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Wnt/�-catenin signaling is required for crypt structure main-
tenance. We previously observed nuclear accumulation of Ser-
552 phosphorylated �-catenin (p�-CatSer-552) in intestinal epi-
thelial cells (IEC) during colitis and colitis-associated cancer.
Data here delineate a novel multiprotein cytosolic complex
(MCC) involved in �-catenin signaling in the intestine. The
MCC contains p85�, the class IA subunit of PI3K, along with
�-catenin, 14-3-3�, Akt, and p110�. MCC levels in IEC increase
in colitis and colitis-associated cancer patients. IEC-specific
p85�-deficient (p85�IEC) mice develop more severe dextran
sodium sulfate colitis due to delayed ulcer healing and reduced
epithelial �-catenin activation. In colonic IEC, p85� deficiency
did not alter PI3K signaling. In vitro shRNA depletion of indi-
vidual complex members disrupts the MCC and reduces �-
catenin signaling. Despite worse colitis, p85�IEC mice have
reduced tumor burden after azoxymethane/dextran sodium sul-
fate treatment. Together the data indicate that the �-catenin
MCC is needed for mucosal repair and carcinogenesis. This
novel MCC may be an attractive therapeutic target in preventing
cancer in colitis patients.

The generation and maintenance of intestinal crypts require
Wnt signaling (1, 2). Canonical Wnt-mediated �-catenin acti-
vation induces target gene expression that regulates stem cell
self-renewal and progenitor cell generation (3). This pathway is
particularly important in the intestine where mutations in
genes involved in �-catenin degradation occur in over 90% of
sporadic colorectal cancers (CRC)2 (4). Our data and that of

others suggest that �-catenin is also activated in colitis (5–7).
Interestingly, mutations in �-catenin degradation complex
genes occur late in the progression to colitis-induced cancer.
Thus, mechanisms that regulate Wnt/�-catenin signaling may
be operative in normal intestinal homeostasis, mucosal inflam-
mation (e.g. colitis), and progression to colorectal cancer.

Cytosolic �-catenin levels are controlled by APC (adenoma-
tous polyposis coli), GSK3� (glycogen synthase kinase 3�),
Axin2 (axis inhibition protein 2 or conductin), and CK1 (casein
kinase 1) proteins that phosphorylate and target �-catenin for
ubiquitination and proteasomal degradation (8 –10). Active
Wnt signaling recruits members of the degradation complex
(Axin2, Dishevelled) to the membrane, thereby reducing deg-
radation (11). This results in accumulation of �-catenin and
increased nuclear translocation (12). Once in the nucleus,
�-catenin induces target gene transcription by displacing
Groucho and binding the TCF/LEF transcription complex (13,
14). What is less clear, however, is how �-catenin physically
moves to the nucleus. Hood and colleagues (15) showed that
�-catenin binds the chaperone protein 14-3-3� in the cytosol,
where it likely participates in nuclear translocation. Others
have shown that �-catenin binds the PI3K regulatory subunit,
p85�, but whether this event affects nuclear translocation is
unclear (16, 17). The current study examines the hypothesis
that 14-3-3� and p85� form a cytosolic complex with �-catenin
that regulates its movement to the nucleus and TCF/LEF-de-
pendent transcriptional activation.

In previous studies, Akt was shown to directly phosphorylate
�-catenin at serine 552 (p�-CatSer-552) within the armadillo
repeat domain (6, 18, 19). We examined the role of PI3K signal-
ing by deleting the class 1A PI3K subunit p85� in epithelial cells
in the small intestine (5). These studies suggested that Akt
cooperates with Wnt to enhance �-catenin signaling in small
intestine epithelial cells responding to mucosal inflammation.
In the current study, we explore the effect of p85� deletion in
colonic intestinal epithelial cell (IEC) responses to mucosal
inflammation. We report that in the colon, p85� is not required
for Akt activation. Rather, p85� enhances �-catenin signaling
by forming a novel multiprotein cytosolic complex (MCC) that
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2 The abbreviations used are: CRC, sporadic colorectal cancer(s); CAC, colitis-
associated cancer; UC, ulcerative colitis; AOM, azoxymethane; DSS, dextran
sodium sulfate; IEC, intestinal epithelial cells; IP, immunoprecipitation; WB,
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delivers �-catenin to the nucleus. This complex, composed of
p85�, p110�, Akt, 14-3-3�, and �-catenin, is increased during
colitis and colorectal cancer. Stability of the MCC requires
p85�, as p85� deletion disrupts the complex, reduces nuclear
�-catenin signaling, and impairs mucosal healing during colitis.
Together these findings not only uncover a novel mechanism
for regulating �-catenin signaling but also provide the first clear
link between �-catenin activation and mucosal repair during
colitis.

Experimental Procedures

Human Biopsy Samples—Human colonic biopsy specimens
were obtained from patients undergoing diagnostic or surveil-
lance colonoscopy for known or suspected ulcerative colitis
(UC) and collected from the Good Samaritan Hospital (Lexing-
ton, KY). For patients with UC, the Mayo Clinic UC scores for
collected biopsies were not less than 8. For comparison and ex
vivo stimulation, biopsy specimens were obtained from healthy
patients undergoing routine colon cancer surveillance. Colitis-
associated cancer (CAC) specimens were obtained from
patients undergoing surgery. Collection of all patient materials
for this study was approved by Institutional Review Board pro-
tocol (IRB #13-0559-F3R).

