



Tell me Why? Tell me More!

# Explaining Predictions, Iterated Learning Bias, and Counter-Polarization in Big Data Discovery Models

CCS@Lexington, October 16, 2017

Olfa Nasraoui This work is a Collaboration with: Behnoush Abdollahi, Mahsa Badami, Sami Khenissi, Wenlong Sun, Gopi Nutakki, Pegah Sagheb: @UofL & Patrick Shafto: @Rutgers-Newark

#### Knowledge Discovery & Web Mining Lab

Computer Engineering & Computer Science Dept.

#### University of Louisville

http://webmining.spd.louisville.edu/

olfa.nasraoui@louisville.edu

Acknowledgements: National Science Foundation: NSF INSPIRE (IIS)- Grant #1549981 NSF IIS - Data Intensive Computing Grant # 0916489 Kentucky Science & Engineering Foundation: KSEF-3113-RDE-017





# Outline

- What can go Wrong in Machine Learning?
  - o Unfair Machine Learning
  - o Iterated Bias & Polarization
  - o Black Box models
- Tell me more: Counter-Polarization
- Tell me <u>why</u>: Explanation Generation



"Twitter and Facebook can't predict the election, but they did predict what you're going to have for lunch: a tuna salad sandwich. You're having the wrong sandwich."

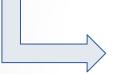
- We are relying on Machine Learning (**ML**) algorithms to support decisions:
  - Recommender Systems:
    - They guide humans in discovering only a few choices from among a vast space of options
    - Choose among options: Reading the News, Watching movies, Reading books, Discovering friends, Dating, Marriage, etc
  - Supervised Learning:
    - Predict class label for given instance
      - Example of label: whether to approve a loan, etc
    - Credit Scoring, Criminal investigation, Justice, Healthcare, Education, Insurance risk modeling, etc

Real life data can include **biases** that can affect the predictions

- May result in **unfair** ML models
  - discriminative,
  - unreasonable,
  - biased...
  - worse when models are opaque/black box!

- Increasing (unchecked) Human-ML algorithm interaction...
  - Think about **Recommender Systems** 
    - They guide humans in discovering only a few choices from among a vast space of options
    - Why are they needed?
      - Information Overload ⇒ need **Relevance Filters**!
    - ∎ But...
      - could result in hiding important information from humans
      - could exacerbate polarization around divisive issues
      - could fail to explain why they recommend a particular choice (Black Box models: e.g, Matrix Factorization, Deep Learning)

Increasing unchecked Human-ML algorithm interaction...



Need for:

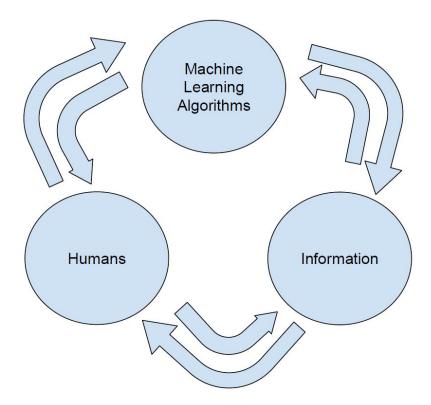
- Understanding Impact of interaction
- Limiting or reversing biases
   ⇒ Tell Me More!
- Adding Transparency / Explanations
  - to scrutinize biased or incorrect predictions
  - $\circ \Rightarrow$  more trust in ML models!

⇒ Tell Me Why?

# Outline

- What can go Wrong in Machine Learning?
  - o Unfair Machine Learning
  - Iterated Bias & Polarization
  - o Black Box models
- Tell me more: Counter-Polarization
- Tell me <u>why</u>: Explanation Generation

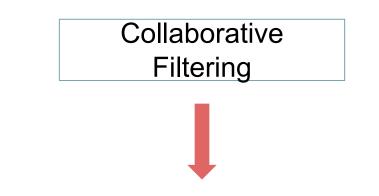
# **Iterated Bias**



# Machine Learning: Now & Then...

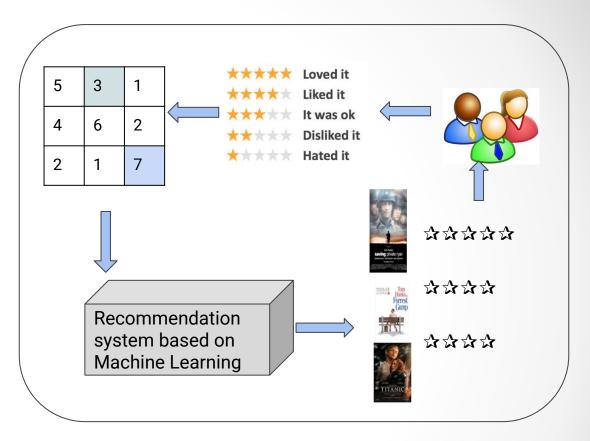
- In the **past**, Machine learning algorithms relied on **reliable** labels from experts to build predictive models.
  - o Expert users, limited data, reliable labels
- Today, algorithms receive data from the general population
  - o Labeling, annotations, etc.
  - o Everybody is a user, Big Data, subjective labels
- Labeled Data (User Relevance labels)
  - $\Rightarrow$  Machine Learning Models
    - $\Rightarrow$  <u>Filtering</u> of information visible to the user
      - ⇒ <u>Next</u> Labeled <u>Data</u>
        - ⇒ <u>Next</u> ML <u>Model</u>
          - ... etc

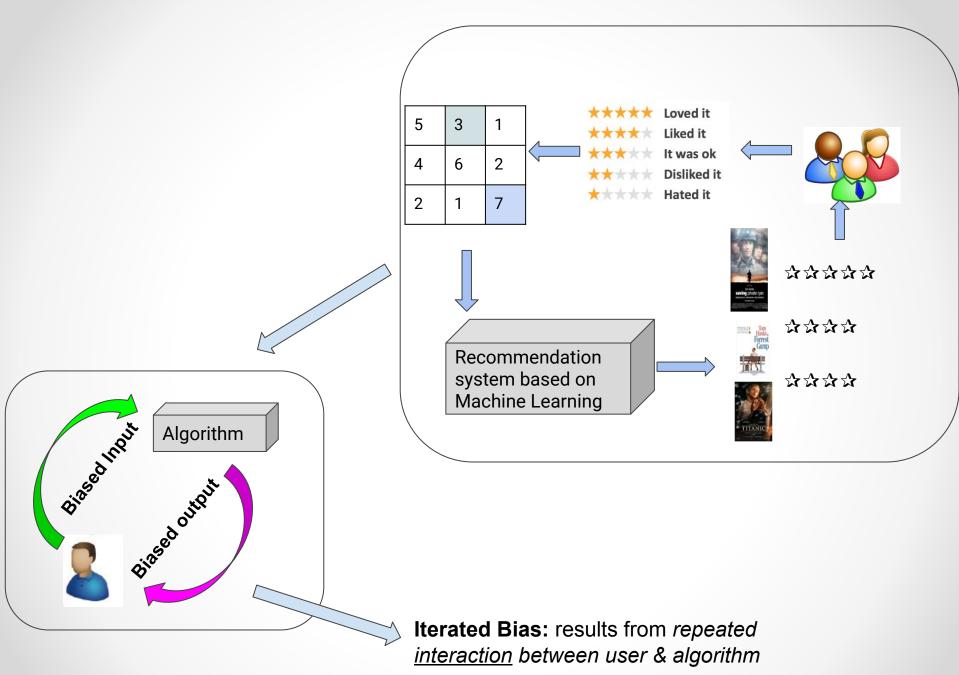
# **Recommender Systems**

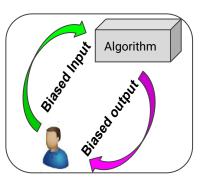


Uses previous ratings of the user to predict future preferences

# Recommender Systems $\Rightarrow$ Iterated Bias

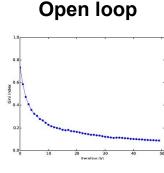




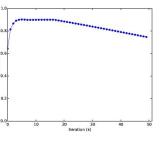


# Impact of Iterated Bias on Predicted Ratings

- Collaborative Filtering Simulation: Item-based, U=100, N=200
- Gini Index of the rating distributions vs iterations between rater and algorithm







- Feedback loop / interaction between rater and recommender
  - ⇒ Increases the divergence between ratings (Likes / Dislikes)
  - ⇒ We are witnessing the birth of polarization

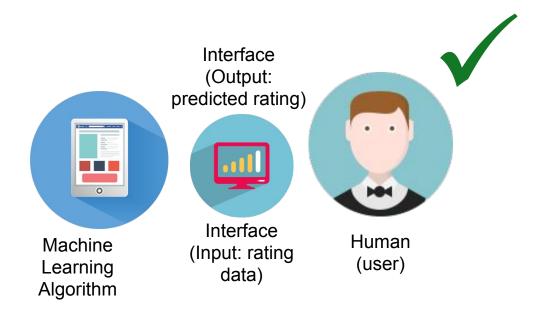
# Note: Existing public benchmark data sets are useless for studying this problem!

