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ABSTRACT OF THESIS

AUTONOMOUS QUADROTOR COLLISION AVOIDANCE AND
DESTINATION SEEKING IN A GPS-DENIED ENVIRONMENT

This thesis presents a real-time autonomous guidance and control method for a
quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a desti-
nation while it avoids obstacles whose shape and position are initially unknown. We
implement the obstacle avoidance and destination seeking methods using off-the-shelf
sensors, including a vision-sensing camera. The vision-sensing camera detects the po-
sitions of points on the surface of obstacles. We use this obstacle position data and
a potential-field method to generate velocity commands. We present a backstepping
controller that uses the velocity commands to generate the quadrotor’s control in-
puts. In indoor experiments, we demonstrate that the guidance and control methods
provide the quadrotor with sufficient autonomy to fly point to point, while avoiding
obstacles.

KEYWORDS: quadrotor, quadcopter, autonomous, collision avoidance, destination
seeking
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December 8, 2017



AUTONOMOUS QUADROTOR COLLISION AVOIDANCE AND

DESTINATION SEEKING IN A GPS-DENIED ENVIRONMENT

by

Thomas Cooper Kirven

Dr. Jesse B. Hoagg

Director of Thesis

Dr. Haluk E. Karaca

Director of Graduate Studies

December 8, 2017



Acknowledgments

To all reading this thesis, thank you for your interest in a project I worked very

hard on. I hope you find it interesting, if not informative and helpful.

I would like to thank my parents for their love and support, and the sacrifices they

have made for my siblings and me growing up. I could not have accomplished this

without them. I would like to thank my brothers and sister for their interest in my

endeavors and their support throughout my years as a graduate student. Special

thanks to my brother, Tucker Kirven, for helping me with my final experiment and

providing good advice on how to be a better engineer.

My lab mates, Brandon Wellman, Zack Lippay, Shaoqian Wang, Roshan Chavan,

Chris Heintz, Alireza Moosavi, and Zahra Abbasi made my time in the lab and

the classroom worthwhile, and provided friendship, advice, and insightful discussions

when I needed it. To them, I am very grateful.

I would like to thank Suzanne Smith for being a great advanced dynamics professor

and serving on my thesis committee. She helped me derive the quadrotor equations

of motion and believed in my abilities from the beginning to undertake this project. I

would like to thank Michael Seigler for helping clarify a confusing aspect of quadrotor

dynamics and serving on my thesis committee.

About a year and a half ago I began working on this thesis. With the help of my

advisor, Jesse Hoagg, we decided upon this topic because it would provide him with a

resource for future research, and was a focused consolidation of my desires to work on

a tangible, navigation related project. I would like to thank Jesse Hoagg for the many

iii



hours he has dedicated to shaping me into a better writer and scientific thinker. In

our weekly meetings he was always very patient with me, and taught me invaluable

lessons that will serve me well in my professional career.

Lastly, I would like to thank Isaac Newton, Charles Babbage, Rudolf Kalman, and

all of the scientists and engineers whose work made this project feasible.

iv



Contents

Acknowledgements iii

List of Figures vii

Nomenclature xii

List of Files xvi

1 Introduction and Motivation 1

1.1 Inner-Loop Attitude Control . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Middle-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outer-Loop Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quadrotor Equations of Motion 7

2.1 Quadrotor Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Quadrotor Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Autonomous Collision Avoidance and Destination Seeking Control 14

3.1 Inner-Loop Attitude Control . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Middle-Loop Velocity Control . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Outer-Loop Guidance for Collision Avoidance and Destination Seeking 23

3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experimental Platform and Control Implementation 33

v



4.1 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Sensor Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Acceleration Estimation . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Velocity and Altitude Estimation . . . . . . . . . . . . . . . . 40

4.3 Propeller Speed Control . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Estimation of Physical Parameters . . . . . . . . . . . . . . . . . . . 42

5 Experimental Results and Discussion 45

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusions and Future Work 69

Appendix A 71

Appendix B 74

Appendix C 76

Appendix D 78

Bibliography 149

Vita 156

vi



List of Figures

2.1 Inertial and Body Frames. The inertial frame is centered at oI, and

the body frame is fixed to the quadrotor at its center of mass oB. . . 7

2.2 Angular Momentum. The total angular momentum is the sum of the

propellers’ angular momentum and the quadrotor body’s angular mo-

mentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Multi-Loop Control Architecture. An onboard sensor (e.g., vision-

based sensing) provides positions p1, ..., pn of obstacles to the guidance

algorithm, which outputs the velocity commands uc, vc, wc and a yaw

angle command ψc. The velocity commands are passed through low

pass filters Gc, which output desired velocities ud, vd, and wd, which

drive the velocity controller. The yaw angle command ψc is passed

through a low-pass filter Gψc , which outputs the desired yaw angle ψd.

The velocity controller outputs the desired roll and pitch angles φd and

θd, which, along with the desired yaw angle ψd, drive the attitude con-

troller. The velocity controller also outputs the thrust control T . The

attitude controller outputs the control torques τb1 , τb2 , and τb3 , which,

in addition to the thrust control T , are used to algebraically compute

the propeller speeds ω1, ..., ω4. The positions x, y, and z are used as

feedback for destination seeking (included in guidance) and the veloc-

ities u, v, and w, attitude φ, θ, and ψ, and angular rate p, q, and r are

used as feedback to the velocity and attitude controllers. . . . . . . . 15

vii



3.2 Quadrotor Fixed Potential Field. The inner (red) and outer (blue)

physical ellipsoids are centered at oB and have semi-principle axes that

are parallel to b̂1, b̂2, and b̂3. . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Quadrotor Trajectory and Obstacle. The quadrotor begins at the posi-

tion [−2 0 0]T m, flies towards its destination pg(0) = [2 0 0]T m,

and avoids the spherical obstacle. . . . . . . . . . . . . . . . . . . . . 27

3.4 Distance to Obstacle and Distance to Destination. The top plot shows

distance dmin to the nearest point on the obstacle. The orange dotted

line is the collision distance rc = 0.22 m. The bottom plot shows the

distance ||pg|| to the destination. . . . . . . . . . . . . . . . . . . . . 27

3.5 Commanded, Desired, and Inertial Velocities. The desired velocities

ud, vd, and wd and inertial velocities u, v, and w are approximately

equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Euler Angles and Desired Euler angles. The Euler angles φ, θ, and ψ

and the desired Euler angles φd, θd, and ψd are approximately equal. 29

3.7 Propeller Speeds. The quadrotor’s inputs are ω1, ω2, ω3, and ω4. . . . 29

3.8 Quadrotor Trajectory and Obstacles. The quadrotor begins at the posi-

tion [−4 0 0]T m, flies towards its destination pg(0) = [4 0 0]T m,

and avoids all of the obstacles. . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Distance to Obstacle and Distance to Destination. The top plot shows

distance dmin to the nearest point on an obstacle. The orange dotted

line is the collision distance rc = 0.22 m. The bottom plot shows the

distance ||pg|| to the destination. . . . . . . . . . . . . . . . . . . . . 31

3.10 Commanded, Desired, and Inertial Velocities. The desired velocities

ud, vd, and wd and inertial velocities u, v, and w are approximately

equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



3.11 Euler Angles and Desired Euler angles. The Euler angles φ, θ, and ψ

and the desired Euler angles φd, θd, and ψd are approximately equal. . 32

3.12 Propeller Speeds. The quadrotor’s inputs are ω1, ω2, ω3, and ω4. . . . 32

4.1 Top View of Partially Assembled Quadrotor Frame. Four brushless

motors are mounted on the end of the quadrotor’s arms and are con-

nected to the ESCs, which are taped to the underside of the arms. The

PWM driver is fixed to the bottom PCB and connects to each ESC

via a three-wire (black-red-white) servo lead. . . . . . . . . . . . . . . 34

4.2 Close-Up View of IMU Enclosure. The IMU is fixed to the lower part

of the enclosure, which is vibrationally isolated from the top PCB and

the rest of the quadrotor frame. . . . . . . . . . . . . . . . . . . . . . 35

4.3 Side View of Fully Assembled Quadrotor Frame. The UP-Board is

mounted to the top of the quadrotor frame, the IMU enclosure is

mounted between the top and bottom PCBs, and the PX4flow camera

is mounted below the battery slot. . . . . . . . . . . . . . . . . . . . . 36

4.4 Front View of Fully Assembled Quadrotor. The Realsense camera is

mounted to the front end of the bottom PCB. . . . . . . . . . . . . . 37

5.1 Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-

jectory in the ı̂–̂ Plane. . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-

jectory in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Distance to Obstacle and Distance to Destination. The top plot shows

the distance dmin to the nearest point on the obstacle, and the orange

dotted line is the collision distance rc = 0.22 m. The bottom plot

shows the distance ||pg|| to the destination. . . . . . . . . . . . . . . . 49

5.4 Onboard Position Estimates and Offboard Position Measurements. . . 49

ix



5.5 Onboard Velocity Estimates and Offboard Velocity Estimates. . . . . 50

5.6 Velocities u, v, and w and Desired Velocities ud, vd, and wd. . . . . . 51

5.7 Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd. . . 52

5.8 Desired Propeller Speeds ω1, ω2, ω3, and ω4. . . . . . . . . . . . . . . 52

5.9 Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-

jectory in the ı̂–̂ Plane. The red squares are the obstacles that the

quadrotor must avoid. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.10 Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-

jectory in 3D. The red boxes are the obstacles that the quadrotor must

avoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.11 Distance to Obstacle and Distance to Destination. The top plot shows

the distance dmin to the nearest point on the obstacle, and the orange

dotted line is the collision distance rc = 0.22 m. The bottom plot

shows the distance ||pg|| to the destination. . . . . . . . . . . . . . . . 55

5.12 Onboard Position Estimates and Offboard Position Measurements. . . 55

5.13 Onboard Velocity Estimates and Offboard Velocity Estimates. . . . . 56

5.14 Velocities u, v, and w and Desired Velocities ud, vd, and wd. . . . . . 57

5.15 Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd. . . 57

5.16 Desired Propeller Speeds ω1, ω2, ω3, and ω4. . . . . . . . . . . . . . . 58

5.17 Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-

jectory in the ı̂–̂ Plane. . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.18 Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-

jectory in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.19 Distance to Obstacle and Distance to Destination. The top plot shows

the distance dmin to the nearest point on the obstacle, and the orange

dotted line is the collision distance rc = 0.22 m. The bottom plot

shows the distance ||pg|| to the destination. . . . . . . . . . . . . . . . 60

x



5.20 Onboard Position Estimate and Offboard Position Measurement. . . . 61

5.21 Onboard Velocity Estimates and Offboard Velocity Estimates. . . . . 61

5.22 Velocities u, v, and w and Desired Velocities ud, vd, and wd. . . . . . 62

5.23 Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd. . . 62

5.24 Desired Propeller Speeds ω1, ω2, ω3, and ω4. . . . . . . . . . . . . . . 63

5.25 Onboard Estimate of the Quadrotor’s Trajectory in the ı̂–̂ Plane . . 64

5.26 Onboard Estimate of the Quadrotor’s Trajectory in 3D . . . . . . . . 64

5.27 Distance to Obstacle and Distance to Destination. The top plot shows

the distance dmin to the nearest point on the obstacle, and the orange

dotted line is the collision distance rc = 0.22 m. The bottom plot

shows the distance ||pg|| to the destination. . . . . . . . . . . . . . . . 65

5.28 Velocities u, v, and w and Desired Velocities ud, vd, and wd. . . . . . 65

5.29 Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd. . . 66

5.30 Desired Propeller Speeds ω1, ω2, ω3, and ω4. . . . . . . . . . . . . . . 66

xi



Nomenclature

Physical Parameters

m mass of the quadrotor (kg)

g magnitude of acceleration due to gravity (m/s2)

k propeller thrust constant (kg·m/rad2)
⇀

Iq physical inertia matrix

Iq

⇀

Iq resolved in B

Ixx, Iyy, Izz moments of inertia (kg·m2)

l thrust moment arm (m)

b propeller drag constant (kg·m2/rad2)

Ip propeller moment of inertia about axis of rotation (kg·m2)

rp radius of propeller (m)

Quadrotor Equations of Motion

I inertial frame

oI origin of I

ı̂, ̂, k̂ orthogonal unit vectors of I

B body frame

oB origin of B (quadrotor center of mass)

b̂1, b̂2, b̂3 orthogonal unit vectors of B
⇀
p oB/oI position of oB relative to oI (m)

xii



x, y, z components of ⇀p oB/oI resolved in I (m)
⇀
a acceleration of oB relative to oI with respect to I (m/s2)

a
⇀
a resolved in I (m/s2)

ψ, θ, φ yaw, pitch, and roll Euler angles (rad)

O orientation matrix of B relative to I
⇀
ω angular velocity of B relative to I (rad/s)

ω
⇀
ω resolved in B (rad/s)

p, q, r components of ω (rad/s)

ωi angular speed of ith propeller (rad/s)

T magnitude of thrust (N)
⇀
τ moment from propeller thrust and drag (N·m)

τb1 , τb2 , τb3 components of ⇀τ resolved in B (N·m)
⇀

Hp angular momentum of propellers (kg·m2/s)
⇀

H total angular momentum of quadrotor (kg·m2/s)

Attitude Control

φd, θd, ψd desired Euler angles (rad)

eφ, eθ, eψ roll, pitch, and yaw errors (rad)

kφ, kθ, kψ roll, pitch, and yaw proportional gains

ωd desired angular velocity (rad/s)

eω angular velocity error (rad/s)

Kω positive-definite matrix of angular velocity gains

Gψd
low-pass filter for desired yaw

ψc yaw command (rad)

xiii



Velocity Control

u, v, w components of ⇀̇p oB/oI resolved in I (m/s)

ud, vd, wd desired velocities (m/s)

eu, ev, ew velocity errors (m/s)

ku, kv, kw velocity proportional gains

Gc low-pass filter for velocity commands

uc, vc, wc velocity commands (m/s)

Outer-Loop Guidance

⇀
p i position of ith point on an obstacle relative to oB (m)

pi
⇀
p i resolved in B (m)

n number of points p1, ..., pn

rc collision radius (m)

ai, bi, ci inner ellipsoid’s semi-principle lengths (m)

ao, bo, co outer ellipsoid’s semi-principle lengths (m)

Ei inner ellipsoid

Eo outer ellipsoid

Umax maximum potential

U ellipsoidal potential function
⇀
p g position of quadrotor’s destination relative to oB (m)

pg
⇀
p g resolved in I (m)

sd desired speed for the quadrotor (m/s)

ds stopping distance (m)

Vg goal velocity for the quadrotor (m/s)

ne number of points p1, ..., pn contained in Eo

xiv



Implementation and Experiment

Ts sample time (s)

Oij entry in ith row and jth column of O

ˆ̇u, ˆ̇v, ˆ̇w estimated inertial accelerations (m/s2)

sm measured speed (m/s)

hm measured height (m)

κflow standard deviation of optical flow measurement

pwi pulse width sent to ith ESC-motor pair (ms)

lxx distance from oB to axis of rotation (m)

Pxx period of rotation (s)

xd, yd, zd components of pg(0) (m)

xv



List of Files

(a) Thesis document (this document)

(b) Exp_2.mov: video example 1 of quadrotor obstacle avoidance and destination

seeking experiment

(c) final_exp.mov: video example 2 of quadrotor obstacle avoidance and destina-

tion seeking experiment

(d) flight.cpp: flight guidance, navigation, and control script

(e) flight.hpp: header file for flight.cpp

xvi



Chapter 1 Introduction and Motivation

Improvements in sensing and computing have increased the capabilities of small

unmanned aerial vehicles (UAVs). Quadrotors in particular have gained popularity

because of their maneuverability, and their simple mechanical design as compared to

traditional helicopters [1, 2]. Quadrotors are capable of vertical take off and land-

ing, hovering, pivoting about a fixed point, and instantaneous acceleration in three

dimensions. These capabilities make quadrotors ideal for developing aerial robotic

applications and testing new control strategies [3, 4]. Traditionally, flight guidance

and navigation is handled by a human pilot, who operates the quadrotor using either

line of sight or a video feed from an onboard camera. However, recent computer and

sensor advances (e.g., miniaturization, reduced cost) have made autonomous flight of

quadrotors more feasible [5,6], particularly in GPS-denied environments [7,8]. Flight

autonomy for quadrotors could simplify their use in current applications by remov-

ing the need for a pilot, and enable applications involving search and rescue [9, 10],

distributed sensing, cooperative control [11–13], cooperative surveillance [14], and co-

operative construction [15]. For example, a group of autonomous quadrotors could

create a terrain map of a potential construction site, or gather high-resolution pres-

sure or temperature data for atmospheric physics research. Similarly, autonomous

quadrotors could provide agricultural monitoring or mail delivery.

1



1.1 Inner-Loop Attitude Control

The dynamics of a quadrotor can be derived from the Newton-Euler equations,

which contain a translational subsystem and a rotational subsystem. The attitude

control problem, described in [16], considers control of the rotational subsystem, which

is a crucial prerequisite for controlling a quadrotor’s translational states. Transla-

tional movement is driven by the thrust force, which acts along only one body-fixed

axis. Therefore, a quadrotor must change its attitude (or equivalently, orient its

thrust force) to achieve translation in three dimensions. The differential thrust and

drag generated by the propellers induce three orthogonal body torques. The thrust

force and body torques constitute a quadrotor’s control inputs.

Linear control methods have been applied extensively to quadrotors because of

their simplicity and robustness in the near-origin regime. For example, attitude-

stabilizing controllers using PID and LQ techniques are presented in [17]. In, [17]

the LQ controller is developed to stabilize the quadrotor about the origin (i.e., hover

orientation) from initial angles up to ±90◦ roll. In [18], the quadrotor’s equations

of motion are linearized near a desired attitude, and PID controllers stabilize each

axis about this attitude. PID control is computationally simple and robust for small

deviations from the desired attitude. However, at large deviations from the desired at-

titude, the linearized equations don’t capture the true dynamics, and instabilities can

arise while using PID control. If large rotations are expected, it can be beneficial to

use nonlinear control methods. In [19], two nonlinear attitude-stabilizing controllers

are presented that use PD and PD2 feedback structures. Here, P (proportional) is

quaternion feedback, D (derivative) is body angular rate feedback, and D2 (second

derivative) is body angular rate and quaternion velocity feedback. The first controller

is model dependent and provides near exponential stability of the origin (hover orien-

tation) using PD2 feedback. The second controller is model independent and provides

2



global asymptotic stability of the origin using PD feedback. Other nonlinear control

methods for rotorcraft include geometric [11,20–22], sliding mode [23–25], and back-

stepping [24,26–29]. Sliding mode controllers are robust to model uncertainties, while

backstepping relies on model information and is a constructive approach for design-

ing recursively stabilizing controllers. Many backstepping controllers that use Euler

angle parameterizations (e.g., [24,26,27,29]) linearize the quadrotor’s rotational kine-

matics, that is, they assume the time derivative of the Euler angles are equal to the

body angular rates. This approach simplifies the backstepping process, but does not

capture all of the nonlinearities in the rotational dynamics.

In this thesis, we present an inner-loop attitude controller based on the Euler angle

kinematics and the unsimplified rotational dynamics. The controller guarantees local

exponential stability of any attitude equilibria with pitch between ±90◦.

1.2 Middle-Loop Control

Position controllers can stabilize a quadrotor about a fixed position or track a

time-varying position (i.e., trajectory). A position or a trajectory are the inputs to

a position controller, which either computes the desired attitude or desired angular

rate (or both). Such controllers are demonstrated in [25,28, 29] in simulation. Fewer

position controllers are demonstrated in experiments indoors, because obtaining po-

sition feedback without GPS is nontrivial [30]. Image-base visual servo controllers

are developed in [31, 32] that use visual features to provide position stabilizing feed-

back. In [32], feedback from an onboard camera is used to generate attitude set

points. External sensors (e.g., motion-capture systems [33]) provide position feedback

in [1,11,20,22,34]. In [1], a trajectory planning method and linear position controller

are presented. The trajectory planner treats obstacles as constraints and generates

a collision-free trajectory. Aerodynamic effects, the collision-free trajectory, and ve-

hicle acceleration constraints are used to generate admissible control inputs. The
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trajectory tracking method presented in [1] is demonstrated in experiments indoors

using motion capture, and in experiments outdoors using GPS. In [22], a trajectory

tracking controller is developed that exploits the differential flatness of quadrotor

dynamics, which is a property that facilitates trajectory tracking on certain outputs

of the system. This controller is used to demonstrate aggressive maneuvers in ex-

periments indoors using motion-capture feedback. In [11, 20], the control approach

from [22] is used on multiple quadrotors for formation flying and trajectory tracking.

In [11], each quadrotor plans its trajectory based on its neighbors state and planned

trajectory. In [20], lightweight (73 g) custom quadrotors are developed for formation

flight using the control approach from [22]. The small size of the quadrotors improve

stability and agility of the formation as a whole. The success of these methods is

largely due to the decentralized motion-capture systems, but without accurate and

frequent position feedback trajectory tracking controllers can perform poorly. On

the other hand, accurate and frequent velocity feedback is more accessible using only

onboard sensors, which is demonstrated in [35,36].

In this thesis, we present a middle-loop velocity controller that outputs the thrust

and the desired attitude, which, in turn, drives the inner-loop controller. First, we

design the thrust input to track a vertical velocity command. Then, we design the

desired pitch and roll angles (using the thrust augmented translational dynamics) to

track horizontal velocity commands. We utilize the camera module presented in [36]

and sensor fusion to obtain inertial acceleration and velocity feedback.

1.3 Outer-Loop Guidance

An autonomous quadrotor should be capable of moving from one position to an-

other while avoiding obstacles. To accomplish this, [37–44] use vision-based sensing

or light detection and ranging (LIDAR) sensors to gather spatial and obstacle infor-

mation about the environment. In [38, 39], simultaneous localization and mapping
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(SLAM) algorithms build a two- or three-dimensional map of the environment, which

is used by a trajectory planner to generate a collision-free trajectory. In [37] Google’s

Project Tango device (i.e. phone with vision sensing camera [45]) carries out onboard

localization, mapping, and control. The controller uses the Tango’s localization esti-

mate and sensor fusion of the Tango and IMU pose estimates to follow trajectories

in three dimensions. This approach relies on an onboard computer and the Tango’s

processor to run the estimation and fusion algorithms at 100 Hz. Though SLAM and

trajectory planning methods achieve autonomous flight, as demonstrated in [37, 39],

they are computationally intensive and can require a heavy sensor payload. Potential

field methods [40,42,43] require fewer computations and a lightweight sensor payload

as compared to SLAM methods. In [40], a potential field method is presented that

assigns a minimum potential to a destination and larger potentials to obstacles. The

quadrotor generates a force along the negative gradient of the potential function, and

thus moves towards the destination and away from obstacles. A novel version of this

method, demonstrated in [42,43], uses a body-fixed potential field, which is a poten-

tial field that rotates and translates with the quadrotor. This body-fixed potential

field also generates a reaction force that pushes the vehicle away from obstacles, but

removes the need to keep track of the potentials of various obstacles in the flight

space.

We approach the problem of collision avoidance using a quadrotor-fixed potential

field method modified from the method presented in [42]. The method we present

assumes no a priori information about the positions or shape of the obstacles. We

use onboard vision-based sensing to measure the positions of points on the obstacles.

We assume the obstacles are stationary and store the obstacle positions, similarly

to [44], in order to avoid objects that aren’t in the vision sensor’s field of view. If

an obstacle is detected within the quadrotor-fixed potential field, then an avoidance

velocity is generated that directs the quadrotor away from the obstacle. In addition,

5



we provide a constant speed destination seeking method. Together, the potential

field and destination seeking methods constitute a guidance method that generates

velocity commands that drive the middle-loop controller.

