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Brief Communications

Pathological Tau Promotes Neuronal Damage by Impairing
Ribosomal Function and Decreasing Protein Synthesis

Shelby Meier,1 Michelle Bell,1 Danielle N. Lyons,1 Jennifer Rodriguez-Rivera,1 Alexandria Ingram,1 Sarah N. Fontaine,1

Elizabeth Mechas,1 Jing Chen,2 X Benjamin Wolozin,3 Harry LeVine III,1,2 Haining Zhu,2 and X Jose F. Abisambra1,4

1Sanders Brown Center on Aging, 2Departments of Molecular and Cellular Biochemistry, and 3Pharmacology, Boston University School of Medicine,
Boston, Massachusetts 02118, and 4Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0230

One of the most common symptoms of Alzheimer’s disease (AD) and related tauopathies is memory loss. The exact mechanisms leading
to memory loss in tauopathies are not yet known; however, decreased translation due to ribosomal dysfunction has been implicated as a
part of this process. Here we use a proteomics approach that incorporates subcellular fractionation and coimmunoprecipitation of tau
from human AD and non-demented control brains to identify novel interactions between tau and the endoplasmic reticulum (ER). We
show that ribosomes associate more closely with tau in AD than with tau in control brains, and that this abnormal association leads to a
decrease in RNA translation. The aberrant tau–ribosome association also impaired synthesis of the synaptic protein PSD-95, suggesting
that this phenomenon contributes to synaptic dysfunction. These findings provide novel information about tau-protein interactions in
human brains, and they describe, for the first time, a dysfunctional consequence of tau–ribosome associations that directly alters protein
synthesis.

Key words: Alzheimer; ribosome; RNA; tau; tauopathies; translation

Introduction
Aberrant accumulation of tau is associated with the etiology of
�18 known neurodegenerative diseases collectively termed
tauopathies. Alzheimer’s disease (AD), the most common
tauopathy, affects �36 million people world-wide (Alzhei-

mer’s Association, 2014). A common and early symptom in
tauopathic patients is progressive memory loss. There is no
cure for tauopathies, and current therapeutics stave off symp-
toms only temporarily. This is partly due to limited under-
standing of the molecular mechanisms linking tau and disease
onset.

Synaptic function depends on constant protein synthesis;
therefore, neurons are especially vulnerable to chronic atten-
uation of RNA translation (Moreno et al., 2012). Although,
transient suppression of translation is an adaptive cellular re-
sponse to endoplasmic reticulum (ER) stress (Harding et al.,
1999), chronic inhibition of RNA translation contributes to
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Significance Statement

Despite the identification of abnormal tau–ribosomal interactions in tauopathies �25 years ago, the consequences of this asso-
ciation remained elusive until now. Here, we show that pathological tau associates closely with ribosomes in AD brains, and that
this interaction impairs protein synthesis. The overall result is a stark reduction of nascent proteins, including those that partic-
ipate in synaptic plasticity, which is crucial for learning and memory. These data mechanistically link a common pathologic sign,
such as the appearance of pathological tau inside brain cells, with cognitive impairments evident in virtually all tauopathies.
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the pathogenesis of multiple neurodegenerative disorders, in-
cluding tauopathies (Vanderweyde et al., 2012; Abisambra et
al., 2013b; Ash et al., 2014). Pronounced ribosomal deficien-
cies appear in regions where tau pathology is evident (Ding et
al., 2005), yet the link between tau and ribosomal function has
not been established.

Protein synthesis drives memory formation (Duvarci et al.,
2008). The fact that progressive memory loss is common to vir-
tually all tauopathies suggests that ribosomal dysfunction could
be an underlying mechanism leading to clinical symptoms. In-
deed, tau binds to ribosomes in the brain, and this interaction is
enhanced in tauopathic brains (Papasozomenos and Binder,
1987; Piao et al., 2002).

