows clear periodic superlattice peaks 

in the 2𝜃𝜃-𝜔𝜔 x-ray diffraction scans.  Since each superlattice unit cell consists of m 

monolayers of Sr2IrO4 and 5 monolayers of LaSrGaO4, i.e. (Sr2IrO4)m /(LaSrGaO4)5 (m = 

1 – 5), the superlattice diffraction peak periodicity ∆h shows excellent agreement to 1/(m 

+ 5).  For strain information, x-ray reciprocal space maps have been taken near the (310)- 

and (303)- reflections of LaSrGaO4 for the ab- (Figure 4.4b) and ac-planes (Figure 4.4c), 

respectively.  The vertical alignment of the superlattice peaks with the substrate reflections 

indicates all superlattices are coherently strained along both directions, i.e. b- and c-axes.  
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STEM further confirms that the 1D superlattice structures are successfully formed (Figure 

Figure 4.4:  X-ray diffraction scans and Z-contrast STEM data of (Sr2IrO4)m/(LaSrGaO4)5 
superlattices.  a) 2𝜃𝜃-𝜔𝜔 x-ray diffraction scans of (Sr2IrO4)m/(LaSrGaO4)5 superlattices 
(labeled accordingly to the right).  The LaSrGaO4 (400)-diffraction peaks are indicated by 
an asterisk (*).  The central superlattice peak is the zeroth order Bragg diffraction peak 
(indexed as 0), and the superlattice satellite peaks are indexed relative to this peak.  Two 
x-ray reciprocal space maps are taken for each superlattice sample about b) the (310)- and 
c) the (303)-reflections of LaSrGaO4 (*) to obtain complete in-plane strain information.  d) 
Z-contrast STEM images of m = 3 (left pair) and m = 1 (right pair) superlattices.  Two 
cross-sections are shown for each sample: the ac-plane (left scan of each pair) and the ab-
plane (right scan of each pair).  The brightest dots are Ir ions and the inset schematics 
employ the same color scheme as in Figure 4.1b.  Note that the IrO2 stripes run along the 
b-axis ([010]-direction), that is the out of page direction in the left image and the horizontal 
direction in the right image of each sample.  All images have the same scale bar (leftmost 
image) of 5 nm. 
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4.4d).  The expected half-unit cell offset (zig-zag shape) and Sr-O rock salt separation 

between neighboring IrO2 stripes along the c-axis is readily apparent in the ac-plane scans 

of the m = 3 and m = 1 samples.  Along the b-axis, the IrO2 stripes are coherent; however, 

the stripe boundaries in this planar view are rather indeterminate due to the inter-stripe half 

unit cell offset between each planar layer.  These observations provide convincing evidence 

for the successful creation of 1D IrO2 stripe-structures from the 2D Sr2IrO4.   

4.4 Electronic confinement of 1D stripes 
 

Linearly polarized optical spectroscopy shows clear anisotropic characteristics and 

1D electronic confinement of the stripe-structures.  The directional-dependent absorption 

spectra are obtained by linearly polarizing the incident photons such that the electric field 

E is perpendicular (parallel) to the 1D IrO2 stripe direction along the b-axis, as shown by 

the graphic in Figure 4.5a (Figure 4.5b).  The optical conductivity spectra (σ1 (ω)) are 

obtained by taking a Kramers-Kronig transformation of the absorption spectra α (ω) 

(Figure 4.6) and are normalized by the number of Ir monolayers per superlattice unit cell, 

i.e. m/(m + 5) for the (Sr2IrO4)m /(LaSrGaO4)5 superlattices.  When the polarization is 

parallel to the 1D IrO2 stripe direction, i.e. E // b (Figure 4.5b), there are broad peaks in the 

optical spectra.  The finite peaks appear due to the Ir-Ir inter-site optical transitions in the 

Jeff = 1/2 band (75,78,79).  Note that the peaks are significantly reduced (Figure 4.5a) when 

the polarization is perpendicular to the IrO2 stripe direction, i.e. E ⊥ b.  If the IrO2 stripes 

are truly 1D, this can be understood intuitively since no Ir-Ir inter-site optical transitions 

are possible perpendicular to the b-axis.  Hence, the observation of optical anisotropy 

confirms that the 1D IrO2 stripes are also confined electronically.  As m decreases, i.e. the 

samples approach one dimension, the spectral weight in the absorption is reduced (Figure 
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4.6) and the indirect gap observed in 2D Sr2IrO4 (Figure 4.5c) becomes a direct gap for the 