1.4 Summary of Contributions

In this thesis, we present an attitude tracking controller based on the Euler angle

parameterization of attitude, and nonlinear rigid-body rotational dynamics. The at-

titude controller guarantees local exponential stability of any attitude equilibria with

pitch between ±90◦. Next, we present a velocity controller that outputs the thrust

and the desired attitude, which, in turn, drives the inner-loop attitude controller. We

develop a quadrotor-fixed potential field method using the method presented in [42]

that generates an avoidance component for the velocity commands. We also present

a constant speed destination seeking method that provides the destination seeking

component of the velocity commands. Together, the collision avoidance and desti-

nation seeking methods generate the velocity commands that drive the middle-loop

velocity controller.

In addition, we use off-the-shelf components to build a quadrotor to test the guid-

ance and control methods in experiment. The guidance method (i.e, collision avoid-

ance and destination seeking) uses an onboard vision-sensing camera to detect the

positions of obstacles, and dead reckoning to estimate the position of the destination.

The middle-loop controller uses an onboard IMU, an optical flow sensor, and esti-

mation methods (e.g., Kalman filters and sensor fusion) to provide acceleration and

velocity feedback. The inner-loop attitude controller uses the IMU to provide angular

rate and attitude feedback. An onboard Linux-based microcontroller communicates

with the hardware and sensor components, and implements the guidance, estimation,

and control algorithms. In indoor experiments, we demonstrate that the guidance and

control methods achieve autonomous collision avoidance and destination seeking.
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Chapter 2 Quadrotor Equations of Motion

2.1 Quadrotor Kinematics

Let I be an inertial frame, that is, a frame in which Newton’s second law is valid.

The origin oI of I is any convenient point on the Earth’s surface, and the orthogonal

unit vectors of I are ı̂, ̂, and k̂. Let B be the body frame, which is fixed to the

quadrotor at its center of mass oB, and has orthogonal unit vectors b̂1, b̂2, and b̂3.

Figure 2.1 shows the inertial and body frames. The position of oB relative to oI is

oB

b̂1

b̂2

b̂3

⇀
p oB/oI

oI

ı̂ ̂

k̂

Figure 2.1: Inertial and Body Frames. The inertial frame is centered at oI, and the
body frame is fixed to the quadrotor at its center of mass oB.
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⇀
p oB/oI = xı̂+ y̂+ zk̂.

Let F ˙(·), and F(̈·) denote the first and second time derivatives of a physical vector

with respect to the frame F. Thus, the acceleration of oB relative to oI with respect

to I is
⇀
a , I(

⇀̈
p oB/oI) = ẍı̂+ ÿ̂+ z̈k̂.

Let
[
·
]

F
denote a physical vector or tensor resolved in the frame F. Therefore, ⇀a

resolved in I is

a ,
[⇀
a
]

I
=
[
ẍ ÿ z̈

]T
.

The angular velocity of B relative to I is ⇀
ω, and we express ⇀

ω resolved in B as

ω ,
[⇀
ω
]

B
=
[
p q r

]T
.

Let ψ, θ, and φ be Euler angles defined by a 3-2-1 rotation sequence as given in [46].

The orientation matrix of B relative to I is

O,


sθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 , (2.1)

where for all γ ∈ R, cγ , cos γ and sγ , sin γ. Note that O−1 = OT is the orientation

matrix of I relative to B.

To represent ω in terms of the Euler angles φ, θ, and ψ and Euler angle rates φ̇, θ̇,

and ψ̇, we express each Euler angle rate as an angular velocity about the body frame
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axes, and sum these angular velocities. See [47] for more information. Thus,

ω =


φ̇

0

0

+


1 0 0

0 cφ sφ

0 −sφ cφ




0

θ̇

0

+


1 0 0

0 cφ sφ

0 −sφ cφ




cθ 0 −sθ

0 1 0

sθ 0 cθ




0

0

ψ̇

 ,

or equivalently,

ω = Q


φ̇

θ̇

ψ̇

 , (2.2)

where

Q ,


1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ

 .
Note that Q is singular if and only if θ = ±π/2. Thus, for all θ 6= ±π/2,


φ̇

θ̇

ψ̇

 = Q−1ω, (2.3)

where

Q−1 =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 ,

and for all γ ∈ (−π/2, π/2), tγ , tan γ. If θ = ±π/2, then Q is singular, and b̂1 and k̂

are collinear. In this case φ and ψ are rotations about the same axis, that is, b̂1 = ±k̂.

Thus, if θ = ±π/2, then the Euler angles φ and ψ correspond to a non-unique O. We

assume that for all t > 0, θ(t) ∈ (−π/2, π/2).
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2.2 Quadrotor Dynamics

Let m > 0 be the mass of the quadrotor, and let g > 0 be the magnitude of

acceleration due to gravity. Both m and g are assumed to be constant. Let k > 0 be

the propeller thrust coefficient, and for i = 1, ..., 4, let ωi > 0 be the angular speed of

the ith propeller, which are the four control inputs. The thrust vector is −T b̂3, where

T , k
4∑
i=1

ω2
i , (2.4)

which is discussed further in [47]. Thus, Newton’s second law yields

m
⇀
a = mgk̂ − T b̂3. (2.5)

Note that (2.5) does not account for aerodynamic forces or flexible dynamics, which

we assume to be negligible. Resolving (2.5) in I yields

m


ẍ

ÿ

z̈

 =


−T (cφsθcψ + sφsψ)

−T (cφsθsψ − sφcψ)

mg − T cφcθ

 ,

or equivalently,

ẍ = − T
m

(cφsθcψ + sφsψ), (2.6)

ÿ = − T
m

(cφsθsψ − sφcψ), (2.7)

z̈ = g − T

m
cφcθ. (2.8)

Let
⇀

Iq be the quadrotor’s physical inertia matrix relative to oB. We assume that
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b̂1, b̂2, and b̂3 are principle axes, which implies that

Iq ,
[⇀
Iq

]
B

=


Ixx 0 0

0 Iyy 0

0 0 Izz

 ,

where Ixx, Iyy, and Izz are the moments of inertia.

Each propeller lies in the b̂1–b̂2 plane and is a distance l from b̂1 and a distance l

from b̂2. Therefore, the thrust −kω2
i b̂3 produced by the ith propeller creates a moment

about b̂1 and b̂2.

As described in [47], we model the moment due to drag on the ith propeller as

(−1)i+1bω2
i b̂3, where b > 0 is the propeller drag coefficient. Thus, the moment from

propeller thrust and drag is

⇀
τ = τb1 b̂1 + τb2 b̂2 + τb3 b̂3,

where

τb1 , kl(ω2
1 − ω2

2 − ω2
3 + ω2

4), (2.9)

τb2 , kl(ω2
1 + ω2

2 − ω2
3 − ω2

4), (2.10)

τb3 , b(ω2
1 − ω2

2 + ω2
3 − ω2

4). (2.11)

Let Ip be the moment of inertia of each propeller about its axis of rotation. There-

fore, the total angular momentum is

⇀

H =
⇀

Iq
⇀
ω +

⇀

Hp, (2.12)

where
⇀

Hp = Ip(−ω1 + ω2 − ω3 + ω4)b̂3 is the angular momentum of the propellers.

Figure 2.2 shows the angular momentum vectors. Differentiating (2.12) with respect
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Ipω1b̂3

Ipω2b̂3Ipω3b̂3
Ipω4b̂3

⇀

Iq
⇀
ω

Figure 2.2: Angular Momentum. The total angular momentum
⇀

H is the sum of
the propellers’ angular momentum (blue and red) and the quadrotor body’s angular
momentum (black).

to I yields

I
˙

(
⇀

H) =
⇀

Iq
I ˙
(
⇀
ω) + I(

⇀̇

Hp)

=
⇀

Iq
B ˙
(
⇀
ω) +

⇀
ω ×

⇀

Iq
⇀
ω + B(

⇀̇

Hp) +
⇀
ω ×

⇀

Hp. (2.13)

Thus, Euler’s second law yields

⇀

Iq
B ˙
(
⇀
ω) +

⇀
ω ×

⇀

Iq
⇀
ω + B(

⇀̇

Hp) +
⇀
ω ×

⇀

Hp =
⇀
τ , (2.14)

and resolving (2.14) in B yields

Iqω̇ + ΩIqω +
[B

(
⇀̇

Hp)
]

B
+ Ω

[ ⇀
Hp

]
B

=
[⇀
τ
]

B
,
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where

Ω ,


0 −r q

r 0 −p

−q p 0

 .
Therefore,

ω̇ = I−1
q

([⇀
τ
]

B
− ΩIqω −

[ ⇀̇
Hp

]
B
− Ω

[ ⇀
Hp

]
B

)
,

or equivalently,


ṗ

q̇

ṙ

 =


(τb1 − qr(Izz − Iyy)− qIp(−ω1 + ω2 − ω3 + ω4))/Ixx

(τb2 + pr(Izz − Ixx) + pIp(−ω1 + ω2 − ω3 + ω4))/Iyy

(τb3 − pq(Iyy − Ixx)− Ip(−ω̇1 + ω̇2 − ω̇3 + ω̇4))/Izz

 . (2.15)
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Chapter 3 Autonomous Collision Avoidance and Destination Seeking Con-

trol

In this chapter, we present a multi-loop guidance and control method for au-

tonomous collision avoidance and destination seeking. The multi-loop guidance and

control architecture is shown in Figure 3.1.

First, we present an inner-loop attitude controller that uses the desired Euler angles

φd, θd, and ψd, and the feedback φ, θ, ψ, p, q, and r to determine the control torques

τb1 , τb2 , and τb3 . Next, we present a middle-loop velocity controller that uses the

desired velocities ud, vd, and wd, and the feedback u, v, w, φ, θ, and ψ to determine

the desired Euler angles φd, θd, and ψd, which drive the inner-loop attitude controller.

The velocity controller also determines the thrust control T . Finally, the outer-loop

guidance method uses the position pg of the quadrotor’s desired destination, and the

positions p1, ..., pn of obstacles, and the feedback x, y, and z to generate the velocity

commands uc, vc, and wc. These velocity commands are passed through low-pass

filters Gc, which output the desired velocities ud, vd, and wd, which drive the middle-

loop velocity controller. We do not assume that the positions x and y are measured;

however, we do assume that u and v are measured. Thus, we integrate the velocities

u and v to estimate the positions x and y.
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ud, vd, wd
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Velocity
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Dynamics
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!1, ..., !4
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G c

Gc
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uc, vc, wc

u, v, w

�, ✓,  

p, q, r

Object
Detection
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x, y, z

Figure 3.1: Multi-Loop Control Architecture. An onboard sensor (e.g., vision-based
sensing) provides positions p1, ..., pn of obstacles to the guidance algorithm, which
outputs the velocity commands uc, vc, wc and a yaw angle command ψc. The velocity
commands are passed through low pass filters Gc, which output desired velocities
ud, vd, and wd, which drive the velocity controller. The yaw angle command ψc is
passed through a low-pass filter Gψc , which outputs the desired yaw angle ψd. The
velocity controller outputs the desired roll and pitch angles φd and θd, which, along
with the desired yaw angle ψd, drive the attitude controller. The velocity controller
also outputs the thrust control T . The attitude controller outputs the control torques
τb1 , τb2 , and τb3 , which, in addition to the thrust control T , are used to algebraically
compute the propeller speeds ω1, ..., ω4. The positions x, y, and z are used as feedback
for destination seeking (included in guidance) and the velocities u, v, and w, attitude
φ, θ, and ψ, and angular rate p, q, and r are used as feedback to the velocity and
attitude controllers.

3.1 Inner-Loop Attitude Control

Let φd : [0,∞)→ (−π, π], θd : [0,∞)→ (−π/2, π/2), and ψd : [0,∞)→ (−π, π] be

desired Euler angles, and define the roll, pitch, and yaw errors eφ , φ−φd, eθ , θ−θd,

and eψ , ψ − ψd. Define the desired angular velocity

ωd , Q


φ̇d − kφeφ

θ̇d − kθeθ

ψ̇d − kψeψ

 , (3.1)

where kφ > 0, kθ > 0, and kψ > 0 are the proportional gains associated with eφ, eθ,

and eψ.
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The following result shows that if the angular velocity ω is equivalent to the desired

angular velocity ωd, then eφ, eθ, and eψ satisfy unforced asymptotically stable linear

time-invariant differential equations.

Proposition 1. Consider (2.3), and ωd given by (3.1). Assume ω = ωd, and for

all t ≥ 0, θ(t) 6= ±π/2. Then, eφ, eθ, and eψ satisfy

ėφ + kφeφ = 0, ėθ + kθeθ = 0, ėψ + kψeψ = 0.

Next, define the angular velocity error eω , ω − ωd, and consider the control

torques


τb1

τb2

τb3

 = Iq(ω̇d−Kωeω)−IqQ
−T


eφ

eθ

eψ

+


qr(Izz − Iyy) + qIp(−ω1 + ω2 − ω3 + ω4)

−pr(Izz − Ixx)− pIp(−ω1 + ω2 − ω3 + ω4)

pq(Iyy − Ixx) + Ip(−ω̇1 + ω̇2 − ω̇3 + ω̇4)

 ,
(3.2)

where Kω ∈ R3×3 is positive definite.

To analyze the stability properties of the closed-loop attitude dynamics, consider

the positive-definite Lyapunov candidate V : (−π, π)×(−π, π)×(−π, π)×R3 → [0,∞)

defined by

V (eφ, eθ, eψ, eω) ,
1

2
(e2
φ + e2

θ + e2
ψ + eT

ωeω).

The following result provides the stability properties of (2.3), (2.15), (3.1), and (3.2).

Theorem 1. Let φe, ψe ∈ (−π, π] and θe ∈ (−π/2, π/2), and let φd(t) ≡ φe,

θd(t) ≡ θe, and ψd(t) ≡ ψe. Then, (φ, θ, ψ, ω) ≡ (φe, θe, ψe, 0) is a locally exponentially

stable equilibrium of the closed-loop system (2.3), (2.15), (3.1), and (3.2). Furthermore,
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define

ωe(φ, θ, ψ) , Q


−kφ(φ− φe)

−kθ(θ − θe)

−kψ(ψ − ψe)

 ,
and

RA ,

{
(φ0, θ0, ψ0, ω0) ∈ R6 :V (φ0 − φe, θ0 − θe, ψ0 − ψe, ω0 − ωe(φ0, θ0, ψ0))

<
1

2
min

{(
π

2
− θe

)2

,

(
π

2
+ θe

)2}}
.

Then, for all initial conditions (φ(0), θ(0), ψ(0), ω(0)) ∈ RA, limt→∞ φ(t) = φe, limt→∞ θ(t) =

θe, limt→∞ ψ(t) = ψe, and limt→∞ ω(t) = 0.

Proof. Define eΦ , [eφ eθ eψ]T and KΦ , diag(kφ, kθ, kψ), and it follows from

(2.3) that

ėΦ = A(eφ, eθ)eω −KΦeΦ,

where

A(eφ, eθ) ,


1 seφ+φeteθ+θe ceφ+φeteθ+θe

0 ceφ+φe −seφ+φe

0 seφ+φe/ceθ+θe ceφ+φe/ceθ+θe

 .
Substituting (3.2) into (2.15) yields

ėω = −Kωeω − AT(eφ, eθ)eΦ.

Next, define

D ,
{

(eφ, eθ, eψ, eω) ∈ R6 : eφ, eθ, eψ ∈ (−π, π), eθ + θd ∈ (−π/2, π/2), eω ∈ R3
}
,

and it follows that for all (eφ, eθ, eψ, eω) ∈ D, the derivative of V along the trajectories
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of (2.3), (2.15), (3.1), and (3.2) is

V̇ (eφ, eθ, eψ, eω) ,
∂V

∂eΦ

ėΦ +
∂V

∂eω
ėω

= eT
Φ(A(eφ, eθ)eω −KΦeΦ) + eT

ω(−Kωeω − AT(eφ, eθ)eΦ)

= −eT
ΦKΦeΦ − eT

ωKωeω

≤ −min{kφ, kθ, kψ}eT
ΦeΦ − λmin(Kω)eT

ωeω

≤ −min{kφ, kθ, kψ, λmin(Kω)}(eT
ΦeΦ + eT

ωeω)

= −c1V (eφ, eθ, eψ, eω), (3.3)

where c1 , 2min{kφ, kθ, kψ, λmin(Kω)} is positive. Thus, (φ, θ, ψ, ω) ≡ (φe, θe, ψe, 0)

is a locally exponentially stable equilibrium.

To show the final statement of the result, define

R′A ,

{
(eφ, eθ, eψ, eω) ∈ R6 : V (eφ, eθ, eψ, eω) <

1

2
min

{(
π

2
− θe

)2

,

(
π

2
+ θe

)2}}
.

Since R′A ⊆ D and for all (eφ, eθ, eψ, eω) ∈ D \ {0}, V̇ (eφ, eθ, eψ, eω) < 0, it follows

that R′A is invariant with respect to (2.3), (2.15), (3.1), and (3.2).

Let (φ(0), θ(0), ψ(0), ω(0)) ∈ RA, and it follows that (eφ(0), eθ(0), eψ(0), eω(0)) ∈

R′A. Since R′A is invariant, it follows that for all t ≥ 0, (eφ(t), eθ(t), eψ(t), eω(t)) ∈

R′A ⊆ D. Thus, it follows from (3.3) that

0 ≤
∫ ∞

0

V (eφ(t), eθ(t), eψ(t), eω(t))dt

≤ − 1

c1

∫ ∞
0

V̇ (eφ(t), eθ(t), eψ(t), eω(t))dt

=
1

c1

[
V (eφ(0), eθ(0), eψ(0), eω(0))− lim

t→∞
V (eφ(t), eθ(t), eψ(t), eω(t))

]
≤ 1

c1

V (eφ(0), eθ(0), eψ(0), eω(0)),

which implies that
∫∞

0
V (eφ(t), eθ(t), eψ(t), eω(t))dt exists. Since, in addition,
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V̇ (eφ(t), eθ(t), eψ(t), eω(t)) is bounded, it follows from Barbalat’s lemma that

limt→∞ V (eφ(t), eθ(t), eψ(t), eω(t)) = 0, which confirms the last statement of the

result.

Note that the control torques (3.2) require φd, θd, and ψd and their first and second

derivatives for implementation. We generate ψd,ψ̇d, and ψ̈d by passing an external

yaw command ψc : [0,∞)→ (−π, π] through a third-order low-pass filter with unity

gain at dc. More specifically, let ψd be the output of the asymptotically stable transfer

function

Gψd
(s) ,

β0

s3 + β2s2 + β1s+ β0

,

where the input is ψc. Therefore, ψd satisfies


...
ψd

ψ̈d

ψ̇d

 =


−β2 −β1 −β0

1 0 0

0 1 0



ψ̈d

ψ̇d

ψd

+


β0

0

0

ψc,

which can be solved to obtain ψd, ψ̇d, and ψ̈d.

In contrast, we compute φd and θd, and their derivatives φ̇d, θ̇d, φ̈d, and θ̈d (whose

analytic expressions are provided in Appendix A) using a velocity controller, which

is introduced in the next section.

3.2 Middle-Loop Velocity Control

Define the velocities u , ẋ, v , ẏ, and w , ż. Let ud, vd, wd : [0,∞) → R be

the ı̂-, ̂-, and k̂-direction desired velocities, which are assumed to be three-times

continuously differentiable, and define the velocity errors eu , u − ud, ev , v − vd,

and ew , w − wd.
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Consider the thrust control

T =
m(g − ẇd + kwew)

cφcθ
, (3.4)

where kw > 0 is the proportional gain associated with ew. Substituting (3.4) into

(2.8) yields ėw +kwew = 0, which implies that ew satisfies an unforced asymptotically

stable linear time-invariant differential equation.

Define the desired pitch and desired roll

θd , tan−1

[
(u̇d − kueu)cψ + (v̇d − kvev)sψ

ẇd − kwew − g

]
, (3.5)

φd , tan−1

[
(u̇d − kueu)cθdsψ − (v̇d − kvev)cθdcψ

ẇd − kwew − g

]
, (3.6)

where ku > 0 and kv > 0 are the proportional gains associated eu and ev. The

following result shows that if the pitch θ and roll φ are equivalent to the desired pitch

θd and desired roll φd, then eu and ev satisfy unforced asymptotically stable linear

time-invariant differential equations.

Proposition 2. Consider (2.6) and (2.7), where T is given by (3.4), and consider

θd and φd given by (3.5) and (3.6). Assume θ = θd, φ = φd, and for all t ≥ 0,

ẇd(t)− kwew(t) 6= g. Then, eu and ev satisfy

ėu + kueu = 0, ėv + kvev = 0.

The control torques and thrust control (3.2) and (3.4), where the desired roll and

pitch are given by (3.5) and (3.6), require the desired velocities ud, vd, wd and their

first, second, and third derivatives for implementation. We generate the desired veloc-

ities and their derivatives by passing the external velocity commands uc : [0,∞)→ R,

vc : [0,∞)→ R, and wc : [0,∞)→ R through fourth-order low-pass filters with unity
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gain at dc. More specifically, let ud be the output of the asymptotically stable transfer

function

Gd(s) ,
α0

s4 + α3s3 + α2s2 + α1s+ α0

,

where the input is uc. Therefore, ud satisfies



....
u d

...
u d

üd

u̇d


=



−α3 −α2 −α1 −α0

1 0 0 0

0 1 0 0

0 0 1 0





...
u d

üd

u̇d

ud


+



α0

0

0

0


uc,

which can be solved to obtain ud, u̇d, üd, and
...
u d. Similarly, we let vd and wd be the

output of Gd with inputs vc and wc, respectively.

Recall that the quadrotor’s physical controls are the propeller speeds ω1, ω2, ω3,

and ω4. In order to implement the inner-loop and middle-loop controllers (3.1), (3.2),

(3.4), (3.5), and (3.6), we determine the propeller speeds required to achieve the

control torques and thrust control given by (3.2) and (3.4). Using (2.4) and (2.9)–

(2.11), we obtain 

T

τb1

τb2

τb3


=



k k k k

kl −kl −kl kl

kl kl −kl −kl

b −b b −b





ω2
1

ω2
2

ω2
3

ω2
4


. (3.7)
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Since k, b, l > 0, it follows that the 4×4 matrix in (3.7) is invertible. Therefore,



ω2
1

ω2
2

ω2
3

ω2
4


=



1

4k

1

4kl

1

4kl

1

4b

1

4k

−1

4kl

1

4kl

−1

4b

1

4k

−1

4kl

−1

4kl

1

4b

1

4k

1

4kl

−1

4kl

−1

4b





T

τb1

τb2

τb3


. (3.8)

Note that (3.2) implies that τb1 and τb2 are linear functions of ω1, ω2, ω3, and

ω4. Thus, (3.8) is a set of four coupled quadratic equations in ω1, ω2, ω3, and ω4.

Numerical approaches (e.g., Newton’s method) can be used to solve these equations

approximately. In this work, we use (3.8) to solve for ω1, ω2, ω3, and ω4, where

τb1 and τb2 are approximated by using the one-time-step-delayed value of ω1, ω2,

ω3, and ω4, instead of the current values. For typical flight maneuvers, numerical

simulations suggest that this approximation has a small impact because the terms

−qIp(−ω1 + ω2 − ω3 + ω4) and pIp(−ω1 + ω2 − ω3 + ω4) are small relative to the

remaining terms in (3.2).

