

# Using Explainability for Constrained Matrix Factorization Behnoush Abdollahi, Olfa Nasraoui

Knowledge Discovery & Web Mining Lab, Dept. of Computer Engineering & Computer Science, University of Louisville





# **Experimental Results**

• MovieLens ratings data which consists of 100,000 ratings, on a scale of 1 to 5, for 1700 movies and 1000 users.

10% of the latest ratings from each user are selected for the test set and the remaining 90% of the ratings are used in the training set.

## **Baseline methods**

Standard latent factor model based on Matrix Factorization(MF).

• Probabilistic Matrix Factorization(PMF).

Hybrid technique - Content boosted Collaborative filtering.

User-based top-n CF.

• Item-based top-n CF.

# **Accuracy Metrics**

• Mean Average Precision.

Area Under Curve (AUC): area under the true positive rate against the fallout (false positive rate) plot. Mean Explainability Precision:  $|\{i : i \in top - n, Expl_{u,i} > \theta\}|$ 

Mean Explainability Recall:  $|\{i : i \in top - n, Expl_{u,i} > \theta\}$  $|Expl_{\mu i} > \theta|$ 

|              |                                                                             |        |        |         | 1 1 4             | ,• 1              |   |                                                                                 |        |        |        |                 |                   |                   |  |
|--------------|-----------------------------------------------------------------------------|--------|--------|---------|-------------------|-------------------|---|---------------------------------------------------------------------------------|--------|--------|--------|-----------------|-------------------|-------------------|--|
| MAP@50       |                                                                             |        |        |         |                   |                   |   | AUC                                                                             |        |        |        |                 |                   |                   |  |
|              | UB                                                                          | IB     | PMF    | MF      | EMF <sub>UB</sub> | EMF <sub>IB</sub> |   | f                                                                               | UB     | IB     | PMF    | MF              | EMF <sub>UB</sub> | EMF <sub>IB</sub> |  |
|              | 0.009                                                                       | 0.0064 | 0.0113 | 0.0149* | 0.0108            | 0.011             |   | 5                                                                               | 0.4988 | 0.4982 | 0.5743 | <b>0.7129</b> * | 0.5616            | 0.5745            |  |
| 0            | 0.009                                                                       | 0.0064 | 0.0108 | 0.0145  | 0.0157*           | 0.0112            | : | 10                                                                              | 0.4988 | 0.4982 | 0.5629 | 0.7033          | 0.7115*           | 0.5791            |  |
| 0            | 0.009                                                                       | 0.0064 | 0.0116 | 0.0143  | 0.0146*           | 0.0118            | : | 20                                                                              | 0.4988 | 0.4982 | 0.563  | 0.6843          | 0.6873*           | 0.5791            |  |
| 0            | 0.009                                                                       | 0.0064 | 0.0126 | 0.015   | 0.0165*           | 0.0138            | ! | 50                                                                              | 0.4988 | 0.4982 | 0.54   | 0.5697          | 0.5984*           | 0.5019            |  |
| .            | UB                                                                          | IB     | PMF    | MF      | EMF <sub>UB</sub> | EMF <sub>IB</sub> |   | $ N_{.} $                                                                       | UB     | IB     | PMF    | MF              | EMF <sub>UB</sub> | EMF <sub>IB</sub> |  |
|              | 0.009                                                                       | 0.0065 | 0.0108 | 0.0145* | 0.0102            | 0.0138            |   | 5                                                                               | 0.4759 | 0.4711 | 0.563  | 0.7011          | 0.7131            | 0.7707*           |  |
|              | 0.0087                                                                      | 0.0064 | 0.0108 | 0.0145  | 0.0101            | 0.0197*           |   | 10                                                                              | 0.4851 | 0.4835 | 0.563  | 0.7011          | 0.6787            | 0.7821*           |  |
|              | 0.0085                                                                      | 0.0071 | 0.0108 | 0.0145  | 0.009             | 0.0272*           |   | 20                                                                              | 0.489  | 0.4826 | 0.563  | 0.7011          | 0.6522            | 0.7872*           |  |
|              | 0.0081                                                                      | 0.0077 | 0.0108 | 0.0145  | 0.0105            | 0.0328*           |   | 50                                                                              | 0.4905 | 0.4991 | 0.563  | 0.7011          | 0.6855            | 0.7463*           |  |
| d: N<br>ttoi | o: MAP vs #factors, @ 50 neighbors<br>ttom: MAP vs #neighbors, @ 10 factors |        |        |         |                   |                   |   | top: AUC vs #factors, @ 50 neighbors<br>bottom: AUC vs #neighbors, @ 10 factors |        |        |        |                 |                   |                   |  |
| MEDOSO       |                                                                             |        |        |         |                   |                   |   | MEDOCO                                                                          |        |        |        |                 |                   |                   |  |

