
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Electrical and 
Computer Engineering Electrical and Computer Engineering 

2017 

Hierarchical Implementation of Aggregate Functions Hierarchical Implementation of Aggregate Functions 

Pablo Quevedo 
University of Kentucky, peqc1300@gmail.com 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.496 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Quevedo, Pablo, "Hierarchical Implementation of Aggregate Functions" (2017). Theses and Dissertations--
Electrical and Computer Engineering. 111. 
https://uknowledge.uky.edu/ece_etds/111 

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232580911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Pablo Quevedo, Student 

Dr. Henry Dietz, Major Professor 

Dr. Cai-Cheng Lu, Director of Graduate Studies 



Hierarchical Implementation of Aggregate Functions

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in

Electrical Engineering in the College
of Engineering at the University of

Kentucky

By
Pablo Quevedo

Lexington, Kentucky

Director: Dr. Henry Dietz, Professor of Electrical and Computer Engineering
Lexington, Kentucky 2017

Copyright c© Pablo Quevedo 2017



ABSTRACT OF THESIS

Hierarchical Implementation of Aggregate Functions

Most systems in HPC make use of hierarchical designs that allow multiple levels of
parallelism to be exploited by programmers. The use of multiple multi-core/multi-
processor computers to form a computer cluster supports both fine-grain and large-
grain parallel computation. Aggregate function communications provide an easy-
to-use and efficient set of mechanisms for communicating and coordinating between
processing elements, but the model originally targeted only fine-grain parallel hard-
ware. This work shows that a hierarchical implementation of aggregate functions
is a viable alternative to MPI (the standard Message Passing Interface library) for
programming clusters that provide both fine-grain and large-grain execution. Perfor-
mance of a prototype implementation is evaluated and compared to that of MPI.

KEYWORDS: AFN, aggregate functions, parallel computation, MPI, OpenMP

Author’s signature: Pablo Quevedo

Date: December 8, 2017



Hierarchical Implementation of Aggregate Functions

By
Pablo Quevedo

Director of Thesis: Henry Dietz

Director of Graduate Studies: Cai-Cheng Lu, Ph.D.

Date: December 8, 2017



This work is dedicated to my family. They have always supported me in the good
times as well as the bad times.



ACKNOWLEDGMENTS

This work would have not been possible without the help of my professor and advisor

Henry Dietz, my collegue Paul Eberhart, my coworkers, Sudhanshu Gaur and Jeremy

Osteergard and many other who contributed directly and indirectly in the process of

this work.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Motivation and Background . . . . . . . . . . . . . . . . . . . . . 5
2.1 Pure MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Pure OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Hybrid: MPI + OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Aggregate Function over the Network . . . . . . . . . . . . . . . . . . 8

Chapter 3 Aggregate Functions Networks . . . . . . . . . . . . . . . . . . . . 9
3.1 STAPERS Role in AFAPI . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Reduction Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Scan Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Communication Operations . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Control Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 In-node: SHMAPERS . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Processes Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Handling Network Communication . . . . . . . . . . . . . . . . . . . 20
4.4 Inter-node Communication Algorithm . . . . . . . . . . . . . . . . . . 27

Chapter 5 Performance Benchmarks and Comparison . . . . . . . . . . . . . 29
5.1 Test Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Intra-node Communications Comparison . . . . . . . . . . . . . . . . 32
5.4 Inter-node Communications Comparison . . . . . . . . . . . . . . . . 38

Chapter 6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 42

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



LIST OF FIGURES

4.1 STAPERS Multi-Level Architecture . . . . . . . . . . . . . . . . . . . . . 15
4.2 MPI Multi-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Process flowchart for CPROC Behavior Type 1 . . . . . . . . . . . . . . 24
4.4 Process flowchart for CPROC Behavior Type 2 . . . . . . . . . . . . . . 25
4.5 Process flowchart for CPROC Behavior Type 3 . . . . . . . . . . . . . . 27

5.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Intra-node Latency Comparison STAPERS, OpenMP and OpemMPI For

Reduce Operations, NPROC = 12 . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Intra-node Latency Comparison STAPERS, OpenMP and OpemMPI For

Reduce Operations, NPROC = 6 . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Intra-node Percent Comparison STAPERS, OpenMP and OpemMPI For

Reduce Operations, NPROC = 6 . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Intra-node Percent Comparison STAPERS, OpenMP and OpemMPI For

Reduce Operations, NPROC = 12 . . . . . . . . . . . . . . . . . . . . . . 37
5.6 Reduce Operation Results Part 1 . . . . . . . . . . . . . . . . . . . . . . 40
5.7 Reduce Operation Results Part 2 . . . . . . . . . . . . . . . . . . . . . . 40

v



LIST OF TABLES

3.1 Collectives Implemented in STAPERS . . . . . . . . . . . . . . . . . . . 11
3.2 Reduce Operation Equivalents . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Scan Operation Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Communication Operation Equivalents . . . . . . . . . . . . . . . . . . . 13
3.5 Control Operation Equivalents . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Twelve-Core, Two-Socket Shared Memory Computer . . . . . . . . . . . 30
5.2 Sixteen-Node Cluster Computer Specifications . . . . . . . . . . . . . . . 31
5.3 Average Operation Latency Comparison . . . . . . . . . . . . . . . . . . 34
5.4 Intra-node Latency NPROC = 6 . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Intra-node Latency NPROC = 12 . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Reduce Operation Latency NPROC=32, PCNUM=16 . . . . . . . . . . . 39
5.7 Scan Operation Latency NPROC=32, PCNUM =16 . . . . . . . . . . . . 41

vi



.

1



Chapter 1 Introduction

With the Parallel computing is a well-established field in computer engineering that

was born from the need for more computing power. Since the creation of comput-

ers, engineers always have searched for a way to get the most performance out of

computers. At early stages, performance improvement relied on hardware develop-

ment progress, more significantly by increasing the number of transistors per chip.

The rapid increase in the number of transistors lead to the birth of Moore’s Law

which states that the number of transistors would double approximately every two

years, and consequence of performance. In order to keep with the improvement pace,

engineers took to parallelization to make better utilization of the higher amount of

transistors. In order to make use of parallelization efficiently different schemes came

into existence. These schemes range from using multipleprocessors or cores in one

computer (SMP machines) to act independently, to using multiple computers con-

nected through a network to behave as one big machine (computer clusters). The

field that studies these schemes and paradigms is called high-performance computing

(HPC).

Today most systems in HPC make use of hierarchical designs that allow multiple

levels of parallelism to be exploited by programmers. The use of multiple multi-

core/multi-processor computers to form a computer cluster allows for high granu-

larity computation capabilities, effectively allowing a much bigger processor count

that it would be possible with any other architecture. With multi-core computers

becoming ubiquitous, commodity hardware clusters have also become quite common

for scientific research. Commodity clusters, as their name implies, make use of com-

modity computer hardware to construct a computer cluster. Their advantage relies

not in the raw power attainable but in the high price-performance ratios that can be

obtained with relatively easily accessible hardware. The convenience and popularity

of commodity clusters made evident the need for software support, specifically the

need for a communication layer that allows nodes to communicate, synchronize and

share datum.

To meet the need for a communication layer Message Passing Interface(MPI) be-

come the de facto communication scheme for clusters machines since its inception in

the 90s[1]. There are many libraries available that implement the MPI standard such

2



as OpenMPI and MPICH. These libraries are highly optimized for communication

and are almost universally used for communication between computer nodes, com-

monly referred to as inter-node communication. Despite MPI being mainly used for

inter-node communication, it also has intra-node communication capabilities that al-

low multiple processes or processors in the same node to communicate with each other

using a common Application Programming Interface (API). Despite this convenience,

one of the issues with MPI implementations is the multi-processor and multi-core per-

formance underutilization of resources in shared memory systems. Other libraries like

Open Multi-Processing (OpenMP) are regarded better suited for shared memory ar-

chitectures while also being easier to read and write than MPI, but its performance

across nodes lags behind that of MPI. These problems has seen the rise of hybrid

programming as a mean to take the best of both worlds and obtain maximum per-

formance. By using MPI for inter-node communication and OpenMP for intra-node

execution, it is possible to exploit both paradigms and optimize resource utilization.