1D superlattices (Figure 4.5d).  New sharp features also appear in the spectra (marked as 
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Figure 4.5: Optical spectra of (Sr2IrO4)m/(LaSrGaO4)5 superlattices.  Above each plot, an 
experimental depiction of the two sets of incident photons with linear polarization (E) a) 
perpendicular and b) parallel to the IrO2 stripe-direction (b-axis) for m = 1 (red), 2 (blue), 
3 (green), and 4 (orange) superlattices.  All optical conductivity spectra 𝜎𝜎1 are normalized 
by the number of Ir monolayers per superlattice unit cell for comparison, and m = 2, 3, and 
4 spectra are vertically shifted for clarity.  The strong optical anisotropy, i.e. the absence 
of the low energy absorption peaks when E is perpendicular to the 1D IrO2 stripes, confirms 
the low-dimensional electronic confinement.  In the m = 4 superlattice spectra, the two 
peaks indicated by * and ▼ closely match the peak positions of 2D Sr2IrO4 crystals.  As 
the dimensionality decreases, several notable features include: the change in electronic 
band and optical gap nature from c) an indirect gap (band edge linear with 𝛼𝛼1/2) to d) a 
direct gap (band edge linear with 𝛼𝛼2), the appearance of van Hove singularities, the distinct 
emergence of a higher energy peak marked by ∇, and a blue-shift of the ▼ peak. 
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∇ in Figure 4.5b).  The sharp features present in the optical spectra are attributed to van 

Hove singularities, the appearance of which is contingent upon the low dimensionality of 

the crystal (80).  The low dimensionality also contributes to an enhanced effective electron-

correlation Ueff; which is responsible for the blue-shift of the optical transitions (Figure 

4.6). 

 

In order to reveal the elementary excitation dynamics of spin/orbital degrees of 

freedom exhibited by the 1D IrO2 stripe-structures, we have taken resonant inelastic x-ray 

scattering (RIXS) spectra (For measurement geometry, see Figure 4.6).  In the case of 2D 

Sr2IrO4, RIXS spectra reveal a magnon produced by antiferromagnetic Heisenberg spin 

below 0.2 eV as well as dispersive excitonic quasiparticles of Jeff orbitals (spin-orbit 

excitons) above 0.4 eV (Figure 4.7a and Ref. (74)).  For the 1D superlattice, the m = 1 

RIXS spectra reveal many unique features not present in its 2D Sr2IrO4 counterpart (Figure 
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Figure 4.6: Linearly polarized optical absorption spectra of (Sr2IrO4)m/(LaSrGaO4)5 
superlattices (m = 1 – 4).  The absorption spectra are taken at normal incidence and 
polarized such that the AC electric field E is parallel to the IrO2 stripe direction (b-axis), 
as schematically depicted in Figure 3b.  In comparing with Sr2IrO4 (grey), the superlattice 
absorption monotonically decreases as 1D is approached from m = 4 to m = 1, and the 
blue shift of the central absorption peak is also readily apparent.  For visual clarity, the 
absorption spectra for m = 1, 2, 3, 4 have been multiplied by a factor of three. 
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4.7b and Figure 4.7c).  The spin excitation energy of the 1D IrO2 stripes (~0.2 eV) is higher 

than that of 2D Sr2IrO4 (~0.06  eV), which implies that the 1D IrO2 stripes have higher 

exchange interactions due to the localized character of the 1D spin structure.  In the region 

of orbital excitations, a resolution-limited spin-orbit exciton at 0.6 eV is discovered.  This 

is interpreted as arising from the same Jeff orbital transitions of the spin-orbit exciton in 

bulk Sr2IrO4— with a notable exception of broad dispersive excitations within the vicinity 

of the 1D spin-orbit exciton.  These broad excitations disperse towards higher energy as 

the momentum transfer approaches π (Figure 4.7b).  Note that broad excitations in bulk 

Sr2IrO4 originate from the electron-hole continuum and damped orbital excitons.  Thus, the 

broad dispersive excitations in the 1D IrO2 stripe RIXS spectra are consistent with the 