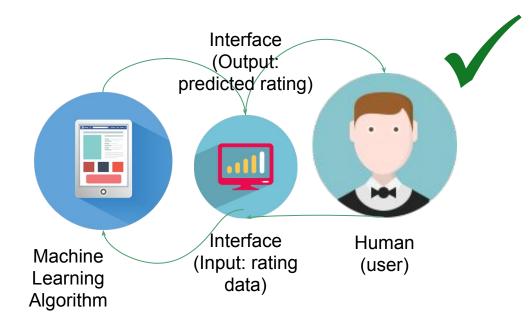
- (1) they do not record every interaction
- (2) they do not have the absolute user preference on each item!

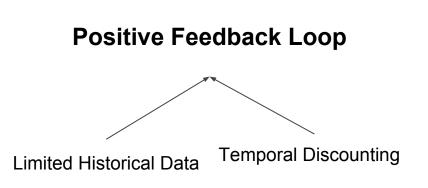
#### ⇒ Need Benchmark human choice and rating <u>cognitive</u> models!

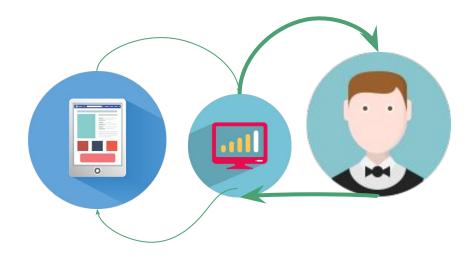
(Shafto & Nasraoui, 'Human-Recommender System' RecSys 2016)