Animals—C57BL/6 (WT) and Villin-Cre mice were obtained
from The Jackson Laboratory (Bar Harbor, ME). Villin-Cre
mice were bred with pik3r1lox/lox mice (gift from Lewis Cantley,
Boston, MA). C57BL/6 (WT) and Villin-Cre pik3r1lox/lox

(p85�IEC) mice were maintained under specific pathogen-free
conditions at the University of Kentucky animal facility. All
experiments were approved by the University of Kentucky
Institutional Animal Care and Use Committee. Loss of p85�
protein in colon epithelial cells of p85�IEC mice was confirmed
by Western blotting (WB) (see Fig. 1B). To induce colitis, mice
were given 2% (w/v) dextran sodium sulfate (DSS) in their
drinking water for 7 days, followed by regular water. Mice were
given a single intraperitoneal injection of 1 mg of BrdU 2 h prior
to euthanasia. Mice were euthanized by CO2 asphyxiation 8 or
14 days after the end of DSS treatment.

To measure disease activity, mice undergoing treatment
were scored every other day using a standard disease activity
index based on diarrhea, fecal blood (measured by the Beck-
man Coulter SENSA Hemoccult Test), and percentage of
weight loss as described previously (20). Each criterion was
assigned a score from 0 (no diarrhea, fecal blood, or weight
loss) to 4 (severe diarrhea, visible fecal blood, and up to 20%
weight loss).

To induce colon cancer, four WT and five p85�IEC mice were
given a single intraperitoneal injection of 12.5 mg/kg of azoxy-
methane (AOM). After 1 week, mice were started on three
cycles of DSS (2.5% DSS in the drinking water for 1 week fol-
lowed by 2 weeks of water).

Histological Analysis—For histological analysis, tissues were
fixed in 4% neutral buffered formalin overnight, processed
through paraffin, sectioned at 5 �m, and stained with H&E.
Colitis scores were calculated based on a graded scale of inflam-
mation (0 –3), extent (0 –3), regeneration (0 – 4), crypt damage
(0 – 4), and percentage of involvement (1– 4) as described pre-
viously (21). Combined colitis scores are the sum of the scores

for inflammation, extent, and crypt damage/regeneration. To
determine the percentage of ulceration, slides were scanned
using an Aperio ScanScope XTTM slide scanner and measure-
ments were made using ImageScope version 11. Survival statis-
tics were calculated using a Kaplan-Meier survival curve
(SigmaPlot, Systat Software, San Jose, CA).

Immunohistochemistry—Antigen retrieval of paraffin sec-
tions was performed using Target Retrieval Solution (Dako,
Carpentaria, CA), pH 6.0, in a decloaking chamber. Sections
were incubated with anti-BrdU antibody followed by the rat
VECTASTAIN ABC kit (Vector Laboratories, Burlingame,
CA). Sections were developed using 3,3�-diaminobenzidine tet-
rahydrochloride chromogen (Dako). For analysis, cells in at
least 30 well oriented colonic crypts per mouse were counted.

Statistical Analysis—All experiments were repeated three
times with at least four mice in each group. Comparisons
among multiple groups were assessed by analysis of variance.
p � 0.05 was considered statistically significant.

Antibodies and Inhibitor Used—Antibodies used in this
study are listed in Table 1. The inhibitor MK2206 was
obtained from LC Laboratories (Woburn, MA) and used in
concentration 1 �M.

Murine Intestinal Epithelial Cell Isolation—Lengthwise sec-
tions of murine colon were incubated in 4 °C Ca2�- and Mg2�-
free HBSS (CMF-HBSS) containing 10 mM DTT and 50 nM

calyculin A (Calbiochem) for 30 min. Tubes were shaken, and
then tissue was transferred to fresh tubes containing CMF-
HBSS with 50 nM calyculin A and 10 mM EDTA and incubated
at 4 °C for 1 h. Epithelial cells were then dislodged by vigorous
shaking. Large pieces of tissue were discarded. Epithelial cells
were harvested by centrifugation at 16 � g for 5 min. Cells were
snap-frozen in liquid nitrogen and stored at �80 °C until use.
Flow cytometry confirmed that CD45� cells were �1% of the
remaining isolated epithelial cells.

Human Biopsy Epithelial Cell Isolation—Human colon epi-
thelia samples were delivered from the operating room in ice-
cold PBS. Samples were washed once with ice-cold PBS and

