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ABSTRACT OF CAPSTONE 

 

CHARACTERIZING HEALTH RISKS IN PRIVATELY-SUPPLIED DRINKING WATER 

DUE TO AGRICULTURAL PRACTICES IN RURAL WESTERN KENTUCKY 

At least 400,000 people in Kentucky rely on private water wells or springs for drinking water. 

551 households that rely on private water wells for drinking water were surveyed in 2009 about 

adverse health outcomes, including selected cancer incidence, adverse birth outcomes, and yearly 

incidence of diarrheal illness. Survey recipients were drawn from a population of well owners in 

the Jackson Purchase Region of Kentucky whose wells were tested for nitrate-nitrogen (NO3-N), 

triazine pesticides, and E. coli or total coliforms, by Kentucky Geologic Survey within the 

previous 15 years. 214 questionnaires were returned and matched to water quality data for 

analysis; the effective response rate was 39%. Of 211 wells in this study with NO3-N results 

available, 11 (5.91%) had NO3-N concentration above the MCL of 10 mg/L. Of 189 wells in this 

study with triazine pesticide results available, 1 (0.53%) had concentration above the MCL of 3 

µg/L; 123 (65.08%) had undetectable concentrations of triazine pesticides. NO3-N and triazine 

levels were not independently distributed; shallower bored well construction was predictive of 

higher concentrations of both contaminants, consistent with other research. E. coli contamination 

was detected in 14.5% of wells tested in the study population, and total coliforms were present in 

59.3%. Over one-fifth (21%) of wells in the study population were contaminated with all three, 

total coliforms, triazine pesticides and NO3-N, above background concentrations, indicating the 

wells’ vulnerability to surface-level contamination that can result from well construction and 

agricultural land use practices. Survey respondents were asked about household incidence of 

non-Hodgkin’s lymphoma and liver, stomach and breast cancers. SIRs were calculated to 

compare the study population with reference populations. Wilcoxon rank sum statistics 

comparing the distribution of nitrate in cancer-reporting household and non-cancer reporting 

households suggest an association between NO3-N exposure in drinking water and cancer 

incidence. Analysis of NO3-N concentration in the study population did not suggest an 

association between higher concentrations in drinking water and adverse birth outcomes 

including intrauterine death, miscarriage and premature birth; no statistically significant 

relationship was shown. Presence of E.coli or total coliform in the water from wells in the study 

population, whether modeled on a continuous or present/absent scale, was a poor predictor of 

yearly household incidence of gastrointestinal disease. 

 

KEYWORDS: (Privately-supplied drinking water, water quality, rural, water wells, nitrate, 

nitrogen-N, triazines, herbicides, agriculture, E. coli, coliforms) 
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CHAPTER 1 

INTRODUCTION 

Background 

In 2016, public concerns over drinking water quality are high. Extended drought conditions in 

California have created contamination and shortages of public water supplies.1,2 Hydraulic 

fracturing may contaminate some ground water used for privately-supplied drinking water with 

unknown chemicals and pollutants.3,4 The discovery of dangerous amounts of lead in water 

supplied to homes in Flint, Michigan in 2014-2015 has brought attention to other places in the 

United States (U.S.) where aging infrastructure threatens drinking water quality.5  

Clean water for drinking is essential to human life; the acquisition and provision of potable water 

is a policy matter in all communities, and it is a need for all families. Most people in the U.S. 

have drinking water available from a public water system.6 Public water systems can rely on 

surface water or ground water as a source; there are more systems in the U.S. that use 

groundwater, but the ones using surface water serve more people.7 All public water systems, 

including ground water wells, are regulated by the Safe Drinking Water Act (SDWA) of 1974 

which sets health-based standards for naturally-occurring and man-made contaminants in 

drinking water.8 Carrying out the SDWA is done at the state level. 

In 2007, over 15 million households in the U.S. received drinking water from private wells.9 

Self-supplied water is water that is not provided by a public system; it’s usually acquired by 

drilling a well and drawing up ground water. This water’s quality is not regulated by the SDWA. 

Well owners are responsible for maintaining the water quality in their wells.10 In Kentucky, 

newly constructed wells must be disinfected with chlorine and analyzed for fecal coliform 

bacteria, but there are no further requirements for water quality monitoring.11  

 

The proportion of people in the U.S. who rely on a private water supply from a ground water 

well has decreased from 38% in 1950 to 14% in 2005; this change tracks increasing urbanization 
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in the U.S. in the same time period and a decrease in the number of U.S. workers living and 

working on farms.12, 13 

Private water wells used by many farm families and rural populations are not regulated by public 

health or environmental agencies. Public water supplies are monitored for nitrate levels and 

bacterial indicator organisms, but private well users are responsible for testing their own drinking 

water.10 At least 400,000 people in Kentucky rely on private water wells or springs for drinking 

water.14, 15 

This study is focused on possible adverse health effects resulting from contaminated drinking 

water that are experienced by people living in a region that is mostly rural, heavily agricultural, 

and where many people draw drinking water from water wells. 

Excess nitrate in drinking water is a contaminant that is known to cause methemoglobemia in 

infants and has been linked to some cancers in adults. Although nitrate is present in almost all 

drinking water sources, excess nitrate is considered the most widespread contaminant in 

groundwater. It is introduced into groundwater sources by the use of nitrogen fertilizer in 

agriculture and by leaking or abandoned septic tanks. (Other common sources in rural areas are 

animal feedlots.) In 1990, the U.S. Environmental Protection Agency (EPA) estimated that 2.4% 

of rural private water wells had nitrate-nitrogen concentrations above the maximum contaminant 

limit (MCL) of 10 mg/L, and that 4.2% would have at least one pesticide detectable in the 

water.16 

Triazines are herbicides used in agriculture; atrazine is the most commonly used triazine. 

Triazines can leak into water wells from the top when spilled or improperly disposed of near a 

wellhead. In animal trials, triazines have been shown to be endocrine disruptors that may 

interfere with reproduction.17 

Total coliforms (TC) are bacteria found in fecal matter and in other places in soil and on plants. 

They do not cause disease in humans, but when high numbers of them are found in water, they 

indicate sewage contamination and the possible presence of bacteria that do cause disease. 

Escherichia coli is a coliform found in the feces of warm-blooded animals and humans that is 

usually harmless, but its presence in water indicates contamination from sewage. TC and E. coli 
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can enter water wells by seeping through shallow ground into inadequately sealed wells from 

leaking septic tanks or because of manure application to ground crops.18, 19 

Purpose of the study 

This study seeks to determine if the population of the Jackson Purchase Region (JPR) of 

Kentucky that depends on water wells for drinking water experience disproportionate rates of 

cancers, birth defects or gastrointestinal illnesses that are possibly related to drinking water 

contamination by nitrate, herbicide, or bacterial contamination common in agricultural areas. 

Specifically, the following questions are considered: Does the population of the JPR experience a 

higher incidence of Non-Hodgkin’s lymphoma (NHL), stomach cancer, liver cancer, or breast 

cancer than referent populations and is any higher incidence associated with nitrate 

contamination in privately-supplied drinking water? Are those associations between nitrate in 

drinking water and cancer incidence affected by triazine contamination in privately-supplied 

drinking water? Do families whose well water was found to be contaminated by TC or E. coli 

have greater incidence of diarrheal illness than families in the same region whose wells were not 

similarly contaminated? 

Overview of project processes 

Households in the JPR that rely on private water wells for drinking water and whose wells were 

tested for nitrate-nitrogen (NO3-N), triazine pesticides, and E. coli or total coliforms, by the 

Kentucky Geologic Survey (KGS) within the 15 years prior to 2009 were surveyed by mail in 

2009 about adverse health outcomes, including selected cancer incidence, adverse birth 

outcomes, and yearly incidence of diarrheal illness. Rates were calculated for the study 

population and were compared to standard rates for Kentucky and the U.S. 
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Scope and importance of the study 

This survey project attempted to collect self-reported health information for an estimated 1,322 

persons living in an 8-county region of Kentucky, a region that is mostly rural, heavily 

agricultural, and where many people draw drinking water from wells. Although groundwater is 

cleaner than the surface water sources that many municipalities with public water supplies use, 

public water supplies are cleaned and monitored for water contaminants on a regular basis. 

Private water supplies are not required to be monitored for water quality on a regular basis. 

Agricultural practices commonly introduce water contaminants into private water wells near or 

on the surface of the land. The households surveyed had had their water quality tested by the 

KGS between 1994 and 2009, making it possible to evaluate an association between disease rates 

and water quality. If it is found that water contaminants such as nitrate, triazine herbicides, or E. 

coli are associated with disproportionate amounts of disease in this region, further studies can be 

undertaken with the assistance of the KGS to understand what barriers exist that prevent 

households with private water wells from testing their water quality regularly. 
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CHAPTER 2 

LITERATURE REVIEW 

Purchase District demographics 

The Purchase District of Kentucky is comprised of Ballard, Calloway, Carlisle, Fulton, Graves, 

Hickman, Marshall and McCracken counties. It is the portion of Kentucky farthest west; four of 

the counties border the Mississippi River. It contains 4.5% of Kentucky’s population and 6% of 

the state’s land area. It contains no metropolitan statistical area. 17.1% of the population in the 

Purchase District is 65 years old and older; Kentucky’s percentage is 13.3%. It contains one 

urban cluster, at Paducah, the county seat of McCracken County. McCracken is the only county, 

among the eight in this district, that is not completely or majority-part rural. 

The JPR is composed entirely of rural areas and micropolitan statistical areas (population 

10,000-49,000). The JPR gained 1.5% in population (not quite 3,000 people) between 2000 and 

2010.20 

Local private sources of groundwater for drinking 

At least 400,000 people in Kentucky rely on private water wells or springs for drinking water. 