# Polarization & Counter-Polarization in Recommender Systems

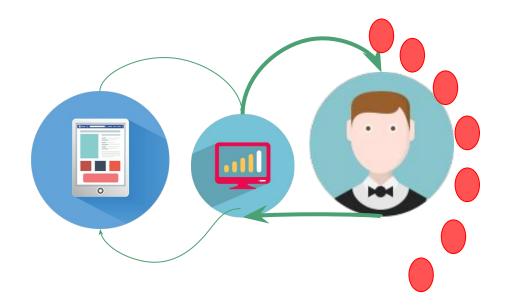




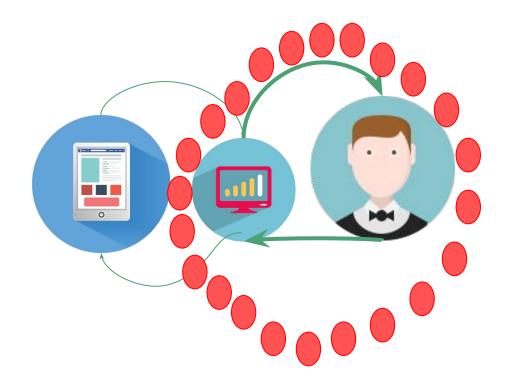




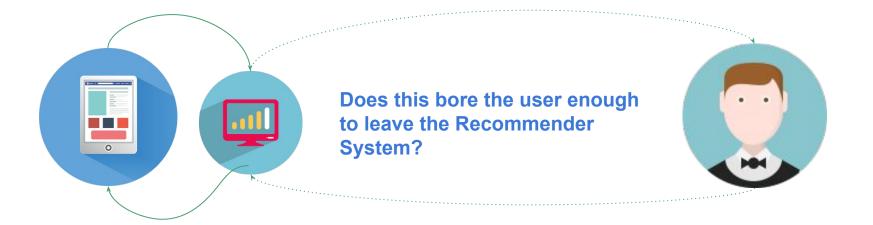
#### **Positive Feedback Loop**



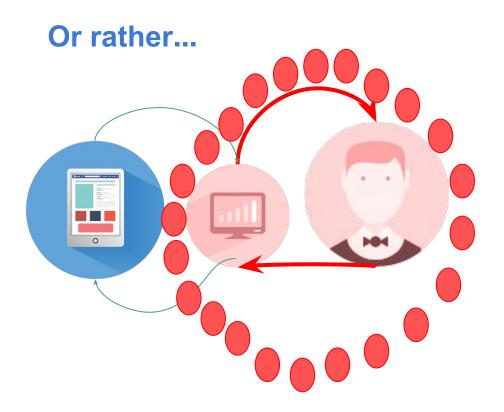
#### **Positive Feedback Loop**



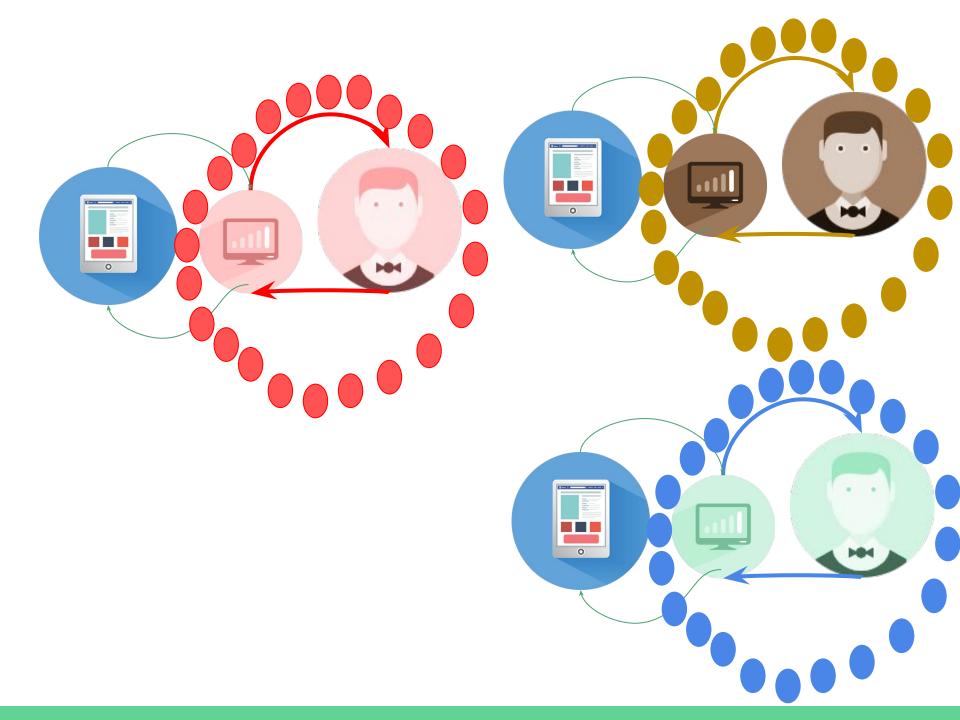
#### Filter Bubble

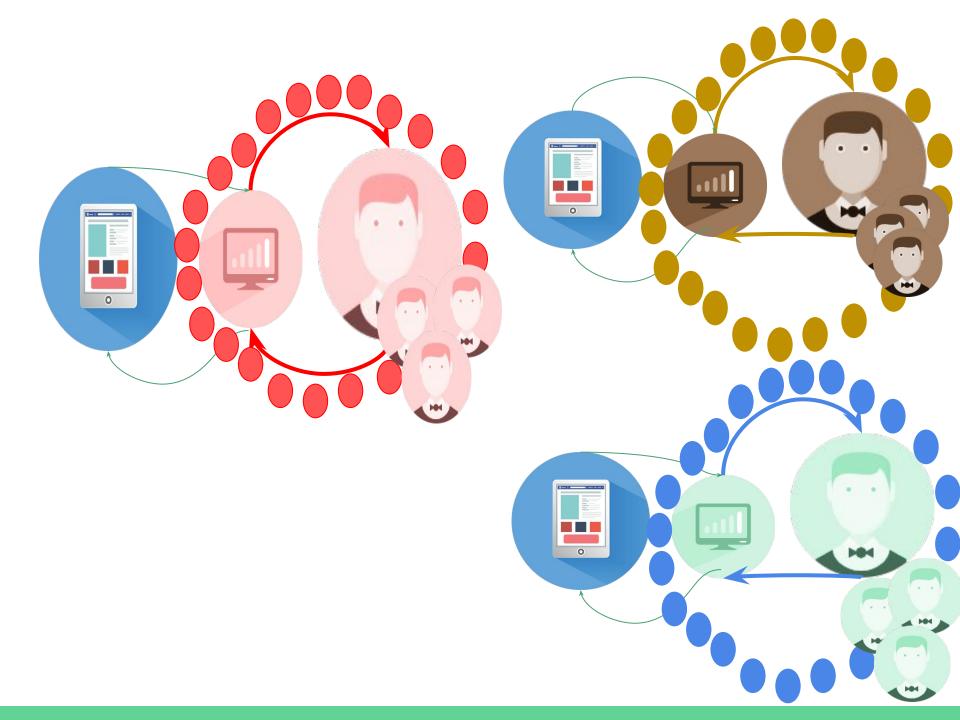


#### Filter Bubble



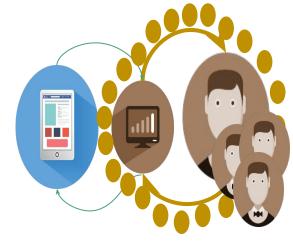
Self-fulfilling Identity

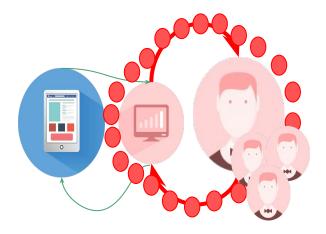




### Consequences

#### **Over Specialization**





**User Unsatisfaction** 

Polarization

**Misperceiving Facts** 

Deconstructing non-prevailing views, opinions and behaviors

Low Sales Rates



#### **Extreme Attitudes**

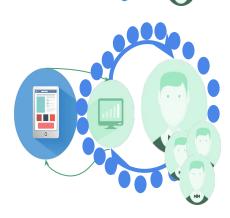
#### It gets worse in a Polarized environment!



#### Definition of POLARIZATION

- the action of polarizing or state of being or becoming polarized: such as
  a (1): the action or process of affecting radiation and especially light so that the vibrations of the wave assume a definite form (2): the state of radiation affected by this process
  b: an increase in the resistance of an electrolytic cell often caused by the deposition of gas on one or both electrodes
  - C: MAGNETIZATION
- a: division into two opposites
- ${f b}$  : concentration about opposing extremes of groups or interests formerly ranged on a
- continuum





### Polarization

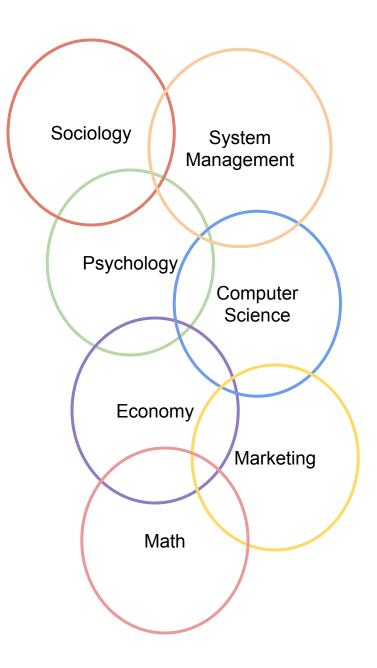
Our survey ⇒

The field of polarization is rather not unified in

- how polarization is defined?

#### and

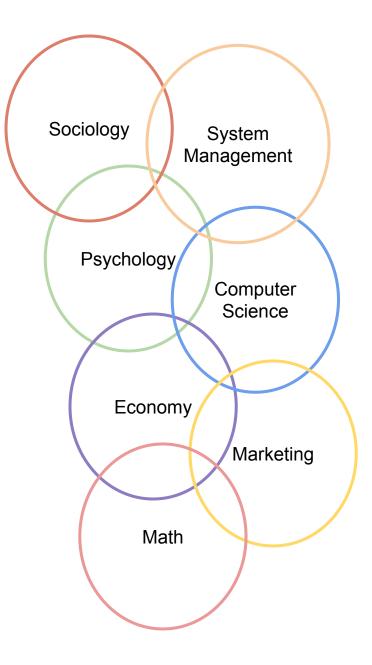
- what is done after recognizing it?
  - almost nothing...



## **Basic Polarization Taxonomy**

- 1. Social Polarization: how people congregate with one another,
- 2. Written Polarization: how people write about topics,
- 3. Rated and Recommended Polarization: how people behave, consume and express their preferences,

How they interact with algorithms.



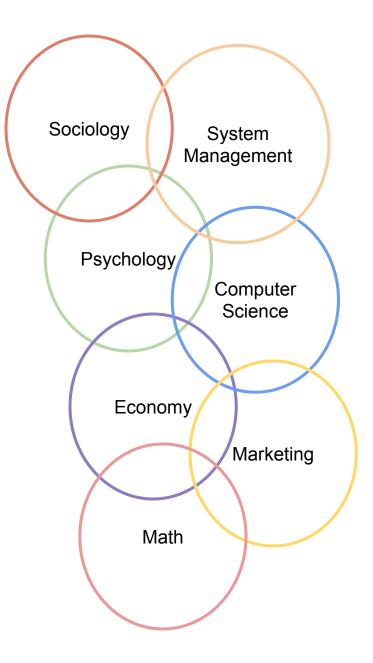
## **Basic Polarization Taxonomy**

- 1. Social Polarization: how people congregate with one another,
- 2. Written Polarization: how people write about topics,
- 3. <u>Rated</u> and <u>Recommended</u> Polarization:

how people behave, consume and express their preferences:

How they interact with algorithms

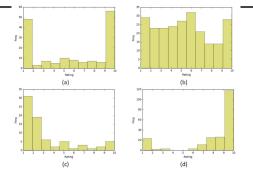
#### What can we do about it?



## Polarization Detection Classifier - PDT

**Data Science Pipeline:** 

- Data-driven problem formulation
- Feature engineering
- Modeling
  - Training a classifier using rating data
  - Polarization Score = predicted probability of belonging to the polarized class
- Evaluation
- Interpretation



## Recommender System Counter Polarization Methods: RS-CP



# Pre-recommendation Countering Polarization - PrCP

#### Why do we need it?

- Changing the Recommender System algorithm may not be always feasible
  - Black box
  - or too complex to modify ...

#### What do we do?

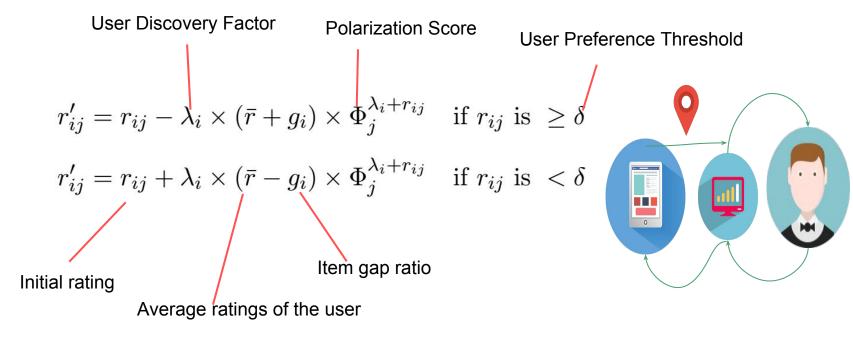
- **Transform the source data** to mitigate extreme ratings that make an item polarized.
- Take into account the user's relative preferences,
  - yet reduce extreme recommendation that can be generated from a standard recommender system algorithm.