We also note that (3.2) implies that τb3 is a linear function of −ω̇1 + ω̇2 − ω̇3 + ω̇4,

which cannot be implemented with a causal control law. Thus, we approximate τb3

by using backward Euler approximations of ω̇1, ω̇2, ω̇3, and ω̇4, which are computed

from the one- and two-time-step-delayed values of ω1, ω2, ω3, and ω4. For typical

flight maneuvers, numerical simulations suggest that this approximation has a small

impact.

22



3.3 Outer-Loop Guidance for Collision Avoidance and Destination Seek-

ing

In this section we present an outer-loop guidance algorithm for autonomous collision

avoidance and destination seeking. This algorithm generates the velocity commands

uc, vc, and wc, which are used by the middle-loop controller. We generate the obsta-

cle avoidance component of the velocity commands using a modified version of the

artificial potential field method given in [42].

For i = 1, ..., n, let ⇀p i be the position relative to oB of the ith point on an obstacle.

Let rp > 0 be the radius of each propeller, and let rc > rp + l be the collision radius,

which is the minimum acceptable length of ⇀p i. In other words, a collision occurs if

and only if ||pi|| < rc, where pi , [
⇀
p i]B.

To generate the obstacle avoidance component of the velocity commands, we define

a body-fixed potential field in R3. Let ai, bi, ci > rc, and define the inner ellipsoid

Ei ,

{
(xe, ye, ze) ∈ R3 :

x2
e

a2
i

+
y2

e

b2
i

+
z2

e

c2
i

≤ 1

}
.

Note that pi ∈ Ei if and only if ⇀p i lies inside a physical ellipsoid whose geometric

center is oB and whose semi-principle axes are parallel to b̂1, b̂2, and b̂3.

Next, let ao > ai, bo > bi, and co > ci, and define the outer ellipsoid

Eo ,

{
(xe, ye, ze) ∈ R3 :

x2
e

a2
o

+
y2

e

b2
o

+
z2

e

c2
o

≤ 1

}
.

Note that pi ∈ Eo if and only if ⇀p i lies on or inside a physical ellipsoid whose geometric

center is oB and whose semi-principle axes are parallel to b̂1, b̂2, and b̂3.

Let Umax > 0 be the maximum potential, and consider U : R3 → [0, Umax] defined
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pi
ri(pi)

ro(pi)

Figure 3.2: Quadrotor Fixed Potential Field. The inner (red) and outer (blue) physi-
cal ellipsoids are centered at oB and have semi-principle axes that are parallel to b̂1, b̂2,
and b̂3.

by

U(σ) ,



0, if σ ∈ R3 \ Eo,

Umax

(
1− ||σ|| − ri(σ)

ro(σ)− ri(σ)

)
, if σ ∈ Eo \ Ei,

Umax, if σ ∈ Ei,

where ri : R3 → [0,max{ai, bi, ci}] and ro : R3 → [0,max{ao, bo, co}] are defined by

ri(σ) ,
√
a2

i (cos2βi(σ))cos2αi(σ) + b2
i (cos2αi(σ))sin2βi(σ) + c2

i sin2αi(σ),

ro(σ) ,
√
a2

o(cos2βo(σ))cos2αo(σ) + b2
o(cos2αo(σ))sin2βo(σ) + c2

osin2αo(σ),

where αi, αo : R3 → (−π/2, π/2) and βi, βo : R3 →∈ (−π, π] are defined by

αi(σ) , tan−1 σ(3)/ci√
σ2

(1)/a
2
i + σ2

(2)/b
2
i

, αo(σ) , tan−1 σ(3)/co√
σ2

(1)/a
2
o + σ2

(2)/b
2
o

,

βi(σ) , arctan2(σ(2)/bi, σ(1)/ai), βo(σ) , arctan2(σ(2)/bo, σ(1)/ao),

where σ(i) is the ith entry of σ ∈ R3, and arctan2 is the 4-quadrant arctangent.

We use ellipsoids rather than spheres for the potential field because it allows us to
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elongate the potential field in the b̂1 direction, which is approximately the direction

of flight. This feature creates a larger potential U(pi) if pi is in the direction of flight,

and a smaller potential U(pi) if pi is not in the direction of flight.

We now introduce a method to generate the destination seeking component of the

velocity commands. Let ⇀p g be the quadrotor’s destination relative to the quadrotor’s

center of mass oB, and define pg ,
[⇀
p g

]
I
. Let sd > 0 be the desired speed, which

is the desired quadrotor speed in the absence of any obstacles. Let ds > 0 be the

stopping distance for the quadrotor, and define the goal velocity

Vg ,


sdpg

||pg||
, if ||pg|| ≥ ds,

sdpg

ds

, if ||pg|| < ds.

Thus, if the quadrotor is farther than ds from its destination, then the goal speed is

constant, that is, ||Vg|| = sd. On the other hand, if the quadrotor is closer than ds to

its destination, then the goal speed is proportional to its distance to the destination.

Let ne be the number of points p1, ..., pn that are contained in Eo. Then, the velocity

commands are given by


uc

vc

wc

 , Vg −
1

ne

n∑
i=1

U(pi)
OTpi
||pi||

. (3.9)

We use ne rather than n to normalize the second term in (3.9) so that its magnitude

does not depend on points outside of Eo. This ensures that the second term in (3.9)

is not negligible in situations where the number of points n−ne outside of Eo is much

larger than the number of points ne contained in Eo. Thus, the multi-loop guidance

and control approach is given by (3.1), (3.2), (3.4)–(3.6), (3.8), and (3.9).
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3.4 Numerical Examples

In this section, we present examples to demonstrate the multi-loop collision avoid-

ance and destination seeking method. In the following simulations, we use physical

parameters that match those of the quadrotor used in the experiments in Chapter 5.

Specifically, m = 1.01 kg, l = 0.1185 m, rp = 0.1016 m, k = 7.5×10−6 kg·m/rad2, b =

1.4 × 10−7 kg·m2/rad2, Ixx = 0.00585 kg·m2, Iyy = 0.0054 kg·m2, Izz = 0.007 kg·m2,

and Ip = 0.00002 kg·m2.

The attitude controller gains are kφ = kθ = kψ = 7 and Kω = diag(7, 7, 7), and the

velocity controller gains are ku = kv = kw = 3.5. These gains provide good stability

and responsiveness to velocity commands. We place all poles of the transfer function

Gd at −10, which yields α3 = 40, α2 = 600, α1 = 4000, α0 = 10000. We place all

poles of the transfer function Gψd
at −6, which yields β2 = 9, β1 = 27, and β0 = 27.

We use a yaw angle command ψc = 0 in all examples.

For all examples, we let rc = 0.22 m, ai = 0.56 m, bi = 0.46 m, ci = 0.25 m,

ao = 1.1 m, bo = 0.75 m, co = 0.53 m, Umax = 2.5, sd = 0.8 m/s, and ds = 0.8 m.

Define dmin , min{||p1||, ..., ||pn||}, which is the distance between the quadrotor’s

center of mass oB and the nearest point on an obstacle. The objective is to reach the

destination subject to the constraint that for all t ≥ 0, dmin(t) > rc.

Example 1. The quadrotor’s initial position is [x(0) y(0) z(0)]T = [−2 0 0]T m,

and the destination is pg(0) = [2 0 0]T m. A single spherical obstacle with radius

0.3 m is centered at the origin. We model the obstacle with n = 50 evenly distributed

points on the surface of the sphere. The positions of these points are p1, ..., pn.

Figure 3.3 shows an overhead view of the quadrotor’s trajectory in the ı̂–̂ plane.

The quadrotor approaches the spherical obstacle and moves in the −̂ direction as the

obstacle enters the quadrotor’s potential field. Recall that the avoidance velocity is

in the direction opposite the position of the obstacle relative to the quadrotor, which
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is modeled with p1, ..., pn.
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Figure 3.3: Quadrotor Trajectory and Obstacle. The quadrotor begins at the position
[−2 0 0]T m, flies towards its destination pg(0) = [2 0 0]T m, and avoids the
spherical obstacle.

Figure 3.4 shows that between t = 3 s and t = 9 s the quadrotor stops moving

towards the destination, because at approximately t = 3 s, the obstacle is almost

radially symmetric about b̂1 and lies between the quadrotor and its destination. In

this case, it follows from (3.9) that uc, vc, and wc are small. In this example, the
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Figure 3.4: Distance to Obstacle and Distance to Destination. The top plot shows
distance dmin to the nearest point on the obstacle. The orange dotted line is the
collision distance rc = 0.22 m. The bottom plot shows the distance ||pg|| to the
destination.
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obstacle’s radial asymmetries about b̂1 generate a small velocity command in the −̂

direction. As shown in Figure 3.5, the magnitude of vc increases between t = 3 s and

t = 8 s. After t = 9 s, the quadrotor resumes its progress towards the destination

because the obstacle is no longer in the flight path.

Figure 3.5 shows the velocity commands uc, vc, and wc, desired velocities ud, vd,

and wd, and the inertial velocities u, v, and w. The velocity commands are passed

through low-pass filters Gd that generate the desired velocities, which results in time

lag between the velocity commands and desired velocities. The quadrotor’s velocities

are approximately equal to the desired velocities, which shows that the middle-loop

controller successfully tracks the desired velocities. These results agree with Propo-

sition 2, which states that ėu + kueu = 0 and ėv + kvev = 0.
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Figure 3.5: Commanded, Desired, and Inertial Velocities. The desired velocities ud,
vd, and wd and inertial velocities u, v, and w are approximately equal.

Figures 3.6 shows that the Euler angles are approximately equal to the desired

Euler angles, which shows that the inner-loop attitude controller successfully tracks

the desired Euler angles. These results provide evidence justifying the assumptions

that φ = φd and θ = θd, which are used in the design of the middle-loop velocity

controller and in Proposition 2.
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Figure 3.6: Euler Angles and Desired Euler angles. The Euler angles φ, θ, and ψ and
the desired Euler angles φd, θd, and ψd are approximately equal.

Figure 3.7 shows the propeller speeds ω1, ω2, ω3, and ω4, which are the physical

inputs to the quadrotor. These inputs are bounded between 550 and 600 rad/s, which

is an acceptable range for the motors used in experiments in Chapter 5.
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Figure 3.7: Propeller Speeds. The quadrotor’s inputs are ω1, ω2, ω3, and ω4.

Example 2. In this example, we demonstrate collision avoidance and destination

seeking with multiple randomly distributed obstacles. The quadrotor’s initial position
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is [x(0) y(0) z(0)]T = [−4 0 0]T m, and the destination is pg(0) = [4 0 0]T m.

We model 7 spherical obstacles (each with radius 0.3 m) using the same method as in

Example 1. Each obstacle is made up of 50 evenly distributed points on its surface.

Thus, n = 350. Figure 3.8 shows the quadrotor’s trajectory in three dimensions,

which shows that the quadrotor successfully avoids all of the obstacles and reaches

the destination.
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Figure 3.8: Quadrotor Trajectory and Obstacles. The quadrotor begins at the posi-
tion [−4 0 0]T m, flies towards its destination pg(0) = [4 0 0]T m, and avoids
all of the obstacles.

Unlike the previous example, the obstacles are placed randomly between the quadro-

tor’s initial position and the destination. As a result, the quadrotor better maintains

its destination seeking objective, which is shown by the bottom plot in Figure 3.9.

Therefore, we see that obstacles that lie between the quadrotor and its destination

do not significantly hinder the destination seeking objective if they are radially asym-

metric about b̂1.

Figure 3.10 shows larger variations in the velocity commands as compared to Ex-

ample 1, but the quadrotor’s velocities are nonetheless approximately equal to the

desired velocities.
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Figure 3.9: Distance to Obstacle and Distance to Destination. The top plot shows
distance dmin to the nearest point on an obstacle. The orange dotted line is the
collision distance rc = 0.22 m. The bottom plot shows the distance ||pg|| to the
destination.
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Figure 3.10: Commanded, Desired, and Inertial Velocities. The desired velocities ud,
vd, and wd and inertial velocities u, v, and w are approximately equal.

Figure 3.11 shows that the Euler angles are approximately equal to the desired

Euler angles.
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Figure 3.11: Euler Angles and Desired Euler angles. The Euler angles φ, θ, and ψ
and the desired Euler angles φd, θd, and ψd are approximately equal.

Figure 3.12 shows the propeller speeds ω1, ω2, ω3, and ω4, which are bounded

between 550 and 600 rad/s. Note that ω1, ω2, ω3, and ω4 have larger variations

than in Example 1. These motor commands are needed to track the more aggressive

attitude and velocity commands shown in Figures 3.10 and 3.11.
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Figure 3.12: Propeller Speeds. The quadrotor’s inputs are ω1, ω2, ω3, and ω4.
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Chapter 4 Experimental Platform and Control Implementation

In this chapter, we describe the experimental quadrotor platform, including its

hardware and software. The quadrotor is designed to fly in GPS-denied environments

by using onboard sensors to determine its state as well as information describing its

surrounding environment. We employ onboard vision-based sensing, specifically, the

Intel Realsense R200, which is an active infrared stereoscopic camera, to determine

the positions of obstacles nearby. The quadrotor is equipped with a single-board

computer called the UP-Board, which processes sensor data and runs the multi-loop

control algorithm (3.1), (3.2), (3.4)–(3.6), (3.8), and (3.9).

4.1 Hardware Platform

In this section, we describe the hardware components and the experimental quadro-

tor platform. Appendix B provides lists of the terms, hardware components, and

software libraries that are used in this chapter.

We use the DJI F330 quadrotor frame, which consists of two platforms made from

printed circuit board (PCB) material and four plastic arms. The PCB platforms

hold the quadrotor’s arms in place and provide flat surfaces to mount the hardware

components. A brushless motor is mounted on the end of each arm and an electronic

speed controller (ESC), which drives the motor, is taped to the underside of the

same arm. The ESCs receive power through the bottom PCB, which connects to the

battery and serves as a power distribution board. Each ESC has a three-wire servo

lead that connects to a pulsewidth modulation (PWM) driver. The PWM driver sends

signals to the ESCs to control the motors, and is controlled by the UP-Board’s inter-
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integrated circuit (I2C) bus. The I2C bus allows the UP-Board to simultaneously

communicate with multiple hardware devices, including the PWM driver. Figure 4.1

shows the motors, ESCs, and PWM driver mounted to the quadrotor frame.

Figure 4.1: Top View of Partially Assembled Quadrotor Frame. Four brushless motors
are mounted on the end of the quadrotor’s arms and are connected to the ESCs, which
are taped to the underside of the arms. The PWM driver is fixed to the bottom PCB
and connects to each ESC via a three-wire (black-red-white) servo lead.

We mount the remaining components using 3D-printed parts that use the PCB’s

pre-drilled holes. On the top side of the top PCB, we use a 3D-printed part to mount

the UP-Board. On the bottom side of the top PCB, we mount a 3D-printed part

that supports a second part via three vibration isolating dampers. The isolated part

holds the MPU-9250 inertial measurement unit (IMU), which provides feedback to

the UP-Board via the I2C bus. A close-up view of the UP-Board mount and IMU
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enclosure is shown in Figure 4.2.

Figure 4.2: Close-Up View of IMU Enclosure. The IMU is fixed to the lower part of
the enclosure, which is vibrationally isolated from the top PCB and the rest of the
quadrotor frame.

On the underside of the bottom PCB, we mount a 3D-printed part that holds the

battery and an optical flow sensor called the PX4flow. The PX4flow provides velocity

and z-position feedback data to the UP-Board via the I2C bus. Figure 4.3 shows

the UP-Board, IMU enclosure, battery slot, and PX4flow mounted to the quadrotor

frame.

On the front end of the bottom PCB, we mount a 3D-printed part that holds the

Realsense R200. The Realsense provides feedback to the UP-Board using the USB 3.0

bus. Figure 4.4 shows the fully assembled quadrotor, including the Realsense camera.
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Figure 4.3: Side View of Fully Assembled Quadrotor Frame. The UP-Board is
mounted to the top of the quadrotor frame, the IMU enclosure is mounted between
the top and bottom PCBs, and the PX4flow camera is mounted below the battery
slot.

The UP-Board is equipped with a Wi-Fi adapter that allows us to access the UP-

Board’s file system wirelessly from a PC or laptop on the same network. Thus,

we can start and stop executable scripts, retrieve flight data, and make changes to

the UP-Board’s flight software remotely. We implement the multi-loop control and

guidance algorithms in the script flight.cpp, which is provided in Appendix C and

communicates with the hardware and sensors using the software libraries [48–51]. At

every time step, flight.cpp gathers sensor data, filters the data, and implements the
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control inputs. Sections 4.2–4.3 describe the tasks performed at each time step.

Figure 4.4: Front View of Fully Assembled Quadrotor. The Realsense camera is
mounted to the front end of the bottom PCB.

4.2 Sensor Data Collection

Unless stated otherwise, we use floating point arrays to store the feedback data,

which we access by array indexing. Each array is dedicated to a single data stream.

For example, the yaw, pitch, and roll values are stored in three separate arrays, and

each time step corresponds to a specific index common to all arrays. We use the

sample time Ts ≈ 0.02 s, which is dictated by the IMU. If f is a function of time

t ≥ 0, then for all k ∈ N , {0, 1, 2...}, define fk , f(kTs), where k corresponds to

the kth time step.

We obtain measurements of u and v from the PX4flow camera and a measurement

of z from the Maxbotix Sonar module, which is on the PX4flow module. These
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measurements are made available via I2C packets by the PX4flow’s stock firmware

when the PX4flow is powered on. We retrieve these measurements using the UP-

Board’s I2C-1 bus and libmraa I2C library functions [48].

We obtain measurements of φ, θ, ψ, p, q, r, u̇, v̇, and ẇ from the digital motion pro-

cessor (DMP) onboard the MPU-9250 IMU. A software library called i2cdevlib [50]

configures the DMP and retrieves orientation, angular rate, and acceleration estimates

provided by the DMP. The DMP outputs the orientation in quaternion representation

and we convert it to the 3-2-1 Euler angle representation. The DMP also compensates

for gyroscope bias and thus provides non-biased estimates of p, q, and r.

We obtain measurements of p1, ..., pn via USB 3.0 from the RealSense R200 camera

using librealsense [51] library functions. The R200 provides native depth, color, and

infrared streams, and librealsense computes "points" data from the depth stream and

pixel positions. Each frame has a set of "points" data, which is the set of position

vectors (relative to the center of the camera and resolved in B) of points on objects

detected by the R200. In experiments, we use the closest point in each frame as the

positions p1, ..., pn, where is n the number of frames. We limit the number of points

stored to n = 2000, after which we replace the oldest points. Thus, we only keep

track of the nearest point from each of the previous 2000 frames. We store the points

p1, ..., pn in a 3×n matrix using the matrix library called Matrix [52], and keep track

of their positions relative to the quadrotor.

4.2.1 Acceleration Estimation

In this section, we describe the discrete-time extended Kalman filter used to esti-

mate the accelerations u̇, v̇, and ẇ, which are used as feedback to the middle-loop

velocity controller. We do not use the raw measurements of u̇, v̇, and ẇ, which are

provided by the IMU, because they are noisy. Instead, we pass these measurements

through a discrete-time extended Kalman filter. The following equations provide the
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information needed to implement the standard discrete-time extended Kalman filter

algorithm, which is described in Appendix C.

Let x,
[
u̇ v̇ ẇ

]T and w ,
[
wφ̇ wθ̇ wψ̇

]T, where wφ̇, wθ̇, and wψ̇ are zero

mean process noise terms. Let ẋ = f(x,w) represent the system

ü = u̇((φ̇+ wφ̇)Tφ + (θ̇ + wθ̇)Tθ)− v̇(ψ̇ + wψ̇) +
ẅd − kwėw
CφCθ

O31 +
T

m
(φ̇+ wφ̇)O21

− (θ̇ + wθ̇)Cψ(g − ẇd + kwew)

v̈ = v̇((φ̇+ wφ̇)Tφ + (θ̇ + wθ̇)Tθ)− u̇(ψ̇ + wψ̇) +
ẅd − kwėw
CφCθ

O32 +
T

m
(φ̇+ wφ̇)O22

− (θ̇ + wθ̇)Sψ(g − ẇd + kwew)

ẅ = ẅd − kwėw,

where Oij is the entry in the ith row and jth column of O. While the quadrotor

is stationary, we spin the propellers to simulate in-flight vibrations, and record the

values of p, q, and r provided by the IMU. We assume that these values approximate

the process noise w, and use them to estimate the process noise covariance matrix,

which isW = diag(0.01, 0.02, 0.01). The acceleration measurement obtained from the

IMU’s accelerometer is expressed as

zk = xk + vk,

where vk is the sensor noise. Thus, the output function h used by the discrete-time

extended Kalman filter is h(x) , x. While the quadrotor is stationary, we spin the

propellers, and assume the raw acceleration measurements from the IMU approximate

the sensor noise v. Using these measurements, we estimate the sensor noise covariance

matrix R = diag(2.2, 3.2, 1.6). We initialize the discrete-time extended Kalman filter

with x0 =
[
0 0 0

]T m/s2, and the diagonal entries of the covariance matrix Pk (as

given in Appendix C) are initialized with random values on the order of 10−2.
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4.2.2 Velocity and Altitude Estimation

In this section, we describe the discrete-time extended Kalman filter used to esti-

mate the velocities u, v, and w, and the altitude z, which are used as feedback to the

middle-loop velocity controller. We do not use the raw measurements of u, v, and

z, provided by the PX4flow module, because they are noisy. Instead, we pass these

measurements through a discrete-time extended Kalman Filter to estimate u, v, w,

and z.

Let x ,
[
u v w z

]T and w ,
[
wu̇ wv̇ wẇ ww

]T, where wu̇, wv̇, wẇ,

and ww are zero mean process noise terms. Let ẋ = f(x,w) represent the system

u̇ = ˆ̇u− wu̇, v̇ = ˆ̇v − wv̇, ẇ = ˆ̇w − wẇ, ż = w − ww,

where ˆ̇u, ˆ̇v, and ˆ̇w are the acceleration estimates from section 4.2.1. Since f(x,w)

is linear, it follows that the discrete-time extended Kalman filter algorithm described

in Appendix C reduces to its linear form.

To characterize w, we keep the quadrotor stationary, spin the propellers, and record

the values of ˆ̇u, ˆ̇v, and ˆ̇w. Using these values, we estimate the process noise covariance

matrix, which isW = diag(0.05, 0.08, 0.04). The measurements of u, v, and z obtained

from the PX4flow module are expressed as

zk = Cxk + vk,

where vk is the sensor noise and

C ,


1 0 0 0

0 1 0 0

0 0 0 1

 .
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The output function h used by the discrete-time Kalman filter is h(x) , Cx. Define

the measured speed sm ,
√

z2
k(1) + z2

k(2) and the measured height hm , −zk(3). At

each time step, we estimate the standard deviation of the output measurements as

κflow , 0.04005232hm − 0.00656446h2
m − 0.26265873sm

+0.13686658hmsm − 0.00397357h2
msm,

which is given by [53, lines 127–156]. The sensor noise covariance matrix is computed

as R = diag(κ2
flow, κ

2
flow, 0.01), where the first and second entries are the variances of

the optical flow sensor’s measurements of u and v, and the third entry is the variance

of the sonar sensor’s measurement of z. We initialize the discrete-time Kalman filter

with x0 =
[
0 0 0 0

]T, and the diagonal entries of the covariance matrix Pk (as

given in Appendix C) are initialized with random values on the order of 10−2.