TABLE 1
Antibodies used in the study

Specificity Protocol Vendor, catalog number

14-3-3� WB, IP Santa Cruz Biotechnology, sc-1019
Akt1 WB, IP Santa Cruz Biotechnology, sc-5298
APC WB, IP Santa Cruz Biotechnology, sc-896
BrdU IHCa ABD Serotec, MCA2060GA
CK1� IP Novus, NBP1–18880
c-Myc WB Cell Signaling, 9402
Cyclin D1 WB Santa Cruz Biotechnology, sc-450
E-cadherin WB, IP Cell Signaling, 3195
Fibrillarin WB Santa Cruz Biotechnology, sc-374022
GSK3� WB, IP Cell Signaling, 9315
HistoneH3 WB Millipore, 06–755
Lamin B1 WB Zymed, 33–2000
p110� WB, IP BD Biosciences, 611389
p85� WB, IP Abcam, ab135253
pAkt Ser-473 WB Cell Signaling, 4060
pGSK3� Ser-9 WB, IP Cell Signaling, 9336
PTEN WB, IP Cell Signaling, 9559
p�-catenin Ser-552 WB, IP Cell signaling, 9566
TCF4 WB, IP Santa Cruz Biotechnology, sc-166699
Tubulin WB Sigma, F1804
�-Actin WB Sigma, A3854
�-Catenin WB, IP Abcam, ab19450
�-Catenin WB, IP BD Biosciences, 610154
�-TrCP IP Cell signaling, 4394

a IHC, immunohistochemistry.
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incubated at 4 °C with rotation in PBS with 10 mM DDT and 50
nM calyculin A for 30 min, 4 °C. Then samples were centrifuged
at 300 rpm for 5 min. Cells were snap-frozen in liquid nitrogen
and stored at �80 °C until use. WB of both murine and human
epithelial cell lysates obtained by these protocols was negative
for anti-CD45 staining.

Ex Vivo TNF Stimulation—Human colon biopsies from
healthy patients were treated as above, supernatant was dis-
carded, and fresh HBSS with or without 10 ng/ml TNF was
added. Samples were incubated at 4 °C with slow rotation for
2 h and centrifuged at 300 rpm for 5 min, and supernatant was
removed. Samples were frozen and stored at �80 °C until use.

Cell Culture—NCM460 cells (normal derived colon mucosa
cells (22)) were received by a cell licensing agreement with
INCELL Corp. (San Antonio, TX) and were routinely propa-
gated under standard conditions in M3:10A medium with the
addition of the conditioned medium (33%) from previously cul-
tured NCM460 cells (22). Cells were treated overnight with 1
ng/ml TNF or TNF plus MK2206, harvested the next morning,
and fractionated. For experiments with Wnt3a stimulation, we
used a Wnt3a-expressing NCM460 cell line (22).

Caco2 cells (ATCC, HTB-37) were cultured in DMEM sup-
plemented with 10% fetal bovine serum under standard condi-
tions. The cells were harvested in log phase and fractionated.

RNA Interference, Lentiviral Constructs, and Transduc-
tions—For knockdown experiments, we used at least two dif-
ferent shRNA constructs directed to different parts of the
corresponding gene. For each construct, a stable cell line was
generated, and expression levels of the protein of interest were
verified. Immunoprecipitation experiments, as well as TCF/
LEF luciferase (TCF/luc) and wound healing assays, were made
with each cell line and showed similar results. The most com-
pelling data are presented in the study.

The pGIP lentiviral plasmids encoding shRNA against p85�,
14-3-3�, Akt, and shRNA control were provided by the RNAi/
Throughput Core, Northwestern University, Evanston, IL. The
pGIP plasmids for shRNA to p110a was purchased from GE
Healthcare Dharmacon. The reporter construct containing
TCF/luc was generated in the DNA/RNA Delivery Core, Skin
Disease Research Center (SDRC) at Northwestern University
(Chicago, IL) by inserting six copies of the TCF/LEF response
element in the lentiviral pGF1 vector (System Biosciences,
Mountain View, CA). The Wnt3a-expressing construct was
generated in the facility mentioned above and inserted in the
pGF1 vector.

Vesicular stomatitis virus G pseudotyped lentivirus stocks
were made in the DNA/RNA Delivery Core, SDRC (Chicago,
IL). NCM460 cells were infected in the presence of 1 �g/ml
Polybrene (Sigma), and stable cell lines were generated. Cells
were maintained under selection pressure with 5 �g/ml puro-
mycin. Expression levels of p85�, 14-3-3�, and Akt in NCM460
cells infected with shRNA were assessed by WB (see Fig. 6A).
Luciferase activity of cells co-infected with TCF/luc was
detected with Luciferase reagent (Promega, Madison, WI).

Caco2 Cell Transfection—Caco2 cells were plated in 10-cm
dishes at 60% confluence 1 day before transfection. Cells were
transfected with pGIP lentiviral plasmids encoded shRNA
against p85�, 14-3-3�, Akt, and p110� by using the jetPRIME

transfection reagent (Polyplus-Transfection, New York, NY).
48 h after transfection, cells were harvested and used for anal-
ysis. Expression levels of p85�, 14-3-3�, p110�, and Akt trans-
fected with shRNA were assessed by WB (see Fig. 6B). Stable
Caco2 cell lines expressing shRNA against p85�, 14-3-3�, Akt,
and p110� were generated and maintained under selection
pressure with 6 �g/ml puromycin. Caco2 shRNA-expressing
cell lines were co-transfected with the reporter construct con-
taining TCF/luc to evaluate �-catenin transcription activity.

Caco2 Cell Proliferation and Wound Assays—Proliferation
assays were performed by using the CyQUANT� cell prolifer-
ation assay kit (Invitrogen) according to the manufacturer’s
instructions. For the wound assay, Caco2 cells transfected with
shRNA against p85�, and control shRNA were plated in 6-well
plates near confluence. Using a sterile 200-�l pipette tip, three
separate wounds through the cells were scratched on each dish.
Pictures were taken immediately and 48 h after. Wound sizes
were measured by using Adobe Photoshop tools. The experi-
ment was repeated three times with 10 scratches for each cell
line.