(This is over 9% of the total population of Kentucky in 2010.)14, 15  

The Purchase District generally lies over “semi-consolidated Cretaceous age and younger sand, 

silt gravel and clay deposits.” The coarser sediments provide plenty of water for domestic water 

supply wells, but they are sensitive to contamination, especially at shallow depths. The relatively 

low-flow velocity in deeper saturation zones provides some protection from contamination. The 

sensitivity of groundwater in the region to contamination ranges from moderate to slight. In 

some areas where depth to water exceeds 30 m, groundwater sensitivity to contamination is the 

lowest in Kentucky.21 

Sources of nitrate in well water 

Nitrate (NO3-N) provides nitrogen to plants and animals. Nitrate is soluble and mobile; it is 

prone to leaching through soil with water.22 Sources of nitrate in groundwater are plants and 

animal matter, human and animal fecal waste, household septic systems and fertilizers. Some 
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nitrate is present in almost all drinking water sources.14 Relative background nitrate level is 

about 1 mg/L.10, 22 Nitrate concentrations above 3 mg/L indicate human-made pollution.10 Nitrate 

is considered the most widespread contaminant in groundwater. 22 In the National Water-Quality 

Assessment Program of the U.S. Geological Survey, a survey of 1,255 private water wells and 

242 public water wells, nitrate was the chemical that was most frequently found in excess of its 

standard for drinking water, which is 10 mg/L.23 Shallow groundwater generally has higher 

concentrations of nitrate than deeper groundwater, because nitrate sources are on or near the 

surface. Shallow ground water may be in contact with leaking septic systems, or it may be 

contaminated by frequent or heavy use of nitrogen-containing fertilizers.14 Deeper groundwater 

is less likely to have excess nitrate because increased depth in aquifers is less favorable for 

nitrate accumulation and storage; deeper groundwater is older and may predate periods of 

increased fertilizer use (starting in 1950s); and with increasing depth, there is greater likelihood 

of less permeable layers that restrict downward movement of nitrate dissolved in water.22, 24  

Levels of nitrate in well water are associated with source availability and regional environmental 

factors.25, 26 In a 2005 study of factors that influence nitrate concentrations in water wells, the 

highest nitrate concentrations were predicted by high nitrogen fertilizer application, high water 

input, well-drained soils, fractured rocks or rocks with high effective porosity, and lack of 

attenuation processes. 22 In a 2005 study of groundwater chemistry on land previously used for 

agriculture, researchers found the highest concentrations of nitrate and atrazine in shallow wells 

at topographically low points. They speculated two reasons why this may be the case: runoff of 

applied fertilizers resulted in focused recharge of contaminants at topographic lows, and the 

water table may be more susceptible to contaminants applied at the surface in those locations 

because the water table is closer to the ground surface. Researchers also found that wells located 

outside cropped areas had lower concentrations of nitrate and atrazine.27 In the early 1990s, 

researchers testing water wells in Iowa found 18.3% of private rural water wells had nitrate 

concentrations above the MCL, with much regional variation (The average nitrate concentration 

in the six regions ranged from 9.2% above 10 mg/L to 38.2% of wells above 10 mg/L).10 In 

1996, the Cooperative Private Well Testing Program sampled almost 35,000 wells in Ohio, 

Indiana, Illinois, West Virginia, and Kentucky; 3.4% of wells had nitrate-nitrogen concentration 

> 10 mg/L, and 23% had concentration > 1 mg/ L.28  
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Influence of well depth and construction on contamination 

A water well is designed to collect or pull groundwater from below the water table using water-

permeable materials where inflow is desired. Impermeable casings are parts of wells that prevent 

inflow in shallow depths, where water quality is worse, or at the surface, where accidents could 

introduce chemicals into the top of the well or contaminated surface water might collect or 

flow.19, 29 Well casings that are ineffectively sealed and are permeable to shallow groundwater 

along their length can allow contaminated shallow ground water to travel downward to the well’s 

intake area.14 

Drilled wells, are much deeper than large-diameter wells, up to 762 meters in this study, are 4-6 

inches in diameter, and are cased with plastic or steel, with the casing extending 12 inches or 

more above the ground. They are less likely to be contaminated, presumably because they draw 

from deep groundwater sources, but also because they are better designed to prevent surface and 

shallow contamination from entering the well.29 

Other large-diameter wells (augered, bored or hand-dug), 24-34 inches in diameter in this study, 

are designed to store a lot of water in the well, because they are drawing from low volume water 

supplies. They are not generally as deep as drilled wells. The top portions (3-4.5 m) of casings 

are designed to allow water to seep in, so they can be contaminated with total and fecal coliforms 

and nitrate. A buried-slab well has water-tight (steel or plastic) casing along the first 10 feet 

underground, and the casing extends a minimum of 1 ft. above ground. Concrete tile casing 

allows water to seep into the well below the slab, which must be buried above the water table. 

This design in a bored well minimizes bacterial and chemical contamination from surface 

sources. 29 

Well depth influences the likelihood of water contamination with excess nitrate; the shallower 

the well, the more likely the water is to contain high concentrations of nitrate. 14, 22, 27 A water-

well survey in Iowa conducted from 1993-1995 found well depth had less influence on 

contamination rates for measured contaminants than did well type, however; buried-slab wells 

were less likely to be contaminated with fecal coliform bacteria, nitrate or atrazine than other 

large-diameter wells, and there was no significant difference in incidence of those contaminants 

between the buried slab wells and drilled wells.29 
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Health effects from nitrate in drinking water 

Oral absorption of nitrate is nearly 100%.23 Most is absorbed through the small intestine, and it is 

distributed throughout the body, without targeting a specific organ. Nitrate is converted to nitrite 

in the body by bacteria in saliva, stomach and small intestine. The metabolism of nitrate and 

nitrite varies in human beings by age, health, and physiological factors. Neither nitrate nor nitrite 

has been shown to be directly carcinogenic. Amines and amides can interact in the body (in the 

stomach) with nitrite to form N-nitroso compounds (A substance that can interact with nitrite to 

form N-nitroso compounds is called nitrosatable.).  Nitrosatable amines and amides are available 

in drugs, foods, agricultural chemicals, and tobacco; some are produced in the body.30 

Ingesting sufficient quantities of nitrate can cause methemogloinemia (also known as blue-baby 

syndrome), excessive production of abnormal hemoglobin that reduces the blood’s ability to 

carry oxygen. This primarily occurs in infants. The MCL for nitrate in drinking water was set by 

the U.S. EPA at 10 mg/L to protect against methemoglobemia in infants.14, 22 Some animal and 

toxicological studies have raised the idea that maternal exposure to nitrate can be associated with 

miscarriage, intrauterine growth restriction or other birth defects, but the studies in humans are 

not conclusive.31 

N-nitroso compounds (and nitrosamines) have been shown to cause cancer in animals 

(Nitrosamines are a subset of N-nitroso compounds.). Increased intake of nitrates can lead to 

corresponding increased production of N-nitroso compounds in the body. Nitrosamines must be 

metabolized in order to be carcinogenic; other N-nitroso compounds are directly carcinogenic. 

Most of the 300 known N-nitroso compounds have been shown to be carcinogenic in animals. 

They range in potency as carcinogens. Some antioxidants available in fruits and vegetables, such 

as ascorbic acid and α-tocopherol, inhibit nitrosation.30 

Nitrate in drinking water has been associated in studies with several types of cancers, with 

concentrations as low as 2.5 mg/L.22 Despite the associations seen in some ecologic studies, 

epidemiological studies of the relationship between nitrate in drinking water and cancers do not 

show consistent positive associations.32 

Nitrate and Non-Hodgkin’s lymphoma: NHL is a cancer that begins in the lymphocytes, 

which are white blood cells. Multiple types of lymphomas fall within this general description. 
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A population-based case-control study in Nebraska, with 156 cases and 527 controls, and using 

32 years of nitrate concentration in community drinking water data, found elevated risk 

(OR=2.0; 95% CI 1.1-3.6) of NHL in the highest quartile for nitrate (≥4 mg/L). This study also 

measured nitrate levels in private wells for 51 cases and 150 controls at the time of interview; no 

association was found between nitrate level and risk of NHL after pesticide use on the property 

was taken into account.33 A population-based ecological study in Yorkshire, England using 9 

years of NHL incidence data and 6 years of nitrate concentration data in publically-supplied 

water, did not find evidence to support the hypothesis that nitrate in drinking water was 

associated with NHL incidence.34 A population-based case-control study of 73 NHL cases and 

143 controls in Minnesota, in which researchers estimated the average long-term exposure to 

nitrate in public drinking water supplies for a 28-year period, found no association between 

nitrate in drinking water supply and NHL within the range of 0.1-7.2 mg/L.35 A population-based 

cohort study, part of the Iowa Women’s Health Study, examined a cohort of 21,977 Iowa women 

who had been using the same water supply for 10 or more years and found no association 

between nitrate levels in drinking water and incidence of NHL. No data from private wells were 

available in this study, and women who drank from private wells comprised about 25% of the 

cohort; municipal water exposure data was used to characterize their intake. The nitrate exposure 

from water was divided into quartiles with cut points of 0.36, 1.01, and 2.46 mg/L of nitrate.36 

An ecologic study from an agricultural district in Slovakia, using 20 years of nitrate data and 9 

years of cancer incidence data, found the data supported a possible positive association between 

incidence of NHL and increasing nitrate concentration in drinking water. Nitrate exposure was 

classed as low (0-10 mg/L), medium (10.1-20 mg/L) and high (20.1 mg-50 mg/L); p for positive 

trend in NHL incidence =0.021.37 However, An ecological study in Sardinia, Italy, using 23 

years of nitrate concentration data and NHL incidence for 19 years, did not show evidence of a 

positive association between increasing nitrate concentration and increasing NHL incidence; the 

average nitrate concentration was 4.57 mg/L, and 8 strata were used.38 A case-control study in 

Iowa, with 181 cases and 142 controls, using 40 years of nitrate data, found no association 

between nitrate levels below 3 mg/L and risk of NHL. This study also used nitrate sampling of 

private well water at time of interview for 54 cases and 41 controls; no association was seen for 

this group either.39 A case-control study from Taiwan, used 1,716 NHL cases and the same 

number of controls. One year of nitrate level for the municipal water system districts, ranging 
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from 0.0 to 2.86 mg/L, was used to characterize exposure. This study found no association 

between nitrate level in water and risk of death from NHL.40 A case-control study in Nebraska 

with 140 NHL cases and 192 controls, measured nitrate in the public groundwater supply and 

translated it into a dichotomous variable of less than or equal to 2 mg/L, and more than 2 mg/L. 

The results showed no association between nitrate exposure and NHL (OR=0.6 and 95% CI 0.3-

1.1) although the same study found an association between risk for NHL and exposure to a 

combination of nitrate and a dichotomous ever/never exposure to atrazine (OR=2.5 and 95% CI 

1.0-6.2).41 Appendix 2 summarizes the studies in table form. 

Three of these studies were ecological; two of the three showed no association, and all used 

public water supply data to characterize nitrate exposure. The one that did show a positive 

association, grouped all nitrate concentrations from 0 to 10 mg/L into the lowest, referent 

category; the exposure categories are too high to be compared to this study.38 Five studies were 

case-control, in which the exposure did precede the diagnosis of NHL. Four showed no 

association between NHL risk and nitrate in drinking water. All were studies of nitrate in 

publicly-supplied water, though two also analyzed well water separately.33, 39 One of these did 

show an association, but only for publicly-supplied water; the association did not exist among 

study subjects receiving well water.33 The other showed no association of risk for NHL to nitrate 

in water, either public or private.38 Most of these studies use public water nitrate data to 

characterize the exposure for any subjects with well water supplies. They have the advantage, 

however, of using exposure categories that are low and representative of this study. A population 

cohort study, the Iowa Women’s Health Study, also found no association between NHL risk and 

nitrate exposure in drinking water and diet, despite exposure categories that were high.36 The 

literature does not provide evidence that low levels of nitrate in drinking water is associated with 

a greater risk for NHL. 

