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ABSTRACT FOR DISSERTATION

An Exploratory Statistical Method For Finding Interactions In A Large Dataset

With An Application Toward Periodontal Diseases

It is estimated that Periodontal Diseases effects up to 90% of the adult population.

Given the complexity of the host environment, many factors contribute to expression

of the disease. Age, Gender, Socioeconomic Status, Smoking Status, and Race/Eth-

nicity are all known risk factors, as well as a handful of known comorbidities. Cer-

tain vitamins and minerals have been shown to be protective for the disease, while

some toxins and chemicals have been associated with an increased prevalence. The

role of toxins, chemicals, vitamins, and minerals in relation to disease is believed

to be complex and potentially modified by known risk factors. A large comprehen-

sive dataset from 1999-2003 from the National Health and Nutrition Examination

Survey (NHANES) contains full and partial mouth examinations on subjects for

measurement of periodontal diseases as well as patient demographic information and

approximately 150 environmental variables. In this dissertation, a Feasible Solution

Algorithm (FSA) will be used to investigate statistical interactions of these various

chemical and environmental variables related to periodontal disease. This sequential

algorithm can be used on traditional statistical modeling methods to explore two and

three way interactions related to the outcome of interest. FSA can also be used to

identify unique subgroups of patients where periodontitis is most (or least) prevalent.

In this dissertation, FSA is used to explore the NHANES data and suggest interest-

ing relationships between the toxins, chemicals, vitamins, minerals and known risk



factors that have not been previously identified.
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teraction
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Chapter 1 Introduction to Periodontal Diseases

The leading cause of tooth loss in adults is periodontal disease [1][2] [3]. Both

tooth loss and periodontitis are associated with a decline in social, psychological, and

environmental quality of life measurements in adults and the elderly [4] [5] [6]. Bad

breath, red or swollen gums, tender or bleeding gums, painful chewing, loose teeth,

and sensitive teeth are all clinical signs of the disease [7]. Known risk factors include

smoking, diabetes, poor oral hygiene, stress, heredity, and malocclusion [7]. Because

poor oral health is being linked to systemic disease status, monitoring the severity of

periodontitis in the adult U.S. population is now a part of the health-promotion and

disease-prevention activities of Healthy People 2020 [8].

Periodontal diseases are a result of an infection or inflammation of the gums

caused by pathogenic microorganisms in the dental biofilms (plaque) that form on

the teeth and in the subjingival sulcus [9] [10]. This infection causes gingival soft

tissue damage resulting in pockets or deepened crevices between the gingiva and

tooth root [10]. In its earliest stage, gingivitis, the gums can become swollen and

red, and may bleed. This can progress to the gums pulling away from the tooth,

enhancing the opportunity for alveolar bone loss and leading to a loose tooth or even

exfoliation [9]. The progression of the inflammatory lesion through this process with

bone loss is called periodontitis and ranges in severity from mild to severe (definitions

below) [11].

1.1 Periodontal Prevalence

Due to the inconsistencies in measurement of periodontitis (see periodontal surveil-

lance section), it is difficult to accurately describe the prevalence of the disease world-

wide [12]. Countries have utilized different measurements and case definitions, and

measurements used to diagnose periodontitis have changed over time, which has made

it difficult to compare prevalence. The diagnosis of periodontal disease is now based
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on the measurements of periodontal pockets via calibrated probing(probing pocket

depth or PPD) , loss of clinical attachment (clinical attachment level or CAL), the

pattern and extent of bone loss, or a combination of these measures. PPD is the

distance from the gingival margin to the base of the gingival sulcus or periodontal

pocket. CAL is the distance from the cemento-enamel junction (CEJ); or another

definite chosen landmark to the base of the sulcus or periodontal pocket. Since case

definitions for periodontitis have changed over time, its extremely important that the

measurement of PPD and CAL are accurate and reproducible.

1.2 Periodontal Disease Classification

Case definitions for periodontal disease types were re-examined and classified by the

Center for Disease Control (CDC) and American Academy of Periodontology (AAP)

in 1999. The next update for classifying periodontal diseases is scheduled for 2017.

There are eight separate classifications of periodontal disease: gingival disease, chronic

periodontitis, aggressive periodontitis, periodontitis as a manifestation of systematic

disease, necrotizing periodontal disease, abscesses of the periodontium (the tissues

that invest and support the teeth including the gingiva, alveolar mucosa, cementum,

periodontal ligament, and alveolar supporting bone), periodontitis associated with

endodontic lesions, developmental or acquired deformities and conditions.

1.3 Definitions for Periodontal Diseases

Gingival disease, or gingivitis, “is the mildest form of periodontal disease. It causes

the gums to become red, swollen, and bleed easily. There is usually little or no dis-

comfort at this stage. Gingivitis is often caused by inadequate oral hygiene. [13]”

. Chronic periodontitis “results in inflammation within the supporting tissues of

the teeth, progressive attachment and bone loss. This is the most frequently occur-

ring form of periodontitis and is characterized by pocket formation and/or recession

of the gingiva. It is prevalent in adults, but can occur at any age. Progression

of attachment loss usually occurs slowly, but periods of rapid progression can oc-
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cur.” [13]. Aggressive periodontitis “occurs in patients who are otherwise clinically

healthy. Common features include rapid attachment loss and bone destruction and

familial aggregation.” [13] Periodontitis as a manifestation of systematic “ condi-

tions such as heart disease, respiratory disease, and diabetes are associated with this

form of periodontitis.” [13] Necrotizing periodontitis “is an infection characterized

by necrosis of gingival tissues, periodontal ligament and alveolar bone. These lesions

are most commonly observed in individuals with systemic conditions such as HIV

infection, malnutrition and immunosuppression.” [13] Abscesses of the periodontium

is defined as “a localized collection of pus (i.e. an abscess) within the tissues of the

periodontium. It is localized purulent collection in the periodontal tissues.” [14]

Periodontitis associated with endodontic lesions is a “bacterial infection from a pe-

riodontal pocket associated with loss of attachment and root exposure may spread

through accessory canals to the pulp, resulting in pulpal necrosis.” [13]. Lastly, peri-

odontal disease associated with developmental or acquired deformities and conditions

can be one of the following: localized tooth-related factors that modify or predispose

to plaque-induced gingival diseases/periodontitis, mucogingival deformities and con-

ditions around teeth, or occlusal trauma.

1.3.1 Periodontitis Prevalence Classified by Severity

Both chronic and aggressive periodontitis are further classified by severity. First,

moderate and severe periodontitis are defined based on measurements of PPD and

CAL at interproximal sites. Severe periodontitis requires two or more interproximal

sites with CAL 6 mm, not on the same tooth, and one or more interproximal sites

with PPD 5 mm. Moderate periodontitis is defined as two or more interproximal sites

with CAL 4 mm, not on the same tooth, or two or more interproximal sites with PPD

5 mm, not on the same tooth. However, this definition was not inclusive of any mild

definition and therefore gave incomplete estimations for the prevalence of periodontitis

in the United States. In 2012, the CDC and AAP added a case definition for mild

periodontitis. Mild Periodontitis is defined as 2 interproximal sites with AL 3 mm,

and 2 interproximal sites with PPD 4 mm (not on same tooth) or one site with PPD
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5 mm [15]. Total periodontitis is now defined as the presence of severe or non-severe

periodontitis (mild and moderate) [15]. The mild stage of periodontitis is estimated

to affect between 50-90% of adults worldwide [16]. Advanced stages of periodontitis

occur less frequently, estimated to be less than 10-15% [17]. Periodontitis is less

common in children across all populations [18]. The extent of periodontitis within

the US adult population was examined in the 2009-2012 cycles of the NHANES survey.

During that time period, 46% of US adults had some form of periodontitis while, 9%

were classified as having severe periodontitis [15]. In this chapter, further information

about periodontal etiology, case definitions, risk factors, and its relationship to other

diseases will be outlined. Also, current surveillance efforts will be detailed.

1.4 Etiology of Periodontitis

Chronic periodontitis is the most prevalent form of periodontitis encountered dental

in practice [19]. In terms of the etiology of the disease, periodontal bacterial biofilms

accumulate related to diet, behaviors, and oral hygiene practices that drive peri-

odontal disease initiation and progression [20]. Although, individuals with plaque

build-up will not necessarily develop periodontitis, the bacterial accumulation plays

a required role in the development of periodontitis which trigger biological mecha-

nisms contributing to the development of periodontitis. For example, microbiological

studies of the disease have identified the ”Red-Complex” of bacteria implicated for

the initiation and progression of chronic periodontitis. This complex is composed of

specific bacteria species, including Porphyromonas gingivalis, Treponema denticola,

and Tannerella forsythia [20] [21]. Importantly, recent studies have shown that co-

operative or synergistic effects among these species, can elicit greater tissue and bone

loss than the individual infections [22].

1.4.1 Host Immunity

Chronic inflammation of the periodontal tissue is a result of bacterial colinization

of mucosal cells and invasion into deeper preiodontal tissue, and is considered the
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proximate cause of the tissue destruction in periodontitis. Since chronic inflamma-

tion induced by pathogenic biofilms causes periodontitis, it would be expected that

periodontal pathogens activate or suppress aspects of the immune system leading to

a dysregulated immune system and chronic inflammation[23]. The current paradigm

explaining this phenomenon indicates that the periodontal pathogens have an en-

hanced capacity to invade cells, altering their functions, as well as biology of many

members of the oral microbiome and is the key event in the initiation of periodontitis

[24]. The persistence of this bacteria within these tissues altering the local microen-

vironment and physiology of the oral microbiome drives the chronic inflammation.

Thus, while the quantity and quality of bacterial accumulation juxtaposed to gingival

tissues is a key component to the initiation and progression of periodontitis [24]; the

host inflammatory and immune response cells and factors that are activated directly

result in collateral damage. [25] [26] [27] [28].

1.5 Risk Factors of Periodontitis

1.5.1 Demographics

Age: Periodontal disease prevalence increases with age, and ages effect has been

defined as a cumulative in nature [29]. The estimated prevalence of total periodontal

disease for US residents from the 2009-2012 National Health and Nutrition Exami-

nation (NHANES) full mouth examination was 24.8%, 37.2%, 52.7%, and 68.0% for

those aged 30-34, 35-49, 50 to 64, and 65 and older, respectively [30]. The overall

prevalence of periodontitis for U.S dentate adults age 30 or older was 46%. This data

therefore indicates increased prevalence of periodontitis with age.

Sex: Men consistently show a higher prevalence and severity of periodontal dis-

eases than women. Although, after onset, periodontal progression appears to be sim-

ilar in both men and women [31]. The NHANES 2009-2012 data showed the same

differences between men and women. 54.9% of men had periodontitis, while only

37.4% of women had some form of periodontitis [30]. Men commonly have a height-
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ened innate immune response system which also may contribute to the increased risk

of destructive periodontal disease [31].

Race/Ethnicity: Racial/ethnic minorities are at the greatest risk for periodon-

tal disease. For adults age 30 and over it is estimated that, 63.5% of Hispanic-

Americans, 59.1% of Non-Hispanic Blacks, and 50% of Non-Hispanic Asian Americans

are affected by periodontitis based on NHANES data from 2009 to 2012. [15]. For

adults age 30 and over, 42.6% of Non-Hispanic Whites are estimated to be affected

by periodontitis based on the 2009 to 2010 NHANES data [32].

Socioeconomic and Educational Status: Income and educational status

have also been shown to be associated with periodontal disease prevalence [33] [34] [15].

One cross-sectional study at Narayana Dental College and Hospital examined the ed-

ucation level and its correlation to periodontal status. Those without a high school

education were estimated to be as much as twice as likely to have periodontal disease

[34]. In NHANES data 2009-2012, it was estimated that those with low socioeco-

nomic status had twice the prevalence of periodontal disease compared to those with

high socioeconomic status [15].

1.5.2 Genetic Factors

In recent years, genetic variations and mutations that can alter the host immune

response and may link with periodontal disease expression have also been identified.

Genes encoding TNF, IL-1, FCRIIIb NA1/NA2, HLA-A9, and others have all been

associated with aggressive periodontitis [35] [36] [37] [38]. Specific polymorphisms

in the IL-1β gene and resulting response levels have been associated with chronic

periodontitis[38]. These findings were extended such that utilizing this reported ge-

netic predisposition, a periodontal susceptibility test (PST) was developed to identify

individuals at increased risk for chronic periodontitis [39]. The marketing of this PST

test and ongoing research to identify additional genetic contribution to disease focused
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on providing clinicians the ability to more accurately identify individuals susceptible

to periodontal disease and initiate improved preventative measures.

1.5.3 Modifiable Risk Factors

A modifiable risk factor is a risk factor, such as lifestyle, that an individual can take

measures to change and subsequently impacts their risk profile. Smoking tobacco is

the strongest modifiable risk factor identified for periodontitis [40] [41]. The observed

effects are dose-dependent; as the number of years of smoking increases, so does

the severity of periodontitis [42]. Tobacco smoke toxins increase the levels of pro-

inflammatory cytokines, as well as dysregulates neutrophil functions in response to

microbial challenge [43]. Not only has smoking been implicated as a major risk

factor for periodontitis, it has also been shown to impede healing after periodontal

therapy [44]. Another example of a modifiable risk factor for periodontitis is alcohol

consumption with a dose-dependent relationship with periodontitis and alveolar bone

loss [45].

The understanding of how external or environmental factors effect molecular or

genetic expression within patients may provide further insights into the understanding

of periodontal disease [46]. Other inflammatory diseases have been shown to be

epigenetic in nature [46].

1.5.4 Environmental factors

Environmental factors can be considered modifiable as the exposure to toxins in

an environment or nutrients in a diet could be altered. Various chemical toxins,

allergens, bacteria, and nutrients have been associated with periodontitis in the past

[47] [48], albeit research examining chemical environmental toxins and their role in

the development in periodontal disease is limited. However, as examples, cadmium

and lead have both been associated with an increased likelihood for periodontitis in

men and women [48] [49]. In terms of dietary nutrients, increased intake of foods

high in Vitamins A, E, and C have generally been reported to decreased the severity

of periodontitis [50]. Dietary minerals (calcium, iron, etc) can also modulate the
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effects of periodontal disease extent or have been related to improved response to

treatment [51]. More details on these environmental associations will be explored in

Chapter 2 and Chapter 4.

1.6 Systematic Disease and Periodontal Disease

In 2016, a review for clinicians was released by the Indiana Dental Association to

present the most recent literature discussing systematic conditions that identify pe-

riodontal disease as a risk factor. These conditions include: cardiovascular disease,

cerebrovascular diseases, peripheral arterial disease, respiratory diseases, low birth

weight, Type 2 diabetes mellitus, insulin resistance, rheumatoid arthritis, obesity,

osteoporosis, and complications of pregnancy [52]. This report, as well as many oth-

ers, have observed most frequently a link with cardiovascular disease and diabetes

mellitus [53] [54]. The following subsection will focus on these two systemic diseases

and how they relate to periodontal disease.

1.6.1 Cardiovascular Disease

The main form of cardiovascular disease, atherosclerosis, has been strongly correlated

with periodontal disease. Atherosclerosis occurs when fatty deposits, and the lipid

and inflamed plaques clog the arteries. These plaques are composed of cholesterol,

fatty substances, cellular waste products, calcium and fibrin (a clotting material in

the blood) [55]. The walls of the artery harden, become narrower, and subsequently

restrict blood flow as the plaque accumulates on the walls of the arteries and veins.

Evidence has linked periodontal bacterial infections to athlerosclerosis [56] [57] [58].

Patients with periodontal disease have a higher incidence of cardiovascular disease

and atherosclerotic and cardiovascular events [59] [60] [61] [62]. It is theorized that

chronic periodontal inflammation, exacerbates a systemic inflammatory challenge,

leading to an increase in cytokines, which may directly contribute to athlerosclerosis

[56] [57] [58]. Periodontitis also leads to increased levels of C-reactive protein, IL-6,

and neutrophil inflammatory products[63] that may contribute to the biology of ath-
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lerosclerosis [64]. Furthermore, periodontal bacteria (pathogens) have been reported

to be localized in atherosclerotic lesions in diseased individuals [64]. While the link

between atherosclerosis and periodontal disease is compelling, evidence demonstrat-

ing a causal link still needs to be delineated. The association is strong and evident,

but this simply could be exemplifying shared risk factors that predispose an individual

to both periodontal disease and athlerosclerosis (age, diet, smoking, ect) [65].

1.6.2 Diabetes Mellititus

The relationship between diabetes mellitus and periodontitis is considered bi-directional [54],

with diabetes as a major risk factor for periodontitis, particuliarly Type 2 diabetes

(T2DM). [66] [67] [68]. Individuals are estimated to have three times the risk for

periodontitis if they have diabetes compared to not having diabetes [69]. Tsai et al.

found that NHANES III subjects with poorly controlled diabetes had a significantly

higher prevalence of severe periodontitis than those without diabetes [70]. Studies of

Type I diabetes (eg. T1DM, juvenile diabetes) has found that 10% of children with

T1DM displayed periodontal symptoms (attachment loss and bone loss) despite hav-

ing similar levels of bacterial accumulation and oral plaque indices as controls [71].

While the risk of developing periodontitis is increased for individuals with diabetes,

research has also begun to show that periodontitis may contribute as a risk factor

for diabetes onset and regulation. One study demonstrated that individuals with se-

vere periodontitis were at increased risk for poor glycemic control upon followup [72].

To further investigate the effect that periodontitis has on the incidence of diabetes,

investigators evaluated almost 3000 diabetes-free participants. Individuals with peri-

odontitis at baseline demonstrated a greater increase in HbA1C values (a measure of

diabetes) compared to those without a form of periodontitis at the 5-year follow-up.

Thus, periodontitis predicted increases in HbA1C levels in diabetes-free individuals

[73].
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1.7 Systemic Diseases and Environment-Wide Association Studies (EWAS)

Previously, Genome-Wide Association Studies (GWAS) identified genetic markers

associated with a myriad of disease types. However, the multi-faceted nature of

systemic diseases, necessitates a broader viewpoint. Environment-Wide Association

Studies (EWAS), when possible, can be used to highlight environmental factors as-

sociated with a disease. Patel et. al [74]utilized the NHANES dataset to conduct an

EWAS to further understand the multi-faceted relationship between diabetes melliti-

tus and various environmental variables captured by the survey. Because T2DM and

periodontal disease are both systemic diseases, Dr.Li [75] took a similar approach

as Patel for periodontal disease. This used the NHANES dataset but applied the

EWAS approach to periodontal disease, expanding Patels methodological work by

incorporating CART and Random Forests analyses in the investigation of the multi-

faceted environmental factor-disease relationships. Chapter 2 expands the results of

this dissertation providing novel insights for periodontal epidemiology.

1.8 History of Periodontal Surveillance within NHES and NHANES

In 1956, Congress enacted the National Health Survey Act to monitor the prevalence

of all types of diseases across the U.S. and would later be the foundation of funding for

the National Health Examination Survey (NHES). Later, a nutritional component was

added, making the National Health and Nutrition Examination Survey (NHANES).
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Figure 1.1: History Of Periodontal Surveillance
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1.8.1 National Health Examination Survey (NHES)

1959-1970

NHES phases I through III included an oral health component using Russells peri-

odontal index (PI) for measuring periodontal status of the population [76]. Before

NHES IV was conducted, a nutritional component was added and NHES was renamed

as the NHANES.

1.8.2 National Health and Nutrition Examination Survey (NHANES)

1971-1987

NHANES I took places from 1971-1974 and continued to utilize the PI method for

periodontal status. NHANES II excluded the oral health component, as well as PI.

Over time, inadequacies of the PI method were recognized as scores were weighted

and based on a progression from gingivitis to periodontitis. Because the prevalence

was difficult to ascertain within Hispanic populations in the United States from the

national estimations, a separate survey for conducted in 1982 to 1984 targeting His-

panics [3]. After this survey, the PI method was overwhelmingly recognized as out-

dated and utilizing measures of clinical attachment became prominent and continued

until 2005 [76]. In 1985-1986 the National Institute of Dental Research (now Na-

tional Institute of Dental and Craniofacial Research; NIDCR) conducted a National

Survey of Oral Health in the United States Employed Adults and Seniors [77]. For

the first time, pocket probing depth was measured and loss of attachment was cal-

culated. With this much information, varying case definitions could be developed

from the same data. This was also the first time a partial-mouth periodontal exam-

ination (PMPE) was utilized reflecting cost and time constraints for conducting the

epidemiologic study. During PMPE, only a limited number of teeth are examined for

periodontal lesions, as well as a limited number of sites. While the information being

collected from this survey was reflective of the etiology of the disease (not being a

continuum from gingivitis to periodontitis), the PMPE method complicated the re-
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porting of the disease as it could underestimate periodontal prevalence in populations

[78].

1988-2004

NHANES III was a collaborative effort between the NIDCR and the National Center

for Health Services (NCHS), and therefore, utilized the same methodologies from the

previous NIDCR study. NHANES III was unique from previous cycles, as it would

have 2 national study periods. Phase I took place from 1988 to 1991 and Phase II took

place from 1988 to 1994 [79]. NHANES III was the first national oral health survey to

measure probing depth, gingival recession and attachment loss in the United States

[80] [81]. Previously, NHANES cycles had been completed periodically. However,

in 1999, NHANES became an annual survey of nationally representative population

samples [76]. The NHANES III periodontal protocol was continued in 1999 and 2000

with 2 periodontal sites being measured. Beginning in 2001, a third site was added

[82]. The 1999 to 2004 NHANES oral health component was a collaborative effort

between NIDCR, the CDCs Division of Oral Health, and NCHS.

2005-Present(2017)

In 2005, funding for the oral health component of NHANES decreased, directly af-

fecting the periodontal component. From 2009-2012 the NHANES began applying a

Full Mouth Periodontal Examination (FMPE) for survey participants [15].

1.9 Prevention

The prevention of periodontal disease can be seen in 3 stages: primary, secondary, and

tertiary prevention. Primary prevention is aimed at preventing the inception of the

disease. It includes strategies such as improving groups’ and individuals’ oral hygeine

through education on protective strategies. The goal of secondary prevention is to

impede the progression of periodontal disease severity at the earliest stage possible.
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Tertiary prevention has the goal to improve the functional limitations as a result of the

disease such as the restoration of missing teeth through implants and prosthetics. [83].

1.9.1 Treatment Methods

In 2017, a review was released in Periodontology 2000 that examined the current

status of periodontology as well as the challenges that remain for the future. This

review also highlighted current treatment methodologies and their efficacy. [84]

Since the prevention (primary prevention) and inhibition of the progression of pe-

riodontal disease (secondary prevention) both involve limiting biofilm accumulation,

it stands to reason that patient self-care is an area of research that demands atten-

tion. Self-care includes oral hygeine instruction, tooth-brushing, the use of dentrifices

(toothpowders, toothpaste, and gels) in combination with a tooth-brush, interdental

devices, dental floss, and oral irrigators. Oral hygiene products are usually tested less

than 12 months time in research, and have yet to prove their efficacy in preventing

toothlessness via periodontal disease in a lifetime. Moreover, these products have

been shown to be effective in mild forms of periodontal disease such as gingivitis and

mild periodontitis which are not representative of all the adult forms of periodontal

disease.

This review differentiated the treatment efficacies based on severity. Mild and

moderate periodontitis should be treated using non-surgical therapies and contain

an educational component on self-care. However, severe periodontitis does not re-

spond to these tradition methodologies. The current protocol for severe periodontitis

is some form of surgical treatment, but the research is lacking for it to be ”best

practices” for the standard of care. Antibiotics have demonstrated similar results as

surgical intervention. Periodontal surgery lacks the controlled clinical trials to back

its widespread application on patients.

In terms of the etiology, a dysregulated immune system is a key component to

the development of periodontal disease [85]. It has been suggested that more severe

forms of periodontal disease could utilize immunotherapy as an adjunct or alternative

to traditional therapy. If clinicians were to utilize immunosuppressors across the
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majority of periodontal cases (most of which would include chronic periodontitis), this

might compromise the protective nature of the immune system and lead to further

complications.

1.9.2 Public Health Approaches

A variety of approaches have been suggested to improve prevention of periodontal

disease among populations. Public health practicioners suggest affecting health be-

haviors (smoking, oral health practices), as well as targeting high risk sub-populations

for educational initiatives. Currently, dental patients are encouraged and taught

about proper oral health behaviors and given ”chair-side” advice on smoking behav-

iors [86]. The effects of non-consistent educational approaches has been shown to be

limited and insufficient to affect the prevalence in a population. The high cost for

periodontal treatment and necessary follow-ups precludes proper treatment for the

economically disadvantaged groups. In addition, periodontal treatment is not always

covered by private dental plans or federal and state funded programs such as medicaid

or medicare. According to Medicaid and CHIP Payment and Access Commission, as

of February 2015 Medicaid programs are required to cover dental services for chil-

dren and youth under age 21. As a part of Medicaid, adult periodontal services were

covered in 19 states as of February 2015 [87].