Subcellular Protein Fractionation—The subcellular protein
fractionation (murine and human epithelial cells) protocol was
modified from described procedures (23). All buffers used con-
tained Protease ArrestTM protease inhibitor mixture (G-Biosci-
ences, St. Louis, MO), as well as phosphatase inhibitor mixture
I and II (Sigma) at 1:100. Murine and human epithelial cells
were homogenized in buffer I (50 mM Tris-HCl, pH 7.4, 100 mM

NaCl, 0.01% digitonin), and lysates were passed through a
26-gauge needle and then centrifuged at 4 °C for 10 min at
maximum speed. The supernatants were collected and used as
the cytosolic fraction. Pellets were resuspended in buffer II (50
mM Tris-HCl, pH 7.4, 2% Triton X-100, 100 mM NaCl), and
incubated on ice for 30 min, and then centrifuged as above. The
supernatants were used as the membrane/organelle fraction.
Pellets were dissolved in buffer III (50 mM Tris-HCl, pH 7.4,
0.25% n-dodecyl-D-maltoside, 100 mM NaCl) and with two
units of Benzonase (Sigma) per 100 �l of lysate, and then incu-
bated for 30 min at room temperature. Following centrifuga-
tion, the supernatants were used as nuclear fractions.

NCM460 and Caco2 cells were fractionated according to the
Pierce manufacturer’s protocol (subcellular protein fraction-
ation kit, Thermo Scientific). Protein concentration was mea-
sured by BCA assay (Thermo Scientific). The purity of the
fractions was confirmed by WB with anti-�-tubulin, anti-E-
cadherin, anti-laminB1, anti-histoneH3, and anti-fibrillarin
antibodies (Table 1).

Immunoprecipitation and Western Blotting—500 �g of cyto-
solic protein and 2 �g of antibody were used for each immuno-
precipitation (IP) reaction. The mixture was incubated over-
night at 4 °C. 20 �l of protein A/G plus agarose (Santa Cruz
Biotechnology, Dallas, TX) were added to the mixture, and
incubation was continued for another 30 min at 4 °C with gentle
rotation. Agarose beads were washed four times with ice-cold
radioimmunoprecipitation assay buffer (20% in HBBS) and
resuspended in LDS NuPAGE sample buffer (Invitrogen) with
10% 2-mercaptoethanol. The samples were boiled and resolved
with SDS-PAGE, followed by WB detection. For T-cell factor 4
(TCF4) IP, 200 �g of nuclear fraction and 2 �g of TCF4 primary
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antibody coupled to agarose beads (Thermo co-immunopre-
cipitation kit, Thermo Scientific) were incubated overnight.
The beads were washed, and proteins were eluted, acetone-
precipitated, and resolved using SDS-PAGE followed by WB.
Proteins were transferred on Immobilon FL (Millipore, Bil-
lerica, MS) by semi-dry transfer (Bio-Rad), and membranes
were blocked in Pierce Protein-Free T20 blocking buffer
(Thermo Scientific) for 1 h and incubated overnight at 4 °C in
1:1000 primary antibody solution. Membranes were extensively
washed, incubated in 0.02 �g/ml secondary antibody for 1 h,
washed again, and developed using West Pico, Dura, or Femto
reagent (Thermo Scientific).

Results

p85� Deletion Delays Wound Healing in DSS Colitis—To
study the role of p85� in colitis, p85�IEC mice were examined
after induction of DSS colitis. Data show that after 2% DSS,
p85�IEC mice exhibit more severe diarrhea, weight loss, and
intestinal bleeding as compared with WT controls (Fig. 1A).
Prolonged intestinal bleeding from 9 to 15 days in p85�IEC mice
suggested that repair of mucosal ulceration was delayed. Exam-
ination of mice at day 15 revealed that ulcers in p85�IEC mice
were 68% longer than in WT mice (Fig. 1B). These effects
occurred without altering IEC BrdU incorporation (Fig. 1C).

FIGURE 1. p85� promotes wound healing in DSS colitis. A, disease parameters of the percentage of weight change, diarrhea, and FOB scores are shown for
WT, WT DSS, p85�IEC, and p85�IEC DSS mice as indicated. DSS was given 2% w/v in drinking water ad libitum for days 0 –7 (solid bars) followed by water. B,
H&E-stained sections at low and high magnification from DSS mice are shown with the percentage of ulcerated mucosa (mean � S.E.). Areas of ulceration are
demarcated by asterisks, and margins are demarcated by arrows. n 	 4 (WT), n 	 5 (p85�IEC). The right upper panel represents WB analysis of p85� expression
in intestinal epithelium cells of WT and p85�IEC mice. C, BrdU incorporation in WT and p85�IEC mice (*, p � 0.9). n 	 4 (WT), n 	 5 (p85�IEC). D, survival curves are
shown for WT and p85�IEC mice *, p � 0.005. E, composite colitis scores are compared between strains (see “Experimental Procedures”). **, p � 0.05. For A, D,
and E, n 	 16 (WT), n 	 25 (p85�IEC).
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Greater ulceration correlated with reduced survival and sig-
nificantly more mucosal inflammation (Fig. 1, D and E). Inter-
estingly, fecal occult blood (FOB) results in Fig. 1A suggest that
resolution of colonic bleeding was delayed only 4 days in
p85�IEC as compared with WT mice on DSS. The differences in

mucosal bleeding was, however, likely greater than these results
would indicate. In fact, p85�IEC mice with persistent FOB pos-
itivity were more likely to die by day 15. The “removal” of mice
that failed to survive actually gives the impression that FOB
resolved. Thus, the absence of euthanized mice skewed the
appearance of the data in Fig. 1A. In fact, the only p85�IEC mice
that resolved FOB (albeit delayed) were also the only mice that
survived. Together these data suggest that epithelial p85� is
required for optimal mucosal healing in colitis.

