
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2017

NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR

REBOOTING COMPUTING REBOOTING COMPUTING

Sai Subramanya Varun Thogarcheti
University of Kentucky, togarchetivarun@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0001-5442-6603
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.474

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Thogarcheti, Sai Subramanya Varun, "NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR REBOOTING
COMPUTING" (2017). Theses and Dissertations--Electrical and Computer Engineering. 109.
https://uknowledge.uky.edu/ece_etds/109

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232580865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://orcid.org/0000-0001-5442-6603
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Sai Subramanya Varun Thogarcheti, Student

Dr. Himanshu Thapliyal, Major Professor

Dr. Cai-Cheng Lu, Director of Graduate Studies

NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR
REBOOTING COMPUTING

THESIS

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering
in the College of Engineering
at the University of Kentucky

By
Sai Subramanya Varun Thogarcheti

Lexington, Kentucky
Director: Dr. Himanshu Thapliyal

Lexington, Kentucky
2017

Copyright © Sai Subramanya Varun Thogarcheti 2017

ABSTRACT OF THESIS

NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR
REBOOTING COMPUTING

CMOS based computing is reaching its limits. To take computation beyond Moores law

(the number of transistors and hence processing power on a chip doubles every 18 months to

3 years) requires research explorations in (i) new materials, devices, and processes, (ii) new

architectures and algorithms, (iii) new paradigms. The focus is on fundamental new ways

to compute under the umbrella of rebooting computing. Therefore, this thesis highlights

explicitly Quantum computing and Adiabatic logic, two new computing paradigms that

come under the umbrella of rebooting computing. Quantum computing is investigated for its

promising application in high-performance computing. The first contribution of this thesis

is the design of two resource-efficient designs for quantum integer division. The first design is

based on non-restoring division algorithm and the second one is based on restoring division

algorithm. Both the designs are compared and shown to be superior to the existing work in

terms of T-count and T-depth. The proliferation of IoT devices which work on low-power

also has drawn interests to the rebooting computing. Hence, the second contribution of this

thesis is proving that Adiabatic Logic is a promising candidate for implementation in IoT

devices. The adiabatic logic family called Symmetric Pass Gate Adiabatic Logic (SPGAL)

is implemented in PRESENT-80 lightweight algorithm. Adiabatic Logic is extended to

emerging transistor devices such as FinFET, TFET and UTB-SOI.

KEYWORDS: Quantum Computing, Adiabatic Logic, T-Count, T-Depth, FinFET,

TFET

Sai Subramanya Varun Thogarcheti

December 12, 2017

NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR
REBOOTING COMPUTING

By

Sai Subramanya Varun Thogarcheti

Dr. Himanshu Thapliyal

(Director of Thesis)

Dr. Cai-Cheng Lu

(Director of Graduate Studies)

December 12, 2017

(Date)

Table of Contents

Table of Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Contribution of Thesis . 4

1.2 Outline of Thesis . 4

2 Background 5

2.1 Quantum Computing . 5

2.1.1 The NOT Gate . 6

2.1.2 The Feynman Gate . 6

2.1.3 The Toffoli Gate . 6

2.1.4 The Peres Gate . 7

2.1.5 Clifford+T gates . 7

2.1.6 Metrics Used for Evaluating Quantum Circuitry 9

2.2 Adiabatic Computing . 9

2.2.1 PRESENT-80 Lightweight Algorithm 11

2.2.2 FinFET . 12

2.2.3 TunnelFET(TFET) . 13

iii

2.2.4 Ultra-Thin-Body Silicon-On-Insulator (UTB-SOI) 13

3 Quantum Circuit Designs of Integer Division Optimizing T-count

and T-depth 15

3.1 Design of Quantum Circuits Used In Proposed Integer Division Circuits 16

3.1.1 Design of Quantum Subtractor 17

3.1.2 Design of Quantum Adder-Subtractor 18

3.1.3 Design of Quantum Conditional ADD Operation Circuit . . . 19

3.2 Design of Non-Restoring Quantum Integer Division Circuit 20

3.2.1 Design Methodology for Quantum Non-Restoring Integer Divi-

sion Circuit . 20

3.2.2 Cost Comparison With Existing Work 24

3.3 Design of Restoring Quantum Integer Division Circuit 25

3.3.1 Design Methodology for Quantum Restoring Integer Division

Circuit . 26

3.3.2 Cost Comparison With Existing Work 28

3.4 Conclusion . 29

4 Adiabatic Computing Based Low-Power and DPA-Resistant Lightweight

Cryptography 31

4.1 Symmetric Pass Gate Adiabatic Logic (SPGAL) 32

4.2 Implementation of PRESENT-80 Using Adiabatic Logic 34

4.2.1 SPGAL Implementation of PRESENT-80 35

4.2.2 Implementation Results of PRESENT-80 36

4.3 DPA Attack on PRESENT-80 . 37

4.4 Conclusion . 38

5 Adiabatic Computing for Emerging Nanotechnologies 40

5.1 SPGAL Implementation in FinFET, TFET and UTB-SOI 41

iv

5.1.1 FinFET Based SPGAL (FinSAL) 41

5.1.2 TFET Based SPGAL (TunSAL) 42

5.1.3 Analysis of FinSAL and TunSAL 44

5.1.4 UTBSOI Based SPGAL . 45

5.2 FinFET, TFET and UTB-SOI implementations of PRESENT-80 . . 46

5.3 DPA Attack . 48

5.4 Conclusion . 49

6 Conclusions 51

References 53

Vita 59

v

List of Figures

2.1 NOT gate . 6

2.2 Feynman Gate . 6

2.3 Toffoli Gate . 7

2.4 Peres Gate . 7

2.5 T gate implementation of Toffoli gate [1] 9

2.6 T gate implementation of Peres gate [1] 9

2.7 Adiabatic charging/discharging [2] . 10

2.8 A top-level algorithmic description of the encryption routine of PRESENT

[3] . 11

2.9 3D structure of Short Gated FinFET 12

2.10 Physical structure of Homo-junction Tunnel FET [4] 13

2.11 Physical structure of UTB SOI [5] . 14

3.1 Graphic symbol of quantum subtractor. S represents the quantum

subtraction operation . 17

3.2 Circuit design of N qubit quantum subtractor based on N qubit quan-

tum ripple carry adder . 17

3.3 Graphic symbols of (a) Adder-Subtractor (b) Conditional ADD oper-

ation circuit. AS represents add or subtract operation. CA represents

conditional add operation . 18

vi

3.4 Circuit design of N qubit quantum adder-subtractor based on N qubit

quantum ripple carry adder . 18

3.5 Circuit design of quantum conditional ADD operation circuit 19

3.6 Quantum non-restoring integer divider circuit design 20

3.7 Quantum non-restoring integer divider circuit design for first itera-

tion(core engine) . 22

3.8 Quantum circuit implementation of the Supplementary Restoring Phase 23

3.9 Quantum restoring integer divider circuit design for a single iteration 26

3.10 Quantum restoring integer divider circuit design(for n iterations) . . . 27

4.1 General structure of a SPGAL logic gate [6] 33

4.2 a) Schematic of SPGAL buffer b) Timing diagram of SPGAL buffer [6] 34

4.3 One round implementation of PRESENT-80 using SPGAL gates . . 35

4.4 4 phase clocking scheme to implement PRESENT-80 36

4.5 DPA attack results of PRESENT implemented using a) CMOS gates

b) SPGAL gates . 38

5.1 Schematic of FinSAL XOR gate [7] 42

5.2 Uniform current consumption of FinSAL XOR gate 42

5.3 Schematic of TunSAL XOR gate . 43

5.4 Uniform current consumption of TunSAL XOR gate 44

5.5 NED as a function of supply voltage 45

5.6 DPA attack results of PRESENT implemented using a) Conventional

CMOS gates b) UTB-SOI SPGAL gates 49

5.7 DPA attack results of PRESENT implemented using a) FinSAL gates

b) TunSAL gates . 50

vii

List of Tables

2.1 Definitions of Clifford +T set gates [8] 8

3.1 Proposed quantum non-restoring division algorithm 21

3.2 Resource Count of Proposed Non-Restoring Algorithm Division Circuit 24

3.3 Comparison of Resource Count Between Proposed and Existing Work 24

3.4 Proposed Restoring division algorithm for quantum circuits 26

3.5 Resource Count of Proposed Restoring Division Circuit 28

3.6 Comparison of Resource Count Between Proposed and Existing Work 28

4.1 Comparison of metrics between CMOS, SABL and SPGAL implemen-

tations of PRESENT-80 . 37

5.1 Simulated and calculated results of CMOS-SPGAL XOR gate and Fin-

SAL XOR gate compared with TunSAL XOR gate 45

5.2 Simulated and calculated results of SPGAL XOR and AND gates com-

pared with adiabatic UTB SOI XOR and AND gates 46

5.3 Comparison of metrics between CMOS-SPGAL, FinSAL and TunSAL

implementations of PRESENT-80 47

5.4 Comparison of metrics between CMOS, CMOS SPGAL and UTB-SOI

SPGAL implementations of PRESENT-80 48

viii

Chapter 1

Introduction

The Computer Industry has fueled the information revolution over the past 50 years.

Using personal computers, tablets and other smart-phones have become a part of

everyday life. The rapid increases in the semiconductor technology and the imple-

mentation of complex computer architectures have enabled the computer performance

to grow exponentially over the years. The 50-year reign of Moore’s Law, with its ex-

ponential increase in integrated circuit density, has created this computer revolution.

Moore’s Law states that the number of transistors on a chip will double roughly

every two years [9]. The chip industry has kept Moore’s prediction alive until the

last decade. However, due to limitations in operational performance, the progress

in computational performance has substantially slowed down in the last ten years.

The bounds on power dissipation of integrated circuits and increase in signal prop-

agation delays have imposed the limitations on computer performance. Increasing

the frequency to improve the performance of microprocessors had always been a trick

followed by engineers. However, operating at a higher frequency came at an expense

of increase in power. Operating frequency kept on increasing in the 1990’s until the

processors exceeded the 100W operating power level [10]. Exceeding the 100W power

limit, would cause the circuit to self destruct. Therefore, increasing the frequency to

1

enhance the performance is no longer viable. Hence there is an urgent need to design

new ways of computing [11].

Recognizing these problems, Institute of Electrical and Electronic Engineers (IEEE)

has come up with a creative initiative called ”Rebooting Computing”. The focus of

rebooting computing is on exploring fundamental new ways to compute. IEEE sug-

gests that the next decade might see a ”rebooting” of the entire computing industry,

by redesigning the whole computer hardware and software from top to bottom [11].

Rebooting will enable continued growth of computing capabilities, keeping the com-

puter revolution alive and well. Rebooting computing proposed spintronics, quantum

computing, adiabatic and reversible computing as some of the promising fundamental

new ways to compute. Hence, The focus of this thesis is to make significant contri-

butions to quantum computing and adiabatic computing - the two new computing

paradigms that come under the umbrella of rebooting computing.

Quantum computing is investigated for its promising application in high perfor-

mance computing [12] [13]. Quantum computing focuses on theoretical computation

systems that promise performance exponentially faster than any of today’s comput-

ers. Quantum computing appears to be promising due to its applications in number

theory, cryptography, search and scientific computation[12] [13]. There is a com-

pelling need to design resource-efficient quantum circuits for arithmetic operations.

Quantum circuits of arithmetic operations are needed to design quantum hardware

for implementing quantum algorithms such as Shor’s factoring algorithm, the dis-

crete log problem, class number algorithm and triangle finding algorithm [14] [15].

Dividers are one of the significant computational units in quantum arithmetic [16]

[14]. Integer division has applications in circuit designs of quantum algorithms, com-

putation of power series, trigonometric functions [16–18]. This thesis presents two

designs for quantum circuit integer division based on Clifford + T gates. The first

quantum circuit is based on non-restoring division algorithm and the second one is

2

based on restoring division algorithm. Both of the designs seem to provide significant

improvements when compared to the existing quantum division circuit.

