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¢ Results

Table 1. The number of top 10 metalloproteins in wwPDB as of Feb 2015.
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¢ Introduction
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Future Directions

Develop methods in assessing the quality of a metal
binding sites in terms of its electron density fithess.

» Various filters were applied to ensure high quality of the data being analyzed, including removing of metal binding

sites with abnormal normalized bond-length deviation and correcting standard deviations based on x-ray

resolution. The ligand detection method is statistically rigorous, producing an estimated false positive rate of o
~0.11% and an estimated false negative rate of ~1.2%.

gmo

Use information of functional group and multidentation
bond length modes to improve the ligand detection method.

The detected bond length modes agree very well with studies based on Cambridge Structural Database (CSD) o
[7], and are specific to the functional group and multidentation.

Develop better representation for angle-space description
of CGs, especially for 7-and 8-ligand CGs.

Figure 6. Chemical functional group and multidentation specific bond

length modes. On the left is the overall bidentation short and long arms o
for each metal and some specific functional groups that contributing to

the overall bond length histogram. On the right is a breakdown of the

most abundant functional groups in the bidentation and multidentation,

as they often exhibit distinct modes.
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The existence of compressed angles are universal among the top five metals bound by proteins, but especially o
pronounced in Ca. They caused significant misclassification of metal binding sites into canonical CGs in all
previous studies. Aberrant CG models were identified after separating the metal binding sites that have
compressed vs. normal angles.

Develop methods to better relate overlapping protein
regions and improve association between functions and
specific clusters.

Metal fc-shells with assigned best fitted
known major and minor CGs and
corresponding angle and bond length stats

* Generalize and apply the methodology to all other metal
binding sites.

The universal existence of aberrant CG clusters is further supported by the electron density maps.
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* The ability to detect the structure-function correlation are greatly affected by the sample size (see Yao et al 2017
[5]). Lack of adequate data could be the reason that metal binding sites with compressed angles have never been
treated separately as their own independent CGs before.
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Figure 2. The overall workflow.



