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Outline

• What can go Wrong in Machine Learning?
o Unfair Machine Learning

o Iterated Bias & Polarization

o Black Box models

• Tell me more: Counter-Polarization

• Tell me why: Explanation Generation
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What Can Go Wrong in Machine Learning?



● We are relying on Machine Learning (ML) algorithms to support 
decisions: 

○ Recommender Systems:
■ They guide humans in discovering only a few choices from among a vast 

space of options

■ Choose among options: Reading the News, Watching movies, 
Reading books, Discovering friends, Dating, Marriage, etc

○ Supervised Learning:
■ Predict class label for given instance

● Example of label: whether to approve a loan, etc

■ Credit Scoring, Criminal investigation, Justice, Healthcare, 
Education, Insurance risk modeling, etc
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What Can Go Wrong in Machine Learning?



Real life data can include biases that can affect the 
predictions 

○ May result in unfair ML models 
■ discriminative, 
■ unreasonable, 
■ biased...

■ worse when models are opaque/black box!  
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What Can Go Wrong in Machine Learning?



● Increasing (unchecked) Human-ML algorithm interaction...

○ Think about Recommender Systems
■ They guide humans in discovering only a few choices from among 

a vast space of options

■ Why are they needed?
● Information Overload ⇒ need Relevance Filters!

■ But ...
● could result in hiding important information from humans
● could exacerbate polarization around divisive issues
● could fail to explain why they recommend a particular choice 

(Black Box models: e.g, Matrix Factorization, Deep Learning)
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What Can Go Wrong in Machine Learning?



Increasing unchecked Human-ML algorithm interaction...
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What Can Go Wrong in Machine Learning?

Need for:
● Understanding Impact of interaction 
● Limiting or reversing biases 

⇒ Tell Me More!

● Adding Transparency / Explanations 
○ to scrutinize biased or incorrect predictions 
○ ⇒ more trust in ML models! 

⇒ Tell Me Why?
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Iterated Bias



• In the past, Machine learning algorithms relied on reliable labels from 
experts to build predictive models.

o Expert users,    limited data,     reliable labels

• Today, algorithms receive data from the general population 
o Labeling, annotations, etc.
o Everybody is a user,    Big Data,     subjective labels

• Labeled Data (User Relevance labels) 
⇒ Machine Learning Models 

⇒ Filtering of information visible to the user 
⇒  Next Labeled Data 

⇒ Next ML Model
 … etc 

⇒  Bias!        Iterated Learning Bias!
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Machine Learning: Now & Then...
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Recommender Systems

Collaborative 
Filtering

Uses previous ratings of the user to predict future preferences
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Recommendation 
system based on 
Machine Learning

5 3 1

4 6 2

2 1 7

✰✰✰✰✰

✰✰✰✰

✰✰✰✰

Recommender Systems ⇒ Iterated Bias
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Iterated Bias: results from repeated 
interaction between user & algorithm



● Collaborative Filtering Simulation: Item-based, U=100, N=200
● Gini Index of the rating distributions vs iterations between rater and 

algorithm
Open loop Closed loop

● Feedback loop / interaction between rater and recommender
⇒ Increases the divergence between ratings (Likes / Dislikes)

 ⇒ We are witnessing the birth of polarization

Note: Existing public benchmark  data sets are useless for studying this 
problem!

(1) they do not record every interaction 
(2) they do not have the absolute user preference on each item!

    
⇒ Need Benchmark human choice and rating cognitive models! 
(Shafto & Nasraoui, ‘Human-Recommender System’ RecSys 2016)

Impact of Iterated Bias on Predicted 
Ratings
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Polarization 
& 

Counter-Polarization 
in Recommender Systems



Machine 
Learning 
Algorithm

Human
(user)

Interface
(Input: rating 

data)

Interface
(Output: 

predicted rating)



Positive Feedback Loop

Temporal DiscountingLimited Historical Data

Machine 
Learning 
Algorithm

Human
(user)

Interface
(Input: rating 

data)

Interface
(Output: 

predicted rating)



Positive Feedback Loop



Positive Feedback Loop



Filter Bubble



Filter Bubble

Does this bore the user enough 
to leave the Recommender  
System?



Self-fulfilling Identity

Or rather...







Consequences

Deconstructing non-prevailing 
views, opinions and behaviors

Over Specialization

User Unsatisfaction

Low Sales Rates

Misperceiving Facts 

Polarization

Extreme Attitudes



It gets worse in a Polarized environment!