Nitrate and stomach cancer: A case-control study in Wisconsin found no association between 

death from gastric cancer and well water as drinking water source compared to public water, 

where mean nitrate in well water was 2.41 mg/L compared with 0.95 mg/L. Address at death was 

used to classify water well users, and nitrate was measured in the well water after the subjects’ 

deaths.42 An ecological study in Valencia, Spain to find an association between nitrate in public 

drinking water and mortality from various cancers found increased risk of death from stomach 
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cancer in men and women aged 55-75 years (RRs of 1.91 and 1.81, respectively; p <0.05) at 

nitrate exposure > 50 mg/L.43 A prospective case-cohort study in the Netherlands examined 282 

incident cases of stomach cancer and 3,500 non-cases. Nitrate from public drinking water was 

collected one year before follow-up started, and measured in quintiles that ranged from a mean 

of 0.02 mg/L to a mean of 16.5 mg/L. No association was found between risk for stomach cancer 

and higher exposure levels of nitrate.44  

A case-control study in Taiwan found no association between death from stomach cancer and 

nitrate concentration in the water provided by the case or control subject’s municipality; the OR 

for death from gastric cancer was 0.95 (95% CI 0.87-1.03) for subjects with nitrate levels 

between 0.23 and 0.44 mg/L, and 1.02 (95% CI 0.93-1.11) for subjects with nitrate levels ≥ 0.45 

mg/L.45 An ecological study in Yorkshire, England to examine the association between nitrate in 

drinking water and incidence of stomach, esophageal, or brain cancers found no association 

between stomach cancer incidence and nitrate concentration in water supply; the nitrate measures 

were contemporaneous with or later than the diagnoses.46 An ecological study in Ontario, Canada 

that counted incident stomach cancer cases in agricultural districts in a five-year span found a 

negative association between stomach cancer and nitrate in multivariate models.47 An ecological 

study in Hungary of the association between nitrate in drinking water and death from stomach 

cancer found significant elevated standard mortality ratios for subjects in nitrate exposure 

categories > 88 mg/L, and a significant positive trend of mortality with increasing log-

transformed nitrate concentration. The nitrate exposure was based on the average nitrate 

concentration in water provided in a settlement, and the measurements were contemporaneous 

with the outcomes (mortality).48 An ecological study in Slovakia examining associations between 

nitrate in drinking water and stomach cancer found increasing standardized mortality ratios with 

increasing nitrate exposure category (0–10, 10.1–20 and 20.1–50 mg/L) of 0.94 and 1.24. There 

was a significantly positive trend only in women. Nitrate measurements were averaged across 

public water-supply districts from 11 years before and through the outcome period.37 A 

population-based case-control study of stomach cancer in Nebraska found no association 

between stomach cancer and nitrate concentration as measured in the public water supplies (or 

the private water wells for those cases and controls using wells); The odds ratio (OR) for 

stomach cancer was 1.2 with a 95% CI of 0.5-2.7. 49 Appendix 2 summarizes the studies in table 

form. 
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Of five ecological studies reviewed, three found no association between stomach cancer and 

nitrate in drinking water, and two found positive associations that were inconsistent or only seen 

in very high exposure categories that are not relevant to this study. Three case-control studies did 

not find an association between stomach cancer and nitrate in drinking water, one that made 

better-than-usual attempts to characterize intake correctly and included well water in a separate 

analysis.49 A prospective study also did not show any association. The literature does not support 

any association between stomach cancer and nitrate in drinking water. 

Nitrate and breast cancer: A population-based cohort study followed a cohort of 21,977 Iowa 

women who had been using the same water supply for 10 or more years and found no association 

between nitrate levels in drinking water and incidence of breast cancer. Municipal water 

exposure data was used to characterize the nitrate exposure for the women using well water. The 

nitrate exposure from water was divided into quartiles with cut points of 0.36, 1.01, and 2.46 

mg/L of nitrate.36 A case-control study in Massachusetts examining the relationship between 

breast cancer incidence and nitrate concentration in municipal ground water supplies found no 

association between breast cancer incidence and average nitrate exposure, summed nitrate 

exposure over years of exposure, or number of years exposed to nitrate in water >1 mg/L. Private 

well users were excluded from the study. Nitrate measurements were taken from 16 years before 

the outcome period to the end of the outcome period.50 Appendix 2 summarizes the studies in 

table form. The literature does not support an association between nitrate in drinking water and 

breast cancer. 

Nitrate and other cancer sites: A 2012 meta-analysis examining exposure to nitrate in drinking 

water and bladder cancer, including two cohort studies, two case-control studies and one 

ecological study, found no sufficient evidence for an association between the two.51 The Iowa 

Women’s Health Study, a population-based cohort study of 21,977 women in Iowa, found 

increased risk of ovarian cancer with increased nitrate in their drinking water, OR=2.34, 95% 

C.I. (1.42, 3.84) for the highest exposure quartile, 2.98-25.34 mg/L, compared to the lowest 

quartile, 0.01-0.47 mg/L. Municipal water exposure data was used to characterize the nitrate 

exposure for the women using well water.52 The same cohort study also found an increased risk 

of thyroid cancer, RR=2.6, 95% C.I (1.1-6.2) for five or more years of exposure to >5 mg/L of 

nitrate compared to baseline.53 A case-control study of 475 colorectal cancer cases and 1447 
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population controls in Wisconsin found an increased risk only for proximal colon cancer in an 

exposure category of >= 10 mg/L; there was no increased risk association with nitrate for other 

types of colorectal cancers in the study.54 These studies are briefly described here to show that 

some epidemiological studies have found associations between nitrate in drinking water and 

other types of cancers, but the results overall are not consistent. 

Nitrate and adverse reproductive outcomes: An ecological study in the U.S. relating incidence 

of all birth defects in live births in 1996-2002 found statistically significant increased odds of 

any kind of birth defect for conception dates in April-July, when agricultural chemicals are being 

applied to row crops. While the authors demonstrated that the mean nitrate in those months is 

higher, atrazine and other pesticides were also higher. Nitrate and triazine contamination in wells 

is often coincident, and this study could not differentiate between the contaminants.55 A cohort 

study in France of 11,446 births found a positive association between nitrate in drinking water 

exposure at or above 15 mg/L during the second trimester and small-for-gestational-age (SGA, 

also known as intrauterine growth retardation), in the absence of atrazine exposure. The nitrate 

measurements were specific to individuals and were taken through pregnancy.56 Upon 

examination, however, this association was specific to higher socioeconomic geographical 

areas.57 These two studies are presented in table form in Appendix 3. With the two studies to go 

by, the evidence can be considered suggestive of an association between nitrate in drinking water 

and adverse birth outcomes, but not supportive. 

Sources of triazines in well water 

Triazines are herbicides used in agriculture to control broad-leafed weeds and grasses from row 

crops. Atrazine is the most commonly used; others are simazine (used in agriculture) and 

propazine (not used in agriculture). 

Triazines and other pesticides can enter wells if there is a spill or improper disposal near a well, 

via runoff into the top of an improperly constructed well, and by downward movement through 

the soil after application.58 Atrazine is moderately soluble, has high to medium mobility through 

soil, and does not rapidly degrade.17, 59 The probability of detecting atrazine in well water is not 

related to well depth.16 In 1996, the Cooperative Private Well Testing Program sampled almost 

35,000 wells in Ohio, Indiana, Illinois, West Virginia, and Kentucky; 4.9% of wells had atrazine 

detected in the water, and 0.1% had concentration > 0.3 mcg/L.60 Samples taken from 171 rural 
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domestic wells in eastern North Carolina in 1995 found atrazine in 8.2% of the wells. No 

correlation was found with distance to the nearest application site or distance to the nearest 

pesticide handling and storage area. For half the wells in which atrazine (or alachlor, another 

pesticide with similar properties) was detected, it had not been used on the farm associated with 

the well in 3 or more years. This indicates that atrazine can be transported through groundwater 

or that it persists for a long time in the environment.61 Atrazine and nitrate frequently occur 

together in rural well water.16, 27 

Health effects from triazines in drinking water 

When ingested, triazines are readily absorbed from the gastrointestinal tract; 80% or more is 

absorbed into the body. Triazines are endocrine disruptors in animals and can have reproductive 

effects. In rats, triazines have been found to suppress the surge of luteinizing hormone during 

ovulation, delay onset of puberty, alter the estrus cycle and affect maintenance of pregnancy. 

Triazines are not estrogenic; they disrupt hypothalamic-pituitary-gonadal function. Atrazine 

exposure in humans may disrupt the feedback loop of the gonads, hypothalamus and pituitary 

gland in a similar way. The hormone imbalance may be related to reproductive outcomes such as 

pre-term delivery and low birth weight infants.17 The effect of nitrate on the reproductive toxicity 

of triazines is uncertain. The MCL for Atrazine is 0.3 µg/L and the MCL for simazine is 0.4 

µg/L. In 2003, The Agency for Toxic Substances and Disease Registry derived an intermediate 

oral MRL of 0.3 µg/kg/day based on reproductive effects (delayed onset of estrus) in pigs.23 The 

drinking water standard for atrazine, the most commonly used triazine, is 3 ppb, or 3 mcg/L. 

