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Explainable Model
• Black Box (opaque) predictors such as Deep learning and Matrix Factorization are accurate, 
• …. but lack interpretability and ability to give explanations.
• White Box models such as rules and decision trees are interpretable (explainable),
• … but lack accuracy.

Why explanation?
➔ Explanations provide a rationale behind predictions,
➔ help the user gauge the validity of a prediction,
➔ may reveal prediction errors and reasons behind errors,
➔ increase trust between human and machine.

Tradeoff between Accuracy and Explainability
• Using Explanations, we can increase the transparency of the model.
• However, explainable models should also remain accurate!

Our Focus: Explanations in Recommender Systems

Review NSE-based 
Explanation

“8 out of 10 people with 
similar interests to you 
have reviewed this 
movie positively.”

• We proposed a probabilistic formulation for measuring explainability for recommendations.
• We proposed an Explainable-Matrix Factorization (EMF) model for providing explainable recommendations 

that are accurate.
• We proposed offline metrics to evaluate the explainability of recommender systems.
• Improved Explainability without significant sacrifice in Accuracy.

Why is Explainability so Important?
• We are relying on Machine learning algorithms in critical activities: 

• Credit Scoring, Criminal investigation, justice, Healthcare, education, insurance risk modeling, etc.

• Real life data can include biases that will affect the predictions. 
• May result in unfair models (discriminative, unreasonable, opaque ..) 

• Transparency is crucial to avoid or at least scrutinize biased predictions and to have more trust in ML models!

Future Directions
• Utilize different domains of data.
• Incorporate other explanation generation techniques.
• Apply EMF to other machine learning areas.
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Data
• MovieLens ratings data which consists of 100,000 ratings, on a scale of 1 to 5, for 1700 movies and

1000 users.
• 10% of the latest ratings from each user are selected for the test set and the remaining 90% of the

ratings are used in the training set.
Baseline methods
• Standard latent factor model based on Matrix Factorization(MF).
• Probabilistic Matrix Factorization(PMF).
• Hybrid technique - Content boosted Collaborative filtering.
• User-based top-n CF.
• Item-based top-n CF.
Accuracy Metrics
• Mean Average Precision.
• Area Under Curve (AUC): area under the true positive rate against the fallout (false positive rate) plot.
• Mean Explainability Precision:

• Mean Explainability Recall:

• Can we measure/quantify explainability in recommender systems?
• Can we build accurate recommender systems that can recommend explainable items?

Why explain recommendations?
• Improve acceptance and trust by adding justification.
• Increase effectiveness.
• Increase transparency.
• Increase satisfaction.

Rating NSE-based 
Explanation

“8 out of 10 people with 
similar interests to you 
have rated this movie 6 
and higher, out of 10.”

NSE-based Explainability
• For a user-item pair, (u,i):

• probability of item i having rating k, given the set of similar users for user u:

• Where Nu is the set of neighbors of user u, and
Ui,k is the set of users who have given rating k to item i.

• Explainability: expected value of the ratings given by the similar users
of user u to the item i:

ISE-based Explainability
• For a user-item pair, (u,i):

• probability of item i having rating k, by user u given the set of similar items 
for item i:

• Where Ni is the set of neighbors of item i, and
Iu,k is the set of items that user u has given rating k to.

• Explainability: expected value of the ratings given by user u to similar 
items to item i:

Explainable Matrix Factorization
• Extension of Matrix Factorization (MF).
• Add Soft Explainability Constraints to bring users closer to their explainable items in Latent Space!

• sample user ⇒ black
• explainable items ⇒ red
• relevant items ⇒ green
• other items ⇒ cyan

Explainability Graph
• Explainability Matrix, W, between user-item 

pairs in the Explainability Graph:

• EMF Update Rules:

Does the explainability value of the explanation have an impact on user satisfaction?
• 3 groups:

• low: explainability value < 2.
• medium: 2 <= explainability value between < 4.
• high: explainability value >= 4.

• Likert scale survey questions:
• question 1: “Based on the ratings of people with similar interest to mine, this is a good recommendation.”
• question 2: “This explanation helps me understand why this movie was recommended.”
• question 3: "Based on the ratings of people with similar interests to mine, I will watch this movie.”
• question 4: “Based on the ratings of people with similar interests to mine, I can determine how well I will like this movie.”
• question 5: “This explanation helps me understand how the recommender system works."

• Results showed that there was significant difference between the explainability in the three 
groups.
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ISE-based Explanation

• users ⇒ purple
• movies ⇒ gray
• sample user ⇒ blue
• explainable movies

for the blue sample 
user⇒ green

top: MAP  vs #factors, @ 50 neighbors
bottom: MAP vs #neighbors, @ 10 factors

top: AUC vs #factors, @ 50 neighbors
bottom: AUC vs #neighbors, @ 10 factors

top: MER vs #factors, @ 50 neighbors
bottom: MER vs #neighbors, @ 10 factors

top: MEP vs #factors, @ 50 neighbors
bottom: MEP vs #neighbors, @ 10 factors