Interprofessional approaches is now gaining greater attention for its potential to

effect multiple diseases. This is best summarized by the following article segment

from the project, ”Advancing Dental Education in the 21st Century.”

”Reducing the risk of disease can be accomplished by an emphasis on smoking

cessation and dietary intake and the prevention of obesity. These activities will

promote interprofessional health care education and practice. While change is always

challenging, this new practice paradigm could improve both oral health and health

outcomes of patients seen in the dental office.” [88].
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Chapter 2 The Exposome and Periodontal Disease: Epidemiologic

Evaluation of NHANES within Smoking Classification

2.1 Introduction

This chapter is a direct insertion of a paper that is the result of joint work with myself,

Dr. Jeffrey Ebersole, Dr. Pinar Emecen Huja, Dr. Grace Li, and Dr. Heather Bush.

Specifically, I assisted in the gathering of the datasets from NHANES, programming

SAS and R code, running the CART and Random Forest Models, and assisting in

writing of the paper and providing figures and tables. This paper will be submitted

in the Fall of 2017.
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Summary 

Periodontitis is an inflammation of the gingival tissues caused by the accumulation of bacterial 

biofilms that can be can be affected by environmental factors.  Objective: This report describes 

an Environment Wide Association Study (EWAS) to evaluate the relationship of the exposome to 

the expression of periodontitis using the National Health and Nutrition Examination Study

(NHANES) from 1999-2004.  Material and Methods:  Environmental variables (156) were 

assessed in patients categorized for periodontitis (n=8884).  Multiple statistical approaches were 

used to explore this dataset and identify environmental variable patterns that significantly 

enhanced or lowered the prevalence of periodontitis.  Results:  An array of environmental 

variables were significantly different in periodontitis in smokers, former smokers, or non-

smokers, with a subset of specific environmental variables identified in each population subset.  

Discriminating environmental factors included blood levels of lead, phthalates, selected 

nutrients, and PCBs.  Importantly, these factors were found to be coupled with more classical risk 

factors (ie. age, gender, race/ethnicity) to create a model that predicted an increased disease 

likelihood of 2-4 fold across the population.  Conclusions:  Targeted environmental factors are 

significantly associated with the prevalence of periodontitis.  Existing evidence suggests that

these may contribute to altered gene expression and biologic processes that enhance 

inflammatory tissue destruction. 

Clinical Relevance 

Scientific rationale for the study: This report describes the use of an Environmental Wide

Association Study (EWAS) of NHANES data to identify the contribution of environmental risk 

factors to periodontal disease prevalence. 

18



 

Principal findings: Our findings indicate a subset of environmental factors combined with 

classical risk factors for periodontal disease, age, gender and race, enhanced the prevalence of 

periodontal disease 2-4 fold. 

Practical implications: Environmental risk factors, alone or in combination with genetic and 

epigenetic factors, may be used for early risk profiling of clinical expression of periodontal 

disease. 
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INTRODUCTION 

Despite increasing awareness and improvement in oral health, periodontitis, together 

with dental caries, remain major health concerns across the lifespan in the United States 

(Benjamin, 2010).  Periodontal disease occurs as a result of an interaction between bacterial 

biofilms and immunoinflammatory responses. It is anticipated that 80% of the risk for periodontal 

tissue damage is a result of dysregulated host responses against the chronic bacterial insult 

(Grossi et al., 1994, Roberts and Darveau, 2015, Pihlstrom et al., 2005).  This interaction can 

progress to destroy the periodontal tissues and bone, and eventually is the major basis of tooth 

loss in adults with edentulous individuals having difficulty eating, swallowing, and speaking 

properly (Petersen and Ogawa, 2005, Bartold et al., 2010, Darveau, 2010). These impaired oral 

functions can greatly impact individual quality of life, negatively affecting societal and economic 

opportunities, and continues to expand as a public health concern in aging populations (Jansson 

et al., 2014). 

Similar to many chronic diseases, it is well documented that periodontal disease is a

complex disease with multiple potential contributing factors. These include genetic and 

epigenetic influences, patient behaviors, medication use, and/or environmental factors, which

all together promote periodontal disease initiation and progression (Meyle and Chapple, 2015). 

Low socioeconomic status, poor oral hygiene, psychological stress, depression, increased age, 

Hispanic ethnicity, diet/obesity, and systemic health co-morbidities are well known risk factors 

that contribute to the prevalence of periodontal diseases (Albandar, 2002, Albandar, 2005, 

Stabholz et al., 2010). However, smoking has been identified as one of the most significant and 

modifiable risk factor in the pathogenesis of periodontitis and tooth loss (Bergstrom and Preber, 
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1994, Dietrich et al., 2015).  Data also support that the number of cigarettes smoked per day is 

directly related to the prevalence and the severity of the disease (Eke et al., 2016, Tomar and 

Asma, 2000, Martinez-Canut P, 2005).  Emphasis has been placed on the need for more effective 

management of these modifiable risk factors to impact this global disease (Van Dyke and 

Sheilesh, 2005), albeit, non-modifiable factors including age, genetics and the existence of 

various systemic diseases are clearly more challenging to address across the population (Van 

Dyke and Sheilesh, 2005, Loos et al., 2015, Kaye et al., 2016, Reynolds, 2014). 

In this regard, an array of studies of this complex disease have provided evidence 

attributing disease expression and severity to genetic predisposition for the characteristics of the 

host response to the oral microbial challenge. These have included genes controlling the 

production of inflammatory mediators and tissue and bone regulatory molecules (Chantarangsu 

et al., 2016, Lavu et al., 2015, Wu et al., 2015, Ding et al., 2014, Scapoli et al., 2015). A number of 

reports describing genetic modifications within affected families (Michalowicz et al., 2000) and 

more recently using Genome Wide Association Studies (Feng et al., 2014, Rhodin et al., 2014) 

have identified genetic variations and polymorphisms that associate with the expression of 

periodontal disease.  More recently, studies reported epigenetic alterations in the genomes of 

periodontitis patients that may provide some additional mechanistic explanations to variation in 

patient clinical responses beyond only the gene sequences (ie. single nucleotide polymorphisms) 

(Barros and Offenbacher, 2014, Larsson et al., 2012, Loo et al., 2010).  Importantly, studies from 

other disease models show that various environmental stimuli can contribute to these epigenetic 

changes and underpin the concept of environment-gene interactions related to disease 

expression (Vaiserman, 2014).  While rather limited data is available regarding environmental 
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factors in periodontitis (Saraiva et al., 2007), the National Health and Nutrition Examination 

Survey (NHANES) provides a robust data set regarding measures of 156 environmental factors in 

blood and urine.  This report describes the use of various epidemiologic and statistical tools to 

conduct an Environment-Wide Association Study [EWAS; (Patel and Manrai, 2015)] with

periodontitis in the U.S. adult population.  

MATERIALS and METHODS  

Population data: 

In this study, periodontal examination data from three NHANES cohorts, 1999-2000, 

2001-2002, 2003-2004, were extracted and combined to comprise the study population. Among

the 11,837 participants who were equal to and older than 18 years of age and had at least 16 

teeth, 3,745 were collected in the first cohort (1999-2000), 4,258 in the second cohort (2001-

2002), and 3,834 in the third cohort (2003-2004). Those with missing smoking status and

periodontal parameters were excluded leaving a final analytical sample of 8,884 participants.  

Demographics: 

The demographic variables considered in this study included age, gender, race, socio-

economic status, smoking status, and number of teeth. Racial-ethnic groups were summarized 

into five categories: Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, 

and Other Race. Socio-economic status, estimated using the poverty income ratio, was computed 

as the ratio of family/individual income to the appropriate federal poverty threshold. Smoking 

status, current smoker, former smoker, non-smoker, was derived from the two self-reported 

questions. Participants reported having historically smoked more than 100 cigarettes, but
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currently not smoking were defined as former smokers. Non-smokers were defined as reporting 

never smoking. 

Clinical parameters: 

Periodontitis was defined as a site with clinical attachment loss (CAL) ≥3 mm and a

periodontal pocket ≥4 mm. NHANES (1999-2004) uses the partial-mouth periodontal 

examination (PMPE) protocol to sample teeth and sites. The PMPE protocols randomly selects 

two quadrants of the mouth and specified 2 to 3 sites per tooth for measurement of pocket 

depth, attachment loss, and bleed on probing. In 1999-2000, two sites per tooth (mid-facial and 

mesio-facial) were measured, while three sites per tooth (mid-facial, mesio-facial and distal) 

were measured in 2001-2002 and 2003-2004. 

Environmental variables: 

The environmental factors were categorized into 15 classes based on NHANES 

categorization. Environmental variables measured in at least one of the three data cohorts (i.e.

1999-2004) were included in the study.  A total of 156 environmental factors were measured in 

the NHANES data using blood and urine samples. These included chemical toxicants, pollutants, 

allergens, bacterial/viral organisms and nutrients. Environmental factors with laboratory 

measurements that had less than 90% of the observations below a detection limit threshold 

defined by NHANES were omitted from analysis. Since most of the variables were measured by 

mass spectrometry and absorption spectroscopy the laboratory measurements were detected in 

small ranges and were skewed. These variables were log-transformed (natural) and standardized

and referred to as “processed”.  

Statistical approaches: 
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Survey-weighted logistic regressions were performed for each of the processed 

environmental factors, adjusting for age, gender, ethnicity, socio-economic status, smoking 

status and number of teeth. The R package “survey” was used in R (Version 3.1.2) for the survey-

weighted logistic regression. Weights were constructed in SAS (Version 9.4) using a 6 year

weighting design from the NHANES variable WTMEC2YR73 

(http://www.cdc.gov/nchs/tutorials/Nhanes/SurveyDesign/Weighting/Task2.htm).  Adjusted odds

ratios were calculated with 95% confidence intervals were provided to demonstrate the 

relationship between the individual factors and periodontitis. These regressions were repeated 

by smoking status to examine potential relationships within smoking categories. We used a 

significance level of p=0.01 to select significant associations  

This Environmental Wide Association Study (EWAS) analysis employed random forests 

(RF) and classification and regression trees (CART) to investigate associations and potential 

interactions between environmental factors, demographic and socioeconomic characteristics, 

and periodontitis disease status (Breiman, 2001). Specifically, RF was used to identify important 

factors (main effects and interactions) and CART was used to visually investigate these 

relationships. These methods were selected because the data involved many potentially 

correlated environmental factors and had the ability to allow nonlinearities and interactions 

without modeling them explicitly (Strobl et al., 2009). These analyses were performed using the

“party”(Version 1.0-25) package in R (Version 3.1.2).  

RESULTS 

The final statistical analysis was completed on 8,884 individual who were >18 years old 

and had at least 16 teeth. Males comprised 48.4% of the sample. The majority of subjects were 
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non-smokers (55.9%), and those with smoking experience were evenly distributed between 

former smokers (22.5%) and current smokers (21.6%).  The ethnic distribution of the group was 

non-Hispanic white (48.5%), non-Hispanic black (18%), Mexican American (25.1%), other Hispanic 

(4.7%), and other race including multi-racial (3.7%). Approximately 72% of the sample 

population was older than 30 years of age. (Table 2.1 & 2.2). The weighted prevalence of 

periodontitis was 8.1% across the entire >18 years of age population. When the periodontitis 

group was compared to the non-periodontitis subset, individuals with periodontal disease 

were more likely to be male, older than 30 years of age, Mexican American, non-Hispanic black 

or Hispanic compared to Non-Hispanic white and current smoker (p<0.001) (Table 2.1 & 2.3). 

Using survey-weighted logistic regression, there were 42 environmental factors (cotinine, 

1 dioxin, 4 heavy metals, 8 hydrocarbons, 8 nutrients, 17 PCBs and 3 volatile compounds) that 

resulted in a statistically significant adjusted odds ratio for disease versus health in this NHANES 

cohort (Table 2.4). When data were stratified by the smoking status 19 environmental factors 

(2 dioxins 2 heavy metals, 2 nutrients, 1 phthalate, and 12 PCBs) in current smokers, 13 

factors (acrylamide, 1 heavy metal, 1 nutrient, 1 phthalate and 9 PCBs) in former smokers, and 

12 factors (1 dioxin, 2 heavy metals, 2 nutrients, 1 pesticide, and 6 PCBs) in non-smokers were 

identified (Table 2.5). 

In regression analyses considering each environmental factor separately, blood lead 

levels were consistently identified as a significant factor in both the overall and stratified analyses 

([a]OR =1.54 for current smokers; [a]OR=1.39 for non-smokers; [a]OR=1.57 for former 

smokers) (Table 2.5).  Among the 17 polychlorinated biphenyls (PCBs) found to be 

associated with periodontitis in the overall sample, 6 (i.e. PCB105, PCB157, PCB172, 

PCB177, PCB178, and 

25



PCB206) were also found significantly elevated in all patient subsets, with adjusted odds ratios 

ranging from 1.41 to 5.29. Also, across these environmental variables, the adjusted OR estimates 

were significantly  lowerin non-smokers compared to current and former smokers.  The smoking 

population also demonstrated additional factors, including 6 PCBs (PCB66, PCB146, PCB167, 

PCD170, PCB183, PCB187) with adjusted OR estimates from 1.63-2.23, dioxins (PNCDD, TCDD) 

with adjusted OR estimates of 1.66 and 1.81, and blood nutrients retinyl stearate and retinyl 

palmitate with adjusted OR estimates from 1.32-1.35.   In contrast, blood nutrients such as

Vitamin D and cis-ß-carotene were found to be significantly protective for periodontitis.Higher

levels of Vitamin D were estimated to decreasing the odds of periodontitis by 39% and 24% in

former and non-smoker groups, respectively ([a]OR=0.61 for former smokers; [a]OR=0.76 for 

non-smokers), and cis-ß-carotene estimated at decreasing the odds for periodontitis by 22% in

non-smokers ([a]OR=0.78) (Table 2.5).  Utilization of a Random Forests analysis was also used

to identify environmental variables that were related to periodontitis.  

We subsequently employed a Classification and Regression Tree (CART) analysis to 

identify and visualize relationships of critical demographic and environmental factors.  Based 

upon the variation in factors that were clearly related to smoking, the CART was

performed separately for each of the smoking, former smoking, and non-smoking subsets.

Figure 2.1 provides a depiction of the CART for each of these cohorts.  Within the smoking

group, Figure 2.1A presents a CART analysis of the variables that demonstrated elevated

blood lead levels as an initial discriminator, with age >31 yrs. stratifying patients with

an approximate 4-fold risk of periodontitis.   Figure 2.1B visualizes the factors classifying

the disease risk in former smokers.  In this case race/ethnicity remained a critical factor. Those

who reported race/ethnicity other than
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non-Hispanic white demonstrated  increased disease prevalence; elevated blood lead levels and 

age >53 increased periodontitis prevalence to 37%. Within the subset of non-Hispanic white 

subjects and other race including multi-racial, a prevalence rate of 12% was observed in those 

with elevated blood lead levels.  

For non-smokers, which comprised 56% of the total population, multiple variables were 

identified to have relationships with periodontal disease status. Race-ethnicity and age were 

important distinguishing factors. Prevalence rates were low across those reporting  non-Hispanic 

white race, but even in this group subjects >57 years with higher blood lead levels demonstrated 

an increased prevalence. The prevalence was further modified by elevated urine antimony that 

increased the observed prevalence of periodontitis to 33% from as low as 8% in the low

urine antimony and high cis-ß-carotene group. (Figure 2.1C). For those with low levels of cis-ß-

carotene, higher blood lead levels showed a higher prevalence of periodontitis of 18%

compared to 11% for the lower blood lead group 

DISCUSSION 

It is clear that periodontitis represents a dysregulation of the host response to a dysbiotic 

microbiome that occurs in a large portion of the global population.  Substantial work is being

conducted via the Human Microbiome Project (Cross et al., 2016) to discern not only the 

characteristics of the alterations in the disease microbiome, but also interrogating complex 

metagenomic datasets to assess functional changes in the microbial ecology associated with 

health and disease (Madupu et al., 2013).  Additionally, a complementary research direction is 

attempting to document the role of individual genetic variation across the population that 

contributes to disease expression and severity (Loos et al., 2015). These studies have employed 
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SNP analysis of specific targeted genes (Scapoli et al., 2015, Wu et al., 2015, Loos et al., 2015), 

Genome-Wide Association Studies (GWAS) (Divaris et al., 2013, Rhodin et al., 2014) and 

epigenetic analyses (Larsson et al., 2015, Barros and Offenbacher, 2014, Zhang et al., 2010) to 

help elucidate the complex of factors that interact to create a disease susceptible host.  This 

report describes an additional consideration in disease expression focused on the larger 

environmental variation to which individual members and subgroups of the U.S. population are 

exposed (ie. exposome) as a potential direct contributor to the microbial dysbiosis 

(Hajishengallis, 2014) and/or a modifier of host responses through altered molecular pathways 

or modulation of genetic control of the disease (Larsson et al., 2012, Schulz et al., 2016).  The 

findings identified more classical factors (ie. age, gender, race/ethnicity) in the disease model, 

but for the first time integrated a subset of environmental factors, both toxins and nutrients, that 

appear to substantially modify the relative risk for periodontitis in the population.  The 

identification of the association of environmental toxins including lead, hydrocarbons, 

polychlorinated biphenyls, and nutrients such as retinyl stearate in models described a significant 

increase in relative risk of disease.  Thus, the findings support the potential for a role of these 

factors in modifying the challenge (ie. bacterial biofilms) and/or host responses with a loss of 

homeostasis and tissue destruction. 

The results demonstrated altered levels of various heavy metals, including lead, cadmium 

and antimony in periodontitis patients.  A range of literature has shown the toxic properties of 

systemic elevations in heavy metals from environmental sources, including lead (Dahl et al., 2014, 

Lucchini and Hashim, 2015). In particular, this toxin has been linked to substantial neurotoxicity 

and negative developmental processes in children (Zhang et al., 2013, Senut et al., 2012).  This 
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study identified, using CART analysis, a threshold of >2.0 µg/dL that discriminated periodontitis 

from health in the adult population. While this level does not indicate the actual blood lead level 

across the periodontitis group, since CART attempts to fit the discrimination profile in the context 

of multiple variables, it was clear that in all subsets of smokers, former smokers and non-smokers 

that lead levels are significantly elevated in periodontitis patients.  An earlier evaluation of data 

from NHANES III (1988-94) demonstrated a significantly increased OR for periodontitis in both 

men and women with increased blood lead levels (Saraiva et al., 2007).  Reports examining 

various iterations of the Korean NHANES (KHANES) study demonstrated elevated lead, cadmium, 

or mercury in subjects with periodontitis, particularly related to smoking and in some instances 

gender associated similar to our data from NHANES (Won et al., 2013, Kim and Lee, 2013, Rhee 

et al., 2013, Moon, 2013). An additional study reported that chronic occupational exposure of 

workers to lead resulted in significant changes in oral health and correlated with increasing blood 

lead levels (El-Said KF, 2008). Terrizzi et al., have reported that elevated lead levels under hypoxia 

induces alveolar bone resorption and periodontitis (Terrizzi et al., 2013).  More recently they 

demonstrated that iNOS and PGE2 levels are altered by lead and hypoxia as inflammatory 

responses that would contribute to damage of the periodontium (Terrizzi et al., 2014).  Additional 

studies have also indicated that elevated lead levels within the environment of various cell types 

will alter their functions, albeit, the majority of these in vitro studies have focused on neuronal 

cell targets (Song et al., 2016, Hu et al., 2011).  Moreover, the lead levels investigated in these 

previous studies generally targeted levels that have been shown in blood to have substantial 

neurotoxicity (>10 µg/dL), although levels of >5 µg/dL are considered deleterious (Rahman et al., 

2011).  Further studies will be required to identify the relationship of blood lead levels to severity 
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of the disease, age of onset, and response to therapy, as well as biologic studies determining the 

impact of these altered levels of lead on host responses, and even the microbial ecology related 

to the disease process. 

Polychlorinated biphenyls (PCBs) were once widely deployed as dielectric and coolant 

fluids in electrical apparatus, carbonless copy paper, and in heat transfer fluids since they do not 

easily degrade.  PCBs' environmental toxicity and classification as a persistent organic pollutant 

resulting in production and use of them being banned by the United States Congress in 1979.

Coplanar PCBs, eg. dioxin-like PCBs, since their structure is similar to dioxins, allows them to act 

as agonists of the aryl hydrocarbon receptor (AhR). They are considered as contributors to overall 

dioxin toxicity within the environment. The toxicity of PCBs varies considerably among various 

chemical structural iterations with the coplanar PCBs representing 12/209 possible PCB 

molecules (ie. PCB 77, 81, 114, 118, 123, 126, 156, 157, 167, 169, 189) generally considered 

among the most toxic congeners with the majority of differences occurring in smokers and 

former smokers.  Interestingly, the overall group of toxins included PCB105, PCB146, PCB172, 

PCB177, PCB178, PCB183, and PCB206, which are all members of the non-coplanar group of PCBs 

appeared to show the most frequent association with periodontitis.  Non-coplanar PCBs cause 

neurotoxic and immunotoxic effects, but at levels much higher than normally associated with the

dioxins congeners and do not activate the AhR (Levin et al., 2005, Hamers et al., 2011). The non-

coplanar PCBs have been suggested to function by interfering with intracellular signal

transduction and critical calcium transport mechanisms (Mundy et al., 1999, Tilson, 1998). The

PCBs readily penetrate skin and other epithelial barriers and as fat-soluble compounds they can 

be at 100-200 times higher levels in adipose tissue than in serum (Grimm et al., 2015). Elevated 
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levels of non-coplanar PCBs, including PCB153, PCB170, PCB180 and PCB187 were detected in 

the blood of Canadian First Nations communities and were associated with elevated levels of an 

array of immune activation markers including IFNγ, IL-1ß, IL-8, IL-17A and TNFα (Imbeault et al., 

2012).  Much of the molecular aspects of PCBs and host responses have focused on the coplanar, 

dioxin like congeners. 

Coplanar-type congener PCBs demonstrate that these AhR ligands induce oxidative stress 

and increased translocation of NFκB in endothelial cells, as well as significantly altering 

inflammatory/immune responses in adipocytes potentially via upregulation of expression of AhR 

on the cells (Kim et al., 2012).  This altered pathway activation increased expression of IL-6 and

VCAM-1 as markers of inflammatory reactions (Hennig et al., 2002).  PCB126 exposure increased 

endothelial cell inflammatory responses including CRP, IL-6 and IL-1ß (Liu et al., 2016), as well as 

significantly altering cellular adhesion molecules, ICAM-1 and VCAM-1, that would impact normal 

vascular functions (Kumar et al., 2014). PCBs have been proposed to alter host responses via 

histone modifications and epigenetic changes.  Coplanar PCB77 and PCB126 also altered an array 

of vascular cell inflammatory mediators via altered functions of NFκB (Liu et al., 2015).  

Additionally, coplanar PCBs upregulated MCP-1 production by endothelial cells, ie.

proinflammatory, that was modulated by treatment with the omega-3 fatty acids, EPA or DHA 

(Majkova et al., 2011).  In vivo, various types of PCBs (PCB77, 104 and 153) were administered 

orally to mice and significantly increased the expression of proinflammatory biomolecules (Sipka

et al., 2008).  Finally, a single recent report demonstrated that PCB126 appeared to exacerbate 

periodontal disease in a susceptible species of mink (Ellick et al., 2013).  The current study 

identified an array of PCBs that were increased across the periodontitis population.  While some
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representative true dioxin molecules significantly increased the OR for periodontitis these only 

were noted in smokers.  No other reports are available identifying PCB levels and periodontitis in 

humans or animal models, nor focusing on biologic alterations in cells related to periodontal 

health and disease, thus, this family of exposome factors could present an important area for

further investigation of disease variation and personalized documentation of disease features 

within the population.  

An interesting finding was the dichotomy between the effects of selected specific 

nutrients on the expression of periodontitis.  Both carotenoids and Vitamin D levels showed 

significant Odds Ratios for protecting against periodontitis.  Carotenoids are organic pigments 

found in plants and some photosynthetic microorganisms and carotenoids from human diets are 

stored in the fatty tissues. There are over 600 known carotenoids classified as xanthophylls (β-

cryptoxanthin, lutei, and zeaxanthin; non-vitamin A carotenoids) and carotenes (α-carotene, β-

carotene, and lycopene).  Generally, the health benefits of carotenoids are thought to be due to 

their role as antioxidants with dietary carotenoids proposed to interact with endogenous 

antioxidant enzymes to positively affect immunity (Babin et al., 2015). Thus, various reports have 

shown that elevations in acute phase proteins are accompanied by low vitamin A levels 

(Thurnham et al., 2015) and that carotenoids significantly reduced proinflammatory cytokines, 

CRP, and other markers of inflammation in multiple tissues (Gammone et al., 2015).  A study of

inflammation in 60-70 year old men demonstrated an inverse relationship between elevated

carotenoids and serum CRP levels.(Cao et al., 2016) Rodent models of carotenoid administration 

have shown lowered oxidative stress and nitric oxide synthase and associated inflammation in 

rats (Xu et al., 2015) and substantial anti-inflammatory effects on CRP, TNFα, IL-1ß and IL-6 in 
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mice following an LPS-induced inflammatory challenge (Firdous et al., 2015).  Molecularly, 

carotenoids can impact intracellular signaling pathways, such as NFκB thus influencing gene 

expression patterns and inflammatory mediator profiles (Kaulmann and Bohn, 2014).  These 

effects have been evaluated in various studies related to periodontal disease.  ß-cryptoxanthin 

suppressed LPS-induced osteoclast formation and lowered alveolar bone loos in a mouse model 

of disease (Matsumoto et al., 2013) and decreased P. gingivalis-induced IL-6 and IL-8 production 

by human periodontal ligament cells (Nishigaki et al., 2013).  Moreover, low blood levels of 

various carotenoids have been associated with an increased prevalence of periodontitis in 60-70 

year old men (Linden et al., 2009) and carotenoid levels were related to positive outcomes of 

scaling and root planning with the relationship limited to non-smokers (Dodington et al., 2015).  