Here we show that ribosomes associate with pathologic and
nonpathological tau. Consequently, ribosomal function becomes
impaired and global protein synthesis is reduced including the
synaptic protein PSD-95. These data suggest that tau-mediated
ribosomal dysfunction is a common pathogenic process that af-
fects synapses leading to cognitive impairment.

Materials and Methods
Human brain samples. Human samples were obtained from the Univer-
sity of Kentucky (UK) Alzheimer’s Disease Center. Sample collection and
experimental procedures involving human tissue were in compliance
with the UK Institutional Review board. Samples from Brodmann areas
21/22 were used. AD tissues were scored as Braak V (female, 93-year-
old), VI (male, 88-year-old), and VI (female, 80-year-old); samples from
non-demented controls were Braak I (male, 79-year-old), II (female,
94-year-old), and II (female, 88-year-old). The average postmortem in-
terval was 3 h.

Microsomes, coimmunoprecipitation, and liquid-chromatography tan-
dem mass spectrometry. Microsomes were isolated as previously described
(Lopez et al., 2007) and modified for the brain (Abisambra et al., 2010).
Coimmunoprecipitation (co-IP) was performed as previously described
(Jinwal et al., 2012) using anti-Tau46 (Cell Signaling Technology) and
anti-actin (Sigma-Aldrich). Protein complexes were identified using
liquid-chromatography tandem mass spectrometry (LC-MS/MS) and
UNIPROT as previously described (Meier et al., 2015).

In vitro translation assay. 1-Step IVT Kit (Thermo) was used with
minor modifications: a black bottom 96-well plate was loaded with in

Figure 1. Tau associates with ER proteins differentially in AD versus control brains. A, Venn diagram showing the number of tau-associated ER proteins unique to AD brains (blue), unique to
control brains (yellow), and common to both (green). A major group of proteins that was identified corresponded to RNA-binding proteins. B, Pie chart showing relative abundance of tau-associated,
RNA-binding proteins identified in human AD and control brains by LC-MS/MS. C, List of proteins identified in B.
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vitro translation (IVT)-kit components and 10 ng of recombinant pro-
teins. GFP (ex-482 nm/em-512 nm) was measured every 15 min in a
BioTek Synergy HT at 30°C for 6 h. Each sample was run in triplicate and
analyzed using GraphPad Prism (Student’s t test).

Cell culture, primary neurons, and immunoblotting. Cell mainte-
nance, harvesting, and tau expression were performed as previously
described (Abisambra et al., 2012, 2013b). P0 –P1 primary neurons
were obtained as previously described (Abisambra et al., 2013a). Sam-
ples were processed for immunoblotting as described earlier using
BCA (Pierce) to estimate protein concentration, tris-glycine gels (In-
vitrogen), and PVDF membranes (Jones et al., 2011). Primary anti-
bodies: anti-tau h-150 (1:1000; Santa Cruz Biotechnology), actin (1:
1000, Sigma-Aldrich), RPL28 and RPP0 (1:1000, GeneTex), PHF1
(1:500), Hsp70 (1:1000, ENZO), PSD-95 (1:1000, Cell Signaling
Technology), and puromycin (1:1000, EMD Millipore). Bands were
detected using (Pierce ECL). Image analysis was performed using
ImageJ. Bands of the protein of interest were normalized to a loading
control. Statistical analysis was performed using Student’s t test in
GraphPad Prism.

Surface sensing of translation. Surface sensing of translation (SUnSET)
was performed as previously described (Schmidt et al., 2009) with minor
modifications: cells were incubated with 10 �g/ml of puromycin in cell
culture media for 1 h before harvest. Proteins were analyzed using im-
munoblots.

Immunofluorescence. Immunofluorescence (IF) was performed as pre-
viously described (Abisambra et al., 2013b). Primary antibodies: T22
(1:100) and RPS6 (1:250; Santa Cruz Biotechnology). Tissues were also
stained with Sudan black and Neurotrace (1:200). Slides with AD and
control sections were stained omitting primary antibodies to establish
nonspecific background signal.