The third and latest revision of the MPI standard (MPI 3.0) aimed to bridge this gap

and defines a shared memory interface to make better use of multi-core systems using

the same API. Nevertheless, hybrid computing is still quite common and a preferred

alternative.

While hybrid programming allows the use of shared memory and message pass-

ing paradigm together in one program, it is hardly the only computing paradigm in

existence. In the late 90s, Dr. Henry Dietz and his colleagues at Purdue Univer-

sity introduced a different scheme for parallel execution with the name of Aggregate

Function Networks(AFN)[2]. An AFN uses a scheme where synchronization among

processes is a byproduct of an aggregate operation, that is, an operation that is

requested and performed in unison by all processing elements of the parallel pro-

gram. Aggregate Function Networks present a different scheme for communication

than those mentioned so far and is the main subject of this work. The current work

presents a Proof of Concept (PoC) first hierarchical implementation of aggregate

functions. This implementation, which is named Shared memory Tcp Adapter for

Parallel Execution and Rapid Synchronization (STAPERS), presents an alternative

way to attain performance in today’s highly hierarchical cluster systems.

With this objective in mind, this work is divided in several chapters. chapter 2

studies standard methods functionality, characteristics and pitfalls that motivates the

extension of aggregate functions capabilities. chapter 3 explains the paradigm used

3



by aggregate functions, history and differences to other methods. chapter 4 explains

the implementation of a network layer for aggregate functions. Chapter 5 presents

the benchmark results and comparison to more standard and established libraries like

OpenMPI. Finally, chapter 6 outlines the conclusions of this work and suggestions

for future work.

4



Chapter 2 Motivation and Background

In order to assess the viability of Aggregate Function Networks(AFN) as a parallel

programming model it is necessary to set a reference point for comparison. Study-

ing the characteristics of existing implementations as well as their shortcomings will

allow to formalize a set of metrics to compare AFN to existing models. The two

paradigms that dominate the HPC community currently are Message Passing and

Shared Memory. Both models have implementations that support intra-node and

inter-node communication, allowing to take advantage of the highly hierarchical de-

sign of today’s clusters. Both models use different paradigms for communication

and thus perform differently depending on whether communication is intra-node or

inter-node. These discrepancies of performance lead to three programming models[3]:

• Pure MPI programming

• Pure shared memory using OpenMP

• Hybrid model: OpenMP + MPI

The following sections study each model separately and establish their advantages

and disadvantages and how aggregate functions fit in the overall picture.

2.1 Pure MPI

MPI is a well established API in the HPC world that uses the message passing

paradigm to communicate across parallel processes. Message Passing consists, as

its name implies, in sending messages among processes to realize communication.

Normally this process is done in such a way that the sender doesn’t care if the message

was received, though they typically are. This message passing tends to resemble

function calls as the message buffer is given to a function that sends the message to a

destination process. The main difference is that in message passing the buffer is copied

by the receiving process, effectively creating two copies of the same information.

This is a non-issue for computer networks as the latency to send information across

computers is much bigger than the latency created by local memory copies. It is

also safe to say that all network communication is some form of message passing.

5



However, in SMP systems the implied memory copy is the greatest source of latency

thus holding much more relevance in operations between processes in the same node.

For this reason MPI implements different methods to optimize this communication.

These methods are[4]:

• NIC-Based Message Loopback: A Network Interface Card (NIC) can detect

whether the destination is on the same physical node or not. This way it is

possible to eliminate network overhead. The problem is the message has to

be copied to the NIC’s memory then back to the receiving process generating

another unnecessary copy.

• User-Space Shared Memory: This design alternative involves each MPI process

on a local node attaching to a shared memory region. This shared memory

region can then be used amongst the local processes to exchange messages and

other control information. This is the most efficient of all three methods.

• CPU Based Kernel Modules for Memory Mapping: The Kernel-Based Memory

Mapping approach takes help from the operating system kernel to copy messages

directly from one user process to another without any additional copy operation.

Dependence on the operating system is the mayor drawback as system calls can

be expensive.

MPI over the years has added support for hardware and software optimizations

that allow the libraries to make decisions based on the underlying system. Based

on running hardware and program parameters, such as buffer length, and number of

processes MPI chooses which algorithm or message passing model to run the commu-

nication process with.

Despite its higly optimized implementation MPI suffer froma couple of issues.

The main issue with a pure MPI scheme is that it assumes the message passing is

the most effective and efficient model for all levels of parallelism. This is not true for

all cases[3]. In some cases, certain MPI implementations allow for the exchange of

intra-node messages through shared memory regions but regardless all communication

is conducted through IPC mechanisms which can be slow, and therefore incurs in

unnecessary high overhead[5].

6



2.2 Pure OpenMP

OpenMP is an API aimed for portable shared-memory parallel programming and

is based on the fork-join programming model [6]. By making use of define direc-

tives/pragmas, OpenMP creates regions that fork a number of threads to execute

code in parallel. The number of threads is dependent of many factors, from number of

processors assigned to the program to environmental variable settings. An OpenMP

program begins execution as a single thread called the master thread. When the

master thread encounters a parallel region it proceeds to fork, creating multiple ex-

ecution threads. Each new child then proceeds to do their part of the computation

and when the parallel region is finished, all threads join again at an implicit barrier,

leaving the master thread to continue serial execution[7]. This model is quite easy to

understand and program for. The use of #define directives to enclose regions to be

parallelized makes for an easy learning curve compared to MPI. The problem with

classic OpenMP is that it only supports SMP systems, and communication across the

network is not supported. This led to work that aimed to extend network support

[7]. By using a distributed shared memory(DSM) system, it is possible with some

restrictions to run OpenMP programs on a cluster. It is, to some extent, a hybrid

model, being identical to plain OpenMP inside a shared-memory node, but employing

a sophisticated protocol that keeps shared memory pages coherent between nodes at

explicit or automatic OpenMP flush points [3]. This approach presents problems, as

not all operations are available across nodes in the network, and memory coherency

across the network is not a trivial task. Another problem with OpenMP is the con-

stant creation of threads in parallel regions. This overhead can slow performance if

such parallel regions are not long enough to compensate for the overhead of creating

new threads. This effect can be more significant in the cluster as communications

suffer from higher latency issues. Nodes through a network are more likely to execute

at different speeds thus breaking synchronization, further increasing latency.

2.3 Hybrid: MPI + OpenMP

Instead of using a specific library or methods, it is possible (and often done) to take the

best of both worlds and use a hybrid programming model. This model of programming

has multiple variations, but this work concentrates on the more common approach

which uses MPI for inter-node communication while using OpenMP for intra-node

7



computation and communication. By using message passing across the network, it

is possible to minimize the amount of time in communication, while using shared

memory for intra-node communication to take advantage of memory optimization in

multi-core/multi-processor systems. One of the main issues with this model is that

it requires MPI to be aware of the multiple threads that can possibly be created by

OpenMP regions. Thus, multiple considerations have to be made in order to select

the model. Are threads allowed to do MPI calls individually or is just the master

process? It is also worth noting that this method also suffers from the same problems

of the pure OpenMP method. If not long enough computation regions are used the

overhead of forking and joining threads becomes significant thus slowing execution.

2.4 Aggregate Function over the Network

Hybrid programming allows to obtain the most benefit of both worlds but requires

knowledge of both interfaces and models which can be a steep learning curve for

new programmers. Both models are quite different in implementation and interface,

adding to the learning difficulty. MPI uses the well established Message Passing

communication model, but this model is not as an effective model for intra-node

computing as it is for inter-node. OpenMP suffers from a opposite problem, as

it uses a Shared Memory model which is more effective than Message Passing for

multi-core systems but it makes inter-node communication difficult. OpenMPI uses

a library interface, while OpenMP uses #define directives to obtain parallelization.

These differing methods create problems when the two models are combined and add

additional layers of complexity. Given the pitfalls from the aforementioned methods,

STAPERS aims to establish a different paradigm for programming execution in the

form of Aggregate Function Networks, while also providing a more consistent API

than a hybrid methodology. STAPERS uses shared memory internally to provide

synchronization methods for computations, and uses a TCP interface to provide the

same functionality for network communications. STAPERS is an implementation of

aggregate functions that provide both fine-grain and large-grain execution. The goal

of this work is to establish whether AFN is a viable scheme for parallel computing,

and how competitive it is against currently established methods. Furthermore, it

aims to provide a more reduced and consistent API than the alternatives. This work

tests this hypothesis through the use of commodity built clusters.