Figure 4.7: Measurement geometry of resonant inelastic scattering measurements (RIXS) 
with respect to Sr2IrO4 and the 1D m = 1 superlattice.  The incident-photon is polarized 
along a) the ab-plane for bulk Sr2IrO4 and along b) the a-axis for the 1D m = 1 superlattice.  
The scattered-photon polarization has components both parallel to the incident polarization 
(π-polarization) and perpendicular to the scattering plane (𝜎𝜎-polarization). In this 
geometry, the in-plane spin components (ab-plane of bulk Sr2IrO4 and b-axis of the 1D m 
= 1 superlattice) and the out-of-plane spin components (ab-plane of bulk Sr2IrO4 and c-
axis of 1D m = 1 superlattice) are probed.  The scattered-photon polarization is used to 
probe the orbital lobes of the c-axis and in-plane directions for both samples.  The geometry 
in a) is used to maximize the RIXS matrix elements for the transition between |Jeff = 1/2, Jz 

= 1/2> (= |xy,+> + |yz,-> + i|zx,->) and |Jeff = 3/2, Jz = ±3/2>  (=|yz,±> ± i|zx,±>).  The 
resolution-limited orbital exciton peak at 600 meV of the 1D m = 1 superlattice can be 
assigned as from the same orbital transition.  The same energy resolution of 30 meV is 
used for both measurements, and incident- and scattered-photon polarizations are also 
similar in both cases.   
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optical spectroscopy data (Figure 4.5b), which reveal the existence of a largely reduced 

electron-hole continuum.  Hence, the observed broad orbital excitations reflect the 

Figure 4.8: Intensity contour plots of RIXS spectra for a) 2D Sr2IrO4 crystal along the (0, 
0) to (0, 2π) direction of its 2D Brillouin zone and b) 1D (Sr2IrO4)1/(LaSrGaO4)5 
superlattice along the 0 to 2π  direction (i.e. parallel to the b-axis) of its 1D Brillouin zone.  
Note that the low-energy magnon branch and the dispersion of spin-orbit excitons are 
shown below 0.2 eV and above 0.4 eV, respectively, and dashed lines act as visual guides.  
c) RIXS spectra of the 1D superlattice (red) and 2D Sr2IrO4 crystal (blue) at comparable 
momentum transfers.  Distinct excitations of the 1D superlattice include: broad spin-
excitations below 0.4 eV are distinct from the resolution-limited magnon peak of 2D 
Sr2IrO4 (indiated by * in c));  the 1D superlattice shows a quasiparticle spin-orbit exciton 
at ca. 0.6 eV, of which energy is 100 meV higher than that of 2D Sr2IrO4; and broad orbital 
excitations also show different dispersive behaviors from 2D counterpart.  The strong 
intensity around zero energy loss in b) is mostly from elastic scattering by LaSrGaO4 
layers.  
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deconfined character of orbitals in the 1D structure. 

4.5 Density Functional Theory calculations of 1D dispersion 
 

To supplement the understanding of the experimental data, we have performed 

density functional theory (DFT) calculations for the 1D (Sr2IrO4)1/(LaSrGaO4)5 stripe-

structure.  As compared to its 2D Sr2IrO4 counterpart (Figure 4.8a), the spin-orbit split Jeff 

= 1/2 band appears quite flattened in the 1D energy dispersion (Figure 4.8b), indicating the 

presence of a very localized Jeff = 1/2 state.   

As a consequence, the indirect gap between the Jeff = 1/2 state in 2D Sr2IrO4 

becomes a direct gap in its 1D counterpart, which is in excellent agreement with the 

indirect-to-direct gap phase transition observed in the optical spectra (Figure 4.5c and 

Figure 4.5d, respectively).  The localization of the Jeff = 1/2 state should also induce 

Figure 4.9: Band structures from DFT calculations and the density of states (DOS).  a) The 
calculated electronic band structure (left) and DOS (right) of 2D Sr2IrO4.  The Jeff = 1/2 
and Jeff = 3/2 states are distinguished between blue and red circles, respectively.  The 
optically allowed inter-band Jeff = 1/2 transitions are indicated by dashed lines, and the 
labels * and ▼ correspond to the observed peaks in the optical conductivity spectra in 
Figure 4.5b.  b) The electronic band structure and DOS of 1D (Sr2IrO4)1/(LaSrGaO4)5 
superlattice show the flat dispersion due to dimensional confinement.  An indirect-to-direct 
gap transition is consistent with experimental data (Figure 4.5c and Figure 4.5d).  Sharp 
features (van Hove singularities) in the DOS and an additional optically allowed Jeff = 1/2 
transition (∇) are in agreement with the experimental spectra in Figure 4.5b.  
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additional sharp optical transitions since optical spectroscopy measures the joint density of 

states between occupied and unoccupied bands.  This result is consistent with the 

emergence of the van Hove singularity, i.e. sharp peak ∇, in the optical conductivity spectra 

of the superlattices (Figure 4.5b).  The excellent agreement of these 1D characters with the 

experimentally obtained optical conductivity spectra verifies the successful electronic 

confinement of our (Sr2IrO4)m/(LaSrGaO4)5 stripe-structures. 