Polarization

Our survey ⇒ 

    The field of polarization is rather not unified in

- how polarization is defined? 

and

- what is done after recognizing it?

almost nothing...

Psychology

Economy

Sociology

Computer 
Science

System 
Management

Marketing

Math



Basic Polarization Taxonomy

1. Social Polarization: how people congregate 
with one another,

2. Written Polarization: how people write about 
topics,

3. Rated and Recommended Polarization: how 
people behave, consume and express their 
preferences, 

How they interact with algorithms.

Psychology

Economy

Sociology

Computer 
Science

System 
Management

Marketing

Math



Basic Polarization Taxonomy

1. Social Polarization: how people congregate 
with one another,

2. Written Polarization: how people write about 
topics,

3. Rated and Recommended Polarization: 
how people behave, consume and express 
their preferences:

How they interact with algorithms

           What can we do about it?

Psychology

Economy

Sociology

Computer 
Science

System 
Management

Marketing

Math



Data Science Pipeline: 

● Data-driven problem formulation 
● Feature engineering 
● Modeling 

○ Training a classifier using rating data
○ Polarization Score =  predicted probability of belonging 

to the polarized class
● Evaluation 
● Interpretation

Polarization Detection Classifier - PDT



Recommender System Counter Polarization Methods: 
RS-CP

Pre-recommendation

During 
Recommendation

Post-recommendation



Pre-recommendation Countering Polarization - PrCP

Why do we need it?

● Changing the Recommender System algorithm may not be 
always feasible 
○ Black box 
○ or too complex to modify ...

What do we do?

● Transform the source data to mitigate extreme ratings that 
make an item polarized.  

● Take into account the user's relative preferences, 
○ yet reduce extreme recommendation that can be 

generated from a standard recommender system 
algorithm.



Pre-recommendation -based Countering Polarization 
- PrCP

Mapping Function:

Initial rating 

User Discovery Factor

Average ratings of the user

Polarization Score User Preference Threshold

Item gap ratio



Polarization-aware Recommender Interactive System 
- PaRIS

Goal: 

Design a recommendation system which not only 
recommends relevant items 

but also may include opposite views 

in case the user is interested to discover new items



Polarization-aware Recommender Interactive System - 
(PaRIS)

Goal: Design a recommendation system which not only recommends relevant 
items but also includes opposite views in case the user is interested to 
discover new items.

Our Baseline: Non-negative Matrix Factorization (NMF)-based recommender 
systems: 

● Good scalability
● High predictive accuracy
● Flexibility for modeling various real-life situations
● Easy incorporation of additional information
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NMF: Matrix Factorization (Koren et al - 2009)

Input: Rating matrix
item v

user u
Rating from user u to 
item v

Idea: Learn p and q to predict all values of the rating matrix 
● p and q are the representation of the user u and item v in a latent space. 

Learning process: 



PaRIS - Intuition 



PaRIS - Intuition 



PaRIS - Intuition 



PaRIS - Intuition 



Polarization-aware Recommender Interactive System 
- PaRIS

Initial rating 

User Discovery 
Factor

Average rating
Polarization Score

User Preference 
Threshold

Item gap ratio



Experiments

Fully Polarized 
Environment

Partially Polarized 
Environment



 NMF: Fully Polarized Environment

● It is easy and fast to learn discriminating models in a 
polarized environment!
○ The result: Keep each user in the safety of their preferred 

viewpoint



Effect of Increasing Polarization on NMF
Extreme 
Polarization!!
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Effect of Polarization on NMF
Can monitor 
convergence trend 
to detect 
emergence of 
polarization!!



Counter Polarization Methods: 
Recommend More Items from Opposite View



Conclusion

★ Iterated Learning Bias: theory and simulations

★ Counter-polarization 
○ Empower the users who are increasingly entrapped in 

algorithmic filters
○ Allows humans to regain control of algorithm-induced filter 

bubble traps,
○ Impact on information filtering / recommender systems

■ News, social media, e-commerce, e-learning, etc

★ We uncovered patterns that are characteristic of environments 
where polarization emerges
○ Can monitor objective function optimization trend 
○ ⇒ detect and quantify the evolution of polarization

★ ⇒  allow users to break free from their algorithmic 
chains!
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Why is Explainability So Important?