Microscopy. A Nikon Eclipse Ti laser-
scanning confocal microscope was used to cap-
ture images. Fields analyzed using 40� and
100� objectives included areas of tau staining
with morphologic distribution in agreement
with Neurotrace labeling. All acquisition in-
tensities, field sizes, and settings were kept con-
sistent across all images. Images were prepared
using the NIS Elements 4.20 (Nikon) and Pho-
toshop Cs6 (Adobe) software and were based
upon cells that most closely represented the
group.

Quantitative real-time PCR. Total RNA was
extracted from rTg4510 tau transgenic and litter-
mate control primary neuronal cultures using
EZNA total RNA Kit II according to manufacture
instructions (Omega Bio-tek, catalog #R6934-
01). RNA was quantified using a BioTek spectro-
photometer and cDNA was produced using
SuperScript IV (Invitrogen). Quantitative real-
time PCR was performed using TaqMan Gene
Expression probes for PSD-95 and GAPDH us-
ing a ViiA 7 Real Time PCR System (Applied Bio-
systems). PSD-95 expression was evaluated by
normalizing to GAPDH as an internal control.
The real-time values for each sample were aver-
age and evaluated using the comparative CT
method.

Results
We recently determined ER-bound pro-
teins associate with tau (Abisambra et al.,
2013b; Meier et al., 2015). To identify tau-
associated ER proteins in AD, micro-
somes were isolated from non-demented
control and AD brain tissues. Full-length
tau (or actin as control) was co-IP from
microsomes, and tau-associated peptides
were identified using LC-MS/MS. Of the

216 identified proteins, 68.5% were unique in AD, 22.2% were
unique in control, and 9.3% were common between both groups
(Fig. 1A). Proteins were grouped into functional categories based
on UNIPROT. A striking difference was that tau associated with
more RNA-binding proteins in AD than in control (Fig. 1B,C).

To further characterize the tau–ribosome association, we com-
pared tau levels in AD and control subcellular fractions (Fig. 2A).
Although tau levels were similar between the fractions lacking ribo-
somes, tau was significantly increased in the AD ribosomal fraction
(Fig. 2A). We also detected a PHF1-positive smear in the AD ribo-
somes (Fig. 2B). PHF1 recognizes pS396/S404, which is associated
with late stage tangles in AD (Greenberg et al., 1992).

Recent studies show that oligomeric tau is highly toxic
(Lasagna-Reeves et al., 2011), and it exhibits a prion-like behav-
ior by propagating and seeding (Guo and Lee, 2011). We specu-
lated that if aberrant tau–ribosome complexes were pathogenic,
then tau oligomers would associate with ribosomes. To test this,
we co-IF labeled tau oligomers and a ribosomal protein, rpS6, in
AD and control brain sections (Fig. 2C–H). Confocal imaging
revealed that tau oligomers and rpS6 signals overlapped (Fig.
2C–E), suggesting that oligomeric tau associates closely with ri-
bosomes in AD.

The consequences of the tau–ribosome association are un-
known. We hypothesized that the aberrant interaction between
pathological tau species and ribosomes impairs translation. To
test this, we measured the impact of tau on ribosomal function in

Figure 2. Pathological tau associates closely with ribosomes in AD brains. Representative immunoblots showing total tau (A) and
PHF1-positive smear (B) enriched in AD brain ribosomal fraction. P0 and L28 (ribosomal proteins) and Hsp70 (cytosolic) confirm subcellular
fractionation. C–E, Representative IF of AD brains showing overlap of oligomeric tau and rpS6 in human AD brain. Co-IF labeling of tau
oligomers with T22 (red; C), rpS6 (green; D), and neurons (Neurotrace; blue). E, Merged inset image shows red and green overlap (arrow-
heads). F–H, Representative images of AD brains in which primary antibody incubation was omitted.
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three model systems. First, we tested the effect of tau oligomers
on translation using a cell-free assay. We added recombinant tau
oligomers or bovine serum albumin (BSA) as control with in vitro
translation assay components and a GFP plasmid reporter. The
rate of translation, measured by GFP, was significantly decreased
in the presence of tau oligomers (Fig. 3A). To determine whether
this effect was specific to tau oligomers, we tested the impact of
oligomeric �-synuclein and insulin on translation (Fig. 3B). We
found no significant change in GFP, suggesting that this effect is
specific to tau.