8



Chapter 3 Aggregate Functions Networks

Aggregate Function Networks were introduced loosely back in 1996[8] and more ex-

plicitly in March 1998[2]. But the underlying concepts and mechanism were explored

and developed much earlier. The earlier work, as far as 1988, started not as a com-

munication model for networked computers but as a general barrier synchronization

mechanism for Multiple Input Multiple Data (MIMD) hardware[9]. A Barrier syn-

chronization mechanism is a method for parallel execution to ensure logic and data

coherency between the participating processing elements. The barrier synchroniza-

tion is accomplished by each process individually informing a barrier unit that it

has arrived, and then waiting to be notified that all participating processors have

arrived. Once the barrier synchronization has completed, execution of each processor

is again completely independent. AFN rely on the idea that all participating pro-

cesses may ,additionally to the barrier, perform a communication operation. That

is, communication is a side-effect of all processing elements (PEs) executing a barrier

synchronization [9].. Though this model is somewhat similar to synchronous message-

passing, it differs in that communication does not need to be point-to-point. This

property is consistent across all AFN implementations and have been all condensed

in a fully abstract program interface that seeks to provide the most important ag-

gregate communication functions in clean and portable structure. The name of this

API is the Aggregate Function Application Program Interface (AFAPI) and it has

seen different versions implemented for it in the past[10]:

• TTL PAPERS: Cluster of Linux or Unix PCs linked by TTL PAPERS com-

patible aggregate functions network hardware. Although AFAPI1 derives from

the PAPERs library, which dates back to 1994[9], the AFAPI was first released

in August 1996.

• CAPERS: Two Linux PCs (or UNIX workstations) linked by a passive LapLink

cable – the Cable Adapter for Parallel Execution and Rapid Synchronization.

This library was first released in August 1996.

1Aggregate Function Application Programming Interface was initially designed to be a portable
high-level interface to the various types of PAPERS cluster hardware. It then became the program-
ming interface for all aggregate function implementing libraries

9



• SHMAPERS: A uniprocessor or shared memory multiprocessor supporting the

UNIX System V IPC shared memory segment calls the SHared Memory Adapter

for Parallel Execution and Rapid Synchronization. This library, which is the

primary focus of this paper, was rst released in August 1996.

• UDPAPERS: A cluster of Linux PCs (or UNIX workstations) linked by a con-

ventional network, such as Fast Ethernet, which is capable of sending messages

using UDP broadcast the User Datagram Protocol Adapter for Parallel Exe-

cution and Rapid Synchronization. This library was never released.

• WAPERS: a passive wiring pattern using ”wired AND” of open-collector par-

allel port lines to connect small numbers of IA32 Linux PCs as a cluster.

The AFAPI represents a third, fundamentally different, model for interactions

between processors. Each AFAPI operation is an aggregate operation, requested and

performed in unison by all processors. Thus, although the AFAPI routines can be

called from MIMD or SIMD-style code, all AFAPI operations are based on a model of

aggregate interaction that closely resembles SIMD communication. This is not a co-

incidence; years of research involving Purdue Universitys PASM (PArtitionable Simd

Mimd) prototype supercomputer experimentally demonstrated that SIMD-like inter-

actions are more efficient than asynchronous schemes for a wide range of applications

[11].

3.1 STAPERS Role in AFAPI

STAPERS differentiates itself to previous AFAPI implementations in being the first

one to allow both fine-grain and large-grain parallel execution. By implementing

aggregate function capabilities at multiple layers, STAPERS allows make use of AFN

in multi-core/multi-process clusters. Before explaining in the implementation details,

it is wise to list the collectives 2 that are currently implemented in this work. Table 3.1

shows the operations extended to support network communication.

As listed in the table the functions are divided in 4 types; Reductions, Scans,

Communications and Control Operations. To understand the following section ex-

plain briefly the purpose of each function and when possible the equivalent in other

libraries like MPI and OpenMP.

2A collective operation is a concept in parallel computing in which data is simultaneously sent
to or received from many nodes

10



Table 3.1: Collectives Implemented in STAPERS

Reduce Ops Scan Ops Communications Ops Control & Internal Ops
p reduceAnd p scanAnd p bcastPut p init
p reduceOr p scanOr p bcastGet p exit
p reduceXor p scanXor p bcastPutz p confirm
p reduceMin p scanMin p bcastGetz p wait
p reduceMax p scanMax p putGet p lwait
p reduceAdd p scanAdd p putGetz p any
p reduceMul p scanMul p gather p lany

– – p scatPut p all2all
– – p scatGet –
– – p scatPutz –
– – p scatGetz –
– – p all2all –
– – p all2allz –

3.2 Reduction Operations

A reduction is an operation that involves reducing a set of numbers into a smaller set

via an operation. For example, taking a list of numbers [1, 2, 3, 4, 5, 6] and reducing

them to a single number via the sum operation, in this case to the number 21. Same

concept applies with a different operation like multiply, in which the result for the

previous list would be 120. In the case for parallel computation, each process has a

part of the set to be reduced, thus a reduction operation handles the communication

between these processes to obtain the desired result. Table 3.2 puts together the

equivalent functions in MPI and OpenMP for comparison. Notice that the MPI

Equivalent, presents the function name for the operation followed by the operation

to be executed. This operation is passed to the function as an argument. In the case

for the OpenMP operations column, only the final part of the line was introduced,

for a complete command all operation should be preceded by #pragma omp parallel

for valid OpenMP syntax.

3.3 Scan Operations

A scan operation is almost exactly as a reduction one. The difference lies in that

each process performs only a partial reduction, only taking into account processes

of lower rank. For example, taking a list of numbers [1, 2, 3, 4, 5, 6] divided by 6

11



Table 3.2: Reduce Operation Equivalents

Operation STAPERS MPI Equivalent OpenMP Equivalent
Bitwise AND p reduceAnd MPI Allreduce, MPI BAND for reduction(&:var)
Bitwise OR p reduceOr MPI Allreduce, MPI BOR for reduction(|:var)

Bitwise XOR p reduceXor MPI Allreduce, MPI BXOR for reduction(ˆ: var)
Minimum p reduceMin MPI Allreduce, MPI MIN for reduction(min:var)
Maximum p reduceMax MPI Allreduce, MPI MAX for reduction(max:var)
Addition p reduceAdd MPI Allreduce, MPI SUM for reduction(+:var)

Multiplication p reduceMul MPI Allreduce, MPI PROD for reduction(*:var)

different processes, each one of them holding one number based on their ranking, that

is, process 1 has datum in location 1, which happens to be number 1, process 2 has

the datum in location 2, process 3 has datum in location 3, and so on. Given this

distribution, if process 4 wants to perform a sum reduction via a scan, the result would

be 10. This is because process 4 only takes the information from processes of lower

rank and its own. In our example this mean the summation of numbers 1,2,3 and 4

which results in the number 10. Once again this process repeats for different operation

like minimum or maximum. Table 3.3 puts together the equivalent functions in MPI

for comparison. Notice that there is no equivalent for OpenMP as it does not support

a direct scan operation.

Table 3.3: Scan Operation Equivalents

Operation STAPERS MPI Equivalent
Bitwise AND p reduceAnd MPI Scan, MPI BAND
Bitwise OR p reduceOr MPI Scan, MPI BOR

Bitwise XOR p reduceXor MPI Scan, MPI BXOR
Minimum p reduceMin MPI Scan, MPI MIN
Maximum p reduceMax MPI Scan, MPI MAX
Addition p reduceAdd MPI Scan, MPI SUM

Multiplication p reduceMul MPI Scan, MPI PROD

12



3.4 Communication Operations

Communication operations are actually not operation in the strict meaning of the

word. These functions do not operate on data, rather these functions share data

between processes differently depending on the way the information needs to be dis-

tributed. Table 3.4 puts together the equivalent functions in MPI. For communication

operation there are not equivalent in OpenMP.