Thus, our data from a large population cohort is consistent with these findings and the support 

that increased availability of carotenoids appears to provide some level of protection from 

periodontitis. 

Vitamin D has received an increasingly detailed examination regarding its potential 

influence in periodontitis.  Various reports have linked decreased serum or saliva vitamin D levels 

with tooth loss and periodontitis (Zhan 2014; Abreu 2016, Joseph 2015; Antonoglou 2015; Gumus 

2016) including in smokers (Lee 2015), albeit not all studies are supportive since this was not 

observed in postmenopausal women (Pavlesen 2016).  Additionally, a gene polymorphism for 

vitamin D binding protein increases the risk for periodontitis (Song 2016) that appears 

exacerbated in smokers (Chantarangsu 2016).  Mechanistically, vitamin D has been shown to 

alter virulence gene expression in P. gingivalis and downregulate NFκB activation and cytokine 

secretion by monotyes and macrophages (Grenier 2016; Xu 2016). Moreover, vitamin D has been 
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reported to improve innate immune functions and antimicrobial peptide production by epithelial 

cells at mucosal surfaces (McMahon 2011; Rigo 2012; Dhawan 2015).  Our epidemiologic analysis 

of this nutrient was based upon examination of NHANES data demonstrating a significant 

protective feature of this serum nutrient in periodontitis, specifically in non-smokers and former 

smokers.  This type of finding is consistent with additional associational data from NHANES 

related to risk of cardiometabolic disease (Al-Khalidi 2017), asthma (Han 2016), and coronary 

heart disease and all-cause mortality (Daraghmeh 2016).  Interestingly, a single recent report 

describes the interaction of an environmental exposure to phthalates may decrease blood levels 

of vitamin D (Johns 2016), an observation consistent with our results identifying “competing” 

impact of environmental toxins and nutrients on periodontitis as the clinical outcome.  

In contrast, elevated levels of retinyl stearate and retinyl palmitate each significantly 

enhanced the risk for periodontitis particularly in smokers.  The retinoids comprise a class of 

compounds related to Vitamin A.  These compounds have been used to regulate epithelial cell 

growth, as well as playing a role in vision, regulation of cell proliferation and differentiation, 

growth of bone tissue, immune functions, and even activation of tumor suppressor genes 

(Reichrath et al., 2007). Our data demonstrated a significantly increased OR for blood levels of 

retinyl stearate and retinyl palmitate in periodontitis.  In serum, 56% of retinyl esters is retinyl 

stearate, 33% retinyl palmitate, and 5% retinyl oleate.  Retinyl esters in humans are derived from

animal sources and are hydrolyzed in the intestinal lumen to form retinol and fatty acids, such as 

retinyl palmitate or stearate.  Enzymes in the intestinal lumen that hydrolyze dietary retinyl esters 

include cholesterol esterase from the pancreas and a retinyl ester hydrolase intrinsic to cells of 

the small intestine, which primarily acts on long-chain fatty acids, such as palmitate or stearate 
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(Reichrath et al., 2007). Generally, retinol is taken up by the absorptive cells of the small intestine 

in the all-trans-retinol form.  Biologically, altered vitamin A levels are associated with 

dysregulation of cytokine/chemokine production that impact immunity and inflammation (Spinas 

et al., 2015).  Retinoic acid has been shown to increase proinflammatory mediators in skin mast 

cells (Babina et al., 2015).  Retinyl palmitate was also identified to counteract oxidative stress 

reactions in an animal model of septic shock (Basu, 2001).  A single study has been reported 

regarding these compounds and periodontitis.  Wang et al. (Wang et al., 2014) demonstrated 

that all-trans retinoic acid administration modulated the Th17/Treg balance and can modulate 

the expression of periodontitis in a murine model of P. gingivalis infection and provided 

protection against periodontitis with increased Treg activation and decreased Th17 functions.  

However, our data specifically related to endogenous levels of a specific retinoid, retinyl stearate, 

suggested an increased risk for periodontitis.  This may relate to the more individualized 

functions of the various members of this family of dietary nutrients, and may highlight some 

unique features of the diet or intrinsic variation in the hydrolytic enzymes across the population 

that may link retinyl stearate and disease.  Clearly additional studies will need to be conducted 

examining in more detail the clinical relationship with this compound, as well as its potential role 

in affecting an array of inflammatory responses that would be related to periodontitis. 

Significantly elevated acrylamide levels were identified in the blood of former smokers, 

with an increased OR in the blood from smokers, as well.  The majority of acrylamide is used to 

manufacture various polymers including those used in water treatment, as well as a binding and 

thickening agent in grout, cement, cosmetics, food packaging, plastic products, and paper 

production.  Interestingly, acrylamide was discovered in prepared foods in 2002, specifically 
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related to starchy foods, eg. potato chips, French fries, that had been heated higher than 120°C. 

(Tareke et al., 2002) Importantly, acrylamide is considered a potential occupational carcinogen 

by U.S. government agencies and cigarette smoking is a major acrylamide source in the 

population (Vesper et al., 2007) increasing blood levels by 3-fold versus other environmental 

sources.  Recent findings demonstrate that chronic exposure to dietary acrylamide increases the 

rate of endothelial senescence that could impact the normal functional capabilities of the oral 

mucosal tissues (Sellier, 2015).  Negligible information is available concerning the levels of this 

toxic substance and inflammatory/immune responses at mucosal surfaces. 

Diethylphosphate is related to the family of alkyl phosphates termed organophosphates, 

which are widely distributed in nature related to high energy metabolites (eg. ATP), nucleic acids 

including both DNA and RNA, and are even the anti-HIV drug AZT that is active as an alkyl 

phosphate in vivo.  However, the dialkyl phosphates are also metabolites of organophosphorous 

pesticides and represent human exposure to these pesticides within the environment.  An early 

study using NHANES data examined an array of dialkyl phosphate metabolites from 

organophosphorous pesticides in the U.S. population (Barr 2004).  They identified higher levels 

of these environmental toxins in young children that was unaffected by sex or racial/ethnic 

group.  Minimal other information is available relating these compounds to diseases of mucosal 

surfaces. However, these pesticide metabolites have been shown to increase asthma-related 

cytokine levels in serum, particularly related to non-Th2 responses (Mwanga 2016).  Related 

toxins have also been demonstrated to induce NLRP3 inflammasome activation and 

pyroptosis/apoptosis of keratinocytes via increased oxidative stress (Jang 2015).  Thus, a 

combination of various environmental stressors altering fundamental balances in host cell 
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functions that may already be stressed by a dysbiotic microbiome presents a new consideration 

regarding environment-gene interactions and expression of periodontitis. 

This report describes an associational study of a large U.S. population sampled over an 

interval of 5 years via the NHANES project and demonstrated significant relationships of a subset 

of exposome challenges to the expression of periodontitis.  A clear limitation in the approach is 

that the findings do not deliver any cause and effect relationship, and are affected by the lack of 

detailed clinical evaluation of periodontitis that is generally accepted within the field.  However, 

the model developed identified an interaction of these exposome factors and more classical risk 

factors of age, gender, and race/ethnicity, thus providing some confidence that the findings are 

providing additional clues into population variation in disease expression.  The model will also 

enable future testing with additional NHANES datasets, as well as the exposome features and 

categorization of disease.  The individual exposome components that were identified can be 

further evaluated in more detailed clinical studies, and by implementing basic biologic studies of 

the host cells and microbiome components associated with health and disease to delineate 

modes of actions of these environmental factors that could contribute to the disease processes. 
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Table 2.1: Demographic information by periodontal status.

N 
No 

Periodontitis Periodontitis p-value Weighted N 

Weighted 
Prevalence of 
Periodontitis 

Weighted 
p-value 

N 8884 7915 (89.1%) 969 (10.9%) . 137140007 8.1% . 
Male 4297 (48.4%) 3706 (86.2%) 591 (13.8%) <.0001 68191901 10.1% <.0001 
Female 4587 (51.6%) 4209 (91.8%) 378 (8.2%) . 68948106 6.2% . 
Mexican 
American 

2233 (25.1%) 1913 (85.7%) 320 (14.3%) <.0001 11566835 12.3% <.0001 

Other Hispanic 417 (4.7%) 355 (85.1%) 62 (14.9%) . 8127478 14.6% . 
Non-Hispanic 
White 

4305 (48.5%) 4030 (93.6%) 275 (6.4%) . 97058220 5.8% . 

NonHispanic 
Black 

1603 (18.0%) 1328 (82.8%) 275 (17.2%) . 13910439 16.0% . 

Other race 326 (3.7%) 289 (88.7%) 37 (11.3%) . 6477034 10.3% . 
Age 18~30 2497 (28.1%) 2390 (95.7%) 107 (4.3%) <.0001 36006214 3.1% <.0001 
Age 31~49 3522 (39.6%) 3068 (87.1%) 454 (12.9%) . 63781453 9.3% . 
Age 50~64 1667 (18.8%) 1435 (86.1%) 232 (13.9%) . 26103632 10.9% . 
Age 65+ 1198 (13.5%) 1022 (85.3%) 176 (14.7%) . 11248708 11.6% . 
Age 
(Mean, StdErr) 

43.12 (0.18) 42.47 (0.19) 48.47 (0.49) <.0001 41.55 (0.26) 46.51 (0.53) <.0001 

Non Smoker 4967 (55.9%) 4538 (91.4%) 429 (8.6%) <.0001 73898456 5.8% <.0001 
Current Smoker 1920 (21.6%) 1616 (84.2%) 304 (15.8%) . 32664766 13.4% . 
Former Smoker 1997 (22.5%) 1761 (88.2%) 236 (11.8%) . 30576785 8.0% . 
Socio-Eco Status 
(Mean, StdErr) 

2.75 (0.02) 2.82 (0.02) 2.19 (0.05) <.0001 3.12 (0.05) 2.50 (0.08) <.0001 

Totalteeth 
(Mean, StdErr) 

26.19 (0.04) 26.29 (0.04) 25.38 (0.13) <.0001 26.26 (0.06) 25.12 (0.17) <.0001 
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Table 2.2: Demographic information by smoking status. 

N Non Smoker 
Current 
Smoker 

Former
Smoker p-value 

Weighted 
N 

Weighted 
Non 

Smoker 

Weighted 
Current 
Smoker 

Weighted 
Former
Smoker 

Weighted 
p-value 

N 8884 4967 (55.9%) 1920 (21.6%) 1997 (22.5%) . 137140007 53.9% 23.8% 22.3% . 
Male 4297 (48.4%) 2020 (47.0%) 1119 (26.0%) 1158 (26.9%) <.0001 68191901 48.1% 26.7% 25.2% <.0001 
Female 4587 (51.6%) 2947 (64.2%) 801 (17.5%) 839 (18.3%) . 68948106 59.6% 20.9% 19.4% . 
Mexican 
American 

2233 (25.1%) 1335 (59.8%) 413 (18.5%) 485 (21.7%) <.0001 11566835 58.3% 22.6% 19.2% <.0001 

Other Hispanic 417 (4.7%) 243 (58.3%) 91 (21.8%) 83 (19.9%) . 8127478 55.6% 24.6% 19.7% . 
Non-Hispanic 
White 

4305 (48.5%) 2227 (51.7%) 935 (21.7%) 1143 (26.6%) . 97058220 51.7% 23.6% 24.7% . 

Non-Hispanic 
Black 

1603 (18.0%) 963 (60.1%) 408 (25.5%) 232 (14.5%) . 13910439 61.9% 25.8% 12.3% . 

Other race 326 (3.7%) 199 (61.0%) 73 (22.4%) 54 (16.6%) . 6477034 59.2% 24.7% 16.1% . 
Age 18~30 2497 (28.1%) 1542 (61.8%) 652 (26.1%) 303 (12.1%) <.0001 36006214 57.3% 31.6% 11.1% <.0001 
Age 31~49 3522 (39.6%) 1932 (54.9%) 923 (26.2%) 667 (18.9%) . 63781453 53.7% 25.6% 20.7% . 
Age 50~64 1667 (18.8%) 827 (49.6%) 281 (16.9%) 559 (33.5%) . 26103632 47.7% 17.2% 35.1% . 
Age 65+ 1198 (13.5%) 666 (55.6%) 64 (5.3%) 468 (39.1%) . 11248708 58.1% 4.5% 37.4% . 
Age 
(Mean, StdErr) 

43.12 (0.18) 42.20 (0.24) 37.95 (0.29) 50.38 (0.38) <.0001 41.55
(0.26) 

41.09
(0.35) 

36.82
(0.33) 

47.71
(0.41) 

<.0001 

Socio-Eco Status 
(Mean, StdErr) 

2.75 (0.02) 2.81 (0.02) 2.26 (0.04) 3.09 (0.04) <.0001 3.12 (0.05) 3.21 (0.06) 2.56 (0.07) 3.48 (0.06) <.0001 

Totalteeth 
(Mean, StdErr) 

26.19 (0.04) 26.55 (0.05) 26.05 (0.08) 25.44 (0.08) <.0001 26.26
(0.06) 

26.63
(0.06) 

25.98
(0.12) 

25.67
(0.10) 

<.0001 
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Table 2.3 Directionality of gender, race and age to prevalence of periodontal disease, n=8884.

Name 
Percentage of 
Periodontitis Name 

Percentage of 
Periodontitis 

1 Male 13.8% Female 8.2% <.0001 

2 Mexican American 14.3% Other Hispanic 14.9% .3817 

3 Mexican American 14.3% NonHispanic White 6.4% <.0001 

4 Mexican American 14.3% NonHispanic Black 17.2% .0086 

5 Mexican American 14.3% Other race 11.3% .0734 

6 Other Hispanic 14.9% NonHispanic White 6.4% <.0001 

7 Other Hispanic 14.9% NonHispanic Black 17.2% .1322 

8 Other Hispanic 14.9% Other race 11.3% .0807 

9 NonHispanic White 6.4% NonHispanic Black 17.2% <.0001 

10 NonHispanic White 6.4% Other race 11.3% .0003 

11 NonHispanic Black 17.2% Other race 11.3% .0047 

12 Age 18~30 4.3% Age 31~49 12.9% <.0001 

13 Age 18~30 4.3% Age 50~64 13.9% <.0001 

14 Age 18~30 4.3% Age 65+ 14.7% <.0001 

15 Age 31~49 12.9% Age 50~64 13.9% .1646 

16 Age 31~49 12.9% Age 65+ 14.7% .0625 

17 Age 50~64 13.9% Age 65+ 14.7% .2979 
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Table 2.4:  Environmental variables and parameter estimates with significant survey
weighted logistic regressions. This table presents subset of environmental factors as risk
factor for periodontal disease. Environmental variables included are those with p-value <0.01. OR
are listed in descending order.

Environmental Factor Class Odds Ratio 95 % CI SEM p 
PCB206 (ng/g) pcb 2.65 (1.88, 3.75 ) 0.177 <0.0001 
PCB172 (ng/g) pcb 2.18 (1.61, 2.97 ) 0.156 <0.0001 
PCB157 (ng/g) pcb 2.05 (1.46, 2.87 ) 0.173 0.0002 
PCB178 (ng/g) pcb 2.00 (1.50, 2.66 ) 0.145 <0.0001 
PCB177 (ng/g) pcb 1.99 (1.53, 2.60 ) 0.135 <0.0001 
PCB199 (ng/g) pcb 1.96 (1.29, 2.97 ) 0.213 0.0046 
PCB183 (ng/g) pcb 1.84 (1.47, 2.29 ) 0.113 <0.0001 
PCB194 (ng/g) pcb 1.82 (1.23, 2.69 ) 0.200 0.0068 
PCB196 & 203 (ng/g) pcb 1.70 (1.18, 2.43 ) 0.184 0.0087 
PCB170 (ng/g) pcb 1.69 (1.28, 2.23 ) 0.141 0.0007 
PCB167 (ng/g) pcb 1.69 (1.26, 2.27 ) 0.150 0.0012 
Lead (µg/dL) heavy metal 1.66 (1.47, 1.87 ) 0.062 <0.0001 
2-fluorene (ng/L) hydrocarbon 1.64 (1.38, 1.94 ) 0.086 <0.0001 
3-fluorene (ng/L) hydrocarbon 1.63 (1.35, 1.96 ) 0.095 <0.0001 
Benzene (ng/mL) volatile compound 1.63 (1.27, 2.10 ) 0.128 0.0006 
Cotinine (ng/mL) alkaloid 1.56 (1.39, 1.75 ) 0.058 <0.0001 
PCB153 (ng/g) pcb 1.56 (1.18, 2.06 ) 0.141 0.0033 
Cadmium (µg/L) heavy metal 1.54 (1.41, 1.68 ) 0.046 <0.0001 
PCB187 (ng/g) pcb 1.53 (1.19, 1.97 ) 0.129 0.0023 
PCB156 (ng/g) pcb 1.52 (1.13, 2.05 ) 0.152 0.0093 
Toluene (ng/mL) volatile compound 1.51 (1.20, 1.88 ) 0.114 0.0010 
PCB146 (ng/g) pcb 1.51 (1.18, 1.94 ) 0.126 0.0023 
PCB105 (ng/g) pcb 1.49 (1.22, 1.82 ) 0.101 0.0003 
Cadmium, urine (ng/mL) heavy metal 1.47 (1.16, 1.85 ) 0.120 0.0029 
1-pyrene (ng/L) hydrocarbon 1.46 (1.19, 1.79 ) 0.105 0.0015 
1-napthol (ng/L) hydrocarbon 1.43 (1.22, 1.69 ) 0.083 0.0003 
PCB66 (ng/g) pcb 1.43 (1.18, 1.72 ) 0.096 0.0007 
2-napthol (ng/L) hydrocarbon 1.42 (1.18, 1.70 ) 0.094 0.0013 
2,3,7,8-tcdd (fg/g) dioxins 1.41 (1.19, 1.68 ) 0.089 0.0004 
2-phenanthrene (ng/L) hydrocarbon 1.41 (1.14, 1.74 ) 0.109 0.0049 
1-phenanthrene (ng/L) hydrocarbon 1.38 (1.17, 1.63 ) 0.085 0.0011 
3-phenanthrene (ng/L) hydrocarbon 1.36 (1.15, 1.61 ) 0.085 0.0015 
Styrene (ng/mL) volatile compound 1.36 (1.10, 1.69 ) 0.111 0.0083 
Antimony, urine (ng/mL) heavy metal 1.28 (1.12, 1.45 ) 0.064 0.0006 
Retinyl stearate (µg/dL) nutrient 1.19 (1.08, 1.32 ) 0.052 0.0016 

α-tocopherol (µg/dL) nutrient 1.16 (1.05, 1.27 ) 0.050 0.0061 
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Folate, RBC (ng/mL RBC) nutrient 0.85 (0.76, 0.94 ) 0.055 0.0040 
Vitamin D (ng/mL) nutrient 0.83 (0.73, 0.93 ) 0.060 0.0047 

trans-β-carotene (µg/dL) nutrient 0.81 (0.70, 0.93 ) 0.073 0.0083 
Folate, serum (ng/mL) nutrient 0.80 (0.71, 0.90 ) 0.062 0.0010 

β-cryptoxanthin (µg/dL) nutrient 0.80 (0.71, 0.91 ) 0.062 0.0021 

α-Carotene (µg/dL) nutrient 0.80 (0.68, 0.93 ) 0.081 0.0097 

48



Table 2.5: Environmental variables and the parameter estimates from survey-weighted logistic regressions stratified by smoking groups 

Current Smokers Former Smokers Non-Smokers 

Odds 95% CI p Odds 95% CI p Odds 95% CI p 

Lead Heavy metal 1.54 (1.28, 1.87 ) <0.001 1.57 (1.27, 1.94 ) <0.001 1.39 (1.18, 1.65 ) <0.001 
PCB105 (ng/g) Pcb 1.68 (1.28, 2.2 ) 0.001 1.89 (1.39, 2.57 ) <0.001 1.41 (1.11, 1.78 ) 0.007 
PCB157 (ng/g) Pcb 2.3 (1.31, 4.04 ) 0.006 4.66 (2.14, 10.13) <0.001 1.77 (1.23, 2.55 ) 0.004 

PCB172 (ng/g) Pcb 2.59 (1.6, 4.21 ) 0.001 4.42 (2.12, 9.23 ) <0.001 1.69 (1.19, 2.4 ) 0.006 
PCB177 (ng/g) Pcb 2.18 (1.42, 3.33 ) 0.001 3.12 (1.69, 5.75 ) 0.001 1.75 (1.24, 2.46 ) 0.003 
PCB178 (ng/g) Pcb 2.65 (1.65, 4.25 ) <0.001 2.78 (1.59, 4.86 ) 0.001 1.58 (1.15, 2.16 ) 0.008 
PCB206 (ng/g) Pcb 3.96 (1.96, 8.01 ) 0.001 5.29 (1.68, 16.65) 0.009 1.96 (1.3, 2.94 ) 0.004 

PCB183 (ng/g) Pcb 2.23 (1.54, 3.22 ) <0.001 2.03 (1.23, 3.33 ) 0.008 1.53 (1.12, 2.09 ) 0.011 
Mono-n-methyl phthalate Phthalate 1.47 (1.13, 1.92 ) 0.01 0.71 (0.44, 1.15 ) 0.178 0.99 (0.75, 1.31 ) 0.948 
Cadmium (µg/L) Heavy metal 1.32 (1.09, 1.58 ) 0.006 1.32 (0.96, 1.83 ) 0.097 1.26 (1.03, 1.55 ) 0.032 
1,2,3,7,8-pncdd (fg/g) Dioxins 1.66 (1.16, 2.37 ) 0.008 1.09 (0.71, 1.67 ) 0.711 1.01 (0.76, 1.34 ) 0.96 
2,3,7,8-tcdd (fg/g) Dioxins 1.81 (1.21, 2.7 ) 0.006 1.63 (1.13, 2.35 ) 0.013 1.22 (0.99, 1.49 ) 0.07 
PCB146 (ng/g) Pcb 1.71 (1.23, 2.4 ) 0.003 1.87 (1.13, 3.09 ) 0.019 1.23 (0.84, 1.79 ) 0.3 
PCB167 (ng/g) Pcb 1.77 (1.23, 2.57 ) 0.005 2.93 (1.29, 6.7 ) 0.015 1.61 (1.11, 2.34 ) 0.017 
PCB170 (ng/g) Pcb 1.98 (1.35, 2.92 ) 0.001 1.36 (0.67, 2.76 ) 0.398 1.2 (0.84, 1.73 ) 0.317 
PCB187 (ng/g) Pcb 1.75 (1.19, 2.56 ) 0.008 1.47 (0.76, 2.82 ) 0.258 1.15 (0.92, 1.45 ) 0.233 
Retinyl palmitate (µg/dL) Nutrient 1.35 (1.09, 1.67 ) 0.009 0.98 (0.77, 1.24 ) 0.849 1.03 (0.88, 1.22 ) 0.701 
Retinyl stearate (µg/dL) Nutrient 1.32 (1.09, 1.59 ) 0.006 1.28 (1.05, 1.57 ) 0.021 1.07 (0.92, 1.25 ) 0.371 
PCB66 (ng/g) Pcb 1.63 (1.2, 2.21 ) 0.004 1.83 (1.4, 2.38 ) <0.001 1.24 (0.95, 1.62 ) 0.119 
Vitamin D (ng/mL) Nutrient 1.15 (0.91, 1.45 ) 0.266 0.61 (0.5, 0.74 ) <0.001 0.76 (0.67, 0.87 ) 0.001 
PCB28 (ng/g) Pcb 1.06 (0.59, 1.89 ) 0.853 1.9 (1.25, 2.9 ) 0.007 1.7 (1.12, 2.58 ) 0.021 

Acrylamide (pmoL/G Hb) Acrylamide 1.46 (1.06, 2.03 ) 0.055 0.3 (0.2, 0.45 ) 0.001 0.77 (0.54, 1.1 ) 0.195 
Mono-n-octyl phthalate Phthalate 1.23 (0.91, 1.68 ) 0.191 1.41 (1.1, 1.8 ) 0.01 1.06 (0.73, 1.54 ) 0.773 
cis-b-carotene(µg/dL) Nutrient 0.95 (0.81, 1.13 ) 0.593 1 (0.73, 1.38 ) 0.979 0.78 (0.67, 0.92 ) 0.005 
Antimony, urine (ng/mL) Heavy metal 0.87 (0.65, 1.16 ) 0.342 1.45 (1.05, 1.98 ) 0.028 1.51 (1.27, 1.8 ) <0.001 

Diethylphosphate (µg/L) Organophos
phates 0.76 (0.62, 0.94 ) 0.015 0.8 (0.57, 1.11 ) 0.194 1.57 (1.24, 1.99 ) 0.001 

49



1,2,3,4,6,7,8,9-ocdd (fg/g) Dioxins 1.22 (0.89, 1.67 ) 0.233 1.12 (0.55, 2.27 ) 0.755 1.46 (1.12, 1.91 ) 0.008 
The p-values are calculated based on the survey weighted logistic regression with dichotomous periodontitis status as the outcome adjusting for 
age, gender, ethnicity, socioeconomic status and number of teeth. The p-value of 0.01 is determined based on the overall FDR of 5%. A 
significance of 0.01 corresponds to a FDR of 8%, 10%, and 13% for the current, former, and non-smokers cohort, respectively. The highlighted 
cells are p-values that are smaller than 0.01. 
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FIGURE 2 LEGENDS 

Figure 2.1-2.3:  Provides a Classification and Regression Tree (CART) analysis of the characteristics of discriminatory
environmental variables in smokers, former smokers, and non-smokers.  The CART analysis emphasizes identification of critical
variables that sequentially discriminate subsets of patients with periodontitis in the 3 groups.  The smoking population was
represented by 1920 subject with 304 periodontitis cases; former smokers 1997 subjects with 228 cases; and non-smokers 4967
with 731 cases. 