p85� Participates in Colitis-induced �-Catenin Signaling—
To explore the mechanism of how p85� affects mucosal heal-
ing, IEC were sorted for the intestinal stem cell and progenitor
cell marker, CD44v6 (24), and examined by WB. As p85� par-
ticipates in PI3K signaling, we first examined whether colonic
epithelial cells from p85�IEC mice exhibited alterations in phos-
phorylation of Akt at serine 473 (pAktSer-473) or its target
GSK3� at serine 9 (pGSK3�Ser-9). WB for pAktSer-473 and
pGSK3�Ser-9 indicated that the increased colonic IEC PI3K
activation seen in colitis was unaffected by p85� deletion. Thus,
as reported in other cell types (25–27), colonic epithelial p85�
expression was dispensable for PI3K signaling (Fig. 2A).

Data from studies in Ref. 28 reported that p85� binds to
�-catenin in vitro in epithelial cell lines in both cytosolic and
whole cell lysates. To examine the possibility that p85� bound

FIGURE 2. p85� is required for �-catenin activation independent of PI3K signaling. A, WBs are shown for cytosolic and nuclear fractions of colonic IEC
probed for targets of PI3K (pAktSer-473) and Akt (GSK3�Ser-9) activation as well as p�-CatSer-552 and the �-catenin target proteins cyclin D1 and c-Myc. The bar
graphs represent cyclin D1 (*, p � 0.001,**, p � 0.01) and c-Myc (*, p � 0.0015,**, p � 0.002) expression. B, p85� binds �-catenin in the cytosol of colonic
epithelial cells. Protein fractions (C, cytosol; M, membrane; N, nuclear soluble; Ch, chromatin-bound) from NCM460 cells stimulated with TNF were immuno-
precipitated with anti-�-catenin antibody (BD Biosciences, Table 1) and probed for p85� and E-cadherin. WB of the fraction’s input is shown on the right with
markers of the fraction’s purity. C, IEC nuclear fractions were immunoprecipitated by TCF4 and probed for p�-CatSer-522. Each experiment was run at least three
times with independent samples.

FIGURE 3. Cytosolic p85� forms an MCC with �-catenin, 14-3-3�, Akt, and
p110�. A, cytosolic fractions from WT and p85�IEC control (�) and DSS-
treated (�) mice were immunoprecipitated for proteins as shown and then
probed for �-catenin (BD Biosciences, see Table 1). Data show p85�, p110�,
14-3-3�, and Akt bound to cytosolic �-catenin increases in DSS colitis. p85�
knock-out in p85�IEC mice destroys co-precipitation between �-catenin and
p110�, 14-3-3�, and Akt. B, p85� knock-out limits 14-3-3� transfer into
nucleus and its precipitation with �-catenin. Nuclear fractions from WT and
p85�IEC control (�) and DSS-treated (�) mice were immunoprecipitated with
anti-�-catenin antibody (Abcam, see Table 1) and probed for 14-3-3�. Each
experiment was run at least three times with independent samples.
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�-catenin in colonic IEC, cell fractions from NCM460 cells
were immunoprecipitated with anti-�-catenin antibody and
then probed for p85�. Results revealed relatively high levels of
p85� precipitated by �-catenin in cytosolic fractions but not
membrane-, nuclear, or chromatin-bound compartments. As a

control for this experiment, we probed a membrane with anti-
E-cadherin antibody. As expected, we detected �-catenin/E-
cadherin binding in the membrane fraction (Fig. 2B).

Next, we examined whether epithelial p85� deficiency
altered �-catenin signaling in vivo using p85�IEC mice. Studies
of �-catenin activation in WT mice showed that colitis
increased nuclear levels of activated p�-CatSer-552 as well as
protein levels of its targets, cyclin D1 (83%) and c-Myc (60%). In
contrast, findings in p85�IEC mice revealed that p85� deletion
attenuated the increase in nuclear p�-CatSer-552 seen in colitic
WT mice. A parallel effect was seen for the �-catenin targets
cyclin D1 and c-Myc where epithelial p85� deletion impaired
colitis-induced increases in these proteins (Fig. 2A).