Transparency is crucial to scrutinize:

○ incorrect predictions
○ biased predictions

More trustworthy ML models!
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Black Box vs. White Box

• Black Box (opaque) predictors such as Deep learning and matrix 
factorization are accurate, 
• …. but lack interpretability and ability to give explanations

• White Box models such as rules and decision trees are interpretable 
(explainable) 
• … but lack accuracy

• Explanations provide a rationale behind predictions 
➔ help the user gauge the validity of a prediction
➔ may reveal prediction errors and reasons behind errors
➔ increase trust between human and machine

Our Focus: Explanations in Recommender Systems
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Recommender Systems

Collaborative 
Filtering

Uses previous ratings of the user to predict future preferences



Use
r

Ite
m

Rati
ng

U1 I1

U2 I2 5

... ... ....

ML Model Recommendation

Black-Box 
Recommender

Input Data

Use
r

Ite
m

Rati
ng

U1 I1

U2 I2 5

... ... ....

ML Model
Recommendation/ Explanation

Explainable 
Recommender

Input Data

“100 people with 
similar interests to 
you rated this show 
“5” out of “5”.
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● Using Explanations, we can increase the 
transparency of the model.

● However there may be a downside: 
○ Explainable models should also remain accurate!
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Tradeoff between Accuracy and Explainability

Goal : a moderate tradeoff between accuracy 
and explainability

Explainability Accuracy
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MF: Matrix Factorization (Koren et al - 2009)

Input Data: Rating matrix
item v

user u
Rating from user u to 
item v

Idea: Learn p and q to predict all missing values of the rating matrix 
  p and q = representation of user u and item v in a latent space. 

Learning process: 

Main Problem:  Matrix Factorization is a Black Box Model
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Wuv = Explainability score calculated for user 
u and item v.  

Recommendation: Justification:
80% of users who 
share similar 
interests with you 
liked this movie

EMF: Explainable Matrix Factorization (Abdollahi & Nasraoui, 2016) 

New objective function: 

Idea:  Provide neighborhood style Explanations along with recommendations 
  and learn a model that is explainable  

Explainability term to favor users 
and items with similar p and q

● N’: total number of neighbors of user u 
who rated item v

● N’k : total number of neighbors of user u 
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Classical Framework



Classical Framework

- possible mismatch between (1) and (2)

- generally need to generate 
explanations at recommendation time 
(not efficient)
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Classical Framework vs Proposed Framework



Intuition
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Intuition

60



Intuition: Bring explainable 
items closer to the user in 
latent space
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Intuition: Now explainable item 
is more likely to be 
recommended

62
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What If we make the algorithm choose the most useful training data?

Unlabeled 
training 

set

Labeled 
training 

set

Machine Learning 
model

Annotator

Select queries

Update model

Active Learning
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ExAL: Explainable Active Learning

1. Select items from an unlabeled pool of items using an Active Learning 
selection strategy

2. Obtain the true ratings of the selected item from the new user
3. Adjust the parameters of the model using the new ratings
4. Repeat the process until meeting a stopping criterion
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active 
Learning

Select items that will 
improve explainability

Recommender System

New User
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active 
Learning

Ask for ratings for selected items

Select items that will 
improve explainability

Recommender System

New User
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active 
LearningProvide Ratings

Ask for ratings for selected items

Select items that will 
improve explainability

Recommender System

New User
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active 
LearningProvide Ratings

Ask for ratings for selected items

Select items that will 
improve explainability

Adjust the model using 
new ratings

Recommender System

New User
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active 
LearningProvide Ratings

Ask for ratings for selected items

Select items that will 
improve explainability

Adjust the model using 
new ratings

Provide more explainable 
recommendations

Recommender System

New User
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active Learning to improve explainability in MF

Problem : 

How are we going to select the best items to be queried to the 
user ?

Selection Criterion
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Explainable Active learning Strategy Algorithm 
(ExAL)

Active Learning to improve explainability in MF

Explainability term that takes 
into consideration explainability 
as a selection criterion

Proposition : A selection criterion for EMF to minimize testing error and increase 
explainability for user u :

i* such that :

Index of the item 
that will be queried 
from the user

Expected change in 
the accuracy of the 
testing error
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Explainability F-score

Predictive Error (MAE)



o EMF: Explainable Matrix Factorization 
• Explainable Latent Factor Model

o ERBM: Explainable Restricted Boltzman Machines for 
Recommender Systems 

• Explainable Deep Learning Approach for Collaborative Filtering

o Both EMF and ERBM:
• improve explainability 
• without significant loss in accuracy

o ExAL: An Active learning approach to Explainable 
Recommendations
• improves explainability and accuracy
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Summary of Explainable Recommender Systems
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