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ABSTRACT

We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch
spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption
lines are highly coordinated among different components of the same ion or the same absorption component of
different ions for C IV, Si IV, and N V. Furthermore, we show that the equivalent widths (EWs) of the lines decrease
or increase statistically when the continuum brightens or dims. This is further supported by the synchronized
variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission
lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the
dimming of the continuum while the disappearance of an absorption-line component is accompanied by the
brightening of the continuum. This suggests that the emergence or disappearance of a C IV absorption component is
only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum
variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by
changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and
in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the
spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and
absorption-line variations.

Key words: line: formation – quasars: absorption lines – quasars: emission lines
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1. INTRODUCTION

It is generally accepted that quasar feedback plays a crucial
role in the context of galaxy formation and evolution. The
bimodal color distributions of galaxies in the present universe
and the deficiency of massive galaxies in the mass function of
galaxies in comparison with dark-matter halo mass distribu-
tions require quenching of massive galaxies (Silk 2011). The
correlations between masses of supermassive black holes
(SMBHs) and the bulge of their host galaxies suggest that
the growth of galaxies and SMBHs at their centers are closely
connected (e.g., Kormendy & Ho 2013). Considering the high
radiation efficiency of black hole accretion, even if a small
fraction of the enormous power from accreting SMBHs during
the quasar phase goes into the interstellar medium in the host
galaxy, it can interrupt the growth of both the black hole and its
host galaxy. Quasar outflow is a natural form of such feedback,
given its ubiquity among quasars, with a potentially large
kinetic power, as demonstrated in a few quasars with UV broad
absorption lines (BALs) from S IV, O IV, or Fe II excited states
or ionized X-ray absorption lines (e.g., Korista et al. 2008;
Chartas et al. 2009; Arav et al. 2013; Borguet et al. 2013;
Tombesi et al. 2015). Outflows are manifested as blueshifted
broad emission lines (BELs) or BALs, imprinted on UV or
X-ray spectra of quasars. However, the total kinetic energy of
outflows on these scales, as well as the way they interact with
the ISM, remains very uncertain because of the uncertainty in
the geometry and the total column density of quasar absorbers,
together with the complication of more than one stable phase
(Arav et al. 2013).

Quasar absorption lines were divided into two classes
according to their origins. The intervening absorption lines,

which are produced by galaxies and intergalactic material
between the quasar and the observer, are not the subject of this
study. Intrinsic absorption lines, formed by gas either directly
associated with the quasar or in its host galaxy, are our main
focus. Most intrinsic absorption lines are blueshifted with
respect to the corresponding emission lines, implying that the
gas is flowing out of the center. Intrinsic absorption lines are
further classified into narrow and broad absorption lines (NALs
and BALs) according to the width of the absorption line (e.g.,
Weymann et al. 1991; Barlow & Sargent 1997; Barlow et al.
1997). In this paper, we will focus on BALs, but we do not
distinguish BALs and mini-BALs with a width of
500–2000 km s−1 (Hamann & Sabra 2004) as there is a
continuous distribution of absorption index between the two
classes (e.g., Trump et al. 2006; Ganguly & Brotherton 2008;
Gibson et al. 2009) and there are instances where a source can
transition from mini-BALs to BALs (e.g., Rodríguez Hidalgo
et al. 2013). It has long been known that BALs are variable on
timescales from years to months (Foltz et al. 1987; Smith &
Penston 1988; Barlow et al. 1989, 1992; Barlow 1993;
Turnshek et al. 1998), but systematic studies have only
recently been carried out (Lundgren et al. 2007; Gibson et al.
2008, 2010; Capellupo et al. 2011, 2012, 2014; Filiz Ak et al.
2012, 2013; Welling et al. 2014).
Capellupo et al. (2011, 2014) monitored a sample of 24 BAL