Figure 1. Cart Analysis on smoker population 
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Figure 2. Cart Analysis on former smoker population 
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Figure 3. Cart Analysis on non-smoker population 
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Chapter 3 rFSA: An R Package for Finding Best Subsets and Interactions

This paper presents an R package that applies an algorithm intended to improve

statistical models. The algorithm searches the data space for models of a specified

form that are statistically optimal. Many replications of this algorithm will produce

a set of ‘feasible solutions’, which the researcher can investigate. The algorithm

can help improve existing models used in bioinformatics, health care, or other fields

which have yet to explore quadratic terms, interactions, or a higher order of predictors

because of the size of their datasets. The package, rFSA, is flexible for many different

model forms and criteria functions. Currently, linear models and generalized linear

models are supported.

3.1 Introduction

In recent years, novel statistical analysis modeling techniques and algorithms have

become more computationally intensive due to advances in data mining and genetic

sequencing, among other reasons. As data sizes continue to grow, the future will

only be more computationally demanding. While computers have become faster,

the complexity and size of the datasets have grown faster than these new comput-

ers can handle in a timely manner [89]. Usually, some level of data reduction is

performed (e.g., via Principle Component Analysis, Partial Least Squares, Factor

Analysis, LASSO, etc.) in order to fit statistical models and estimate coefficients.

This leaves researchers and statisticians alike attempting to interpret coefficients from

highly complicated statistical methods, exposing a limitation of these methods. Our

method provides an alternative to data reduction by using an algorithm to improve

variable selection in standard statistical models, which yields interpretable coefficient

estimates and predictions.

Our algorithm, addresses the problems described above by searching a reduced space
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in an efficient way to produce ”Feasible Solutions”. Feasible Solutions [90] are op-

timal in the sense that no single swap of an explanatory variable in the model for

a variable outside the model can improve a specified criterion function. [91] intro-

duced this idea of a sequential replacement algorithm. According to [91], this ”cheap

method” yielded improved results compared to forward and backward selection, con-

verged rapidly, and had many variations in how the algorithm could be constructed.

One consequence that Miller noted was that this replacement algorithm could give

too many solutions if repeated. [90], however, used this type of exchange algorithm to

find minimum volume ellipsoid estimators in multivariate data and robust regression

estimators. These solutions, according to [90], could provide the optimal solution

with arbitrarily high probability with a sufficient number of random starts. [90] also

notes this method’s good performance compared to exhaustive search for the stan-

dard datasets that were tested.

This Feasible Solution Algorithm (FSA) has been implemented into a R package

and is now accessible via GitHub.

3.1.1 Feasible Solution Algorithm.

Data analysts are often faced with the problem of identifying a subset of k explanatory

variables from p variables Xp, including interactions and quadratic terms. Consider

fixing p+ ≥ 0 explanatory variables in a preliminary model. Denote these variables

Xp+. Let m(Y,Xp+) be an objective function that can be a measure of model quality

i.e., R2, AIC, BIC, etc. We wish to find the k additional variables denoted Xk to

add to the model that optimizes the objective function m(Y,Xp+,Xk).

The Feasible Solution Algorithm (FSA) addresses this problem in the following way:

1. Choose Xk randomly and compute the objective function m.

2. Consider exchanging one of the k selected variables from the current model

3. Make the single exchange that improves the objective function m the most.
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4. Keep making exchanges until the objective function does not improve. These

variables Xp+,Xk∗ are called a feasible solution.

5. Return to (1) to find another feasible solution.

In another instance of the FSA, we include the jth order interaction and lower order

terms we are considering in step 1. We then continue on to step 2, only this time when

we make an exchange it changes the jth order interaction and the lower interactions

and main effects as well. We could then optimize based on a model criterion or on

an interaction terms p-value.

A single iteration of FSA yields a feasible solution in the sense that it may glob-

ally optimize m(Y,X). Of course, the algorithm may converge somewhere other than

the global optimum. Using the algorithm multiple times identifies multiple feasible

solutions, the best of which may be the global optimum. However, the group of feasi-

ble solutions may provide useful insights into the data because each feasible solution

will be unique.

[91] outlines the FSA described above in the following way. Suppose we have 26

predictor variables labeled A through Z. Imagine you wish to find the best subset

with four predictor variables. First start randomly with four predictors. Suppose

these are ABCD. Consider changing one of A, B, C, or D with one of the other

22 remaining variables. Make the change that improves the objective function the

most. Suppose we swap C for X. Now we have ABXD. Next consider changing one

of A, B, X, or D (Considering X here is redundant and not necessary). This pro-

cess is repeated until no further improvements, to the objective function, can be made.

This method, coupled with repeating it for different random starts, can give different

solutions which could be interesting from a clinical or scientific viewpoint. These

unique feasible solutions are optimal for the criterion function that was chosen by the

user in that no one exchange of any one variable can improve the criterion function.
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3.1.2 Other Algorithms for Subset Regression

Many algorithms and methods exist for subset selection. Forward Selection, Backward

Selection, and Stepwise Selection are common automatic variable selection techniques.

Ridge Regression is a common penalized regression technique that is used for subset

selection with many variables. Exhaustive Search checks all possible combinations

for the possible model structures. When there are many explanatory variables to

consider the exhaustive search method can be very time and resource intensive on

even the fastest and most powerful computers [89]. These are some of the most

common algorithms and methods that exist to find the best subset of predictors that

adequately explain the response variable. These are currently available in the form of

R packages for linear and generalized linear models in leaps [92], and glmnet [93].

3.1.3 Other Algorithms for Finding Interactions

Potential interactions can be explored via Random Forest [94] and Boosting [95]

methods. Branches of the Tree are explored, and researchers can usually find places

where splits in variables classify the response variable differently further into the

tree. Bayesian methods also exist for exploring potential interactions in large genetic

datasets [96].

Also, interactions can be searched for on an individual level by the statistician or

data scientist. This is usually based on previous knowledge of the data, or expertise

of the primary investigator. These processes can be tedious and can lead to inter-

actions being ignored or missed due to the large number of interactions to check.

Exhaustively searching for the optimal model that includes interactions is not always

computationally possible or feasible.

Many analyses have been published which have not explored interactions. By ex-

ploring interactions, researchers will gain predictive power in their statistical models

as well as uncover new and interesting insights. Time commitment for finding, and
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difficulty interpreting interactions limits the types of models that statisticians are able

to consider. rFSA addresses this limitation through its ease of use and flexibility in

an R package.

3.2 rFSA

rFSA implements the FSA algorithm described in 1.1 above for use in subset se-

lection, and interaction finding. rFSA has two main functions for fitting models.

lmFSA and glmFSA are the FSA analogs to the base R functions lm and glm.

More specifically, lmFSA and glmFSA, use the base lm and glm functions to fit

the necessary models for the algorithm to converge. These are made based on user in-

puts that describe the number of terms to consider, whether interactions or quadratic

terms should be included, and the criterion function to either minimize or maximize.

3.2.1 How it is Built

In its essence, rFSA ’s two main functions, lmFSA and glmFSA exist as tools

to make the possible formula combinations to consider the model form the user has

specified and then execute them via the built in lm and glm functions in R. These

combinations are computed based on random starting positions described in 1.1 above

and the possible swaps to consider to move. These combinations are then run on ei-

ther one core or multiple cores (the number is specified by the user) via the mclapply

function from the parallel package in R.

mclapply only supports more than one core in Unix environments. Therefore, win-

dows users must always leave cores=1 for lmFSA or glmFSA, while Unix users

can specify more cores if their computers have more than one. If a windows user

specifies more than one core, the code will change to respecify this parameter as one.

We recommend using no more than one less than the maximum number of cores for

your desktop computer while running either lmFSA or glmFSA. The user can run

parallel::detectCores() to determine the number of cores on their personal ma-
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chine.

lmFSA and glmFSA are written as S3 objects. Returned results are of class def-

inition, FSA, and can be used along side standard S3 functions print, summary,

predict, fitted, and plot. The print command on a FSA class will show a table of

the original model specified by the user and the feasible solutions that the algorithm

found from m random starts along with their criterion values and times they were a

feasible solution. Note: Original fit is not a feasible solution, so NA will be listed for

original fit under the ”Times.FS” column. The summary command on a FSA class

will show the summary output of the original fit and feasible solutions in a list, as if

you were to compute the summary of a lm or glm object. The predict and fitted

work in a similar fashion to the summary function for FSA classes and return a list

of either predicted or fitted values from the original fit and feasible solutions found.

Finally, the plot function returns diagnostic plots of the original fit and the feasible

solutions in a compact manner.

3.2.2 How it Works

rFSA has two main functions: lmFSA and glmlm. These two functions have very

similar parameters. The only argument that is unique to glmFSA is the ”family”

parameter. The ”family” parameter is used to name the family function used in the

glm function in base R. The data that is used in lmFSA or glmFSA should contain

one response variable and the rest of the predictor variables of interest. Variables

known to not be of interest should be removed from the dataset prior to running

either function. Data fed into lmFSA or glmFSA should be made sure that cate-

gorical variables are either listed in quotes, or factors, and that categorical variables

have at least two different levels. The ”formula” parameter is where the user specifies

an original fit. Here, the user specifies a response variable that will be used through-

out for all model fits. If the user is unsure about what to use for the formula, they

should make sure to specifying the correct response (eg. Y), and can simply write a

simple model with just an intercept (eg. Y 1).
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Arbitrary column names via the colnames function should be added before hand

so results are interpretable to the user. If the statistician using rFSA is interested in

doing only subset selection, without interactions being considered, then the parame-

ter interactions must be set to FALSE. After the parameters of the function have

been set and the function has ran, the random starts will ”converge” on the numrs

number of solutions. These solutions, may repeat, and will be based on where rFSA

randomly started for each numrs and what criterion function was used. A list of

the criteria functions that are currently supported are listed below. Individuals own

criteria functions can be used as long as they follow a similar format to the hard

coded criteria functions included in the rFSA package.

A list of five values from a successful run of lmFSA or glmFSA is attached to every

FSA object for the users convenience. First, the original model fit ($originalfit)

from lm or glm is given. Second, the lmFSA or glmFSA function parameters

($call) are given. Third, a table of each random start and the place it converged

($solutions). Forth, a table of a summary of the solutions and how many times each

were repeated ($table). Fifth and finally, a printout summary of the comparison of

the overall number of models that were checked by lmFSA or glmFSA and how

many would have been checked by exhaustive search is returned ($efficiency).
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Arguments:

formula a symbolic description of the original model to be fitted.

data a data frame containing the variables in the model.

quad to include quadratic terms or not.

numrs number of random starts to perform.

cores number of cores to use while running. Note: Windows can only use

1 core.

interactions T or F for whether to include interactions in model. Defaults to

TRUE.

criterion which criterion function to either maximize or minimize.

minmax whether to minimize or maximize the criterion function.

family family argument passed to glm.

fixvar a variable to fix in the model. Usually a covariate(s) that should

always be included.

m order of terms to include. If interactions is TRUE then m is the

order of the interaction.

... arguments to be passed to the lm or glm function.

Criteria Functions:

Both lmFSA and glmFSA can use apress (Allen’s Press Statistic), int.p.val (Inter-

action p-value), AIC, or BIC. lmFSA can also use r.squared, and adj.r.squared.

glmFSA can use a function called bdist which is useful when you have a binary

response and wish to explore two way interactions with only continuous explana-

tory variables. Specifically, this function computes the Bhattacharyya Distance [97].

When bdist is chosen, the Bhattacharyya Distance is computed, which is faster than

the other criteria functions. For this reason, the Bhattacharyya Distance can be use-

ful when understanding the relationships in large genetic datasets with continuous

explanatory variables and a binary response.

Returned Values

$originalfit lm or glm object from the users specification from the formula param-
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eter.

$call list of the lmFSA or glmFSA function parameters used.

$solutions data frame of fixed terms, start position, feasible solution, criterion func-

tion value (e.g., p-value of interaction), swaps to solution.

$table data frame of the unique feasible solutions and how many times they occurred

out of the number of random starts chosen.

$efficiency number of models check if you had done exhaustive search versus the

number checked by lmFSA or glmFSA.

Using rFSA is straight forward. To run a basic linear regression example see the

code below. A simple logistic regression example follows as well.

1 #Linear Regression Example

2 #use mtcars package see help(mtcars)

3 data(mtcars)

4 colnames(mtcars)

5 fit <-lmFSA(formula="mpg~hp+wt",data=mtcars ,fixvar="hp",

6 quad=FALSE ,m=2,numrs=10, cores =1)

7 print(fit) #print formulas of fitted models

8 summary(fit) #review

1 #Logistic Regression Example

2 dat <-read.csv("http://tinyurl.com/zq7l775",header = FALSE)

3 colnames(dat)<-c("Class","Age","Sex","Sterioid","Antivirals",

4 "Fatigue","Malaise","Anorexia","Liver Big", "Liver Firm",

5 "Spleen Palpable","Spiders", "Ascites","Varices","Bilirubin",

6 "Alk Phosphate","Sgot","Albumin","Protime","Histology")

7 dat <-as.matrix(dat)

8 dat[which(dat=="?")]=NA

9 dat <-data.frame(dat)

10 dat[,c(2,15,16 ,17,18 ,19)]<-lapply(X = dat[,c(2,15 ,16,17,18 ,19)],

11 as.numeric)

12 colnames(dat)

13 fit <-glmFSA(formula="Class~Age+Sgot*Albumin",data=dat ,

14 fixvar="Age",quad=FALSE ,m=2,

15 numrs=10, family="binomial",cores =1)
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3.2.3 Availability

Currently, rFSA (version 0.1.0) is available to download from the Comprehensive R

Archive Network at https://cran.r-project.org/web/packages/rFSA. To install

the newest beta version of rFSA, first install the devtools package in R, then run

the following command:

1 devtools :: install_github("joshuawlambert/rFSA")

.

3.2.4 Shiny App

An easy to use Shiny application has been built to facilitate the basic functions

of the package. We believe this Application will serve an important role for those

unfamiliar with R, but who would still like to explore subsets of large datasets or

possible interactions that exist. This application allows users to use their own data

and select function presets via radio buttons and drop down boxes on a server hosted

by the University of Kentucky. The application on our Shiny Server is hosted at

https://shiny.as.uky.edu/mcfsa/.

3.3 Comparisons to Other Packages

R packages currently exist to find best subsets and also explore pairwise interactions.

Some of the most popular packages in current use are the leaps [92] package and

glmulti [98] . These packages utilize criterion functions such as r-squared, adjusted

r-squared, mallows Cp, residual sum of squares, BIC, AIC and others to find the best

subset of predictor variables for a given response variable.

The leaps [92] package uses exhaustive search, forward and backward selection, and

a sequential replacement algorithm to find the best subset of predictors in a model.

The sequential replacement algorithm used in the leaps package is another variation
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of the FSA which [91] spoke of. While the leaps package is flexible and robust, cur-

rently, there is no way to include interaction terms. The glmulti [98] package is

capable of adding pairwise interaction terms and uses exhaustive search, or a genetic

algorithm. Both packages, address large datasets in different ways. leaps has a ”re-

ally.big” option which must be set to TRUE if you wish to perform exhaustive search

on more than 50 variables. Leaps’ sequential replacement algorithm and glmulti’s

genetic algorithm seek to provide a speedy option when there are many variables.

Timing Comparisons

A simulation was done to compare the timing of the subset selection methods in

leaps, glmulti, and rFSA. Simulations were conducted over a grid of

p = (10, 20, 26, 50, 100, 150, 200, 250, 300, 500, 1000, 2000, 5000),

and N = 250 for twenty five random datasets each. A continuous response was

randomly generated from a standard normal distribution.

Half of the predictors were randomly generated from a standard normal distri-

bution and the other half were randomly generated from a Bernoulli distribution

with P (X = 1) = 0.50. Each method was performed on all datasets and sepa-

rately timed. Simulations were run in R version 3.1.2 on a Windows 7 machine with

Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with 24.00 GB of memory. The follow-

ing commands were used in packages leaps(version 2.9), glmulti(version 1.0.7), and

rFSA(version 0.1.0) respectively.

1 regsubsets(x=...,y=..., nbest=1,nvmax=2,

2 really.big=T, method="exhaustive")

3

4 bestglm(Xy=..., family=gaussian , IC="AIC",

5 method="exhaustive",nvmax =2)

6

7 lmFSA(X1~1,data =..., interactions=F, m=2,

8 numrs=1, criterion=AIC ,minimax="min)

Figure 1 compares the run time (seconds) for these commands over 25 simula-

tions and p = (10, 20, 26). glmulti failed to run for p > 26 in our tests. The
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Figure 3.1: Time Comparisons of Three Methods: leaps::regsubsets, rFSA::lmFSA,
and glmulti::glmulti for finding the best subset of size 2 for 25 simulations. Inter-
actions were not considered. lmFSA times are shown for one random start, while
regsubsets and glmulti times are shown for exhaustive search. Time (in Seconds) is
presented on a log scale. glmulti is not presented because it failed to run for values
of p greater than 26 in our simulations.

leaps::regsubsets function with the exhaustive method showed the best run time

for all methods. One random start for rFSA::lmFSA had the next fastest run times

followed by glmulti::glmulti using the exhaustive method. Figure 2, shows the com-

parison between leaps::regsubsets and rFSA::lmFSA for all values of p previously

stated. While leaps::regsubsets is faster for all, both methods are very close when

p = 2000.

glmulti and rFSA have a number of advantages over leaps. Both can include

pairwise interactions, fit generalized linear models, and consider unique user defined

criterion functions. rFSA is able to include even higher order interactions (example:

3-way or 4-way). Depending on the task, all three of these packages could be useful

to a data scientist or statistician.
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Figure 3.2: Time Comparisons of Two Methods: leaps::regsubsets, and rFSA::lmFSA
for finding the best subset of size 2 with 25 simulations. Interactions were not consid-
ered. lmFSA times are for one random start, while regsubsets times are for exhaustive
search. Time (in Seconds) is presented on a log scale.

While rFSA does not implement an exhaustive search, the optimal solution will be

produced with high probability when enough random starts are completed. Running

many random starts often requires fewer commutations than running an exhaustive

search method. For large p, we argue that rFSA is a practical solution for statisti-

cians or data scientist who wish to consider specific model forms, or generalized linear

models for finding best subsets and interactions.

3.4 Example

3.4.1 Census Data Example

The data used is the publicly available 2014 Planning Database Block Group Data

(PDB) from the Census Bureau at http://www.census.gov/research/data/planning_

database/2014/. Only Kentucky Census Blocks were used and variables were re-

moved from the dataset because they were transformations of other variables. The
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final dataset included 3285 observations and 67 quantitative explanatory variables

and the quantitative response variable, Mail Response Rate. Descriptions of the vari-

ables can be found on the PDB documentation PDF from the website above.The final

dataset used for this example can be downloaded from https://raw.githubusercontent.

com/joshuawlambert/rFSA/master/census_data_nopct.csv.

For this dataset we wished to search for the best linear model with two main effects

and their interaction. For simplicity, we chose to not fix any variables in the model.

To do this we left fixvar equal to NULL. The response variable y (Mail Response

Rate) with an intercept was the original model chosen. From this, lmFSA knew

to use y as the response variable throughout the procedure. The criterion function,

interaction p-value, was minimized at each potential swap. Exactly 50 random starts

were chosen to be computed and lmFSA completed these 50 random starts in about

one minute of run time on a Windows 7 machine with Intel(R) Core(TM) i7-4790

CPU @ 3.60GHz with 24.00 GB of memory. R Code to reproduce these results are

below.

1 #Example 4.1

2 library(rFSA)

3 census_data_nopct <- read.csv("https://raw.githubusercontent.com/joshuawlambert/rFSA

/master/census_data_nopct.csv")[,-1]

4 fit <-lmFSA(formula = y~1 ,data=census_data_nopct , fixvar = NULL , quad = F, m = 2,

numrs = 50, cores = 1, interactions = T, criterion =int.p.val , minmax = "min")

5 print(fit) #summary of solutions found

6 summary(fit) #list of summaries from each lm fit

7 plot(fit) #diagnostic plots

Out of the 50 random starts, there were three unique feasible solutions. The solutions

showed potentially interesting interactions between MrdCple Fmly HHD CEN 2010

and

Pop 18 24 CEN 2010, avg Agg HH INC ACS 08 12 and avg Agg House Value ACS,

and Mobile Homes ACS 08 12 and Tot Vacant Units CEN 2010. All three of the in-
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teraction p − values passed the Bonferroni cutoff criterion of 0.00045, ie 0.05/
(
67
2

)
,

at 6.19 × 10−38, 1.68 × 10−43, and 7.26 × 10−19 respectively.

Variable definitions include: MrdCple Fmly HHD CEN 2010: Number of 2010 Cen-

sus households in which the householder and his or her spouse are listed as members of

the same household; does not include same-sex married couples. Pop 18 24 CEN 2010:

Number of persons ages 18 to 24 as of April 1, 2010. avg Agg HH INC ACS 08 12:

Average aggregate household income. avg Agg House Value ACS 08 12: Average

aggregate House value (in dollars). Mobile Homes ACS 08 12: Number of Mobile

Homes. Tot Vacant Units CEN 2010: Total vacant Housing Units in the 2010 Cen-

sus.

After finding these feasible solutions, it is often useful to see a summary of their

model fit. To do this, simply type summary(fit), where fit is a FSA object. This

will return a list of summaries from the model fits found in the FSA object fit includ-

ing the original fit specified by the user. Assessing the fit of each feasible solutions

is also useful, and can be done with the plot(fit) on the FSA object fit. Here, di-

agnostic plots are shown for the original fit and all other Feasible Solutions. Each

solution should be considered in a heuristic and practical manner. Interpretation of

the interaction should be considered before including it in the final model.

These three interactions were particularly interesting in understanding the types of

results the algorithm gives. One might expect that a larger average household income

would tend to be positively correlated with the average house value in a Census block.

So, in this case, the presence of possible multicollinearity may provide an additional

explanation of relationships present in the data. Another interaction that was found,

MrdCple Fmly HHD CEN 2010 and Pop 18 24 CEN 2010, may be more meaningful

in the prediction of mail response rate (y). It seems reasonable to suspect that Cen-

sus blocks with many married couples and fewer younger adults would be more likely

to respond to a mailed items than a Census blocks with fewer married couples and
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many younger adults. Because this interaction is both interpretable and statistically

significant, we have considerable evidence to justify its inclusion into the final model.

In summary, analyzing this census data using rFSA has provided multiple possi-

ble interactions that could be included, as well as interesting explanations existing in

the data. We suggest, as with all data analysis, to first explore univariate relation-

ships in the data. Then upon arriving at a model with known single effects (either

from forward, backward, or exhaustive selection), fix those in the model through the

parameter fixvar in lmFSA or glmFSA and proceed with exploring higher order

interactions.

3.4.2 Ethical Considerations

Like any exploratory activity, one can argue that FSA is simply ”data fishing.” Back-

stops can be placed on an algorithm or method to deter users from misinterpreting

or misusing. One example of such a backstop that is currently in place is by only

allowing the algorithm to consider interactions that have sufficient sample size. If too

many data values are missing for the variables involved in the interaction under con-

sideration, then the algorithm excludes that interaction from those to check. Another

possibility, which currently is not in place in rFSA, is allowing the user the ability to

use a validation set to check identified interactions. Appropriate vignettes, tutorials,

and other documentation are also essential in making sure the user understands the

output and its meaning.