# Pre-recommendation -based Countering Polarization - PrCP

Mapping Function:

$$f: (U, I, R) \to (U, I, R')$$
 with probability of p



# Polarization-aware Recommender Interactive System - PaRIS

#### Goal:

Design a recommendation system which not only recommends **relevant items** 

but also may include opposite views

in case the user is interested to discover new items



# Polarization-aware Recommender Interactive System - (PaRIS)

**Goal:** Design a recommendation system which not only recommends **relevant items** but also includes **opposite views** in case the user is **interested** to **discover new items**.

Our Baseline: Non-negative Matrix Factorization (NMF)-based recommender systems:

- Good scalability
- High predictive accuracy
- Flexibility for modeling various real-life situations
- Easy incorporation of additional information



### NMF: Matrix Factorization (Koren et al - 2009)

#### Input: Rating matrix

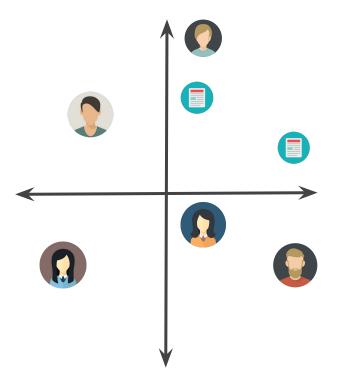
Idea: Learn p and q to predict all values of the rating matrix

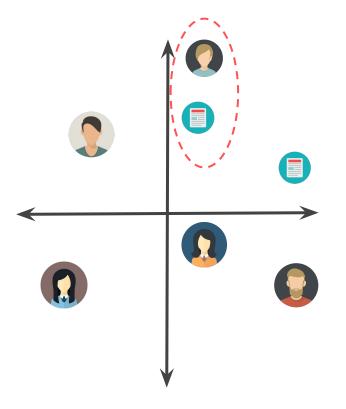
• *p* and *q* are the representation of the user *u* and item *v* in a latent space.

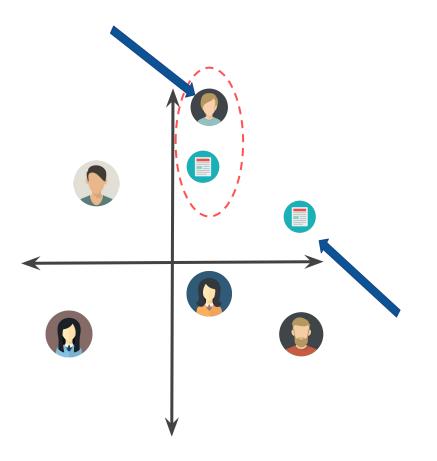
$$r_{uv} = q_v^T * p_u$$

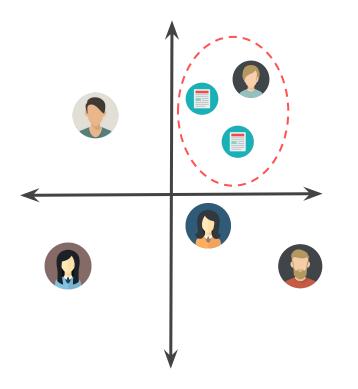
Learning process:

$$\min_{P,Q} = \sum_{(u,v)\in R} (r_{uv} - q_v^T p_u)^2 + \lambda (\|(q_v^2\| + \|(p_u^2\|))^2) + \lambda (\|(q_v^2\| + \|(q_v^2\| + \|(q_v^2\|))^2) + \lambda (\|(q_v^2\| + \|(q_v^2\| + \|(q_v^2\| + \|(q_v^2\|)))) + \lambda (\|(q_v^2\| + \|(q_v^2\| + \|(q$$







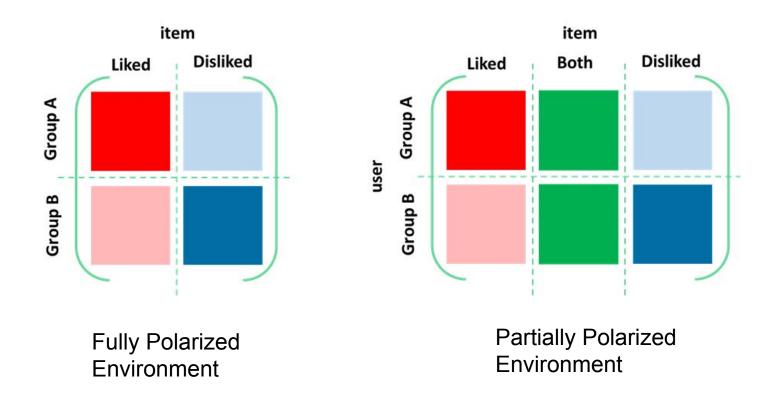


# Polarization-aware Recommender Interactive System - PaRIS

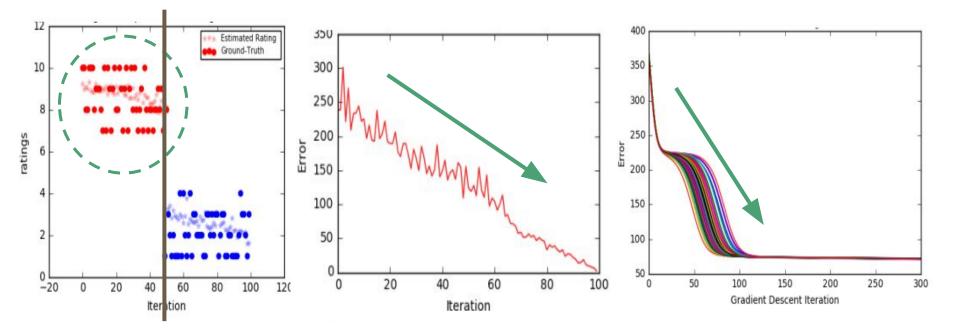
$$\begin{split} \min \left(1 - \lambda_{i}\right) \times ||r_{ij} - p_{i}q_{j}||^{2} + \lambda_{i} \times ||r'_{ij} - p_{i}q_{j}||^{2} \\ r'_{ij} = r_{ij} - (\bar{r} + g_{i}) \times \Phi_{j}^{\lambda_{i} + r_{ij}} & \text{if } r_{ij} \text{ is } \geq \delta \\ r'_{ij} = r_{ij} + (\bar{r} - g_{i}) \times \Phi_{j}^{\lambda_{i} + r_{ij}} & \text{if } r_{ij} \text{ is } < \delta \\ \text{User Discovery}_{Factor} & \text{User Preference}_{Threshold} \\ \end{split}$$

#### **Experiments**

**Definition 3**: Let the number of users, |U| = n and number of items, |I| = m. A recommender system algorithm takes environment G as input along with a user  $u \in U$ , and outputs a set of items  $i_1, ..., i_k \in I$ .