We next measured the effect of pathological tau on the rate of
translation in eukaryotic cells using SUnSET (Schmidt et al.,
2009): a puromycin-based pulse assay. Puromycin, which is in-
corporated into recently translated proteins, was added to me-
dium 1 h before harvesting cells. Nascent proteins, which appear

as a smear, can then be quantified via immunoblots with anti-
puromycin antibodies.

We used iHEK-Tau cells, an inducible HEK line that overex-
presses wild-type human 4R0N tau upon addition of tetracycline
(Abisambra et al., 2013b). Use of tetracycline allowed control over
the start and overall duration of tau expression. We first performed a
time course experiment in which tetracycline was added to iHEK-
Tau cells over 72 h. We found that increased PHF1 and total tau
levels correlated with decreased puromycin signal (Fig. 3C). We then
performed a rescue experiment in which tau was expressed for 96 h
and then tau expression was turned off for 24 or 96 h (Fig. 3D). We
found that puromycin levels were rescued back to normal control
once PHF1 levels were reduced.

Because mutations on tau are associated with risk for many
tauopathies, we sought to determine whether mutant tau variants

Figure 3. Pathological tau species decrease translation. A, IVT graph showing 32% reduction of translational output (after 6 h) in wells with tau oligomers compared with BSA control. B,
Oligomeric �-synuclein and insulin did not affect translation. Immunoblots confirm the presence of oligomers in the translation assay; �-synuclein samples were denatured to yield monomers
because high molecular weight oligomeric conformers are not detectable with anti-�-synuclein antibodies. C, Total and PHF1 tau are inversely proportional to the rate of protein synthesis. iHEK-Tau
cells were stimulated with tetracycline to express tau for 4 d. Nascent proteins were tagged with puromycin. D, Cessation of tau expression rescues protein synthesis. Tau expression was induced with
tetracycline for 24 or 96 h (lanes 1 and 2). At 96 h, puromycin levels decreased, whereas PHF1 increased. After continuous tau expression for 96 h (lanes 3 and 4), cells were washed and incubated
with media lacking tetracycline, thereby halting tau expression for 24 or 96 h (lanes 3 and 4, respectively). E, Representative immunoblots showing the effect of wild-type (WT) and �K280 tau on
protein synthesis. Changes in tau levels inversely correlated with puromycin. F, Quantification of E showing no significant difference in levels of protein synthesis between wild-type and �K280
mutant tau-expressing cells. G, SUnSET comparing the effect of P301L, �K280 tau, and WT in transiently transfected HEK293 cells. H, Quantification of G showing no significant difference between
translation levels. I, Blot showing that overall translation (Puro) and PSD-95 are decreased in rTg4510 primary neurons. J, Quantification of I. Puromycin and PSD-95 were significantly decreased in
rTg4510 neurons by 43 and 92%, respectively (*p � 0.05). K, Quantification of PSD-95 mRNA expression from rTg4510 neurons as measured by RT-PCR (**p � 0.0013).
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inhibited protein synthesis. To this end, we performed SUnSET in
iHEK cells that overexpress the disease-associated �K280 tau (Rosso
et al., 2003). We found that expression of WT or �K280 tau de-
creased protein synthesis (Fig. 3E), and that this reduction was not
significantly different between the two cell lines (Fig. 3F). We then
compared translation levels between mutant forms of tau by tran-
siently transfecting HEK293 cells with WT, �K280, or P301L tau
plasmids. We found no significant difference in protein synthesis
levels between WT, �K280, or P301L-expressing cells (Fig. 3G,H).
These data suggest that tau expression and accumulation of hyper-
phosphorylated tau impairs protein synthesis.