QSOs at z∼ 2 over timescales of 0.02 to 8.7 years4 and found
that 65% of their quasars displayed BAL variability over
several years and 39% on timescales of less than one year.
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4 Time will be referred in rest frame of quasars unless explicitly state
otherwise.
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Similarly, Wildy et al. (2014) analyzed 2-epoch spectra of 50
BAL quasars spanning 10 months to 3.7 years and found that
50%–60% BALs are variable on such timescales. Using multi-
epoch spectra from the SDSS I/II/III, Filiz Ak et al. (2012,
2013) made a statistical study of the largest sample consisting
of 582 BAL quasars. They showed that the fraction of variable
BALs increases with increasing observing intervals. All these
studies also found that different BAL components of C IV in
one object or the same troughs of C IV and Si IV BALs vary in a
coordinated manner (strengthening or weakening). These
coordinated variations can most simply be interpreted as
caused by the variation in the ionizing continuum (Hamann
et al. 2011). In contrast, Wildy et al. (2014) claimed that BAL
variations were not correlated with continuum variations,
casting doubt on this interpretation. In addition, Capellupo
et al. (2014) found variable P V absorption lines associated with
non-black C IV absorption lines, which they interpreted as
ionized gas moving across the continuum source. There is also
an argument that the ionizing continuum may vary in a
different way from the observed UV continuum due to changes
in a presumed high ionization shielding gas (Filiz Ak et al.
2012). That intervening gas filters hard ionizing photons to
prevent overionized outer layers of gas (Murray et al. 1995).
Also, in some cases, a new component appears or a previously
observed trough disappears, which is interpreted as gas moving
into or out of our line of sight (Hamann et al. 2008; Leighly
et al. 2009; Krongold et al. 2010; Filiz Ak et al. 2012).

While the cause of this variability is still a matter of debate,
there is no doubt that absorption-line variability can put useful
constraints on the physical state and/or kinematics of the
absorbing gas. In the case of photoionization, the variability
timescale will set an upper limit on the ionization or
recombination timescale, which depends solely on the flux
density of the incident ionizing continuum or on the gas
density. In the case of gas moving in and out of the line of
sight, important constraints on the gas transverse velocity and
the size of the clump can be set. In combination with specific
kinematic models, this can translate into constraints on the
distance of the absorber to the central black holes (e.g., Hall
et al. 2011).

In this paper, we will examine the variability of BALs and
mini-BALs and their correlations with continuum and emis-
sion-line variability to constrain the physical process that leads
to such variability and to interpret the observed variability in
the context of such a physical process. The paper is organized
as follows. We describe the sample and data analysis methods
in Sections 2 and 3. A correlation analysis is presented in
Section 4. We discuss the implications and photoionization
models in Section 5. A summary is given in Section 5.

2. VARIABLE ABSORPTION LINE QUASAR SAMPLE

We searched the SDSS DR10 archive for quasars that were
observed two or more times. We merged the quasar catalog of
SDSS data release 7 (DR7; Schneider et al. 2010) with that of
DR10 (Pâris et al. 2014). Duplicated entries are removed. We
compared this catalog with the SDSS spectroscopic catalog and
selected quasars with multi-spectroscopic observations. To
investigate the variability of C IV, Si IV, and N V, we adopt a
redshift cut of 2.2< z� 4.7. To ensure detection of major
absorption lines, we only keep quasars with at least one
spectrum with signal-to-noise ratio of S/N> 10. After these
screenings, we obtain a sample of 6250 quasars with two

spectra or more. In the following subsection, we describe the
method of construction of a variable absorption-line quasar
sample.