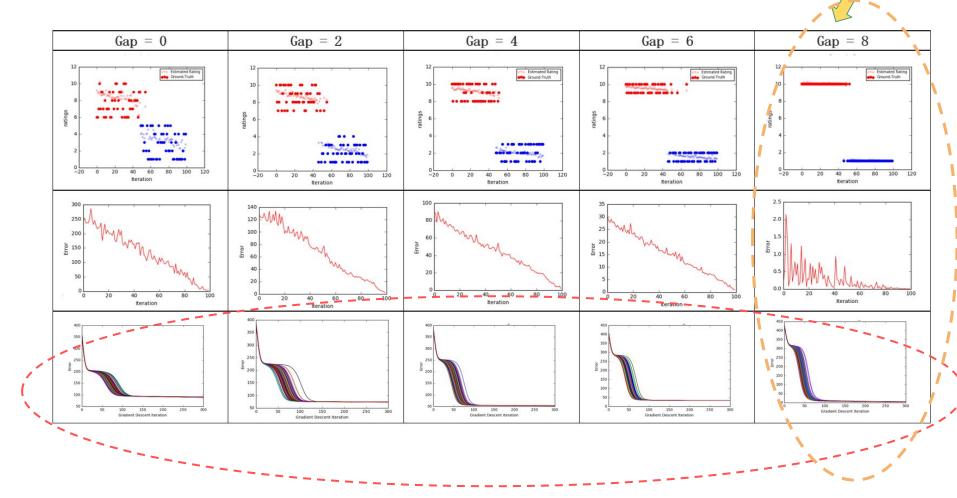
### NMF: Fully Polarized Environment



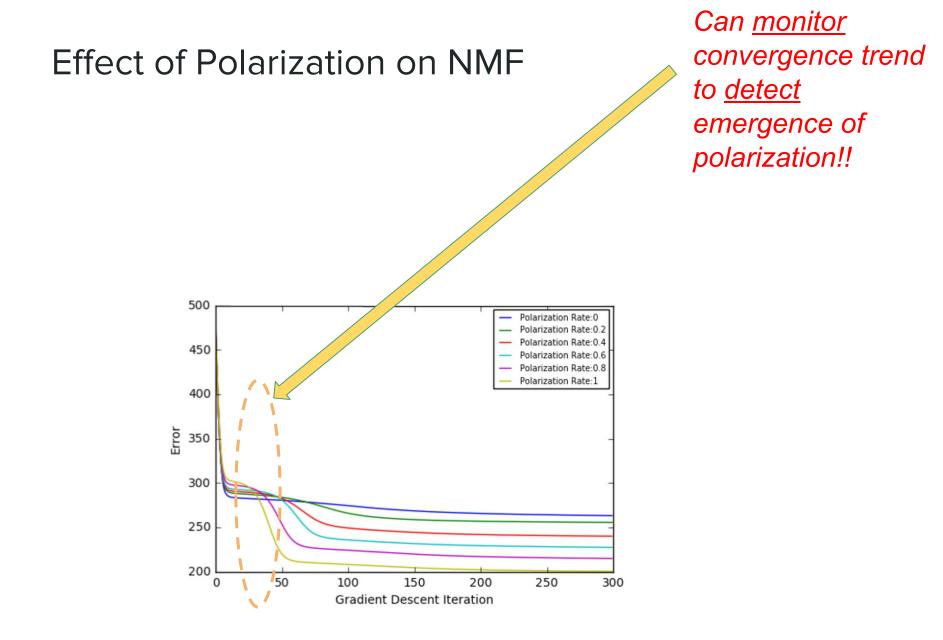
- It is <u>easy</u> and <u>fast</u> to learn discriminating models in a polarized environment!
  - The result: Keep each user in the safety of their preferred viewpoint



#### Effect of Increasing Polarization on NMF



Extreme Polarization!!



### Counter Polarization Methods: Recommend <u>More</u> Items from Opposite View

|        |                   | <b>Opposite View Ratio</b> |                    | Mean Square          |                     |
|--------|-------------------|----------------------------|--------------------|----------------------|---------------------|
|        |                   | OVHR <sub>u</sub>          | OVHR <sub>tk</sub> | MSE <sub>Train</sub> | MSE <sub>Test</sub> |
|        |                   | mean, std                  | mean, std          | mean, std            | mean, std           |
| Classi | ic NMF            | $0.0\%\pm0.00$             | $0.0\% \pm 0.00$   | $22.02\pm5.27$       | 138.96 ± 12.55      |
| PrCP   | $\lambda_i = 0.2$ | $5.4\%\pm0.073$            | 12.32±0.31         | $123.92 \pm 36.76$   | 813.01 ± 36.76      |
|        | $\lambda_i = 0.5$ | $6.0\%\pm0.08$             | 18.1%±0.21         | $124.46 \pm 37.29$   | 299.82 ± 76.01      |
|        | $\lambda_i = 0.7$ | $61.0\%\pm0.17$            | $31.0\%\pm0.167$   | $209.73 \pm 59.53$   | 967.103 ± 145.92    |
|        | $\lambda_i = 1.0$ | 67.0% ± 0.24               | $68.0\% \pm 0.24$  | $361.77 \pm 102.74$  | 1883.50 ± 237.83    |
| PaRS   | $\lambda_i = 0.2$ | $5.4\%\pm0.73$             | $4.9\% \pm 0.021$  | 123.92 ± 36.76       | 813.01 ± 36.76      |
|        | $\lambda_i = 0.5$ | $6.2\% \pm 0.075$          | $5.2\% \pm 0.042$  | $122.56 \pm 39.081$  | 804.01 ± 75.88      |
|        | $\lambda_i = 0.7$ | $7.0\%\pm0.075$            | $5.4\%\pm0.033$    | $120.97\pm35.19$     | $803.65 \pm 64.65$  |
|        | $\lambda_i = 1.0$ | $6.8\% \pm 0.064$          | $5.8\% \pm 0.03$   | 119.76 ± 34.93       | $801.86 \pm 65.07$  |

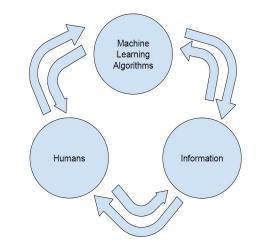
### Conclusion

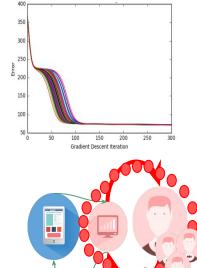
Iterated Learning Bias: theory and simulations

#### Counter-polarization

- Empower the users who are increasingly entrapped in algorithmic filters
- Allows humans to regain control of algorithm-induced filter bubble traps,
- Impact on information filtering / recommender systems
  - News, social media, e-commerce, e-learning, etc

- ★ We uncovered patterns that are characteristic of environments where polarization emerges
  - Can monitor objective function optimization trend
  - $\Rightarrow$  detect and quantify the evolution of polarization
- ★ ⇒ allow users to <u>break free from their algorithmic</u> <u>chains</u>!





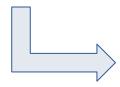
# Outline

- What can go Wrong in Machine Learning?
  - o Unfair Machine Learning
  - o Iterated Bias & Polarization
  - o Black Box models
- Tell me more: Counter-Polarization
- Tell me <u>why</u>: Explanation Generation

# Why is Explainability So Important?

Transparency is crucial to scrutinize:

- incorrect predictions
- biased predictions



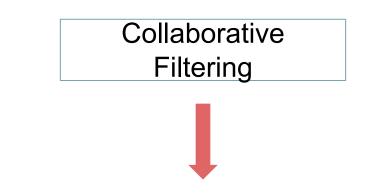
More trustworthy ML models!

### Black Box vs. White Box

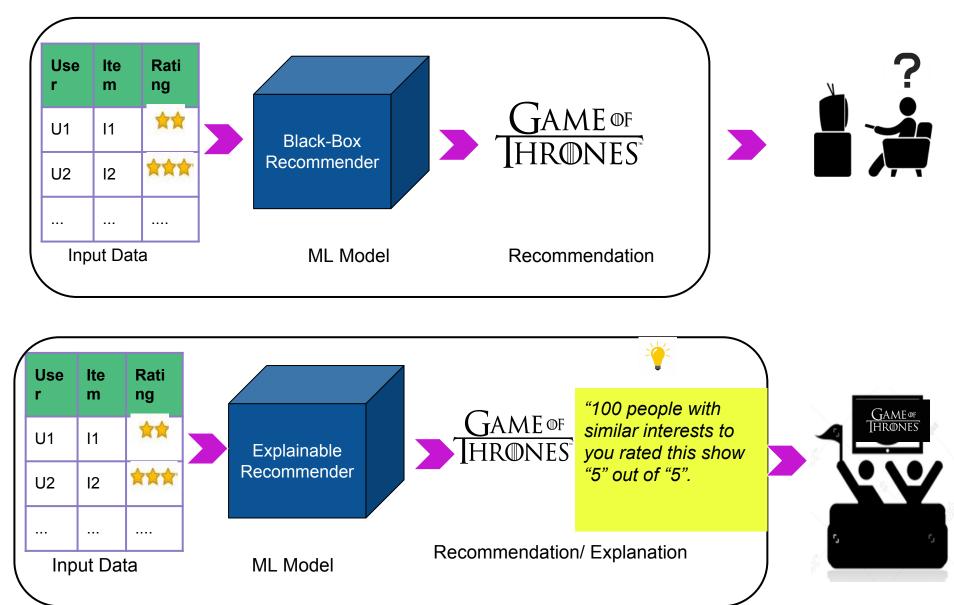
- Black Box (opaque) predictors such as Deep learning and matrix factorization are accurate,
  - .... but lack interpretability and ability to give explanations
- White Box models such as rules and decision trees are interpretable (explainable)
  - ... but lack accuracy
- Explanations provide a rationale behind predictions
   → help the user gauge the validity of a prediction
   → may reveal prediction errors and reasons behind errors
   → increase trust between human and machine

