Introduction

- Crowdsourcing provides huge opportunities and scalability solutions for grading large scale tasks, such as MOOCs.
- Reliability and quality of graders and crowdsourced data are challenging issues.
- Workers might give random grades, which are spam; or provide biased grades, which need to be corrected.
- The budget for hiring graders is limited, in many cases.

Grading through Crowdsourcing Applications

- Grading large scale classes (MOOCs)

Thousands of students submissions

- Labeling kid-friendly images

No adult content?
Content requires parental guidance?
Mainly for adults ...

Research Purpose

- Examine the influence of the spammers on grading complex tasks
- Build a crowdsourcing framework to combine spam detection and de-biasing algorithms to optimize the estimated true grades
- Analyze impact of the graders' number on the estimated true grades
- Optimize the cost by reducing the number of graders

Methodology

Experimental Results

- Evaluation Metrics - standard deviation (σ); coefficient correlation (ρ) ; RMSE

Each grader review 6 tasks

Impact of spam proportion on estimated true grades

Experimental Results

Impact of different ratios of biased graders

AVG

Subm_grades = 6			σ	م	RMSE						σ	p	RMSE
Rand $=0.1$ Uniform = 0.1 Sloppy = 0.1	AVG	Spam	4.96	0.85	6.02	$\begin{aligned} & \text { Rand = } \\ & \text { 0.1, } \end{aligned}$	Subm_ grades = 4	AVG	Spam Filter	$\begin{gathered} \mathrm{n}_{\mathrm{thr}}= \\ 3 \end{gathered}$	2.71	0.95	2.95
		Spam Filter	2.93	0.95	3.34					Full	2.48	0.96	2.58
	Vancouver	Spam	4.12	0.90	4.90	Uniform = 0.1,	Subm_ grades $=$	AVG	Spam	$\begin{gathered} \mathrm{n}_{\mathrm{thr}}= \\ 3 \end{gathered}$	2.02	0.97	2.41
		Spam Filter	3.03	0.95	3.77	$\begin{gathered} \text { Sloppy }= \\ 0.1, \end{gathered}$				Full	1.94	0.98	2.03
Rand $=0.4$ Uniform = 0.3 Sloppy $=0.2$	AVG	Spam	8.06	0.46	8.16	Bias $=0.2$	Subm_ grades $=$	AVG	Spam	$\begin{gathered} \mathrm{n}_{\mathrm{thr}}= \\ 3 \end{gathered}$	2.01	0.97	2.39
		Spam Filter	2.88	0.95	3.19					Full	1.81	0.98	2.02
	Vancouver	Spam	7.63	0.59	7.86		Subm_ grades =	AVG	Spam	$\begin{gathered} \mathrm{n}_{\mathrm{thr}}= \\ 3 \end{gathered}$	2.63	0.96	2.99
		Spam Filter	3.51	0.93	4.11	$\text { Rand }=$ 0.4,	4			Full	2.52	0.96	2.74
Rand $=0.3$ Uniform = 0.2 Sloppy $=0.4$	AVG	Spam	6.72	0.66	6.73	Uniform $=0.3 \text {, }$	Subm_ grades $=$	AVG	Spam	$\begin{gathered} \mathrm{n}_{\mathrm{thr}}= \\ 3 \end{gathered}$	2.58	0.96	2.37
		Spam Filter	2.13	0.97	2.94	$\begin{gathered} \text { Sloppy }= \\ 0.2, \end{gathered}$	6			Full	2.11	0.97	2.12
	Vancouver	Spam	5.47	0.73	5.94	Bias $=0.2$	Subm_ grades =	AVG	Spam	$\begin{gathered} \mathrm{n}_{\mathrm{thr}}= \\ 3 \end{gathered}$	2.47	0.96	2.26
		Spam Filter	2.60	0.96	3.27		10			Full	2.13	0.97	2.15

Conclusion

- With the framework, we are able to obtain significant improvement up to 32%.
- Fewer graders could be used to get estimated true grades without significant difference compared to original settings for the number of graders.