The proliferation of IoT (Internet of Things) devices also has drawn interests to

rebooting computing. The quality of life of individuals and societies would improve

with the emergence of the Internet of Things (IoT). IoT has widespread applications

in the field of manufacturing, automotive, medical, communication, finance, etc. IoT

based devices such as Radio Frequency Identification (RFID) tags and smart cards

are used to store and communicate secret or personal data over the Internet [19].

IoT devices such as RFID and smart cards have a constraint on power consumption

and hardware resources. Further enhancements in IoT devices performance is only

possible with advancements in low-power designing. Adiabatic logic is one of the re-

booting computing paradigms that provides circuit design techniques used to design

low-power hardware. Adiabatic logic can operate energy efficiently at low frequen-

cies. Adiabatic logic design technique can also make the circuits resistant to powerful

side-channel attacks such as Differential Power Analysis (DPA) attacks. Lightweight

cryptography(LWC) is a subfield of cryptography which provides cryptographic so-

lutions for resource-constrained IoT devices [20]. The properties of adiabatic logic

can provide efficient solutions to the Lightweight Cryptographic circuits. Therefore,

exploration of adiabatic logic in implementing the low-power LWC circuits for IoT

devices is very essential. For this thesis work, we have explored the implementa-

tion of an adiabatic logic family - Symmetric Pass Gate Adiabatic Logic (SPGAL)

in Lightweight cryptographic algorithm PRESENT-80. This application is extended

to the emerging nanotechnology devices. SPGAL is implemented in FinFET, Tun-

nelFET and UTB-SOI technologies.

3

1.1 Contribution of Thesis

This thesis presents resource-efficient designs in Quantum Computing and in Adi-

abatic Logic

1. Quantum division circuit based on Restoring division algorithm

2. Quantum division circuit based on Non-Restoring division algorithm

3. LWC based PRESENT-80 implementation in Adiabatic logic

4. Implementation of Adiabatic PRESENT-80 in Emerging Nano-technologies Fin-

FET, TunnelFET and UTB-SOI.

1.2 Outline of Thesis

Chapter 2 provides a background on Quantum Computing and Adiabatic Logic.

Chapter 3 presents designs of Quantum division circuits for the Restoring and Non-

Restoring division Algorithms. Portions of Chapter 3 were previously published in

[21]. Chapter 4 presents the implementation of PRESENT-80 algorithm in Adiabatic

logic family called SPGAL. Chapter 5 presents the implementation of SPGAL in

emerging nano-technology devices called FinFET, TunnelFET and UTB-SOI. Chap-

ter 6 concludes the thesis. Portions of Chapters 4 and 5 were previously published in

[22] and [23] (© [2017] IEEE) and [24] © 2017 ACM.

4

Chapter 2

Background

This chapter will cover any background information needed to understand the suc-

cessive chapters. The main focus will be on the basics of Quantum Computing and

Adiabatic Logic.

2.1 Quantum Computing

Among the emerging computing paradigms, quantum computing appears to be promis-

ing due to its wide applications in emerging technologies such as quantum dot cellular

automata, cryptography, optical computing, etc. Quantum computation has seen vast

progress over the years, both theoretically and experimentally. Quantum computing

studies theoretical computation systems that makes direct use of quantum mechan-

ical phenomena to perform operations on data [25]. A quantum computer operates

by setting the qubits in a controlled initial state that represents the problem at hand

by manipulating those qubits with a fixed sequence of quantum logic gates [26]. A

quantum gate array is a set of these quantum logic gates with logical wires connect-

ing their inputs and outputs. This definition of quantum gate arrays gives rise to

completely reversible computation. Quantum circuits do not lose information during

computation and quantum computation can only be performed when the system con-

5

Figure 2.1: NOT gate

Figure 2.2: Feynman Gate

sists of quantum gates. Quantum circuits generate a unique output vector for each

input vector, that is, there is a one-to-one mapping between the input and output

vectors.

The quantum gates that are used for this thesis work are: NOT gate, Feynman

gate, Toffoli gate and Peres gates.

2.1.1 The NOT Gate

NOT gate is a 1× 1 gate. It is represented as shown in Fig. 2.1 [27].

2.1.2 The Feynman Gate

The Feynman gate also called CNOT gate is a 2 input and 2 output gate with the

mapping (A,B) to (P = A,Q = A⊕B). Here A and B are the inputs and P and Q

are the outputs. The representation of Feynman gate is shown in Fig. 2.2 [27].

2.1.3 The Toffoli Gate

The Toffoli Gate is 3×3 reversible gate represented as shown in Fig. 2.3. The Toffoli

Gate has a mapping of (A,B,C) to (P = A,Q = B,R = A.B ⊕ C) [27]. Here A, B

and C are the inputs and P , Q and R are the outputs.

6

Figure 2.3: Toffoli Gate

Figure 2.4: Peres Gate

2.1.4 The Peres Gate

The Peres Gate is 3× 3 reversible gate represented as shown in Fig. 2.4. The Peres

Gate has a mapping of (A,B,C) to (P = A,Q = A⊕B,R = A.B⊕C) [27]. Here A,

B and C are the inputs and P , Q and R are the outputs.

2.1.5 Clifford+T gates

Quantum computers of many qubits are extremely difficult to realize; thus, the num-

ber of qubits in the quantum circuits need to be minimized. The fabrication constraint

of realizing quantum circuits with a large number of qubits has the objective of op-

timizing the number of ancilla qubits in a quantum circuits. Designing a scalable

and reliable quantum computer is needed now as well as in the future; hence, fault-

tolerant quantum circuits are required. Fault tolerant implementation of quantum

circuits is gaining the attention of researchers because physical quantum computers

are prone to noise errors. Fault tolerant implementations of quantum gates and quan-

tum error correcting codes can be used to overcome the limits imposed by errors in

7

implementing quantum computing [28]. The most frequently used set of gates for this

fault tolerant computation is the ”Clifford+T” set of gates [29] [30]. Clifford+T gate

family is illustrated in [1]. The NOT gate, Hadamard gate, T gate, Phase gate and

CNOT gates constitute the Clifford+T set [8]. The definitions of these gates, their

symbols and their matrix representations are shown in table 2.1. Using these gates

will make the quantum circuits error-less.

Table 2.1: Definitions of Clifford +T set gates [8]

Type of Gate Symbol Matrix

NOT N

[
0 1
1 0

]
Hadamard H 1√

2

[
1 1
1 −1

]
T gate T

[
1 0
0 ei.

π
4

]
T gate Hermitian transpose T+

[
1 0
0 e−i.

π
4

]
Phase S

[
1 0
0 i

]
Phase gate Hermitian transpose S+

[
1 0
0 −i

]

CNOT C

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Clifford+T Implementation of Quantum Toffoli and Peres Gates

The Toffoli and Peres gates have to be implemented using the Clifford + T set. This

subsection shows the functionality of these gates and explains their implementation

in Clifford+T set.

Quantum Toffoli Gate:

The Toffoli gate, at times, can be vulnerable to errors. To avoid this, it can

be implemented in terms of Clifford +T set to make it fault tolerant. The T-gate

implementation of Toffoli is shown in Fig. 2.5 [1].

8

Figure 2.5: T gate implementation of Toffoli gate [1]

Figure 2.6: T gate implementation of Peres gate [1]

Peres Gate:

The T-gate implementation of Peres gate is shown in Fig. 2.6 [1].

2.1.6 Metrics Used for Evaluating Quantum Circuitry

In this thesis work, we shall be evaluating the quantum circuitry using the ancillaries,

T -count and T -depth. Ancillaries are the number of ancilla qubits that are supplied

to the circuit. T -count of a Clifford + T circuit is the total number of T and T+ gates

in the circuit. T -depth of a Clifford + T circuit is the number of levels in the circuit

that contain one or more T and T+ gates.[8]. The T-count of Toffoli gate shown in

Fig. 2.5 is 7. T-depth of Toffoli gate is 4 [1]. The T-count of Peres gate shown in

Fig. 2.6 is 7. T-depth of Peres gate is 4.

2.2 Adiabatic Computing

Adiabatic logic [31], [2] is one of the circuit design techniques used to design low-

power and side channel attack-resistant hardware. Adiabatic logic can operate energy-

efficiently at low frequencies, therefore it is one of the best candidate to implement

low-power Lightweight Cryptography (LWC) circuits in IoT devices working at low

9

F

F

GND

Power
supply

CL1

C
L2

Inputs

Charging
Discharging to
power supply

GND

GNDV
out

Vout

Figure 2.7: Adiabatic charging/discharging [2]

frequencies. A survey on side channel attack countermeasures for LWC has concluded

that adiabatic logic is one of the promising techniques to design low-power and DPA-

resistant hardware [32] [33].

Adiabatic logic uses power clocks to efficiently recycle the charge stored in the load

capacitor [31]. Because of the recycling of the charge, adiabatic logic has reduced dy-

namic switching energy loss. Fig. 2.7 shows the energy recovery charging/discharging

of the load capacitors. The energy dissipated in a energy recovery circuit when the

charge is supplied through a constant current source is shown by

Ediss =
RC

T
CV 2

dd (2.1)

Where T is the charging/discharging time of the capacitor, C is the load capacitor

and Vdd is the full swing of the power clock. If T >> 2RC (time constant), the energy

dissipated by the energy recovery circuit is less than the conventional CMOS circuit.

Adiabatic logic uses a time-varying voltage source and its slopes of transition are

slowed down. This reduces the energy dissipation of each transition. In short the idea

of adiabatic logic is to use a trapezoidal power-clock voltage rather than fixed supply

voltage. As a consequence the power consumption of a circuit is reduced while at the

same time its resistance against side-channel attacks is greatly enhanced. Low-power

10

Figure 2.8: A top-level algorithmic description of the encryption routine of PRESENT
[3]

adiabatic circuits could be especially valuable to implement in IoT devices such as

RFID. To address the existing challenges in designing side channel attack counter-

measure circuits for IoT devices, we considered the impact of adiabatic computing on

the 64-bit input, 80-bit key based PRESENT algorithm.

2.2.1 PRESENT-80 Lightweight Algorithm

PRESENT [34] [3] is a light weight cipher which is designed for ultra constrained

IoT devices such as RFID tags. PRESENT has obtained the ISO/IEC standard for

lightweight cryptography. PRESENT can be employed in IoT circuits with minimal

resources (1000 to 2000 Gate Equivalents). The PRESENT-80 algorithm is based on

using S-Box as the main non-linear function. The block length of PRESENT is 64

bits and the length of key is 80 bits. Fig. 2.8 shows the algorithmic description of

encryption routine for PRESENT-80 algorithm.

It can be seen from the Fig. 2.8 that algorithm is comprised of 31 rounds. Each

of the 31 rounds is structured as follows:

AddRoundKey : The 64-bit plain-text is XORed with the 64-bit round key.

S-Box Layer : 16 4 × 4 identical S-Boxes are used in parallel as a non-linear

substitution layer. All of the 16 S-Boxes comprise the S-Box layer.

P-Layer : After the S-Box layer, a permutation operation is performed to provide

11

Figure 2.9: 3D structure of Short Gated FinFET

diffusion.

At the end of 31 rounds the final cipher text is produced at the output of ad-

dRoundKey. A key scheduler is used in the algorithm to provide the 64-bit round

key from the 80-bit key.

2.2.2 FinFET

FinFET is a three dimensional structure that has a thin silicon body perpendicular

to the plane of the wafer [35] [36]. The channel of the FinFET is wrapped by the gate

in all three directions. FinFET provides strong gate control over the channels. This

strong gate control over the channels reduces the short-channel effects, threshold

current, and gate-dielectric leakage current when compared with MOSFETs [35].

Better gate control in FinFETs over MOSFETs results in higher on-state current,

lower leakage, and faster switching speed.