|            |            |          | ME         | P@50   |                   |                   |           | MER@50                               |        |        |        |                   |                   |  |  |
|------------|------------|----------|------------|--------|-------------------|-------------------|-----------|--------------------------------------|--------|--------|--------|-------------------|-------------------|--|--|
| f          | UB         | IB       | PMF        | MF     | EMF <sub>UB</sub> | EMF <sub>IB</sub> | f         | UB                                   | IB     | PMF    | MF     | EMF <sub>UB</sub> | EMF <sub>IB</sub> |  |  |
| 5          | 0.449      | 0.551    | 0.6284     | 0.7079 | 0.7080            | 0.7090*           | 5         | 0.054                                | 0.07   | 0.0706 | 0.0756 | 0.0757*           | 0.073             |  |  |
| 10         | 0.449      | 0.551    | 0.5412     | 0.7085 | 0.7089*           | 0.7187            | 10        | 0.054                                | 0.07   | 0.0622 | 0.0757 | 0.0758*           | 0.0748            |  |  |
| 20         | 0.449      | 0.551    | 0.3617     | 0.7187 | 0.7224            | 0.7242*           | 20        | 0.054                                | 0.07   | 0.0399 | 0.0778 | 0.0785*           | 0.0755            |  |  |
| 50         | 0.449      | 0.551    | 0.0843     | 0.5502 | 0.5845*           | 0.4011            | 50        | 0.054                                | 0.07   | 0.0085 | 0.0564 | 0.0569*           | 0.0362            |  |  |
| V.         | UB         | IB       | PMF        | MF     | EMF <sub>UB</sub> | EMF <sub>IB</sub> | $ N_{.} $ | UB                                   | IB     | PMF    | MF     | EMF <sub>UB</sub> | EMF <sub>IB</sub> |  |  |
| 5          | 0.4831     | 0.5895   | 0.5412     | 0.708  | 0.7081*           | 0.708             | 5         | 0.0583                               | 0.0708 | 0.062  | 0.075  | 0.0756*           | 0.0729            |  |  |
| l <b>0</b> | 0.4489     | 0.5516   | 0.5412     | 0.708  | 0.7083            | 0.7099*           | 10        | 0.0534                               | 0.0701 | 0.062  | 0.075  | 0.0757*           | 0.0732            |  |  |
| 20         | 0.4195     | 0.5423   | 0.5412     | 0.708  | 0.7082            | 0.7087*           | 20        | 0.0496                               | 0.0668 | 0.062  | 0.075  | 0.0756*           | 0.073             |  |  |
| 50         | 0.4124     | 0.5416   | 0.5412     | 0.708  | 0.7083            | 0.7096*           | 50        | 0.0485                               | 0.0652 | 0.062  | 0.075  | 0.0757*           | 0.0731            |  |  |
| p: M       | EP vs #fac | ctors,@5 | 0 neighbor | s      |                   |                   | top: N    | top: MER vs #factors, @ 50 neighbors |        |        |        |                   |                   |  |  |
| p: M       | EP vs #fac | ctors,@5 | 0 neighbor | S      |                   |                   | top: N    | top: MER vs #factors, @ 50 neighbors |        |        |        |                   |                   |  |  |

bottom: MEP vs #neighbors, @ 10 factors

DOTTOM: MER VS #neighbors, @ 10 factors

# **Conclusion and Future Directions**

• We proposed a probabilistic formulation for measuring explainability for recommendations. We proposed an **Explainable-Matrix Factorization** (EMF) model for providing explainable recommendations that are accurate.

We proposed offline metrics to evaluate the explainability of recommender systems. Improved Explainability without significant sacrifice in Accuracy.

# Why is Explainability so Important?

We are relying on Machine learning algorithms in critical activities:

Credit Scoring, Criminal investigation, justice, Healthcare, education, insurance risk modeling, etc.

Real life data can include biases that will affect the predictions.

• May result in unfair models (discriminative, unreasonable, opaque..)

Transparency is crucial to avoid or at least scrutinize biased predictions and to have more trust in ML models!

## **Future Directions**

 Utilize different domains of data. • Incorporate other explanation generation techniques.

• Apply EMF to other machine learning areas.

## Aknowledgement

• This research was partially supported by KSEF Award KSEF-3113-RDE-017