To examine p�-CatSer-552 binding to transcriptional cofac-
tor, TCF4, nuclear extracts were immunoprecipitated with
anti-TCF4 antibody and probed for p�-CatSer-552. WB of IPs
showed that colitis increases nuclear �-catenin/TCF4 binding,
whereas epithelial p85� deletion markedly reduces nuclear
�-catenin/TCF4 binding in colitis (Fig. 2C). These findings sup-
port the notion that p85� participates in �-catenin signaling.

p85� Forms an MCC That Contains �-Catenin—Given ob-
servations that p85� binds �-catenin in the cytosol and that p85
deficiency reduces �-catenin signaling, we considered the pos-
sibility that p85� participates in the formation of an MCC that
contains �-catenin. Cytosolic fractions from IEC in normal and
colitic WT and p85�IEC mice were isolated and immunopre-

FIGURE 4. UC and colon cancer increase �-catenin-containing MCC. Cyto-
solic protein lysates from IEC isolated from biopsies from normal (N), UC, CAC,
and CRC patients were immunoprecipitated for proteins as shown and then
probed for �-catenin (BD Biosciences, see Table 1). Input levels are on the
right. A–C, immunoprecipitations for UC (A), CAC (B), and CRC (C). Results
indicate that both colitis and colon cancer increase levels of MCC as com-
pared with normal tissue. Each immunoprecipitation was done at least three
times with different biopsy samples.

FIGURE 5. Cytokine-induced �-catenin signaling requires formation of the MCC. A, TNF increases nuclear p�-CatSer-552 in human colon epithelial cell ex
vivo. Human biopsy samples were treated as described under “Experimental Procedures.” WBs were run to assess expression of proteins. Lamin B1 was used as
a loading control. B, cytosolic fractions of NCM460 cells infected by Wnt3a-expressing construct and NCM460 cells treated with TNF were immunoprecipitated
with p85�, p110�, 14-3-3�, and Akt and probed for �-catenin (BD Biosciences, see Table 1). C, NCM460 cells infected with shRNA control (shCont) or shp85�,
shAkt, or sh14-3-3� were incubated with TNF, and cytosolic fractions were immunoprecipitated for proteins as shown and then probed for �-catenin (BD
Biosciences, see Table 1). D, cytosolic lysates from Caco2 cells treated with shRNA control or p85� were immunoprecipitated for p110�, 14-3-3�, and Akt and
probed for �-catenin. Each IP/WB was done at least three times.
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cipitated with antibodies against p110�, 14-3-3�, and Akt and
probed for �-catenin. In these studies, we found that p85� dele-
tion reduced levels of p110�, 14-3-3�, and Akt bound to
�-catenin in IEC from colitic tissues (Fig. 3A). These observa-
tions were supported by reciprocal IP experiments (p110� and
14-3-3� IPs probed for Akt, and Akt IP probed for 14-3-3�)
(data not shown). These data suggest that p85� is required for
�-catenin binding to p110�, 14-3-3�, and Akt in the cytosol.

Prior studies proposed that 14-3-3� performs a chaperone
function in the nuclear translocation of �-catenin (15). We
observed lower levels of 14-3-3� bound to �-catenin in the
MCC for p85�IEC mice (Fig. 3A). Data in Fig. 3B show that
colitis increased 14-3-3� bound to �-catenin in the nucleus of
WT mice. However, in p85�IEC mice, nuclear levels of 14-3-3�
were reduced as well as levels of 14-3-3� bound to �-catenin.
These data are consistent with the hypothesis that �-catenin

binding to 14-3-3� in the MCC participates in nuclear translo-
cation of �-catenin.

p85� Is Required to Form the MCC in Human Colitis and in
Colon Cancer—To examine the presence of the MCC in human
colitis, subcellular fractions were isolated from biopsy-de-
rived IEC (see “Experimental Procedures”). WB of cytosolic
fractions from IEC from normal and colitic human biopsy
specimens shows that colitis increased levels of p85�, p110�,
14-3-3�, and Akt bound to �-catenin (Fig. 4A). Because we
and others have reported that immunohistochemistry for
nuclear �-catenin is increased in CAC (5–7), tissues from
CAC resection were examined. Results in Fig. 4B show that,
as compared with control, MCC formation increased in
CAC. Similar findings were detected in CRC samples where
enhanced MCC levels were seen in tumors (Fig. 4C).
Together these findings support the notion that enhanced

FIGURE 6. Cytokine-induced �-catenin transcriptional activation requires formation of the MCC. A, luciferase activities of TCF/LEF reporter (see “Experi-
mental Procedures”) are shown for cells treated with shRNA for p85�, Akt, 14-3-3�, and control (shCont) (mean � S.E.). *, p � 0.0001 for NCM460 TNF-stimulated
cells as compared with control. **, p � 0.000015 for shRNA-treated cells as compared with TNF-stimulated control cells as indicated. n 	 4 for each cell line. The
right panel represents WB analysis of p85�, Akt, and 14-3-3� in control and knock-out cells. B, Caco2 cell line expressing TCF/LEF luciferase reporter was
transiently co-transfected with shRNA to p85�, 14-3-3�, Akt, p110�, and control. 48 h later, luciferase activity was assessed. *, p � 0.0001 for shRNA-treated cells
as compared with control. The right panel represents WB analysis of p85�, Akt, 14-3-3�, and p110� in control and knock-out cells. C, nuclear soluble (N) and
chromatin-bound (Ch) protein fractions from NCM460 cells treated with shRNA and stimulated with TNF were probed for p�-CatSer-552. Data show that
knockdown of MCC proteins reduces �-catenin localized to chromatin-bound fractions and �-catenin transcriptional activity. Each IP and WB experiment was
repeated at least three times.
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MCC formation associates with increased �-catenin signal-
ing in colitis and colon cancer.