3.5 Conclusion and Future Work for rFSA

In this paper we have demonstrated the implementation of a complex algorithm orig-

inally proposed by [91] and [90] in an R package that is freely available on CRAN,

rFSA. Additionally, we provide users with a convenient graphical user interface in

the form of a Shiny Application. The application of FSA on a census data set showed

the versatility and computational efficiency of the algorithm.
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In terms of identification of interactions, especially in the case of data sets with a large

number of explanatory variables, FSA provides an implementation of a data analysis

technique that is computationally feasible while producing interpretable models and

model coefficients. FSA can be applied to both quantitative and categorical response

variables within standard statistical models, and this versatility remains within the

R package, rFSA.

In order to continue improving FSA as a technique, and to create even more flexibility

within the R package, we plan to include more criterion functions, and make an off

line version of the Shiny App for users with secure data. In addition, considering

methods to further improve the speed of the algorithm, and better utilization of the

parallel package will continue to improve the usability of rFSA in analyzing large

data sets. Through its versatility and flexibility, FSA provides an alternative algo-

rithm for model selection that allows users to find subsets and interaction effects in a

variety of data sets that are statistically optimal. Improved selection of such models

may lead to models with improved predictive power that can in turn help illuminate

relationships in large data sets.

3.6 More about the Shiny Application for rFSA

This chapter presents a Shiny application for finding interactions in large datasets.

The rFSA package functions lmFSA and glmFSA are implemented in a easy to use

web interface. This application can help improve existing models used in bioinfor-

matics, health care, or other fields which have yet to explore interactions because of

the size of their datasets or because they are unfamilar with statistical programming.

It utilizes multi-core processing and allows users to upload their own data. It can be

accessed from shinyfsa.org via Chrome and Firefox, but not Internet Explorer.

Often times, new and novel statistical methods are put forth in the form of an

R package and deployed via R’s Comprehensive R Archive Network (CRAN) for

users to freely access. These packages can be difficult to learn and implement for
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individuals who have little experience with R, or who are unfamiliar with the writers

syntax and/or logic. Also, computing limitations can be an issue as the datasets

becomes larger. The need for a user interface that incorporates multi-core processing

and cutting edge computing power is important for new statistical concepts to be

adopted and used regularly. Shiny, a package in R, allows users to easily design

applications that can be deployed locally or over the Internet (via Shiny’s Free ‘Shiny

Server’ software.) Shiny apps, can be deployed on a powerful server to designated

or undesignated users for free. These apps can allow for users to upload their own

data, and can be configured to be secure so users with protected data can have access

to the same computing power and user friendly interface as those without secure

data. These apps can help make statistical analysis more approachable and can help

facilitate interest in new statistical methods across disciplines and fields.

3.6.1 FSA Shiny Application (FSAA)

Using a web browsers, users should first navigate to shinyfsa.org. Upon arrival

(Figure 1), users are greeted with user options on the left and data summary/results

on the right. First, users should upload data of their own, or download one of the

test data sets provided below the ”Browse...” button. The FSA application (FSAA)

allows users to upload their own data in a CSV (comma separated values) format,

with one subject/unit per row and one variable per column. Extraneous information

should be excluded from the CSV files before upload. Users should see the test

data sets for examples of acceptable CSV formats. Users with Categorical Variables,

should make sure that these variables are in quotes before upload. This will assure

the user that these variables are being modeled as categorical and not continuous.

The data that are uploaded are immediately deleted once the application is closed.

Users should not upload data that requires protected or encrypted web protocol.

Users with secure data should only use the rFSA package on a local personal machine

or server. Users can click the ”Browse...” button at the top left of the application to

browse their personal machine for the CSV file of their liking. Once the dataset is

selected, users should click the ”Open” button to upload their data. Once the upload
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has completed successfully, the ”Data Summary” tab on the right will show some of

the data from within the dataset. If no column names are included, please un-select

the header option under ”CSV Options”, and the application will name the variables

V 1 − Vp+1.

Figure 3.3: FSA Shiny Application: Data Summary
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Figure 3.4: FSA Shiny Application: Feasible Solutions
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After the data are uploaded correctly, then users can sift through their data by

sorting by a certain column or searching for certain variables or variable values.

Please note that searching, or sorting does not change the original data or the data

that will be run in the analysis.

Next, users can choose their Model Design. If the response variable is binary,

then they will want to select ”Yes”, under the logistic regression category. The

equation to find feasibly best models with two main effects and their interaction is:

y = β0 + β1xa + β2xb + β3xaxb. The equation to add a feasible interaction to a full

model will be y = β0 +β1x1 +β2x2 + . . .+βpxp +β3xaxb. And finally, the equation to

fix specified explanatory variables in the model and add a feasibly best interaction,

for example fixing x2 and x25, is y = β0 + β1x2 + β2x25 + β3xa + β4xb + β5xaxb. After

selecting your model type, users need to determine the number of random starts to

do. It is preset to 10, but users can select up to 100. If users select 100, you may

experience some processing delays depending on the number of p variables. Lastly,

users should select whether they want to look for two-way or three-way interactions.

Once the user has selected the options appropriate for their data, they are then ready

to click the ”Run FSA!!”, button. After clicking (figure 2), a thank you message

will appear below the ”Run FSA!” button and FSAA will switch from the ”Data

Summary”, tab to the ”Feasible Solutions”, tab. This tab will be blank until the

FSAA has completed. Any error messages will display here as well. If you experience

an error, please explore your data in another statistical software first, and make sure

that non of the explanatory variables are perfectly related with one another and/or

remove any predictors that have lots of missing values. When the FSAA is com-

pleted, each random start will be shown on a separate row. The random start will be

shown in the first two or three columns with the starting R2 and starting interaction

p − value in the following columns. Next, the feasible solution that the algorithm

converge to is displayed. The corresponding R2 and p− value for the main effect of

the interaction for that specific feasible solution is next. Lastly, the feasible solution

model is displayed so users can check what model is being fit. The ‘Feasible Solutions’

74



tab is also searchable and sortable based on the preference of the user.

Conclusion and Future Work for FSAA

In this paper we have demonstrated the implementation of a complex algorithm into

a simple to use web application. Writing Shiny applications is easy to learn and there

are a plethora of examples and resources available on the Internet to learn from and

practice. We hope to encourage statisticians and data analysts to start extending their

R packages into Shiny applications that are easy to use and are understandable to a

wide variety of fields. The flexibility and deploy-ability of Shiny applications allow

authors to quickly update and enhance their apps for new features and improvements.

We plan to improve FSAA so it can run many different instances of the feasible so-

lution algorithm and allow users to do simple data manipulation and analysis. More

options for FSAA, such as maximizing via AIC, BIC, AUC, and whether to include

quadratic terms are features we hope to include soon. Increasing the number of cores

and RAM available to the user is another future improvement we would like to make,

this way users can upload larger datasets and increase the number of random starts.

Increasing the level or security and providing account based access to the application

is also a feature we believe could be useful for users with sensitive data, and can be

implemented with Shiny Server Pro (Paid).
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Chapter 4 Exploring Statistical Interactions associated with Periodontal

Disease in NHANES 1999-2004 Data

Periodontitis is a complex and multi-faceted disease involving smoking, sex, age, Socio

Economic Status (SES), race, as well as others [30][40] [41] [15] [33] [99] [100]. Inter-

relationships of these complexities can be investigated via statistical interactions.

Previously, there has been a lack of model-based approaches to identify higher order

interactions. In this chapter, higher order interactions related to periodontal disease

are explored using a Feasible Solution Algorithm (FSA) via the R package: rFSA

[101]. Periodontal status (either present or absent) calculated from NHANES survey

data, from 1999-2004, will be analyzed using Survey Weighted Logistic Regression and

FSA. The FSA seeks to find interactions that are statistically optimal in the sense

that no one swap to any of the variables included in the three way interaction will

improve the underlying criterion function (in this case, interaction p-value). These

interactions are further investigated for their consistency with existing literature as

well as their statistical validly through tables and figures. Furthermore, discussion of

the results in light of periodontal epidemiology is included.

4.1 Introduction

4.1.1 Periodontal Disease

Periodontal disease is an inflammatory process which encompasses an array of clinical

features such as receding gums, loss of supporting alveolar bones, and eventually

tooth loss. Periodontal disease is considered a complex disease and the factors which

attribute to its onset are still greatly misunderstood. While bacterial pathogens are

necessary for disease development, it is the host immune response (either over-active

or under-active) that determines the extent of the tissue damage and susceptibility

to periodontal disease [102]. The host response leads to the release of cytokines.

These cytokines have tissue and bone destroying properties and are believed to be
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the primary cause of the clinical outcomes (bone loss, gum recession, ect). [103]

Recently, research has focused on identifying subgroups of susceptible individ-

uals to periodontal disease. This has only highlighted the multi-faceted nature of

the disease. Environmental factors and genetic predispositions together play a role

in the disease risk profile. There is an increased prevalence of periodontitis with

age. Men and ethnic minorities are at the greatest risk for periodontal disease [30].

Hispanic-Americans, Non-Hispanic Blacks, and Non-Hispanic Asian Americans all

have periodontitis at levels greater than 50% [15]. Individuals with low socioeco-

nomic status had twice the prevalence of periodontal disease compared to those with

high socioeconomic status [15]. Smoking tobacco is the strongest modifiable risk fac-

tor identified for periodontitis [40] [41]; the severity of periodontitis increases with

years of smoking[42].

4.1.2 Toxins and Dietary Nutrients

Toxins, such as lead and mercury, have previously been studied in terms of the patho-

physiology of periodontal disease. Lead is a potent neurotoxin and contributes to the

onset of many diseases [104]. Lead exposure is associated with neuropathy, increased

blood pressure, altered reproductive function, and bone abnormalities [104]. Previ-

ously, a positive association was found in the NHANES III dataset (1988-1994) with

lead levels and prevalance of periodontal disease. Both men and women showed a pos-

itive association with periodontal disease and blood lead serum levels [49]. A Korean

National Health and Nutritional Examination Survey (KNHANES) found a positive

association between blood lead serum levels and periodontitis for both females and

non-smokers [105]. Lead has been shown to negatively affect bone health in animal

and human studies [106] [107] [108] [108]. Interestingly, the immune host response

is also modulated by lead exposure. Animal studies have demonstrated a dysreg-

ulation and inhibition of the immune response in those rats chronically exposed to

lead [109] [110] [111]. Two previous studies have examined the association between

mercury and periodontitis. The first study was based on a dataset that collected

samples from two different Korean cities. Han et al, found that mercury exposure,
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assessed by mercury within hair strands, was associated with periodontitis in that

sub-population of Korea [112]. The second study examined a sample of the Korean

population from the KNHANES dataset (mentioned in Result 3 section) [113]. A

positive association between mercury-inorganic serum levels and periodontitis was

reported. Other pollutants have been previous linked to low bone density.

Alpha carotene is one of the caratenoids (alpha-carotene, beta-carotene,crytoxanthin,

lutein, lycopene, and zeanxantin). Carotenoids are considered antioxidants. The bal-

ance between antioxidants and free radicals keeps a biological system free of inflamma-

tion. When this balance is disrupted, oxidative stress occurs and disease follows [114].

Since inflammation is implicated as the main cause of periodontal disease, researchers

have focused on finding antioxidants that are protective towards periodontitis. One

study examined periodontal health and the association with carotenoids, retinol, and

Vitamin E in a group of men aged 60-70 [115]. Of particular interest, low levels

of alpha and beta-carotene were significantly associated with periodontitis. In the

adjusted model, older men with higher levels of alpha and beta carotene had lower

estimated odds of periodontitis.

4.1.3 Methods for Identifying Interactions

Interactions can be searched for on an individual level by statisticians . This is usually

based on previous knowledge of the data, or expertise of the primary investigator.

These processes can be tedious and can lead to interactions being ignored or missed

due to the large number of interactions to check. Exhaustively searching for the

optimal model that includes interactions is not always computationally possible or

feasible.

Analytical methods exist to investigate potential interactions. Interactions can be

explored via Classification and Regression Tree (CART) models. Random Forest [94]

and Boosted Trees [95] methods fit many CART models. In these models, consis-

tencies in which variables are branched on can give insights into potential modifiers.

Bayesian methods also exist for exploring interactions [96] [116].

Recently, a new algorithm for exploring interactions has been formalized to use
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existing statistical models and search the data using the Feasible Solution Algorithm

(FSA) for a set of semi-optimal higher order interactions for consideration [101].

CART models and Random Forest models have been used for making better peri-

odontal classifiers [117], finding periodontal prognostic indicators [118], identifying

pathogen and host-response markers related to periodontal disease [119], and en-

vironmental factors related to periodontal disease [120]. While these CART and

Random Forest models have demonstrated interesting results, model-based statisti-

cal interactions related to periodontal disease has not been fully explored [121]. By

identifying model-based interactions, biases , misinterpretation, and incorrect pub-

lic health interventions are avoided[122]. Model based approaches are capable of

adjusting for known risk factors which is important when looking for small effects

that may be masked. Also, statistical models exist to appropriately account for sur-

vey weights. Continuous variable estimation is also possible with statistical models,

whereas methods such CART does not.

This paper explored the interrelated role of environmental factors, dietary nutri-

ents, and demographic variables on periodontal diseases by identifying model based

three-way interactions that are associated with the prevalence of periodontal disease.

Because FSA can identify model based interactions and handle a large number of

variables, it will be used to explore interactions in the data. The three way interac-

tions under consideration will be limited, in that they must have at least one of the

five identified risk factors related to periodontal disease that are also in the NHANES

data.

4.2 Materials and Methods

4.2.1 Data and Variables

Data

Partial mouth periodontal examination data from three cohorts of NHANES data

from 1999-2004 were extracted and combined with environmental and demographic

information for the same time period. All data were download freely from NHANES
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website. Before exclusion, there were 11,041 participants. There were 10,277 NHANES

participants who had at least 16 teeth, were older than 18, had partial periodontal

examination measurements, and a non missing smoking status.

Demographic Variables

There were five variables targeted as demographic covariates. These variables are

age (RIDAGEYR), sex (RIAGENDR), race (RIDRETH1), family income to poverty

(INDFMPIR), and smoking status (SMQ020 and SMQ040). Race/Hispanic ori-

gin was summarized into five categories: Mexican American, Other Hispanic, Non-

Hispanic White, Non-Hispanic Black, and Other Race. Family Income to poverty

level will act as an estimate of Socio Economic Status. For smoking status, partic-

ipants who answered that they had not smoked more than 100 cigarettes and were

not currently smoking were defined as former smokers. Non-smokers were defined as

those who had reported smoking more than 100 cigarettes and were not currently

smoking. Smokers were defined as those who had reported smoking more than 100

cigarettes and were either smoking ”Every day” or ”Some days”.

Clinical Variables

To sample teeth and sites, the NHANES 1999-2004 surveys followed a partial-mouth

periodontal examination (PMPE) protocol. This protocol, measures pocket depth,

attachment loss, and bleed on probing for 2 (1999-2000) to 3 (2001-2004) sites per

tooth from two randomly selected quadrants. The Centers for Disease Control (CDC)

and National Institute of Dental and Craniofacial Research (NIDCR) guidelines in-

dicate a periodontal tooth is defined by having a clinical attachment loss (CAL)

≥ 3mm and a periodontal pocket ≥ 4mm (OHDLAM, OHDLAS, OHDPCM, OHD-

PCS, OHDPD). Subsequently, a subject with periodontitis was defined as someone

who had at least one periodontal tooth following the NIDCR guidelines.
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Environmental variables

Environmental variables considered must have been present in at least one of the

three data cohorts and had to have at least 10% of its measurements above the limit

of detection threshold indicated by NHANES [120]. The final 156 environmental

variables extracted for analysis, all came from one of the following categories: chemical

toxicants, pollutants, allergens, bacterial/viral organisms and nutrients. Many of

these variables were detected in small ranges and skewed. Therefore they all were

processed by taking the log(natural) and then standardized. There are 34 PCB

variables in the dataset. Many polychlorinated biphenyl (PCB) accumulate in the

body and other organisms over time [123][124]. Therefore, to estimate the cumulative

effect of all 34 PCB’s in the NHANES data, all 34 PCB variables were first added

then standardized.

Potential Confounders and Effect Modifiers

Sex, age, Socio Economic Status (SES), race, and smoking status have all been identi-

fied previously as risk factors or confounders for periodontal disease [15] [30] [29] [33][42].

Smoking, and Sex have been previously mentioned as potential modifiers related to

periodontal disease[121]. SES, age, and race could be considered risk factors whose

effects could be modified by other covariates or known risk factors.

4.2.2 Statistical Analysis

The focus of this statistical analysis was to identify three way interactions that could

be included in a survey weighted logistic regression model while adjusting for known

risk factors, and confounders. Because of the model based approach, the FSA was

used to identify potential interactions. An emphasis was placed on three way interac-

tions that consisted of at least one of the known risk factors or confounders that were

available in the data. By doing this, we are able to identify subgroups of patients

based on these known factors as well as uncover new relationships with other risk

factors and environmental variables.
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The FSA is an algorithm that is used along side a specific statistical model regres-

sion method for identifying new variables, quadratic terms, or interactions that could

be added to the model. First, the appropriate statistical model must be decided on.

For our data, survey weighted logistic regression is the appropriate statistical model

to analyze these data.

When the response is binary (Periodontitis or No Periodontitis), and there are sur-

vey data with appropriate weights available, a Survey Weighted Logistic Regression

is used to obtain parameter estimates and standard errors for statistical inference.

This method minimizes the bias that can exist from the way the samples are col-

lected. It does this by weighting the samples to reflect the intended population.

By doing this, standard error estimates for the regression coefficients are correctly

obtained. To correctly adjust for these issues and obtain correct standard error esti-

mates, a set of survey weights and the groupings of how the variables are clustered

is needed. NHANES 1999-2004 have both of these (Using NHANES Weights, and

Making Weights). Using R [125] and the Survey [126] R package, survey weighted

logistic regression can be performed. Providing the svyglm function in the Survey

package a model formula, survey design, data, and the appropriate model family a

survey weighted logistic regression model can be fit.

Once a statistical regression method is identified, the FSA will checks combina-

tions of variables for their significance in the model via a criterion function chosen by

the user. For three way interaction identification, FSA works by first adding a ran-

dom three way interaction and checking its significance in the model. Then, the FSA

will check variations of the randomly chosen three way interaction by exchanging two

variables in the current interaction for the other possible two variable combinations.

Each combination is checked for its significance in the model. The most significant

combination is then chosen (swapped to) as the next starting place and the process

is repeated. Usually after swapping 2-3 times, a combination is found that cannot be

improved upon by exchanging only one of the variables in the currently optimal three

way interaction. Many iterations (random starts) of this process will yield a set of

feasible solutions. Some random starts will give the same feasible solutions as others,
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while others may be the only random starts that give that specific feasible solution.

A more technical overview of the FSA and rFSA can be found in Chapter 3.

Approach

Data from 1999-2004 will be analyzed using R [125] V3.4.1 and package Survey [126]

3.32-1. Adjusted Odds Ratios, 95% confidence intervals, and p-values were computed

for each model only with the interactions main effects (Model A) and its full model

with the three way interaction and its lower order terms (Model B). These two models

are shown to compare how the interaction model is different then just using the main

effects. Sex, Age, SES, Race, and Smoking status were identified as covariate effects

that would need to be first adjusted by including them as main effects in the linear

model before identifying potential interactions. These same variables are risk factors

which could potentially modify the effects of environmental toxins/dietary nutrients

on prevalence of periodontal disease. For that reason, at least one of these variables

was required to be in the resulting interaction. Twenty random starts were performed

for each analysis (100 total) and the anova.svyglm R function was used to extract

the interaction p-value from a sequential anova table. FSA sought to find feasible

solutions by way of minimizing that interaction p-value.

Each result includes a statistical table with the main effects model. This table

is meant to highlight what was present without the interactions that was found. To

visualize the interaction that was found a graph is included for interpretation. Two

variables were chosen to dichotomize on the median of the variables for graphical

purposes. The median split was chosen to try and keep group sizes as equal as

possible. While this was done for graphical purposes, the variables were still modeled

as continuous in the statistical model. From now on, when referring to the figure,

those subjects described as having higher levels for a variable are referent to those

subjects that have levels above the median, while those subjects that are described

as having lower levels for a variable are referent to those subjects that have levels

lower then the median.

The y-axis corresponds to the predicted probability of periodontitis from the

83



model for a given participant. This probability comes from the full model (A) that

includes the three way interaction. By plotting the probability of periodontitis for an

individual we are able to gain greater insight into the effect of interaction across the

sample.

The following results are broken into two groups. Group 1 is the results that

included just one of the five risk factors and toxins and/or dietary nutrients for the

other two factors in the interaction. Group 2 is the results that included two of

the five risk factors and just one toxin or dietary nutrient for the other factor in

the interaction. All of the 100 random random start’s solutions can be found in the

appendix table A.1 of this dissertation. Variables with ”zl” at the beginning of them

are variables that were first log transformed and then standardized.

4.3 Results

After excluding the 3,669 subjects who had a missing values for periodontal status,

sex, age, Socio Economic Status (SES), race, and smoking status, there were 8,168

subjects who were available for analysis. Missing data analysis showed that those

subjects who were older, men, identified as Mexican Americans, and those who had

lower SES were all more likely to have missing values for periodontal disease. Females

comprised of 51.4% of the final sample. Those who identified as Non Hispanic White

(49.2%), and Mexican American (24.8%) were the most represented within the sam-

ple. Those subjects who identified as Non Hispanic Black’s (17.8%), Other Hispanic

(4.6%), and Other race (3.6%) were the least represented in the sample. Those aged

31-49 made up the largest age demographic at 40.3%. Roughly 22% of the sample

was comprised of current smokers. Finally, 878 (10.7%) of the 8,168 subjects had

at least one periodontal tooth as defined by the NIDCR. The following table 4.1 is

adapted from Emecen-Huja [120].
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Table 4.1: Table of Basic Demographics

4.3.1 Results 1-3: One risk factor/confounder & two toxins and/or di-

etary nutrients

Result 1: 3-Way Interaction: Lead, g-Tocopherol (Vit E), and Age

As table 4.2 shows, Age, Lead, and g-Tocopherol were all statistically significant

(p < 0.05) for the main effects model. While these are significant, the interaction

that was found between Lead, g-Tocopherol (Vit E), and Age suggest that the effects

of these variables changes as the others change.

As fig. 4.1 shows, subjects predicted probability of periodontal disease increases

as age increases across all interaction subgroups. Those with lower levels of lead, re-

gardless of the level of g-Tocopherol , show similar predicted probability profiles with

age. Those subjects with lead levels above the median showed different trajectories of

predicted probability as age increases. Furthermore, subjects with high g-Tocopherol

levels show increasingly larger predicted probability of periodontal disease as age

increases.
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Table 4.2: Parameter Estimates For Main Effects Model From Result 1

OR & 95% CI P-Value
(Intercept) 0.07 ( 0.04 , 0.11 ) < 0.001
Age 1.03 ( 1.03 , 1.04 ) < 0.001
SES 0.82 ( 0.76 , 0.88 ) < 0.001
Sex 0.65 ( 0.54 , 0.79 ) < 0.001
Race:O Hisp 1.2 ( 0.75 , 1.93 ) 0.461
Race:White 0.49 ( 0.34 , 0.7 ) 0.001
Race:Black 1.43 ( 1 , 2.04 ) 0.058
Race:Other 0.98 ( 0.57 , 1.67 ) 0.938
Smoking:Current Smoker 2.19 ( 1.65 , 2.89 ) < 0.001
Smoking:Former Smoker 1.03 ( 0.79 , 1.35 ) 0.806
zl Blood Lead 1.55 ( 1.36 , 1.77 ) < 0.001
zl g-Tochopherol 1.12 ( 1.01 , 1.24 ) 0.040

Figure 4.1: Lead, g-Tocopherol (Vit E), and Age
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Result 2: 3-Way Interaction: Alpha Carotene, Toluene, and Age

For this result, there were no subjects in the dataset that had values of Alpha

Carotene, and Toluene over the age of 60.

As table 4.3 shows, Alpha Carotene, and Toluene were not statistically significant

(p < 0.05) for the main effects model. Therefore, if main effects had only been

searched for then both Alpha Carotene, and Toluene would have not been added to

the model. Age was statistically significant (p < 0.05) in the main effects model.

By adding the three way interaction, and its lower order terms, the results suggests

that by having high levels of Alpha Carotene, and lower levels of Toluene, individuals

odds of periodontal disease with age will be its lowest. Those with low levels of Alpha

Carotene and high levels of Toluene, will have the lowest odds of periodontal disease

with age.