The U.S. EPA has determined that atrazine is a possible human carcinogen, based on limited 

evidence from animal studies.59 Triazines are not considered to be directly carcinogenic.62 

Triazines can react with nitrite (a nitrate metabolite) in the environment and the body to form N-

nitroso compounds. Structure and activity of these compounds suggest they may be carcinogenic, 

but research has not been conducted that answers the question.23 

Triazines and adverse reproductive outcomes: An ecological study in Iowa compared rates of 

premature birth (birth before 37 weeks), low birth weight (<2,500 g) and intrauterine growth 

retardation (IUGR, birth weight below the 10th percentile for gestational age) in an area with 

known elevated levels of triazine herbicides in the water system to other communities without 

elevated levels. Low birth weight was slightly more frequent in the affected areas, premature 
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birth was slightly less frequent, neither were statistically significant. The risk for IUGR in the 

affected areas was 1.8 times the risk in the unaffected areas, 95% C.I. (1.2-2.6).63 A retrospective 

cohort study in an agricultural area of France examined 3,510 births in an area with strong 

seasonal variation in the levels of atrazine detected in the public water supply. Exposure was 

characterized by area of residence compared to water system measurements. First, second and 

third trimester high exposures (during May through September) were compared to the same 

trimesters occurring during low exposure time periods (October through April). No association 

was seen between seasonal third-trimester exposure for prematurity or low birth weight, but a 

positive association was seen for seasonal exposure to elevated atrazine in water during the third 

trimester and SGA (which is identical to IUGR), OR 1.37 (95% C.I. 1.04-1.81).64 A retrospective 

cohort study in Indiana examined 24,514 births. Exposure to atrazine was characterized by area 

of residence compared to water system measurements. Third trimester exposure to atrazine 

above 0.103 mcg/L or entire pregnancy exposure to atrazine above 0.644 mcg/L was positively 

associated with IUGR or pre-term birth at statistically significant levels; prevalence ratios were 

1.14 for the entire pregnancy exposure and 1.19 for the third trimester exposures.65 A case-cohort 

study of 579 births in France, with 180 affected by fetal growth retardation (FGR, below 5% of 

the expected weight for gestational age), found increased odds (or=1.5; 95% C.I. 1.0-2.7) of 

atrazine or its metabolites detected in the urine of a mother of a child affected by FGR compared 

with the mothers of children unaffected. No association was seen between atrazine in urine and 

risk for congenital defects.66 A county-level ecological study of premature birth prevalence and 

atrazine in public water supplies by Kentucky found increased risk (OR=1.22, 95% C.I. 1.16-

1.29) for premature birth in counties with high (>=0.081 mcg/L) levels of atrazine in the water.67 

These studies are presented in table form in Appendix 4. 

Despite the association of triazine herbicide level in drinking water and pre-term birth seen in the 

ecological study in Kentucky, stronger study designs found no association for this outcome 

alone, or an association of either pre-term birth or IUGR.65, 67 One ecological study and three 

retrospective cohort studies found a consistent positive association between triazines in drinking 

water and IUGR, with odds ratios between 1.17 and 1.5.63, 64, 65, 66 Although two of these studies 

characterize exposure by area of residence from public water supply measures, they have the 

advantage of getting a measurement at a time that is relevant to the outcome. One study was able 

to use individual measurements of atrazine or its metabolites in urine, which is the best 
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characterization of exposure available in the studies examined. None focused on well water, but 

all exposure levels of triazine, mostly below the MCL of 0.1 mcg/L, were meaningful for this 

study. The literature supports some increased risk of IUGR with elevated levels of triazine 

herbicide in drinking water during pregnancy, especially during the third trimester, but not for 

pre-term birth or any other adverse pregnancy-related outcome. 

Triazines and cancer: Two reviews, published in 2011 and 2013, of the carcinogenicity of 

atrazine came to the conclusion that the epidemiological evidence does not support any causal 

relationship between atrazine and any type of cancer.68, 69 This was echoed by a review in 2011 

that focused on breast cancer, but came to the same conclusion that atrazine is “not likely to be 

carcinogenic.”70 

This author examined three studies, two ecological and one case-control, from Kentucky and 

Wisconsin.71, 72, 73 The focus was breast or ovarian cancers, consistent with the evidence in 

animals that triazines affect hormone production. An ecological study in Kentucky that 

compared breast cancer incidence by county to atrazine exposure measures by county found a 

marginal increased risk for breast cancer with increased triazines in drinking water.71 A second 

ecological study from Kentucky with exposure and incidence data at a district level (there are 15 

in Kentucky) found no association between atrazine exposure and breast or ovarian cancer 

incidence.72 A case-control study of breast cancer (3,275 cases) in Wisconsin found a way to 

estimate atrazine exposure by assigning subjects the atrazine measurement in the geographically 

nearest water well, using geocoding. This technique and design was a superior level of evidence, 

but this study found no increased risk of breast cancer associated with higher levels of atrazine in 

ground water.73 The literature does not provide any support for the hypothesis that triazines in 

drinking water cause cancer. 

Fecal contamination of well water 

TC include both fecal and non-fecal coliform bacteria. (Coliform bacteria are rod-shaped Gram-

negative bacteria that are normally found in the in the feces of warm-blooded animals including 

humans.) TC are found in soil, surface water, human and animal waste. TC do not cause disease, 

but their presence in well water is a sign that water has entered the well from the surface or along 

the top 3-4.5 m of the well below the surface. Fecal material can carry pathogens that cause 

human disease.18, 74  
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The presence of coliform bacteria in water indicates possible sewage pollution; it is a principal 

microbiological parameter used to determine water quality.19 E. coli is an effective and 

accessible indicator organism for fecal contamination of water because it is found in sufficient 

quantity is all animal feces, but it doesn’t multiply outside the intestine. It survives in water for 

4-12 weeks.75 Fecal coliform bacteria in water indicate that human or animal fecal material has 

gotten into the water.18 Fecal bacteria applied to the ground, as in crop fertilization with liquid 

manure, move down below the crop roots in response to rainfall. The potential for fecal bacteria 

to contaminate groundwater depends on soil structure and water flow. E. coli, one type of 

coliform bacteria, move rapidly through well-structured soils with moderate to high input of 

water. Poorly-constructed water wells that are vulnerable to having inflow of water at the top or 

in shallow depths and are located near areas of manure application are a concern for human 

health.76 

 Septic systems may be a source of coliform bacteria and nitrate contamination of wells. In a 

study in Frederick, Maryland (not an agricultural area), incidence of coliforms found in well 

water was correlated with small lot size, meaning the distance between the septic system and the 

water well was at a minimum. Incidence of coliform bacteria contamination was highest when 

well casing length was shortest.16, 18 

Serial testing of 78 wells in 1980 in Oregon found that coliform contamination was higher 

following rainfall, indicating that surface water was leaking into the wells, and the amount of 

coliforms in the water was higher in the summer months.77 

In summer 2009, a sample of 180 private wells in northeastern Ohio was assessed for microbial 

water quality. 45% were positive for TC, and 9% were positive for E. coli. E. coli O157:H7, 

which is a human pathogen, was found in 4% of the specimens.78 A 2011 sampling program of 

538 private wells in Virginia found TC in 41% and E. coli in 10%. Unlike the Ohio sample in 

which contamination was not found to be related to well structure, geography or soil; well depth 

and location on a farm were predictive of TC contamination.79 

Health effects of fecal contamination in well water 

In 2007-2008, 13 disease outbreaks related to untreated groundwater were reported to the 

Centers for Disease Control and Prevention, which is over 60% of the total number of disease 
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outbreaks related to drinking and recreational water during that period.78 Several enteric bacterial 

species can be ingested in water and can cause disease, including E. coli, E coli O157:H7 

Salmonella spp., and Shigella spp., These organisms can cause infective diarrhea in humans, or 

acute gastrointestinal illness (AGI).80 

A prospective cohort study conducted with 235 rural households in Ontario, in which incidence 

of AGI was measured by a questionnaire, and drinking water was sampled and tested 

concurrently, found no statistically significant relationship between TC or E. coli contamination 

of the water and incidence of AGI, although 20% of the households had a water sample that 

exceeded bacterial standards for safe drinking water.81 

Summary 

Many epidemiological studies have been conducted to test the hypotheses that nitrate or triazine 

pesticides contribute to the risk of various cancers. However, they have provided a lack of 

support overall. For each specific cancer that this study includes as a possible outcome, the 

literature provides no clear evidence of a link to either nitrate or triazine herbicides in drinking 

water. It is difficult to get sufficient power for a test with rare outcomes such as cancer, and 

misclassification is a burden, because of latency issues, because of differences in drinking habits 

or quantities at home that go unmeasured, and because most studies use an approximation 

method for the exposure. 

It is likewise for adverse reproductive outcomes due to either nitrate or triazines (usually 

atrazine) or both. Some studies this author examined had good techniques for matching to time 

or exposure with the outcome, which is easier to do with pregnancy and birth than with cancers, 

but exposure measurements were still approximated across geographical areas, not made 

individually. The outcomes that this study measured are not linked to nitrate and triazine 

contamination in drinking water by epidemiological evidence so far. 

The potential for gastrointestinal illness caused by fecal contamination of drinking water is a 

well-known one, and the success of E. coli, or total coliforms, as indicator organisms has been 

validated. Studies show that fecal contamination of private well water is common in the U.S. 
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CHAPTER 3 

METHODOLOGY 

Study design 

This is an observational cross-sectional study in which measures of nitrate, triazines, and total 

coliform or E. coli are exposures and self-reported incidence of selected cancers, adverse 

reproductive outcomes, and gastrointestinal illness are outcomes.  

Data sources/measurement 

A survey was mailed to 551 unique households in the JPR that had their private well water tested 

by the KGS between January 1, 1994 and December 31, 2009. (The survey is attached in 

Appendix 1.) To maximize the response rate, a cover letter was included with each mailing, and 

a self-addressed stamped envelope for returning the questionnaire.  One month after the initial 

mailing, a second identical mailing was sent to all households that had not responded. Both 

mailings occurred during the summer of 2009. Returning the survey constituted consent to 

participate in the study. Questionnaires that were returned were matched with data from the 

private wells from KGS based on name and address. Only wells that belonged to households that 

responded to the survey were included in this analysis. One member of a household was asked to 

complete a survey for all members about events that happened over a span of many years. This 

study had Institutional Review Board approval through the University of Kentucky. Questions 

included on the survey were developed by the researcher after a literature review designed to 

determine the adverse outcomes most commonly associated with the contaminants under study. 

The initial mailing served as a pilot test for the survey, but no changes were introduced to the 

survey as a result, before the second mailing. 

Setting 

The JPR (Kentucky counties Ballard, Calloway, Carlisle, Fulton, Graves, Hickman, Marshall and 

McCracken.) was chosen because private well water quality data were available for many wells 

in the area, as part of the work of KGS for the Kentucky Groundwater Data Repository. 
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Participants 

No survey recipient was contacted by the researcher outside of the mailed survey, although two 

recipients called the researcher, and one of those recipients completed a survey over the phone.  