4.3 Propeller Speed Control

In this section, we describe the method used to actuate the brushless motors at

approximately the speeds computed by (3.7). An ESC-motor pair is a single-input

single-output system, where the input is the PWM signal and the output is the motor

speed. We use the upm-pca9685 library [49] to command the PCA-9685 PWM driver

to send a unique PWM signal to each ESC. A PWM signal is characterized by its

pulsewidth and period, but only the pulsewidth determines the motor speed. The

period of the PWM signal determines the maximum frequency at which the ESC can

change its output, which is the maximum frequency at which the motor can change

speeds.

Most quadrotor ESCs (including the ones used here) are designed to receive PWM

signals with pulsewidths in the 1-to-2 ms range. Usually, a 1-ms pulsewidth cor-

responds to the minimum motor speed and a 2-ms pulsewidth corresponds to the

maximum motor speed. We program the ESCs to accept PWM signals with a min-
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imum pulsewidth of 0.65 ms and a maximum pulsewidth of 2.0 ms. The signals

with 0.65-ms and 2.0-ms pulsewidths spin the propellers at speeds ωmin > 0 and

ωmax > ωmin, respectively, which we measure using a digital tachometer. ESCs are

designed to provide a near-linear relationship between pulsewidth and motor speed.

Thus, given the desired propeller speeds ωi ∈ [ωmin, ωmax] with i = 1, ..., 4 computed

by (3.7), we compute the corresponding pulsewidth as

pwi , 0.65 + 1.35
ωi − ωmin

ωmax − ωmin

.

We use upm-pca9685 library functions [49] to set the pulsewidth for each ESC-motor

pair. The PCA-9685 driver generates PWM signals with the prescribed pulsewidths

and continues to do so independently until we provide new pulsewidth values.

4.4 Estimation of Physical Parameters

Estimates of the physical parameters m, l, k, b, Ixx, Iyy, Izz, and Ip of the quadrotor

platform are needed to implement the control given by (3.1), (3.2), (3.4)–(3.6), and

(3.8). We estimate the parameters m = 1.08 kg and l = 0.1185 m using a scale

and ruler. We estimate the moments of inertial Ixx, Iyy, and Izz by treating the

fully assembled quadrotor as a physical pendulum and performing a swing test. For

example, to estimate Ixx we swing the quadrotor about an axis that is parallel to and

a distance lxx from b̂1, and measure the resulting period of oscillation Pxx. Then, Ixx

is estimated as

Ixx =
mglxxP

2
xx

4π2
−ml2xx,

which is derived using the parallel axis theorem and the equation for the period of

a physical pendulum of mass m and inertia Ixx under small amplitude oscillations

[54]. In this case we obtain Ixx = 0.00585 kg·m2. The moments of inertia Iyy =

0.0054 kg·m2 and Izz = 0.007 kg·m2 are estimated in the same way. We estimate
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Ip = 0.00002 kg·m2 by measuring the length and mass of the propeller and treating

it as a uniform rod.

We estimate the propeller thrust coefficient k through experimental tuning. We

adjust the value of k used in (3.8) until the quadrotor hovers at a desired height.

Specifically, we command a constant height of 1 m using pg(t) = [0 0 z(t) + 1]T m

and observe the behavior of the quadrotor. If the quadrotor settles above 1 m, then

the estimate of k is too low. If we underestimate the value of k, then the propeller

speeds computed from (3.8) will be too large, and the resulting thrust will cause

the quadrotor to settle above 1 m. Likewise, if the quadrotor settles below 1 m,

then the estimate of k is too high. We adjust k accordingly until the quadrotor

reaches 1 m altitude and remains there. For a constant pulsewidth command pwi, the

motor speeds, and consequently the thrust decrease as the battery voltage decreases.

By adjusting k at various battery levels, we found that k can be expressed as k =

(ebat−5.1)×10−6, where the battery voltage is ebat ∈ [11.1, 12.6] volts. Therefore, we

adjust the value of k used in the control before each flight, according to the battery

voltage.

We also estimate the propeller drag coefficient b through experimental tuning. If

the value of b used in (3.8) is the same order of magnitude as the value of k used in

(3.8), then the quadrotor is unstable. Analogous to the case where k is overestimated,

overestimating b causes the actual torque about b̂3 to be less than τb3 . We found that

decreasing the value of b by 1 to 2 orders of magnitude stabilizes the quadrotor.

Further decreasing b, we found that if b ≤ 5.0 × 10−8 kg·m2/rad2, the quadrotor

exhibits high-frequency, low-amplitude oscillations about the b̂3 axis and can become

unstable. We reproduce this oscillation effect in simulation by using a smaller value

for b in the control, which implies that a value b ≤ 5.0 × 10−8 kg·m2/rad2 is an

underestimate of the true value. Thus, we increase our estimate of b used in (3.8).

The estimate is b = 1.4× 10−7 kg·m2/rad2, which provides a stable response to yaw
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commands and no visible oscillations. Note that b could be better estimated by hard

coding the input τb3 , and then measuring the torque produced about the b̂3 axis.

Then, the value of b used in (3.8) could be adjusted until the torque produced about

the b̂3 axis equals the hard-coded input τb3 . Similar to the thrust force, we expect the

torque produced about b̂3 to decrease as the battery voltage decreases. Experiments

could be conducted to determine b as a function of battery voltage.
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Chapter 5 Experimental Results and Discussion

In this chapter, we present results from collision avoidance and destination seek-

ing experiments using the quadrotor described in Chapter 4. In these experiments,

all feedback data is provided by onboard sensors. In addition to the onboard posi-

tion estimate, we measure the position of the quadrotor using an indoor motion-

capture system (OptiTrack with Motive software). The motion-capture position

measurements typically have sub-millimeter accuracy [33], and are used to validate

the onboard position estimates used by the destination seeking method. We es-

timate the velocity using backward-Euler differentiation of the motion-capture po-

sition data, and compare those estimates to the onboard velocity estimates. The

physical parameters of the quadrotor used in these experiments are m = 1.08 kg,

l = 0.1185 m, b = 1.4 × 10−7 kg·m2/rad2, Ixx = 0.00585 kg·m2, Iyy = 0.0054 kg·m2,

Izz = 0.007 kg·m2, and Ip = 0.00002 kg·m2. The propeller thrust coefficient is com-

puted as k = (ebat − 5.1)× 10−6, where ebat ∈ [11.1, 12.6] volts is the battery voltage

measured before takeoff.

Unless otherwise specified, the parameters that follow are those used in the experi-

ments. We use the attitude controller gains kφ = kθ = kψ = 7 and Kω = diag(7, 7, 7),

and the velocity controller gains ku = kv = 3.5 and kw = 2.5. These gains provided

good stability and responsiveness to velocity commands as determined through ex-

perimental tuning. We modify the thrust control to include integral feedback of the
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error ew. Specifically,

T =
m(g − ẇd + kwew + kIw

∫ t
0
ew(τ)dτ)

cφcθ
(5.1)

where we let kIw = 1.0. Thus, if the battery level decreases significantly during a

single flight, then the integral gain on ew will provide compensating thrust to keep

the quadrotor at the desired velocity wd. We also modify the desired pitch and roll

as

θd = tan−1

[
(u̇d − kueu)cψ + (v̇d − kvev)sψ
ẇd − kwew − kIw

∫ t
0
ew(τ)dτ − g

]
, (5.2)

φd = tan−1

[
(u̇d − kueu)cθdsψ − (v̇d − kvev)cθdcψ

ẇd − kwew − kIw

∫ t
0
ew(τ)dτ − g

]
. (5.3)

Analogous to Proposition 2, T is given by (5.1); θ(t) ≡ θd(t) and φ(t) ≡ φd(t), where

θd(t) and φd(t) are given by (5.2) and (5.3); and for all t ≥ 0, ẇd(t) − kwew(t) −

kIw

∫ t
0
ew(τ)dτ 6= g, then eu and ev satisfy

ėu + kueu = 0, ėv + kvev = 0.

We place all poles of the transfer function Gd at −5, which yields α3 = 20, α2 = 150,

α1 = 500, α0 = 625. We place all poles of the transfer function Gψd
at −6, which

yields β2 = 9, β1 = 27, and β0 = 27. We use a yaw angle command ψc = 0. We use

the destination seeking parameters sd = 0.5 m/s and ds = 1.0 m. We break each flight

into three consecutive segments: (i) the quadrotor takes off to an altitude of 1 m, (ii)

flies to the position 1 m above the destination, and (iii) lands. When the quadrotor

appears to have reached the end of each segment, we provide a key command that

tells the quadrotor to continue to the next segment. We break the flights into these

segments to avoid ground effects during segment (ii), which is where the quadrotor

avoids obstacles, and because the optical flow and sonar sensors are inaccurate at

altitudes below 0.3 m. In all experiments the quadrotor’s initial position is taken
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to be oI and all obstacles are fixed with respect to oI. We do not have an onboard

measurement of the destination pg, so before takeoff we provide the value pg(0). We

use dead reckoning to approach the vicinity of pg. The destinations in Experiments

1–3 are limited to distances between 3 and 4 m from oI to ensure that the whole flight

is recorded in the motion-capture volume. In Experiment 4, we fly the quadrotor

in a hallway without the motion-capture system to test the collision avoidance and

destination seeking methods over a larger distance.

Define dmin , min{||p1||, ..., ||pn||}, which is the distance between the quadrotor’s

center of mass oB and the nearest point on an obstacle. The objective of these

experiments is to reach the destination subject to the constraint that for all t ≥ 0,

dmin(t) > rc.

Experiment 1. In this experiment, we let rc = 0.22 m, ai = 0.56 m, bi = 0.46 m,

ci = 0.25 m, ao = 1.1 m, bo = 0.75 m, co = 0.53 m, and Umax = 1.0.

In this experiment there is a single obstacle. The quadrotor’s initial position is the

origin, and the destination is pg(0) = [4 0 0]T m. The obstacle is a cardboard box

(represented by the red square in Figure 5.1), which is placed between the quadrotor’s

initial position and its destination. In this experiment, we test obstacle avoidance in

the ı̂–̂ plane and thus compute wc as a function of only Vg, that is, we do not use an

avoidance velocity in the k̂ direction.

Figure 5.1 shows an overhead view of the quadrotor’s trajectory in the ı̂–̂ plane,

where the blue line is the onboard trajectory estimate and the black line is the offboard

trajectory measurement. The onboard trajectory estimate varies locally from the

offboard measurement, but the two trajectories remain close throughout the flight.

The variation of the onboard estimate from the offboard measurement suggests that

the onboard position estimate is subject to noise, but over time it does not accumulate

a significant bias. Figure 5.2 shows the onboard estimate and offboard measurements

of the quadrotor’s trajectory in three dimensions.
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Figure 5.1: Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-
jectory in the ı̂–̂ Plane.
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Figure 5.2: Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-
jectory in 3D.

Between t = 5 s and t = 13 s, the top plot in Figure 5.3 shows that the quadrotor

slows its progress towards the destination as it approaches the obstacle. Then, the

quadrotor moves in the −̂ direction until there is a unobstructed path between oB

and the destination. Between t = 13 s and t = 25, the bottom plot in Figure 5.3

shows that the quadrotor resumes its progress towards the destination. Note that

||pg|| 6= 0 at approximately t = 25 s. In this case, the quadrotor was not directly
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above the destination when we provided the key command to land the quadrotor.
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Figure 5.4 shows the offboard position measurements and the onboard position

estimates. The root mean squared (RMS) errors between the offboard measurements
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Figure 5.4: Onboard Position Estimates and Offboard Position Measurements.
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and the onboard estimates of x, y, and z are 0.0648 m, 0.0815 m, and 0.0110 m

respectively. The onboard z estimate is the most accurate because the sonar sensor

directly measures z, while the onboard estimates of x and y are less accurate because

they are obtained by integrating the estimates of u and v.

Figure 5.5 shows the offboard velocity estimates and the onboard velocity estimates.
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Figure 5.5: Onboard Velocity Estimates and Offboard Velocity Estimates.

The RMS errors between the offboard estimates and the onboard estimates of u, v, and

w are 0.1156 m/s, 0.0522 m/s, and 0.0357 m/s respectively. Since the offboard velocity

estimates are obtained by finite differentiation of the offboard position measurements

we do not assume that they are velocity truths. However, we do assume that they are

unbiased. The onboard velocity estimates stay close to the offboard velocity estimates,

which means that the discrete-time Kalman filter described in section 4.2.2 works

as expected. The sharp peaks in the offboard velocity estimates at approximately

t = 1.5 s result from finite differentiation of noisy offboard position measurements.

The noisy position measurements occur when the motion-capture system is unable to

track one or more of the retro-reflective markers on the quadrotor.
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Figure 5.6 shows that, on average, the velocities stay close to the desired velocities.
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Figure 5.6: Velocities u, v, and w and Desired Velocities ud, vd, and wd.

The velocities u and v oscillate about the desired velocities ud and vd, but w stays

closer to the desired velocity wd. We should expect better tracking of wd because

the physical control input T makes ew go to zero exponentially. In contrast, we

should expect larger errors eu and ev, since these depend on the attitude errors eφ

and eθ being zero. The RMS errors between the velocities and desired velocities are

0.1146 m/s, 0.1007 m/s, and 0.0977 m/s respectively. Though these tracking errors

appear to be significant in Figure 5.6, the speed of the quadrotor is small, and the

destination seeking and collision avoidance objectives are met.

Figure 5.7 shows that the quadrotor roughly tracks the desired Euler angles. Simi-

larly to the velocities, the values of the Euler angles are small, which is why the errors

appear to be significant in Figure 5.7. The RMS errors between the Euler angles and

desired Euler angles are 0.0386 rad, 0.0383 rad, 0.0198 rad respectively.
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Figure 5.7: Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd.

Figure 5.8 shows the quadrotor’s commanded propeller speeds, which are not neces-

sarily the true propeller speeds. Section 4.3 discusses the process we use to command
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Figure 5.8: Desired Propeller Speeds ω1, ω2, ω3, and ω4.
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the propellers at the speeds in Figure 5.8. Unfortunately, there is no way to measure

the true propeller speeds during a flight.

Experiment 2. In this experiment, we let rc = 0.22 m, ai = 0.51 m, bi = 0.37 m,

ci = 0.24 m, ao = 0.92 m, bo = 0.67 m, co = 0.43 m, and Umax = 1.1.

In confined indoor spaces, a quadrotor could encounter multiple obstacles simulta-

neously. This experiment tests the behavior of the quadrotor in such a situation. The

quadrotor’s initial position is the origin, and the destination is pg(0) = [3.5 0 0] m.

Two obstacles are placed so that the quadrotor will detect one, and make an avoid-

ance maneuver towards the second obstacle. Then, the quadrotor must fly in between

both obstacles such that they pass through opposite sides of the quadrotor’s potential

field. As in Experiment 1, we compute wc using only Vg, since there are no obstacles

that the quadrotor must fly over or under.

Figure 5.9 shows an overhead view of the quadrotor’s trajectory in the ı̂–̂ plane.
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Figure 5.9: Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-
jectory in the ı̂–̂ Plane. The red squares are the obstacles that the quadrotor must
avoid.

Similarly to Figure 5.1, Figure 5.9 shows that the onboard position estimate varies
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locally from the offboard position measurement, but they remain close and are close at

the end of the flight. Figure 5.10 shows the quadrotor’s trajectory in three-dimensions

as it avoids the obstacles and flies towards the destination. As the quadrotor moves
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Figure 5.10: Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-
jectory in 3D. The red boxes are the obstacles that the quadrotor must avoid.

around the first obstacle, it flies towards the second obstacle, and then moves towards

the back side of the first obstacle. At approximately t = 16 s, the top plot in Figure

5.11 shows that the quadrotor comes within 10 cm of the back side of the first obstacle.

However, since we keep track of the positions p1, ..., pn of obstacles, the quadrotor

reacts to the first obstacle even though it is outside of the Realsense camera’s field of

view. The bottom plot in Figure 5.11 shows that the quadrotor approaches pg and

lands approximately 10 cm away from pg.
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the distance dmin to the nearest point on the obstacle, and the orange dotted line is
the collision distance rc = 0.22 m. The bottom plot shows the distance ||pg|| to the
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Figure 5.12 shows that the onboard position estimates are close to the offboard

measurements. The RMS errors between the offboard measurements and the onboard
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Figure 5.12: Onboard Position Estimates and Offboard Position Measurements.

55



estimates of x, y, and z are 0.1009 m, 0.0721 m, and 0.0099 m. The onboard estimate

of z is the most accurate.

Figure 5.13 shows that the onboard velocity estimates stay close to the offboard

velocity estimates. The RMS errors between the offboard estimates and the onboard
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Figure 5.13: Onboard Velocity Estimates and Offboard Velocity Estimates.

estimates of u, v, and w are 0.0953 m/s, 0.1079 m/s, and 0.0995 m/s.

Figure 5.14 shows that, on average, the velocities u, v, and w stay close to the

desired velocities ud, vd, and wd. The RMS errors between the velocities and desired

velocities are 0.1676 m/s, 0.1587 m/s, and 0.1112 m/s, which are larger than those

in Experiment 1. Figure 5.15 shows that the Euler angles roughly follow the desired

Euler angles. The RMS errors between the Euler angles and desired Euler angles are

0.0575 rad, 0.0394 rad, and 0.0260 rad. These RMS errors are larger than those in

Experiment 1, which could explain why the RMS errors between the velocities and

desired velocities are larger.
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Figure 5.14: Velocities u, v, and w and Desired Velocities ud, vd, and wd.
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Figure 5.15: Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd.

Figure 5.16 shows the commanded propeller speeds, which are the quadrotor’s in-

puts. These inputs are bounded and do not appear to have large slopes, so they are
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acceptable inputs to the quadrotor’s motors.
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Figure 5.16: Desired Propeller Speeds ω1, ω2, ω3, and ω4.

Experiment 3. In Experiments 1 and 2, we included avoidance velocities in the

ı̂–̂ plane only. In this experiment we include avoidance velocities in the ı̂, ̂, and

k̂ directions. The quadrotor’s initial position is the origin, and the destination is

pg(0) = [3.5 0 0]T m. We use the same potential field and destination seeking

parameters as in Experiment 2.

Figure 5.17 shows an overhead view of the quadrotor’s trajectory in the ı̂–̂ plane.

Figure 5.18 shows a three-dimensional view of the quadrotor’s trajectory. The quadro-

tor moves downwards and away from the tall part of the obstacle, then detects the

low lying part of the obstacle, and proceeds to fly over it and towards the destination.
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Figure 5.17: Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-
jectory in the ı̂–̂ Plane.
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Figure 5.18: Onboard Estimate and Offboard Measurement of the Quadrotor’s Tra-
jectory in 3D.

The dip and rise of the trajectory indicates that the quadrotor follows avoidance

velocity commands in three dimensions.
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Figure 5.19 shows that the quadrotor reaches its destination while avoiding the

obstacles. The top plot shows that the quadrotor avoids collision and remains farther
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Figure 5.19: Distance to Obstacle and Distance to Destination. The top plot shows
the distance dmin to the nearest point on the obstacle, and the orange dotted line is
the collision distance rc = 0.22 m. The bottom plot shows the distance ||pg|| to the
destination.

than 39 cm from the obstacle. The bottom plot shows that the quadrotor lands

approximately 47 cm away from its destination.

Figure 5.20 shows that the onboard position estimates are close to the offboard

position measurements. The RMS errors between the offboard measurements and

the onboard estimates of x, y, and z are 0.0429 m, 0.0319 m, and 0.0128 m. The

onboard estimate of z is the most accurate.

Figure 5.21 shows the onboard and offboard velocity estimates. The RMS errors be-

tween the offboard estimates and the onboard estimates of u, v, and w are 0.1105 m/s,

0.1333 m/s, and 0.1237 m/s.
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Figure 5.20: Onboard Position Estimate and Offboard Position Measurement.
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Figure 5.21: Onboard Velocity Estimates and Offboard Velocity Estimates.

Figure 5.22 shows that the quadrotor tracks the desired velocities with some occa-

sional deviation from the desired velocities. The RMS errors between the velocities
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Figure 5.22: Velocities u, v, and w and Desired Velocities ud, vd, and wd.

desired velocities are 0.0954 m/s, 0.0785 m/s, and 0.1303 m/s.

Figure 5.23 shows that the Euler angles roughly follow the desired Euler angles.
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Figure 5.23: Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd.

The RMS errors between the Euler angles and the desired Euler angles are 0.0421 rad,
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0.0523 rad, and 0.0119 rad.

Figure 5.24 shows the quadrotor’s desired propeller speeds.
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Figure 5.24: Desired Propeller Speeds ω1, ω2, ω3, and ω4.

Experiment 4. In this experiment, we let rc = 0.22 m, ai = 0.533 m, bi = 0.332 m,

ci = 0.237 m, ao = 1.067 m, bo = 0.664 m, co = 0.474 m, and Umax = 1.25. We use

the destination seeking parameters sd = 0.8 m/s and ds = 1.0 m.

Experiments 1–3 were recorded in the motion-capture volume, which restricted the

destination to a maximum distance of 4 m from the takeoff location. In this exper-

iment we test the destination seeking and collision avoidance over a larger distance

(10 m) through a hallway. Note that we increased the desired speed sd. We found

that a larger desired speed keeps the quadrotor on course over larger distances. Since

the quadrotor will be traveling faster, we increase the maximum potential and the size

of the potential field. The quadrotor’s initial position is the origin and the destination

is pg(0) = [10 − .2 0] m. As in Experiments 1 and 2, we compute wc using only Vg

Figure 5.25 shows an overhead view of the quadrotor’s trajectory in the ı̂–̂ plane.

Based on the previous experimental results, we assume that the trajectory shown in
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Figure 5.25 (i.e., the onboard estimate) is close to the true trajectory. Figure 5.26
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Figure 5.25: Onboard Estimate of the Quadrotor’s Trajectory in the ı̂–̂ Plane

shows a three-dimensional view of the quadrotor’s trajectory. We visually confirmed

that the quadrotor did not collide with any of the obstacles during flight, and that it

landed at a distance of approximately 55 cm from the destination, which we obtained

using a meter stick.

Start

Finish

Figure 5.26: Onboard Estimate of the Quadrotor’s Trajectory in 3D

The top plot in Figure 5.27 shows that the quadrotor’s closest approach to an

obstacle was 17 cm at approximately t = 10 s. The bottom plot in Figure 5.27 shows

that the quadrotor approaches its destination between t = 3 s and t = 25 s. After

landing, the onboard estimate of ||pg|| was approximately 1 m, which was larger than

the measured distance of 55 cm.
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the distance dmin to the nearest point on the obstacle, and the orange dotted line is
the collision distance rc = 0.22 m. The bottom plot shows the distance ||pg|| to the
destination.

Figure 5.28 shows that the quadrotor roughly tracks the desired velocities. The
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Figure 5.28: Velocities u, v, and w and Desired Velocities ud, vd, and wd.

RMS errors between the velocities and the desired velocities are 0.1646 m/s, 0.1415 m/s,

and 0.1095 m/s.
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Figure 5.29 shows that the Euler angles roughly follow the desired Euler angles. The

RMS errors between the Euler angles and the desired Euler angles are 0.0567 rad,

0.0874 rad, and 0.0149 rad.
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Figure 5.29: Euler Angles φ, θ, and ψ and Desired Euler Angles φd, θd, and ψd.