2.1. Unabsorbed Quasar Templates and Identification of
Absorption Lines

In order to identify absorption lines, we need a set of
unabsorbed template quasar spectra. In the literature, there are
several ways of constructing such templates: using quasar
composite spectrum as an approximate (e.g., Weymann et al.
1991), using the reddened power-law continuum plus Gaussian
or Lorentzian emission-line models (e.g., Filiz Ak et al. 2012),
using a set of PCA spectra of quasars (e.g., Wildy et al. 2014),
and finally adopting the best-matching unabsorbed quasars
(Zhang et al. 2014; Liu et al. 2015). In this paper, we will use a
set of composite spectra with different properties of emission
lines to account for the diversity of quasar spectra. To first
order, a quasar emission line can be described by its relative
strength (EW), its blueshift, and its width (FWHM). Previous
studies have shown that those line parameters for C IV are
correlated with each other (e.g., Corbin & Boroson 1996;
Richards et al. 2011; Wang et al. 2011) and also with
the relative strength of other lines (Wang et al. 2012). Here,
we divide 38,377 non-BAL quasars by 1.5< z� 4.0 and
S/N1350> 10 in Data Release 7 (DR7) into different bins
according to their line width (FWHM) and equivalent width
(EW) of C IV as measured by Shen et al. (2011). We then make
a composite spectrum for each bin. We split the EW(C IV) and
FWHM plane into 210 unequal grids as shown in Figure 1. To
ensure a sufficient number (>20) of spectra per bin, we use a
larger grid in the low-density zone of parameter space. Among
the 210 grids, 10 contain less than 20 spectra each, so no
composite spectrum is made for these grids. In the process, we
mask bad pixels using the SDSS mask array and also mask

Figure 1. Grids on the plane of EW C IV( ) vs. FWHM C IV( ) of which
unabsorbed composite spectra are made. The scattered dots represent the data
of quasars in SDSS DR7. No composite spectrum is made for gray area
because there are fewer than 20 quasars in each grid.
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strong narrow absorption lines in individual spectra. We
smooth the SDSS spectrum using a Savitzky-Golay filter with
33 pixels, and a fourth-degree polynomial. Any region 10%
lower than the smoothed spectrum and with a width of at least 3
pixels is considered a narrow absorption line. We replace the
flux of these pixels with the smoothed ones. Finally, we check
the templates by eye. This yields a total of 200 templates. With
this number of templates, we are able to fit emission lines and
continuum in individual objects.

We fit these templates to the spectra using a double power-
law function as a scale factor,

l l
= +l ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝
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3
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[ ]
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where coefficients A 1 : 4[ ] were determined by minimizing χ2.
Note that the power law can also be used to describe the SMC-
like dust extinction in the UV band, which can be considered a
good approximation for quasar reddening (e.g., Richards et al.
2003). The wavelength range of this fit covers from 1260 to
2750Å.5 We also shift the templates in wavelength up to 6
pixels to account for uncertainties in the redshift. To do the fit,
we iteratively mask pixels significantly (3σ) lower than the
model on the blue side of C IV, Si IV in order to exclude possible
absorption lines. We select the 10 best templates according to
the criterion of the maximum number of pixels within 1σ error,
penalized for the number of pixels exceeding the model at the
3σ level. This usually yields a reasonable fit to the SDSS
spectrum except, in some cases, around strong emission lines.
To evaluate the fit around strong emission lines, we calculate
the significance of excess or deficient flux around each line

(c s= å - åf f ffit
2( ) ( ) ), which is used as a criterion for the

addition of a Gaussian for the excess or deficient emission line.
In the case of the deficient regions, χ is only calculated on the
red side of an emission line for C IV, N V, and Si IV because
redshifted absorption lines are very rare (Hall et al. 2013). We
then extend it blueward. If it is significant at the 3σ level, a
Gaussian function is then added to the selected best fit, and a
new fit is performed. About 8% of spectra need an additional
Gaussian component for C IV emission line. In most cases, this
can reproduce a reasonably good fit as judged by eye.
Examples of fits are shown in Figure 2. For convenience, we
will term this best fit “matching template,” although it may
include additional Gaussians. A normalized spectrum is created
by dividing the observed spectrum by the matching template.
We searched contiguous deficient pixels for intrinsic

absorption lines in the normalized spectrum. With a focus on
the moderate to broad absorption lines, which are more likely
intrinsic, deficiency over a width of lD -ln 10 ,3 or
300 km s−1 in velocity and more statistically significant than
5σ, is screened. The significance is defined by the total
deficient flux divided by the square root of the summed errors.
Then, we check by eye to exclude false ones caused by an
improper fit in most cases. In a number of cases, C IV

absorption lines move to wavelengths shorter than 1400Å, so
these may be identified incorrectly as Si IV absorption lines. To
deal with this, we simultaneously check the absorption lines in
C IV, Si IV, and N V over a velocity range up to 40,000 km s−1,
if N V is within the spectral coverage.6 Our assumption is that
any Si IV absorption lines must have an accompanying C IV. If
not, the feature will be identified tentatively as a high-velocity