Variables 

The following exposure variables were from the water well sampling done by KGS: Nitrate 

(mg/L), Triazine (mcg/L), Total coliform (cfu), and E. coli (cfu). Not all results are available for 

each address that was sent a survey. All water quality tests were carried out by the KGS. Water 

samples were tested for E. coli using EPA method 1603.82 Water samples were tested for triazine 

concentration using EPA method 536.83 Water samples were tested for NO3-N concentration 

using EPA method 1686.84 

Table 1 shows the main variable collected by the survey. Not all participants answered every 

question of the survey. The complete survey is found in Appendix 1. 
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Table 1. Main variables collected by the survey with role in analysis 

Variable Name Planned Role in 

Analysis 

Number of people in residence Sample size 

Water filter/conditioner (yes/no) Effect modifier 

Type of water filter Additional 

information 

Is well source of drinking water (yes/no) Effect modifier 

Does family drink bottled water at home(yes/no) Additional 

information 

Is bottled water primary source of drinking water (yes/no) Effect modifier 

Any cancer in household (yes/no) Outcome 

Any cancer in family (yes/no) Outcome 

Any Non-Hodgkin’s lymphoma in household (yes/no) Outcome 

Any liver cancer in household (yes/no) Outcome 

Any stomach cancer in household (yes/no) Outcome 

Any breast cancer in household (yes/no) Outcome 

Any household pregnancy resulting in underweight (yes/no) Outcome 

Any household pregnancy resulting in neural tube defect (yes/no) Outcome 

Any household pregnancy resulting in congenital malformation (yes/no) Outcome 

Any household pregnancy resulting in intrauterine death (yes/no) Outcome 

Any household pregnancy resulting in miscarriage (yes/no) Outcome 

Did mother have multiple miscarriages? (yes/no) Effect modifier 

Any household pregnancy resulting in premature birth (yes/no) Outcome 

Number of people living at residence for prior 12 months Sample size 

Incidence of GI illness for each person in household in previous 12 

months 

Outcome 

Number of people in household under 12 years old Effect modifier 

Diagnosed person’s sex (male/female) Effect modifier 

Age at diagnosis Effect modifier 

Years at residence before diagnosis Effect modifier 

Does the diagnosed person smoke cigarettes (yes/no) Effect modifier 

Age of mother at time of birth Effect modifier 

Did the mother live at residence at time of birth (yes/no) Effect modifier 

Was the mother drinking from the well during pregnancy (yes/no) Effect modifier 

Was the mother smoking cigarettes during pregnancy (yes/no) Effect modifier 

 

Study size 

A survey was mailed to 551 unique households in the JPR that had had their private well water 

tested by the KGS within 1994-2009. These were all available households with water well test 

results; this study used the entire population as a sample. Funding for this study was provided by 

the Southeast Center for Agricultural Health and Injury Prevention. 
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Quantitative variables – private well data 

Nitrate measurements were used as a categorical variable; less than 1 mg/L, 1 to less than 10 

mg/L, and greater than or equal to 10 mg/L; in the analysis of its association with triazine 

contamination. In that analysis, triazine measurements were used as a categorical variable; less 

than 0.1 mcg/L, and greater than or equal to 0.1 mcg/L. For the association of nitrate with cancer 

outcomes, nitrate measurements were used as a continuous variable.  

Quantitative variables – survey 

Cancer outcome was “yes” if the survey respondent reported any cancer in a member of the 

household while a resident or in someone who had moved away; it was no for the ones who 

answered both those questions in the negative. Adverse birth outcome was also a dichotomous 

“yes”/”no” variable in the association with nitrate analysis, where “yes” included any participant 

who reported an incident of premature birth, intrauterine death, or miscarriage. 

TC and E. coli measurements were made into categorical variables; one or more cfu colony-

forming units (cfu) was “detected,” and zero cfu was “not detected.” The correlation between TC 

or E. coli and incidence of gastrointestinal illness was calculated using TC and E. coli first as 

continuous variables and then as dichotomous variables. 

Statistical methods 

Each received survey was given an identification number recorded by the researcher on the 

survey document. The results from the survey were entered by the researcher into an Excel 

spreadsheet, which was converted to a SAS dataset for analysis. The data entry from the paper 

surveys into the Excel spreadsheet was repeated as a quality check. The surveys were matched to 

the well water testing data from KGS by address. Analysis was performed using SAS 9.2. 

Not all wells were tested for all three contaminants; survey records were included in analyses 

only if the household matched a well that had been tested for the particular contaminant under 

study. For wells that were tested for bacterial contaminants on multiple occasions, the most 

recent value was used for analysis, because the relevant health outcome was the incidence of 

gastrointestinal illness in the previous 12 months. For wells that were tested for NO3-N and 

triazine concentration on multiple occasions, the values were averaged into a single value for 

analysis, because the relevant health outcomes may have taken place over decades. 
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Person-years at risk for standardized incidence ratio (SIR) calculation was not available from the 

sample. It was estimated at 20,560, which is 514 people total represented by the number of 

surveys in the analysis (214) multiplied by the average household size reported (2.4). Using U.S. 

census projected data for 2009, the median age for the Purchase district is 40 years old. The 

result, 20560 person years is (514 X 40). The exception is breast cancer; the person-years at risk 

was 11,130. Using U.S. census projected data for 2009, the median female age for the Purchase 

district is 42 years old, and females make up 51.5% of the population; these figures were used 

against the 524 estimated persons in the sample to calculate person-years at risk. 

Fisher’s exact test for association was performed for the association of nitrate contamination and 

triazine contamination in well water. ORs and 95% confidence intervals were calculated for the 

association of well type with TC, E. coli, and nitrate contamination. Wilcoxon rank sum statistics 

were calculated for the association of nitrate contamination with cancer and with adverse birth 

outcomes. Pearson correlation coefficients were calculated for the association of total coliform 

and E. coli contamination and incidence of AGI in the household. 
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CHAPTER 4 

RESULTS 

Participants 

Five hundred fifty-one questionnaires were sent out. After two mailings, 220 were returned. This 

is a response rate of 39.9%. Of those, 218 were able to be matched with names and addresses in 

the available pool of well owner data. Three of the valid questionnaire responses indicated that 

the well owner was deceased or had stopped using the well; these records were not used in the 

analysis. One person responded that the household associated with the water well had no 

residents and provided no other questionnaire answers; this record was also not used for analysis. 

Two hundred fourteen survey responses were available for analysis (39.8%). No demographic 

information was collected from the participants. Aside from the number of persons in the 

household, and the number of those under 12 years old, no demographic information was 

collected about individuals. Figure 1 shows the number of participant households at each step 

before analysis. Figure 2 shows the geographical spread of the wells with contaminant data that 

were surveyed, and the households that responded. 
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Figure 1. Study Participants, Jackson Purchase Region, 2009 
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analysis: 214 (38.8%) 

Sum of persons 

represented, according 

to surveys available for 

analysis: 506 
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Figure 2. Water wells with available contaminant data and respondent households 

 

Survey data 

210 people answered the question “How many people reside in your household?” The mean was 

2.4, the median was 2, and the range was 1 to 6. 

Of 213 responses to the question “Do you have a water filter?” Table 2 shows 177 households 

(83%) responded that they had no water filter and 34 households (16%) used one or more water 

treatment methods. (Table 2) 
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Table 2. Survey responses on home water filtration methods. 

Responses to the question "Do you have a water filter?" 

  N Percent 

No home water filtration method 172 81% 

One or more water filtration methods listed* 39 18% 

"Don't know" 2 1% 

Total 213   

Description of home water filtration system* 

  N Percent 

Active carbon filter 9 23% 

Ion-exchange unit 1 3% 

Reverse osmosis unit 3 8% 

Water conditioner 7 18% 

Distillation unit 2 5% 

Counter-top unit or pour-through carafe/pitcher 4 10% 

Faucet-mounted filter 8 21% 

Whole-house sediment removal 19 49% 

Other** 4 10% 

*Total number of respondents to this question was 39, counting all respondents who described a water filtration system of any kind. 

Respondents could choose more than one method. 

** Other methods described were chlorine, strainer, filter and softener. 

 

213 answered the question, “Do members of your household use your well water as primary 

drinking water?” Of those, 179 (84.04%) answered “yes.” 213 households answered the question 

“Do members of your family purchase bottled water for drinking at home?” Of those, 87 

(40.85%) answered “yes.” Responses to the question “Is bottled water your primary source of 

drinking water at home,” were mostly consistent with responses to the former question. (Table 3) 

Table 3. Survey responses on home water filtration methods 

Question Yes 

Do members of your household use your well water as primary drinking 

water? 

179 

(84.04%) 

Do members of your family purchase bottled water for drinking at home? 

87 

(40.85%)  
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192 households provided an estimate above zero of how many years they had been drinking well 

water. The mean was 24 years; the median value was 20 years; the range was 0.5 to 100 years. 

All of the information about length of time at the address, whether the family drank water from 

the well primarily, and what type of water filtration system they had was intended for use as 

effect modifying factors in multivariable models but the study power was insufficient to control 

for any of these. 

Water contaminant data 

211 households in the data set had nitrate levels available. Eleven (5.19%) had average values 

above the MCL of 10 mg/L. The values ranged from 0.002 mg/L to 25.04 mg/L. Quartile values 

were 0.678, 1.911 and 4.000 mg/L. 189 households in the data set had triazine levels available. 

123 of those had levels below the detection limit of 0.06 µg/L (65.08%); 1 had a level above the 

MCL set by the EPA for atrazine of 3 mcg/L (0.53%). The range was 0.030 to 4.030 µg/L. 172 

households in the data set had total coliform counts available. 70 of those (40.70%) were 

negative for total coliforms. Positive samples (59.30%) ranged from 1 cfu to 1011.2 cfu per 100 

mL. 

173 households in the data set had E. coli counts available. 149 of those (86.13%) had <1 cfu per 

100 mL. Samples positive for E. coli contamination (13.87%) had cfu counts ranging from 1 cfu 

to 378 cfu per 100 mL. (Table 4) 
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Table 4. Water contaminants in the private water wells of study respondents in the Jackson 

Purchase Region, 1994-2009 

Contaminant Number 

wells 

sampled 

(N) 

Mean (SE) Median Range Number 

(%) of 

wells 

above 

MCL 

Number 

(%) of 

wells less 

than 

background 

or below 

detection 

level 

Nitrate 211 3.03 mg/L 

(0.24) 

1.91 mg/L 0.00-25.04 

mg/L 

11 69 (32.7%) 

<1 mg/L 

Triazines 189 0.17 

mcg/L 

(0.03) 

0.03 0.03 - 4.03 

mcg/L 

1 123 

(65.1%) 

<0.06 

mcg/L 

Total 

coliform 

172 104.34 cfu 

(22.50) 

2.50 <1 - 2420 

cfu 

102 

(59.3%) 

71 (41.2%) 

E. coli 173 8.87 cfu 

(3.45) 

0.00 <1 - 378 

cfu 

25 (14.5%) 148 

(85.5%) 

 

Association between nitrate and triazines 

Nitrate contamination in water wells among the survey respondents was not independently 

distributed from triazine contamination in those wells.  Table 5 shows that triazine measurements 

above 0.1 mcg/L, which are 25% of the total, are more likely to occur in wells that have above-

background (>1 mg/L) measurements of nitrate. 

Table 5. Association between NO3-N and triazines. 