The quadrotor’s desired propeller speeds are show in Figure 5.30.
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Figure 5.30: Desired Propeller Speeds ω1, ω2, ω3, and ω4.
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5.1 Discussion

In the experiments, we tested the collision avoidance and destination seeking meth-

ods using the experimental platform introduced in Chapter 4. First, we tested the

collision avoidance in the i–j plane and destination seeking with one obstacle. In Ex-

periment 2, we added an obstacle to constrain the quadrotor’s movement as it avoided

the first obstacle and flew towards the destination. In Experiment 3, we tested colli-

sion avoidance and destination seeking, where the avoidance velocities were generated

in three dimensions. In Experiment 4, we made the destination farther than twice

the distance of the previous destinations, and tested collision avoidance in the i–j

plane with three obstacles. In all experiments the quadrotor avoided collision with

all obstacles, and on average landed with approximately 8% (of ||pg(0)||) error be-

tween its final position and its destination. For Experiments 1–3, we showed that

the quadrotor’s onboard position and velocity estimates stayed close to the offboard

measurements, and did not accumulate significant bias. We also showed that the

quadrotor tracked its desired velocities and Euler angles, but did so with errors that

were larger than expected. The following discussion considers a possible source of

these errors and an implementation strategy, for future work, that could reduce the

controller’s errors.

Recall that the desired propeller speeds are algebraic functions of the thrust T and

the torques τb1 , τb2 , and τb3 , which are functions of the estimated mass and moments

of inertia of the quadrotor. Our estimates of the moments of inertia are likely imper-

fect, which means the torque values computed by the controller are also imperfect.

In addition, we made the simplifying aerodynamic assumptions (2.4) and (2.9)–(2.11)

about the relationships between the thrust, torques, and propeller speeds. We also

made the assumption that the ESCs drive the motors at speeds that are a linear

function of the pulse-widths of the PWM signals. A significant source of the errors

67



between the quadrotor’s velocity and desired velocity, and attitude and desired atti-

tude could be attributed to the discussed assumptions, since they are major features

of implementation that were not considered in the numerical simulations. Though

these assumptions were good enough to ensure that the quadrotor was stable, and

that the objectives were met, other implementation strategies could be pursued to

reduce the controller’s errors. For example, we could measure the thrust force and

drag torque produced by each motor-ESC pair as a function of pulse-widths, for a

series of pulse-widths, and record the results. We could then fit a function to the

results, or linearly interpolate between each recorded data point to obtain a continu-

ous piecewise-linear function for each motor-ESC pair. Either way, the new functions

would take the thrust and torques computed by (3.2) and (3.3) as inputs and output

the pulse-widths of the signals that drive the ESCs. This implementation strategy

could yield physical inputs that are closer to the computed inputs, since they would

be supported by experiment rather than untested assumptions. As a result the inner-

and middle-loop controllers could yield smaller errors between the actual and desired

states.

68



Chapter 6 Conclusions and Future Work

We presented a multi-loop guidance and control method for a quadrotor in a GPS-

denied environment. The outer-loop guidance method consists of a potential-field-

based collision avoidance method and a constant speed destination seeking method,

which generate desired velocities for the quadrotor. The middle-loop velocity con-

troller uses the desired velocities to generate the thrust input and the desired atti-

tude. The inner-loop attitude controller uses the desired attitude to generate the

desired angular rates and the body-torque inputs. We proved exponential converge

of the closed-loop attitude subsystem to certain Euler angle equilibria, which yields

the conditions required for velocity tracking.

For the experiments, we presented a custom-built quadrotor, equipped with on-

board vision sensing, an IMU, and an optical flow camera that provide feedback for

the guidance and control algorithms. An onboard Linux-based single-board computer

communicates the sensors and controls the motors. In Appendix D, we provide our

own software that implements the guidance, navigation, and control methods. In four

experiments, we showed that the quadrotor successfully achieved the collision avoid-

ance and destination seeking objectives. We showed that the onboard estimates of

position and velocity approximated the true values (provided by an offboard motion-

capture system) within a reasonable margin of error.

In the future, we could refine the motor actuation strategy using measured input-

output characteristics of the ESC-motor pairs. The current actuation method relies

on assumptions about the ESCs and the aerodynamics of the propellers. We explained

how we might discard these assumptions in favor of an approach that could provide
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more physically accurate thrust and torque inputs. Different estimation techniques

(i.e. particle filter, unscented Kalman filter) could be implemented for comparison

with the current onboard estimation techniques. Changes to the inner-loop con-

troller could be made to make the controller more robust to parameter uncertainties,

including moments of inertia, and propeller thrust and drag coefficients. In addi-

tion, the destination seeking method could be modified to prevent the well know

"local-minima" problem described in [21]. For example, instead of seeking a fixed

destination, the quadrotor could follow a constant speed command in the direction

of known free space, which could be determined by the onboard vision sensor. Addi-

tional randomization or machine-learning heuristics could be applied to this seeking

technique, while the collision avoidance method could remain the same.
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Appendix A

Controller Derivatives

Recall that computation of (3.2) requires the first and second analytic derivatives

of the desired pitch (3.4) and the desired roll (3.5). We re-write (3.4) and (3.5) using

nested place holder definitions to make the differentiation process more feasible and

reduce the number of repeated calculations in implementation. Define

αu , u̇d − kueu, αv , v̇d − kvev, αw , ẇd − kwew − g,

βθ ,
αucψ + αvsψ

αw
, βφ ,

αucθdsψ − αvcθdcψ
αw

.
(6.1)

Note that the following derivatives θ̇d, φ̇d, θ̈d, φ̈d, ṗd, q̇d, and ṙd where T , θd, and φd

are given by (5.1)–(5.3), should be computed using

αIw , ẇd − kwew − kIw

∫ t

0

ew(τ)dτ − g

and its appropriate derivatives in place of αw and its derivatives.

Then
θd = tan−1βθ,

φd = tan−1βφ.

(6.2)

Algorithmically θd must be computed before βφ. Next we differentiate the expressions

in (6.1), which yields

α̇u = üd − kuėu, α̇v = v̈d − kvėv, α̇w = ẅd − kwėw,
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β̇θ =

[
sψ
αw

sψ
αw

]α̇u + αvψ̇

α̇v − αuψ̇

− βθ α̇w
αw

,

β̇φ =

[
sψ
αw

cψ
αw

](α̇u + αvψ̇)cθd − αuθ̇dsθd

(αuψ̇ − α̇v)cθd + αvθ̇dsθd

− βφ α̇w
αw

.

The first derivatives of the desired pitch and roll are

θ̇d =
β̇θ

1 + β2
θ

,

φ̇d =
β̇φ

1 + β2
φ

.

(6.3)

Again, note θ̇d must be computed before β̇φ. Next we need the analytic equations for

the inertial jerks ü, v̈, and ẅ. Differentiating (3.3) yields

Ṫ =
−mα̇w

cφcθ
+ T (φ̇tφ + θ̇tθ).

Differentiating (2.6)–(2.8) yields

ü =
−Ṫ
m

(cφsθcψ + sφsψ) +
T

m

[
φ̇(sφsθcψ − cφsψ)

− θ̇cφcθcψ + ψ̇(cφsθsψ − sφcψ)
]
,

v̈ =
−Ṫ
m

(cφsθsψ − sφcψ) +
T

m

[
φ̇(sφsθsψ + cφcψ)

− θ̇cφcθsψ − ψ̇(cφsθcψ + sφsψ)
]
,

ẅ = ω̈d − kωėω,

(6.4)

where ẅ results from differentiating the closed loop dynamics of ew. Taking the second

derivative of (6.1) yields

α̈u =
...
u d − kuëu, α̈v =

...
v d − kvëv, α̈w =

...
wd − kwëw,
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β̈θ =

[
cψ
αw

sψ
αw

]α̈u + 2α̇vψ̇ − αuψ̇2 + αvψ̈

α̈v − 2α̇uψ̇ − αvψ̇2 − αuψ̈

− 2β̇θ
α̇w
αw
− βθ

α̈w
αw

β̈φ =

[
sψ
αw

cψ
αw

][α̈u + αvψ̈ + 2α̇vψ̇ − αu(θ̇2
d + ψ̇2)]cθd − [2θ̇d(α̇u + αvψ̇) + αuθ̈d]sθd

[αuψ̈ − α̈v + 2α̇uψ̇ + αv(θ̇
2
d + ψ̇2)]cθd + [2θ̇d(α̇v − αuψ̇) + αvθ̈d]sθd


− 2β̇φ

α̇w
αw
− βφ

α̈w
αw

.

The second derivatives of the desired pitch and roll are

θ̈d =
β̈θ

1 + β2
θ

− 2βθβ̇
2
θ

(1 + β2
θ )

2
,

φ̈d =
β̈φ

1 + β2
φ

−
2βφβ̇

2
φ

(1 + β2
φ)2

,

(6.5)

where θ̈d must be computed before β̈φ. Differentiating (3.1) yields

ṗd =(φ̈d − kφėφ)− (ψ̈d − kψėψ)sθ − (ψ̇d − kψeψ)θ̇cθ,

q̇d =(θ̈d − kθėφ)cφ − (θ̇d − kθeφ)φ̇sφ + (ψ̈d − kψėψ)sφcθ

+ (ψ̇d − kψeψ)(φ̇cφcθ − θ̇sφsθ),

ṙd =− (θ̈d − kθėφ)sφ − (θ̇d − kθeφ)φ̇cφ + (ψ̈d − kψėψ)cφcθ

− (ψ̇d − kψeψ)(φ̇sφcθ + θ̇cφsθ).

(6.6)
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Appendix B

Hardware Terminology

• SBC – single board computer: a computer or microcontroller built on a single

circuit board. An SBC usually has as an operating system, processor, memory,

and input-output functionality.

• PCB – printed circuit board: single- or multi-layered platform that connects

electrical components or integrated circuits.

• ESC – electronic speed controller: a single-input single-output microcontroller

that controls the speed of a brushless motor.

• PWM – pulse-width modulation/modulated: a technique used by a voltage

source that uses only discrete voltage levels to supply a continuous average

voltage.

• I2C – inter-integrated circuit: a communication protocol used by microcon-

trollers and peripheral integrated circuits (sensors, hardware devices, etc).

• IMU – inertial measurement unit: a sensor that measures acceleration, rotation,

and magnetic field.

• DMP – digital motion processor: proprietary sensor fusion hardware unit on

Invensense IMUs.
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• SDK – software development kit: library or code base, often associated with a

hardware device, that is used to build applications.

Hardware Components

(a) DJI F330 quadrotor frame with universal landing gear

(b) Floureon 2200 mAh 3-cell Lipo battery

(c) Invensense MPU-9250 IMU

(d) 3DR PX4Flow optical flow camera and sonar

(e) Intel Realsense R200 depth camera

(f) UP-board SBC running Ubilinux operating system

(g) LB-LINK Wireless USB adapter

(h) NXP Semiconductors PCA-9685 PWM driver

(i) RCmall 20-ampere ESCs

(j) SunnySky 2212-13 980kv brushless motors

(k) 8x4.5 inch ABS plastic propellers

(l) 3D-printed mounts for hardware

Software Libraries

(a) I2Cdevlib – library for interfacing with I2C devices (also configures DMP)

(b) librealsense – open-source SDK for Intel Realsense cameras

(c) libupm-pca9685 – software driver for PCA-9685 PWM driver

(d) libmraa – linux library that implements I2C protocol
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Appendix C

Discretized Extended Kalman Filter Review

Let f : Rn → Rn and consider the set of nonlinear differential equations in state

space form, that is

ẋ = f(x,w)

where x ∈ Rn is the state, and w ∈ Rp is the zero-mean process noise vector. Let

Ts > 0 be the sample time. For all k ∈ N , {0, 1, 2, ...}, define xk , x(kTs). Let

h : Rn → Rm be the output mapping, and define the measured output ∀k ∈ N

zk , h(xk) + vk,

where vk ∈ Rm is the sensor noise vector. Let x̂k be our estimate of xk and let

Fk ,
∂f

∂x

∣∣∣∣
(x,w)=(x̂k,0)

, Gk ,
∂f

∂w

∣∣∣∣
(x,w)=(x̂k,0)

, Hk ,
∂h

∂x

∣∣∣∣
x=x̂k

be the state transition matrix, process noise transition matrix, and measurement

matrix respectively. Let the discrete state transition matrix be

Φk , I + FkTs, (6.7)
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where I is the n × n identity matrix. Let the process noise variance matrix be

W , diag(σ2
1, ..., σ

2
p), and compute the discrete process noise matrix

Qk =

∫ Ts

0

(I + Fkt)GkWGT
k (I + Fkt)

Tdt. (6.8)

We define the sensor noise variance matrix R , diag(κ2
1, ..., κ

2
m) and compute the

Kalman gain Kk as follows

Mk = ΦkPkΦ
T
k +Qk, (6.9)

Kk = MkH
T
k (HkMkH

T
k +R)−1. (6.10)

The new state estimate x̂k+1 and covariance Pk+1 are obtained using the equations

x̄k+1 = x̂k + f(x̂k, 0)Ts, (6.11)

x̂k+1 = x̄k+1 +Kk(zk+1 − h(x̄k+1)), (6.12)

Pk+1 = (I −KkHk)Mk. (6.13)

Equations (6.9)–(6.13) are iterative and values for the initial state estimate x̂0 and

initial covariance P0 must be chosen.
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Appendix D

flight.cpp

////////////////////////////////////////////////////////////////////////////

// This file contains guidance, navigation, and control code implementing

↪→ the methods described in the thesis

// "Autonomous Quadrotor Collision Avoidance and Destination Seeking in a

↪→ GPS-Denied Environment"

// by Thomas Kirven

////////////////////////////////////////////////////////////////////////////

/** ---- Information ---- **/

/* - Most data structures and variables are defined in flight.h */

/* - The ones defined here are parameters that affect the */

/* dynamics and control, as well as hardware instances */

#include "flight.h" // flight.h contains all other #inlcudes, data structure

↪→ inits, and functions

/** ---- Actuator, Guidance, and Control Configuration ---- **/

/* - define PWM to idle props and fly */

/* - comment out PWM to disable propellers (sensors and control computations

↪→ still run)*/

/* - define FLOW to enable optical flow and velocity control */
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/* - comment out FLOW to track zero attitude and altitude command z_g */

/* - define REALSENSE to use obstacle avoidance */

#define PWM

#define FLOW

#define REALSENSE

#ifdef PWM

#define IDLE

#define FLY

#endif

#ifdef FLOW

#define VELOCITY_CTRL

#define DEST_SEEK // enable destination seeking, set x_g,y_g,z_g as

↪→ destination

//#define FREE_FLY // enable keyboard control

// i,k,j,l - commands velocity forward back left and right

// z - zeros the velocity command

#endif

#ifdef REALSENSE

#define AVOIDANCE // comment out to remove avoidance velocity, but still

↪→ record positions of obstacles

#endif

/* -- enable/disable Integral action -- */

/* - define VIC to use velocity integral control */

/* - define AIC to use Euler angle integral control */

/* - define RIC to use rate integral control */
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//#define VIC

//#define AIC

//#define RIC

/* -- Adaptive adjustments -- */

/* Recommend use with zero velocity command and constant height command */

/* - define ADPT_K to adapt thrust constant k based on e_w */

/* - define ADPT_ATT to adapt reference quaternion based on e_u and e_v */

//#define ADPT_K

//#define ADPT_ATT

float g2r=.012383; // raw gyro units to radians (multiplier for 1000 deg/s)

//float g2r=.024766; // raw gyro units to radians (multiplier for 2000 deg/s

↪→ )

float a2si=0.001133; // raw accel to m/s^2 (multiplier)

int main() {

// Bash script which checks if this program (flight.cpp) is running

// - if not, it execute ’kpwm’ which shuts down the motors

printf("Starting safe_check...\n");

system("./safe_check &");

// set up MPU9150/9250 IMU

MPU9150 mpu=MPU9150();

mpu.initialize();

devStatus = mpu.dmpInitialize();

if (devStatus == 0) {
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mpu.setDMPEnabled(true); // enable onboard motion processor

mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main while loop knows it’s okay to use

↪→ it

printf("DMP ready! Waiting for interrupt...");

dmpReady = true;

// get expected DMP packet size for later comparison

packetSize = mpu.dmpGetFIFOPacketSize();

printf("packetSize = %d \n",packetSize);

} else {

// ERROR!

// 1 = initial memory load failed

// 2 = DMP configuration updates failed

// (if it’s going to break, usually the code will be 1)

printf("DMP Initialization failed (code %d ) \n",devStatus);

}

// set up Realsense R200

#ifdef REALSENSE

rs::log_to_console(rs::log_severity::warn);

//rs::log_to_file(rs::log_severity::debug, "librealsense.log");

rs::context ctx;

if(ctx.get_device_count() == 0) throw std::runtime_error("No device

↪→ detected. Is it plugged in?");
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rs::device & dev = *ctx.get_device(0);

dev.enable_stream(rs::stream::depth, rs::preset::best_quality);

dev.enable_stream(rs::stream::color, rs::preset::best_quality);

dev.enable_stream(rs::stream::infrared, rs::preset::best_quality);

try { dev.enable_stream(rs::stream::infrared2, rs::preset::best_quality);

↪→ } catch(...) {}

dev.start();

// preset 5 minimizes the number of false positives (depth data where

↪→ there is no object)

apply_depth_control_preset(&dev,5);

const rs::intrinsics depth_intrin = dev.get_stream_intrinsics(rs::stream::

↪→ depth);

#endif

/* Initial values */

px[0]=10; py[0]=10; pz[0]=0;dist[0]=10;

x_e[0]=0; y_e[0]=0; z_e[0]=0;

z_o[0]=0;

u_e[0]=0; v_e[0]=0; w_e[0]=0; // 1st intermediate frame velocities

ud[0]=0; vd[0]=0; wd[0]=0; // 1st intermediate frame accelerations

udb[0]=0; vdb[0]=0; wdb[0]=0; // body accelerations

phi[0]=0; theta[0]=0; psi[0]=0; // Euler angles

phid=0; thetad=0; psid=0; // Euler ange rates

p[0]=0; q[0]=0; r[0]=0; // body rates
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pd[0]=0; qd[0]=0; rd[0]=0; // rate derivatives

e_u[0]=0; e_v[0]=0; e_w[0]=0; // velocity errors

e_phi[0]=0; e_the[0]=0; e_psi[0]=0; // angle errors

e_p[0]=0; e_q[0]=0; e_r[0]=0; // rate errors

Ie_u[0]=0; Ie_v[0]=0; Ie_w[0]=0; // integral of velocity errors

Ie_ph[0]=0; Ie_th[0]=0; Ie_ps[0]=0; // integral of angle errors

Ie_p[0]=0; Ie_q[0]=0; Ie_r[0]=0; // integral of rate errors

alw=-10.0; alwd=.1;

psi_d=0; // desired yaw

Time[0]=0; // initial time

sample_freq[0]=50;

// reference model derivatives (previous value holders)

ud_cp=0; vd_cp=0; wd_cp=0; psid_cp=0;

u2_cp=0; v2_cp=0; w2_cp=0; psi2_cp=0;

u3_cp=0; v3_cp=0; w3_cp=0; psi3_cp=0;

u4_cp=0; v4_cp=0; w4_cp=0;

// refrence model commands

u_c[0]=0; v_c[0]=0; w_c[0]=0; psi_c[0]=0;

ud_c=0; vd_c=0; wd_c=0; psid_c=0;

u2_c=0; v2_c=0; w2_c=0; psi2_c=0;

u3_c=0; v3_c=0; w3_c=0; psi3_c=0;
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// Kalman filter initializations

// acceleration

ph_k.setZero(); Q_k.setZero(); P_k.setZero(); R_k.setZero(); C_k.setZero()

↪→ ;

P_k(0,0)=.01; P_k(1,1)=.01; P_k(2,2)=.01; // initial covariance

K_k.setZero();

x_k.setZero();

x_k(0)=.01; x_k(1)=.01; x_k(2)=.01; // initial state

R_k(0,0)=1; R_k(1,1)=1; R_k(2,2)=1; // accel sensor noise matrix

C_k(0,0) = 1; C_k(1,1) = 1; C_k(2,2) = 1;

// process noise variances (gyro std dev^2)

float phdv=.01*.01;

float thdv=.01*.01;

float psdv=.01*.01;

// velocity

x.setZero(); y.setZero();

A.setZero(); _Q.setZero();

A = matrix::eye<float,4>(); B.setZero();

C.setZero(); R.setZero(); _P.setZero();

S_I.setZero(); K.setZero();

_P(0,0) = .01; _P(1,1) = .01; _P(2,2) = .01; _P(3,3) = .01;

x(0)=.01; x(1)=.01; x(2)=.01; x(3)=.01;

C(0,0) = 1; C(1,1) = 1; C(2,3) = 1; // measurement matrix

_Q(0,0)=0.00001; _Q(1,1)=0.00001; _Q(2,2)=.05; _Q(3,3)=.0005; // process

↪→ noise matrix
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R(2,2) = .01;

Om.setZero();

V_q.setZero();

V_qI.setZero();

V_qIp.setZero();

// set up keyboard io

struct termios ctty;

tcgetattr(fileno(stdout), &ctty);

ctty.c_lflag &= ~(ICANON);

tcsetattr(fileno(stdout), TCSANOW, &ctty);

// set up flow module on i2c-1

#ifdef FLOW

mraa::I2c* flow;

flow = new mraa::I2c(0);

flow->address(0x42);

#endif

// set up pwm driver

int freq=500; // maximum frequency 500 hz

float per=1000000/freq; // pwm period in microseconds

int high=(int)(2000/per*4095+.5); // integer pulse value cooresponding to

↪→ 2 ms

int low=(int)(650/per*4095+.5); // integer pulse value cooresponding to

↪→ .65 ms
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int inc=(int)((high-low)/200+.5); // pulse width increment

float wmin=173.0; // min prop rate (rad/s)

float wmax=911.0; // max prop rate (rad/s)

int pulse=low;

int min1=low; int min2=low; int min3=low; int min4=low;

int curPwm=15;

// set up PCA9685 driver on i2c-0

#ifdef PWM

upm::PCA9685 *pwm = new upm::PCA9685(0,0x40);

pwm->setModeSleep(true);

pwm->setPrescaleFromHz(freq);

pwm->setModeSleep(false);

usleep(50000);

printf("ESC frequency set to %d Hz \n",freq);

pwm->ledOnTime(PCA9685_ALL_LED, 0); // pulse on

pwm->ledOffTime(PCA9685_ALL_LED, low); // pulse off

printf("c - Calibrate ESC’s\n");

printf("s - use saved EPROM calibration\n\n");

// calibration procedure

while(!cal) {

if ((kcom = getUserChar()) != 0) {
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switch (kcom) {

case ’c’:

printf("1) Disconnect ESC’s from battery\n");

printf("2) Key h to set pulsewidth to high (1.999 ms)\n");

printf("3) Reconnect ESC’s to battery\n");

printf("4) Key l to set pulsewidth to low (.65 ms)\n");

printf("5) Key i to increment pulswidth until motors start to spin\n");

printf("6) Key x to save effective pulsewidth range\n");

break;

case ’s’:

cal=true;

min1=1445; min2=1425; min3=1475; min4=1475;

printf(" - using EPROM saved throttle range \n");

printf("min1=%d; min2=%d; min3=%d; min4=%d; \n",min1,min2,min3,min4);

printf(" - done \n");

break;

case ’h’ :

incr=true;

pulse=high-1; // only works when slightly < 2.0 ms

printf(" - setting high (%f ms) \n",(float)pulse/4095.0*per/1000);

break;

case ’l’ :

incr=true;

pulse=low;
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printf(" - setting low (%f ms) \n",(float)pulse/4095.0*per/1000);

break;

case ’i’ :

incr=true;

pulse=pulse+inc;

if (pulse>high) pulse=high;

printf(" - incremented to %f ms pulse \n",(float)pulse/4095.0*per/1000);

break;

case ’d’ :

incr=true;

pulse=pulse-inc;

if (pulse<low) pulse=low;

printf(" - decremented to %f ms pulse \n",(float)pulse/4095.0*per

↪→ /1000);

break;

case ’q’ :

incr=true;

inc=inc+1;

printf(" - increment value changed to %d\n",inc);

break;

case ’a’ :

incr=true;

inc=inc-1;

if (inc<=0) inc=1;

printf(" - increment value changed to %d\n",inc);
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break;

case ’w’:

min1=pulse;

pwm->ledOffTime(curPwm, low);

curPwm=1;

break;

case ’e’:

min2=pulse;

pwm->ledOffTime(curPwm, low);

curPwm=14;

break;

case ’r’:

min3=pulse;

pwm->ledOffTime(curPwm, low);

curPwm=0;

break;

case ’x’ :

min4=pulse;

pwm->ledOffTime(curPwm, low);

printf("min1=%d; min2=%d; min3=%d; min4=%d; \n",min1,min2,min3,min4);

cal=true;

break;