FinFET devices come with two different modes of operation. In the Shorted

Gate (SG) mode of FinFET, the back gate and front gate of the FinFET are tied

together. FinFET acts as a three terminal device in SG mode. In the Independent

Gate (IG) mode of FinFET, the front gate and back gate are connected to two different

inputs. The SG mode is considered as a substitution for bulk CMOS and it has better

12

S

G

D

G

P + Si Int.Si N + Si

Figure 2.10: Physical structure of Homo-junction Tunnel FET [4]

performance as compared to the IG mode of FinFETs [36]. So, in this work, the SG

mode FinFET implementation of Adiabatic logic is investigated. Fig. 2.9 shows the

three dimensional structure of the SG mode FinFET device.

2.2.3 TunnelFET(TFET)

TFETs are emerging transistors that are considered to be a choice for low-power dig-

ital circuits. TFETs can have a subthreshold swing (SS) below 60 mV/dec, enabling

a high on-current to off-current ratio. Lower SS enables TFET to have very low-

leakage with higher performance than CMOS at lower voltages [37]. Among different

types of proposed TFETs, III-V TFETs appear more promising due to their higher

conduction current. In this work, we have used InAs homo-junction tunneling FETs

for our simulations. Fig. 2.10 shows the physical structure of homo-junction Tunnel

FET [4]. The advantage of TFET is it can operate at very low supply voltages.

2.2.4 Ultra-Thin-Body Silicon-On-Insulator (UTB-SOI)

Ultra-Thin-Body Silicon-On-Insulator (UTB-SOI) MOSFETs are considered to be a

choice for low-power and low-leakage digital circuits [5]. The ultra-thin-body (UTB)

structure of UTB-SOI (Fig. 2.11) eliminates the leakage paths between source and

drain which provide a more evolutionary alternative to the vertical or surround-gate

MOSFET. The thinner body in UTB-SOI results in lower leakage current. UTB-

SOI device has the leakage current reduced by 10X for every nano meter drop in

13

Source UTB Drain

Gate

SiO2

Si

Figure 2.11: Physical structure of UTB SOI [5]

thickness of silicon [38]. Further, UTB-SOI can also support back-gating to change the

threshold voltage, thereby further minimizing the leakage current. These advantages

of UTB-SOI can be used to design cryptography circuits which have very low leakage

power. So, in this work, we have exploited the useful properties of UTB-SOI in

designing adiabatic logic family for IoT applications.

14

Chapter 3

Quantum Circuit Designs of

Integer Division Optimizing

T-count and T-depth

Quantum circuits of arithmetic operations are needed to design quantum hardware for

implementing quantum algorithms such as Shor’s factoring algorithm, the discrete log

problem, class number algorithm and triangle finding algorithm [14] [15]. Dividers are

one of the major computational units in quantum arithmetic and have applications

in circuit designs of quantum algorithms [16] [14].

Quantum circuits that are based on Clifford+T gates can be made fault toler-

ant in nature permitting reliable and scalable quantum computation [29] [30]. The

Clifford+T gate family is illustrated in [1]. The T gate is very costly to implement

compared to the Clifford gates making reducing T-count and T-depth important op-

timization goals [30] [39]. Existing quantum hardware is limited in terms of number

of available qubits [40]. Thus, ancillary qubits are a circuit overhead that needs to

be kept to a minimum.

In the existing literature, there are a handful of integer divider designs based on

15

reversible gates targeting mostly reversible computing [41] [42] [43]. Among these

designs we found only [44] to be suitable for quantum computing. The quantum

integer division circuit in [44] implements the restoring division algorithm and uses

the quantum Fourier transform to perform the division operation. However, the design

in [44] is not optimized for T-depth and T-count. The quantum division circuit in

[44] uses controlled phase shift gates. It is known that the controlled phase gates

required by the design in [44] can only be approximated by Clifford+T gates [45].

The Clifford+T based approximations of the controlled phase gates have a high T

gate cost [45]. Further, the T gate cost increases as the accuracy of the controlled

phase gate approximation is improved [45]. Thus, implementing all the controlled

phase gates required by the design in [44] with a high degree of accuracy will result

in a design with high T-count and T-depth [45].

This chapter presents two designs for quantum circuit integer division based on

Clifford+T gates. The first quantum circuit is based on the non-restoring division al-

gorithm and the second quantum circuit is based on the restoring division algorithm.

Both proposed quantum integer division circuits are based on (i) a new quantum con-

ditional ADD operation circuit, (ii) a new quantum adder-subtractor and (iii) a new

quantum subtraction circuit. Both the proposed restoring quantum integer division

circuit and proposed non-restoring quantum integer division circuit are compared and

shown to be superior to existing work in terms of T-depth and T-count.

3.1 Design of Quantum Circuits Used In Proposed

Integer Division Circuits

The quantum circuits that are required for developing the proposed non-restoring

and restoring integer division circuits are: (i) controlled adder-subtractor, (ii) quan-

tum subtractor and (iii) conditional ADD operation circuit. The quantum circuit

16

designs of the quantum adder-subtractor, quantum subtractor and the conditional

ADD operation circuit are discussed in the following sections.

3.1.1 Design of Quantum Subtractor

|B〉 S |S〉
|A〉 • |A〉

Figure 3.1: Graphic symbol of quantum subtractor. S represents the quantum sub-
traction operation

b
0

a
0

b
1

a
n-2

a
1

b
n-1

a
n-1

s
0

s
1

a
0

a
1

s
n-1

a
n-1

a
n-2

N qubit

Ripple Carry

Adder

Figure 3.2: Circuit design of N qubit quantum subtractor based on N qubit quantum
ripple carry adder

Fig.3.1 shows the symbol of the quantum subtractor circuit. The subtractor circuit

takes two n qubit inputs |A〉 and |B〉. The input a is regenerated at the output.

The n-qubit output |S〉 has the result of the subtraction of b and a. Fig.3.2 shows

the circuit design of N qubit subtractor based on N qubit quantum ripple carry

adder. As shown in Fig.3.2, a quantum ripple carry adder is required to develop

a quantum subtractor circuit. We use the quantum ripple carry adder proposed in

[46] for developing the quantum subtractor circuit. To perform subtraction, the input

qubits |B〉 are complemented before being applied to the quantum ripple carry adder.

Then, the ripple carry adder calculates b̄ + a. At the end of computation, the input

17

qubits |B〉 are complemented again. Thus, the quantum subtractor calculates (b̄+ a)

which is equivalent to b− a.

3.1.2 Design of Quantum Adder-Subtractor

|B〉 AS |P 〉
ctrl • ctrl
|A〉 • |A〉

(a)

|B〉 CA |P 〉
|A〉 • |A〉

Ctrl • Ctrl

(b)

Figure 3.3: Graphic symbols of (a) Adder-Subtractor (b) Conditional ADD operation
circuit. AS represents add or subtract operation. CA represents conditional add
operation

b
0

a
0

b
1

a
n-2

a
1

b
n-1

a
n-1

s
0

s
1

a
0

a
1

s
n-1

a
n-1

a
n-2

N qubits

Ripple Carry

Adder

ctrl ctrl

Figure 3.4: Circuit design of N qubit quantum adder-subtractor based on N qubit
quantum ripple carry adder

Fig. 3.3(a) shows the graphic symbol of the quantum controlled addition or sub-

traction circuit. The quantum adder-subtractor circuit operates as follows: (i) when

the input labeled ctrl is high (refer Fig. 3.3(a)), the circuit output is |P 〉 = |B − A〉,

(ii) when the ctrl input is low, the circuit output is |P 〉 = |B + A〉.

The complete working circuit of the quantum adder-subtractor circuit is shown in

Fig. 3.4. The quantum adder-subtractor circuit can be developed from an existing

quantum ripple carry adder circuits such as those in [46] or [47]. We used the ripple

carry adder in [46]. The quantum adder-subtractor calculates (b̄+ a) when ctrl is

18

high. The expression (b̄+ a) is equivalent to b− a.

3.1.3 Design of Quantum Conditional ADD Operation Cir-

cuit

ctrl • • • • ctrl

b0 • • s0

a0 • • • a0

b1 • • s1

a1 • • • • • • • a1

b2 • • s2

a2 • • • • • • • a2

b3 s3

a3 • • • a3

Figure 3.5: Circuit design of quantum conditional ADD operation circuit

Fig. 3.3(b) shows the graphic symbol of the quantum conditional ADD operation

circuit. The quantum conditional ADD operation circuit operates as follows: (i) when

the input labeled ctrl is high (refer Fig. 3.3(b)), the circuit output is |P 〉 = |B + A〉,

(ii) when the ctrl input is low, the circuit output is |P 〉 = |B〉.

The complete working circuit of quantum conditional ADD operation circuit is

shown in Fig.3.5 for 4 qubit operands. The quantum conditional ADD circuit uses a

modified version of the ripple carry adder proposed in [46]. We were able to remove

the qubit that performs the carry out for the adder in [46] as we do not need the

carry out qubit in the proposed integer dividers. The addition architecture in [46]

uses Peres gates to perform the addition. The Peres gate can be decomposed into

a Feynman and a Toffoli gate. By replacing the Feynman gate with a Toffoli gate,

we can use the control line (ctrl) to determine whether the conditional ADD circuit

will perform addition or no operation. Although, Fig.3.5 is just shown for 4 qubit

operands, it can easily be extended to any operand size.

19

3.2 Design of Non-Restoring Quantum Integer Di-

vision Circuit

The proposed non-restoring division algorithm for quantum circuits is shown in Table

3.1. In Table 3.1, the inputs to be given are: (a) (|Q[0:n−1]〉, n qubit register in which

the dividend is loaded; (b) |D[0:n−1]〉, n qubit register in which the divisor is loaded;

(c) |R[0:n−1]〉, n qubit remainder register which is initiated to 0 at the start. At the

end of computation, we get the quotient at |Q[0:n−1]〉 and remainder at |R[0:n−1]〉. The

divisor is retained at the output. Also, n+ 1 garbage qubits are produced.

The quantum circuits that are required for developing the hardware implementa-

tion of the proposed non-restoring division algorithm are: (i) Leftshift operation cir-

cuit, (ii) controlled adder-subtractor, and (iii) conditional ADD operation circuit. We

observed that we can eliminate the LeftShift operation circuit by combining |R[0:n−2]〉

and |Q[n−1]〉 to form an n qubit register there by saving the quantum resources.

The methodology to design our proposed quantum non-restoring integer division

circuit is developed from the non-restoring division algorithm shown in Table 3.1.

The Steps of the methodology are presented below.

3.2.1 Design Methodology for Quantum Non-Restoring In-

teger Division Circuit

Core engine iterated n times Supplementary circuit

|Q〉

I1 I2

· · ·· · ·· · ·· · ·

In

|Q〉∣∣R[0:n−2]
〉

· · ·· · ·· · ·· · ·
CA

∣∣R[0:n−2]
〉∣∣R[n−1]

〉
· · ·· · ·· · ·· · · •

∣∣R[n−1]
〉

|D〉 · · ·· · ·· · ·· · · • |D〉
|0〉 • Garbage

Figure 3.6: Quantum non-restoring integer divider circuit design

20

Table 3.1: Proposed quantum non-restoring division algorithm

Algorithm 1: Proposed quantum non-restoring division algorithm

function Non−Restore (|Qn〉, |Rn〉, |Dn〉)
for i = 0 to n− 1 do

/* Start Core Engine Phase */
if(|R[0:n−1]〉 > 0) then

(|Q[1:n−1]〉, |R[0:n−1]〉) = LEFTSHIFT (|Q[0:n−1]〉, |R[0:n−1]〉);
|R[0:n−1]〉 = |R[0:n−1]〉+ |D[0:n−1]〉;

else
(|Q[1:n−1]〉, |R[0:n−1]〉) = LEFTSHIFT (|Q[0:n−1]〉, |R[0:n−1]〉);
|R[0:n−1]〉 = |R[0:n−1]〉 − |D[0:n−1]〉;

end if ;
if(|R[0:n−1]〉 > 0) then
|Q[0]〉 = 1;

else
|Q[0]〉 = 0;

end if ;
/* End Core Engine Phase */

end for;
//after n iterations//

/* Start Supplementary Restoring Phase */
if(|R[0:n−1]〉 > 0) then
|R[0:n−1]〉 = |R[0:n−1]〉;

else
|R[0:n−1]〉 = |R[0:n−1]〉+ |D[0:n−1]〉;

end if ;
/* End Supplementary Restoring Phase */

return R;
end function

From Table 3.1, we can see that the algorithm is divided into two phases. (i)

Core Engine Phase and (ii) Supplementary Restoring Phase. The Core Engine Phase

is iterated n times. Supplementary Restoring Phase takes place after the end of n

iterations of the Core Engine Phase. The Supplementary Restoring Phase is repeated

once. A quantum circuit is developed for each of these phases. The final circuit

that performs the integer division using the non-restoring integer division algorithm

is shown in Fig. 3.6. In Fig. 3.6, I1 represents the first iteration of the Core Engine

21

Phase, I2 represents the second iteration and In represents the final iteration.