 Triazine 

Nitrate < 0.1 mcg/L >= 0.1 mcg/L Total 

< 1 mg/L 63 (39.6%) 6 (11.5%) 69 (32.7%) 

>= 1 and < 10 mg/L 89 (56.0%)  42 (80.8%) 131 (62.1%) 

>= 10 mg/L 7 (4.4%) 4 (7.7%) 11 (5.2%) 

Total 159 52 211 

Fisher’s Exact Test two-sided Pr <= P: <0.0001 
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Well depth and type and its association with contaminants 

Among the water wells associated with survey respondents’ households, there were 122 (57%) 4- 

or 6-inch diameter drilled wells, and 92 (43%) bored wells between 24 and 34 inches diameter. 

Larger well diameter was associated with the likelihood of both E. coli and TC contamination in 

this sample, with greater likelihood of E. coli and TC being detected in the water from bored 

wells. 

E. coli and TC data were grouped into zero (“not detected”) and non-zero (“detected”) 

categories. Table 6 shows that the larger-diameter bored wells were many times more likely to be 

contaminated with TC or E. coli than drilled wells. 

Table 6. Odds of fecal contamination by well type 

Well type Coliform bacteria E. coli 

Odds Ratio (95% Confidence 

Interval) 

Odds Ratio (95% Confidence 

Interval) 

Drilled (4-6 in. diam.) 1.00 Referent 1.00 Referent 

Bored (24-34 in. diam.) 8.14 (3.88-17.06) 8.63 (2.81-26.43) 

 

Table 7 shows that the larger-diameter bored wells were more likely to have nitrate 

measurements above the MCL of 10 mg/L, but less likely to have nitrate in excess of background 

level of 1 mg/L than drilled wells. This is because most (62%) of the nitrate measurements were 

between 1 and 10 mg/L, those measurements were more evenly distributed in the bored wells. 

The odds of bored wells having nitrate above the MCL is not significant, however.  

 

Table 7. Odds of nitrate contamination by well type 

Well type Nitrate above MCL Nitrate above background 

Odds Ratio (95% Confidence 

Interval) 

Odds Ratio (95% Confidence 

Interval) 

Drilled (4-6 in. diam.) 1.00 Referent 1.00 Referent 

Bored (24-34 in. diam.) 3.68 (0.78-17.47) 0.44 (0.24-0.80) 

 

The odds ratios for atrazine were not calculated because only 1 sample exceeded the MCL of 3 

mcg/L. 
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Outcome data – Cancers 

The survey asked if any member of the household had been diagnosed with cancer while living 

at the address, and then if any member had been diagnosed with a cancer after moving away. The 

survey specifically asked about incident cases of these types of cancers: NHL, liver, stomach, 

breast, bladder and ovarian. The answers for each of these questions included “yes,” “no,” and 

“don’t know.” There were zero reports of bladder or ovarian cancers. (Table 8)  

Table 8. Reported cancers in participant households 

Cancer outcome Number (percentage of respondents) 

Any cancer in household 54 (25.47%) 

Any cancer in household member after moving 15 (12.40%) 

Non-Hodgkin’s lymphoma 7 (3.30%) 

Liver 6 (2.83%) 

Stomach 2 (0.94%) 

Breast 16 (7.55%) 
 

Reported incidences of NHL, liver cancer, stomach cancer and breast cancer among survey 

respondents were compared to historical rates of those cancers from the JPR, Kentucky, and the 

U.S.  SIR and 95% confidence intervals are presented in Table 3. Person-years information is not 

available from the survey respondents; person-years at risk were estimated based on U.S. census 

projected population information for 2009 for the JPR. Comparisons were made to multiple 

reference populations in order to account for underlying incidence differences of these cancer 

outcomes between the local population and larger ones. 

This survey did not collect the person-years at risk information required to calculate SIRs in a 

standard way. The researcher created person-years at risk for the study population: It was 

estimated at 20,560, which is 514 people total represented by the number of surveys in the 

analysis (214) multiplied by the average household size reported (2.4). Using U.S. census 

projected data for 2009, the median age for the Purchase district is 40 years old. The result, 

20560 person years is (514 X 40). The exception is breast cancer; the person-years at risk was 

11,130. Using U.S. census projected data for 2009, the median female age for the Purchase 

district is 42 years old, and females make up 51.5% of the population; these figures were used 

against the 514 estimated persons in the sample to calculate person-years at risk. 
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Table 9 shows that this study population experienced a higher than expected incidence of liver 

cancer, compared to the local, state and U.S. reference populations. No other reported type of 

cancer showed the same kind of excess incidence. 
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Table 9. Standardized Incidence Ratios for selected cancers in the study households. 

    Purchase Region 

  

Cases Incidence* Expected 

cases 

SIR 95% C.I. 

Non-Hodgkin's lymphoma 7 19.89 4 1.71 (0.69-3.52) 

Liver cancer 6 2.79 1 10.46 (3.84-22.77) 

Stomach cancer 2 4.33 1 2.25 (0.272-8.12) 

Breast cancer 16 90.04 10 1.60 (0.91-2.59) 

        

   Kentucky 

  

Cases Incidence* Expected 

cases 

SIR 95% C.I. 

Non-Hodgkin's lymphoma 7 19.83 4 1.72 (0.69-3.54) 

Liver cancer 6 4.33 1 6.74 (2.47-14.67) 

Stomach cancer 2 5.83 1 1.67 (0.20-6.03) 

Breast cancer 16 78.07 9 1.84 (1.05-2.99) 

        

   U.S. 

  

Cases Incidence** Expected 

cases 

SIR 95% C.I. 

Non-Hodgkin's lymphoma 7 19.6 4 1.74 (0.70-3.58) 

Liver cancer 6 6.9 1 4.23 (1.55-9.21) 

Stomach cancer 2 7.8 2 1.25 (0.15-4.51) 

Breast cancer 16 122.9 14 1.17 (0.67-1.90) 

*Age-adjusted incidence per year per 100,000 persons for 2003-2007 standardized to U.S. 

2000 standard million from Kentucky Cancer Registry 

**Age-adjusted incidence per year per 100,000 persons for 2003-2007 from U.S. Surveillance, 

Epidemiology, and End Results Program Registry 

Bold type indicates a p-value ≤ 0.05. 

Person-years at risk for SIR calculation was not available from the sample. It was estimated at 

20560, which is 514 people total represented by the number of surveys in the analysis (214) 

multiplied by the average household size reported (2.4). Using U.S. census projected data for 

2009, the median age for the Purchase district is 40 years old. The result, 20560 person years 

is (514 X 40). The exception is breast cancer; the person-years at risk was 11130. Using U.S. 

census projected data for 2009, the median female age for the Purchase district is 42 years old, 

and females make up 51.5% of the population; these figures were used against the 524 

estimated persons in the sample to calculate person-years at risk. 
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Association of nitrate with cancer outcomes 

It was intended to create logistic models for each of the four cancer outcomes in which any cases 

were reported as a function of nitrate contamination, but there were too few reported cases to 

perform this analysis. Because the nitrate measurements in this sample are not normally, 

distributed, a t-test comparison of mean nitrate values between cancer case households and non-

cancer case households was not performed. The Wilcoxon Rank Sum test was performed to 

disprove the hypothesis that the distribution of nitrate measurements is identical between 

households with reported cancers and households without cancers. Table 10 shows the results of 

this test, where the participant households were classified based on their answers to two 

questions: ‘Has any member of your household been diagnosed with cancer’, or ‘Has any 

member of your household been diagnosed with cancer after moving away’; affirmative answers 

to these two questions were merged into a ‘Yes’ category. NO3-N is a continuous variable. 

Table 10. Association of nitrate with any reported cancer in a participant household. 

  t approximation 

Class N Median NO3-N Pr > |Z| 

Response to questions: Any cancer 

in a member of your household? 

No 151 1.68 mg/L 
0.0241 

Yes 60 2.58 mg/L 

 

With incident cancers counted this way, the Wilcoxon two-sample test statistic is significant at 

0.05; the distribution of nitrate is not identical between households with cancers and households 

without. The median nitrate measurement is higher for the households reporting a member with 

cancer. 

If incident cancers are counted by summing the reported liver, stomach, breast cancers and NHL, 

the totals were 27 households reporting a cancer and 184 not; the same test generated a result 

that was not significant at 0.05. 

Outcome data – Adverse birth outcomes 

The survey asked if any member of the household had experienced one of the following adverse 

birth events: a low birth weight infant (<2500g), neural tube defect, congenital malformation, 

intrauterine death, miscarriage, or premature birth (birth before 37 weeks gestation). No neural 

tube defects were reported. One congenital malformation was reported. Neither of these adverse 

birth outcomes were included in the analysis. Reports of low birth weight and premature birth 
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were largely co-incident; it was concluded that the respondents were not differentiating between 

the two. Low birth weight was dropped from the analysis in favor of premature birth. The 

incidence of adverse birth outcomes in this population is shown in table 11. Information 

provided in the survey did not allow for calculation of standardized incidence ratios. 

Table 11. Reported adverse birth outcomes in participant households 

Adverse birth outcome Number (percentage of respondents) 

Intrauterine death 3 (1.40%) 

Miscarriage 12 (5.61%) 

Premature birth 4 (1.87%) 

 

The survey asked if multiple instances of intrauterine death, miscarriage, or premature birth had 

occurred to the same woman or to other women in the same household. Positive responses were 

few, and these observations were not analyzed because they are possibly not independent events. 

Any “yes” answer for an instance of intrauterine death, miscarriage, or premature birth was 

combined into a yes/no answer for any adverse birth event. The Wilcoxon Rank Sum test was 

performed to disprove the hypothesis that the distribution of nitrate measurements is identical 

between households with reported adverse birth outcomes and households without. Table 12 

shows the median nitrate measurement in households that reported an adverse birth outcome was 

higher, but the test statistic is not significant at 0.05, so it is not ruled out that the nitrate 

measurement distributions in the two groups are the same. 

Table 12. Association of nitrate with any reported adverse birth outcome in a participant 

household. 

  t approximation 

Class N Median NO3-N Pr > |Z| 

Response to questions: Any adverse 

birth outcome in a member of your 

household? 

No 195 1.83 mg/L 

0.4132 Yes 16 3.40 mg/L 

 

 

Correlation between GI illness incidence and fecal contamination 

Observed values for E. coli and TC, measured in colony-forming units (cfu) were transformed 

where necessary from “below detection limits” and “above detection limits” to numerical values. 

“Below detection limits” was observed as “<1”; to create a continuous numerical variable, these 
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were transformed to 0. “Above detection limits” was observed as either “>200.5” (31 instances 

for TC, 2 for E. coli) or “>2419.6” (2 instances for TC); to create a continuous numerical 

variable, these were transformed to 201 and 2420, respectively. (Two observed numerical values 

for E. coli were above 300; this is thought to be a difference in lab techniques used on these 

water samples.) 