Figure 2. Unabsorbed template fit to the spectra of SDSS J130505.7+030317 at three epochs. SDSS mjd of the spectrum is labeled in each panel. The red line shows
the scaled best matched template, while the green line has additional Gaussians to account for emission lines. The red crosses are those pixels 3σ below the fit, and
thus are masked out during the fit.

5 Despite the relatively large number of templates used, in a significant
number of cases, we cannot find a proper match for all strong emission lines
from 1200to 2850 Å.

6 In about 10% of cases, N V is shifted out of the SDSS spectral coverage
because the blueshift of the absorption line is too large or because the N V

absorption line falls in a problematic spectral range as flagged by the SDSS
mask array by chance.
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C IV component. For confirmation, we look for a possible
corresponding N V and Si IV absorption line. Examples of high-
velocity absorption lines are shown in Figure 3. Note that we
do not intend to select a complete sample of BAL or mini-BAL
quasars, but rather establish a starting point for finding a
reliable sample of variable absorption-line quasars.

2.2. Identification of Variable Absorption Lines

In order to determine whether emission or absorption lines
are variable or not, with respect to the continuum, we first
select the highest S/N spectrum of the quasar as a reference
and then rescale it using the double power-law function
(Equation (1)), as in the template fit, to match the quasar
spectrum in the overlapping region obtained at other epochs.
This is an empirical approach to take into account for potential
variations of the continuum shape in which the spectrum
usually becomes bluer as continuum brightens and for the
uncertainty in the relative spectrophotometric calibration
(Dawson et al. 2013 and the Appendix). As shown below,
with this recipe we can fit the observations very well. Examples
of the fit are displayed in the Figure 4.

Once this rescaling is done, we found that weak lines and the
continuum spectral energy distribution (SED) match very well
in the two epochs. The median scatter in the difference
spectrum is comparable to the combined uncertainties (square
root of the sum the square of the flux errors) of the spectra
provided by SDSS in the regions avoiding strong emission
lines. However, emission lines and absorption lines show
significant differences in many cases. To account for variations
of emission-line EWs, we then add/subtract a Gaussian to/
from the rescaled spectrum. To minimize potential spurious
results, the sign of normalization, which will be used as an
indicator of the increase or decrease of overall emission-line
EW in Section 3, is assumed to be the same for all emission
lines. We also restrict the center of the Gaussian to lie within
±500 km s−1 of the line center at the source rest frame.
Although the actual variation of emission lines may be more

complicated, for the S/N of our spectra, this reproduces good
fits for almost all lines. With this fit, we found that the scatter in
the difference spectrum over emission-line regions is similar to
that of continuum regions. In comparison with unabsorbed
quasar template matching, the rescaled reference matching
usually produces a better fit outside the absorption-line region.
Therefore, in the following, we will measure the absorption-

Figure 3. Two sampled SDSS spectra of quasars with high-velocity C IV absorption lines shortward of the Si IV emission line. The green line represents the best
matched unabsorbed template. The high-velocity absorption line in C IV is shown in red; the correspondent portions for Si IV and N V are displayed in brown and in
pink, respectively.

Figure 4.Match one SDSS spectrum (in black) to the reference spectrum taken
at another epoch by multiplying one spectrum with the double power law
described in the text (the green line). The red curve represents the one with
additional Gaussians to account for the change of the emission-line equivalent
width. The residuals of fits (solid line) and the combined spectrum uncertainties
(dashed line) are plotted in the lower panel.
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line variability from the difference spectrum rather than by
comparing EWs obtained in the template fitting.