Table 3.4: Communication Operation Equivalents

Operation STAPERS MPI Equivalent
Broadcast p bcastPut MPI Bcast, Caller Process ID != root
Broadcast p bcastGet MPI Bcast, Caller Process ID = root
Broadcast p bcastPutz MPI Bcast, Caller Process ID != root
Broadcast p bcastGetz MPI Bcast, Caller Process ID = root

Gather p gather MPI Allgather
All-to-All Broadcast p all2all MPI Alltoall

Info Exchange p putGet MPI Bcast and MPI Recv
Info Exchange p putGetz MPI Bcast and MPI Recv

The first four operation shown in Table 3.4 are equivalent to broadcasts. The first

two are operate on a single datum while the second two act on arrays on data. The

letter z following any function signals that such function operates in a array given

by the user, and that the user must provide the lenght of such array. Furthermore,

these 4 functions highlight the difference in how MPI and AFAPI handles broadcast

root selection. The broadcast root is the process name doing the broadcast. MPI

allows the user to choose which process does the broadcast by means of an argument

passed to the function. AFAPI in the other hand has two functions to obtain the

same functionality. The function doing the broadcast will call p bcastPut while all

other processes must make the call to p bcastGet in order to receive the information

needed. The next two functions are very natural for parallel processing and direct

match between MPI and AFAPI. The last two functions are more complicated than

stated in the table. A putGet operation is byproduct of the early development of

AFN. The putget operation encompasses the communication patterns where each

processing element supplies one datum to the network and receives one from the pool

of data in the network[12]. Given this basic behavior a close MPI equivalent would

be a broadcast to all processes followed by a receive call. Once again a putget has a

13



version which exchanges an array of data rather than a single datum, such version is

ended with z like previous functions.

3.5 Control Operations

Control Operation refer to all functions that handle some type of non communica-

tion process. Table 3.5 puts together the equivalent functions in MPI. The first two

rows are very intuitive as they handle initialization of the libraries. These functions

serve the purpose to prepare libraries internals to handle parallel execution. Example

of such internal are creation of threads, network sockets and process identification.

AFAPI follows with an extra function called p confirm which is used to check for the

status of all processes. This function again is a by product of early implementation,

namely PAPERS unit in this case. The last four rows refer to the barrier synchroniza-

tion methods used to implement a barrier among processes. STAPERS introduces

to AFAPI the functions p lwait and p lany. Since STAPERS is able to synchronize

not only across processes in the same node but also across node in the network, lo-

cal barrier and global barrier are separated in two function to clarify which type of

synchronization is expected. These functions allow STAPERS to specify when the

local set of processes actually need to synchronize with the rest of the nodes giv-

ing flexibility to the library. This same functionality is obtained in MPI by passing

the Communication group id to the MPI Barrier call. This communication group

has to be explicitly set previously in the program but allows to define a arbitrary

membership to the group, something STAPERS does not allow.

Table 3.5: Control Operation Equivalents

Operation STAPERS MPI Equivalent OpenMP Equivalent
System Initialization p init MPI Init #pragma omp parallel
System Termination p exit MPI Finalize None

Verification p confirm None None
Barrier p wait MPI Barrier #pragma omp barrier

Local Barrier p lwait MPI Barrier #pragma omp barrier
Utility p any MPI Barrier #pragma omp barrier
Utility p lany MPI Barrier #pragma omp barrier

14



Chapter 4 Implementation details

In order to accomplish the goal set for this work two levels of communication are

necessary. A first layer that allows communication among processes on the same

machine and a second one for computers interacting through the network. As a

comparison, MPI can be said to use a logical flat network as shown in Figure 4.2.

This follows the nature of message passing as every processing element needs to be

reachable by any other PE that wants to communicate. However this communication

is realized, and however many layers the message has to cross, every PE has the ability

to send any other PE a message directly. This constraint allows programmers to not

worry about the underlying architecture of the network but in the interaction among

processes, but makes internal implementation tricky as different configurations may

need to be handled differently at different layers. In contrast Aggregate Functions do

not suffer from this constraint as they don’t need to make every processing element

reachable to every other. Since all communication is done as consequence of a barrier

synchronization of all elements, it is possible to separate communication by layer.

That is, aggregate functions can be execute either among processes in the same node

or elements across nodes separately. In other words, PEs that share a same node can

aggregate information among them before proceeding to aggregate them with other

nodes. This separation is portrayed in Figure 4.1.

Figure 4.1: STAPERS Multi-Level Architecture

The first layer need is met by using Shared Memory Adapter for Parallel Execution

and Rapid Synchronization (SHMAPERS) as a base implementation. SHMAPERS

provides the ability to run multiple jobs in the same node and as a well as the

15



mechanism for these jobs to interact and synchronize between them. Therefore, the

code base of SHMAPERS is used for STAPERS in-node communication. The second

layer of communication required the major part of development time and in depth

implementation will be explained in subsequent sections. It is worth noting that the

current work does not implement the AFAPI library exhaustively. For example, the

signal subsystem was not extended with network support. Normal and usable parallel

computation can be realized without it and thus was deemed not necessary for the

purposes of this work. The signal subsystem network support might prove useful in

its own right but its left for future work.

Figure 4.2: MPI Multi-Level Architecture

16



4.1 In-node: SHMAPERS

SHMAPERS is unique in its approach to ensure synchronization among processes.

Unlike OpenMP, SHMAPERS does not use any atomic locking mechanism to signal

synchronization. Instead, it assigns a barrier counter to each processing element.

When all counters have the same value then a barrier is realized. The trick lies in

using an specific shared-memory structure that ensures that each counter is contained

in a unique cache line. This property allows all barrier counter polling to be satisfied

by a cache hit, essentially avoiding touching memory until the corresponding process

write to its counter. An update to a barrier counter then triggers a cache miss on

other processes, which by using a load, will then obtain the updated barrier counter

finalizing the barrier synchronization.In other words, only a processor incrementing its

counter will cause spinning processors to experience a cache miss, but this coherence

traffic is then carrying the critical information that another processor is at the barrier.

The structure used for this purpose is shown in Listing 4.1.

Listing 4.1: SHMAPERS Shared memory Structure

typedef struct {
union p shm union datum [ 2 ] ; /∗ Double b u f f e r e d ∗/
int barno ; /∗ Barr ier number f o r t h i s PE ∗/
short pid ; /∗ UNIX PID of t h i s PE ∗/

/∗ Add padding to make a mu l t i p l e o f cache l i n e s i z e ∗/
char pad [P CACHELINE −

( ( s izeof ( int ) +

s izeof ( short ) +

s izeof (union p shm union ) +

s izeof (union p shm union ) ) % P CACHELINE ) ] ;

} p shm type ;

In order to further explain how this works Listing 4.2 is shown. The p wait

function is one of the basic functions in the AFAPI library.Its performs barrier syn-

chronization. More importantly is the contents of the function as it shows the basic

synchronization algorithm used by all functions in AFAPI. All collectives use the same

logic to realized intra-node synchronization. Before entering the while loop each pro-

cess updated its barrier counter number, barno. Then a while loop traverse an array

of p shm type structure. This array contains each process respective counter aligned

17



to cache line width as explained before. It is possible to just proceed and check if the

next PE barrier is equal to our barrier number. The problem with this approach lies

on counter wrapping around to smaller values as the counter increases. The solution

is simply to compare for equality with either the value of this processor’s counter or

one added to that value (which may be a smaller numeric value due to wrap-around);

if each processor’s counter value matches one or the other value, the barrier is com-

plete. Another optimization used is to check if the other process counter is at the

next barrier. If such is the case then it follows that such process is waiting at the next

barrier thus must have detected that all other processes reached the barrier. This

make further polling unnecessary and thus synchronization is complete.

Listing 4.2: SHMAPERS Barrier Sync Example

stat ic i n l i n e

void

p wa i t (void )

{
register volat i le p shm type ∗p = p shm al l ;

register volat i le p shm type ∗q = (p + PCPROC) ;

register int barno = ++(p shm me−>barno ) ;

register int barnonext = ( barno + 1 ) ;

do {
register int hisbarno = p−>barno ;

i f ( h i sbarno == barnonext ) return ;

i f ( h i sbarno != barno ) {
do {

P SHM IDLE ;

h i sbarno = p−>barno ;

i f ( h i sbarno == barnonext ) return ;

} while ( h i sbarno != barno ) ;

}
} while (++p < q ) ;

}

4.2 Processes Identification

SHMAPERS already implements job creation in each node but it is necessary to ex-

pand this initialization process to cover all machines in a network. This means that

18



the total amount of processes needed for parallel execution will be composed of a

multiplication of the number of processing elements on each node and the number of

nodes in the network. In other words, the total number of processing elements in the

program, lets call it NPROC, should be divided evenly among the number of nodes.