When a respondent gave a non-numerical answer for the incidence of AGI that could not easily 

be translated to an appropriate answer, that value was left missing. An example of an answer that 

was translatable is “6 or 7”; an answer like this would be recorded as 6.5. If a respondent did not 

indicate how many people were in the household, no household rate of AGI was calculated, and 

the record was not used for analysis of household rates. Despite whatever answer a respondent 

gave for how many persons lived in the house in the past 12 months, the household rate was 

calculated using the number of people for whom incidence of AGI was given. 

Pearson correlation coefficients were generated for the relationship between both E. coli and TC, 

using the continuous scale, and household incidence of AGI, as a per-person rate. E. coli 

contamination approached, but did not quite reach, significance at alpha=0.05. TC contamination 

was not related to household incidence of AGI. 

Correlation coefficients were generated for the relationship between both E. coli and TC, using 

the dichotomous variable (detected/not detected), and household incidence of AGI, as a per-

person rate. TC contamination approached, but did not quite reach, significance at alpha=0.05. E. 

coli contamination was not related to household incidence of AGI. 

Correlation coefficients were also generated for the relationship between both E. coli and TC, 

using the dichotomous variable (detected/not detected), and incidence of AGI in the previous 12 

months reported by the survey respondent only. Neither E. coli nor TC contamination were 

related to incidence of AGI in the previous 12 months. 

  



37 
 

Table 13. Correlation coefficients for Acute Gastrointestinal Illness in household and fecal 

contaminants 

E. coli and total coliform modeled as continuous variables 

  
Pearson correlation coefficient 

Pr > |r| 

  E. coli Total coliform 

Household per person incidence of 

AGI in the past 12 months 

0.16 

0.06 

-0.02 

0.80 

     

E. coli and total coliform modeled as dichotomous variables 

  E. coli Total coliform 

Household per person incidence of 

AGI in the past 12 months 

0.08 

0.36 

0.06 

0.06 

Incidence of AGI in the past 12 

months for primary survey 

respondent only 

0.00 

0.98 

-0.02 

0.83 
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CHAPTER 5 

IMPLICATIONS FOR PUBLIC HEALTH 

Key Results 

Owners of domestic water wells in the JPR of Kentucky were surveyed about incidence of 

selected cancers, adverse birth outcomes and AGI in their households. The objective was to see 

if any disproportionate incidence of these diseases was correlated with nitrate, herbicide or 

bacterial contamination of well water which is common in agricultural areas. 

 

This cross-sectional study showed a possible association between elevated levels of nitrate in 

privately supplied well water and cancer incidence in families living in the JPR of Kentucky, but 

due to many limitations of the study, the result should be viewed with skepticism. No association 

was seen between elevated nitrate in well water and adverse birth outcomes; including 

intrauterine death, premature birth, or miscarriage. No statistically significant association was 

seen between contamination with TC or E. coli and the incidence of gastrointestinal illness in 

this population. 

The amount of E. coli found in well water had a small positive correlation with the incidence of 

AGI in the households that responded to this survey, but the correlation is not quite statistically 

significant at 0.05. The correlation could indicate a relationship that is plausible and expected. 

Other results of interest 

In this sample of 214 water wells, 5.19% had nitrate levels above the MCL of 10 mg/L. This is 

consistent with results from the 1996 Cooperative Private Well Testing Program study of wells 

in Ohio, Indiana, Illinois, West Virginia, and Kentucky (3.4%), and less than a sample of private 

water wells in Iowa (18.3%). 

Only one household in this sample (0.53%) had well water with a triazine level above the MCL 

of 3 µg/L; it was detected in 66 (35%) of the samples. This is consistent with results from the 

1996 Cooperative Private Well Testing Program study of wells in Ohio, Indiana, Illinois, West 

Virginia, and Kentucky (4.9% detection, 0.1% above the MCL), although the proportion of wells 

with detectable atrazine levels is higher in this sample. 
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59% of water wells in this sample had coliform bacteria detected in the water, and 14% had E. 

coli detected in the water. Both coliform bacteria and E. coli were several times more likely to be 

detected in the water from larger-diameter bored wells than the smaller-diameter drilled wells; 

the OR for detection of E. coli is 8.63, and for TC is 8.14.) This is consistent with other studies 

of the effect of poor well construction in the shallow depths on fecal contamination of water. 

Nitrate and triazine contamination were positively associated in this sample of water wells, 

which is consistent with other studies and indicates the contaminants’ common agricultural 

origin.  

Most households surveyed reported drinking water from their wells. The median length of time 

the household had been drinking the well water was 20 years. This indicates long exposure times 

to well water 

Limitations 

The chief limitation of this study was its small size; it was predicted from the outset that with 

relatively rare outcomes such as cancers, the study would lack sufficient power to show 

meaningful results, which did occur. The small numbers of reported outcome measures also 

truncated the planned analysis. It was hoped that the incidence of cancer and adverse birth 

outcomes could be modeled as functions of both nitrate and triazine in the well water, using 

multivariate logistic regression, but there were too few reported outcomes or elevated triazine 

measurements to use adjusted models.  Smoking status and age are important determinants of 

cancer incidence. These were collected by the survey, but they were not included in any analysis 

because small numbers of cancer outcomes prevented this. Similarly, respondents were asked if 

they relied primarily on their well for drinking water, how long they had been using that well, 

and whether they had any water treatment systems in place. Again, these potential strata of 

exposure could not be used in the analysis. 

 

Next, the study design is cross-sectional, which can point toward possible associations between 

factors, but cannot demonstrate a causal relationship. Cross-sectional study assumes the putative 

exposures and outcomes measured at the same time, but another limitation of this study had to do 

with the long length of time over which the exposure measurements were taken. There was no 

effort made to ensure that the one measurement in time (or in some cases, a few) represented the 
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water quality during the entire time period that the survey asked about, or that it was specific to 

the time immediately before an adverse birth outcome. For each outcome in this study, cancers, 

adverse birth outcomes, and gastrointestinal illnesses, it’s very possible the timing of a nitrate or 

coliform measurement did not match any purported period when that contaminant might have 

contributed to the outcome event. This may have led to misclassification, but most especially 

with bacterial contamination. 

Well owners who were alerted their water had detectable coliforms or E. coli may have taken 

some action to clean their water, so the contamination might have no overlap in time with the 

“previous 12 months” asked about in the survey. Nitrate levels above the MCL that would 

negatively affect a pregnancy also need to exist at the same time as the pregnancy; no effort was 

made to match the date of nitrate test results with any adverse birth outcomes (Year of adverse 

birth outcome was collected. The small study size prevented this, also, from being used as 

planned in the analysis.) If it can be assumed that high nitrate level in well water would be 

consistent over many years because the source of nitrate (i.e. land use) would be unlikely to 

change and nitrate contamination would be difficult to fix, then the potential for misclassification 

of exposure would be least important for the relationship between nitrate in well water and the 

cancer outcomes, because cancers have long latency periods. 

A prospective study of either adverse birth outcomes or incidence of AGI could reveal a real 

causal relationship between elevated nitrate (or nitrate and triazines together) in well water and 

adverse birth outcomes or between E. coli contamination and AGI incidence. A case control 

study would be more appropriate for the study of cancer outcomes because they are rare. 

The lack of a control group in this study design also means that it is not capable of ruling out 

other factors as causes of the outcomes being measured, or to control for them. There are many 

suggested or unknown causes for cancers or adverse birth events. Although AGI outbreaks are 

often traced to drinking water sources, there are other explanations for AGI that were not taken 

into account by this study. For instance, one survey respondent called this researcher to explain 

that his frequent bouts of GI distress were caused by irritable bowel syndrome. Failure to collect 

alternative causes of AGI would mistakenly attribute all of any excess incidence to bacterial 

contamination of well water. 
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Selection bias was not an issue when the survey was sent out, because it was mailed to every 

household with well water testing results from the previous 15 years, an entire cohort not 

sampled on the basis of any health concern. 

Non-response is a potential source of bias in survey studies such as this one; people that might be 

more likely to respond to the survey would include (1) people aware of contamination in their 

well water, (2) people whose wells were tested more recently, (3) people with greater numbers of 

adverse health outcomes among their family members, and (4) people whose adverse health 

outcomes are more recent. No effort was planned to assess or address this, aside from the second 

mailing of the survey to boost response. One member of a household was asked to complete a 

survey for all members about events that happened over a span of many years; this might have 

resulted in inaccurate recall that biased the study toward better information on more recent 

adverse health events. 

Because cancers, birth outcomes and AGI are self-reported instead of observed, recall bias, or 

misclassification of outcome, is expected to be a limitation. If so, it would bias the results away 

from the null value of no relationship. Responses to questions about AGI in the previous twelve 

months were incomplete, and as expected, many were approximate estimates. 

The information collected by the survey would have been more useful if it had included a 

demographic description of each member of the household, including age. With age, a true SIR 

could have been calculated for cancer incidence. But the survey was designed assuming this 

population would be uninclined to answer intrusive questions. 214 households, of 551 who were 

approached, responded to the survey and contributed records to the analysis. The effective 

response rate was 39%, which was higher than expected. One researcher associated with this 

project felt that people in the JPR would be less likely to want to participate in research 

associated with one of Kentucky’s public universities, but they would also be a group of people 

motivated to cooperate with the KGS because they already had a relationship with that agency. 

(conversation, E. Glynn Beck) This issue with what to ask the potential participants, and the idea 

that they might be less willing to answer questions in the future, led to another weakness of the 

study design. The study should have focused on (1) a possible association between nitrate and 

triazine contamination and cancer incidence, or (2) the same set of exposures and adverse birth 

outcomes, or (3) bacterial contamination and AGI incidence. 
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Interpretation 

The results seen in this study do not support any action focused on protecting persons relying on 

privately-supplied well water for drinking from common agricultural contaminants, including 

nitrate and triazine herbicides, or bacterial contamination from leaking septic tanks, manure 

applications, or feedlots; in the frequency and concentrations seen in this area of Kentucky. 

Because of study limitations that have to do with the study design, study size, non-control of 

potential confounders in the analysis, and some flaws in execution, any results that indicate a 

possible relationship between the contaminants measured and the outcomes examined should not 

be considered as strong evidence. The frequency of contamination of the wells in this sample 

with nitrate, triazine, TC, and E. coli are consistent with that of other agricultural areas in the 

U.S. For nitrate specifically, the results of this study are consistent with a 2006 statement that not 

enough evidence is available showing that levels of nitrate in water below the MCL have any 

association with long-term outcomes such as cancer.35 This small study is consistent with the 

majority of studies this author examined that showed no relationship between nitrate in drinking 

water at low levels below the MCL and the incidence of various cancers or adverse reproductive 

outcomes. Triazine contamination in drinking water, although not linked in the literature to 

cancer incidence, or linked persuasively with adverse reproductive outcomes, was not analyzed 

in this study. This study, like the prospective cohort examined, did not show a statistically 

significant additional risk for AGI from water contamination with TC or E. coli, though that 

study was better designed because the testing was concurrent with the questionnaire. 