To identify variable absorption-line components in the
difference spectrum, we searched for contiguous negative and
positive bins to determine the range of variable components.
The uncertainties are estimated by taking into account the flux
uncertainties of the two spectra given by the SDSS pipeline and
possible systematic uncertainties due to rescaling. The latter is
estimated in neighboring regions that are outside of the
absorption troughs. Because difference spectra do not have a
high S/N, in general, a single variable component may split
into two or more segments due to statistical fluctuations in the
spectrum. To overcome this problem, we take three steps. First,
we mark all pixels where the difference is larger than 5% of the
average value and more than 3σ. Adjacent marked pixels are
then connected to form a variable region. Next, we expand such
a regime into neighboring pixels that have the same sign in the
difference spectrum but are at the less than 3σ significant level.
After that, we also merge the neighboring regions with the
same variable sign and with a separation of less than four
pixels. Finally, we identify the same component in different
epochs, and then we extend the velocity range of each
component to cover the component at all epochs.

In practice, we iterate three times through the above
procedures. We mask the variable absorption regions identified
in the previous iteration, rescale the spectrum, and refit the
emission lines. After that, we redefine the variable absorption-
line region. Finally, the sample is then examined by eye and
spurious regions are excluded. In the end, a sample of 452
quasars with detected variable absorption lines were identified.
We list the sources and regimes of the variable absorption lines
in Table 2. The maximum velocities of the C IV absorption-line
troughs in this sample extend to up to 45000 km s−1, and the

widths of individual absorption troughs are in the range of
500–15000 km s−1. Note that variable components may be the
entire trough or just a portion of the trough. The latter does not
necessarily mean that the variable portion of the trough is
physically different from the rest, instead it may reflect the
limitation that we cannot detect small variations caused by even
moderate changes in the ion column density in certain
circumstances. This is evident especially in the deep trough
of C IV, where we sometimes observe an apparent variation of
the Si IV absorption line while no similar C IV variation is seen
(Figure 5; and also Filiz Ak et al. 2013). In comparison with
those of Filiz Ak et al. (2013), our sample also includes
absorption lines that do not meet the criteria of BALs. The
basic properties of the sample are summarized in the Table 1.

3. MEASURING THE VARIABILITY PARAMETERS AND
STATISTICAL METHOD

In this paper, we will use the sign of the variation with
respect to the scaled reference spectrum as a non-parametric
description of absorption-line variability. We simply measure
the integrated variable flux over the variable region of
absorption lines in the difference spectrum using the refer-
ence-matching method. We assign a sign of absorption-line
variation of +1 when the absorption-line trough becomes
significantly deeper (at the 3σ level), −1 when the trough gets
significantly shallower, and 0 otherwise. In comparison with
previous measurements using variations of an absorption-line
EW, our method avoids the additional uncertainty introduced in
the process of template matching while measuring the EWs of
absorption lines in each spectrum.
We estimate the variability of the continuum and emission

lines in order to explore the internal driver for absorption-line
variability. It is known that the spectrophotometric calibration

Figure 5. Different variations of C IV, Si IV, and N V absorption lines in two quasars. The variable regions in one or more absorption lines are marked in blue. Other
colors are the same as Figure 4. Noting strong C IV and N V, absorption lines are not apparently variable in the deep trough while the weaker absorption-line Si IV is.
This is likely an observation effect with which it is more difficult to detect small flux changes in the deep absorption trough caused by ionic column density variations.
The absorption trough around −9000 km s−1 in the lower left panel is due to Lyα absorption.
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of SDSS has an uncertainty of about σr= 0.05 mag in the
SDSS I/II surveys (Abazajian et al. 2009) and is considerably
worse for BOSS spectra (Dawson et al. 2013; Pâris et al. 2014).
However, as shown in the Appendix, the distribution of
difference magnitudes between two epochs of our detected
variable absorption-line quasars is considerably broader than
possible calibration uncertainties. Hence, it is still possible to
extract statistically useful information about the sign of
continuum variability. We consider a continuum variation
significant when its amplitude is greater than 5% at the g-band
or, typically, ∼1400Åin the quasar rest frame. As for
absorption lines, we assign a sign of the continuum variation
to +1 when continuum flux around 1400Åis more than 5%
brighter than the reference spectrum, −1 for the opposite case,
and 0 otherwise.