4.6 Outlook and Summary 
 

This approach of creating 1D quantum-stripe systems provides an avenue for 

exploring emergent phenomena of low dimensional physics.  For instance, 

superconducting 1D nano-stripes can be created by using an a-axis oriented superlattice of 

the layered cuprates such as (La,Sr)2CuO4.  Although metallic ground states in true 1D 

materials are hard to stabilize due to structural instabilities such as the Peierls transition, 

the striped structures can be used to discover new phase transitions by tuning the system’s 

dimensionality from two to one dimension(s).(81)  Another intriguing feature of low 

dimensional systems is fractionalization of spin and charge degrees of freedom (e.g. 

spinons and excitons).  Such excitonic effects are expected to be enhanced due to their 

spatial decoupling in 1D systems.  

In summary, we have shown a generalizable superlattice approach of a continuous 

dimensional control between two-dimensional (2D) layered oxides and 1D quantum 

stripes.  We demonstrated its successful application on the highly correlated, 2D Sr2IrO4.  

In our superlattice structures, we have observed the optical transitions of electrons between 

neighboring Ir atoms to be confined to the 1D IrO2 stripe direction, which emulates ideal 

1D behavior.  Spin and orbital excitations observed in resonant inelastic x-ray scattering 
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also suggest enhanced spin exchange interactions and confined orbital excitations in the 

1D IrO2 stripes as compared to 2D Sr2IrO4.  This 1D superlattice method can be readily 

adopted for unveiling 1D phenomena in a variety of two-dimensional materials. 
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Chapter 5 Tuning Ueff in mixed-phase pyrochlore iridate thin films  
 

Pyrochlore iridates (R2Ir2O7, R: rare-earth lanthanides) have attracted substantial attention 

for predictions of topological properties emerging from frustrated magnetic spin structures 

(all in – all out AIAO ordering) in the presence of strong spin-orbit interaction and effective 

electron correlation Ueff (2,82).  The lattice structure of the pyrochlore iridates consists of 

two interwoven kagome sublattices—a tetrahedral network formed by Ir-O and a corner 

shared tetrahedral network formed by the rare-earth atoms (see Figure 5.1).  The Jeff = ½ 

spins of the Ir sublattice point either inward or outward towards the center of each 

tetrahedra.  These all-in-all-out (AIAO) and all-out-all-in (AOAI) magnetic orderings are 

degenerate ground states (hence frustrated) and form a unique octupole antiferromagnetic 

order (83).  Experimental evidence suggests this magnetic order is concomitant with a 

metal-insulator transition in several pyrochlore iridate systems (84-86).   

Figure 5.1:  Pyrochlore iridate R2Ir2O7 lattice structure.  The pyrochlore lattice features two 
interwoven kagome sublattices of corner sharing tetrahedra.  The Ir (orange) atoms form  
tetrahedra via an Ir-O network (oxygen not depicted) and are pictured in the geometrically 
frustrated all-in-all-out spin configuration.  The R (blue) atoms are rare-earth atoms of the 
lanthanide series and form tetrahedra around an oxygen atom (not pictured).  The R-
sublattice is pictured in the 3-in-1-out spin configuration.   
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The spin-orbit-split Jeff = 1/2 state arranged on a kagome lattice has been 

theoretically shown to take a paramagnetic semimetallic ground state when Ueff = 0 (2).  

However, as Ueff is turned on to a small finite value, it stabilities the AIAO spin 

configuration and induces a Weyl semimetal state with 8 Weyl points along the [111] and 

symmetry related directions.  As Ueff is increased further, each Weyl point pair moves in 

momentum space along its respective symmetry direction until the points pair-annihilate 

at the Brillouin zone boundary.  At this point, the system’s bulk bands become insulating 

while the surface states remain conducting.  These surface states remain conducting until 

a further increase in Ueff gaps the surface state, and thus the system forms a Mott insulating 

state.  Figure 5.2, recreated from Ref. (2), summaries the phase dynamics of this system.    