The MCC Requires Expression of Each Member to Maintain
Composition—To determine the requirement for each protein
component to maintain the MCC composition and function,
NCM460 cells were examined after knockdown of p85�, 14-3-
3�, and Akt. Cells were treated with both Wnt3a and TNF, as we
found that co-culture with TNF increased nuclear �-catenin in
human biopsies (Fig. 5A). Data in Fig. 5B indicate that both
TNF and Wnt3a increased levels of p110�, 14-3-3�, and Akt
bound to �-catenin. Fig. 5C demonstrates that p85� knock-
down abrogated MCC levels. Similar reductions in MCC levels
were observed when 14-3-3� and Akt proteins were knocked
down (Fig. 5C). These findings were supported by IP studies in
Caco2 cells, in which reduced p85� attenuated formation of the
MCC (Fig. 5D). In both cell lines, the requirement for MCC
member expression was tested on �-catenin transcriptional
activity. Data show that knockdown of p85�, Akt, 14-3-3�, and

p110� reduced luciferase activity of TCF/LEF (Fig. 6, A and B)
and decreased p�-CatSer-552 expression in nuclear soluble and
chromatin-bound fractions of NCM460 cells (Fig. 6C).

Based on these results, we defined criteria for the identity of
MCC members. We proposed that MCC proteins should bind
other putative members in IP reactions. Furthermore, we con-
sidered it essential that MCC levels were reduced when levels of
individual protein members were reduced (e.g. in shRNA
knockdown cells). Examples of proteins that can bind �-catenin
in other cytosolic complexes include GSK3�, PTEN (phospha-
tase and tensin homolog), APC, CK1�, and �-TrCP (�-trans-
ducin repeat-containing protein) (4, 19, 29, 30). IP experiments
reveal that shRNA against p85� fails to diminish levels of
�-catenin binding to these proteins in TNF-stimulated
NCM460 cells. (Fig. 7A). Similarly, p85 knockdown did not
affect levels of �-catenin bound to E-cadherin in the membrane
(Fig. 7B). The model that emerges for these facts posits that
�-catenin signaling in the cytosol involves formation of an

FIGURE 7. Formation of the MCC is independent from �-catenin destruction complex, tight junction complex, and PI3K signaling pathway. A, cytosolic
lysates from NCM460 cells treated with shRNA (control and shp85�), incubated with TNF, and immunoprecipitated for GSK3�, PTEN, APC, CK1�, and �-TrCP.
WB was run for �-catenin. B, membrane protein fraction from NCM460 cells treated as above was immunoprecipitated for E-cadherin. WB was run for �-catenin.
C, proposed model of MCC. A graphic model of MCC is shown with homodimeric 14-3-3� proteins bound to p85�, p110�, Akt, and �-catenin. D, NCM460 cells
were treated with TNF and Akt inhibitor MK2206. The left panel represents reduced pAktSer-473 after MK2206 application. The right panel shows immunopre-
cipitation results with antibodies to indicated proteins. E, nuclear and chromatin-bound fractions of NCM460 cells treated as above were used for p�-CatSer-552

WB analysis. The bar graph represents TCF/LEF luciferase analysis in NCM460 treated as indicated (*, p � 0.01, **, p � 0.025). F, cytosolic lysates from NCM460
cells treated with TNF and control were immunoprecipitated with anti-p85� antibody and consequentially probed for indicated proteins. Each IP and WB
experiment was repeated at least three times.
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MCC that requires p85�, 14-3-3�, Akt, and p110� binding. In
Fig. 7C, we propose a model where the MCC is composed of two
14-3-3� molecules that bind �-catenin and Akt along with p85�
and p110�. Whether p85� binds �-catenin in trans (as illus-
trated) or in cis is unknown. We propose it to be in trans, given
previous studies that show Akt phosphorylating �-catenin at
Ser-552 (18). 14-3-3� typically exists as a dimer (31) and has
been shown to bring kinases together with their targets (32).
Given that we do not detect p85� or p110� in the nucleus, we
suspect that the complex helps to deliver �-catenin to the
nucleus during active signaling.

To examine the role of PI3K/Akt signaling in �-catenin acti-
vation, we utilized a newly developed allosteric inhibitor of Akt
activation, MK2206. Data presented in Fig. 7D show that
MK2206 inhibits TNF-induced pAkt, yet had no effect on
�-catenin binding to p85�, p110�, 14-3-3�, and Akt. These

findings were further supported by results from nuclear
p�-CatSer-552 accumulation and the TCF/LEF luciferase assay
(Fig. 7E) where the Akt inhibitor MK2206 failed to inhibit TNF-
induced �-catenin signaling and TCF/LEF transcriptional
activation.