Core Engine Phase

1
∣∣Q[0]

〉∣∣Q[0:n−2]
〉 ∣∣Q[1:n−1]

〉∣∣Q[n−1]
〉

AS
•

∣∣R[0]

〉∣∣R[0:n−2]
〉 ∣∣R[1:n−1]

〉∣∣R[n−1]
〉

• Garbage∣∣D[0:n−1]
〉

•
∣∣D[0:n−1]

〉
Figure 3.7: Quantum non-restoring integer divider circuit design for first itera-
tion(core engine)

Fig. 3.7 represents the quantum circuit that does the operations that are marked

under the Core Engine Phase in the algorithm in Table 3.1. We now elaborate on

how the information moves in Fig. 3.7 .

� Step 1. |D[0:n−1]〉 holds the divisor, |R[0:n−1]〉 is initialised to zero, and |Q[0:n−1]〉

holds the dividend.

� Step 2. We consider, |Q[n−1]〉 and |R[0:n−2]〉, as one combined register.

� Step 3. The combined register of Step 2 and |D[0:n−1]〉 are applied as two n qubits

inputs to the quantum adder-subtractor circuit. In Fig. 3.7, AS represents the

adder-subtractor circuit. At the end of computation, register |D[0:n−1]〉 emerges

unchanged and the combined register now holds the sum or difference of the

combined register and D.

� Step 4. Qubit |R[n−1]〉 is complemented and applied as the ctrl qubit to quantum

adder-subtractor circuit.

� Step 5. The ctrl qubit is left out as garbage.

22

� Step 6. An ancillary qubit set to 1 and qubit |Q[n−1]〉 are applied to a CNOT

gate. |Q[n−1]〉 is the control qubit and 1 is the target qubit.

The Steps from 1 to 6 constitute the operations of the Core Engine Phase. From

the algorithm in Table 3.1, it can be seen that Steps 2 to 6 of the Core Engine Phase

are iterated n times. So, the circuit in Fig. 3.7 that represents the Core Engine Phase

is also iterated n times (see Fig. 3.6). The outputs of the first iteration are given as

inputs to the second iteration and so on for all n iterations.

Supplementary Restoring Phase

∣∣R[0:n−2]
〉

CA

∣∣R[0:n−2]
〉∣∣R[n−1]

〉
•

∣∣R[n−1]
〉∣∣D[0:n−1]

〉
•

∣∣D[0:n−1]
〉

0 • Garbage

Figure 3.8: Quantum circuit implementation of the Supplementary Restoring Phase

After the end of n iterations of the Core Engine Phase, |R[0:n−1]〉 might be neg-

ative at the end of n iterations. In that case, it has to be restored by adding the

divisor. This restoration of the negative remainder is carried out by the Supplemen-

tary Restoring Phase quantum circuit shown in Fig. 3.8. The quantum circuit shown

in Fig. 3.8 is the quantum implementation of the Supplementary Restoring Phase

marked in the algorithm in Table 3.1. We now elaborate on how the information

moves in the supplementary circuit.

� Step 1. The qubit |R[n−1]〉 and an ancillary qubit set to 0 are applied as inputs

to a CNOT gate. |R[n−1]〉 is the control qubit and the ancillary qubit is the

target qubit. The target now holds the value of |R[n−1]〉.

� Step 2. The ancillary qubit is used as ctrl qubit to the conditional ADD oper-

ation quantum circuit.

23

� Step 3. Registers |R[0:n−1]〉 and |D[0:n−1]〉 are applied as inputs to conditional

ADD operation quantum circuit. In Fig. 3.8, CA represents the conditional

ADD operation circuit. |D[0:n−1]〉 emerges unchanged and |R[0:n−1]〉 will contain

either the sum or emerge unchanged.

� Step 4. The control qubit |R[0:n−1]〉 is left out as garbage.

� Step 5. After Step 4, we have the Quotient in |Q[0:n−1]〉, and the remainder in

|R[0:n−1]〉. The divisor |D[0:n−1]〉 is unchanged.

3.2.2 Cost Comparison With Existing Work

Table 3.2: Resource Count of Proposed Non-Restoring Algorithm Division Circuit

Designs Adder- conditional ADD Non-Restoring
Subtractor operation circuit Divider

T-count (14n− 14) (21n− 14) 14n2 + 21n− 28
T-depth 8 16 8 ∗ n+ 7
Ancilla qubits 0 0 2 ∗ n+ 1

Table 3.3: Comparison of Resource Count Between Proposed and Existing Work

1 Proposed % impr.
w.r.t. 1

T-count ≈ 400n2 14n2 + 21n− 28 ≈ 96%
T-depth 130 ∗ n 8 ∗ n+ 7 ≈ 93%
Ancilla qubits 2n 2 ∗ n+ 1 -

1 is the work in [44]

The resources used in the design of the proposed quantum non-restoring integer

division circuit is presented in Table 3.2. As shown in Table 3.2, the proposed design

will require 2 ∗n+ 1 ancillary qubits. n ancillary qubits are used during initialization

of remainder register and the remaining n+1 are transformed to garbage output. The

24

T-count required by the design is given by summing the cost of adder-subtractor and

conditional ADD operation quantum circuit at each stage. T-count of the proposed

quantum non-restoring integer division circuit is 14n2 + 21n − 28. The T-depth

required by the design is given as 8 ∗ n+ 7.

Comparison of resource costs between the proposed quantum non-restoring integer

division circuit and the existing work is shown in Table 3.3. To calculate the T-count

and T-depth for [44] we use T-count and T-depth values from approximate phase gate

implementations reported in [45]. The implementations with the poorest accuracy

are used. This is because the T gate cost increases significantly as a function of

accuracy. Table 3.3 shows that the proposed quantum circuit of integer division has

an improvement ratio of 93% in terms of T-depth, and 96% in terms of T-count.

3.3 Design of Restoring Quantum Integer Division

Circuit

The proposed restoring division algorithm is shown in Table 3.4. In Table 3.4, the

inputs to be given are: (a) (|Q[0:n−1]〉, n qubit register in which the dividend is loaded

; (b) |D[0:n−1]〉, n qubit register in which the divisor is loaded; (c) |R[0:n−1]〉, n qubit

remainder register which is initiated to 0 at the start. The algorithm repeats n times.

At the end of n iterations, we get the quotient at (|Q[0:n−1]〉 and the remainder at

|R[0:n−1]〉. The divisor is retained at the output.

The quantum circuits that are required for developing the hardware implementa-

tion of the proposed restoring division algorithm are (i) Leftshift operation circuit,

(ii) n qubit quantum subtractor and (iii) Conditional ADD operation circuit. We

observed that we can eliminate the LeftShift operation circuit by combining |R[0:n−2]〉

and (|Q[n−1]〉 to form an n qubit register which is actually equal to performing an

left shift operation. By combining the qubits in this way, we do not have to use a

25

separate left shift operation circuit.

The methodology to design our proposed quantum restoring integer division circuit

is developed from the restoring division algorithm shown in Table 3.4. The Steps of

the methodology are presented below.

Table 3.4: Proposed Restoring division algorithm for quantum circuits

Algorithm 1 : Proposed Restoring division algorithm

function Restore (|Qn〉, |Rn〉, |Dn〉)
for i = 0 to n− 1 do

(|Q[1:n−1]〉, |R[0:n−1]〉) = LEFTSHIFT (|Q[0:n−1]〉, |R[0:n−1]〉);
(|R−D[0:n−1]〉 = |R[0:n−1]〉 − |D[0:n−1]〉;

if(|R[0:n−1]〉 > 0) then

|Q[0]〉 = 1

|R[0:n−1]〉 = |R−D[0:n−1]〉;
else
|Q[0]〉 = 0;

|R[0:n−1]〉 = |R−D[0:n−1]〉+ |D[0:n−1]〉;
end if ;

end for;
//repeat for n iterations//
return R;
end function

3.3.1 Design Methodology for Quantum Restoring Integer

Division Circuit

∣∣Q[0:n−2]
〉 ∣∣Q[1:n−1]

〉∣∣Q[n−1]
〉

S
•

CA

∣∣R[0]

〉∣∣R[0:n−2]
〉 ∣∣R[1:n−1]

〉∣∣R[n−1]
〉

•
∣∣Q1[0]

〉∣∣D[0:n−1]
〉

• •
∣∣D[0:n−1]

〉
Figure 3.9: Quantum restoring integer divider circuit design for a single iteration

26

|Q〉

I1 I2

· · ·· · ·· · ·

In

|Qn〉
|R〉 · · ·· · ·· · · |Rn〉
|D〉 · · ·· · ·· · · |Dn〉

Figure 3.10: Quantum restoring integer divider circuit design(for n iterations)

Fig.3.9 shows the quantum circuit generated for the quantum restoring division

circuit after 1 iteration of our design methodology. The Steps of the proposed method-

ology are repeated n times. Hence, the circuit in Fig. 3.9 is also iterated n times.

This is done by using the outputs of the first iteration as inputs for the next iteration.

Fig. 3.10 shows the complete quantum restoring division circuit where I1 represents

the first iteration, I2 represents second iteration and In represents the final iteration.

We now elaborate on how information moves through the circuit shown in Fig. 3.9.

� Step 1. The |D[0:n−1]〉 holds the divisor, |R[0:n−1]〉 is initialised to zero, and

|Q[0:n−1]〉 holds the dividend.

� Step 2. We consider, |Q[n−1]〉 and |R[0:n−2]〉, as one combined register.

� Step 3. The combined register mentioned above in Step 2, and |D[0:n−1]〉 are

given as inputs to the quantum subtractor circuit. Register |D[0:n−1]〉 emerges

unchanged. The combined register now holds the result of subtraction of R and

D registers. Let us call this result as |R−D[0:n−1]〉.

� Step 4. Qubits |R − D[n−1]〉 and |R[n−1]〉 are supplied to a CNOT gate. |R −

D[n−1]〉 is the control qubit and the |R[n−1]〉 is the target qubit. The target now

holds the value of |R − D[n−1]〉 because |R[n−1]〉 is always zero throughout the

computation.

� Step 5. Qubit |R[n−1]〉 is the control qubit to the conditional ADD operation

circuit.

27

� Step 6. Registers |R−D[0:n−1]〉 and |D[0:n−1]〉 are the two n qubit inputs to the

conditional ADD operation circuit. Register |D[0:n−1]〉 emerges unchanged. The

combined register will contain either the sum or emerge unchanged..

� Step 7. |R[n−1]〉 is complemented.

Steps 2 through 7 are repeated n times. At the end of n iterations, the Quotient

will be in |Q[0:n−1]〉, the remainder in |R[0:n−1]〉 and the divisor emerges unchanged.