Table 4.3: Parameter Estimates For Main Effects Model From Result 2

OR & 95% CI P-Value
(Intercept) 0.03 ( 0.01 , 0.12 ) < 0.001
Age 1.07 ( 1.05 , 1.1 ) < 0.001
SES 0.79 ( 0.68 , 0.91 ) 0.005
SEX 0.53 ( 0.38 , 0.74 ) 0.001
Race:O Hisp 0.74 ( 0.25 , 2.2 ) 0.595
Race:White 0.32 ( 0.19 , 0.53 ) < 0.001
Race:Black 0.74 ( 0.44 , 1.24 ) 0.264
Race:Other 0.73 ( 0.31 , 1.74 ) 0.490
Smoking:Current Smoker 1.92 ( 1.01 , 3.66 ) 0.062
Smoking:Former Smoker 0.85 ( 0.47 , 1.55 ) 0.600
zl Alpha Carotene 0.82 ( 0.65 , 1.04 ) 0.124
zl Toluene 1.2 ( 0.94 , 1.53 ) 0.154

As fig. 4.2 shows, subjects predicted probability of periodontal disease increases

as age increases across all interaction subgroups. Those subjects with low values of

Toluene, and high values of Alpha Carotene show the lowest trajectory of predicted

probability with age for all four subgroups. Next, subjects with either low Alpha

Carotene and low Toluene, or high Alpha Carotene and high Toluene showed very

similar trajectories of predicted probability with age. The highest trajectory of pre-

dicted probability of periodontitis with Age were those with low Alpha Carotene and
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Figure 4.2: Alpha Carotene, Toluene, and Age

high Toluene.

Result 3: 3-Way Interaction: B-cryptoxanthin, cis-Beta Carotene, and

Smoking

As table 4.4 shows, both B-cryptoxanthin, and cis-Beta Carotene were not statisti-

cally significant (p < 0.05) for the main effects model. Therefore, if main effects had

only been searched for then both B-cryptoxanthin, and cis-Beta Carotene would have

not been added to the model. The Current Smoker group was statistically significant

(p < 0.05) in the main effects model.. By adding the three way interaction, and

its lower order terms, this result suggests that current smokers could benefited from

having high levels of both B-cryptoxanthin, and cis-Beta Carotene.

As fig. 4.3 indicates, Non and Former Smokers share a similar trajectory of pre-

dicted probability of periodontal disease which decreases as Cis-Beta Carotene in-

creases regardless of levels of B-Cryptoxanthin. If the graph had B-Cryptoxanthin

on the x-axis it would show a similar effect, which would indicate that higher levels

of B-Cryptoxanthin were good regardless of the levels of cis-Beta Carotene. Current

smokers, high levels of both B-Cryptoxanthin and cis-Beta Carotene are needed to
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Table 4.4: Parameter Estimates For Main Effects Model From Result 3

OR & 95% CI P-Value
(Intercept) 0.07 ( 0.03 , 0.15 ) < 0.001
Age 1.05 ( 1.04 , 1.05 ) < 0.001
SES 0.81 ( 0.73 , 0.89 ) < 0.001
Sex 0.53 ( 0.42 , 0.66 ) < 0.001
Race:O Hisp 0.82 ( 0.41 , 1.62 ) 0.570
Race:White 0.37 ( 0.25 , 0.53 ) < 0.001
Race:Black 1.22 ( 0.78 , 1.9 ) 0.389
Race:Other 0.88 ( 0.52 , 1.48 ) 0.630
Smoking:Current Smoker 2.6 ( 1.81 , 3.71 ) < 0.001
Smoking:Former Smoker 0.93 ( 0.69 , 1.24 ) 0.611
zl Cryptoxanthin 0.94 ( 0.81 , 1.1 ) 0.478
zl BCarotene 0.9 ( 0.76 , 1.06 ) 0.213

Figure 4.3: B-cryptoxanthin, cis-beta carotene, and smoking

show a decrease trajectory of predicted probability of periodontal disease with beta-

carotene, while those low levels of beta-cryptoxanthin show an upward trajectory of

predicted probability.
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4.3.2 Results 4-5: Two risk factors/confounders & one toxins or dietary

nutrient

Result 4: 3-Way Interaction: Oxychlordane, Age, and SES

As table 4.5 shows, Oxychlordane was not statistically significant (p < 0.05) for

the main effects model. Therefore, if main effects had only been searched for, then

Oxychlordane would have not been added to the model. Both Age and SES was

statistically significant (p < 0.05) in the main effects model. By adding the three way

interaction, and its lower order terms, this result suggests the effects of Oxychlordane

change as the age and SES change. Those who are younger, and have lower SES see

the greatest effect of Oxyclordane on their odds of periodontal disease.

Table 4.5: Parameter Estimates For Main Effects Model From Result 4

OR & 95% CI P-Value
(Intercept) 0.12 ( 0.04 , 0.38 ) 0.001
Age 1.02 ( 1 , 1.04 ) 0.042
SES 0.82 ( 0.71 , 0.94 ) 0.009
SEX 0.59 ( 0.41 , 0.84 ) 0.006
Race:O Hisp 1.4 ( 0.59 , 3.28 ) 0.449
Race:White 0.49 ( 0.27 , 0.86 ) 0.018
Race:Black 1.61 ( 0.95 , 2.71 ) 0.086
Race:Other 1.39 ( 0.63 , 3.07 ) 0.418
Smoking:Current Smoker 3.11 ( 1.85 , 5.24 ) < 0.001
Smoking:Former Smoker 1.48 ( 0.94 , 2.32 ) 0.100
zl Oxyclordane 1.29 ( 0.98 , 1.7 ) 0.081

As fig. 4.4 shows, subjects predicted probability of periodontal disease decreases

as Socio Economic Status (SES) increases across all interaction subgroups. Those

subjects that had the lowest trajectory of predicted probability of periodontitis with

SES were those younger in Age, and lower in Oxychlordane. Those younger subjects

with higher levels of Oxychlordane showed a similar trajectory of predicted probability

of periodontitis with SES to those older subjects with either higher or lower levels of

Oxychlordane.
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Figure 4.4: Oxychlordane, Age, and SES

91



Result 5: 3-Way Interaction: Mercury Inorganic, Race (Black), and SES

While all race groups were tested in the interaction, only those subjects who identified

as Black were shown to have a statistically significant interaction with SES and

Mercury Inorganic.

As table 4.6 shows, Mercury Inorganic, Race (Black), and SES were all statistically

significant (p < 0.05) for the main effects model. By adding the three way interaction,

and its lower order terms, this result suggests the effects of Mercury Inorganic are

exacerbated by higher SES (higher Family Income to Poverty) within those who

identified as Black.

Table 4.6: Parameter Estimates For Main Effects Model From Result 5

OR & 95% CI P-Value
(Intercept) 0.02 ( 0.01 , 0.05 ) < 0.001
Age 1.04 ( 1.04 , 1.05 ) < 0.001
SES 0.86 ( 0.78 , 0.95 ) 0.006
SEX 0.89 ( 0.6 , 1.32 ) 0.561
Race:O Hisp 1.33 ( 0.73 , 2.42 ) 0.358
Race:White 0.29 ( 0.18 , 0.45 ) < 0.001
Race:Black 1.25 ( 0.78 , 1.99 ) 0.358
Race:Other 0.83 ( 0.45 , 1.52 ) 0.543
Smoking:Current Smoker 2.96 ( 2.03 , 4.3 ) < 0.001
Smoking:Former Smoker 0.99 ( 0.58 , 1.7 ) 0.970
zl Mercury Inorganic 0.68 ( 0.5 , 0.93 ) 0.022

As fig. 4.5 shows two different trajectories for those who identified as Black. Those

subjects who had lower levels of Mercury Inorganic showed a decreasing trajectory

of predicted probability of periodontitis with SES, while those with higher levels of

Mercury Inorganic showed an increasing trajectory of predicted probability of peri-

odontists with SES.

92



Figure 4.5: Mercury Inorganic, Race, SES
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4.4 Discussion

4.4.1 Result 1: Lead, g-Tocopherol (Vit E), and Age

A positive association was found in the NHANES III dataset (1988-1994) with lead

levels and prevalance of periodontal disease. Both men and women showed a positive

association with periodontal disease and blood lead serum levels [49]. A Korean

National Health and Nutritional Examination Survey (KNHANES) found a positive

association between blood lead serum levels and periodontitis for both females and

non-smokers [105]. One study examined blood lead serum levels of workers chronically

exposed to lead fumes and dust in a battery plant. Those with high lead serum blood

levels demonstrated increased propensity to a number of oral health issues, including

periodontitis and gingivitis. These individuals also had higher levels of dental decay

(carries), missing or filled teeth, and dental abrasion [? ].

Result one indicates one major finding that has not been previously shown in

other literature. As fig. 4.1 shows, as participants age, the effects of Vitamin E seem

to exacerbate the effects of having higher levels of lead. The research is limited on the

toxic effects of Vitamin E. However, one clinical trial examining the supplementation

of Vitamin E on cardiovascular events, saw an increased hemorrhagic stroke risk in

participants taking Vitamin E [127]. In addition, animal studies show that high

dosage of Vitamin E can cause hemorrhage and blood coagulation [128]. Possibly,

high dosage of Vitamin E supplementation is present in the survey participants. This

might provide clues that Vitamin E is adversely effecting periodontal status. While

this evidence is not conclusive, it does suggest a potentially interesting insight into

the epidemiology of periodontitis that has yet to be explored.

4.4.2 Result 2: Alpha Carotene, Toluene, and Age

Toluene is the most commonly used as a solvent in industry. It is found in gasoline,

acrylic paints, varnishes, lacquers, paint thinners, adhesives, glues, rubber cement,

airplane glue, and shoe polish. A common abuse is ”glue-sniffing.” Toluene affects

many biological systems including the following: central nervous system, urinary,
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pulmonary, cardiovascular, and gastrointestinal systems [129]. The most acute form

of toxicity presents as cardiac arrest and usually occurs in individuals with an undi-

agnosed arrhythmia [129].

Alpha carotene is one of the caratenoids (alpha-carotene, beta-carotene,crytoxanthin,

lutein, lycopene, and zeanxantin) and is considered an antioxidants. The balance be-

tween antioxidants and free radicals keeps a biological system free of inflammation.

When this balance is disrupted, oxidative stress occurs and disease follows [114]. Since

inflammation is implicated as the main cause of periodontal disease, researchers have

focused on finding antioxidants that are protective towards periodontitis.

Interestingly, Result 2 generally shows a mitigating effect of alpha-carotene on

toluene’s influence on periodontitis. Also, without including the three way interaction,

both Toluene and Alpha Carotene were non-significant. Previous research has failed

to highlight a connection of toluene and periodontitis. The negative effect toluene

has on bone metabolism might explain how higher toluene levels are associated with

prevalence of periodontist. Toluene has been show to effect skeletal bones. It is

possible that Toluene has a similar effect on alveolar bone. Toluene could also cause

a dysregulation of the host immune response.

It is possible that alpha-carotene alleviates the build-up of IL-6, and other inflam-

matory markers. Individuals with low levels of alpha- and beta-carotene are more

likely to have high levels of IL-6. Levels of IL-6, have been suggested as diagnos-

tic markers for periodontal disease because of the association of these cytokines in

gingival tissue of patients with periodontal disease [130].

4.4.3 Result 3: B-Cryptoxanthin, cis-Beta Carotene, and Smoking

Both B-cryptoxanthin and cis-Beta Carotene are carotenoids which act as antioxi-

dants and fight inflammation. These carotenoids are precursors to Vitamin A and

Beta-Carotene is the main source of Vitamin A in an individuals diet. Beta-Carotene

is an antioxidant, which could effect could explain the protective nature of carotenoids

on periodontal disease. Deficiency of Beta-Carotene and B-Cryptoxanthin has been

shown to be associated with periodontitis [115]. In addition, those with low levels of
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Alpha- and Beta-Carotene are more likely to have higher levels of IL-6 [131]. IL-6

is one inflammatory marker that has been suggested as a diagnostic measurement

for periodontal disease. High IL-6 levels has been shown to be associated with peri-

odontal disease [130]. The inverse association between carotenoids and inflammatory

markers and periodontal disease, seems to suggest that these carotenoids mitigate

the inflammation occurring in periodontal disease.

Besides a possible mitigating effect of Vitamin A precursors (carotenoids) on in-

flammation; Vitamin A has an anabolic effect, building of complex substances from

simpler ones, on bones [132] [133]. Cryptoxanthin is also protective against osteoporo-

sis in women. One article did a review on the mechanism by which Cryptoxanthin

maintains bone homeostasis. The balance between bone formation and bone resorp-

tion is critical. B-cryptoxanthin stimulates bone formation and also inhibits bone

resorption. This helps increase bone mass. According to this review, B-cryptoxanthin

demonstrates ”a preventative effect on bone loss in animal models for osteoporosis and

in health human or postmenopausal women [134].” The maintenance of bone health

via B-cryptoxanthin could also be protective in periodontal disease via the same mech-

anism. With these insights, result 3 seems to suggest that both B-Cryptoxanthin and

Beta-Carotene support bone health in current smokers.

4.4.4 Result 4: Oxychlordane, Age, and SES

A pesticide containing a mixture of chlordanes was used beginning in 1948 until the

1980s, when its use became restricted to termite control. At the time, evidence was

emerging about its toxicity [135]. In addition, information about its’ half life of 10-20

years after application for termites led to its eventual removal for all uses [136]. These

substances are considered persistent organic pollutants (POPs). POPs accumulate in

the Arctic and then are absorbed by phytoplankton, which are eventually eaten by

fish. One major concern is the ingestion of marine fish by humans. Oxychlordane, a

major metabolite of chlordanes, was present in human breast-milk in similar values

as arctic mammals, indicating its bio-accumulation in humans [137]. Chlordane is

absorbed rapidly through the skin and eyes. Acute exposure mainly effects the neu-
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rosystem via the Central Nervous System. Other biological systems affected include:

Gastrointestinal, dermal, ocular, respiratory, musculoskelatal, and hepatic [138]. Per-

manent alterations to the nervous system has been shown in subjects with continuous

chlordane exposure [138].

Result 4 demonstrates that SES tended to decrease the predicted probability of

periodontal disease across all subjects. This is a well-established association in the

periodontal literature. Researchers have previously examined a variety of POPs using

the NHANES 1999-2002 dataset and its relationship to periodontal disease. A posi-

tive association was found between organochlorines and periodontal disease. Young

individuals with high levels of oxychlordane showed similar trajectories of predicted

periodontal disease as older individuals. The predicted probability of periodontal

disease with SES was shifted to reflect an older individuals if young individuals had

high serum levels of oxychlordane. Considering that the previous researchers found

the same trend and that periodontal disease is largely a dysregulation of an inflamma-

tory response, it’s not surprising that oxychlordane has a negative effect. These same

researchers, Lee et al, found organochlorines to be the POP most strongly associ-

ated with Type II Diabetes, Insulin Resistence, and Metabolic Syndrome (all chronic

diseases). [139] [140] [141].

4.4.5 Result 5: Mercury Inorganic, Race, SES

As with any heavy metals, mercury poisoning is most devastating to the central ner-

vous system. It can lead to psychiatric disturbances, ataxia, visual loss, hearing loss,

and neuropathy [142]. The other system affected most acutely by mercury poisoning

is the renal system. In the United States the primary method of exposure to mercury

is through ingestion of contaminated fish [142]. Additionally, mercury poisoning is

associated with low birth weight and growth and development of children [143].

Result 5 demonstrated that non-Hispanic black participants with high levels of

mercury inorganic showed a increase in their trajectory of predicted probability with

SES while non-Hispanic blacks with low levels of mercury inorganic showed the op-

posite relationship. Because the relationship between SES and mercury levels is not
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completely consistent across all sub populations, it seems possible that non-Hispanic

blacks that had low levels of mercury were simply the sub population that were not

exposed to a heavy seafood diet, while those who had high levels of mercury con-

tained the part of the sub population that was exposed to a heavy seafood diet as

well as others who happened to be exposed to higher levels of mercury through their

environment in another way.

98



4.5 Conclusion

In this paper, a novel statistical algorithm has been employed to explore statistically

significant three-way interactions in a large complex data set. Because of this com-

plexity, some of the 100 results are uninterpretable and could be considered spurious.

Here, with the assistance of graphical tools, and clinical experts, each result that the

algorithm yielded was checked manually for its potential for further exploration.

The importance of identifying interactions that contribute to periodontal disease

cannot be understated. Due to the multi-faceted nature of periodontal disease, there

are many complex relationships that could contribute to the disease. Many of these

newly identified factors would not have been found if only main effects had been

searched for using subset selection. These factors effects are only apparent when

certain levels of another factor are high (or low) enough.

Depending on a participants exposure to environmental toxins, dietary nutrients,

and their various other demographics an individual may or may not be at a con-

siderably high risk for periodontal disease. Like many complex diseases, the risk

factors are not simply additive in nature, rather, they all contribute differently de-

pending on the presence or absence of other factors. These varying effects in light

of the exposure of another factor are exactly what statistical interactions seek adjust

for. By identifying consistent effect modifiers, clinicians and researchers alike will be

able to better diagnose, prevent, and understand the epidemiology and etiology of

periodontal disease.

Of the 33 results, five were selected on the basis of their strength in associa-

tion, graphical interpretability, and their potential to yield meaningful insight into

periodontal epidemiology. All five results provide interesting new insights into the

relationships between environmental toxins, dietary nutrients, and demographic sub-

groups. These results further support the notion that periodontal disease is multi-

faceted in nature, and illuminate the importance of exploring higher order interactions

to understand complex diseases.

In general, all five findings were compatible with the current literature. Carotenoids
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were protective in all the results that included them. Higher levels of pollutants, tox-

ins, and heavy metals such as lead, mercury, and toluene were associated with an

increase in odds of periodontitis. Subgroups of Race, Smoking Status, Age, and SES

were also shown to have increased odds of periodontitis. Higher levels of vitamin E

seemed to exacerbate the toxicity of blood lead on periodontal disease status.
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Chapter 5 Conclusion

“The failure to identify interactive effects in regression models could lead

to significant bias, misinterpretation of the results, and in some instances

to incorrect public health interventions with potential adverse implica-

tions.”[122]

5.1 Statistical Interactions: Barriers

While many barriers exist to interpret interactions and understand their meaningful-

ness, ignoring them could lead to misinterpretation and masked effects. Most public

health concerns and primary prevention, in general, involves complex, and multi-

faceted problems. Interactions are a potential strategy for quantifying complexity,

and may illuminate subgroups of patients that are at a particularly high (or low) risk

for a disease.

While interactions may be stated prior to and subsequently tested in final statisti-

cal models, testing two or three way interactions is not standard practice. Moreover,

investigation of interactions tends to be limited to categorical variables. Interpreta-

tion and graphing continuous variable interactions, however, usually limits the inves-

tigator in what interactions are considered or checked. While subgroups are often

of interest, they are generally explored in stratified analyses when little is known

about the inter-relationships between potential risk factors, and the disease. In fact,

three(or more)-way interactions are rarely explored, because these higher order inter-

actions are even more difficult to understand and interpret then two-way interactions.

Also because of the resulting number of potential combinations, the consensus avoids

investigating higher-order interactions.

While these barriers, collectively, can be overwhelming, interactions may hold the

greatest insights. For this reason, investigators have turned to Classification and

Regression Tree’s (CART). CART allows for easy intuitive interpretation because of
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of the visualization it provides via a branched tree diagrams. Examples of the results

that CART analysis provides can be found in chapter 2.

5.2 Limitations in Diagramming Interactions

While the diagram that CART provides can be great for interpretation, its statistical

downsides are sufficient to limit its potential. CART is limited in regards to how it

handles the variance in the data. For instance, the statistical test used to split the

variables is problematic because the standard errors it uses are estimated from only

the values that are considered at that level. If there are small sample sizes, or if the

sampling method is complex the standard errors are likely to be incorrect and lead

to spurious splits. There are no final tests for CART, and comparing CARTs can be

difficult.

Tuning parameters exist for every CART. These parameters include: lowest ter-

minal bin size, criterion for stopping early, split parameters, and others depending on

how the data are structured. CART can be very sensitive to these chosen parameters.

Results can be very different from one CART to the next, even with a small change

to just one of the parameters or data. These CART parameters are usually decided

via simulation.

If interactions are identified in CART, it is not guaranteed that those interactions

would be significant in a statistical regression model. The identification of model

based interactions that are statistically significant are preferred, usually found by

either exhaustively searching for them or by checking certain interactions that an

investigator believes to exist.

5.3 The Feasible Solution Algorithm

5.3.1 FSA for Exploratory Analysis

The Feasible Solution Algorithm (FSA) seeks to explore interactions in datasets where

little is known about the associations between covariates and the outcome of interest.

FSA, unlike CART, uses statistical models as its framework for finding solutions.
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The solutions that FSA produces are statistically optimal, in the sense that no one

exchange to any variables under consideration will improve the chosen criterion func-

tion. These exploratory solutions can then be put through another rigorous filter

(graphical overseer, opinion of a clinical expert) for their merit and/or value. As the

idiom says, ”a picture is worth a thousand words”, a graphical view of the complex

finding can go a long way in understanding the result. Using figures presented in

Chapter 4, visualization tools can still be used to assist in understanding term effects

in complex statistical models. This second filter, whether it be by graphical or clinical

perspective, assists in translating the science for practical use.

5.3.2 A Model Based Algorithm for Identifying Interactions

Statistical models exist to correctly account for the experimental and/or survey de-

sign process which generated the data. While exploratory data analysis is useful, ulti-

mately investigators seek a model-based approach. The FSA, uses statistical models

to identify interactions, thus strengthening the toolkit available to data analysts.

5.3.3 Statistical software for Identifying Interactions

rFSA, gives users an easy to use tool to explore their data for higher order interactions

or best subsets. This tool is readily available via CRAN or Github and ample docu-

mentation is provided to assist the user. Along side this package, a Shiny application

has been made to allow users who are not familiar with R to upload their own data

and explore best subsets and interactions. A graphical gadget has also been created

in R to plot higher order interactions in statistical models. This gadget plots similar

to those graphs in Chapter 4. This package, app, and gadget are regularly updated,

improved upon, and are subject to change moving forward. The appendix of this

dissertation highlights the codes used for the current rFSA package, version 0.1.0.

All of these tools were created to assist data analyst in building better statistical

models and generate new hypothesis related to disease and outcomes of interest.
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5.4 A Team Science Approach

Team science is the collaborative effort of many experts from multiple disciplines to

uncover new insights and ultimately advance science within a specific content domain.

The research described in Chapters 2 and 4, relies on the expertise of clinical periodon-

tists, periodontal epidemiologists, and statisticians to identify new subgroups who are

particularly high (or low) risk for periodontal disease. Clinical experts were able to

provide domain specific knowledge of how to define the disease and which solutions

would be considered useful from a clinical perspective. Periodontal epidemiology pro-

vided insight into what toxins and/or dietary nutrients in the NHANES data should

be used in the analysis, as well as how the results translate to the populations of inter-

est. Statisticians provided insight into how to best model the data, and what methods

exist to identify subgroups who are at particularly high (or low) risk. Statistical and

graphical tools were able to assist the statistician, clinicians, and epidemiologists in

identifying interesting solutions, and what they mean. This unity of content knowl-

edge, data management, computer science, and statistics is data science. By taking a

data and team science approach, the research communities will move closer towards

personalized and precision medicine.

5.5 Insights into the Epidemiology of Periodontal Disease

The future of research in periodontics will seek to identify complex relationships of

risk factors, newly discoverd biomarkers, and more precise preventative measures.

By way of the FSA, this disseration work utilizes exisiting datasets to uncover inter-

dependent relationships of known risk factors, nutrients, and environmental toxins

with periodontal disease. Recent discoveries have shown that the various sub-types

of periodontal disease have different etiologies, bacterial pathogens, and immunolog-

ical responses [84]. Similarly, Chapter 4 highlights three way interactions between

environmental toxins, vitamins, nutrients, and known risk factors which contribute

to the onset of periodontal disease.

By targeting 3-way interactions with known risk factors, this dissertation pro-
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vided enhanced understanding of the combination of these variables. Results 2, and

4 in Chapter 4 supports previous findings that carotenoids stimulate processes consis-

tent with maintenance of bone homeostasis. Moreover, this result suggest that these

carotenoid benefits are only present in specific sub-populations that have specific

combinations of other carotenoids with the absence of smoking, and toluene. Also,

in Results 3 and 4, the effects of Socio Economic Status, and Race were found to

be modified by the presence or absence of toxins such as mercury and oxychlordane.

While an age effect on periodontal disease has been specifically identified as cumu-

lative in nature, Results 1-3 suggest that aging effects may be further cumulative in

the presence of lead, vitamin E, oxychlordane, and SES.

5.5.1 Insights into Public health and Clinical Prevention

By identifying three way interactions related to periodontal disease, patients sub-

groups with specifically higher risk of periodontal disease were identified. These

newly identified subgroups allow clinicians and periodontal researchers a strategy for

targeting new treatments, drugs, and prevention approaches to combat the disease.