This number its named PCNUM. Then, the total amount of processing elements per

node is NPROC/PCNUM, or PCPROC. The even separation of processes is natural

as this implementation is intended to be run on a homogeneous cluster of comput-

ers, which favors node homogeneity across the network to elevate predictability and

maintain- ability of the cluster.

The first step to initialize the library’s internal components properly is to modify

the p init function. SHMAPERS’ initialization system gives each processing element

(PE) its own id in the form of the IPROC variable at the moment of job creation.

This alone does not work in with STAPERS as each node in a cluster would have a

”twin” in other computers making synchronization cumbersome. STAPERS solves

this by assigning each node with an id of their own based on a compile time seed.

The name of that variable is meid and it is used to establish node ordering on the

network. Making use of this network ID in combination with NPROC and PCNUM,

it is possible to assign each processing element across the network a unique global

id. Listing 4.3 shows the assignment process for this process. Notice that the meid

variable is obtained at run-time. The function getmeid() is just a lookup table call

that uses the local machine hostname to match it against a precompiled list which

is preordered. When getmeid() matches the hostname in the list it returns its rank

among nodes in the network. This allows each node to start the id assignment

process at PCPROC intervals without any aliasing, making sure all PEs get a unique

IPROC. A console process (CPROC) of each node is also assigned to be the first

available number in the specific node interval and consequently giving all following

processes the next available number in that node’s interval.

Listing 4.3: ID assign Code

meid = getmeid ( ) ;

cproc = (NPROC/PCNUM)∗ (PCNUM− meid − 1 ) ;

int proc = (NPROC/PCNUM)∗ (PCNUM − meid ) ;

for ( i p r o c = proc − 1 ; i p r o c > proc − (NPROC/PCNUM) ; −−i p r o c )
i f ( f o rk ( ) == 0)

break ;

19



4.3 Handling Network Communication

With each node able to run multiple processes, the next step is to allow multiple nodes

to communicate with each other allowing all processes to interact. This communi-

cation is achieved by assigning one process per node to handle the communication

on behalf of the other processes in the same node. The assigned node is a console

process, CPROC, and every node has it own CPROC. This terminology was intro-

duced in SHMAPERS and is extended upon in STAPERS. Though CPROC was used

exclusively for printing information in SHMAPERS, in this implementation it is used

to handle the network communication. In STAPERS CPROC is the process that

handles the TCP sockets, information printing and network barrier synchronization.

CPROC is not a dedicated process for this purpose but a promoted one that serves a

representative for network communication across nodes. CPROC will contribute to

computations locally and only when it finished its computation it proceeds to synchro-

nize with local node processes and gather their computation results. CPROC then

will communicate with other computer nodes in the network to exchange information.

When information exchange is done, CPROC will proceed to again synchronize with

local processes to let them know the results of all other processes.

Though the process changes depending on the collective called, in general the

synchronization process follows a common set of basic steps.

1. Install datum and signal barrier

2. Barrier synchronize

3. Execute local operation

4. If not CPROC barrier syncrhonize, CPROC does network exchange,

5. CPROC uses results to calculate overall result

6. CPROC broadcasts information obtained to local processes

7. Each IPROC return the result back to the caller

Notice that there are multiple barrier synchronization points in the list above.

This is due to the multilayer nature of STAPERS. To understand this process lets

use a reduction add operation as an example . Listing 4.4 shows a Pi calculation

20



program using STAPERS. The program receives from the user the amount of inter-

vals to which Pi is to be calculates for. Then p init() is called to initialize internal

components as explained in the previous section. After each process goes through

the local computations they will encounter the p recudeAdd64f(sum) call. This is the

call that will go through the process mentioned in previous list. Each IPROC will

put their previously calculated sum in the shared memory region used for synchro-

nization and signal the barrier they have done so. When all processes have signaled

the barrier CPROC collects the information from local processes and broadcasts the

info to all other nodes in the network. Once all nodes have information of every

other node, their respective CPROC computes the overall result and proceeds to put

the results in each processes shared memory region. Then it synchronizes again with

local processes by joining the barrier synchronization. This enables each process to

obtain the result of the operation executed. In the case of this example the correct

value of Pi.

This process is analogous to a hybrid programming model as the local parallel

threads would join together to accumulate information and then proceed with network

communication. The differences are that STAPERS creates NPROC processes at

initialization much like MPI and unlike OpenMP which creates threads in the parallel

regions only.

Listing 4.4: Pi Calculation Program

#include <s t d l i b . h>

#include <s t d i o . h>

#include <AFAPI/ a f ap i . h>

int

main ( int argc ,

char ∗∗ argv )
{

register double i n t e r v a l s , width , sum ;

register int i ;

/∗ check−in wi th AFAPI ∗/
i f ( p i n i t ( ) ) e x i t ( 1 ) ;

/∗ ge t the number o f i n t e r v a l s ∗/
i n t e r v a l s = a t o i ( argv [ 1 ] ) ;

width = 1 .0 / i n t e r v a l s ;

21



/∗ do the l o c a l computat ions ∗/
sum = 0 ;

for ( i=IPROC; i<i n t e r v a l s ; i+=NPROC) {
register double x = ( i + 0 . 5 ) ∗ width ;

sum += 4.0 / ( 1 . 0 + x ∗ x ) ;

}

/∗ sum across the l o c a l r e s u l t s & s c a l e by width ∗/
sum = p reduceAdd64f (sum) ∗ width ; // <−− Aggregate Function Ca l l

/∗ have only the conso l e PE pr i n t the r e s u l t ∗/
i f (IPROC == CPROC) {

p r i n t f ( ”Est imation o f p i i s %14.12 l f \n” , sum ) ;

}

/∗ check−out ∗/
p ex i t ( ) ;

e x i t ( 0 ) ;

}

There are three different behavior that follow this skeleton execution path but

differ internally due to differences in the collective intended purpose. The following

list separates the methods with their corresponding set of collectives

1. Behavior Type 1: Reduce Operations and non-array Broadcasts.

2. Behavior Type 2: Scan Operations

3. Behavior Type 3: Communication Collectives

Behavior Type 1 & 2: Reduce and Scan Operations

The behavior type 1 and 2 flow diagrams are shown in Figures 4.3 and 4.4, respec-

tively. This two behaviors are the most similar of the three types as the differences lie

in how the processes handle the data once the communication operation is finished.

Both cases go through the original SHMAPERS process of function aggregation.

They are in fact identical to the original implementation. Once the local operation

is done, both behaviors make use of CPROC and go ahead with the network com-

munication process to obtain all of the other nodes’ results. Once the info exchange

is made each CPROC updates every other IPROC in the same node with the new

22



data and all processes re-synchronize. At last, every process updates their return

data appropriately. The difference between behavior 1 and 2, is that the first takes

the data given to them by CPROC while the second takes the CPROC data update

and recalculate the return value. This difference arises by the fundamental difference

between a scan operation and a reduce operation. The former one only operates with

the set of data from process = 0 to process = IPROC, while the second perform the

computation taking into account the results from all processes.

23



Enter data locally

Local Barrier Sync

Local Computation

CPROC?

Local Barrier Sync

Network Communication

Local Broadcast Of Result

Update Local Result with Broadcast

Finished

yes

no

Figure 4.3: Process flowchart for CPROC Behavior Type 1

24



Enter data locally

Local Barrier Sync

Local Computation

CPROC?