 

Figure 5.2:  Pyrochlore iridate electronic and magnetic phase diagram as a function of U.  
The top panel describes the evolution of the pyrochlore iridate system from a paramagnetic 
metal at U=0 through the AIAO Weyl semi metallic phase, until reaching the Mott 
insulating phase.  The bottom panel depicts a Weyl point pair (blue and red dots) in the 
bulk and surface bands.  The pair annihilates at Uc2, and opens a bulk gap.  This figure has 
been recreated from Ref. (2). 
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5.1 Motivation of study 
 

A method for probing this multi-interaction phase space is by monotonically tuning 

Ueff, which is achieved experimentally by altering the pyrochlore iridate lattice size, i. e. 

Ueff increases as the size of R decreases.  This has been performed on a number of bulk 

polycrystalline samples with mixed concentrations of the lanthanide series rare-earths R, 

and the metal-insulator transition temperature TMI has been observed to decrease as the 

rare-earth ionic radius size increases from Y to Pr – consistent with tuning Ueff (4,87).  

Recently, evidence for a field-induced transition between a Weyl semimetal to a line node 

semimetal has also been reported in bulk single crystals of Nd2Ir2O7 and (Pr1/2Nd1/2)2Ir2O7 

(88).  This encouraging find supports further investigation into the topological properties 

of other pyrochlore iridate members with various values of Ueff to determine the critical 

phase boundaries between the distinct surface and bulk ground states.   

 

5.2 Synthesis of mixed-phase (A,B)2Ir2O7 thin-films 
 

In order to tune Ueff in this study, we have synthesized a series of mixed phase 

pyrochlore iridate thin-films ((A,B)2Ir2O7 for (A,B) = (Pr1/2Nd1/2); (Pr1/3Nd2/3); (Nd); 

(Sm1/3Nd2/3); (Sm1/2Nd1/2); (Sm2/3Nd1/3); (Sm)) on the wide-band insulator Y:ZrO2 (YSZ) 

using a combination of pulsed laser deposition and a high-temperature anneal in ambient, 

which has been reported elsewhere (89).  As the average rare earth ionic size is increased 

from Sm to Pr1/2Nd1/2, the thin-film lattice parameters systematically increase, as revealed 

by x-ray diffraction 2θ scans and reciprocal space maps (Figure 5.3abd).  While the lattice 

size increase is consistent with those of bulk polycrystals (4), the films have rather broad 

RSM reflection peaks, indicating substantial film relaxation.  Although relaxed, the Raman 
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spectra indicate the films have the six Raman active phonon modes consistent with the 

pyrochlore lattice symmetry (Figure 5.3c) (90).  Additionally, temperature dependent 

resistivity shows the films to all undergo a metal-insulator transition (Figure 5.4), which is 

Figure 5.3:  X-ray diffraction and Raman spectra of mixed phase pyrochlore iridates (A,B)2 
Ir2O7 / YSZ (111).  (a) Symmetric x-ray diffraction scans for the mixed-rare earth series 
(A,B) including (Pr1/2Nd1/2); (Pr1/3Nd2/3); (Nd); (Sm1/3Nd2/3); (Sm1/2Nd1/2); (Sm2/3Nd1/3); 
(Sm), where the average rare-earth ionic radius is sequentially decreased.  All samples take 
the pyrochlore structure with the (111)-lattice vector parallel to the out-of-plane direction.  
The dashed lines are placed at the out-of-plane diffraction peaks for single-phase Nd2Ir2O7 
(b) The out-of-plane lattice constants for the mixed-phase films calculated from each film’s 
reciprocal space map diffraction peak.  As the average rare-earth ionic radius size is 
increased from (Sm) to (Pr1/2Nd1/2), the pyrochlore iridate lattice parameters sequentially 
increase and are consistent with polycrystalline, single-phase samples reported by Ref. (4).  
(c)  Raman spectra taken at room temperature indicate the presence of the six phonon 
modes expected of the pyrochlore structure (d) RSM’s of each film’s (662)-reflection peak.  
The dashed gray curve represents the line of cubic lattice constants, which are expected for 
the pyrochlore structure. 
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consistent with the expectation that tuning the ionic radius from Sm to Pr1/2Nd1/2 will 

systematically decrease Ueff. 