3.3.2 Cost Comparison With Existing Work

Table 3.5: Resource Count of Proposed Restoring Division Circuit

Subtractor conditional ADD Restoring
operation circuit Divider

T-count (14n− 14) (21n− 14) 35n2 − 28n
T-depth 8 16 18 ∗ n
Ancilla qubits 0 0 n

Table 3.6: Comparison of Resource Count Between Proposed and Existing Work

1 Proposed % impr.
w.r.t. 1

T-count ≈ 400n2 35n2 − 28n ≈ 91%
T-depth 130 ∗ n 18 ∗ n 86.15%
Ancilla qubits 2n n 50%

1 is the work in [44]

The resources used in the design of the proposed quantum restoring integer divi-

sion circuit is presented in Table 3.5. As shown in Table 3.5, the proposed design will

require n ancillary qubits during initialization of the remainder register. The T-count

required by the design is given by summing the cost of subtractor and conditional

ADD operation quantum circuit at each stage. T-count of the proposed quantum

28

restoring integer division circuit is 35n2 − 28n. The T-depth required by the design

is given as 18 ∗ n.

Comparison of resource estimation between proposed quantum circuit of integer

division and the existing quantum circuit of integer division in [44] is shown in Table

3.6. To calculate the T-count and T-depth for [44] we use T-count and T-depth from

approximate phase gate implementations reported in [45]. The implementations with

the poorest accuracy were used. This is because the T-count increases significantly

as a function of accuracy. Table 3.6 showed that the proposed quantum circuit of

integer division has an improvement ratio of 86.15% in terms of T-depth, and 91% in

terms of T-count.

3.4 Conclusion

In this chapter, we have presented two designs for quantum circuit integer division

based on Clifford+T gates. The first quantum circuit presented is based on the non-

restoring division algorithm and the second quantum circuit presented is based on

the restoring division algorithm. The design of sub-components used in the proposed

quantum integer division circuits such as the quantum conditional ADD operation cir-

cuit, quantum adder-subtractor and quantum subtraction circuit are also shown. The

proposed quantum integer division circuits are shown to be superior to existing de-

signs in terms of T-depth and T-count. We conclude that the proposed non-restoring

division circuit can be integrated in a larger quantum data path system design where

T-count and T-depth are of primary concern. We also conclude that the proposed

restoring division circuit can be integrated in a larger quantum data path system

design to implement quantum algorithms where qubits are limited and T-count and

T-depth must be kept to a minimum.

Existing quantum circuit implementations do not include the additional qubit

29

transformations that account for the available instruction set architecture, the hard-

ware connectivity and layout constraints of a particular technology [48, 49]. For ex-

ample, in trapped ion quantum computers (such as those presented in [50] and [51])

the ions are stored as a linear chain. Thus, interactions between qubits is restricted

to at most two neighbors. Such constraints may significantly impact how quantum

circuits are implemented in practice. The proposed quantum integer division circuit

designs do not take into account technology constraints. However, the T-count and

T-depth cost savings of our quantum integer division circuits are unaffected by these

hardware considerations. To efficiently implement quantum algorithms, new designs

need to be investigated for integer division that minimize the overhead imposed by

technology constraints.

30

Chapter 4

Adiabatic Computing Based

Low-Power and DPA-Resistant

Lightweight Cryptography

Lightweight cryptography(LWC) is a subfield of cryptography that provides cryp-

tographic solutions for resource-constrained IoT devices [20]. However, the secret

or personal information stored and communicated through the LWC devices can be

obtained through side-channel attacks [52]. Among the various side-channel attacks

reported in the literature, the Differential Power Analysis (DPA) attack is considered

to be one of the powerful side-channel attacks to reveal the secret information from

the secure devices[53]. DPA attack reveals the secret key by correlating the instan-

taneous power consumed by the cryptographic device with the input data and the

secret key. To guess the secret key, DPA uses statistical methods and evaluate the

power traces with uniform plain texts. DPA requires no knowledge about the hard-

ware implementation of the cipher and can be applied to any black box hardware

implementation. These features of DPA makes it one of the powerful side channel

attacks.

31

Various hardware related DPA countermeasures have been developed over the

years, but none of these countermeasures are suitable to implement in resource con-

strained IoT devices [32] [54]. For example, a recent DPA-resistant implementation of

the lightweight cryptography algorithm called PRESENT based on widely used DPA-

resistant Wave Dynamic Differential Logic (WDDL) consumes at least 3X times more

power than its CMOS based implementation [55].

Adiabatic logic [31] is one of the circuit design techniques used to design low-

power and DPA-resistant hardware. Adiabatic logic can operate energy-efficiently at

low frequencies, therefore it is one of the best candidate to implement low-power LWC

circuits in IoT devices working at low frequencies. A survey on DPA countermeasures

for LWC has concluded that adiabatic logic is one of the promising techniques to

design low-power and DPA-resistant hardware [32] [33].

To establish the utility of adiabatic logic as a low-power and DPA-resistant solu-

tion for LWC, this thesis work investigates the Symmetric Pass Gate Adiabatic Logic

(SPGAL) based implementation of the PRESENT-80 algorithm.

4.1 Symmetric Pass Gate Adiabatic Logic (SPGAL)

Symmetric Pass Gate Adiabatic Logic (SPGAL) was recently proposed as a low-power

and DPA-resistant solution for LWC based IoT devices [6]. Fig. 4.1 shows the general

structure of SPGAL logic gates. F and F̄ in Fig. 4.1 represent the logic function and

its compliment in the SPGAL gates. In SPGAL gates, F and F̄ are designed in such

a way that the load capacitors are balanced. Transistors M1 and M2 are used to

recover the charge from the load capacitances while M3 and M4 are used to discharge

the redundant charge present in the load capacitances before the evaluation of the

next cycle of inputs.

Fig. 4.2 (a) shows the schematic of the SPGAL buffer. M3 and M4 form the

32

M1 M2

C
LDISCHARGE

VCLK

C
L

OUT

F F

OUT

In In

In In

M3 M4

GND

Figure 4.1: General structure of a SPGAL logic gate [6]

logic functions. M1 and M2 are used to recover the charge from the load capacitors.

M5 and M6 are used to reset the outputs before the evaluation of the next cycle.

Fig. 4.2 (b) shows the timing diagram of the SPGAL buffer. At T1, the inputs are

passed to the SPGAL buffer. At T2, VCLK rises from GND to Vdd and the output

load capacitors are charged through M3 or M4. At T3, VCLK will be at Vdd and

the inputs will slowly fall back to ground. At T4, the charges present in the load

capacitors is recovered back to VCLK through M1 or M2. However, Vtp charge in

the load capacitors cannot be recovered back to VCLK which leads to information

leakage. In the SPGAL design, the redundant charge is discharged to ground by using

the discharge signal. Power clocks required for this circuit is generated by a dedicated

circuit. Examples of such adiabatic clock generation circuitry are explained in [56].

To implement complex circuit designs in SPGAL, four trapezoidal clocks with each

having a 90◦ phase shift with respect to its advance clock should be employed. Sym-

metric designs and resetting the outputs before the evaluation of next outputs make

SPGAL gates more secure than the existing countermeasures against DPA attacks.

Further, the SPGAL family is energy-efficient as compared to the existing adiabatic

logic based DPA countermeasure circuits due to the reduction of non-adiabatic loss.

33

More details on this Symmetric Pass Gate Adiabatic Logic (SPGAL) can be found

in [6]. SPFAL is one of the other secure adiabatic logic families [57].

M1 M2

C
L

A

DISCHARGE

VCLK

AM3 M4

M5 M6

C
L

OUT OUT

GND

(a) (b)

T1 T2 T3 T4 T5

VCLK
GND

Vtp

GND

A

A
GND

V tn

GND

DISCHARGE

 OUT
 (SPGAL)

Output
resetted

Figure 4.2: a) Schematic of SPGAL buffer b) Timing diagram of SPGAL buffer [6]

4.2 Implementation of PRESENT-80 Using Adia-

batic Logic

Due to the higher power consumption and large area, CMOS-based DPA counter-

measure circuits such as Sense Amplifier Based Logic (SABL) [58] are not suitable to

implement in LWC devices. To protect the IoT devices against DPA attacks, an algo-

rithmic countermeasure against DPA attack has been proposed in [59]. However, the

countermeasure against DPA provided in [59] is not applicable for all LWC algorithms.

As such, low-power adiabatic circuits could be especially valuable to implement in

IoT devices such as RFID. To address the challenges in designing DPA countermea-

sure circuits for IoT devices, we considered the impact of adiabatic computing on the

64-bit input, 80-bit key based PRESENT algorithm.

Side-channel attacks based on DPA can be mounted on PRESENT to extract

the keys. The existing countermeasures for DPA attacks are not suitable for circuits

34

working under energy constraints; for example, WDDL based PRESENT consumed

3X more power than its CMOS implementation [55].

4.2.1 SPGAL Implementation of PRESENT-80

In this section, we discuss the implementation of the PRESENT-80 algorithm using

SPGAL gates. As discussed in the previous section, SPGAL is a low-power and DPA

secure adiabatic logic family that uses four phase trapezoidal clocks to recover the

energy from the load capacitors to the power clock. Four trapezoidal clocks with each

having a 90◦ phase shift with respect to its advance clock are employed during the

implementation. Note that in adiabatic circuits, the output of each gate is valid after

one phase cycle of the clock and therefore it is possible to connect the circuits in a

sequential manner.

63..60

15

63...60

S

59..56

14

55..52

13

51..48

12

47..44

11

43..40

10

39..36

9

35..32

8

31..28

6

27..24

7

23..20

4

19..16

2

15..12

5

11 .. 8

3

7 .. 4

1

3 .. 0

0

59..56 55..52 51..48 47..44 43..40 39..36 35..32 31..28 27..24 23..20 19..16 15..12 11 .. 8 7 .. 4 3 .. 0

K i
1

2

3

4

S S S S S S S S S S S S S S S

DPA
Attack
Point

Figure 4.3: One round implementation of PRESENT-80 using SPGAL gates

Fig. 4.3 shows one round of the PRESENT-80 algorithm with a four phase clocking

scheme. In our design of PRESENT-80, AddRoundKey is implemented with the first

phase (φ1) of the clock while the PRESENT 4× 4 S-Box is implemented with φ2, φ3

and φ4 as shown in Fig. 4.3. Fig. 4.4 shows the four phase clocks which are used to

implement PRESENT-80 using SPGAL gates.

35

1

2

3

4

T1 T2 T3 T4 T5 T6 T7 T8

Figure 4.4: 4 phase clocking scheme to implement PRESENT-80

4.2.2 Implementation Results of PRESENT-80

In this work, we have implemented PRESENT-80 using SPGAL logic gates. For

comparison purposes, we have implemented PRESENT-80 using CMOS gates and

Sense Amplifier Based Logic (SABL) gates. SABL is one of the prominent CMOS

based circuit level DPA countermeasure circuits in the literature [58]. Simulations

are performed in SPECTRE simulator using 22nm CMOS bulk technology. All the

circuits are simulated using SPECTRE simulator in PTM 22nm [60] technology with

a VDD of 1V. All of the simulations presented in this work are performed at 12.5 MHz

which is close to the operating frequency of RFID (13.56 MHz).

Table 4.1 shows the implementation results of PRESENT-80 using SPGAL, CMOS

and SABL logic gates. From Table 4.1, we can see that the SPGAL implementation of

one round of PRESENT-80 has 83% improvement in terms of average power consumed

and average current consumed as compared to its corresponding CMOS implementa-

tion. The SPGAL implementation of PRESENT-80 also has 82% of improvement in

terms of average energy consumed as compared to the CMOS implementation. The

comparison results in Table 4.1 also show that the SPGAL based implementation of

one round of PRESENT-80 also has very high improvement results in all the metrics

as compared to the SABL implementation. It has to be noted that the current con-

36

sumption of the SPGAL PRESENT-80 is the sum current of all the power supplies.

The SPGAL based PRESENT-80 has reduced current consumption due to recovery

of charge whereas in the conventional CMOS based PRESENT-80 the charges are

discharged to ground leading to the additional current and power consumption.

Gate Equivalent (GE) represents the size of the circuit in terms of two input

NAND gates. From our simulations, we found that the SPGAL based PRESENT

implementation has 16% lesser GE count as compared to the SABL implementation

of PRESENT-80. However, the SPGAL based PRESENT-80 has 38% more GE count

than its CMOS equivalent as the CMOS-based design utilizes the single rail logic.