Specifically, this research suggests the added benefit of carotenoids for current

smokers. One clinical approach would be to develop a periodontal supplement with

a variety of carotenoids shown to assist in periodontal disease. Also, many fruits

and vegetables have high levels of carotenoids and could be suggested as a type of

”prophylactic preventive” for periodontal disease patients. A diet high in fruits and

vegetables has been targeted as an prevention strategy for many diseases [144].

No smoking history, and limited exposure to environmental toxins such as oxy-

chlordane, toluene, mercury, and lead all were shown to assist in lowering the odds

of periodontal disease. These effects were typically modified by the presence of

carotenoids, which further reiterates the ability of carotenoids to enhance bone health.
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5.6 Final Thoughts And Future Directions

Statisticians often lack the tools to adequately look for interactions in large datasets.

This lack of tools limits the questions that investigators are able to ask and the

discoveries that can be uncovered. The rFSA package and accompanying shiny app

seek to serve as a tool available to statisticians or data scientists to identify potential

interactions.

While FSA is a good first step to identify interactions, more work needs to done in

exploring how to plot interactions where there are many main effects and lower order

terms. Interpreting models with many variables is challenging and FSA’s success

hinges on the ability to adequately interpret these models.

Plans to continue to add functionality to FSA are currently underway. I plan to

add more criterion functions, supported modeling types, and software. Python, JMP,

and SAS are currently on my list of statistical software to support in the future. The

Shiny app is also an important tool for the algorithms success. I plan to add the app

to the R package, so users can use the application on their own computer where data

is secure. I plan to further develop the visualization module on the app, so users can

better view their results. One major benefit of FSA is its model based approach. Any

statistical method can be used along with FSA to identify subsets or interactions of

interest. More methods will be added in the future versions of the package. The app

and R package serve as tools where researchers can explore their data and uncover

new associations that could not have investigated otherwise.

Copyright© Joshua Lambert, 2017.
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Appendix: rFSA R Package

Main FSA Functions

lmFSA rFSA: Feasible Solution Algorithm (FSA) for Linear Mod-

els

Description

A function using a Feasible Solution Algorithm to find a set of feasible solutions

for a linear model of a specific form that could include mth-order interactions

(Note that these solutions are optimal in the sense that no one swap to any of the

variables will increase the criterion function.)

Usage

lmFSA(formula, data, fixvar = NULL, quad = FALSE, m = 2, numrs = 1,

cores = 1, interactions = TRUE, criterion = r.squared, minmax = "max",

...)

Arguments

formula an object of class ”formula” (or one that can be coerced to that

class): a symbolic description of the model to be fitted. See

help(lm) for details.

data a data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model.

fixvar a variable to fix in the model. Usually a covariate that should

always be included (Example: Age, Sex). Will still consider it

with interactions. Default is NULL.
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quad to include quadratic terms or not.

m order of terms to potentially include. If interactions is set to TRUE

then m is the order of interactions to be considered. Defaults to

2. For Subset selection (interaction=F), m is the size of the subset

to examine. Default is 2.

numrs number of random starts to perform.

cores number of cores to use while running. Note: Windows can only

use 1 core. See mclapply for details. If function detects a Windows

user it will automatically set cores=1.

interactions

T or F for whether to include interactions in model. Defaults to

FALSE.

criterion which criterion function to either maximize or minimize. For linear

models one can use: r.squared, adj.r.squared, cv5.lmFSA (5 Fold

Cross Validation error), cv10.lmFSA (10 Fold Cross Validation

error), apress (Allen’s Press Statistic), int.p.val (Interaction P-

value), AIC, BIC.

minmax whether to minimize or maximize the criterion function

... arguments to be passed to the lm function

Details

PLEASE NOTE: make sure categorical variables are factors or characters other-

wise answers will not reflect the variable being treated as a continuous variable.

Value

returns a list of solutions and table of unique solutions. $solutions is a matrix of

fixed terms, start position, feasible solution, criterion function value (p-value of

interaction), and number of swaps to solution. $table is a matrix of the unique

feasible solutions and how many times they occured out of the number of random
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starts chosen. It also returns any warning messages with these solutions in the

last column. $efficiency is text comparing how many models you ran during your

FSA search compared to how many you would have done with exhaustive search.

Note: The FSA algorithm takes additional time to run on top of the model checks

that were done during the algorithm. This additional time is approximately 15

Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp+wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,cores=1)

print(fit) #print formulas of fitted models

summary(fit) #review

Code

1 lmFSA = function(formula ,data ,fixvar = NULL ,quad = FALSE ,m = 2,numrs = 1,

2 cores = 1,interactions = TRUE ,criterion = r.squared ,minmax = "max" ,...) {

3 if(identical(criterion ,bdist)){return(show("Sorry the criterion function you

listed cannot be used with lmFSA."))}

4 formula <- as.formula(formula)

5 fit <- lm(formula ,data = data ,...)

6 yname <- all.vars(formula)

7 if (!all(c(yname ,fixvar) %in% colnames(data))) {

8 return(

9 show(

10 "Sorry , one of the variables you specified in your formula or fixvar is not a

name for a column in the data you specified. Please try again."

11 )

12 )

13 }

14

15 originalnames <- colnames(data)

16 data <- data.frame(data)

17 lhsvar <- yname [1]

18

19 if (. Platform\$OS.type == "unix") {

20 } else {
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21 cores = 1

22 }

23

24

25 ypos <- which(colnames(data) == lhsvar)

26 startvar <- NULL

27 xdata <- data[,-ypos]

28 ydata <- data[,ypos]

29 newdata <- data.frame(cbind(ydata ,xdata))

30 fixpos <- which(colnames(xdata) %in% fixvar)

31 if (length(fixpos) == 0) {

32 fixpos = NULL

33 }

34

35 history <- matrix(rep(NA,numrs * (2 * m + 3)),ncol = ((2 * m + 3)))

36 history [,1:m] <- rstart(m = m,nvars = (dim(newdata)[2] - 1),numrs = numrs)

37 curpos <- which(colnames(xdata) %in% startvar [-1])

38 if (length(curpos) != 0) {

39 history <- rbind(c(curpos ,rep(NA ,length(curpos) + 2)),history)

40 }

41

42 fsa <- function(i,history ,...) {

43 cur <- history[i,1:m]

44 last <- rep(NA ,m)

45 numswap <- 0

46 memswap <- NULL

47 if (minmax == "max") {

48 last.criterion <- (-Inf)

49 }

50 if (minmax == "min") {

51 last.criterion <- (Inf)

52 }

53 checks <- 0

54 while (!identical(cur ,last) && !identical(c(cur[2],cur [1]),last)) {

55 last <- cur

56 if (numswap == 0) {

57 moves <- swaps(cur = cur ,n = dim(xdata)[2],quad = quad)

58 }

59 if (numswap > 0) {

60 moves <-

61 nextswap(

62 curpos = cur ,n = dim(xdata)[2],quad = quad ,prevpos = memswap

63 )\$nswaps

64 }

65 if (dim(moves)[2] == 0) {
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66 moves <- t(t(last))

67 }

68 if (interactions == T) {

69 form <-

70 function(j)

71 formula(paste0(

72 colnames(newdata)[1],"~",paste0(fixvar ,sep = "+"),paste(colnames(xdata)[moves

[,j]],collapse = "*")

73 ),sep = "")

74 }

75 if (interactions == F) {

76 form <-

77 function(j)

78 formula(paste0(

79 colnames(newdata)[1],"~",paste0(fixvar ,sep = "+"),paste(colnames(xdata)[moves

[,j]],collapse = "+")

80 ),sep = "")

81 }

82 tmp <-

83 parallel :: mclapply(

84 X = 1:dim(moves)[2],FUN = function(k)

85 criterion(lm(form(k),data = newdata ,...)),mc.cores = cores

86 )

87 checks <- checks + dim(moves)[2]

88 if (minmax == "max") {

89 cur <- moves[,which.max.na(unlist(tmp))[1]]

90 cur.criterion <- unlist(tmp[which.max.na(unlist(tmp))[1]])

91 if (last.criterion > cur.criterion) {

92 cur <- last.pos

93 cur.criterion <- last.criterion

94 }

95 }

96 if (minmax == "min") {

97 cur <- moves[,which.min.na(unlist(tmp))[1]]

98 cur.criterion <- unlist(tmp[which.min.na(unlist(tmp))[1]])

99 if (last.criterion < cur.criterion) {

100 cur <- last.pos

101 cur.criterion <- last.criterion

102 }

103 }

104 numswap <- numswap + 1

105 last1 <- last

106 last.criterion <- cur.criterion

107 last.pos <- cur

108 memswap <- unique(c(memswap ,last1))
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109 }

110 history[i,(1 + m):(2 * m)] <- cur

111 history[i,(dim(history)[2] - 2)] <- cur.criterion

112 history[i,(dim(history)[2] - 1)] <- numswap - 1

113 history[i,(dim(history)[2])] <- checks

114 return(history[i,])

115 }

116 solutions <-

117 matrix(unlist(lapply(

118 1:numrs ,FUN = function(i)

119 fsa(i,history)

120 )),ncol = dim(history)[2], byrow = T)

121 solutions [,1:(2 * m)] <-

122 matrix(colnames(newdata)[c(solutions [ ,1:(2 * m)] + 1)],ncol = (2 * m))

123 solutions <- data.frame(solutions)

124 colnames(solutions) <-

125 c(

126 paste("start" ,1:m,sep = "."),paste("best" ,1:m,sep = "."),"criterion","swaps",

"checks"

127 )

128 solutions\$criterion <-

129 as.numeric(levels(solutions\$criterion))[solutions\$criterion]

130 solutions\$swaps <-

131 as.numeric(levels(solutions\$swaps))[solutions\$swaps]

132 solutions\$checks <-

133 as.numeric(levels(solutions\$checks))[solutions\$checks]

134 if (length(fixvar) != 0) {

135 solutions <-

136 data.frame(fixvar = matrix(

137 rep(x = fixvar ,dim(solutions)[1]),nrow = dim(solutions)[1], byrow = T

138 ),solutions)

139 }

140 solutions <- solutions

141 a <- solutions[,(length(fixvar) + m + 1):( length(fixvar) + m + 1 + m)]

142 b <- unique(t(apply(a,sort ,MARGIN = 1)),MARGIN = 1)

143 a <- t(apply(a,sort ,MARGIN = 1))

144 c <- cbind(b,0)

145 for (i in 1:dim(b)[1]) {

146 for (j in 1:dim(a)[1]) {

147 c[i,(m + 2)] <-

148 sum(as.numeric(c[i,(m + 2)]) + as.numeric(identical(a[j,],b[i,])))

149 }

150 }

151 tableres <- data.frame(cbind(c),stringsAsFactors = F)

152 colnames(tableres)[(dim(tableres)[2])] <- "times"

112



153 colnames(tableres)[2:( dim(tableres)[2] - 1)] <-

154 paste("Var" ,1:m,sep = "")

155 colnames(tableres)[1] <- "criterion"

156

157 call <- mget(names(formals ()),sys.frame(sys.nframe ()))

158 ls <-

159 list(

160 originalfit = fit ,call = call ,solutions = solutions ,table = tableres ,

efficiency =

161 paste(

162 "You did:",sum(solutions\$checks)," model checks compared to ",choose(n = dim

(xdata)[2],k = m)," checks you would have done with exhaustive search."

163 )

164 )

165 class(ls) <- "FSA"

166 invisible(ls)

167 return(ls)

168 }

glmFSA rFSA: Feasible Solution Algorithm (FSA) for Generalized

Linear Models

Description

A function using a Feasible Solution Algorithm to find a set of feasible solutions

for a generalized linear model of a specific form that could include mth-order

interactions (Note that these solutions are optimal in the sense that no one swap

to any of the variables will increase the criterion function.)

Usage

glmFSA(formula, data, fixvar = NULL, quad = FALSE, m = 2, numrs = 1,

cores = 1, interactions = TRUE, criterion = AIC, minmax = "min",

family = "binomial", ...)
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Arguments

formula an object of class ”formula” (or one that can be coerced to that

class): a symbolic description of the model to be fitted. See

help(glm) for details.

data a data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model.

fixvar a variable to fix in the model. Usually a co-variate that should

always be included (Example: Age, Sex). Will still consider it

with interactions. Default is NULL.

quad to include quadratic terms or not.

m order of terms to potentially include. If interactions is set to TRUE

then m is the order of interactions to be considered. Defaults to

2. For Subset selection (interaction=F), m is the size of the subset

to examine. Default is 2.

numrs number of random starts to perform.

cores number of cores to use while running. Note: Windows can only

use 1 core. See mclapply for details. If function detects a Windows

user it will automatically set cores=1.

interactions

T or F for whether to include interactions in model. Defaults to

FALSE.

criterion which criterion function to either maximize or minimize. For lin-

ear models one can use: apress (Allens Press Statistic), int.p.val

(Interaction p-value), AIC, BIC.

minmax whether to minimize or maximize the criterion function

family family argument passed to glm. A description of the error distri-

bution and link function to be used in the model. This can be a
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character string naming a family function, a family function or the

result of a call to a family function.

... arguments to be passed to the glm function

Details

PLEASE NOTE: make sure categorical variables are factors or characters other-

wise answers will not reflect the variable being treated as a continuous variable.

Value

returns a list of solutions and table of unique solutions. $solutions is a matrix of

fixed terms, start position, feasible solution, criterion function value (p-value of

interaction), and number of swaps to solution. $table is a matrix of the unique

feasible solutions and how many times they occurred out of the number of random

starts chosen. It also returns any warning messages with these solutions in the

last column. $efficiency is text comparing how many models you ran during your

FSA search compared to how many you would have done with exhaustive search.

Note: The FSA algorithm takes additional time to run on top of the model checks

that were done during the algorithm. This additional time is approximately 15

Examples

dat<-read.csv("http://tinyurl.com/zq7l775",header = FALSE)

colnames(dat)<-c("Class","Age","Sex","Sterioid","Antivirals",

"Fatigue","Malaise","Anorexia","Liver Big",

"Liver Firm","Spleen Palpable","Spiders",

"Ascites","Varices","Bilirubin","Alk Phosphate",

"Sgot","Albumin","Protime","Histology")

dat<-as.matrix(dat)

dat[which(dat=="?")]=NA

dat<-data.frame(dat)

dat[,c(2,15,16,17,18,19)]<-lapply(X = dat[,c(2,15,16,17,18,19)],
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as.numeric)

colnames(dat)

fit<-glmFSA(formula="Class~Age+Sgot*Albumin",data=dat,fixvar="Age",

quad=FALSE,m=2,

numrs=10,family="binomial",cores=1)

Code

1 glmFSA = function(formula ,data ,fixvar = NULL ,quad = FALSE ,m = 2,numrs = 1,

cores = 1,

2 interactions = TRUE ,criterion = AIC ,minmax = "min",family =

3 "binomial" ,...) {

4 if(identical(criterion ,r.squared)|identical(criterion ,r.squared)){return(show

("Sorry the criterion function you listed cannot be used with glmFSA."))}

5 formula <- as.formula(formula)

6 fit <- glm(formula ,data = data ,family = family ,...)

7 yname <- all.vars(formula)

8 if (!all(c(yname ,fixvar) %in% colnames(data))) {

9 return(

10 show(

11 "Sorry , one of the variables you specified in your formula or fixvar is not a

name for a column in the data you specified. Please try again."

12 )

13 )

14 }

15 originalnames <- colnames(data)

16 data <- data.frame(data)

17 lhsvar <- yname [1]

18

19 if (. Platform\$OS.type == "unix") {

20 } else {

21 cores = 1

22 }

23

24

25 ypos <- which(colnames(data) == lhsvar)

26 startvar <- NULL

27 xdata <- data[,-ypos]

28 ydata <- data[,ypos]

29 newdata <- data.frame(cbind(ydata ,xdata))

30 fixpos <- which(colnames(xdata) %in% fixvar)

31 if (length(fixpos) == 0) {

32 fixpos = NULL
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33 }

34

35 history <- matrix(rep(NA,numrs * (2 * m + 3)),ncol = ((2 * m + 3)))

36 history [,1:m] <- rstart(m = m,nvars = (dim(newdata)[2] - 1),numrs = numrs)

37 curpos <- which(colnames(xdata) %in% startvar [-1])

38 if (length(curpos) != 0) {

39 history <- rbind(c(curpos ,rep(NA ,length(curpos) + 2)),history)

40 }

41

42 fsa <- function(i,history ,...) {

43 cur <- history[i,1:m]

44 last <- rep(NA ,m)

45 numswap <- 0

46 memswap <- NULL

47 if (minmax == "max") {

48 last.criterion <- (-Inf)

49 }

50 if (minmax == "min") {

51 last.criterion <- (Inf)

52 }

53 checks <- 0

54 while (!identical(cur ,last) && !identical(c(cur[2],cur [1]),last)) {

55 last <- cur

56 if (numswap == 0) {

57 moves <- swaps(cur = cur ,n = dim(xdata)[2],quad = quad)

58 }

59 if (numswap > 0) {

60 moves <-

61 nextswap(

62 curpos = cur ,n = dim(xdata)[2],quad = quad ,prevpos = memswap

63 )\$nswaps

64 }

65 if (dim(moves)[2] == 0) {

66 moves <- t(t(last))

67 }

68 if (interactions == T) {

69 form <-

70 function(j)

71 formula(paste0(

72 colnames(newdata)[1],"~",paste0(fixvar ,sep = "+"),paste(colnames(xdata)[moves

[,j]],collapse = "*")

73 ),sep = "")

74 }

75 if (interactions == F) {

76 form <-
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77 function(j)

78 formula(paste0(

79 colnames(newdata)[1],"~",paste0(fixvar ,sep = "+"),paste(colnames(xdata)[moves

[,j]],collapse = "+")

80 ),sep = "")

81 }

82 tmp <-

83 parallel :: mclapply(

84 X = 1:dim(moves)[2],FUN = function(k)

85 criterion(glm(

86 form(k),data = newdata ,family = family ,...

87 )),mc.cores = cores

88 )

89 checks <- checks + dim(moves)[2]

90 if (minmax == "max") {

91 cur <- moves[,which.max.na(unlist(tmp))[1]]

92 cur.criterion <- unlist(tmp[which.max.na(unlist(tmp))[1]])

93 if (last.criterion > cur.criterion) {

94 cur <- last.pos

95 cur.criterion <- last.criterion

96 }

97 }

98 if (minmax == "min") {

99 cur <- moves[,which.min.na(unlist(tmp))[1]]

100 cur.criterion <- unlist(tmp[which.min.na(unlist(tmp))[1]])

101 if (last.criterion < cur.criterion) {

102 cur <- last.pos

103 cur.criterion <- last.criterion

104 }

105 }

106 numswap <- numswap + 1

107 last1 <- last

108 last.criterion <- cur.criterion

109 last.pos <- cur

110 memswap <- unique(c(memswap ,last1))

111 }

112 history[i,(1 + m):(2 * m)] <- cur

113 history[i,(dim(history)[2] - 2)] <- cur.criterion

114 history[i,(dim(history)[2] - 1)] <- numswap - 1

115 history[i,(dim(history)[2])] <- checks

116 return(history[i,])

117 }

118 solutions <-

119 matrix(unlist(lapply(

120 1:numrs ,FUN = function(i)
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121 fsa(i,history)

122 )),ncol = dim(history)[2], byrow = T)

123 solutions [,1:(2 * m)] <-

124 matrix(colnames(newdata)[c(solutions [ ,1:(2 * m)] + 1)],ncol = (2 * m))

125 solutions <- data.frame(solutions)

126 colnames(solutions) <-

127 c(

128 paste("start" ,1:m,sep = "."),paste("best" ,1:m,sep = "."),"criterion","swaps",

"checks"

129 )

130 solutions\$criterion <-

131 as.numeric(levels(solutions\$criterion))[solutions\$criterion]

132 solutions\$swaps <-

133 as.numeric(levels(solutions\$swaps))[solutions\$swaps]

134 solutions\$checks <-

135 as.numeric(levels(solutions\$checks))[solutions\$checks]

136 if (length(fixvar) != 0) {

137 solutions <-

138 data.frame(fixvar = matrix(

139 rep(x = fixvar ,dim(solutions)[1]),nrow = dim(solutions)[1], byrow = T

140 ),solutions)

141 }

142 solutions <- solutions

143 a <- solutions[,(length(fixvar) + m + 1):( length(fixvar) + m + 1 + m)]

144 b <- unique(t(apply(a,sort ,MARGIN = 1)),MARGIN = 1)

145 a <- t(apply(a,sort ,MARGIN = 1))

146 c <- cbind(b,0)

147 for (i in 1:dim(b)[1]) {

148 for (j in 1:dim(a)[1]) {

149 c[i,(m + 2)] <-

150 sum(as.numeric(c[i,(m + 2)]) + as.numeric(identical(a[j,],b[i,])))

151 }

152 }

153 tableres <- data.frame(cbind(c),stringsAsFactors = F)

154 colnames(tableres)[(dim(tableres)[2])] <- "times"

155 colnames(tableres)[2:( dim(tableres)[2] - 1)] <-

156 paste("Var" ,1:m,sep = "")

157 colnames(tableres)[1] <- "criterion"

158

159 call <- mget(names(formals ()),sys.frame(sys.nframe ()))

160 ls <-

161 list(

162 originalfit = fit ,call = call ,solutions = solutions ,table = tableres ,

efficiency =

163 paste(
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164 "You did:",sum(solutions\$checks)," model checks compared to ",choose(n = dim

(xdata)[2],k = m)," checks you would have done with exahstive search."

165 )

166 )

167 class(ls) <- "FSA"

168 invisible(print(ls))

169 return(ls)

170

171 }

S3 Supporting Functions

fitmodels Model fitting function for FSA solutions

Description

Model fitting function for FSA solutions

Usage

fitmodels(object, ...)

Arguments

object FSA object to construct models on.

... other parameters passed to lm or glm. See help(lm) or help(glm)

for other potential arguments

Value

list of FSA models that have been fitted.
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Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,save\_solutions=FALSE,cores=1)

fitmodels(fit)

Code

1 fitmodels <- function(object ,...) {

2 stopifnot(inherits(object , "FSA"))

3 resls <- list()

4 one <-capture.output(forms <- print(object))

5 if (is.null(object\$call\$fam)) {

6 for (i in 1:( dim(object\$table)[1] + 1)) {

7 resls[[i]] <- lm(forms\$Formula [[i]],data = object\$call\$data ,...)

8 }

9

10 } else{

11 for (i in 1:( dim(object\$table)[1] + 1)) {

12 resls[[i]] <-

13 glm(forms\$Formula [[i]],data = object\$call\$data ,family = object\$call\$fam

,...)

14 }

15 }

16 return(resls)

17 }

fitted.FSA Fitted Values for FSA solutions

Description

Fitted Values for FSA solutions
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Usage

## S3 method for class 'FSA'

fitted(object, ...)

Arguments

object FSA object to get fitted values from.

... other parameters passed to fitmodels or fitted function. See help(fitmodels)

or help(fitted) for assistance.

Value

list of fitted values from each FSA model.

Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,save\_solutions=FALSE,cores=1)

fitted(fit)

Code

1 fitted.FSA <- function(object ,...) {

2 stopifnot(inherits(object , "FSA"))

3 fm <- fitmodels(object ,...)

4 res <- list()

5 for (i in 1: length(fm)) {

6 res[[i]] <- fitted(fm[[i]] ,...)

7 }

8 return(res)

9 }
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plot.FSA Diagnostic Plots for FSA solutions

Description

Diagnostic Plots for FSA solutions

Usage

## S3 method for class 'FSA'

plot(x, ask = F, easy = T, ...)

Arguments

x FSA object to see diagnostic plots on.

ask logical; if TRUE, the user is asked before each plot. See help(plot.lm).

easy logical; should diagnostic plots be presented in easy to read for-

mat?

... arguments to be passed to other functions.

Value

diagnostic plots to plot window.

Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,save\_solutions=FALSE,cores=1)

plot(x=fit)
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Code

1 plot.FSA <- function(x,ask = F,easy = T ,...) {

2 stopifnot(inherits(x, "FSA"))

3 fm <- fitmodels(x)

4 if (length(fm) < 4) {

5 dm <- length(fm)

6 } else

7 dm <- 4

8 if (easy == F) {

9 par(mfrow = c(1,4))

10 }

11 else{

12 par(mfrow = c(dm ,4))

13 }

14 for (i in 1: length(fm)) {

15 one <-capture.output(pfit <-print(x))

16 plot(fm[[i]],ask = ask ,main = rownames(pfit)[i])

17 }

18 }

predict.FSA Prediction function for FSA solutions

Description

Prediction function for FSA solutions

Usage

## S3 method for class 'FSA'

predict(object, ...)

Arguments

object FSA object to conduct predictions on.

... other parameters passed to fitmodels or predict functions. See

help(fitmodels) or help(predict) for assistance.
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Value

list of predicted values from each FSA model.

Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,save\_solutions=FALSE,cores=1)

predict(fit)

predict(fit,newdata=mtcars[1:15,])

predict.FSA Prediction function for FSA solutions

Description

Prediction function for FSA solutions

Usage

## S3 method for class 'FSA'

predict(object, ...)

Arguments

object FSA object to conduct predictions on.