  

5.3 Comparison with bulk single crystal pyrochlore iridates 
 

Comparing the residual resistivity ratio (RRR) of the thin film samples with that of bulk 

single crystal Nd2Ir2O7 (3), the thin film samples have RRR values several orders of 

magnitude lower than that of the bulk samples (Figure 5.5).  Additionally, the thin films 

have a much broader MIT transition than the sharp transition of bulk Nd2Ir2O7.  This 

comparison indicates the pyrochlore iridate thin films have a higher degree of disorder than 

Figure 5.4:  Resistivity measurements of the mixed-phase pyrochlore iridates in zero 
applied field.  The black triangle represents the metal-insulator transition temperature of 
each mixed-phase film and systematically increases as the rare-earth ionic radius size 
decreases (ordered from top to bottom). 
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the bulk single crystals reported in previous studies.  While the thin films may be of inferior 

quality to that of bulk single crystals, this feature can be used as an important tool for 

investigating the topologically protected ground states expected in these pyrochlore 

systems.  Because the conducting mechanisms of topologically non-trivial systems are 

protected by symmetry, they should be robust against crystalline defeats and disorder, 

which is difficult to access in high-quality, bulk single crystals (91).  Therefore, these more 

Figure 5.5: Residual resistivity ratio comparison between mixed-phase pyrochlore films 
and bulk single crystal Nd2Ir2O7 (upper panel).  While the mixed-phase pyrochlore films 
each undergo a metal-insulator transition that is consistent with the tuning of Ueff, the 
transition is rather broad compared to the sharp transition observed in bulk single crystal 
Nd2Ir2O7 (recreated from Ref. (3)).  The residual resistivity ratios of the thin-film samples 
are also two orders of magnitude less than that of the bulk single crystal.  The bottom panel 
displays the surface state conduction property of each mixed phase pyrochlore film by 
taking the resistivity ratio between films trained in a 14 T field and their untrained 
resistivity.  As Ueff increases from Pr1/2Nd1/2 to Sm, the surface conduction becomes 
insulating. The inset in the top panel is a phase diagram reconciling the topological 
properties of Figure 5.2 with the domain wall and bulk conducting properties.  The light 
gray dots are polycrystalline bulk samples reported in Ref. (4). 
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disordered mixed-phase films can offer strong supporting evidence for the robust nature of 

the topological properties in the pyrochlore iridate system.    

 In order to reconcile the mixed-phase pyrochlore thin films with the phase diagram 

in Figure 5.2, it is necessary to access the surface state conduction properties, which are 

manifest on the magnetic domain walls (84).  To isolate the surface state conduction from 

the bulk conduction properties, the films are cooled under an applied field of 14 T (trained) 

and the resultant warming resistivity 𝜌𝜌trained under zero-field is then compared to the 

untrained resistivity 𝜌𝜌untrained (Figure 5.5).  If surface conduction is present (absent), the 

resistivity ratio between trained and untrained films will be greater than (equal to or less 

than) one, since the cooling under an applied field stabilizes a single domain configuration.  

For the thin-films, a systematic change in the domain wall conducting behavior from 

insulating to metallic domain walls is observed as the A-site radius is increased from Sm 

to Pr1/2Nd1/2, which is consistent with the change in Ueff across the Mott insulating to Weyl 

semimetal phases.  Combining the surface state conduction property with each film’s 

metal-insulator transition temperature, a phase diagram can be assigned for each mixed-

phase pyrochlore thin film (Figure 5.5). 
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To investigate this further, we accessed the magnetic ordering of the films using 

field sweeps at 2 K, i. e. below the magnetic ordering temperature (Figure 5.6).  It is 

understood from previous studies on Nd2Ir2O7 that a strong applied field parallel to the 

[111] ([001]) crystallographic axis flips the all-in-all-out spin ordering of the Ir-sublattice 

into a 3 out – 1 in (2 out – 2 in) spin configuration (Figure 5.6ab) (88).  The distinction is 

clear in the presence (absence) of hysteretic behavior when the field is parallel to the [111] 

([001]) direction.  For the thin films, distinct hysteretic behaviors are apparent for Pr1/2Nd1/2 

when H // [111], marking a spin flip into a 3 out – 1 in configuration (Figure 5.6c).   This 

is consistent with the 3/1 Weyl semimetal phase observed in the Nd2Ir2O7 bulk case (88).  