To determine the impact of pathological tau species in a more
neurologically relevant model, we measured changes in the rate
of translation in primary neurons derived from rTg4510 tau
transgenic and control mice using SUnSET. The rTg4510 model
overexpresses human P301L mutant tau (Santacruz et al., 2005).
At 14 DIV, puromycin was added to the medium and primary
neurons were harvested. Puromycin-tagged proteins were de-
creased by 43% in rTg4510 neurons (*p � 0.011) compared with
control (Fig. 3 I, J). We then investigated whether a more direct
correlate of synaptic integrity could be affected by pathological
tau in this model. To this end, we measured the levels of the
PSD-95 and found that it was reduced by 92% in rTg4510 neu-
rons (*p � 0.049; Fig. 3 I, J). We hypothesized that tau-mediated
disruption of RNA translation would result in increased mRNA
levels. We performed RT-PCR and found that PSD-95 cDNA was
increased by twofold in rTg4510 primary neurons compared with
controls (Fig. 3K). These data suggest that P301L tau impairs
RNA translation, and that this pathological mechanism directly
affects translation without impairing gene expression.

Discussion
This study couples cellular and biochemical approaches with
proteomics to expand the understanding of the ER-specific tau
interactome. The unbiased proteomics approach (Fig. 1) identi-
fied 216 tau-associated ER proteins; many of which were unre-
ported. The largest change corresponded to an increase in the

association of ribosomal proteins with tau in AD. Using three in
vitro models, we show that protein synthesis was significantly
decreased as a consequence of the aberrant tau–ribosome associ-
ation. Although it has been previously reported that tau inter-
acted with ribosomes (Papasozomenos and Binder, 1987; Nelson
et al., 1993), the functional consequences of this interaction was
unknown until now. We have identified a dysfunctional conse-
quence of tau–ribosome association that impairs protein
synthesis, providing the first steps to understanding the mech-
anism delineating cognitive decline symptoms in tauopathic
patients (Fig. 4).

LC-MS/MS results suggest that many other ER proteins (216
total) associate with tau. The use of mass spectrometry for iden-
tification of protein-protein interactions is limited and only
provides a “first pass” suggestion. For example, whether these
interactions are direct, indirect, or false-positives need to be in-
vestigated further. As shown in Figure 2, we validated the inter-
action between tau and ribosomes, and the validation of other
interactions is currently underway. When comparing the RNA-
binding proteins that associate with tau, we did not find elonga-
tion or initiation factors associating with tau in AD samples (Fig.
1C). These data suggest that the association of pathological tau
with ribosomes abrogates the recruitment of translation factors
to the tau–ribosome complex, and this could lead to reduced
translation.

To avoid false-positive results from the LC-MS/MS, we imple-
mented rigorous exclusion criteria (Meier et al., 2015), which
omitted well known tau-associated proteins, but increased con-
fidence in these interactions. Our co-IP focused on identifying
mature, and not nascent, tau. We used a tau antibody (Tau46)
that recognizes the carboxy-terminal tau sequence (404 – 441). As
such this approach obviates caspase-cleaved tau, which is cleaved
at D421 and is implicated in the formation of neurofibrillary
tangles in AD (Rissman et al., 2004). Future efforts to identify
cleaved tau-associated ER proteins might determine novel patho-
logic mechanisms. Nonetheless, our current list does provide fur-

Figure 4. Schematic representation showing the consequences of pathological tau association with ribosomes. Under normal conditions, tau promotes tubulin polymerization and stabilizes
microtubules. De novo protein synthesis, and in particular nascent neurotransmitter production is necessary for normal learning and memory. Our data suggest that in tauopathic brains, tau adopts
aberrant conformations that associate with ribosomes. This interaction reduces nascent protein synthesis. Abrogation of new proteins impairs memory. This mechanism links the most common
symptom of tauopathies.
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ther information about the diverse interactions of tau and other
ER proteins.