Local Barrier Sync

Network Communication

Local Broadcast Of Result

Recalculate Local Result

Finished

yes

no

Figure 4.4: Process flowchart for CPROC Behavior Type 2

25



Behavior Type 3

Behavior three changes the process more deeply that the previous two. The first

difference is that communication collectives do not perform operations thus local

computations are not executed. Rather, processes within nodes wait for CPROC to

finish communications on their behalf and then wait for CPROC to forward them

the data obtained. This forwarding process is where this behavior differs from the

other two. Instead of calculating results, each process obtains a copy of all processes’

information and then operates upon it. We could have optimized this process so that

each internal process only obtains the required value desired, but memory operations

across processes are cheap in comparison to network latency and thus provide no

much extra value for this thesis. These differences are reflected in Figure 4.5. This

flowchart gives the impression of being simpler that the previous ones. Certainly logi-

cally this is true, but the actual implementation contains more information tracking to

enable correct behavior. Contrary to reduce and scan operations, the communication

collectives can operate on arrays of data of unknown type. This condition restricts

assumptions of the data being transferred and force us to exchange data as blocks of

memory across processes within nodes. In Figure 4.5, process 6 can perform multiple

barrier synchronization operation as it transfers the information from CPROC to all

other nodes. This is due to the fact that SHMAPERS uses shared memory to com-

municate across processes. This means each local PE has access to a limited amount

of memory that they can share with each other, thus making communication buffer

limited across them. It is worth restating that compared to network communication

local memory access is cheap and this is not a significant factor in the overall system

latency.

26



Enter data locally

Local Barrier Sync

CPROC?

Local Barrier Sync

Network Communication

Local Broadcast Of Result

Finished

yes

no

Figure 4.5: Process flowchart for CPROC Behavior Type 3

4.4 Inter-node Communication Algorithm

Following the AFN scheme of All-to-All communication, STAPERS uses one ”broad-

cast” method for all collectives in the library. Different methods were considered for

this purpose.

• Recursive Doubling

• Recursive Halving

• Bruck’s Algorithm

• All-to-All broadcast

Recursive doubling was chosen for this work. Several circumstances contributed

to this selection. This work does not concern itself with maximum possible opti-

mization of network latency for the library but to assert, compare and analyze its

27



competitiveness against more standard approaches. Therefore, for a proof-of-concept

implementation, any of the first three algorithms would have sufficed. In order to

comply with the aggregate functions methodology, a personalized all-to-all methods

is needed for network communication. The most basic method for this ”broadcast”

necessity is to simply make every node in the network exchange information with

every other node. This method is clearly insufficient since it is not scalable. Many

more scalable methods have been proposed and used in work like [13], [14] and [15].

These algorithms allow to broadcast information with log(NPROC) passes, making

them much more preferable. Given that many use cases for parallel processing use

power of two algorithms, a pairwise algorithm was preferred. Bruck’s algorithm, re-

cursive doubling and halving are pretty similar and are in use by MPICH[16] and

OpenMPI[17] implementations, thus making them the most natural candidates for

the personalized all-to-all functionality needed by this work. For most of the collective

in AFAPI short messages of less than 256 bytes are used. Since recursive doubling

has better performance than Bruck’s algorithm with short messages[13], the first one

was chosen as the default mechanism for personalized all-to-all. Future work should

be concerned on how to make larger messages more efficient as recursive doubling

loses its edge against other algorithms as the message size goes up[13].

28



Chapter 5 Performance Benchmarks and Comparison

To establish the viability of AFNs it is meaningful to concentrate in the simplest

performance metric for parallel computing: Latency, specifically the time spent on

each collective call not doing computational work. Latency-based comparison is used

because the main objective of parallel computation schemes is to minimize the non

computational operations. The more time the processor is used for computation the

more efficient is the library. In other words, the less time spent on communication the

more desirable the scheme is. By comparing latency performance between STAPERS

functions and their equivalent in MPI and OpenMP it is possible to establish a frame

of reference to compare them by.

5.1 Test Construction

The multi-hierarchy nature of this implementation it is necessary to obtain perfor-

mance information at all levels of communication. This means, it is necessary to

measure inter-node and intra-node latencies separately to obtain meaningful results.

This allows a structured method of comparison between STAPERS, OpenMP and

OpenMPI. This comparison is not as straightforward as implied since not all func-

tions have a one-to-one match across libraries. For example, while the three of them

support reduction operations like OR, AND and XOR, neither STAPERS nor MPI

support a subtraction reduction operation like OpenMP. In the other hand, OpenMP

does not support scan operations like STAPERS and OpenMPI do which makes one-

to-one comparison not trivial. Another more subtle issue is that even when collectives

share names among libraries their behavior differ slightly depending on the library.

Therefore to accurately compare STAPERS to these libraries functions call are com-

pared depending on the behavior rather than the name of the functions. With this

situation in mind the rules of comparison are set as follows:

1. Compare equivalent level communication

2. Compare similar behaved collectives

3. Compare similar data sizes

29



Table 5.1: Twelve-Core, Two-Socket Shared Memory Computer

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Thread(s) per core: 1
Core(s) per socket: 6
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 44
Model name: Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
Stepping: 2
CPU MHz: 2660.065
BogoMIPS: 5319.78
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 12288K
NUMA node0 CPU(s): 0,2,4,6,8,10
NUMA node1 CPU(s): 1,3,5,7,9,11

5.2 Testbeds

Two set of machines were prepared for the experiments. One sixteen-node computer

cluster and one twelve-core shared memory system. Tables 5.2 and 5.1 respectively

show the specifications of machines. For intra-node communication the machine

shown in table 5.1 is used. This machine allows to compare two specific cases for intra-

node communication; multi-core and multi-socket communication. For inter-node

communication the cluster in table 5.2 was used. Sets of NPROC=4, NPROC=8,

NPROC=16 were ran to study the scale issues the current implementation has.

30



Table 5.2: Sixteen-Node Cluster Computer Specifications

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 15
Model: 5
Model name: AMD Opteron(tm) Processor 248
Stepping: 10
CPU MHz: 2209.974
BogoMIPS: 4419.43
L1d cache: 64K
L1i cache: 64K
L2 cache: 1024K
NUMA node0 CPU(s): 0
NUMA node1 CPU(s): 1

31



5.3 Intra-node Communications Comparison

For intra-node latency the three libraries were compared as the three libraries have

in-node communication capabilities. A section of the test code shown in Listing 5.1

shows the method for comparison . For the case of MPI, we used MPI Barrier call

to make sure all processes were synchronized before timing the operation. This is

an important step to obtain the minimum latency across nodes. For OpenMP the

thread creation time was estimated in order to create a correction term. Because

OpenMP has to create threads every time there is a new parallel block it is necessary

to estimate this creation time to adjust the timing of the operations desired. After this

correction term is estimated the actual time for the operation is timed once more.

Then the correction term is subtracted from the operation time to obtain a more

truthful latency of the operation without the thread creation overhead. This process

was repeated for the reduction operations OR, AND, XOR, SUM, SUB, MUL, MIN

and MAX. The results were then averaged together to created a per-library latency

”response”. As mentioned before, a reduction substraction operation is not present

for MPI nor STAPERS. Since at the processor level a subtraction is just and addition

with one of the operators negated the reduction SUM was use in its place.

Table 5.3 shows the results obtained following this method. Figure 5.1 shows the

graphic comparison. It can be observed how in all cases up to NPROC=12, STAPERS

averages better latency performance than MPI. Against corrected OpenMP values,

STAPERS performs equally up to 6 processes. From 7 to 12 processes STAPERS

latency term increases more slowly than OpenMP. This graph also highlights the

difference between OpenMP with and without the correction term. Without the

correction term, OpenMP presents very similar latency to that of STAPERS. This is

somewhat expected as OpenMP is highly optimized for this type of operations. This

discrepancy can be attributed to the fact that STAPERS initializes processes early in

the program while OpenMP does it on demand. STAPERS will have advantage over

OpenMP if the OpenMP equivalent program does not take care of thread creation

overhead. For the case of MPI things are different. MPI performs worse than both

STAPERS and OpenMP(corrected) at all NPROC. MPI does perform better against

OpenMP when the correction term is not deducted and the number of processes is

a power of two. This indicates that MPI holds the same advantage over OpenMP is

the latter does not take care of thread creation overhead. The better performance for

power of two number of processes is probably due the internal algorithms being used.

32



It is safe to assume from this results that the internal algorithms is better suited for

power of two number for in node processes.