#### **Our Focus: Explanations in Recommender Systems**

# **Recommender Systems**

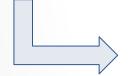


Uses previous ratings of the user to predict future preferences

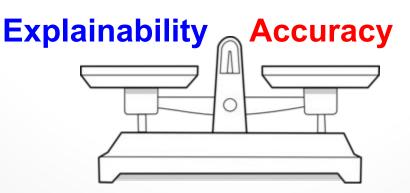


# Tradeoff between Accuracy and Explainability

- Using Explanations, we can increase the transparency of the model.
- However there may be a downside:
  - Explainable models should also remain accurate!

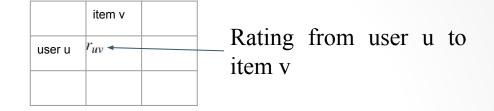


Goal : a moderate tradeoff between accuracy and explainability



#### MF: Matrix Factorization (Koren et al - 2009)

Input Data: Rating matrix



Idea: Learn p and q to predict all missing values of the rating matrix p and q = representation of user u and item v in a latent space.  $r_{uv} = q_v^T * p_u$ 

Learning process: 
$$\min_{P,Q} = \sum_{(u,v)\in R} (r_{uv} - q_v^T p_u)^2 + \lambda (||(q_v^2|| + ||(p_u^2||)))^2 + \lambda (||(q_v^2|| + ||(q_v^2|| + ||(q_v^2||))))^2 + \lambda (||(q_v^2|| + ||(q_v^2|| + ||(q_v^2||))))^2 + \lambda (||(q_v^2|| + ||(q_v^2|| +$$

**Main Problem**: Matrix Factorization is a **Black Box Model** 

#### EMF: Explainable Matrix Factorization (Abdollahi & Nasraoui, 2016)

Idea: Provide neighborhood style Explanations along with recommendations and learn a model that is explainable

| Recommendation: | Justification:<br>80% of users who     |  |
|-----------------|----------------------------------------|--|
|                 | share similar                          |  |
|                 | interests with you<br>liked this movie |  |

New objective function:

$$J = \sum_{(u,v)\in R} (r_{uv} - q_v^T p_u)^2 + \frac{\beta}{2} (\|p_u^2\| + \|q_v^2\|) + \frac{\lambda}{2} (p_u - q_v)^2 W_{uv}$$

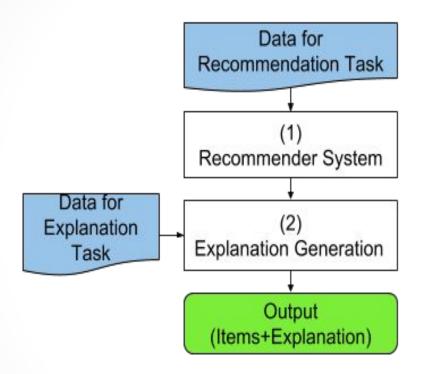
 $W_{uv}$  = Explainability score calculated for user *u* and item *v*.

 $W_{uv} \begin{cases} \frac{||v|(u)|}{|N_k'(u)|} if \frac{||v|(u)|}{|N_k'(u)|} > \theta; \\ 0 \qquad Otherwise; \end{cases}$ 

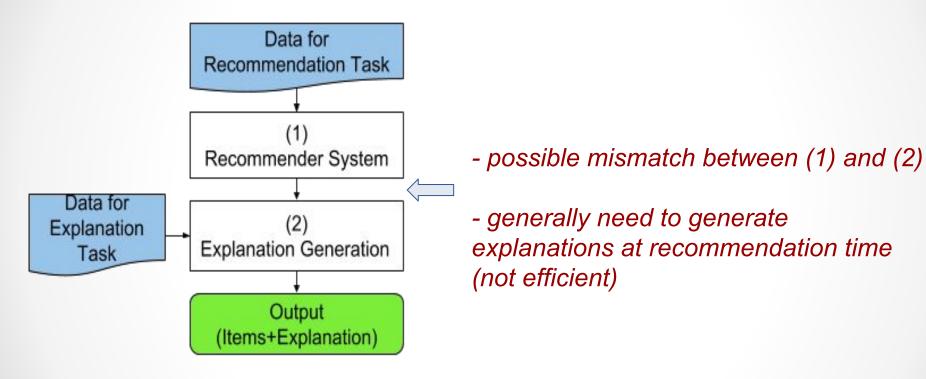
Explainability term to favor users and items with similar p and q

- N': total number of neighbors of user *u* who rated item *v*
- $N'_{k}$ : total number of neighbors of user *u*