Table 4.1: Comparison of metrics between CMOS, SABL and SPGAL implementa-
tions of PRESENT-80

Metric CMOS SABL [58] SPGAL

% imp of
SPGAL
w.r.t
CMOS

% imp of
SPGAL
w.r.t
SABL

Avg. power
(µW)

7.890 15.30 1.32 83 91

Avg. current
(µA)

7.954 15.33 1.35 83 91

Avg. energy
(pJ)

20.83 40.46 3.564 82 90

4.3 DPA Attack on PRESENT-80

Although CMOS and emerging transistors based SPGAL show better performance

in terms of energy and power consumptions, it is important to validate their security

against DPA attack. When considering the DPA attack, it is essential to identify

the intermediate blocks to perform the DPA attack. In this work, a DPA attack is

performed on the output of the PRESENT S-Box (S-layer) as shown in Fig. 4.3. We

have performed the DPA attack as per the steps described in [61]. Simulations are

performed at 12.5 MHz. Fig. 4.5(a) shows a successful DPA attack on the CMOS

37

based PRESENT-80 design. In DPA attacks, usually a large number (greater than

100,000) of input plain texts are fed to the crypto processor. However, in this thesis,

we performed a simulation based DPA attack without any electrical noises. Moreover,

the benchmark PRESENT-80 core does not have other analog and digital modules

of the crypto processor that consume additional current. Therefore, for the CMOS-

based implementation of the PRESENT-80 algorithm, the secret key was revealed

using fewer traces (5233 input traces).

Further, It has been shown in Fig.4.5(b) that the DPA attack was unsuccessful for

the SPGAL based PRESENT-80. From our simulation results, the secret key was not

revealed in the SPGAL based PRESENT for more than 50,000 input traces.

(a) (b)

MTD = 5233

Figure 4.5: DPA attack results of PRESENT implemented using a) CMOS gates b)
SPGAL gates

4.4 Conclusion

In this work, we have demonstrated adiabatic computing as a promising platform for

low-power and LWC in IoT devices. PRESENT-80 Lightweight algorithm has been

used as the benchmark circuit for this thesis work. From the simulation results, it is

shown that the SPGAL based PRESENT-80 consumes less current, less power and is

38

more energy-efficient in comparison to its equivalent CMOS-based and SABL-based

implementations. It is also demonstrated that SPGAL circuits are more resistant to

DPA attacks as compared to their equivalent CMOS circuits. Improvement in power

dissipation along with security against DPA makes the adiabatic computing (SPGAL)

an ideal candidate to implement IoT based devices where power consumption and

security are major concerns. The low-power and DPA-resistance properties of the

adiabatic based PRESENT benchmark circuit have opened avenues for the low-power

and DPA-resistant implementation of lightweight cryptographic algorithms for IoT

devices.

39

Chapter 5

Adiabatic Computing for Emerging

Nanotechnologies

Entering the smart society today, the amount of the information and data is growing

explosively. Corresponding to the growth, demands for low-power, high-performance

integrated circuits become even stronger. The slowdown of Moores law intensifies

the search of the next transistor and memory technologies beyond CMOS. For con-

ventional MOS structure, as the channel length shrinks, the gate does not have full

control over the channel which is not desirable. One of its effects is to cause more

sub-threshold leakage from drain to source, which is not good from power consump-

tion point of view. In conventional MOS, the gate cannot control leakage path. This

can be improved using various MOS structures which allow the scaling of a transis-

tor beyond conventional MOS scaling limit [62]. Several emerging transistor devices

are proposed in the last decade. This emerging transistor devices extends Moore’s

law, allowing semiconductor manufacturers to create CPUs and memory modules

that are smaller, perform faster, and consume less energy. FinFET, TFET (Tunnel

FET) and UTB-SOI (Ultra Thin Body - Silicon on Insulator) are some of the most

promising emerging nanotechnologies. In this section, we will discuss the adiabatic

40

implementation of FinFET, TFET and UTB-SOI in PRESENT-80 benchmark circuit

for Lightweight cryptography.

5.1 SPGAL Implementation in FinFET, TFET and

UTB-SOI

FinFET-SPGAL and TFET-SPGAL are implemented in 20nm technology. The re-

sults are compared with 22nm CMOS-SPGAL. Further, leakage analysis is also per-

formed on UTB-SOI.

5.1.1 FinFET Based SPGAL (FinSAL)

In this work, the Short Gated (SG) mode FinFET implementation of SPGAL gates

are investigated for LWC. In this work, we have used Predictive Technology Model for

20nm FinFETs for simulation [60]. Since SG mode is considered as the substitution

for bulk CMOS, the MOSFETs are replaced by SG FinFETs. The FinFET imple-

mentation of SPGAL (FinSAL) has outperformed the CMOS based SPGAL gates in

terms of power consumption and security in terms of resistance against DPA attacks.

FinSAL has been recently proposed in [7]. Fig. 5.1 shows the FinFET based SPGAL

(FinSAL) implementation of XOR gate. The FinSAL XOR gate consumes less energy

as compared to the FinFET based conventional XOR gate due to recovery of charge

in each phase of clock cycle. Fig. 5.2 shows the uniform current consumption of the

FinSAL XOR gate for various input transitions. The uniform current consumption of

FinSAL XOR gates shows that FinSAL gates can counteract DPA attack at cell level.

Low operating voltage, low-power consumption and uniform current consumption ir-

respective of input data of FinSAL gates makes it suitable to implement in LWC for

IoT applications. This motivated us to investigate the FinSAL gates for use in LWC

to design low-power and DPA-resistant IoT devices. More details on FinSAL can be

41

found in [7].

M1 M2

A

VCLK

M4 M5

C
L

M3

C
L

M6

M7M8

XOR XNOR

B B

A

BB

DISCHARGE

M9 M10

GND

Figure 5.1: Schematic of FinSAL XOR gate [7]

AB=00 AB=01 AB=10 AB=11

Figure 5.2: Uniform current consumption of FinSAL XOR gate

5.1.2 TFET Based SPGAL (TunSAL)

In this work, we have used InAs homo-junction tunneling FETs for our simulations.

We have investigated the advantages of SPGAL gates with Tunnel FET (TFET).

TFET based SPGAL gates are referred as TunSAL in this work. Fig. 5.3 shows Tun-

SAL XOR gate. TunSAL XOR gate has balanced load capacitance with symmetric

design similar to the CMOS counterpart. In TunSAL gates, F and F̄ (refer Fig. 4.1)

42

are replaced by N type TFETs and the charge recovery path in SPGAL designs are

replaced by P type TFETs. For energy recovery designs, it is critical to determine

the supply voltage with different transistors and different technology nodes. The ad-

vantage of TFET is it can operate at very low supply voltages. In this thesis, the

supply voltage of 0.3V has been used to simulate the TFET based circuits at 20nm

technology. PTM technology model files have been used [60]. With the scaling of sup-

ply voltage, TunSAL circuits have reduced power consumption as compared to the

CMOS based SPGAL circuits. Fig. 5.4 shows the uniform current consumption of the

TunSAL XOR gate for various input transitions. The uniform current consumption

of TunSAL XOR gates shows that TunSAL gates can counteract DPA attack at cell

level. Low operating voltage, low-power consumption and uniform current consump-

tion irrespective of input data of TunSAL gates makes it suitable to implement in

LWC for embedded computing devices. For the purpose of fair comparison, we have

compared the TunSAL with FinSAL (FinFET based SPGAL) and CMOS-SPGAL

based circuits.

VCLK

XNOR

A

GND

XOR
Discharge

B B B

A

B
M1 M2

M3

M4 M5

M6

M7M8

M9 M10

GND GND

Figure 5.3: Schematic of TunSAL XOR gate

43

AB=00 AB=10 AB=11 AB=01 AB=10

Figure 5.4: Uniform current consumption of TunSAL XOR gate

5.1.3 Analysis of FinSAL and TunSAL

In this work, CMOS and FinFET based circuit simulations are performed in Cadence

Virtuoso using PTM model files [60]. An input voltage of 1V is used for simulating

CMOS and CMOS-SPGAL gates at 22nm. An input voltage of 0.9V is used for

FinFET gates at 20nm and TFET gates are simulated at 0.3V at 20nm using [63].

The security parameter Normalized Energy Deviation (NED) is used to indicate

the percentage difference between minimum and maximum energy consumption for

all possible input transitions. Normalized Standard Deviation (NSD) indicates the

energy consumption variation based on the inputs. Table 5.1 shows the simulated

and calculated results of the CMOS-SPGAL XOR gate compared with FinSAL and

TunSAL XOR gates. From Table 5.1, it can be inferred that FinSAL and TunSAL

XOR gates have very negligible NED values. The reason for this lower NED values

is the uniform current consumption of SPGAL designs. Further, the TunSAL XOR

gate has reduced energy consumption as compared to the CMOS-SPGAL and FinSAL

XORgates. Fig. 5.5 helps us to understand the relation between the energy deviation

(NED) and the supply voltages for each device with energy recovery computing.

With lowering of supply voltages, the TunSAL-XOR gate offers more security as it

has minimum energy deviation. We can also infer from Fig. 5.5 that, CMOS-SPGAL

XOR gate does not function properly for voltages less than 0.6 V. Similarly, FinSAL

44

XOR gate fails to function correctly for voltages less than 0.5 V. Hence, the NED

values for FinSAL (less than 0.5 V) and CMOS-SPGAL (less than 0.6 V) are not

presented in Fig. 5.5. Further, we can see that TunSAL XOR gate has very negligible

energy deviations from 0.2 - 0.5 V. FinSAL shows superior performance compared

to CMOS-SPGAL from 0.5 V to 1 V. Low energy deviations makes TunSAL and

FinSAL gates excellent candidates for LWC applications.

Table 5.1: Simulated and calculated results of CMOS-SPGAL XOR gate and FinSAL
XOR gate compared with TunSAL XOR gate

Logic family SPGAL FinSAL TunSAL
Device MOSFET FinFET TFET

Technology 22nm 20nm 20nm
VDD(V) 1 0.9 0.3
Emin(fJ) 0.266 0.058 0.044
Emax(fJ) 0.268 0.060 0.046
Eavg(fJ) 0.267 0.059 0.045

NED (%) 0.500 0.211 0.014
NSD(%) 0.200 0.100 0.030

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vdd

0

0.2

0.4

0.6

0.8

N
E

D
(%

)

FinSAL

SPGAL

TunSAL

Figure 5.5: NED as a function of supply voltage

5.1.4 UTBSOI Based SPGAL

In this work, all the UTB-SOI based simulations are performed in Cadence Virtuoso

using BSIM model files [64]. An input voltage of 1.8V is used for simulating CMOS

45

Table 5.2: Simulated and calculated results of SPGAL XOR and AND gates compared
with adiabatic UTB SOI XOR and AND gates

Logic family
CMOS
SPGAL-XOR

UTB SOI
SPGAL-XOR

CMOS
SPGAL-AND

UTB SOI
SPGAL-AND

NED (%) 0.016 0.001 0.09 0.005
NSD(%) 0.008 0.0005 0.03 0.002
Avg. Leakage
power(nW)

7.63 3.02 11.52 7.15

and CMOS-SPGAL gates. UTB-SOI SPGAL gates are simulated at 1.5V. NED and

NSD values have been calculated for both bulk CMOS SPGAL and UTB-SOI SPGAL

based XOR and AND gates. To prove that UTB-SOI consumes low leakage power,

we have also compared the average leakage power for both bulk CMOS SPGAL and

UTB-SOI SPGAL based XOR and AND gates

Table 5.2 shows the results of the bulk CMOS SPGAL XOR and AND gates

compared with UTB-SOI SPGAL based XOR and AND respectively. From Table

5.2, we can infer that both bulk CMOS SPGAL and UTB-SOI SPGAL gates have

very negligible energy deviations. However, UTB-SOI SPGAL based XOR and AND

gates saves 60% and 38% of average leakage power as compared to bulk CMOS SPGAL

based XOR and AND gates respectively.