When H // [001], the applied field can flip two spins to form 2 out – 2 in spin ordering 

Figure 5.6:  Magneto-transport of the mixed phase pyrochlore iridate thin films at 2 K.  The 
magneto-resistance is taken of the mixed phase pyrochlore films for R = Pr1/2Nd1/2 and 
Sm1/2Nd1/2, i. e. comparing the response of a Weyl semimetal with that of a Mott insulator, 
respectively.  The field sweeps are taken such that the applied field is oriented parallel to 
each film’s (a) [111] and (b) [001] crystallographic directions (see inset diagrams).  (c)  
Schematic spin configurations showing, from left to right, the all out – all in, 3 out – 1 in, 
and 2 out – 2 in magnetic order induced when H = 0, H // [111], and H // [001], respectively. 
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(Figure 5.6c).  This is supported by the vanishing hysteretic behavior and implies a field-

induced electronic reconstruction has occurred.  For the Sm1/2Nd1/2 thin films, the magneto-

resistance behavior appears independent of field direction.  This is consistent with the 

larger Ueff present in these compounds, which acts to stabilize the zero-field spin 

configuration.  Although the field sweeps offer important evidence for the distinct 

electronic ground states between Pr1/2Nd1/2 and Sm1/2Nd1/2, it is difficult to gain deeper 

insight from the field sweeps displaying non-hysteretic behavior.  

5.4 Rotational dependent magneto-transport  
 

Rotational dependent magneto-transport can generate field-induced changes in the spin 

structures, which are accompanied with drastic changes in conductivity due to a 

reconfiguration of the underlying electronic structure.  For instance, in bulk single crystal 

Nd2Ir2O7, spin flips to the 2 out – 2 in spin structure generate a very large, smooth increase 

in the magneto-conductance while spin flips between 3 out – 1 in and 1 out – 3 in 

configurations generate conduction spikes during the transition (3).  For the 2 out – 2 in 

transition, the observed increase in bulk conductivity is consistent with a topological 

reconstruction to a line node semi-metal (88).  For transitions between the 3 out – 1 in state 

and its time-reversal pair, the topological texture remains unchanged.  However, the 

conduction spikes observed during the transition are a result of the propagation of 

conducting domain walls, which are consistent with the conducting surface states expected 

of a Weyl semi-metal phase (3).  Here we have measured rotational dependent field 

conductivity for Pr1/2Nd1/2 and Sm1/2Nd1/2 of the mixed phase thin films (Figure 5.7).  The 

Pr1/2Nd1/2 sample’s rotational field dependence is very similar to that of bulk single crystal 

Nd2Ir2O7.  Namely, the spikes in conductivity are the result of a field induced spin flip from 
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3 out – 1 in to 1 out – 3 in configurations (Figure 5.7) and are consistent with the Weyl 

semimetal property of bulk Nd2Ir2O7.  However, the large gradual increase in conductivity 

observed during the spin flip to the 2 out – 2 in configuration (Figure 5.7) is consistent with 

an electronic rearrangement of a line node semimetal.  These transitions are observed for 

both time-reversal pair field directions. 

The Sm1/2Nd1/2, which has a greater Ueff, has a distinct electronic configuration from 

that of the Pr1/2Nd1/2 sample.  The Sm1/2Nd1/2 remains in an insulating Mott state and spin 

transitions are marked by dips in conductivity, rather than spikes (Figure 5.7).   Since this 

Figure 5.7: Rotational dependent magneto-transport of Pr1/2Nd1/2Ir2O7 (top row) and 
Sm1/2Nd1/2Ir2O7 (bottom row) thin films at 2K.  The current is directed along the [11�0] 
direction and is parallel to the axis of rotation, i. e. perpendicular to H (depicted in top left 
diagram).  The fixed field is then rotated through a complete 360° rotation.  The two leftmost 
panels display the conducting spikes (dips) observed in Pr1/2Nd1/2Ir2O7 (Sm1/2Nd1/2Ir2O7) 
when the spin state changes between 3 out – 1 in and 1 out – 3 in.  When switching between 
these states, a propagation of conducting (insulating) domain walls induces the spike (dip) in 
conductivity during the transition, as depicted in the schematic under the first panel.  The two 
rightmost panels depict spin flips from 3 out – 1 in (1 out – 3 in) to 2 out – 2 in.  For Pr1/2Nd1/2, 
the smooth increase in magneto-conductance is consistent with a transition to a line node 
semi-metal (S. M.).  For Sm1/2Nd1/2, the Mott insulating state is retained during the spin-flip 
transition. 
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compound has a larger Ueff, it retains its insulating nature during the field-induced spin 

flips.  This is consistent with the theoretical phase diagram in Figure 5.2, where a large Ueff 

opens a gap in both the surface and bulk states. 