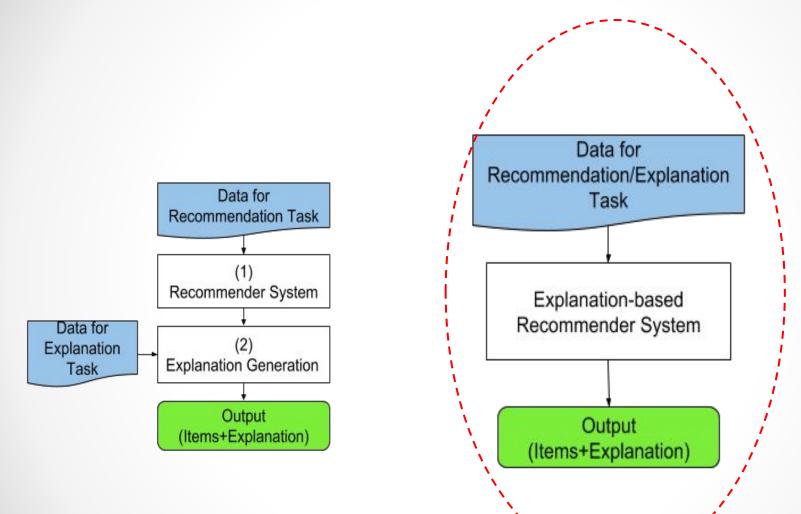
# **Classical Framework**



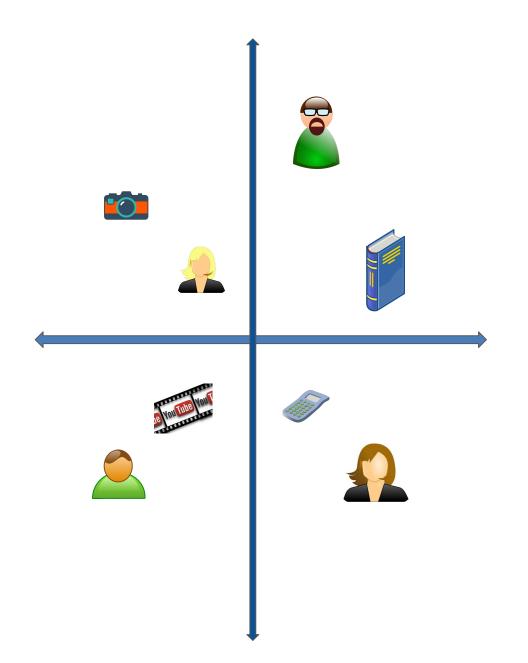
# **Classical Framework**



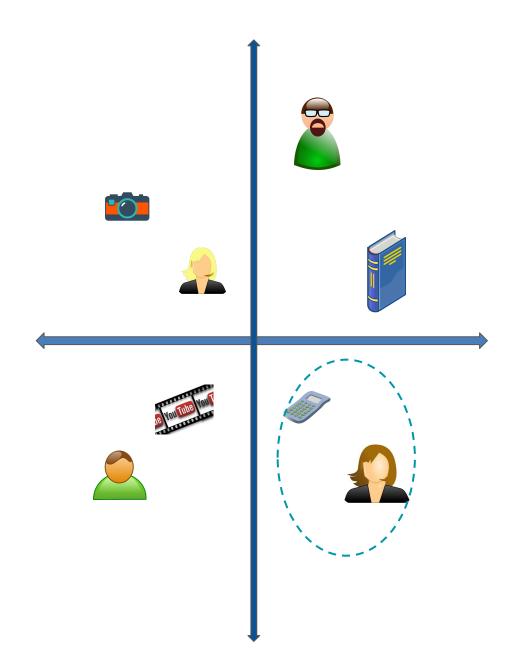
# **Classical Framework vs Proposed Framework**



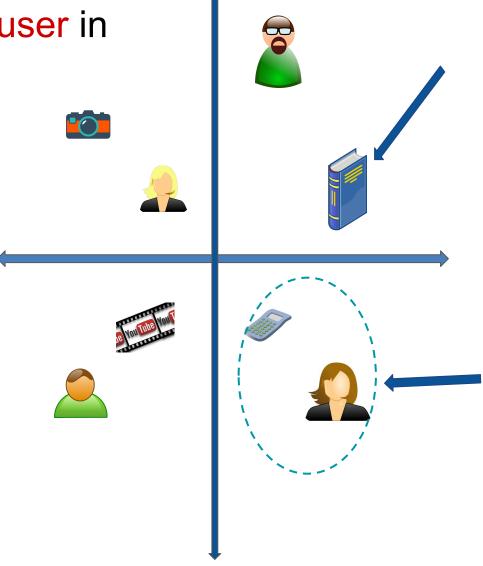
## Intuition



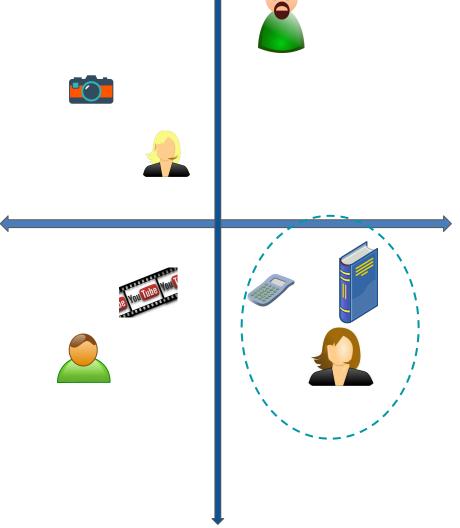
## Intuition



Intuition: Bring explainable items **closer** to the user in latent space

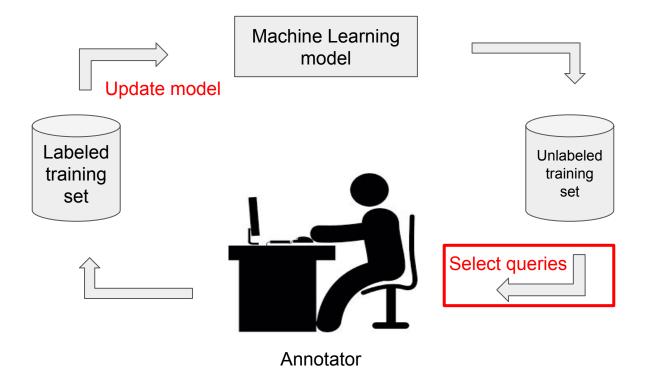


## Intuition: Now explainable item is more likely to be recommended

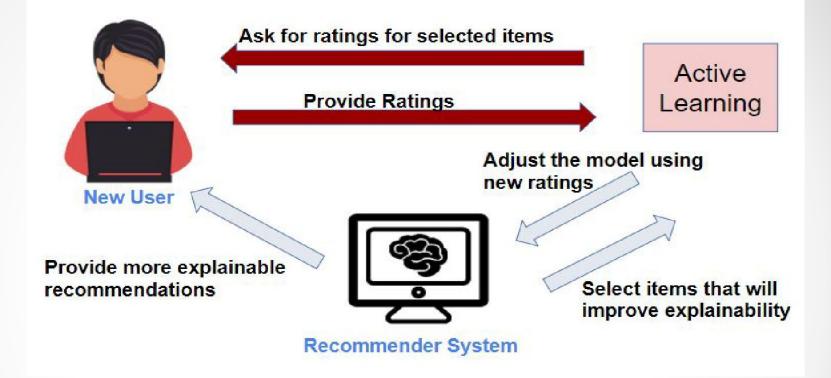


### **Active Learning**

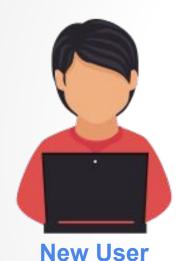
What If we make the algorithm <u>choose</u> the most useful training data?



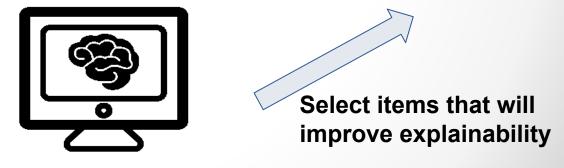
#### **ExAL:** Explainable Active Learning



- Select items from an unlabeled pool of items using an <u>Active Learning</u> <u>selection strategy</u>
- 2. Obtain the true ratings of the selected item from the new user
- 3. Adjust the parameters of the model using the new ratings
- 4. Repeat the process until meeting a stopping criterion