Listing 5.1: Intra-node Latency Test Code

// Code f o r MPI

MPI Barrier (MPICOMMWORLD) ;

gett imeofday(&t ime s ta r t , NULL) ;

for ( i = 0 ; i < TIMES ; i++){
MPI Allreduce(&sub avg , sub avgs , 1 , s u f f i x ,

oper ,MPICOMMWORLD) ;

}
gett imeofday(&time end , NULL) ;

MPI Barrier (MPICOMMWORLD) ;

// Code f o r OpenMP

gett imeofday(&ts , NULL) ;

for ( i = 0 ; i < TIMES ; i++){
#pragma omp p a r a l l e l num threads (NPROC)

{
}

}
gett imeofday(&te , NULL) ;

gett imeofday(&ts , NULL) ;

for ( i = 0 ; i < TIMES ; i++){
#pragma omp p a r a l l e l for r educt ion ( | : sum) num threads (NPROC)

for ( j = 0 ; j < NPROC ; j++)

sum |= a [ j ] ;

}
gett imeofday(&te , NULL) ;

33



Table 5.3: Average Operation Latency Comparison

NPROC OMP AVG OMP - Correction STAPERS AVG MPI
2 0.8772 0.3508 0.2175 0.4397
3 0.8942 0.3250 0.3610 1.2820
4 1.2141 0.5277 0.5467 1.0228
5 1.3984 0.6410 0.6187 1.6061
6 1.5760 0.6990 0.7387 1.8496
7 1.8053 0.8321 0.7853 2.0753
8 2.2655 0.9783 0.8862 1.5917
9 2.1658 1.0655 0.9304 2.0551
10 2.8509 1.3200 1.0696 2.3641
11 3.0620 1.5184 1.1679 2.5134
12 3.9642 2.0396 1.3079 2.3800

Figure 5.1: Latency

Table 5.4 and Table 5.5 show a split of the differences among reduce operation

among the three libraries. NPROC of 6 and 12 are shown. This results lead to think

the communication/synchronization is more significant than the operation of itself.

With the exception of MIN and MAX all operation can be assumed atomic at the

processor level so should not have any difference in latency measurements. Even

maximum and minimum operations can be implemented in very few instruction so

34



Table 5.4: Intra-node Latency NPROC = 6

OP OMP MPI STAPERS
OR 1.04599 1.81717 0.72224
AND 1.02671 1.85684 0.72372
XOR 1.05172 1.83304 0.73252
SUM 1.04306 1.88849 0.72406
SUB 0.99988 1.88849 0.72406
MUL 0.99782 1.85636 0.72221
MIN 0.99534 1.9 0.72881
MAX 1.00251 1.88862 0.72822

the same applies to these operations. This is fact the behavior shown in the results.

Figure 5.3 and Figure 5.2 allow a more visually intuitive comparison. Once again

the results show clear differences between the three libraries. Finally Figure 5.4

and Figure 5.5 shows a speed up comparison of STAPERS against it counterparts.

Both figures show how STAPERS performing much better than MPI. For NPROC=6

Figure 5.4 shows a performance 2.5 faster than that of MPI, while around of 1.8 speed

up for 12 processes. For the case OpenMP speedup is rather constant at around 1.5 for

NPROC=6 and NPROC=12. This behavior matches the one presented in Figure 5.1.

It is worth noting, that when you compare both set of results that at NPROC = 6

one set shows OpenMP actually a little faster than STAPERS. This ”anomaly” was

actually seen various times across tests. Most of the test showed STAPERS regularly

beating OpenMP. Once in a while though, OpenMP would top STAPERS by some

margin.

Table 5.5: Intra-node Latency NPROC = 12

OP OMP MPI STAPERS
OR 1.92469 2.39207 1.29096
AND 1.90865 2.44893 1.28751
XOR 1.92014 2.39224 1.29056
SUM 1.88531 2.46541 1.32887
SUB 1.92026 2.46541 1.32887
MUL 1.9205 2.41383 1.24401
MIN 1.97435 2.47827 1.29906
MAX 1.90104 2.47296 1.31272

35



Figure 5.2: Intra-node Latency Comparison STAPERS, OpenMP and OpemMPI For
Reduce Operations, NPROC = 12

Figure 5.3: Intra-node Latency Comparison STAPERS, OpenMP and OpemMPI For
Reduce Operations, NPROC = 6

36



Figure 5.4: Intra-node Percent Comparison STAPERS, OpenMP and OpemMPI For
Reduce Operations, NPROC = 6

Figure 5.5: Intra-node Percent Comparison STAPERS, OpenMP and OpemMPI For
Reduce Operations, NPROC = 12

37



5.4 Inter-node Communications Comparison

For Inter-node communication STAPERS was compared to OpenMPI only. Results

were divided in three different sets of operations. Reduction, scans and communica-

tions. The first two are operation as their name implies. That is, reductions and scan

operations are compared between MPI and STAPERS. Communication operation are

not computational operations but operations with the purpose to share information.

Reduction Operations

One important distinction between STAPERS and its counterparts is the use of a All-

to-All based communication scheme. For inter-node communication this distinction

is very important. This means that in all collective in STAPERS every nodes involved

in the parallel process. Each process will obtain a copy of the information from every

other node in the network and act upon it, regardless whether the function returns all

the information to the caller or not. For the case of reduction this means that every

process ends up with the same result. This makes comparison to regular collectives in

MPI meaningless. A Reduction operation on MPI assumes only the root process will

have a meaningful result. Every process will call the reduce function but only the root

process will have the correct answer. For this reason STAPERS reduce operation is

compared to Allreduce MPI operations. Allreduce which exhibits the same behavior

as STAPERS. This enables fair comparison between the libraries. Table 5.6 shows

the results for reduction operations as stated above. The results shows very similar

latency performance between implementations. This behavior is expected as both,

OpenMPI and STAPERS uses the same family of algorithms. In general, OpenMPI

seems to be slightly slower than our implementation but this is likely due to the

larger function overhead of OpenMPI. It is a much more mature library and takes

into account many more variables that STAPERS and thus will incur more overhead

per call as our more simple implementation. This behavior reflected in the standard

deviations of each operation in Table 5.6. OpenMPI is consistently more variable,

having standard deviation as high as 73.63 us of and more commonly around 10 us.

Compared to this, STAPERS fluctuations are smaller and consistent across test runs.

Table 5.4 and Figure 5.4 present more graphical perspective of this effect. Figure 5.4

shows lower how STAPERS is much more consistent in its timing compared to MPI

which fluctuates more often.

38



Table 5.6: Reduce Operation Latency NPROC=32, PCNUM=16

Operation 8-bit 16-bit 32-bit 64-bit Std.Dev
MPI All Reduce OR 233.67 230.00 352.00 236.00 73.63
STAPERS OR Reduce 233.00 228.00 228.50 224.50 5.01
MPI All Reduce OR 227.00 230.50 225.50 225.00 7.36
STAPERS AND Reduce 223.67 225.50 225.00 225.50 1.42
MPI All Reduce XOR 235.33 235.50 237.00 227.50 8.42
STAPERS Reduce XOR 225.00 225.50 225.50 225.50 0.75
MPI All Reduce MIN 233.67 228.50 223.00 223.50 10.75
STAPERS Reduce MIN 224.00 224.50 225.50 224.00 1.19
MPI All Reduce MAX 221.33 220.00 227.50 218.50 6.45
STAPERS Reduce MAX 224.67 224.50 224.50 223.50 0.78
MPI All Reduce ADD 218.33 229.00 233.00 226.50 11.91
STAPERS Reduce ADD 224.33 224.00 223.50 224.00 1.03
MPI All Reduce MUL 228.00 221.00 234.50 227.50 7.26
STAPERS Reduce MUL 224.00 225.00 224.00 224.00 0.92

Notice that MPI allreduce OR operation is an outlier. This outlier was often seen

in test runs. Though the graph shows it to be specific to 32-bit OR operation this

behavior was seen randomly across different tests. It is believed though not confirmed

that this could be caused by the operative system scheduling out the MPI process.

This is more likely to happen in MPI than in STAPERS since MPI library is much

more developed and allows for more ’surface area’ for which condition could trigger.

It is not considered relevant for this works purpose and thus this theory was not

pursued nor confirmed. It was left in the results for information purposes.