 

5.5 Conclusions 
 

The mixed-phase pyrochlore iridate thin-films offer an effective means for tuning Ueff 

across distinct electronic phase boundaries.  While the quality of the mixed phase thin-

films is inferior to that of bulk single crystals, the films still emanate field-induced 

topological properties consistent with that reported in high-quality bulk single crystals.  

Additionally, the large Ueff  in Sm1/2Nd1/2Ir2O7 thin films is too large for the formation of 

the Weyl points, and hence takes a Mott insulating state—indicating a clear distinction 

from the Weyl semimetallic spin character observed in Pr1/2Nd1/2Ir2O7.  This study provides 

evidence for the robust nature of a Weyl semimetal, while also demonstrating the strong 

dependence of Ueff in stabilizing this ground state.  
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Appendix 

Fresnel reflection coefficients for isotropic single slab model 
 

For an isotropic, smooth layer (1) on an isotropic substrate (2) in an isotropic 

ambient (0), the complex Fresnel reflection coefficients are 

 
𝑅𝑅�𝑝𝑝 =  

𝑟𝑟01𝑝𝑝 + 𝑟𝑟12𝑝𝑝 exp[−𝑖𝑖2𝛽𝛽]
1 + 𝑟𝑟01𝑝𝑝𝑟𝑟12𝑝𝑝 exp[−𝑖𝑖2𝛽𝛽] (A. 1) 

 
𝑅𝑅�𝑠𝑠 =  

𝑟𝑟01𝑠𝑠 + 𝑟𝑟12𝑠𝑠 exp[−𝑖𝑖2𝛽𝛽]
1 + 𝑟𝑟01𝑠𝑠𝑟𝑟12𝑠𝑠 exp[−𝑖𝑖2𝛽𝛽], (A. 2) 

Where  𝑟𝑟01𝑝𝑝 , 𝑟𝑟12𝑝𝑝, and 𝑟𝑟01𝑠𝑠, 𝑟𝑟12𝑠𝑠 are the reflection coefficients at the 0-1 ambient-film and 

1-2 film-substrate interfaces for p- and s- polarization states.  Using appropriate boundary 

matching conditions from Maxwell’s equations and application of Snell’s law, these 

reflection coefficients can be found 

 
𝑟𝑟01𝑝𝑝 =

𝜇𝜇12 cos𝜑𝜑0 − 𝜇𝜇0𝜇𝜇1 cos𝜑𝜑1
𝜇𝜇12 cos𝜑𝜑0 + 𝜇𝜇0𝜇𝜇1 cos𝜑𝜑1

 (A. 3) 

 
𝑟𝑟12𝑝𝑝 =

−𝜇𝜇12 cos𝜑𝜑2 + 𝜇𝜇2𝜇𝜇1 cos𝜑𝜑1
𝜇𝜇12 cos𝜑𝜑0 + 𝜇𝜇2𝜇𝜇1 cos𝜑𝜑1

 (A. 4) 

 𝑟𝑟01𝑠𝑠 =
𝜇𝜇0 cos𝜑𝜑0 − 𝜇𝜇1 cos𝜑𝜑1
𝜇𝜇0 cos𝜑𝜑0 + 𝜇𝜇1 cos𝜑𝜑1

 (A. 5) 

 𝑟𝑟12𝑠𝑠 =
−𝜇𝜇2 cos𝜑𝜑2 + 𝜇𝜇1 cos𝜑𝜑1
𝜇𝜇2 cos𝜑𝜑2 + 𝜇𝜇1 cos𝜑𝜑1

, (A. 6) 
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where 𝜇𝜇0, 𝜇𝜇1, and 𝜇𝜇2 are the complex refractive indices of each respective layer (𝜇𝜇𝑗𝑗 =

𝑛𝑛𝑗𝑗 + 𝑖𝑖𝑖𝑖𝑗𝑗), 𝜑𝜑0 is the angle of incidence, and 𝜑𝜑1, 𝜑𝜑2 are the angles of refraction for the film 

and substrate, respectively.   

𝛽𝛽 is the phase change associated with light’s propagation through the thin-film of thickness 

d  and is given for an isotropic film by 

 
𝛽𝛽 =  2𝜋𝜋 �

𝑑𝑑
𝜆𝜆�

(𝜇𝜇12 − 𝜇𝜇02 sin𝜑𝜑0)1/2. (A. 7) 

Substituting Equations (A. 3)-(A. 7) into Equations (A. 1) and (A. 2), the complex 

Fresnel reflection coefficients can be related to the ellipsometric data (Ψ and Δ) by 

Equation (2.3). 
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