Active Learning

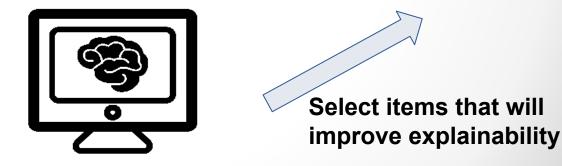


**Recommender System** 

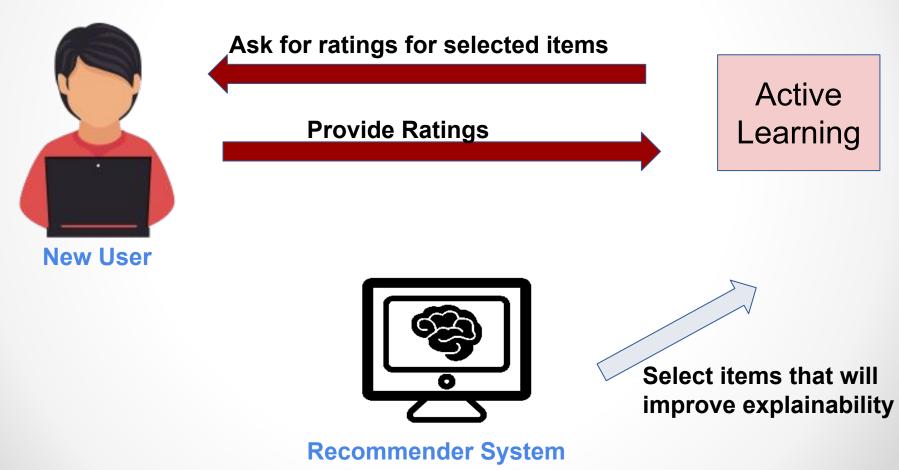


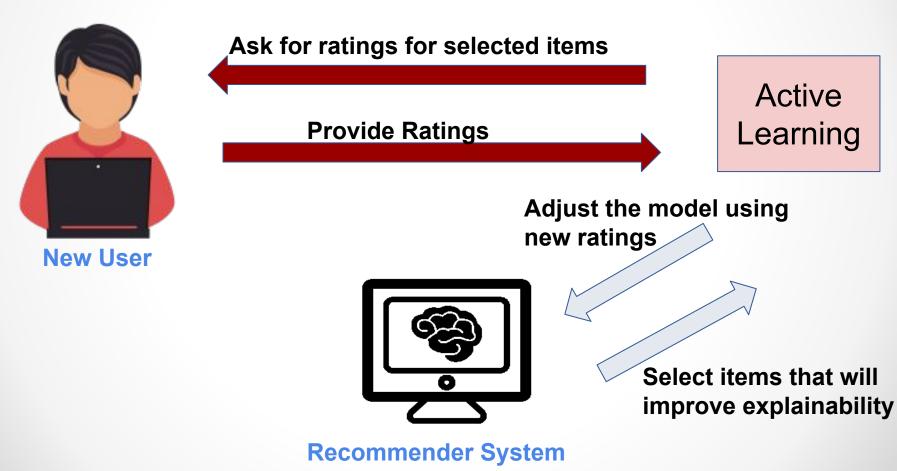
#### Ask for ratings for selected items

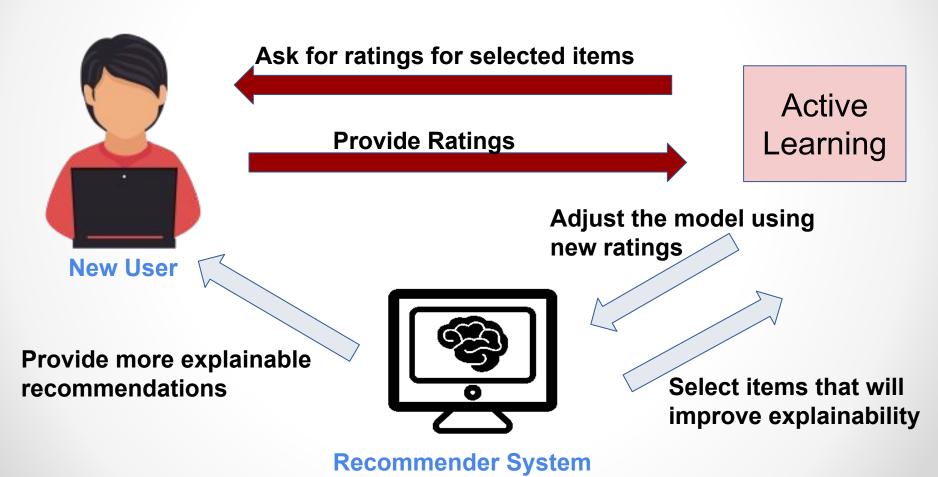
Active Learning



**Recommender System** 







Active Learning to improve explainability in MF

Problem :

How are we going to select the best items to be queried to the user ?



## **Selection Criterion**

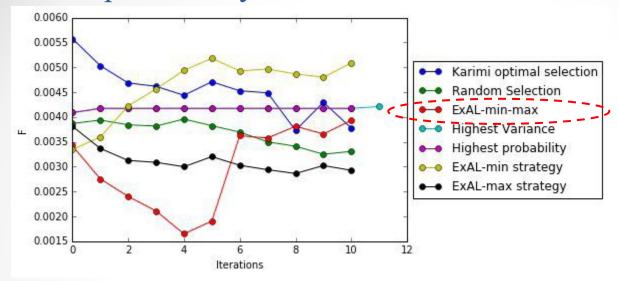
#### Active Learning to improve explainability in MF

**Proposition :** A selection criterion for EMF to minimize testing error and increase explainability for user u :

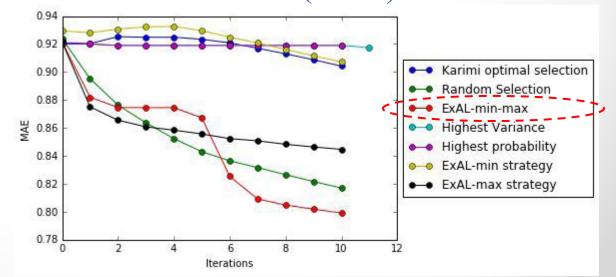
i\* such that :

$$i_{u}^{*} \simeq \underset{i \in I_{pool}^{u}}{\operatorname{argmin}} \sum_{j \in I_{test}^{u}} \left| 1 - r_{uj} + 2\alpha((r_{ui} - \bar{R}_{i})\sum_{f=1}^{k}q_{if}q_{jf} + \lambda W_{ui}(r_{uj} - \sum_{f=1}^{k}q_{if}q_{jf})) \right|$$
Index of the item that will be queried from the user
$$Expected \text{ change in the accuracy of the testing error}} Explainability term that takes into consideration explainability as a selection criterion explainability term that takes into consideration explainability as a selection criterion explainability term that takes into consideration explainability as a selection criterion explainability term that takes into consideration explainability as a selection criterion explainability as a selection criterion explainability term that takes into consideration explainability as a selection criterion explainability term that takes into consideration explainability as a selection criterion explainability term that takes into consideration explainability as a selection criterion explainability term that takes into consideration explainability term that takes into considerating term that takes into consideration explainabil$$

**Explainability F-score** 



Predictive Error (MAE)



# Summary of Explainable Recommender Systems

- **EMF**: Explainable Matrix Factorization
  - Explainable Latent Factor Model
- **ERBM**: Explainable Restricted Boltzman Machines for Recommender Systems
  - Explainable Deep Learning Approach for Collaborative Filtering
- Both EMF and ERBM:
  - improve explainability
  - without significant loss in accuracy
- **ExAL**: An **Active learning** approach to Explainable Recommendations
  - improves explainability <u>and</u> accuracy

#### References

- Kirby, Simon, Tom Griffiths, and Kenny Smith. (2014) "Iterated learning and the evolution of language." *Current opinion in neurobiology* 28: 108-114.
- Nasraoui, O. & Shafto, P. (2016). Human-algorithm interaction biases in the Big Data cycle: A Markov Chain Iterated Learning framework. arXiv preprint arXiv:1608.07895.
- Shafto, P. & Nasraoui, O. (2016). Human-recommender systems: From benchmark data to benchmark cognitive models. Proceedings of the 10th ACM Conference on Recommender Systems (RecSys 2016), 127-130
- Abdollahi, Behnoush, and Nasraoui, Olfa. (2016). Explainable Matrix Factorization for Collaborative Filtering."In Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee.
- Abdollahi, Behnoush, and Nasraoui, Olfa. (2016). Explainable Restricted Boltzmann Machines for Collaborative Filtering." ICML Workshop in Human Interpretability.
- D. D. Lee and H. S. Seung, (2001). "Algorithms for non-negative matrix factorization," Advances in neural information processing systems, pp. 556–562.
- Abdollahi, Behnoush, and Nasraoui, Olfa. (2017). Explainable "Using Explainability for Constrained Matrix Factorization", Proceedings of the 11th ACM Conference on Recommender Systems (RecSys 2017).
- Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-Thieme, L. (2011b). Towards optimal active learning for matrix factorization in recommender systems. In Proceedings of the 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8).

# Thank You!





Tell me Why? Tell me More!

# Explaining Predictions, Iterated Learning Bias, and Counter-Polarization in Big Data Discovery Models

CCS@Lexington, October 16, 2017

Olfa Nasraoui This work is a Collaboration with: Behnoush Abdollahi, Mahsa Badami, Sami Khenissi, Wenlong Sun, Gopi Nutakki, Pegah Sagheb: @UofL & Patrick Shafto: @Rutgers-Newark

#### Knowledge Discovery & Web Mining Lab

Computer Engineering & Computer Science Dept.

#### University of Louisville

http://webmining.spd.louisville.edu/

olfa.nasraoui@louisville.edu

Acknowledgements: National Science Foundation: NSF INSPIRE (IIS)- Grant #1549981 NSF IIS - Data Intensive Computing Grant # 0916489 Kentucky Science & Engineering Foundation: KSEF-3113-RDE-017