5.2 FinFET, TFET and UTB-SOI implementations

of PRESENT-80

In this work, we have implemented PRESENT-80 using FinFET, TFET and UTB-

SOI based SPGAL logic gates. The results are compared with CMOS-SPGAL gates.

All of the simulations presented are performed at 12.5 MHz which is close to the

operating frequency of RFID (13.56 MHz).

From the comparison results in Table 5.3, we can see that FinSAL and Tun-

46

Table 5.3: Comparison of metrics between CMOS-SPGAL, FinSAL and TunSAL
implementations of PRESENT-80

Metric
CMOS-
SPGAL

FinSAL TunSAL

% imp
of Fin-
SAL w.r.t
CMOS-
SPGAL

% imp
of Tun-
SAL w.r.t
CMOS-
SPGAL

Device MOSFET FinFET TFET - -
Tech.(nm) 22 20 20 - -
VDD(V) 1 0.9 0.3 - -
Avg.
power
(µW)

1.32 0.70 0.511 46 62

Avg. en-
ergy (pJ)

3.564 1.795 1.257 50 65

SAL implementations of PRESENT-80 has reduced power and energy consumption

as compared to the CMOS-SPGAL. The FinSAL based PRESENT-80 consumes 46%

and 50% of less power and energy consumption, respectively, as compared to the

CMOS-SPGAL. Further, FinSAL also has 91% and 92% of less power and energy

consumption, respectively, as compared to the CMOS based PRESENT-80. TunSAL

has reduced power and energy consumption due to the reduced supply voltages as

compared to FinFET and CMOS circuits. The TunSAL based PRESENT-80 con-

sumes 62% and 65% of less power and energy consumption, respectively, as compared

to the CMOS-SPGAL. Further, TunSAL has also 28% and 30% of less power and

energy consumption, respectively, as compared to the FinSAL based PRESENT-80.

Table 5.4 shows the implementation results of PRESENT-80 using CMOS, CMOS

SPGAL and UTB-SOI SPGAL logic gates. CMOS and CMOS-SPGAL are simulated

at 1.8V and UTB-SOI SPGAL is simulated at 1.5V. The results of UTB-SOI SP-

GAL simulations are compared with the CMOS SPGAL simulation results and also

with conventional CMOS simulation results for one round of PRESENT-80(refer Ta-

ble 5.4). From the comparison results in Table 5.4, we can see that the UTB SOI

SPGAL implementation of PRESENT-80 has reduced power and energy consump-

47

tion as compared to the CMOS and CMOS SPGAL implementations. The UTB-SOI

SPGAL based PRESENT-80 consumes 92% and 91% of less power and energy con-

sumption, respectively, as compared to the CMOS based PRESENT-80. UTB-SOI

SPGAL based PRESENT-80 also consumes 36% and 33% of less power and energy,

respectively, as compared to bulk CMOS SPGAL based PRESENT-80. The cur-

rent consumption of UTB-SOI is also very less. It has to be noted that the current

consumption of the UTB-SOI SPGAL PRESENT-80 is the sum current of all the

power supplies. The UTB-SOI SPGAL based PRESENT-80 has reduced current

consumption due to recovery of charge whereas in the conventional CMOS based

PRESENT-80 the charges are discharged to ground leading to the additional current

and power consumption.

Table 5.4: Comparison of metrics between CMOS, CMOS SPGAL and UTB-SOI
SPGAL implementations of PRESENT-80

Metric CMOS
Bulk-
CMOS
SPGAL

UTB-SOI
SPGAL

% imp
of UTB-
SOI SP-
GAL w.r.t
CMOS

% imp of
UTB-SOI
SPGAL
w.r.t SP-
GAL

Avg.
power
(µW)

4079 513.6 328.7 92 36

Avg. cur-
rent (µA)

2255 304.55 189.6 91 37

Avg. en-
ergy (nJ)

1.044 0.15 0.10 91 33

5.3 DPA Attack

Although FinSAL, TunSAL and UTB-SOI-SPGAL have shown better performance,

it is important to validate their security against DPA attack. We have performed

the simulations at 12.5 MHz and we have sampled the data with a sampling period

of 1ns. Fig. 5.6(a) shows a successful DPA attack on the conventional CMOS based

48

PRESENT-80 design. For the CMOS-based implementation of the PRESENT-80

algorithm, the secret key was revealed using fewer traces (6130 input traces).

Further, It has been shown in Fig.5.6(b) that the DPA attack was unsuccessful for

the UTB-SOI SPGAL based PRESENT-80. From our simulation results, the secret

key was not revealed in the UTB-SOI SPGAL PRESENT for more than 50,000 input

traces.

It has also been shown in Fig.5.7 that, DPA attack was unsuccessful for FinSAL

and TunSAL gates.

MTD = 6130

(a) (b)

Figure 5.6: DPA attack results of PRESENT implemented using a) Conventional
CMOS gates b) UTB-SOI SPGAL gates

5.4 Conclusion

In this work, we have demonstrated adiabatic computing in emerging transistors as

a promising platform for low-power and LWC in IoT devices. From the simulation

results, it is shown that the FinSAL consumes less current, less power and is more

energy-efficient in comparison to its equivalent CMOS-based SPGAL at 22nm imple-

mentation at 0.5-0.9 V. TunSAL has shown amazing performance at 0.3V. UTBSOI

based SPGAL has proven to show great improvements in energy, power and also

49

(a) (b)

Figure 5.7: DPA attack results of PRESENT implemented using a) FinSAL gates b)
TunSAL gates

in leakage power compared with its corresponding CMOS SPGAL. All the FinFET,

TFET and UTB-SOI implementations of adiabatic PRESENT-80 were shown to be

resilient to DPA attacks. Low leakage power, high energy efficiency and resilience

against DPA attack makes adiabatic FinFET, TFET and UTB-SOI gates suitable to

implement in LWC for IoT applications.

50

Chapter 6

Conclusions

In this thesis, significant contributions are made quantum computing and adiabatic

computing - the two new computing paradigms that come under the umbrella of

rebooting computing.

Two resource efficient integer division circuit designs were proposed for use in

Quantum Computing. One design was based on restoring division algorithm and the

other one on non-restoring division algorithm. The proposed quantum integer division

circuits are shown to be superior to existing designs in terms of T-depth and T-

count. The design of sub-components used in the proposed quantum integer division

circuits such as the quantum conditional ADD operation circuit, quantum adder-

subtractor and quantum subtraction circuit were also shown. The proposed non-

restoring division circuit can be integrated into a more extensive quantum data path

system where T-count and T-depth were of primary concern. The restoring division

circuit can be used to implement quantum algorithms where qubits are limited and

T-count and T-depth must be kept to a minimum. Both the designs were verified

through Verilog simulations.

Next, implementation of adiabatic logic in Lightweight cryptography for IoT de-

vices were examined. PRESENT-80, the lightweight cryptographic algorithm, was

51

used as a benchmark algorithm. The recently proposed Symmetric Pass Gate Adia-

batic Logic (SPGAL) family was chosen for case study. It was proven that SPGAL

implementation of PRESENT-80 consumes less power and energy as compared to its

equivalent CMOS implementation. It was also shown that SPGAL implementation

is resistant to DPA attacks, which are powerful side-channel attacks. To obtain the

full leverage of adiabatic logic designs, SPGAL was implemented in the emerging

transistor devices such as FinFET, TFET and UTB-SOI. All the FinFET, TFET

and UTB-SOI based SPGAL designs had proven their resilience against DPA at-

tacks. FinFET-SPGAL was shown to provide excellent improvements in terms of

power and energy consumption compared to CMOS-SPGAL designs for 0.5 V to 0.9

V. TFET-SPGAL was demonstrated to be more secure and energy-efficient compared

to FinFET-SPGAL and CMOS-SPGAL at 0.2 V - 0.5 V. UTB-SOI SPGAL resulted

in less leakage power compared to its equivalent CMOS implementation.

The designs proposed in this thesis provide a solid foundation for future work.

One such direction would be designing larger quantum circuits where any of the

proposed division circuits can be used based on the requirements. More complex

functional units such as quantum multipliers, quantum fast Fourier transform (FFT)

units, quantum arithmetic logic units (ALUs) can be designed by taking advantage

of the divider designs proposed in this thesis. Another possible future work could be

to use the adiabatic logic in sub-threshold logic. The emerging transistor devices can

also be implemented in designing circuits for sub-threshold logic.

52

References

[1] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-
in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 32(6):818–830, 2013.

[2] William C Athas, Lars J Svensson, Jefferey G Koller, Nestoras Tzartzanis, and
E Ying-Chin Chou. Low-power digital systems based on adiabatic-switching
principles. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2(4):398–407, 1994.

[3] Axel York Poschmann. Lightweight cryptography: cryptographic engineering for
a pervasive world. In PH. D. THESIS. Citeseer, 2009.

[4] Dmitri Nikonov. Tunneling FETs. https://nanohub.org/resources/18351.
[Online].

[5] Chenming Hu. Finfet and other new transistor technologies. Univ. of California,
2011.

[6] S Dinesh Kumar, Himanshu Thapliyal, Azhar Mohammad, and Kalyan S Peru-
malla. Design exploration of a symmetric pass gate adiabatic logic for energy-
efficient and secure hardware. Integration, the VLSI Journal, 2016.

[7] S Dinesh Kumar, Himanshu Thapliyal, and Azhar Mohammad. Finsal: Finfet
based secure adiabatic logic for energy-efficient and dpa resistant iot devices.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 2017.

[8] D Michael Miller, Mathias Soeken, and Rolf Drechsler. Mapping ncv circuits to
optimized clifford+ t circuits. In International Conference on Reversible Com-
putation, pages 163–175. Springer, 2014.

[9] I Present. Cramming more components onto integrated circuits. Readings in
computer architecture, 56, 2000.

[10] Dmitri E Nikonov and Ian A Young. Benchmarking of beyond-cmos exploratory
devices for logic integrated circuits. IEEE Journal on Exploratory Solid-State
Computational Devices and Circuits, 1:3–11, 2015.

53

https://nanohub.org/resources/18351

[11] Paolo A. Gargini Alan Kadin Elie K. Track Thomas M. Conte, Erik DeBenedic-
tis. Rebooting computing developing a roadmap for the future of the computer
industry, 2015.

[12] Yasuhito Kawano and Michele Mosca. Theory of Quantum Computation, Com-
munication, and Cryptography: Third Workshop, TQC 2008 Tokyo, Japan, Jan-
uary 30-February 1, 2008, Revised Selected Papers, volume 5106. Springer, 2008.

[13] Ilia Polian and Austin G Fowler. Design automation challenges for scalable
quantum architectures. In Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

[14] Peter Selinger et. al. The Quipper System. 2016. Available at:
http://www.mathstat.dal.ca/ selinger/quipper/doc/.

[15] S Beauregard. Circuit for Shor’s algorithm using 2n+3 gubits. Quantum Infor-
mation & Computation, 3(2):175–185, Mar 2003.

[16] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum in-
formation, 2002.

[17] Jun Li, Xinhua Peng, Jiangfeng Du, and Dieter Suter. An efficient exact quantum
algorithm for the integer square-free decomposition problem. Scientific reports,
2, 2012.

[18] Song Y Yan. Quantum attacks on public-key cryptosystems. Springer, 2013.

[19] Elisabeth Ilie-Zudor, Zsolt Kemény, Fred van Blommestein, László Monostori,
and André van der Meulen. A survey of applications and requirements of unique
identification systems and rfid techniques. Computers in Industry, 62(3):227–252,
2011.

[20] Kerry A McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Report on lightweight cryptography. 2016.

[21] Himanshu Thapliyal, T.S.S Varun, E Munoz-Coreas, Keith A. Britt, and Travis
S. Humble. Quantum circuit designs of integer division optimizing t-count and
t-depth. In Proceedings of the 2017 IEEE International Symposium on Nano-
electronic and Information Systems. IEEE, Dec, 2017.