To clarify that p85� interacts directly with MCC proteins in
the same complex, we performed additional IP experiments
showing that �-catenin, 14-3-3�, Akt, and p110� are detected
in immunoprecipitates of p85� on the same WB membrane
(Fig. 7F). Together with the data in Fig. 5, these findings support
the model proposed in Fig. 7C that MCC proteins combine to
translocate �-catenin to the nucleus.

p85� Is Required for Colitis-associated Cancer—Given the
importance for cytoplasmic p85� in nuclear translocation of
�-catenin, we tested the AOM/DSS mouse model of colitis-
induced cancer. In this model, treatment with AOM enhances

FIGURE 8. Loss of p85� reduces CAC. WT and p85�IEC mice were given AOM and three cycles of 2.5% DSS (see “Experimental Procedures”). A, representative
photographs of colon from day 70. B, number of polyps in the distal colon. (mean � S.E.) *, p � 0.05. C, polyp area (mm2) (mean � S.E.) *, p � 0.015. D, the
percentage of colon surface covered by polyps (mean � S.E.). *, p � 0.031. E, photomicrographs of polyps from WT (top) and p85�IEC (bottom) mice. n 	 4 (WT),
n 	 5 (p85�IEC).
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nuclear translocation of �-catenin by inducing exon 3 muta-
tions (33). At the end of the AOM � DSS treatment regimen,
colons of p85�IEC mice showed a reduced number of polyps
(2.0 � 0.6) as compared with those of WT mice (4.3 � 1.5)
shown in Fig. 8, A and B. Reductions in polyp area and in the
percentage of colon surface covered by polyps are shown in Fig.
8, C–E. Thus, reduced levels of p85� lowered the number and
size of polyps formed in AOM/DSS-treated mice.

In vitro studies in Caco2 cells demonstrated that knockdown
of p85� suppressed cell migration by 30% and lowered cell pro-
liferation by 67% (Fig. 9, A and B). These data are consistent
with the notion that formation of the MCC participates in dys-
plastic transformation of CAC.

Discussion

The data presented here identify a critical role for p85� in
forming an MCC required for enhanced �-catenin signaling
in colitis. Understanding the biochemical role of this complex
in �-catenin signaling also helped determine the role of intes-
tinal stem cell activity in mucosal wound repair in colitis. Dele-
tion of p85� reduced nuclear translocation of �-catenin along

with lowering c-Myc (a �-catenin target) and TCF/LEF tran-
scriptional activity. In vivo, this correlated with delayed wound
healing along with more extensive ulceration, mucosal inflam-
mation, and colitis activity. The observation that IEC BrdU
incorporation did not change suggests that proliferation of
transit-amplifying cells may have compensated for defects in
intestinal stem cell activation. Given that Wnt/�-catenin sig-
naling plays a critical role in stem and progenitor cell activity,
we postulate that p85� deletion reduced mucosal healing as a
result of its effect on reducing �-catenin signaling and intestinal
stem cell activation. If validated in future studies, these data
may lead to an important role for epithelial stem cells in healing
epithelial surfaces damaged during colitis.

Our data enable us to propose a novel function for p85� in
Wnt/�-catenin signaling. In prior studies, deficiency in p85�
has been linked to increased insulin sensitivity without altering
PI3K signaling (27, 34). We found that p85� deletion in small
bowel IEC reduced inflammation-induced PI3K and �-catenin
signaling, resulting in increased degradation of the catalytic
PI3K subunit p110� (5). Results in small bowel IEC are different
from colonic IEC (Fig. 2). Colonic IEC p110� levels were

FIGURE 9. Stable knockdown of p85� suppresses migration and proliferation of Caco2 colon cancer cells. A, confluent monolayers of p85� knockdown
or control Caco2 cells were scratched with a micropipette tip and imaged in zero time point and 48 h after on an inverted microscope. Quantification was
performed on three separate experiments, 10 images of each cell line. Wound areas were quantified with Photoshop analysis tools. shControl, shRNA control.
*, p � 0.00001, **, p � 0.00001. B, proliferation of Caco2 cells was measured as described (see “Experimental Procedures”) in three independent experiments.
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unchanged and PI3K signaling was left intact in p85�-deficient
IEC. Our results also challenge the model that p85� deficiency
leads to increased levels of inhibitory p110� (Fig. 3A). Rather,
the data presented here and elsewhere (16, 35) are consistent
with the model that p85� exists in cytosol bound to �-catenin
and 14-3-3�. At this time, we are unsure how other binding
partners (p110�, Akt) participate in �-catenin signaling. It is
attractive to speculate that p110� dimerizes with p85� and Akt
phosphorylates �-catenin in the MCC. More studies are
needed to clarify the physical relationship of these proteins
and how their functions contribute to �-catenin signaling.
This model would assign functional significance to the
dimeric complex proposed in Fig. 7.

We propose that results shown here provide an important
means toward development of a stem cell-specific therapy for
CAC. Based on observations that PI3K signaling is increased in
multiple cancers, several companies have developed agents that
target PI3K and Akt activities. However implementation of
these therapies has been hampered by serious side effects
(hypoglycemia, myelosuppression, etc.) due to the prominent
role of PI3K/Akt signaling in metabolism and cell proliferation
(36). Elevation of apoptosis in p85�-deficient colon epithelial
cells raised the possibility that targeting p85� may be an attrac-
tive therapeutic approach in cancer patients (37). Data here
indicate that targeting p85� would also diminish �-catenin sig-
naling in cancer stem cells. Given this potential benefit, it is
important to note that p85� deletion reduces �-catenin signal-
ing without altering PI3K and Akt activity. These findings sug-
gest that reduced p85� binding to �-catenin will effectively
reduce cancer stem cell activation without producing systemic
toxicities. Given that p85�IEC mice displayed normal growth
and tissue histology prior to colitis, we predict that toxicity to
normal intestinal stem cells would be minimal.
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