Implications 

Groundwater is a source less prone to contamination than surface water. In Kentucky, well 

owners are considered responsible for their own water quality, by law. Owners have access to 

water quality testing and to remediation if their water is contaminated. This study does not 

provide evidence to support intervening in this situation because it does not show any way in 

which the population suffers poor health outcomes because of contaminated well water. 

Urbanization is, over time, reducing the number of people who get their water from private 

wells, a trend that will continue as long as fewer people are required for agriculture. If well water 

could be considered a dangerous exposure, then the frequency is already being reduced and the 

scope of the problem is shrinking even now. Kentucky, however, is a more rural state than the 
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country as a whole, so this problem could be considered one over which our state has a unique 

kind of ownership. In Kentucky, 24.0% of persons live in rural areas; in the U.S., 6.3% of the 

population lives in rural areas.23 Further research could be focused on evaluating whether 

Kentuckians who rely on private wells for drinking water are adequately informed about how to 

prevent contaminants from entering their wells, or how often water quality testing might benefit 

them. Then policy makers should ensure that these citizens have access to testing, and 

remediation if necessary. 

The association between fecal contamination of drinking water and intestinal illness is well 

established, and this study revealed that a high percentage of well owners in this area had 

indication of fecal contamination of their drinking water at some time in the recent past. Policy 

makers should make sure that financial constraints do not prevent this population from testing or 

remediating their drinking water. 
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APPENDIX 1 

The Survey Instrument 
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APPENDIX 2 

Epidemiological studies reporting risk of selected cancers by nitrate in drinking water 

Year, 

Author 

Study Design Cancer 

site 

Number of 

cases 

Study 

location 

Concentrations Exposure 

timing 

Association 

1996, Ward 

et al. 

Population-

based case 

control 

NHL 156 Nebraska >= 4 mg/L 1947-1975 

until 

diagnosis 

OR=2.0; 95% CI 

1.1-3.6 (public 

supply; no 

association seen for 

private water 

supply) 

1999, Law 

et al. 

Ecological NHL  Yorkshire, 

England 

1.48 mg/L min., 

11.86 mg/L 

mean 

6 years None 

2000, 

Freedman et 

al. 

Population-

based case 

control 

NHL 73 Minnesota <=0.5 mg/L, 5.0 

to <=1.5 mg/L, 

>1.5 mg/L 

1947-1975 

until 

diagnosis 

None 

2001, 

Weyer et al. 

Population-

based cohort 

NHL 134 cases; 

cohort=21,977 

Iowa 11.6-18.0 mg/L 10+ years 

before 

diagnosis 

None; OR (95% 

CI)=0.88 (0.55-

1.40) 

2002, Gulis 

et al. 

Ecological NHL  Slovakia 0-10 mg/L, 

10.1-20 mg/L, 

20.1-50 mg/L 

1975-1995 Positive trend in 

incidence by 

exposure category: 

P for trend of SIRs 

0.13 for women and 

0.017 for men  

2003, 

Cocco et al. 

Ecological NHL  Sardinia, Italy 4.57 mg/L 

mean; range of 

<=2, 26.64 

mg/L 

23 years None 

2006, Ward 

et al 

Population-

based case 

control 

NHL 181 Iowa Quartiles, 

highest >2.9 

mg/L 

1960-2000 

until 

diagnosis 

None; OR=1.2, 

95% CI 0.6-2.2 
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2010, Chih-

Ching et al 

Matched case-

control 

NHL 1,716 Taiwan <=0.18 mg/L, 

0.19-0.45 mg/L, 

0.48-2.86 mg/L 

1 year prior 

to diagnosis 

None; ORs of 1.02 

(95% CI 0.87-1.2) 

and 1.05 (95% CI) 

2013, 

Rhoades et 

al 

Population-

based case-

control 

(public 

groundwater 

source) 

NHL 140 Nebraska <=2 mg/L, >2 

mg/L 

1999-2002 None; OR for risk 

for interaction of 

nitrate and atrazine 

2.5 (95% CI 1.0-

6.2) 

1992, 

Rademacher 

et al. 

Matched case-

control 

Stomach 220 Wisconsin Well water: 

yes/no; mean 

2.41 mg/L 

Nitrate 

measured 

after death 

None; OR=1.09, 

95% C.I (0.82, 

1.47) 

1995, 

Morales-

Suárez-

Varela et al 

Ecological Stomach  Valencia, 

Spain 

>50 mg/L  RR 1.91 in men; 

1.81 in women 

p<0.05 

1996, Van 

Loon et al 

Prospective 

case-cohort 

Stomach 282 cases, 

3500 in cohort 

Netherlands Quintiles from 

mean of 0.02 

mg/L to mean 

of 16.5 mg/L 

One year 

before study 

start 

None; RR=0.88, 

95% C.I. 0.59-1.32 

1997, Yang 

et al 

Population-

based Case-

control 

Stomach 6,766 Taiwan <=0.22 mg/L, 

0.23-0.44 mg/L, 

>=0.45 mg/L 

Deaths in 

1987-1991; 

nitrate 

measure in 

1990 

None; OR 1.02, 

95% C.I. 0.93-1.11 

for highest tertile 
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1998, 

Barrett et al. 

Ecological Stomach 15,554 Yorkshire, 

England 

Quartiles from 

1.5 to 40.1 

mg/L; median 

8.1 mg/L 

Cases in 

1975-94; 

nitrate in 

1990-95 

None or negative; 

RR 0.91, 95% C.I. 

(0.87-0.95) in 

highest quartile 

1999, Van 

Leeuwen et 

al. 

Ecological Stomach  Ontario, 

Canada 

Range 0.05 to 

7.79 mg/L, 

median 1.52 

mg/L 

Nitrate 

measured 

after case 

collection 

Negative  

2001, 

Sandor et 

al. 

Ecological Stomach 407 Hungary 10 deciles from 

5.58 mg/L 

(referent) to 311 

mg/L 

Deaths in 

1984-1993; 

nitrate in 

1974-1993 

Inconsistently 

positive; RR 1.79 

95% C.I. 1.26-2.55 

in 7th decile 

2002, Gulis 

et al. 

Ecological Stomach  Slovakia 0-10 mg/L, 

10.1-20 mg/L, 

20.1-50 mg/L 

1975-1995 Positive trend in 

incidence by 

exposure category 

for women only: P 

for trend of SIRs 

0.10 

2008, Ward 

et al. 

Population-

based case 

control 

Stomach 170 Nebraska Duration of use 

at >= 10 mg/L; 

Quartiles, range 

0.5 to 12 mg/L 

Cases 1988-

1993; 

nitrate 

1965-1985 

None; OR=1.2, 

95% C.I. 0.5-2.7 in 

highest quartile 

2001, 

Weyer et al. 

Population-

based cohort 

Breast 253 cases; 

cohort=21,977 

Iowa 11.6-18.0 mg/L 10+ years 

before 

diagnosis 

None; OR=0.99, 

95% C.I. (0.83-

1.19) for highest 

tertile 

2006, Brody 

et al. 

Population-

based cohort 

Breast 824 Massachusetts <0.3, 0.3-0.6, 

0.6-0.9, 0.9-1.2, 

>=1.2 mg/L 

Cases 1988-

95; nitrate 

from 1972 

to diagnosis 

None; OR=1.0, 

95% C.I. (0.5-1.9) 

for >=1.2 mg/L 

compared to <0.3 
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APPENDIX 3 

Epidemiological studies reporting risk of adverse reproductive outcomes by nitrate in drinking water 

Year, 

Author 

Study Design Outcome Number of 

cases 

Study 

location 

Concentrations Exposure 

timing 

Association 

2009, 

Winchester 

et al. 

Ecological All birth 

defects 

 United 

States 

Means of two 

categories: 1.94, 

1.65 mg/L 

Conception 

in April-

July, 

compared to 

other 

months 

Increased odds of 

defect associated 

with higher mean 

nitrate in water, 

p<0.05 

2013, 

Migeot et 

al. 

Cohort Small for 

gestational 

age 

985 cases; 

11, 446 births 

France Terciles; 0-14, 

15-26, 27+ 

mg/L, roughly 

During 

pregnancy, 

all trimesters 

Significant 

increased risk with 

above-baseline 

exposure during 2nd 

trimester 
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APPENDIX 4 

Epidemiological studies reporting risk of adverse reproductive outcomes by triazines in drinking water 

Year, 

Author 

Study Design Outcome Number of 

cases 

Study 

location 

Concentrations Exposure 

timing 

Association 

1994, 

Munger et 

al. 

Ecological IUGR/SGA  Iowa Mean of 2.2 

mcg/L compared 

to mean of 0.6 

mcg/L 

Births in 1984-

90; triazines in 

1986-87 

PR 1.8, 95% C.I 

(1.2, 2.6) of IUGR 

for affected water 

source areas 

2005, 

Villaneuva 

et al. 

Retrospective 

cohort 

IUGR/SGA 3510 births France Mean of 0.1 

mcg/L compared 

to mean <0.04 

mcg/L  

Third trimester 

in May-Sept 

compared to 

Oct-Apr  

OR=1.37, 95% 

C.I. (1.04-1.81) 

for 3rd trimester in 

May-Sept 

compared to Oct-

Apr 

2009, 

Ochoa-

Acuna et al. 

Retrospective 

cohort 

IUGR/SGA 

and pre-

term 

delivery 

24,154 

births 

Indiana >=0.103, >0.835 

mcg/L and 

>=0.179, >0.644 

mcg/L 

Third 

trimester/entire 

pregnancy 

OR 1.17 (1.03-

1.34) for 3rd 

trimester; OR 1.14 

(1.03-1.24) for 

entire pregnancy 

in highest tercile 

2011, 

Chevrier et 

al. 

Case-cohort IUGR/SGA 579 births; 

180 cases 

France Presence/absence 

of atrazine 

metabolite in 

mother’s urine 

Atrazine 

measure after 

birth 

OR=1.5, 95% C.I. 

1.0-2.7 

2012, 

Rinsky et 

al. 

Ecological Pre-term 

birth 

 Kentucky 0 mcg/L, 0 to 

<0.0810, and 

>=0.0810 mcg/L 

Births 2004-

06; atrazine 

2000-08 

OR 1.22 (1.16-

1.29) 

        
IUGR/SGA is intrauterine growth retardation or small for gestational age; both are defined as below the 10th percentile of weight for gestational age. 
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