[22] Himanshu Thapliyal, TSS Varun, and S Dinesh Kumar. Adiabatic computing
based low-power and dpa-resistant lightweight cryptography for iot devices. In
VLSI (ISVLSI), 2017 IEEE Computer Society Annual Symposium on, pages
621–626. IEEE, 2017. Reprinted, with permission, from IEEE.

[23] Himanshu Thapliyal, TSS Varun, and S Dinesh Kumar. Low-power and secure
lightweight cryptography via tfet-based energy recovery circuits. In (ICRC),
2017 IEEE International Conference on Rebooting Computing, pages 1 – 4. IEEE,
2017. Reprinted, with permission, from IEEE.

54

[24] Himanshu Thapliyal, TSS Varun, and S Dinesh Kumar. Utb-soi based adiabatic
computing for low-power and secure iot devices. In Proceedings of the 12th
Annual Conference on Cyber and Information Security Research, page 16. ACM,
2017. http://doi.acm.org/10.1145/3064814.3064825.

[25] KJ Sharma. Understanding quantum computing. IJSEAS, 1(6):370–388, 2015.

[26] Vipul Singh, Nishanth Dikkala, and Pushpak Bhattacharyya. A quantum com-
puting approach to part-of-speech tagging: A quantum viterbi decoding algo-
rithm.

[27] Himanshu Thapliyal. Mapping of subtractor and adder-subtractor circuits on
reversible quantum gates. In Transactions on Computational Science XXVII,
pages 10–34. Springer, 2016.

[28] Edgard Muñoz-Coreas and Himanshu Thapliyal. Design of quantum circuits
for galois field squaring and exponentiation. In VLSI (ISVLSI), 2017 IEEE
Computer Society Annual Symposium on, pages 68–73. IEEE, 2017.

[29] Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J Devitt. Fault-tolerant,
high-level quantum circuits: form, compilation and description. Quantum Sci-
ence and Technology, 2(2):025003, 2017.

[30] Xinlan Zhou, Debbie W. Leung, and Isaac L. Chuang. Methodology for quantum
logic gate construction. Phys. Rev. A, 62:052316, Oct 2000.

[31] Philip Teichmann. Adiabatic logic: future trend and system level perspective,
volume 34. Springer Science & Business Media, 2011.

[32] Amir Moradi and Axel Poschmann. Lightweight cryptography and dpa counter-
measures: A survey. In Financial Cryptography and Data Security, pages 68–79.
Springer, 2010.

[33] Marilyn Wolf. Ultralow power and the new era of not-so-vlsi. IEEE Design &
Test, 33(4):109–113, 2016.

[34] Axel Poschmann, Gregor Leander, Kai Schramm, and Christof Paar. New light-
weight crypto algorithms for rfid. In 2007 IEEE International Symposium on
Circuits and Systems, pages 1843–1846. IEEE, 2007.

[35] Digh Hisamoto, Wen-Chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya
Asano, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor, and Chen-
ming Hu. Finfet-a self-aligned double-gate mosfet scalable to 20 nm. Electron
Devices, IEEE Transactions on, 47(12):2320–2325, 2000.

[36] Prateek Mishra, Anish Muttreja, and Niraj K Jha. Finfet circuit design. In
Nanoelectronic Circuit Design, pages 23–54. Springer, 2011.

55

[37] Suman Datta, Huichu Liu, and Vijaykrishnan Narayanan. Tunnel fet technology:
A reliability perspective. Microelectronics Reliability, 54(5):861–874, 2014.

[38] Navid Paydavosi, Sriramkumar Venugopalan, Yogesh Singh Chauhan,
Juan Pablo Duarte, Srivatsava Jandhyala, Ali M Niknejad, and Chenming Calvin
Hu. Bsimspice models enable finfet and utb ic designs. IEEE Access, 1:201–215,
2013.

[39] S. J. Devitt, A. M. Stephens, W. J. Munro, and K. Nemoto. Requirements for
fault-tolerant factoring on an atom-optics quantum computer. Nature Commu-
nications, 4:2524, October 2013.

[40] IBM. Quantum Computing - IBM Q. 2017. Available at:
https://www.research.ibm.com/ibm-q/.

[41] N. M. Nayeem, A. Hossain, M. Haque, L. Jamal, and H. M. H. Babu. Novel
reversible division hardware. In 2009 52nd IEEE International Midwest Sympo-
sium on Circuits and Systems, pages 1134–1138, Aug 2009.

[42] S. V. Dibbo, H. M. H. Babu, and L. Jamal. An efficient design technique of
a quantum divider circuit. In 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 2102–2105, May 2016.

[43] Faraz Dastan and Majid Haghparast. A novel nanometric fault tolerant reversible
divider. International Journal of the Physical Sciences, 6(24):5671–5681, October
2011.

[44] Alireza Khosropour, Hossein Aghababa, and Behjat Forouzandeh. Quantum
division circuit based on restoring division algorithm. In Information Technology:
New Generations (ITNG), 2011 Eighth International Conference on, pages 1037–
1040. IEEE, 2011.

[45] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient exact
synthesis of single-qubit unitaries generated by clifford and t gates. Quantum
Info. Comput., 13(7-8):607–630, July 2013.

[46] Himanshu Thapliyal and Nagarajan Ranganathan. Design of efficient reversible
logic-based binary and bcd adder circuits. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 9(3):17, 2013.

[47] Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie
Moulton. A new quantum ripple-carry addition circuit. arXiv preprint quant-
ph/0410184, 2004.

[48] Keith A Britt and Travis S Humble. High-performance computing with quantum
processing units. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 13(3):39, 2017.

56

[49] Keith A Britt and Travis S Humble. Instruction set architectures for quantum
processing units. arXiv preprint arXiv:1707.06202, 2017.

[50] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Car-
oline Figgatt, Kevin A Landsman, Kenneth Wright, and Christopher Monroe.
Experimental comparison of two quantum computing architectures. Proceedings
of the National Academy of Sciences, page 201618020, 2017.

[51] Esteban A Martinez, Thomas Monz, Daniel Nigg, Philipp Schindler, and Rainer
Blatt. Compiling quantum algorithms for architectures with multi-qubit gates.
New Journal of Physics, 18(6):063029, 2016.

[52] Debasis Bandyopadhyay and Jaydip Sen. Internet of things: Applications and
challenges in technology and standardization. Wireless Personal Communica-
tions, 58(1):49–69, 2011.

[53] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27,
2011.

[54] Himanshu Thapliyal and Mark Zwolinski. Reversible logic to cryptographic hard-
ware: a new paradigm. In Circuits and Systems, 2006. MWSCAS’06. 49th IEEE
International Midwest Symposium on, volume 1, pages 342–346. IEEE, 2006.

[55] Davide Bellizia, Giuseppe Scotti, and Alessandro Trifiletti. Implementation of
the present-80 block cipher and analysis of its vulnerability to side channel at-
tacks exploiting static power. In Mixed Design of Integrated Circuits and Sys-
tems, 2016 MIXDES-23rd International Conference, pages 211–216. Department
of Microelectronics and Computer Science, Lodz University of Technology, 2016.

[56] Yibin Ye and Kaushik Roy. Qserl: Quasi-static energy recovery logic. IEEE
Journal of Solid-State Circuits, 36(2):239–248, 2001.

[57] S Dinesh Kumar, Himanshu Thapliyal, and Azhar Mohammad. Ee-spfal: A novel
energy-efficient secure positive feedback adiabatic logic for dpa resistant rfid and
smart card. IEEE Transactions on Emerging Topics in Computing, 2016.

[58] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and dif-
ferential cmos logic with signal independent power consumption to withstand
differential power analysis on smart cards. In Solid-State Circuits Conference,
2002. ESSCIRC 2002. Proceedings of the 28th European, pages 403–406. IEEE,
2002.

[59] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2,300 ge. Journal
of Cryptology, 24(2):322–345, 2011.

[60] Arizona State University. Ptm models, 2012.

57

[61] Jun Wu, Yiyu Shi, and Minsu Choi. Measurement and evaluation of power anal-
ysis attacks on asynchronous s-box. Instrumentation and Measurement, IEEE
Transactions on, 61(10):2765–2775, 2012.

[62] Ronak Lad Pavan H Vora. A review paper on cmos, soi and finfet technology.

[63] Huichu Liu, Vinay Saripalli, Vijaykrishnan Narayanan, and Suman Datta. Iii-v
tunnel fet model, Apr 2015.

[64] University of California Berkley. Bsim models, 2013.

58

Vita

Sai Subramanya Varun Thogarcheti

Education

G. Pulla Reddy Engineering College, India
Bachelor of Science in Electronics and Communication Engineering, May 2015

Experience

Graduate Research Assistant
August 2015-May 2016
University of Kentucky
Lexington, KY

Publications

Himanshu Thapliyal, TSS Varun, Edgard Muñoz-Coreas. ”Quantum circuit design
of integer division optimizing ancillary qubits and T-count, arXiv, vol. 1609.01241,
2016.
Himanshu Thapliyal, TSS Varun, Edgard Muñoz-Coreas, Keith A. Britt and Travis
S. Humble. ”Quantum Circuit Designs of Integer Division Optimizing T-count and
T-depth.” Proceedings of IEEE International Symposium on Nanoelectronic and In-
formation Systems (INIS), 2017.
Himanshu Thapliyal, TSS Varun, S. Dinesh Kumar. ”UTB-SOI Based Adiabatic
Computing for Low-Power and Secure IoT Devices” Cyber and Information Security
Research Conference 2017, Article No 16.
Himanshu Thapliyal, TSS Varun, S. Dinesh Kumar. ”Adiabatic Computing for Low
Power and DPA Resistant Lightweight Cryptography for IoT Applications.” IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2017, 10.1109/ISVLSI.2017.115.
Himanshu Thapliyal, TSS Varun, S. Dinesh Kumar. ”Low-Power and Secure Lightweight
Cryptography Via TFET-Based Energy Recovery Circuits” IEEE International Con-
ference on Rebooting Computing (ICRC), pages 1-4, 2017.

59

	NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR REBOOTING COMPUTING
	Recommended Citation

	Titlepage
	Abstract
	Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contribution of Thesis
	Outline of Thesis

	Background
	Quantum Computing
	The NOT Gate
	The Feynman Gate
	The Toffoli Gate
	The Peres Gate
	Clifford+T gates
	Metrics Used for Evaluating Quantum Circuitry

	Adiabatic Computing
	PRESENT-80 Lightweight Algorithm
	FinFET
	TunnelFET(TFET)
	Ultra-Thin-Body Silicon-On-Insulator (UTB-SOI)

	Quantum Circuit Designs of Integer Division Optimizing T-count and T-depth
	Design of Quantum Circuits Used In Proposed Integer Division Circuits
	Design of Quantum Subtractor
	 Design of Quantum Adder-Subtractor
	Design of Quantum Conditional ADD Operation Circuit

	Design of Non-Restoring Quantum Integer Division Circuit
	Design Methodology for Quantum Non-Restoring Integer Division Circuit
	Cost Comparison With Existing Work

	Design of Restoring Quantum Integer Division Circuit
	Design Methodology for Quantum Restoring Integer Division Circuit
	Cost Comparison With Existing Work

	Conclusion

	Adiabatic Computing Based Low-Power and DPA-Resistant Lightweight Cryptography
	Symmetric Pass Gate Adiabatic Logic (SPGAL)
	Implementation of PRESENT-80 Using Adiabatic Logic
	SPGAL Implementation of PRESENT-80
	Implementation Results of PRESENT-80

	DPA Attack on PRESENT-80
	Conclusion

	Adiabatic Computing for Emerging Nanotechnologies
	SPGAL Implementation in FinFET, TFET and UTB-SOI
	FinFET Based SPGAL (FinSAL)
	TFET Based SPGAL (TunSAL)
	Analysis of FinSAL and TunSAL
	UTBSOI Based SPGAL

	FinFET, TFET and UTB-SOI implementations of PRESENT-80
	DPA Attack
	Conclusion

	Conclusions
	References
	Vita