}

if (incr) {
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pwm->ledOffTime(curPwm,pulse);

// uncomment to calibrate ESC’s

/* pwm->ledOffTime(0,pulse);

pwm->ledOffTime(1,pulse);

pwm->ledOffTime(14,pulse);

pwm->ledOffTime(15,pulse);

*/

incr=false;

}

}

}

#endif

float rng=high-max(max(min1,min2),max(min3,min4)); // effective throttle

↪→ range

//printf("range = %f \n",rng);

// physical parameters

float m = 1.085; // mass of quadrotor 1.085 kg w/2200mah lip0 and 1.01 kg

↪→ w/1300 mah lipo

//m = 1.01;

float g = 9.80665; // magnitude of acceleration due to gravity

float ll = .1185; // moment arm

float ls = .1185;

float k = 7.2*pow(10,-6); // (7.5-6.0)*E-6 8045 thrust constant (wi^.5)

kP[0]=k; // initial k

float b = 1.4*pow(10,-7); // (7.0-10.0*E-8) 8045 // propeller drag

↪→ constant (wi^.5)
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bP[0]=b; // initial b

// principle inertias

float Ixx=.00585; // .00585

float Iyy=.00575; // .0054

float Izz=.0072; // .01 .. .008

float Ip=.00002; // .00002 propeller lengthwise inertia

// without realsense

/*

Ixx=.00561; // .00533

Iyy=.00551; // .0049

Izz=.0066; // .00655

*/

// velocity gains

float ku=3.0;

float kv=3.0;

float kw=2.5;

float kiw=1.0;

// attitude gains

float kphi=7.0;

float ktheta=7.0;

float kpsi=7.0;

// rate gains

float kp=7.0;

float kq=7.0;

float kr=7.0;
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// integral gains are zero unless integral controls are defined

float kiu=0; float kiv=0;

float kiph=0; float kith=0; float kips=0;

float kip=0; float kiq=0; float kir=0;

#ifdef VIC // velocity integral control

kiu=0.8;

kiv=0.8;

#endif

#ifdef AIC // angle integral control

kiph=3.5;

kith=1.5;

kips=1.5;

#endif

#ifdef RIC // rate integral control

kip=7.0;

kiq=7.0;

kir=7.0;

#endif

// reference model parameters

float a0=625;

float a1=500;

float a2=150;

float a3=20; // p=-5
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// reference velocity command parameters // pole location

//a0=28561; a1=8788; a2=1014; a3=52; // p=-13

//a0=2401; a1=1372; a2=294; a3=28; //p=-7

// reference angle command for yaw

float b0=27;

float b1=27;

float b2=9; // p=-6

float sd=.8; // set speed of quadcopter

st_d=1.0; // stopping distance

// set destination p_g(0)

float x_g=0;

float y_g=-.2;

float z_g=-1.0;

// put destination in vector format

P_g(0) = x_g;

P_g(1) = y_g;

P_g(2) = z_g;

p_gn = P_g.norm();

// inner and outer ellipsoid semi-principles axes

float ai=ll*4.5; float bi=ll*2.8; float ci=ll*2.0;

float ao=2.0*ai; float bo=2.0*bi; float co=2.0*ci;

printf("outer ellipsoid semi principle axes: %f, %f, %f \n",ao,bo,co);
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printf("inner ellipsoid semi principle axes: %f, %f, %f \n",ai,bi,ci);

// Ellipsoid radii and potential

float R_o,R_i,U_e;

float ep=1.25; // maximum potential

float d_min=2; // closest approach to obstacle (meters)

bool col=false; // collision boolean

int cnt = 0; // counter for position inside outer ellipsoids

pts.setAll(100); // initialize obstacle positions to > 100 meters

P_o.setZero();

// initialize data as a precaution

u_d[0]=0; v_d[0]=0; w_d[0]=0;

t1[0]=0; t2[0]=0; t3[0]=0;

T[0]=m*g;

om1[0]=T[0]/(4.0*k);

om2[0]=T[0]/(4.0*k);

om3[0]=T[0]/(4.0*k);

om4[0]=T[0]/(4.0*k);

om1[0]=sqrt(om1[0]); om2[0]=sqrt(om2[0]);

om3[0]=sqrt(om3[0]); om4[0]=sqrt(om4[0]);

Hx[0]=Ixx*p[0]; Hy[0]=Iyy*q[0]; Hz[0]=Izz*r[0];
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Hp[0]=(om1[0]+om3[0]-om2[0]-om4[0])*Ip;

// set up loop timing

auto prev = std::chrono::high_resolution_clock::now();

auto now = std::chrono::high_resolution_clock::now();

long long microseconds = std::chrono::duration_cast<std::chrono::

↪→ microseconds>(now-prev).count();

// rest orientation

float phi_r=0; float theta_r=0; float psi_r=0;

float arx=0; float ary=0; float arz=0;

// let dmp settle and get reference orientaion (refQ)

int acnt=0;

for (int j=0; j<1000; j++) {

// reset interrupt flag and get INT_STATUS byte

mpuInterrupt = false;

mpuIntStatus = mpu.getIntStatus();

// get current FIFO count

fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too

↪→ inefficient)

if ((mpuIntStatus & 0x10) || fifoCount == 1024) {

// reset so we can continue cleanly

mpu.resetFIFO();

printf("fifo overflow!");
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// otherwise, check for DMP data ready interrupt (this should happen

↪→ frequently)

} else if (mpuIntStatus & 0x02) {

// wait for correct available data length, should be a VERY short wait

while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO

mpu.getFIFOBytes(fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available

// (this lets us immediately read more without waiting for an interrupt

↪→ )

fifoCount -= packetSize;

mpu.dmpGetQuaternion(&refQ,fifoBuffer); // obviously only last refQ is

↪→ saved

refQ.normalize();

corrQ = (refQ.getConjugate()).getProduct(refQ);

corrQ.normalize();

if (j>699) {

mpu.dmpGetEuler(ypr_r, &refQ);

phi_r=phi_r+ypr_r[2];

theta_r=theta_r+ypr_r[1];

psi_r=psi_r+ypr_r[0];

mpu.dmpGetAccel(&ar,fifoBuffer);

mpu.dmpGetGravity(&gravity, &corrQ);

mpu.dmpGetLinearAccel(&aaReal, &ar, &gravity);
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arx=arx+aaReal.x;

ary=ary+aaReal.y;

arz=arz+aaReal.z;

acnt=acnt+1;

}

}

}

// get static accel and reference orientation

arx=arx/acnt;

ary=ary/acnt;

arz=arz/acnt;

phi_r=phi_r/acnt;

theta_r=theta_r/acnt;

psi_r=psi_r/acnt;

ypr_r[0]=psi_r;

ypr_r[1]=theta_r;

ypr_r[2]=phi_r;

printf("IMU orientation on ground : \n roll = %f pitch = %f yaw = %f \n",

ypr_r[2],-ypr_r[1],-ypr_r[0]);

// hard code reference quaternion (orientation)

ypr_r[1]=0.01; // pitch = -0.013426 (switch sign)

ypr_r[2]=-.08; // roll = -0.082126

refQ=fromEuler(ypr_r);

refQ.normalize();

// Idle propellers at 1/15th full throttle
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#ifdef IDLE

pwm->ledOffTime(0,min1+rng/15);

pwm->ledOffTime(1,min2+rng/15);

pwm->ledOffTime(14,min3+rng/15);

pwm->ledOffTime(15,min4+rng/15);

#endif

// check DMP settings

uint8_t rate=mpu.getRate();

printf("sample rate set to %d hz\n",1000/(1+rate));

uint8_t fsync=mpu.getExternalFrameSync();

printf("Fsync config value set to %d \n",fsync);

uint8_t mode=mpu.getDLPFMode();

printf("DLPF mode %d \n",mode);

// get takeoff command

bool takeoff=false;

while (!takeoff) {

std::cout.flush();

printf("Takeoff? y/n: \n");

switch (tolower(getchar())) {

case ’y’ :

takeoff=true;

break;

case ’n’ :

#ifdef PWM

setAllPWM(pwm,low);

#endif
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#ifdef FLOW

delete flow;

#endif

printf(" - Exiting. \n");

exit(1);

break;

}

}

prev = std::chrono::high_resolution_clock::now(); // start time

while (1) {

// reset interrupt flag and get INT_STATUS byte (resets after read)

mpuInterrupt = false;

mpuIntStatus = mpu.getIntStatus();

// get current FIFO count

fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too

↪→ inefficient)

if ((mpuIntStatus & 0x10) || fifoCount == 1024) {

mpu.resetFIFO(); // reset so we can continue cleanly

printf("fifo overflow!");

// otherwise, check for DMP data ready interrupt (this should happen

↪→ frequently)

} else if (mpuIntStatus & 0x02) {

//printf("FFdmpIntStatus = %X\n",dmpIntStatus);

//printf("FFmpuIntStatus = %X\n",mpuIntStatus);
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// wait for correct available data length, should be a VERY short wait

while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

mpu.getFIFOBytes(fifoBuffer, packetSize); // read a packet from FIFO

// track FIFO count here in case there is > 1 packet available

// (this lets us immediately read more without waiting for an interrupt

↪→ )

fifoCount -= packetSize;

mpu.dmpGetQuaternion(&Q,fifoBuffer);

mpu.dmpGetGyro(gyro,fifoBuffer);

now = std::chrono::high_resolution_clock::now();

microseconds = std::chrono::duration_cast<std::chrono::microseconds>(

↪→ now-prev).count();

dt=(float)(microseconds)/1000000.0; // loop time (s)

prev = now;

Time[n+1] = Time[n]+dt;

sample_freq[n+1]=1.0/dt;

// quaternion with respect to reference quaternion

corrQ = (refQ.getConjugate()).getProduct(Q);

corrQ.normalize();

/*

mpu.dmpGetYawPitchRoll(ypr,&corrQ,&gravity);

phi[n+1] = ypr[2];

theta[n+1] = ypr[1];

psi[n+1] = ypr[0];
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*/

// convert quaternion to Euler angles

mpu.dmpGetEuler(ypr, &corrQ);

phi[n+1] = ypr[2];

theta[n+1] = -ypr[1];

psi[n+1] = -ypr[0];

// define current trig functions of Euler angles to save space later on

cph = cos(phi[n+1]); sph = sin(phi[n+1]); tph = tan(phi[n+1]);

cth = cos(theta[n+1]); sth = sin(theta[n+1]); tth = tan(theta[n+1]);

cps = cos(psi[n+1]); sps = sin(psi[n+1]);

// angular velocity (seem to have constant bias which are subtracted

↪→ below)

p[n+1] = gyro[0]*g2r+.034;

q[n+1] = -gyro[1]*g2r-.0185;

r[n+1] = -gyro[2]*g2r-.0062;

// Euler rate kinematics

phid = p[n+1]+q[n+1]*sph*tth+r[n+1]*cph*tth;

thetad = q[n+1]*cph-r[n+1]*sph;

psid = q[n+1]*sph/cth+r[n+1]*cph/cth;

// angular momentum

//Hx[n+1]=Ixx*p[n+1]; Hy[n+1]=Iyy*q[n+1]; Hz[n+1]=Izz*r[n+1];

// if roll or pitch is too large, shut off propellers and write data

if ((abs(phi[n+1])>1.3)||(abs(theta[n+1])>1.3)) {

101



#ifdef PWM

setAllPWM(pwm,low);

#endif

#ifdef FLOW

delete flow;

#endif

printf("FLIP\n");

printf("phi[n+1] = %f \t theta[n+1] = %f\n",phi[n+1],theta[n+1]);

printf("Closest object approach: %f \n",d_min);

write_Params(n,Time,kP,bP);

write_Map(i,pts);

// write data to .txt files for gnuplot

write_Freq(n,Time,sample_freq);

write_Position(n,Time,x_e,y_e,z_e,z_o);

write_Velocity(n,Time,u_e,v_e,w_e,u_c,v_c,w_c);

//write_Vel_Int(n,Time,Ie_u,Ie_v,Ie_w);

write_Vel_Int(n,Time,u_d,v_d,w_d);

write_Acceleration(n,Time,ud,vd,wd);

write_Angles(n+1,Time,phi,theta,psi,phi_d,theta_d,psi_c);

write_Angle_Errors(n,Time,e_phi,e_the,e_psi);

write_Rates(n,Time,p,q,r,p_d,q_d,r_d);

write_Rate_Errors(n,Time,e_p,e_q,e_r);

write_Momentum(n,Time,Hx,Hy,Hz,Hp);

write_Inputs(n,Time,T,t1,t2,t3,om1,om2,om3,om4);

write_Pos_Obj(n,Time,px,py,pz,dist);
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exit(1);

}

#ifdef REALSENSE

// get closest obstacle point (px,py,pz) from current frame

if(dev.is_streaming()) dev.wait_for_frames();

auto points = reinterpret_cast<const rs::float3 *>(dev.get_frame_data(

↪→ rs::stream::points));

//auto depth = reinterpret_cast<const uint16_t *>(dev.get_frame_data(rs

↪→ ::stream::depth));

min_dist = 30;

for(int yy=0; yy<depth_intrin.height; ++yy) {

for(int xx=0; xx<depth_intrin.width; ++xx) {

if (points->z){

dist[n+1] = points->x*points->x+points->y*points->y+points->z*points->

↪→ z;

if (dist[n+1]<min_dist) {

min_dist = dist[n+1];

px[n+1] = points->x;

py[n+1] = points->y;

pz[n+1] = points->z;

}

}

++points;

}

}

dist[n+1] = sqrt(min_dist); // distance to (px,py,pz)
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#endif

// get linear acceleration

mpu.dmpGetAccel(&aa,fifoBuffer);

mpu.dmpGetGravity(&gravity, &corrQ);

mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);

aaReal.x=aaReal.x-arx;

aaReal.y=aaReal.y+ary;

aaReal.z=aaReal.z;

mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &corrQ);

// convert acceleration to correct units

ud[n+1] = (aaWorld.x)*a2si;

vd[n+1] = -(aaWorld.y)*a2si;

wd[n+1] = -(aaWorld.z)*a2si;

/** EKF for estimating acceleration **/

// measurements for EKF

y_k(0)=ud[n+1];

y_k(1)=vd[n+1];

y_k(2)=wd[n+1];

// discrete transition matrix

ph_k(0,0) = 1+alwd*dt/alw;

ph_k(0,1) = -psid*dt;

ph_k(0,2) = -kw*x_k(0)*dt/alw;

ph_k(1,0) = psid*dt;
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ph_k(1,1) = 1+alwd*dt/alw;

ph_k(1,2) = -kw*x_k(1)*dt/alw;

ph_k(2,2) = 1-kw*dt;

// discrete noise transition matrix

Q_k(0,0)=(psid*(psid*(phdv*alw*alw*cps*cps+thdv*alw*alw*sps*sps+psdv*

↪→ x_k(0)*x_k(0))+(alwd*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv*sps-\\

↪→ alw*alw*cps*sps*thdv))/alw)+(alwd*(psid*(psdv*x_k(0)*x_k(1) +

↪→ alw*alw*cps*phdv*sps - alw*alw*cps*sps*thdv)+(alwd*(thdv*alw*alw

↪→ *cps*cps+phdv*alw*alw*sps*sps+psdv*x_k(1)*x_k(1)))/alw))/alw)*dt

↪→ *dt*dt/3+(2*psid*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv*sps-alw*

↪→ alw*cps*sps*thdv)+(2*alwd*(thdv*alw*alw*cps*cps+phdv*alw*alw*sps

↪→ *sps+psdv*x_k(1)*x_k(1)))/alw)*dt*dt/2 + (thdv*alw*alw*cps*cps+

↪→ phdv*alw*alw*sps*sps+psdv*x_k(1)*x_k(1))*dt;

Q_k(0,1)=(psid*(psid*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv*sps-alw*alw*

↪→ cps*sps*thdv)+(alwd*(thdv*alw*alw*cps*cps+phdv*alw*alw*sps*sps+

↪→ psdv*x_k(1)*x_k(1)))/alw)-(alwd*(psid*(phdv*alw*alw*cps*cps +

↪→ thdv*alw*alw*sps*sps + psdv*x_k(0)*x_k(0))+(alwd*(psdv*x_k(0)*

↪→ x_k(1)+alw*alw*cps*phdv*sps-alw*alw*cps*sps*thdv))/alw))/alw)*dt

↪→ *dt*dt/3+(psid*(thdv*alw*alw*cps*cps+phdv*alw*alw*sps*sps+psdv*

↪→ x_k(1)*x_k(1))-psid*(phdv*alw*alw*cps*cps+thdv*alw*alw*sps*sps+

↪→ psdv*x_k(0)*x_k(0))-(2*alwd*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv

↪→ *sps-alw*alw*cps*sps*thdv))/alw)*dt*dt/2+(alw*alw*cps*sps*thdv-

↪→ alw*alw*cps*phdv*sps-psdv*x_k(0)*x_k(1))*dt;

Q_k(1,0)=(psid*(psid*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv*sps-alw*alw*

↪→ cps*sps*thdv)-(alwd*(phdv*alw*alw*cps*cps+thdv*alw*alw*sps*sps+
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↪→ psdv*x_k(0)*x_k(0)))/alw)+(alwd*(psid*(thdv*alw*alw*cps*cps +

↪→ phdv*alw*alw*sps*sps + psdv*x_k(1)*x_k(1))-(alwd*(psdv*x_k(0)*

↪→ x_k(1)+alw*alw*cps*phdv*sps-alw*alw*cps*sps*thdv))/alw))/alw)*dt

↪→ *dt*dt/3+(psid*(thdv*alw*alw*cps*cps+phdv*alw*alw*sps*sps+psdv*

↪→ x_k(1)*x_k(1))-psid*(phdv*alw*alw*cps*cps+thdv*alw*alw*sps*sps+

↪→ psdv*x_k(0)*x_k(0))-(2*alwd*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv

↪→ *sps-alw*alw*cps*sps*thdv))/alw)*dt*dt/2+(alw*alw*cps*sps*thdv-

↪→ alw*alw*cps*phdv*sps-psdv*x_k(0)*x_k(1))*dt;

Q_k(1,1)=(psid*(psid*(thdv*alw*alw*cps*cps+phdv*alw*alw*sps*sps+psdv*

↪→ x_k(1)*x_k(1))-(alwd*(psdv*x_k(0)*x_k(1)+alw*alw*cps*phdv*sps-

↪→ alw*alw*cps*sps*thdv))/alw)-(alwd*(psid*(psdv*x_k(0)*x_k(1) +

↪→ alw*alw*cps*phdv*sps - alw*alw*cps*sps*thdv)-(alwd*(phdv*alw*alw

↪→ *cps*cps+thdv*alw*alw*sps*sps+psdv*x_k(0)*x_k(0)))/alw))/alw)*dt

↪→ *dt*dt/3+((2*alwd*(phdv*alw*alw*cps*cps+thdv*alw*alw*sps*sps+

↪→ psdv*x_k(0)*x_k(0)))/alw-2*psid*(psdv*x_k(0)*x_k(1)+alw*alw*cps*

↪→ phdv*sps-alw*alw*cps*sps*thdv))*dt*dt/2+(phdv*alw*alw*cps*cps+

↪→ thdv*alw*alw*sps*sps+psdv*x_k(0)*x_k(0))*dt;

// compute Kalman gain

P_k = ph_k*P_k*ph_k.transpose()+Q_k;

SI_k = matrix::inv<float, 3>(C_k*P_k*C_k.transpose()+R_k);

K_k = P_k*C_k.transpose()*SI_k; // Kalman gain

// predict state

x_k(0) = x_k(0) + (alwd*x_k(0)/alw-psid*x_k(1)+alw*(thetad*cps+phid*sps

↪→ ))*dt;

x_k(1) = x_k(1) + (alwd*x_k(1)/alw+psid*x_k(0)+alw*(thetad*sps-phid*cps

↪→ ))*dt;
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x_k(2) = x_k(2) + alwd*dt;

x_k += K_k*(y_k-x_k); // correct state

P_k -= K_k*C_k*P_k; // update covariance

// filter output

ud[n+1]=x_k(0); // u dot

vd[n+1]=x_k(1); // v dot

wd[n+1]=x_k(2); // w dot

/** Kalman filter for estimating velocity **/

A(3,2) = dt; // discrete transition matrix (diagonal entries are always

↪→ 1)

// input matrix

B(0,0)=dt;

B(1,1)=dt;

B(2,2)=dt;

B(3,2)=dt*dt/2;

// get optical flow data

#ifdef FLOW

flow->readBytesReg(0x00,frame,22);

flow->readBytesReg(0x16,int_frame,26);

#endif

// sonar measurement of height

z_e[n+1]=-(int16_t)(frame[20] | frame[21] << 8)/(1.0e3f);
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// if there’s an instant change in z (there probably is an object below

↪→ ), then estimate correct height

if (abs(z_e[n+1]-z_e[n])>.28) z_e[n+1]=z_e[n]+w_e[n]*dt;

h=-z_e[n+1]; // height

// total measured optical flow

flow_x_rad = (int16_t)(int_frame[2] | int_frame[3] << 8)*1.24f/1.0e4f;

flow_y_rad = (int16_t)(int_frame[4] | int_frame[5] << 8)*1.24f/1.0e4f;

// angular rotation since previous optical flow read

gyro_x_rad = (int16_t)(int_frame[6] | int_frame[7] << 8)*1.24f/1.0e4f;

gyro_y_rad = (int16_t)(int_frame[8] | int_frame[9] << 8)*1.24f/1.0e4f;

// time since previous optical flow read

dt_flow = (uint32_t)(int_frame[12] | int_frame[13] << 8 | int_frame[14]

↪→ << 16 | int_frame[15] << 24)/1.0e6f;

// if dt_flow is unreasonable use loop time

if (dt_flow > 0.5f || dt_flow < 1.0e-2f) {

dt_flow = dt;

}

// translational velocity measurements

y(0) = (flow_y_rad - gyro_y_rad)*h/dt_flow;

y(1) = -(flow_x_rad - gyro_x_rad)*h/dt_flow;

// roll-pitch-yaw consecutive rotation (body to inertial)
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O = matrix::Eulerf(phi[n+1],theta[n+1],psi[n+1]);

// estimate b3 direction velocity

y(2)=(u_e[n]+ud[n]*dt)*O(0,2)+(v_e[n]+vd[n]*dt)*O(1,2)+(w_e[n]+wd[n]*dt

↪→ )*O(2,2);