Although tau mutations are not typically associated with risk
for AD, there are 48 tau mutations that are associated with onset
of other tauopathies (for review, see Zhang et al., 2015). The
defining pathologic hallmark of tangles in AD is hyperphospho-
rylated tau (Grundke-Iqbal et al., 1986). Interestingly, we found
that protein synthesis was impaired equally by WT and two
disease-associated mutant tau variants: P301L and �K280. P301L
tau is most commonly associated with frontotemporal dementia
and Parkinsonism linked to chromosome 17 (FTDP-17; Clark et
al., 1998). Expression of this form of tau in the rTg4510 trans-
genic mice leads to earlier onset and robust neurofibrillary tangle
formation (Santacruz et al., 2005). The �K280 tau mutant is also
associated with FTDP-17 (Rosso et al., 2003), as well as AD (Mo-
meni et al., 2009). The presence of this mutation decreases tau’s
ability to bind to microtubules (Rizzu et al., 1999), and leads to
increased levels of tau aggregation (Barghorn et al., 2000). Our
findings indicate that tau-mediated impairment of protein syn-
thesis could be a common mechanism of neuronal dysfunction
between tauopathies (Fig. 4).

Our data support the hypothesis that pathological tau specif-
ically reduces ribosomal function, which could lead to memory
alterations in tauopathies. We also found that PSD-95, a synaptic
protein that participates in learning and memory (Migaud et al.,
1998), was decreased in rTg4510 neurons (Fig. 3 I, J). Cognitive
impairment seen tauopathy models could be attributed not only
to reduced protein synthesis, but also to targeted decrease of
synaptic proteins.

Interestingly, oligomers of other proteins (�-synuclein and
insulin) did not alter ribosomal function (Fig. 3B). This finding
suggests that there is a mechanism of ribosomal downregulation
that specifically implicates tau, but not all other oligomeric and
pathologically altered proteins. However, it is possible that pro-
teins involved in the pathogenic mechanisms of other neurode-
generative disorders such as A�, poly-glutamines, and TDP-43
could also inhibit de novo protein synthesis. Experiments to test
the effects of these oligomers are currently underway.

Characterization of this ribosome-directed molecular mech-
anism of tauopathies could provide novel therapeutic opportu-
nities. For instance, therapeutic strategies aiming to uncouple
pathological tau from the ribosome might restore RNA transla-
tion and prove effective to treat AD and other tauopathies. To do
this, specific ribosomal proteins that associate with tau need to be
identified as well as the discreet regions where tau binds to these
proteins. This would guide the proof-of-concept use of peptides
resembling these amino acid stretches to outcompete tau from
associating with the ribosome and thereby restore protein
synthesis.

This work suggests a direct effect of tau on translation by its
association with ribosomes; however, there is also an indirect
relationship between tau and translation. One of these is the
chronic activation of the protein kinase RNA-like endoplasmic
reticulum kinase (PERK). Accumulation of tau impairs ER-
associated degradation, which then activates the unfolded pro-
tein response and subsequently the PERK pathway (Abisambra et
al., 2013b). The prolonged activation of the PERK pathway leads
to a reduction in RNA translation through phosphorylation
of the initiation factor eIF2� (Marciniak et al., 2006). This alter-
ation could be a cumulative result of tau’s direct and indirect
effects on translation. Our study provides further evidence that
tau’s involvement in disease is multi-faceted, that pathological
tau heavily affects translation of vital proteins, and that the tau–

ribosome complex could serve as a key therapeutic target for
tauopathies.
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