... other parameters passed to fitmodels or predict functions. See

help(fitmodels) or help(predict) for assistance.

Value

list of predicted values from each FSA model.
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Examples

predict.FSA <- function(object,...) {

stopifnot(inherits(object, "FSA"))

fm <- fitmodels(object,...)

res <- list()

for (i in 1:length(fm)) {

res[[i]] <- predict(fm[[i]],...)

}

return(res)

}

print.FSA Printing function for FSA solutions

Description

Printing function for FSA solutions

Usage

## S3 method for class 'FSA'

print(x, ...)

Arguments

x FSA object to print details about.

... arguments to be passed to other functions.

Value

list of Feasible Solution Formula’s, Original Fitted model formula and criterion

function and times converged to details.
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Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,save\_solutions=FALSE,cores=1)

print(fit)

Code

1 print.FSA <- function(x ,...) {

2 stopifnot(inherits(x, "FSA"))

3 vars <-

4 x\$table[,-which(colnames(x\$table) %in% c("criterion","times","fixvar"))]

5 orgvars <- all.vars(x\$call\$formula)

6 if (x\$call\$interactions == T) {

7 form <-

8 function(j)

9 paste0(orgvars [1]," ~ ",if (!is.null(x\$call\$fixvar)) {

10 paste0(x\$call\$fixvar ,collapse = " + ")

11 },if (!is.null(x\$call\$fixvar)) {

12 " + "

13 },paste(vars[j,],collapse = " * "),sep = "")

14 }

15 if (x\$call\$interactions == F) {

16 form <-

17 function(j)

18 paste0(orgvars [1]," ~ ",if (!is.null(x\$call\$fixvar)) {

19 paste0(x\$call\$fixvar ,collapse = " + ")

20 },if (!is.null(x\$call\$fixvar)) {

21 " + "

22 },paste(vars[j,],collapse = " + "),sep = "")

23 }

24 tab <- cbind(matrix(lapply(

25 X = 1:dim(x\$table)[1],FUN = form

26 )),x\$table\$criterion ,x\$table\$times)

27 tab <- rbind(c(

28 Reduce(paste0 ,deparse(formula(x\$originalfit))),x\$call\$criterion(x\$

originalfit),NA

29 ),tab)

30 tab <- data.frame(tab)

31 cname <- formals(x\$call\$criterion)\$name
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32 if (is.null(cname)) {

33 cname = "criterion"

34 }

35 colnames(tab) <- c("Formula", cname , "Times FS")

36 tab[,2] <- as.numeric(unlist(tab[,2]))

37 rownames(tab) <-

38 c("Original Fit ",paste("FS" ,1:dim(x\\$table)[1],sep = ""))

39 tab <- data.frame(tab)

40 print(tab)

41 }

summary.FSA Summary function for FSA solutions

Description

Summary function for FSA solutions

Usage

## S3 method for class 'FSA'

summary(object, ...)

Arguments

object FSA object to see summaries on.

... arguments to be passed to other functions.

Value

list of summarized lm or glm output.
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Examples

#use mtcars package see help(mtcars)

data(mtcars)

colnames(mtcars)

fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",

quad=FALSE,m=2,numrs=10,save\_solutions=FALSE,cores=1)

summary(fit)

Code

1 summary.FSA <- function(object ,...) {

2 fm <- fitmodels(object)

3 sumresls <- list()

4 for (i in 1: length(fm)) {

5 sumresls [[i]] <- summary(fm[[i]])

6 }

7 return(sumresls)

8 }

Criterion Functions

r.squared An rFSA Criterion Function.

Description

rFSA Criterion Function to compute R squared.

Usage

r.squared(model, name = "R Squared")
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Arguments

model lm or glm fit to be passed.

name passed to print.FSA

adj.r.squared An rFSA Criterion Function.

Description

rFSA Criterion Function to compute Adjusted R-Squared.

Usage

adj.r.squared(model, name = "Adj R Squared")

Arguments

model lm or glm fit to be passed.

name passed to print.FSA

Code

1 adj.r.squared <- function(model ,name = "Adj R Squared") {

2 #Adjusted R squared

3 if(is.null(model\$family [[1]])){return(summary(model)\$adj.r.squared)

4 } else return (1.1)

5 }
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rmse An rFSA Criterion Function.

Description

rFSA Criterion Function to compute Root Mean Squared Error.

Usage

rmse(model, name = "RMSE")

Arguments

model lm or glm fit to be passed.

name passed to print.FSA

Code

1 rmse <- function(model ,name = "RMSE") {

2 #Root Mean Squared Error

3 sqrt(mean(model\$residuals ^ 2))

4 }

apress An rFSA Criterion Function.

Description

rFSA Criterion Function to Allen’s Press Statistic.

Usage

apress(model, name = "PRESS")
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Arguments

model lm or glm fit to be passed.

name passed to print.FSA

Code

1 apress <- function(model , name = "PRESS") {

2 #Allen ’s PRESS statistic

3 presid <- resid(model)/(1 - influence(model)\\$hat)

4 sum(presid ^2)

5 }

int.p.val An rFSA Criterion Function.

Description

rFSA Criterion Function to compute Liklihood Ratio Test Statistics p-value for

the largest order interation term.

Usage

int.p.val(model, name = "Interaction P-Value")

Arguments

model lm or glm fit to be passed.

name passed to print.FSA

Code

1 int.p.val <- function(model ,name = "Interaction P-Value") {

2 if((is.null(model\$call\$family)|is.null(model\$family [[1]])) & !(length(grep

(pattern = ":",names(model\$coefficients)))==0)){return(tail(anova(model ,

test="LRT")[,5],2)[1])
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3 } else if((is.null(model\$call\$family)|is.null(model\$family [[1]])) & (

length(grep(pattern = ":",names(model\$coefficients)))==0)){

4 return (0)

5 } else if((model\$call\$family =="binomial"|model\$family [[1]]=="binomial") &

!(length(grep(pattern = ":",names(model\$coefficients)))==0)){

6 return(tail(anova(model ,test = "LRT")[,5],1))

7 } else if(!(length(grep(pattern = ":",names(model\$coefficients)))==0)) {

8 return(max(summary(model)\$coef[grep(pattern = ":",names(model\$coefficients)

) ,4]))

9 } else return (0)

10 }

bdist An rFSA Criterion Function.

Description

rFSA Criterion Function to compute the Bhattacharyya distance.

Usage

bdist(model, name = "B Distance")

Arguments

model lm or glm fit to be passed.

name passed to print.FSA

Code

1 bdist <- function(model ,name = "B Distance") {

2 if(length(grep(":",names(model\$coefficients)))==0){return (0)} #no

interaction in model to check

3 if(is.null(model\$family)){return (0)} #not logistic regression

4

5 nam <-c(all.vars(model\$formula)[1], strsplit(names(model\$coefficients)[grep("

:",names(model\$coefficients))],"[:]")[[1]])

6 tmp_dat <- eval(model\$model)

7 y <- tmp_dat[,nam [1]]
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8 x1 <- tmp_dat[,nam [2]]

9 x2 <- tmp_dat[,nam [3]]

10

11 X <- cbind(x1,x2)

12 a <- X[which(y == 0) ,]

13 b <- X[which(y == 1) ,]

14

15 mu11 <- mean(a[,1])

16 mu12 <- mean(a[,2])

17 mu21 <- mean(b[,1])

18 mu22 <- mean(b[,2])

19

20 var1_11 <- var(a[,1])

21 var1_22 <- var(a[,2])

22 var1_12 <- cov(a[,1],a[,2])

23

24 var2_11 <- var(b[,1])

25 var2_22 <- var(b[,2])

26 var2_12 <- cov(b[,1],b[,2])

27

28 mu1 <- c(mu11 ,mu12)

29 mu2 <- c(mu21 ,mu22)

30 sig1 <- matrix(c(var1_11,var1_12,var1_12,var1_22),ncol = 2)

31 sig2 <- matrix(c(var2_11,var2_12,var2_12,var2_22),ncol = 2)

32

33 sig <- (sig1 + sig2) / 2

34 a <- sig[1,1]

35 b <- sig[1,2]

36 c <- sig[2,1]

37 d <- sig[2,2]

38 temp <- matrix(c(d,-c,-b,a),ncol = 2)

39 sig.inv <- 1 / (a * d - b * c) * temp

40 distance <-

41 1 / 8 * (t(mu1 - mu2) %*% sig.inv %*% (mu1 - mu2)) + 1 / 2 * log(det(sig) /

42 sqrt(det(sig1) * det(sig2)))

43 return(c(distance))

44 }

which.max.na An rFSA Internal Function.
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Description

rFSA function to compute the maximum value from a vector with NA’s.

Usage

which.max.na(vec)

Arguments

vec Vector to be passed.

Code

1 which.max.na <- function(vec) {

2 maxval <- max(vec ,na.rm = T)

3 which(vec == maxval)

4 }

which.min.na An rFSA Internal Function.

Description

rFSA function to compute the minimum value from a vector with NA’s.

Usage

which.min.na(vec)

Arguments

vec Vector to be passed.
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Code

1 which.min.na <- function(vec) {

2 minval <- min(vec ,na.rm = T)

3 which(vec == minval)

4 }

list.criterion List all included Criteria function for lmFSA and glmFSA.

Description

List all included Criteria function for lmFSA and glmFSA.

Usage

list.criterion()

Value

list of functions and whether lmFSA or glmFSA work with those functions.

Examples

list.criterion()

Code

1 list.criterion <-function (){

2 show("Accepted Criteria Functions for lmFSA and glmFSA")

3 show("")

4 tab <-rbind(c("r.squared","lmFSA"),c("adj.r.squared","lmFSA"),c("AIC","lmFSA;

glmFSA"),c("BIC","lmFSA; glmFSA"),

5 c("rmse","lmFSA; glmFSA"),c("apress","lmFSA; glmFSA"),c("int.p.val","lmFSA;

glmFSA"),

6 c("bdist","glmFSA (only 2 way interactions)"))

7 colnames(tab)<-c(’Criterion ’,"Accepted in")

8 tab <-data.frame(tab)

9 show(tab)
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10 show("")

11 show("You can write your own criterion function too! Or use other criterion

functions from other packages. Just follow the standard format used in

int.p.val or apress as an example.")

12 }

Other Supporting Functions

rstart An rFSA internal function

Description

rFSA function to compute random starting spots for FSA.

Code

1 rstart = function(m,nvars ,quad = FALSE ,numrs = 1) {

2 t(replicate(numrs ,sample(

3 1:nvars ,size = m,replace = quad

4 )))

5 }

swaps An rFSA internal function

Description

rFSA function to compute swapping locations from current position based on

FSA.
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Code

1 swaps <- function(cur ,n,quad = FALSE) {

2 m <- length(cur)

3 if (!quad) {

4 l <- (n - m) * m

5 possible <- matrix(rep(cur ,l),nrow = l,byrow = T)

6

7 s <- 1:n

8 lapply(

9 1:m,FUN = function(i)

10 s <<- s[-which(s == cur[i])]

11 )

12 lapply(

13 1:m,FUN = function(j)

14 possible [((j - 1) * (n - m) + 1):((j - 1) * (n - m) + (n - m)),j] <<-

15 s

16 )

17 }

18 if (quad) {

19 l <- (n - 1) * m

20 possible <- matrix(rep(cur ,l),nrow = l,byrow = T)

21 s <- 1:n

22 smat <- matrix(rep(0,(n - 1) * m),ncol = m)

23 lapply(

24 1:m,FUN = function(i)

25 smat[,i] <<- s[-which(s == cur[i])]

26 )

27 lapply(

28 1:m,FUN = function(j)

29 possible [((j - 1) * (n - 1) + 1):((j - 1) * (n - 1) + (n - 1)),j] <<-

30 smat[,j]

31 )

32 }

33 vec <- cbind(cur ,t(possible))

34 return(unique(apply(vec ,sort ,MARGIN = 2),MARGIN = 2))

35 }

nextswaps An rFSA internal function
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Description

rFSA function to compute swapping locations from current position based on FSA

and removing places that have already been visited.

Code

1 nextswap <- function(curpos ,n,prevpos ,quad) {

2 swps <- swaps(curpos ,n,quad)

3 nextpos <- rep(FALSE ,dim(swps)[2])

4 for (i in 1:dim(swps)[1]) {

5 nextpos <- nextpos + (swps[i,] %in% prevpos)

6 }

7

8 retSwps <- swps[,nextpos == (length(curpos) - 2)]

9 if (is.null(dim(retSwps))) {

10 retSwps <- t(t(retSwps))

11 }

12 return(list(nswaps = retSwps ,prevpos = prevpos))

13 }

svyglmFSA An FSA funciton for svyglm

Description

A function to implement svyglm with FSA.

Code

1

2 svyglmFSA <-function (formula , data , fixvar = NULL , quad = FALSE , m = 2, numrs =

1, cores = 1, interactions = TRUE , criterion = AIC , minmax = "min", family =

"binomial", checkfeas = NULL ,design , ...)

3 {

4 if (identical(criterion , r.squared) | identical(criterion , r.squared)) {

5 return(show("Sorry the criterion function you listed cannot be used with

glmFSA."))

6 }

7 formula <- formula
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8 fit <- svyglm(formula ,design=design , family = quasibinomial () , ...)

9 yname <- all.vars(as.formula(formula))

10 if (!all(c(yname , fixvar) %in% colnames(data))) {

11 return(show("Sorry , one of the variables you specified in your formula or

fixvar is not a name for a column in the data you specified. Please try

again."))

12 }

13 originalnames <- colnames(data)

14 data <- data.frame(data)

15 lhsvar <- yname [1]

16 print(lhsvar)

17 if (. Platform\$OS.type == "unix") {

18

19 } else {

20 cores = 1

21 }

22 ypos <- which(colnames(data) == lhsvar)

23 startvar <- NULL

24 xdata <- data[, -ypos]

25 ydata <- data[, ypos]

26 newdata <- data.frame(cbind(ydata , xdata))

27 fixpos <- which(colnames(xdata) %in% fixvar)

28 if (length(fixpos) == 0) {

29 fixpos = NULL

30 }

31 history <- matrix(rep(NA, numrs * (2 * m + 3)), ncol = ((2 *

32 m + 3)))

33 if (!is.null(checkfeas)) {

34 checkfeas <- which(colnames(xdata) %in% checkfeas)

35 history[, 1:m] <- rbind(rstart(m = m, nvars = (dim(newdata)[2] -

36 1), numrs = numrs - 1), c(

checkfeas [1:m]))

37 } else history[, 1:m] <- rstart(m = m, nvars = (dim(newdata)[2] -

38 1), numrs = numrs)

39 curpos <- which(colnames(xdata) %in% startvar [-1])

40 if (length(curpos) != 0) {

41 history <- rbind(c(curpos , rep(NA, length(curpos) + 2)),

42 history)

43 }

44 fsa <- function(i, history , ...) {

45 cur <- history[i, 1:m]

46 last <- rep(NA , m)

47 numswap <- 0

48 memswap <- NULL

49 if (minmax == "max") {
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50 last.criterion <- (-Inf)

51 }

52 if (minmax == "min") {

53 last.criterion <- (Inf)

54 }

55 checks <- 0

56 while (!identical(cur , last) && !identical(c(cur[2],

57 cur [1]), last)) {

58 last <- cur

59 if (numswap == 0) {

60 print(cur);print(dim(xdata)[2]);print(quad)

61 moves <- swaps(cur = cur , n = dim(xdata)[2],

62 quad = quad)

63 }

64 if (numswap > 0) {

65 moves <- nextswap(cur= cur , n = dim(xdata)[2],quad = quad)

66 }

67 if (dim(moves)[2] == 0) {

68 moves <- t(t(last))

69 }

70 if (interactions == T) {

71 form <- function(j) paste0(colnames(newdata)[1],"~", paste(fixvar ,

collapse = "+"), "+", paste(colnames(xdata)[moves[,j]], collapse = "*

"))

72 }

73 if (interactions == F) {

74 form <- function(j) paste0(colnames(newdata)[1],"~", paste(fixvar ,

collapse = "+"), "+", paste(colnames(xdata)[moves[,j]], collapse = "+

"))

75 }

76 tmp <- parallel :: mclapply(X = 1:dim(moves)[2], FUN = function(k) {

77 if ((sum(complete.cases(cbind(ydata , xdata[,

78 moves[, k]])))/length(ydata))

> 0.05) {

79 criterion(svyglm(form(k), design=design , family = quasibinomial ()))

80 } else {

81 NA

82 }

83 }, mc.cores = cores)

84 checks <- checks + dim(moves)[2]

85 if (minmax == "max") {

86 cur <- moves[, which.max.na(unlist(tmp))[1]]

87 cur.criterion <- unlist(tmp[which.max.na(unlist(tmp))[1]])

88 if (last.criterion > cur.criterion) {

89 cur <- last.pos
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90 cur.criterion <- last.criterion

91 }

92 }

93 if (minmax == "min") {

94 cur <- moves[, which.min.na(unlist(tmp))[1]]

95 cur.criterion <- unlist(tmp[which.min.na(unlist(tmp))[1]])

96 if (last.criterion < cur.criterion) {

97 cur <- last.pos

98 cur.criterion <- last.criterion

99 }

100 }

101 numswap <- numswap + 1

102 last1 <- last

103 last.criterion <- cur.criterion

104 last.pos <- cur

105 memswap <- unique(c(memswap , last1))

106 }

107 history[i, (1 + m):(2 * m)] <- cur

108 history[i, (dim(history)[2] - 2)] <- cur.criterion

109 history[i, (dim(history)[2] - 1)] <- numswap - 1

110 history[i, (dim(history)[2])] <- checks

111 return(history[i, ])

112 }

113 solutions <- matrix(unlist(lapply (1:numrs , FUN = function(i) fsa(i,

114 history))),

ncol = dim

(history)

[2], byrow

= T)

115 solutions[, 1:(2 * m)] <- matrix(colnames(newdata)[c(solutions[,

116 1:(2 * m)] + 1)

], ncol = (2

* m))

117 solutions <- data.frame(solutions)

118 colnames(solutions) <- c(paste("start", 1:m, sep = "."),

119 paste("best", 1:m, sep = "."), "criterion", "swaps",

120 "checks")

121 solutions\$criterion <-

122 as.numeric(levels(solutions\$criterion))[solutions\$criterion]

123 solutions\$swaps <- as.numeric(levels(solutions\$swaps))[solutions\$swaps]

124 solutions\$checks <- as.numeric(levels(solutions\$checks))[solutions\$checks]

125 if (length(fixvar) != 0) {

126 solutions <- data.frame(fixvar = matrix(rep(x = fixvar ,

127 dim(solutions)[1]), nrow = dim(

solutions)[1], byrow = T),
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128 solutions)

129 }

130 solutions <- solutions

131 a <- solutions[, (length(fixvar) + m + 1):( length(fixvar) +

132 m + 1 + m)]

133 b <- unique(t(apply(a, sort , MARGIN = 1)), MARGIN = 1)

134 a <- t(apply(a, sort , MARGIN = 1))

135 c <- cbind(b, 0)

136 for (i in 1:dim(b)[1]) {

137 for (j in 1:dim(a)[1]) {

138 c[i, (m + 2)] <- sum(as.numeric(c[i, (m + 2)]) +

139 as.numeric(identical(a[j, ], b[i, ])))

140 }

141 }

142 tableres <- data.frame(cbind(c), stringsAsFactors = F)

143 colnames(tableres)[(dim(tableres)[2])] <- "times"

144 colnames(tableres)[2:( dim(tableres)[2] - 1)] <- paste("Var",

145 1:m, sep = "")

146 colnames(tableres)[1] <- "criterion"

147 call <- mget(names(formals ()), sys.frame(sys.nframe ()))

148 ls <- list(originalfit = fit , call = call , solutions = solutions ,

149 table = tableres , efficiency = paste("You did:", sum(solutions\$checks),

150 " model checks compared to ", choose(n = dim(xdata)[2],

151 k = m), " checks you would have done with exahstive search."))

152 class(ls) <- "FSA"

153 invisible(print(ls))

154 return(ls)

155 }
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Additional Figures and Tables

Table A1: FSA results

Interaction 1 Interaction 2 Interaction 3 Variable Names P-Value Number of Times a FS
Vitamin A hxcb Gender zlLBXVIA,zlLBXHXC,RIAGENDR < 0.0001 1
Heptachlo DDT Gender zlLBXHPE,zlLBXODT,RIAGENDR 0.0050 2

Mirex Bromoform Gender zlLBXMIR,zlLBXWBF,RIAGENDR 0.0027 4
hxcdd Chlorofor Gender zlLBXD02,zlLBXWCF,RIAGENDR 0.0026 2

Bromodich Styrene Gender zlLBXVBM,zlLBXVST,RIAGENDR 0.0003 1
Mercury I Carbon Te Gender zlLBXIHG,zlLBXVCT,RIAGENDR < 0.0001 6

Mercury pncb Gender zlLBXTHG,zlLBXPCB,RIAGENDR < 0.0001 4
Iron Seru Tetrachlo Age zlLBXIRN,zlLBXV4C,RIDAGEYR 0.0070 3

Oxychlord Benzene Age zlLBXOXY,zlLBXVBZ,RIDAGEYR 0.0005 5
Cotinine Trichlore Age zlLBXCOT,zlLBXV3A,RIDAGEYR 0.0036 5

Lead g-Tocophe Age zlLBXBPB,zlLBXGTC,RIDAGEYR 0.0085 3
Mercury pncdf Age zlLBXTHG,zlLBXF03,RIDAGEYR 0.0012 3

a-caroten Toluene Age zlLBXALC,zlLBXVTO,RIDAGEYR 0.0010 1
Cadmium MTBE SES zlURDUCD,zlLBXWME,INDFMPIR 0.0005 1
Hexachlor Dibromoch SES zlLBXHCB,zlLBXWCM,INDFMPIR 0.0013 2
o,p’-DDT Trans-non SES zlLBXODT,zlLBXTNA,INDFMPIR 0.0023 5

Oxychlord Age SES zlLBXOXY,INDFMPIR,RIDAGEYR 0.0005 2
pncdd Trichloro SES zlLBXD01,zlLBXV3A,INDFMPIR 0.0011 1

Cadmium Tetrachlo SES zlLBXBCD,zlLBXV4C,INDFMPIR 0.0012 2
hxcb Benzene SES zlLBXHXC,zlLBXVBZ,INDFMPIR 0.0001 2
pncb Xylene SES zlLBXPCB,zlLBXVXY,INDFMPIR 0.0076 1

Mercury I Race SES zlLBXIHG,RIDRETH1,INDFMPIR 0.0021 1
a-caroten Chlorofor SES zlLBXALC,zlLBXWCF,INDFMPIR 0.0001 3

Folate Ethylbenz Race zlLBXRBF,zlLBXVEB,RIDRETH1 0.0013 1
Folate o,p’-DDT Race zlLBXFOL,zlLBXODT,RIDRETH1 0.0004 1

g-Tocophe Xylene Race zlLBXGTC,zlLBXVOX,RIDRETH1 0.0007 1
Mirex Bromodich Race zlLBXMIR,zlLBXVBM,RIDRETH1 0.0052 3

p,p’ DDT Dichlorob Race zlLBXPDT,zlLBXVDB,RIDRETH1 0.0013 1
hpcdf Dibromoch Race zlLBXF08,zlLBXWCM,RIDRETH1 0.0013 3
hxcdf Bromodich Race zlLBXF05,zlLBXWBM,RIDRETH1 0.0024 1

Bromoform MTBE Race zlLBXVBF,zlLBXWME,RIDRETH1 0.0004 2
Mercury I hxcdf Race zlLBXIHG,zlLBXF07,RIDRETH1 0.0010 5
Vitamin E Xylene Race zlLBXVIE,zlLBXVXY,RIDRETH1 0.0083 2
b-cryptox cis-beta Smoking zlLBXCRY,zlLBXCBC,smoking 0.0051 3
transbeta dibromoch Smoking zlLBXBEC,zlLBXWCM,smoking 0.0137 1

Dieldrin Hexachlor Smoking zlLBXDIE,zlLBXHCB,smoking 0.0012 1
Mirex Chlorofor Smoking zlLBXMIR,zlLBXVCF,smoking 0.0052 5
hxcdd race Smoking zlLBXD04,RIDRETH1,smoking 0.0057 1

tcdd hxcdf Smoking zlLBXTCD,zlLBXF07,smoking 0.0006 3
hxcdf styrene Smoking zlLBXF05,zlLBXVST,smoking 0.0003 2

Carbon Te MTBE Smoking zlLBXVCT,zlLBXVME,smoking 0.0031 1
Inorganic Folate Se Smoking zlLBXIHG,zlLBXFOL,smoking 0.0006 3

144



Table A2: Lead, and g-Tocopherol (Vit E) categorical breakdown

Table A3: Alpha Carotene, and Toluene categorical breakdown

Table A4: Oxychlordane, and Age breakdown

Table A5: Race, and Mercury Inorganic categorical breakdown
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Table A6: Smoking, and B-Cryptoxanthin categorical breakdown
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