V_q=y; // save quad velocity in body frame

V_qI = O * V_q; // inertial quad velocity

v=sqrt(y(0)*y(0)+y(1)*y(1)); // speed

y = V_qI; // measurements for Kalman filter

y(2)=z_e[n+1]; // height (with correct sign)

// limits on height and speed for stddev calculation

if (h > h_max) h = h_max;

if (h < h_min) h = h_min;

if (v > v_max) v = v_max;

if (v < v_min) v = v_min;

// optical flow standard dev. estimate

flow_vxy_stddev = P[0] * h + P[1] * h * h + P[2] * v + P[3] * v * h + P

↪→ [4] * v * h * h;

// euler rate and body rate magnitudes squared

rot_sq = phi[n+1]*phi[n+1]+theta[n+1]*theta[n+1];

rotrate_sq = p[n+1]*p[n+1]+q[n+1]*q[n+1]+r[n+1]*r[n+1];

// sensor noise matrix

R(0,0) = flow_vxy_stddev * flow_vxy_stddev;//+7.0f*(rot_sq+rotrate_sq);
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R(1,1) = R(0,0);

// compute Kalman gain

_P = A*_P*A.transpose() + _Q;

S_I = matrix::inv<float, 3>(C * _P * C.transpose() + R);

K = _P * C.transpose() * S_I; // Kalman gain

x = A * x + B * x_k; // predict state

x += K * (y - C * x); // correct state

_P -= K * C * _P; // update covariance

// filter output

u_e[n+1]=x(0); // u

v_e[n+1]=x(1); // v

w_e[n+1]=x(2); // w

x_e[n+1] = x_e[n]+(V_qI(0)+V_qIp(0))*dt/2;

y_e[n+1] = y_e[n]+(V_qI(1)+V_qIp(1))*dt/2;

z_e[n+1]=x(3); // z (height)

if (z_e[n+1]>-.3) z_e[n+1]=-.3; // if height estimate is bad, set z=.3

↪→ meters

#ifdef DEST_SEEK

// estimate destination using rotating reference frame technique

/*

Om(0,1) = -r[n+1];

Om(0,2) = q[n+1];

Om(1,0) = r[n+1];
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Om(1,2) = -p[n+1];

Om(2,0) = -q[n+1];

Om(2,1) = p[n+1];

// enhance estimate of P_g using measured height

P_gI = O * P_g; // body to inertial

P_gI(2) = z_e[n+1] - z_g; // hard code height error since we have height

↪→ measurement

P_g = O.transpose() * P_gI; // put back into body frame

// propogate P_g

V_g = - V_q - Om*P_g;

P_g = P_g + V_g*dt;

// rotate new P_g into inertial frame for control

P_gI = O * P_g;*/

// destination vector relative to quadrotor

P_gI(2) = z_e[n+1] - z_g;

P_gI(0) = x_e[n+1] - x_g;

P_gI(1) = y_e[n+1] - y_g;

p_gn=P_gI.norm(); // distance to destination

if (p_gn<.002||land) { // go straight down

//land = true;

sd=.8;

P_gI(2)=-1;

}
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// compute destination seeking velocity

if (p_gn >= st_d) { // is distance to destination >= stopping distance

u_d[n+1]=-sd*P_gI(0)/p_gn;

v_d[n+1]=-sd*P_gI(1)/p_gn;

w_d[n+1]=-sd*P_gI(2)/p_gn;

} else { // distance to destination < stopping distance

u_d[n+1]=-sd*P_gI(0)/st_d;

v_d[n+1]=-sd*P_gI(1)/st_d;

w_d[n+1]=-sd*P_gI(2)/st_d;

}

#ifdef AVOIDANCE

if (!land && avoid) {

cnt=0; // reset counter for number of points in outer ellipsoid E_o

// reset avoidance velocities

u_a = 0;

v_a = 0;

w_a = 0;

// update position of detected points relative to quadrotor

for (int j=0; j<n_pts; j++) {

pts(0,j) = pts(0,j)-(V_qI(0)+V_qIp(0))*dt/2;

pts(1,j) = pts(1,j)-(V_qI(1)+V_qIp(1))*dt/2;

pts(2,j) = pts(2,j)-(V_qI(2)+V_qIp(2))*dt/2;

// set jth colum of pts matrix as current position vector
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P_oI(0) = pts(0,j);

P_oI(1) = pts(1,j);

P_oI(2) = pts(2,j);

// position in the body frame

P_o = O.transpose() * P_oI;

// is P_o inside E_o

if (in_Elpsd(P_o,ao,bo,co)) {

cnt++; // add to counter

// get outer and inner ellipsoid radii along P_o

R_o = ElpsdRad(P_o,ao,bo,co);

R_i = ElpsdRad(P_o,ai,bi,ci);

U_e = ep*(1-(P_o.norm() - R_i)/(R_o - R_i)); // compute potential of

↪→ P_o

//printf("U_e = %f\n",U_e);

// sum avoidance velocities from all points

u_a=u_a + U_e * P_oI(0)/P_oI.norm();

v_a=v_a + U_e * P_oI(1)/P_oI.norm();

w_a=w_a + U_e * P_oI(2)/P_oI.norm();

}

}

// nearest position from most recent realsense frame

P_o(0) = pz[n+1];

P_o(1) = px[n+1];

P_o(2) = py[n+1];
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if (!(P_o(0)==0||P_o(1)==0||P_o(2)==0)) { // is position data good?

P_oI = O * P_o; // rotate to inertial frame

// add to set of points (map)

pts(0,i) = P_oI(0);

pts(1,i) = P_oI(1);

pts(2,i) = P_oI(2);

if (++i == n_pts) i=0; // if number of points in map exceeds n_pts, then

↪→ replace starting with oldest points

// is most recent P_o in E_o

if (in_Elpsd(P_o,ao,bo,co)) {

cnt++;

// get outer and inner ellipsoid radii along P_o

R_o = ElpsdRad(P_o,ao,bo,co);

R_i = ElpsdRad(P_o,ai,bi,ci);

U_e = ep*(1-(P_o.norm() - R_i)/(R_o - R_i)); // compute potential of

↪→ P_o

//printf("U_e = %f\n",U_e);

// add to avoidance velocities

u_a=u_a + U_e * P_oI(0)/P_oI.norm();

v_a=v_a + U_e * P_oI(1)/P_oI.norm();

w_a=w_a + U_e * P_oI(2)/P_oI.norm();

}

}
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// sometimes false positives show up, so make sure at least 12 points are

↪→ in E_o before adding to desired velocity

if (cnt>12) {

float n_a = sqrt(u_a/cnt*u_a/cnt+v_a/cnt*v_a/cnt);

if (n_a>1.5) {

u_a=u_a/n_a;

v_a=v_a/n_a;

}

u_d[n+1]=u_d[n+1] - u_a/cnt;

v_d[n+1]=v_d[n+1] - v_a/cnt;

// w_d[n+1]=w_d[n+1] - w_a/cnt;

//printf("u_a = %f \n",-u_a/cnt);

//printf("v_a = %f \n",-v_a/cnt);

//printf("w_a = %f \n",-w_a/cnt);

}

}

#endif

#endif

// remeber previous inertial u,v

V_qIp(0) = V_qI(0);

V_qIp(1) = V_qI(1);

psi_d = 0; // set zero heading command

#ifdef FREE_FLY // fly with keyboard i,j,k,l keys

P_gI(2) = z_e[n+1]-z_g; // relative k position of goal
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if (land) { // go straight down

P_gI(2)=-1;

}

p_gn=abs(P_gI(2)); // distance to ground

// compute w_d

if (p_gn >= st_d) {

w_d[n+1]=-sd*P_gI(2)/p_gn;

} else {

w_d[n+1]=-sd*P_gI(2)/st_d;

}

// keep previous desired velocities

u_d[n+1]=u_d[n];

v_d[n+1]=v_d[n];

#endif

// put trajectories here

if (traj) {

// circle trajectory

u_d[n+1]=1.0*cos(Time[n+1]*2.5);

v_d[n+1]=1.0*sin(Time[n+1]*2.5);

}

// get key commands if any

if ((kcom = getUserChar()) != 0) {

switch (kcom) {
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case ’a’ : // avoid objects

avoid = true;

// set destination

x_g = 10.0;

//y_g = -1.0;

break;

case ’s’ : // begin trajectory

traj=true;

break;

case ’f’ : // yaw to 90 degrees

psi_d=pi/2;

break;

case ’d’: // yaw to -90 degrees

psi_d=-pi/2;

break;

case ’ ’ : // land (space bar)

kP[0]=k;

traj=false;

avoid=false;

u_d[n+1]=0;

v_d[n+1]=0;

x_g = x_e[n+1];

y_g = y_e[n+1];

land=true;
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sd=.6;

z_g = 1;

break;

// i,j,k,l -- sets u_d,-v_d,-u_d,v_d to .5 m/s respectively

// must press z to set u_d,v_d back to zero

case ’l’ :

v_d[n+1]=2.0;

break;

case ’j’ :

v_d[n+1]=-2.0;

break;

case ’i’ :

u_d[n+1]=2.0;

break;

case ’k’ :

u_d[n+1]=-2.0;

break;

case ’z’ : // zero the desired velocity and stop trajectory

avoid = false;

traj=false;

u_d[n+1]=0;

v_d[n+1]=0;

//psi_d=0;

break;
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case ’x’ : // shutdown motors, write data, exit program

#ifdef PWM

setAllPWM(pwm,low);

#endif

#ifdef FLOW

delete flow;

#endif

if (col) printf("Collision occured\n");

printf("Closest object approach: %f \n",d_min);

write_Params(n,Time,kP,bP);

// get points relative to quadrotor’s final position (for overlay with

↪→ quadrotor trajectory)

for (int i=0; i<n_pts; i++) {

pts(0,i) = pts(0,i)+x_e[n];

pts(1,i) = pts(1,i)+y_e[n];

pts(2,i) = -pts(2,i)-z_e[n];

}

write_Map(i,pts);

// write data to .txt files for gnuplot

write_Freq(n,Time,sample_freq);

write_Position(n,Time,x_e,y_e,z_e,z_o);

write_Velocity(n,Time,u_e,v_e,w_e,u_c,v_c,w_c);
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//write_Vel_Int(n,Time,Ie_u,Ie_v,Ie_w);

write_Vel_Int(n,Time,u_d,v_d,w_d);

write_Acceleration(n,Time,ud,vd,wd);

write_Angles(n+1,Time,phi,theta,psi,phi_d,theta_d,psi_c);

write_Angle_Errors(n,Time,e_phi,e_the,e_psi);

write_Rates(n,Time,p,q,r,p_d,q_d,r_d);

write_Rate_Errors(n,Time,e_p,e_q,e_r);

write_Momentum(n,Time,Hx,Hy,Hz,Hp);

write_Inputs(n,Time,T,t1,t2,t3,om1,om2,om3,om4);

write_Pos_Obj(n,Time,px,py,pz,dist);

exit(1);

break;

}

}

// generate reference commands

u_c[n+1]=u_c[n]+ud_cp*dt;

ud_c=ud_cp+u2_cp*dt;

u2_c=u2_cp+u3_cp*dt;

u3_c=u3_cp+u4_cp*dt;

u4_c=-a3*u3_c-a2*u2_c-a1*ud_c-a0*(u_c[n+1]-u_d[n+1]);

// set previous reference commands (used for solving refrence model

↪→ with Euler method)

ud_cp=ud_c; u2_cp=u2_c; u3_cp=u3_c; u4_cp=u4_c;

v_c[n+1]=v_c[n]+vd_cp*dt;

vd_c=vd_cp+v2_cp*dt;
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v2_c=v2_cp+v3_cp*dt;

v3_c=v3_cp+v4_cp*dt;

v4_c=-a3*v3_c-a2*v2_c-a1*vd_c-a0*(v_c[n+1]-v_d[n+1]);

vd_cp=vd_c; v2_cp=v2_c; v3_cp=v3_c; v4_cp=v4_c;

w_c[n+1]=w_c[n]+wd_cp*dt;

wd_c=wd_cp+w2_cp*dt;

w2_c=w2_cp+w3_cp*dt;

w3_c=w3_cp+w4_cp*dt;

w4_c=-a3*w3_c-a2*w2_c-a1*wd_c-a0*(w_c[n+1]-w_d[n+1]);

wd_cp=wd_c; w2_cp=w2_c; w3_cp=w3_c; w4_cp=w4_c;

psi_c[n+1]=psi_c[n]+psid_cp*dt;

psid_c=psid_cp+psi2_cp*dt;

psi2_c=psi2_cp+psi3_cp*dt;

psi3_c=-b2*psi2_c-b1*psid_c-b0*(psi_c[n+1]-psi_d);

psid_cp=psid_c; psi2_cp=psi2_c; psi3_cp=psi3_c;

/** Velocity Control **/

// velocity errors

e_u[n+1]=u_e[n+1]-u_c[n+1];

e_v[n+1]=v_e[n+1]-v_c[n+1];

e_w[n+1]=w_e[n+1]-w_c[n+1];

// integral of velocity errors
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Ie_u[n+1]=Ie_u[n]+(e_u[n+1]+e_u[n])*dt/2;

Ie_v[n+1]=Ie_v[n]+(e_v[n+1]+e_v[n])*dt/2;

Ie_w[n+1]=Ie_w[n]+(e_w[n+1]+e_w[n])*dt/2;

alu = ud_c-ku*e_u[n+1]-kiu*Ie_u[n+1];

alv = vd_c-kv*e_v[n+1]-kiv*Ie_v[n+1];

alw = wd_c-kw*e_w[n+1]-kiw*Ie_w[n+1]-g;

alud = u2_c-ku*(ud[n+1]-ud_c)-kiu*e_u[n+1];

alvd = v2_c-kv*(vd[n+1]-vd_c)-kiv*e_v[n+1];

alwd = w2_c-kw*(wd[n+1]-wd_c)-kiw*e_w[n+1];

// compute thrust

T[n+1] = -m*alw/cph/cth;

//if (z_e[n+1]>-.301) T[n+1]=.98*T[n+1];

if (T[n+1]<0) T[n+1] = 0;

if (T[n+1]>14) T[n+1] = 14;

// zero attitude if VELOCITY_CTRL not defined

theta_d[n+1] = 0;

phi_d[n+1] = 0;

thetad_d = 0;

phid_d = 0;

theta2_d = 0;

phi2_d = 0;

O = matrix::Eulerf(phi[n+1],theta[n+1],psi[n+1]);

#ifdef VELOCITY_CTRL
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Td = m*(-w2_c+kw*(wd[n+1]-wd_c)+kiw*e_w[n+1])/cph/cth

+T[n+1]*(phid*tan(phi[n+1])+thetad*tth);

// Td = m*(-w2_c+kw*(wd[n+1]-wd_c)+w_e[n+1])/cph/cth

// +T[n+1]*(phid*tan(phi[n+1])+thetad*tth);

// Calculate inertial jerks (assholes to be honest)

u2 = -Td/m*O(0,2)+T[n+1]/m*(phid*O(0,1)-thetad*cph*cth*cps+psid*O(1,2))

↪→ ;

/*-lambda*(om2[n]+om4[n]+om1[n]+om3[n])*(ud[n+1]*cps*cth-u_e[n+1]*psid*

↪→ sps*cth-u_e[n+1]*cps*thetad*sth-wd[n+1]*sth-w_e[n+1]*thetad*cth+

↪→ vd[n+1]*cth*sps-v_e[n+1]*thetad*sth*sps+v_e[n+1]*cth*psid*cps);

↪→ */ // propeller drag?

v2 = -Td/m*O(1,2)+T[n+1]/m*(phid*O(1,1)-thetad*cph*cth*sps-psid*O(0,2))

↪→ ;

/*-lambda*(om2[n]+om4[n]+om1[n]+om3[n])*(vd[n+1]*(cph*cps+sph*sps*sth)+

↪→ v_e[n+1]*(-phid*sph*cps-psid*cph*sps+phid*cph*sps*sth+psid*sph*

↪→ cps*sth+thetad*sph*sps*cth)-ud[n+1]*(cph*sps-cps*sph*sth)-u_e[n

↪→ +1]*(-phid*sph*sps+psid*cph*cps+psid*sps*sph*sth-phid*cps*cph*

↪→ sth-thetad*cps*sph*cth)+wd[n+1]*cth*sph-w_e[n+1]*thetad*sth*sph)

↪→ +w_e[n+1]*phid*cth*cph;*/ //propeller drag?

w2 = w2_c-kw*(wd[n+1]-wd_c)-kiw*e_w[n+1];

alu2 = u3_c-ku*(u2-u2_c)-kiu*(ud[n+1]-ud_c);

alv2 = v3_c-kv*(v2-v2_c)-kiv*(vd[n+1]-vd_c);

alw2 = w3_c-kw*(w2-w2_c)-kiw*(wd[n+1]-wd_c);

// math equations

beth = (alu*cps+alv*sps)/alw;

theta_d[n+1] = atan(beth);
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cthd = cos(theta_d[n+1]); sthd = sin(theta_d[n+1]);

beph = (alu*sps-alv*cps)*cthd/alw;

phi_d[n+1] = atan(beph);

bthd = (cps*(alud+alv*psid)+sps*(alvd-alu*psid)-beth*alwd)/alw;

thetad_d = bthd/(1+beth*beth);

bphd = (sps*(cthd*(alud+alv*psid)-thetad_d*sthd*alu)

+cps*(cthd*(alu*psid-alvd)+thetad_d*sthd*alv)

-beph*alwd)/alw;

phid_d = bphd/(1+beph*beph);

bth2 = (cps*(alu2+2*alvd*psid-alu*psid*psid+alv*psi2)

+sps*(alv2-2*alud*psid-alv*psid*psid-alu*psi2)

-2*bthd*alwd-beth*alw2)/alw;

theta2_d = bth2/(1+beth*beth)-2*beth*bthd*bthd/pow(1+beth*beth,2);

bph2 = (sps*((alu2+alv*psi2+2*alvd*psid-alu*(pow(thetad_d,2)+pow(psid

↪→ ,2)))*cthd

-(2*thetad_d*(alud+alv*psid)+alu*theta2_d)*sthd)

+cps*((alu*psi2-alv2+2*alud*psid+alv*(pow(thetad_d,2)+pow(psid,2)))*

↪→ cthd

+(2*thetad_d*(alvd-alu*psid)+alv*theta2_d)*sthd)-2*bphd*alwd-beph*

↪→ alw2)/alw;
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phi2_d = bph2/(1+beph*beph)-2*beph*bphd*bphd/pow(1+beph*beph,2);

#endif

// Euler angle errors

e_phi[n+1] = phi[n+1]-phi_d[n+1];

e_the[n+1] = theta[n+1]-theta_d[n+1];

e_psi[n+1] = psi[n+1]-psi_c[n+1];

// integral of Euler angle errors

Ie_ph[n+1] = Ie_ph[n]+(e_phi[n+1]+e_phi[n])*dt/2;

Ie_th[n+1] = Ie_th[n]+(e_the[n+1]+e_the[n])*dt/2;

Ie_ps[n+1] = Ie_ps[n]+(e_psi[n+1]+e_psi[n])*dt/2;

// desired rates

p_d[n+1] = phid_d-kphi*e_phi[n+1]-kiph*Ie_ph[n+1]

-(psid_c-kpsi*e_psi[n+1]-kips*Ie_ps[n+1])*sth;

q_d[n+1] = (thetad_d-ktheta*e_the[n+1]-kith*Ie_th[n+1])*cph

+(psid_c-kpsi*e_psi[n+1]-kips*Ie_ps[n+1])*sph*cth;

r_d[n+1] = -(thetad_d-ktheta*e_the[n+1]-kith*Ie_th[n+1])*sph

+(psid_c-kpsi*e_psi[n+1]-kips*Ie_ps[n+1])*cph*cth;

// desired rate derivatives

pd_d = phi2_d-kphi*(phid-phid_d)-kiph*e_phi[n+1]

-(psi2_c-kpsi*(psid-psid_c)-kips*e_psi[n+1])*sth

-(psid_c-kpsi*e_psi[n+1]-kips*Ie_ps[n+1])*thetad*cth;

qd_d = (theta2_d-ktheta*(thetad-thetad_d)-kith*e_the[n+1])*cph

-(thetad_d-ktheta*e_the[n+1]-kith*Ie_th[n+1])*phid*sph

+(psi2_c-kpsi*(psid-psid_c)-kips*e_psi[n+1])*sph*cth
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+(psid_c-kpsi*e_psi[n+1]-kips*Ie_ps[n+1])*(phid*cph*cth-thetad*sph*sth);

rd_d = -(theta2_d-ktheta*(thetad-thetad_d)-kith*e_the[n+1])*sph

-(thetad_d-ktheta*e_the[n+1]-kith*Ie_th[n+1])*phid*cph

+(psi2_c-kpsi*(psid-psid_c)-kips*e_psi[n+1])*cph*cth

-(psid_c-kpsi*e_psi[n+1]-kips*Ie_ps[n+1])*(phid*sph*cth+thetad*cph*sth);

// rate errors

e_p[n+1] = p[n+1]-p_d[n+1];

e_q[n+1] = q[n+1]-q_d[n+1];

e_r[n+1] = r[n+1]-r_d[n+1];

// integral of rate errors

Ie_p[n+1] = Ie_p[n]+(e_p[n+1]+e_p[n])*dt/2;

Ie_q[n+1] = Ie_q[n]+(e_q[n+1]+e_q[n])*dt/2;

Ie_r[n+1] = Ie_r[n]+(e_r[n+1]+e_r[n])*dt/2;

// torques inputs

t1[n+1] = (pd_d-kp*e_p[n+1]-kip*Ie_p[n+1]-e_phi[n+1])*Ixx+q[n+1]*r[n

↪→ +1]*(Izz-Iyy)+q[n+1]*Hp[n];

t2[n+1] = (qd_d-kq*e_q[n+1]-kiq*Ie_q[n+1]-e_phi[n+1]*sph*tth

-e_the[n+1]*cph-e_psi[n+1]*sph/cth)*Iyy-p[n+1]*r[n+1]*(Izz-Ixx)-p[n

↪→ +1]*Hp[n];

t3[n+1] = (rd_d-kr*e_r[n+1]-kir*Ie_r[n+1]-e_phi[n+1]*cph*tth

+e_the[n+1]*sph-e_psi[n+1]*cph/cth)*Izz+p[n+1]*q[n+1]*(Iyy-Ixx);

// try out different torque inputs

/*

+q[n+1]*r[n+1]*(Izz-Iyy)+q[n+1]*Hp[n]

-p[n+1]*r[n+1]*(Izz-Ixx)-p[n+1]*Hp[n]
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+p[n+1]*q[n+1]*(Iyy-Ixx)

t1[n+1] = (pd_d-kp*(p[n+1]-p_d[n+1]))*Ixx+q[n+1]*r[n+1]*(Izz-Iyy)+q[n

↪→ +1]*Hp[n];

t2[n+1] = (qd_d-kq*(q[n+1]-q_d[n+1]))*Iyy-p[n+1]*r[n+1]*(Izz-Ixx)-p[n

↪→ +1]*Hp[n];

t3[n+1] = (rd_d-kr*(r[n+1]-r_d[n+1]))*Izz;

t1[n+1] = (pd_d-kp*(p[n+1]-p_d[n+1]))*Ixx+q[n+1]*Hp[n];

t2[n+1] = (qd_d-kq*(q[n+1]-q_d[n+1]))*Iyy-p[n+1]*Hp[n];

t3[n+1] = (rd_d-kr*(r[n+1]-r_d[n+1]))*Izz;