39



Figure 5.6: Reduce Operation Results Part 1

Figure 5.7: Reduce Operation Results Part 2

40



Table 5.7: Scan Operation Latency NPROC=32, PCNUM =16

Operation 8-bit 16-bit 32-bit 64-bit Std.Dev
MPI Allgather 225.86 230.36 224.79 225.71 8.34
ST. Scan OR 224.00 223.50 216.50 216.00 5.87
ST. Scan AND 212.00 219.00 213.50 225.00 6.53
ST. Scan XOR 227.00 226.00 228.50 223.00 3.64
ST. Scan MIN 214.50 215.00 217.67 218.20 2.60
ST. Scan MAX 222.00 222.00 223.00 222.80 1.32
ST. Scan SUM 224.50 223.50 224.33 223.33 0.87
ST. Scan MUL 244.50 249.50 244.33 239.00 7.02

Scan/Gather Operations

Contrary to the case of reduce operations, scan operations may behave differently

between STAPERS and OpenMPI, but the result is the same. Every process ends

up with a partial reduction result depending on it process number. Scans operation

differ no in the end result but the method used to get there. This puts STAPERS

in a disadvantage as MPI implementations are much more optimized for this case.

Nevertheless Scan operation were compared to two set of functions. Native MPI

scan operations which gives the desired results and AllGather funtions which behave

similarly to the STAPERS version of the scan collective. Table 5.7 shows the results

for 32 processes distributed in 16 computers. This table shows the Allgather vs

STAPERS scan case. Once again this is a natural result as the internal algorithms

are similar.

41



Chapter 6 Conclusions and Future Work

The results discussed in the previous chapter indicate that aggregate functions are

still a viable method to execute parallel programs and quite competitive as a parallel

paradigm. In terms of performance it was shown that the Intra-node implementa-

tion to be as competitive as current standards if not potentially better than the top

tier libraries. This improvement lies on the fundamental difference in barrier synchro-

nization method and the understating of the common underlying architecture of most

modern processors. In the other hand, inter-node performance results tell another

story, as latency showed to be similar if not identical to OpenMPI implementation.

In hindsight, these results were expected as the underlying broadcast algorithm is an

industry standard for personalized all-to-all communication. Regardless, STAPERS

shows that from a performance perspective aggregate functions still provide value to

HPC community. From a qualitative perspective aggregate functions provide a dif-

ferent thinking model for synchronization. This alternative may very well be biggest

value aggregate functions provide the HPC community as more parallel computation

move to be more fine/medium-grain parallelism. This makes the case for message

passing paradigm less strong and may open the doors for AFNs. With that being

said, STAPERS still lack the maturity level than the MPI and OpenMP standards.

As a technology, still has much room to improve to be used . Regardless of this reality

this work has shown its potential and encourages the continuation of its development.

This improvement can take several different forms as the paradigm is not uniquely

suited to network computations.

One area future work can take is to improve the current rudimentary TCP com-

munication. Current implementation status makes very little optimization based on

compile time information like process number or communication patterns. Many

current MPI implementations make use of the compile time information for choos-

ing more efficient aggregation algorithms. In particular all-to-all communication and

scan operations can be improved upon to be more efficient in STAPERS. Another

potential improvement is to make more run-time optimizations for communication.

For example, current state of the library uses recursive doubling for all communica-

tion regardless of number of processes and buffer sizes. Using on-time information to

change communication to use more efficient algorithms is a path that libraries like

42



MPI and OpenMP have already taken.

Another direction this work can lead to is the change from TCP-based com-

munication to UDP-based communication. Using true UDP broadcast to serve as

the communication mechanism may further improve latency performance. By using

UDP broadcast as a barrier signaling mechanism, it is possible to effectively make

a constant pass network communication scheme for any number of processes. This

is possible despite UDP being intrinsically unreliable because current hardware can

compensate for such shortcomings. UDPAPERS had to tackle this challenge before

and this work only encourages its continuation.

Another potential use of aggregate functions can be its migration to network equip-

ment. That is, to use the network switch to serve as the barrier unit to which each

computer reports to. This effectively moves aggregate computation to the network

and it’s is actually the original idea for the PAPERS unit back in the 90s. This idea

has further developed its validity as companies like Mellanox have been aggressively

promoting In-Network computing technology which seems to be similar to this idea.

One candidate considered for this work was to obtain a MetaMako’s FPGA-based

switch. This machine allows to make use of an internal FPGA to control packets at

layer 2 and 3 at nanoseconds speed. This hardware makes for an ideal testbed for a

aggregate function layer to build upon.

43



Bibliography

[1] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of col-
lective communication operations in mpich. The International Journal of High
Performance Computing Applications, 19(1):49–66, 2005.

[2] R. R. Hoare and H. G. Dietz. A case for aggregate networks. In Proceedings of
the First Merged International Parallel Processing Symposium and Symposium
on Parallel and Distributed Processing, pages 162–166, Mar 1998.

[3] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel program-
ming on clusters of multi-core smp nodes. In 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pages 427–
436, Feb 2009.

[4] Lei Chai. High performance and scalable MPI Intra-node Communication mid-
dleware for multi-core clusters. PhD thesis, The Ohio State University, 2009.

[5] N. Drosinos and N. Koziris. Performance comparison of pure mpi vs hybrid
mpi-openmp parallelization models on smp clusters. In 18th International Par-
allel and Distributed Processing Symposium, 2004. Proceedings., pages 15–, April
2004.

[6] Rudolf Berrendorf and Guido Nieken. Performance characteristics for openmp
constructs on different parallel computer architectures. Concurrency Practice
and Experience, 12(12):1261–1273, 2000.

[7] Jay P Hoeflinger. Extending openmp to clusters. White Paper, Intel Corporation,
2006.

[8] H. G. Dietz, R. Hoare, and T. Mattox. A fine-grain parallel architecture based
on barrier synchronization. In Proceedings of the 1996 ICPP Workshop on Chal-
lenges for Parallel Processing, volume 1, pages 247–250 vol.1, Aug 1996.

[9] Henry G Dietz, Tai M Chung, and TI Mattox. A parallel processing sup-
port library based on synchronized aggregate communication. In International
Workshop on Languages and Compilers for Parallel Computing, pages 254–268.
Springer, 1995.

[10] Henry G Dietz, TI Mattox, and G Krishnamurthy. The aggregate function api:
It’s not just for papers anymore. In International Workshop on Languages and
Compilers for Parallel Computing, pages 277–291. Springer, 1997.

[11] T. B. Berg and H. J. Siegel. Instruction execution trade-offs for simd vs. mimd vs.
mixed mode parallelism. In [1991] Proceedings. The Fifth International Parallel
Processing Symposium, pages 301–308, Apr 1991.

44



[12] T Mattox. Synchronous aggregate communication architecture for mimd parallel
processing. School of Electrical and Computer Engineering. W. Lafayette, IN:
Purdue University, 1997.

[13] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of col-
lective communication operations in mpich. The International Journal of High
Performance Computing Applications, 19(1):49–66, 2005.

[14] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J.
Dongarra. Performance analysis of mpi collective operations. In 19th IEEE
International Parallel and Distributed Processing Symposium, pages 8 pp.–, April
2005.

[15] J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient
algorithms for all-to-all communications in multiport message-passing systems.
IEEE Transactions on Parallel and Distributed Systems, 8(11):1143–1156, Nov
1997.

[16] Mpich : High-performance portable mpi.

[17] Open mpi: Open source high performance computing.

45



Vita

Pablo Quevedo was born in Valencia, Venezuela. He obtained his Bachelor Degrees in
Electrical Engineering and Computer Engineering from the University of Kentucky.
He enrolled in the University of Kentucky’s Graduate School in Fall 2013. He worked
as a Research Assistant for University of Kentucky in summer 2015. He is currently
working for Hitachi America, Ltd as a Research Scientist.

46


	Hierarchical Implementation of Aggregate Functions
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Motivation and Background
	2.1 Pure MPI
	2.2 Pure OpenMP
	2.3 Hybrid: MPI + OpenMP
	2.4 Aggregate Function over the Network

	3 Aggregate Functions Networks
	3.1 STAPERS Role in AFAPI
	3.2 Reduction Operations
	3.3 Scan Operations
	3.4 Communication Operations
	3.5 Control Operations

	4 Implementation details
	4.1 In-node: SHMAPERS
	4.2 Processes Identification
	4.3 Handling Network Communication
	4.4 Inter-node Communication Algorithm

	5 Performance Benchmarks and Comparison
	5.1 Test Construction
	5.2 Testbeds
	5.3 Intra-node Communications Comparison
	5.4 Inter-node Communications Comparison

	6 Conclusions and Future Work
	Bibliography
	Vita