*/

// limit control torques to 0.4 N*m

if (abs(t1[n+1])>.4) t1[n+1] = sgn(t1[n+1])*.4;

if (abs(t2[n+1])>.4) t2[n+1] = sgn(t2[n+1])*.4;

if (abs(t3[n+1])>.4) t3[n+1] = sgn(t3[n+1])*.4;

// adaptively update thrust constant

#ifdef ADPT_K

if (z_e[n+1]<-.301) {

k=k-(8.0e-9f)*sigma(e_w[n+1],.03);

if (k<.8*kP[0]) k=.8*kP[0];

if (k>1.2*kP[0]) k=1.2*kP[0];

kP[n+1]=k;

//bP[n+1]=b;

} else {

kP[n+1]=kP[n];

//bP[n+1]=bP[n];
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}

#endif

// propeller mixing to implement thrust and torques

om1[n+1] = T[n+1]/(4.0*k)+t1[n+1]/(4.0*k*ls)+t2[n+1]/(4.0*k*ll)-t3[n

↪→ +1]/(4.0*b);

om2[n+1] = T[n+1]/(4.0*k)-t1[n+1]/(4.0*k*ls)+t2[n+1]/(4.0*k*ll)+t3[n

↪→ +1]/(4.0*b);

om3[n+1] = T[n+1]/(4.0*k)-t1[n+1]/(4.0*k*ls)-t2[n+1]/(4.0*k*ll)-t3[n

↪→ +1]/(4.0*b);

om4[n+1] = T[n+1]/(4.0*k)+t1[n+1]/(4.0*k*ls)-t2[n+1]/(4.0*k*ll)+t3[n

↪→ +1]/(4.0*b);

om1[n+1] = sqrt(om1[n+1]); om2[n+1] = sqrt(om2[n+1]);

om3[n+1] = sqrt(om3[n+1]); om4[n+1] = sqrt(om4[n+1]);

// enforce propeller speed limits

if (om1[n+1]<wmin) om1[n+1]=wmin;

if (om2[n+1]<wmin) om2[n+1]=wmin;

if (om3[n+1]<wmin) om3[n+1]=wmin;

if (om4[n+1]<wmin) om4[n+1]=wmin;

if (om1[n+1]>wmax) om1[n+1]=wmax;

if (om2[n+1]>wmax) om2[n+1]=wmax;

if (om3[n+1]>wmax) om3[n+1]=wmax;

if (om4[n+1]>wmax) om4[n+1]=wmax;

// protect math equations from nan

if (isnan(om1[n+1])) om1[n+1]=om1[n];
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if (isnan(om2[n+1])) om2[n+1]=om2[n];

if (isnan(om3[n+1])) om3[n+1]=om3[n];

if (isnan(om4[n+1])) om4[n+1]=om4[n];

// Angular momentum of propellers

Hp[n+1]=(om1[n+1]+om3[n+1]-om2[n+1]-om4[n+1])*Ip;

// compute pwm duty cycle based on effective pwm range and min/max

↪→ propeller speeds

duty1 = (int)(rng*(om1[n+1]-wmin)/(wmax-wmin)+.5f);

duty2 = (int)(rng*(om2[n+1]-wmin)/(wmax-wmin)+.5f);

duty3 = (int)(rng*(om3[n+1]-wmin)/(wmax-wmin)+.5f);

duty4 = (int)(rng*(om4[n+1]-wmin)/(wmax-wmin)+.5f);

// write pwm control values to PCA9685

#ifdef FLY

pwm->ledOffTime(15,min1+duty1);

pwm->ledOffTime(1,min2+duty2);

pwm->ledOffTime(14,min3+duty3);

pwm->ledOffTime(0,min4+duty4);

#endif

n = n+1; // increment data arrays

if (n==size-1) { // reset arrays (previous 6000 data points in all

↪→ arrays will be lost!)

x_e[0] = x_e[n]; y_e[0] = y_e[n]; z_e[0] = z_e[n];

u_e[0] = u_e[n]; v_e[0] = v_e[n]; w_e[0] = w_e[n];

ud[0] = ud[n]; vd[0] = vd[n]; wd[0] = wd[n];

u_c[0] = u_c[n]; v_c[0] = v_c[n]; w_c[0] = w_c[n];
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u_d[0] = u_d[n]; v_d[0] = v_d[n]; w_d[0] = w_d[n];

phi[0] = phi[n]; theta[0] = theta[n]; psi[0] = psi[n];

p[0] = p[n]; q[0] = q[n]; r[0] = r[n];

qd[0] = qd[n]; rd[0] = rd[n];

Hx[0] = Hx[n]; Hy[0] = Hy[n]; Hz[0] = Hz[n];

Hp[0] = Hp[n];

e_u[0] = e_u[n]; e_v[0] = e_v[n]; e_w[0] = e_w[n];

e_phi[0] = e_phi[n]; e_the[0] = e_the[n]; e_psi[0]=e_psi[n];

e_p[0] = e_p[n]; e_q[0] = e_q[n]; e_r[0]=e_r[n];

Ie_u[0]=Ie_u[n];Ie_v[0]=Ie_v[n]; Ie_w[0]=Ie_w[n];

Ie_ph[0]=Ie_ph[n]; Ie_th[0]=Ie_th[n]; Ie_ps[0]=Ie_ps[n];

Ie_p[0]=Ie_p[n]; Ie_q[0]=Ie_q[n]; Ie_r[0]=Ie_r[n];

t1[0]=t1[n]; t2[0]=t2[n]; t3[0]=t3[n]; T[0]=T[n];

om1[0] = om1[n]; om2[0] = om2[n];

om3[0] = om3[n]; om4[0] = om4[n];

n = 0; // reset index

printf("Indices zero’d \n");

cout.flush();

}

}

}

}
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flight.h

////////////////////////////////////////////////////////////////////////////

// This is the header file for flight.cpp. It contains initializations of

↪→ data structures, and functions used by flight.cpp

////////////////////////////////////////////////////////////////////////////

#include "MPU9150_9Axis_MotionApps41.h"

#include "mraa.hpp"

#include "Matrix/matrix/math.hpp"

#include <librealsense/rs.hpp>

#include <chrono>

#include <vector>

#include <sstream>

#include <iostream>

#include <algorithm>

#include <unistd.h>

#include <inttypes.h>

#include <stdint.h>

#include <signal.h>

#include <chrono>

#include <fstream>

#include "/usr/include/upm/pca9685.h"
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#include <stdio.h>

#include <string>

#include <termios.h>

#include <ctype.h>

#include <sys/wait.h>

#include <sys/ioctl.h>

#include<cstdlib>

#include<cstdio>

#include<ctime>

#include<time.h>

float pi=M_PI;

// MPU control/status vars

bool dmpReady = false; // set true if DMP init was successful

uint8_t dmpIntStatus; // holds actual interrupt status byte from DMP

uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU

uint8_t devStatus; // return status after each device operation (0 =

↪→ success, !0 = e$

uint16_t packetSize=0; // expected DMP packet size (default is 42 bytes)

uint16_t fifoCount; // count of all bytes currently in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

Quaternion refQ; // reference quaternion container
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Quaternion corrQ; // corrected quaternion container

Quaternion Q; // [w, x, y, z] quaternion container

VectorInt16 aa; // [x, y, z] accel sensor measurements

VectorInt16 ar;

VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor

↪→ measurements

VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor

↪→ measurements

VectorFloat gravity; // [x, y, z] body gravity vector

float ypr[3],ypr_r[3]; // [psi, theta, phi] Euler angle containers

int16_t gyro[3];

int16_t a_x,a_y,a_z; // used for correcting accel for rotation (due to IMU

↪→ offset)

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin

↪→ has gone high

const int n_pts = 1400; // number of points to map

Quaternion fromEuler(float ypr[]) {

float cosX2 = cos(ypr[2] / 2.0f);

float sinX2 = sin(ypr[2] / 2.0f);

float cosY2 = cos(ypr[1] / 2.0f);

float sinY2 = sin(ypr[1] / 2.0f);

float cosZ2 = cos(ypr[0] / 2.0f);

float sinZ2 = sin(ypr[0] / 2.0f);

float qa[4];
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qa[0] = cosX2 * cosY2 * cosZ2 + sinX2 * sinY2 * sinZ2;

qa[1] = sinX2 * cosY2 * cosZ2 - cosX2 * sinY2 * sinZ2;

qa[2] = cosX2 * sinY2 * cosZ2 + sinX2 * cosY2 * sinZ2;

qa[3] = cosX2 * cosY2 * sinZ2 - sinX2 * sinY2 * cosZ2;

Quaternion q = Quaternion(qa[0],qa[1],qa[2],qa[3]);

q.normalize();

return q;

}

void dmpDataReady() {

mpuInterrupt = true;

}

using namespace std;

using namespace matrix;

int sgn(float val) {

if (val>0) {

return 1;

} else if (val<0) {

return -1;

} else {

return 0;

}

}

// linear function with deadzone
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float sigma(float e_w,float ep) {

if (abs(e_w)<ep/2) {return 0;}

else {return e_w-sgn(e_w)*ep/2;}

}

char getUserChar() {

int i;

ioctl(0, FIONREAD, &i);

if (i <= 0) return 0;

return tolower(getchar());

}

float ElpsdRad(const Vector3f &P_o,float a,float b,float c) {

float theta,phi,x,y,z;

theta = atan((P_o(2)/c)/sqrt(pow(P_o(0),2)/(a*a)+pow(P_o(1),2)/(b*b)));

phi = atan2(P_o(1)/b,P_o(0)/a);

x=a*cos(theta)*cos(phi);

y=b*cos(theta)*sin(phi);

z=c*sin(theta);

return sqrt(x*x+y*y+z*z); //radius of ellipsoid along p_i

}

// is object within ellipsoid

bool in_Elpsd(const Vector3f &P_o,float a,float b,float c) {

if (P_o(0)==0||P_o(1)==0||P_o(2)==0) return false;
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return (pow(P_o(0)/a,2)+pow(P_o(1)/b,2)+pow(P_o(2)/c,2) <= 1);

}

// set all pwm values to val and close pwm connection

void setAllPWM(upm::PCA9685 *pwm, int val) {

usleep(5000);

//pwm->ledOffTime(PCA9685_ALL_LED, val);

pwm->ledOffTime(15, val);

pwm->ledOffTime(14, val);

pwm->ledOffTime(1, val);

pwm->ledOffTime(0, val);

usleep(50000);

printf(" - PWM off\n");

pwm->setModeSleep(true);

pwm->setModeSleep(false);

}

void write_Data(ofstream &file, float time[],float data[],int n) {

if (file.is_open()) {

for(int count = 0; count < n; count ++) {

file << time[count] << "\t" << data[count] << "\n" ;

}

file << "\n";

}

else cout << "Unable to open file";

}

void write_Data(ofstream &file, float dat1[], float dat2[], float dat3[],int

↪→ n) {
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if (file.is_open()) {

for(int count = 0; count < n; count ++) {

file << dat1[count] << "\t" << dat2[count] << "\t" << dat3[count] << "\n"

↪→ ;

}

file << "\n";

}

else cout << "Unable to open file";

}

void write_Data(ofstream &file, const Matrix<float, 3, n_pts> &pts,int i) {

if (file.is_open()) {

for(int count = 0; count < i; count ++) {

file << pts(0,count) << "\t" << pts(1,count) << "\t" << pts(2,count) <<

↪→ "\n";

}

file << "\n";

}

else cout << "Unable to open file";

}

void write_Data(ofstream &file, float time[], float dat1[], float dat2[],

↪→ float dat3[],float dat4[],int n) {

if (file.is_open()) {

for(int count = 0; count < n; count ++) {

file << time[count] << "\t" << dat1[count] << "\t" << dat2[count] << "\

↪→ t" << dat3[count] << "\t" << dat4[count] << "\n";

}

file << "\n";

}
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else cout << "Unable to open file";

}

void write_Position(int n,float time[],float x[], float y[],float z[],float

↪→ z_o[]) {

ofstream xy ("xy.txt"); ofstream xyz ("xyz.txt"); ofstream zz ("z_e.txt");

ofstream xx ("x_e.txt"); ofstream yy ("y_e.txt");

write_Data(xy,y,x,n); write_Data(xyz,x,y,z,n); write_Data(zz,time,z,n);

write_Data(xx,time,x,n); write_Data(yy,time,y,n);

write_Data(zz,time,z_o,n);

xy.close(); xyz.close(); zz.close(); xx.close(); yy.close();

}

void write_Map(int i, const Matrix<float, 3, n_pts> &pts) {

ofstream map ("map.txt");

write_Data(map,pts,i);

map.close();

}

void write_Velocity(int n,float time[],float u[],float v[],float w[],float

↪→ u_c[],float v_c[],float w_c[]) {

ofstream uu ("u_e.txt"); ofstream vv ("v_e.txt"); ofstream ww ("w_e.txt");

write_Data(uu,time,u,n); write_Data(vv,time,v,n); write_Data(ww,time,w,n);

write_Data(uu,time,u_c,n); write_Data(vv,time,v_c,n); write_Data(ww,time,

↪→ w_c,n);

uu.close(); vv.close(); ww.close();

}

138



void write_Vel_Int(int n,float time[],float Ie_u[],float Ie_v[],float Ie_w

↪→ []) {

ofstream uu ("Ie_u.txt"); ofstream vv ("Ie_v.txt"); ofstream ww ("Ie_w.txt

↪→ ");

write_Data(uu,time,Ie_u,n); write_Data(vv,time,Ie_v,n); write_Data(ww,time

↪→ ,Ie_w,n);

uu.close(); vv.close(); ww.close();

}

void write_Acceleration(int n, float time[],float ud[],float vd[],float wd

↪→ []) {

ofstream uu ("ud.txt"); ofstream vv ("vd.txt"); ofstream ww ("wd.txt");

write_Data(uu,time,ud,n); write_Data(vv,time,vd,n); write_Data(ww,time,wd,

↪→ n);

uu.close(); vv.close(); ww.close();

}

void write_Angles(int n,float time[],float phi[],float theta[],float psi[],

↪→ float phi_d[],float theta_d[],float psi_c[]) {

ofstream Phi ("phi.txt"); ofstream Theta ("theta.txt"); ofstream Psi ("psi

↪→ .txt");

write_Data(Phi,time,phi,n); write_Data(Theta,time,theta,n); write_Data(Psi

↪→ ,time,psi,n);

write_Data(Phi,time,phi_d,n); write_Data(Theta,time,theta_d,n); write_Data

↪→ (Psi,time,psi_c,n);

Phi.close(); Theta.close(); Psi.close();

}
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void write_Ang_Int(int n,float time[],float Ie_ph[],float Ie_th[],float

↪→ Ie_ps[]) {

ofstream uu ("Ie_ph.txt"); ofstream vv ("Ie_th.txt"); ofstream ww ("Ie_ps.

↪→ txt");

write_Data(uu,time,Ie_ph,n); write_Data(vv,time,Ie_th,n); write_Data(ww,

↪→ time,Ie_ps,n);

uu.close(); vv.close(); ww.close();

}

void write_Angle_Errors(int n,float time[],float e_phi[],float e_the[],float

↪→ e_psi[]) {

ofstream eph ("eph.txt"); ofstream eth ("eth.txt"); ofstream eps ("eps.txt

↪→ ");

write_Data(eph,time,e_phi,n); write_Data(eth,time,e_the,n); write_Data(eps

↪→ ,time,e_psi,n);

eph.close(); eth.close(); eps.close();

}

void write_Rates(int n,float time[],float p[],float q[],float r[],float p_d

↪→ [],float q_d[],float r_d[]) {

ofstream pp ("p.txt"); ofstream qq ("q.txt"); ofstream rr ("r.txt");

write_Data(pp,time,p,n); write_Data(qq,time,q,n); write_Data(rr,time,r,n);

write_Data(pp,time,p_d,n); write_Data(qq,time,q_d,n); write_Data(rr,time,

↪→ r_d,n);

pp.close(); qq.close(); rr.close();

}

140



void write_Momentum(int n,float time[],float hx[],float hy[],float hz[],

↪→ float hp[]) {

ofstream Hb ("Hb.txt"); ofstream Hp ("Hp.txt");

write_Data(Hb,time,hx,n); write_Data(Hb,time,hy,n); write_Data(Hb,time,hz,

↪→ n);

write_Data(Hp,time,hp,n);

Hb.close(); Hp.close();

}

void write_Rate_Errors(int n,float time[],float e_p[],float e_q[],float e_r

↪→ []) {

ofstream ep ("ep.txt"); ofstream eq ("eq.txt"); ofstream er ("er.txt");

write_Data(ep,time,e_p,n); write_Data(eq,time,e_q,n); write_Data(er,time,

↪→ e_r,n);

ep.close(); eq.close(); er.close();

}

void write_Inputs(int n,float time[],float T[],float t1[],float t2[],float

t3[],float om1[],float om2[],float om3[],float om4[]) {

ofstream TT ("T.txt"); ofstream om ("om.txt");

ofstream tt1 ("t1.txt"); ofstream tt2 ("t2.txt"); ofstream tt3 ("t3.txt");

write_Data(TT,time,T,n); write_Data(om,time,om1,om2,om3,om4,n);

write_Data(tt1,time,t1,n); write_Data(tt2,time,t2,n); write_Data(tt3,time,

↪→ t3,n);

TT.close(); om.close();

tt1.close(); tt2.close(); tt3.close();

}

void write_Params(int n, float time[], float kp[],float bp[]) {
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ofstream kk ("k.txt"); ofstream bb ("b.txt");

write_Data(kk,time,kp,n); write_Data(bb,time,bp,n);

kk.close(); bb.close();

}

void write_Freq(int n, float time[],float clf[]) {

ofstream freq ("freq.txt");

write_Data(freq,time,clf,n);

freq.close();

}

void write_Pos_Obj(int n,float time[],float px[], float py[],float pz[],

↪→ float dist[]) {

ofstream posx ("posx.txt"); ofstream posy ("posy.txt"); ofstream posz ("

↪→ posz.txt");

ofstream pts ("pts.txt");

write_Data(posx,time,px,n); write_Data(posy,time,py,n); write_Data(posz,

↪→ time,pz,n);

write_Data(pts,time,dist,n);

posx.close(); posy.close(); posz.close(); pts.close();

}

// Initialize all the data holders

uint8_t frame[22];

uint8_t int_frame[26];

// standard deviation height/velocity limits

const float h_min = 2.0f;

const float h_max = 8.0f;

142



const float v_min = 0.5f;

const float v_max = 1.0f;

// polynomial noise model, found using least squares fit

// h, h**2, v, v*h, v*h**2

const float P[5] = {0.04005232f, -0.00656446f, -0.26265873f, 0.13686658f

↪→ ,-0.00397357f};

float flow_vxy_stddev=0;

float flow_x_rad;

float flow_y_rad;

float dt_flow;

float gyro_x_rad = 0;

float gyro_y_rad = 0;

uint16_t f_c;

uint8_t qual;

float rot_sq=0;

float rotrate_sq=0;

matrix::Vector3f delta_b;

matrix::Vector3f delta_n;

float h=0;

float v=0;

// acceleration estimation matrices

matrix::Vector3f x_k;

matrix::Vector3f y_k;
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matrix::SquareMatrix<float, 3> ph_k;

matrix::SquareMatrix<float, 3> C_k;

matrix::SquareMatrix<float, 3> P_k;

matrix::SquareMatrix<float, 3> Q_k;

matrix::SquareMatrix<float, 3> R_k;

matrix::SquareMatrix<float, 3> K_k;

matrix::Matrix<float,3,3> SI_k;

matrix::Vector<float,4> x;

matrix::Vector3f y;

matrix::SquareMatrix<float, 4> A;

matrix::Matrix<float, 4, 3> B;

matrix::Matrix<float, 3, 4> C;

matrix::SquareMatrix<float, 4> _P;

matrix::SquareMatrix<float, 4> _Q;

matrix::SquareMatrix<float, 3> R;

matrix::Matrix<float,4,3> K;

matrix::Matrix<float,3,3> S_I;

matrix::Vector<float,2> xk;

matrix::Vector<float,2> yk;

matrix::SquareMatrix<float, 2> Ak;

matrix::SquareMatrix<float, 2> Ck;

matrix::SquareMatrix<float, 2> Pk;

matrix::SquareMatrix<float, 2> Qk;

matrix::SquareMatrix<float, 2> Rk;

matrix::SquareMatrix<float, 2> Kk;

matrix::SquareMatrix<float, 2> SIk;
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// 1-2 attitude matrix

matrix::Dcmf Att;

matrix::Dcmf O;

// Velocity of quadrotor body-frame and inertial

matrix::Vector3f V_q;

matrix::Vector3f V_qI,V_qIp;

// Goal position and velocity

matrix::Vector3f P_g;

matrix::Vector3f P_gI;

matrix::Vector3f V_g;

// Object position in the body-frame

matrix::Vector3f P_o,P_oe;

// Object positions in the inertial frame

matrix::Vector3f P_oI;

// Object velocity in the body-frame

matrix::Vector3f V_o;

matrix::SquareMatrix<float, 3> Om; // skew symm. matrix corresponding to

↪→ omega

matrix::Matrix<float, 3, n_pts > pts;

int i=0; //pts counter

float u_a=0;
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float v_a=0;

float w_a=0;

// parameters for adjusting thrust constant

bool do_leveling=false;

int count=0; // counter

// initialize ESC’s

bool cal=false; // initialized boolean

bool incr=false; // pulse increment boolean

int n=0;

const int size=6000;

float px[size],py[size],pz[size];

float dist[size];

float min_dist = 1;

float psi_d,phid_d,thetad_d,phi2_d,theta2_d,pd_d,qd_d,rd_d;

float x_e[size],y_e[size],z_e[size],z_o[size];

float u_e[size],v_e[size],w_e[size];

float u_d[size],v_d[size],w_d[size];

float ud[size],vd[size],wd[size];

float udb[size],vdb[size],wdb[size];

float u2,v2,w2;

float phi[size],theta[size],psi[size];
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float p[size],q[size],r[size];

float pd[size],qd[size],rd[size];

float e_u[size],e_v[size],e_w[size];

float Ie_u[size],Ie_v[size],Ie_w[size];

float e_phi[size],e_the[size],e_psi[size];

float Ie_ph[size],Ie_th[size],Ie_ps[size];

float e_p[size],e_q[size],e_r[size];

float Ie_p[size],Ie_q[size],Ie_r[size];

float kP[size],bP[size];

float Hx[size],Hy[size],Hz[size],Hp[size];

float phid,thetad,psid,psi2;

float u_c[size],v_c[size],w_c[size];

float Td,ud_c,vd_c,wd_c,psid_c,u2_c,v2_c,w2_c,psi2_c,u3_c,v3_c,w3_c,psi3_c,

↪→ u4_c,v4_c,w4_c;

float ud_cp,vd_cp,wd_cp,psid_cp,u2_cp,v2_cp,w2_cp,psi2_cp,u3_cp,v3_cp,w3_cp,

↪→ psi3_cp,u4_cp,v4_cp,w4_cp;

float alu,alv,alw,alud,alvd,alwd,alu2,alv2,alw2,beth,beph,bthd,bphd,bth2,

↪→ bph2;

float dt,cph,sph,tph,cth,sth,tth,cthd,sthd,cps,sps;

float phi_d[size],theta_d[size],psi_c[size];

float p_d[size],q_d[size],r_d[size];

float t1[size],t2[size],t3[size],T[size];
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float om1[size],om2[size],om3[size],om4[size];

int duty1,duty2,duty3,duty4;

float Time[size],sample_freq[size];

float p_gn;

float st_d;

char kcom; // key command

bool traj=false;

bool land=false;

bool avoid=false;
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