If there are only two categories, the concordance index
should follow a binomial distribution with a probability of

> = S - -P x k n p C p p; , 1 ,i k n
i i n i( ) ( )( ) for a result of more

than k concordant cases in n pairs with a concordant probability
of p and anticoncordant probability of 1−p for each pair, where
Cn

i is the binomial coefficient. In our case, the concordance
index can take an additional value of 0 because of an undefined
variability sign of one variable, which does not affect our
analysis. Because undefined variability signs can be caused by
a low signal-to-noise ratio of the spectrum or a small
variability, which are not of interest to us, we seek the
probability >P x k n p; ,( ) among n of those pairs with defined
variability signs of both variables. This probability follows a
binomial distribution. If we take p= 0.5, then P gives the
chance coincidence that concordance and anti-concordance
have equal possibilities. Furthermore, one can derive the most
likely value of p= k/n and 1σ error in p as -p p n1( ) if
there is no measurement error in the concordance index. On the
other hand, if the concordance index were misassigned
randomly for a fraction q of sources, we can derive easily
= - -p k n q q1 2( ) ( ) by considering those misassigned

events. The error can be estimated by Monte Carlo simulations.
It is evident that taking into account the misassignments will
make p larger if p> 0.5 and smaller if p< 0.5. This is
reasonable because random errors would only smear the
difference rather than enhance it, making apparent p closer
to 0.5.

In light of the well-established intrinsic Baldwin effect, i.e.,
the EW of an emission line correlates negatively with that of
the continuum during continuum variations (e.g., Kinney et al.
1990), we will use the variation of emission-line EWs as an
independent check for the sign of continuum variation. Lags in
the emission line to continuum variations will introduce a
correlation similar to the Baldwin effect. We calculate
variations of the EWs of strong emission lines (including
Lyα, N V, Si IV, C IV, C III]). The variation of emission lines
relative to the continuum is measured in the reference-matched

spectrum, and the sign of emission-line variations can be
directly extracted from the sign of additional Gaussian
components in the reference-matched spectrum. Similarly, we
assign a sign for the emission-line variation: +1 if the line flux
in the reference-matching spectrum increased significantly and
−1 if the line flux decreased significantly, and 0 otherwise.
Among 510 spectrum pairs of 452 objects (Table 1), 292

pairs show opposite signs of continuum and emission-line EW
variability, 111 pairs display the same sign, and the rest of the
107 pairs do not have a well-defined variability sign of either
continuum or emission lines. Therefore, in a total of 403 cases
with well-defined variability sign in both continuum and
emission lines, 292 have a concordance index of −1. Following
the binomial distribution, we obtain a probability concordance
index of −1: p= 0.725± 0.022, which is 10.2σ from no
preference (p= 0.5) for the anticorrelation between continuum
and emission-line variability. Therefore, the intrinsic Baldwin
effect is detected at a high confidence level for the high-
luminosity quasars.

4. CORRELATED VARIATIONS OF ABSORPTION LINES,
EMISSION LINES, AND CONTINUUM

4.1. Correlated Variations of Absorption Lines

Previous observations have shown that different components
of the C IV absorption line show coordinated variations, i.e., in
the same sign of variations (see references in Section 1). This is
confirmed by our study. We define a concordance index with
+1 for the all components that vary with the same sign and −1
for one or more components with opposite signs. Among 114
spectral pairs of 101 objects with multiple variable C IV

components, only 25 pairs display one or more components
varying in opposite sign to others, while the rest show the same
sign. This gives a probability for concordant variations of
p= 0.781± 0.039, which is 7.2σ from p= 0.5 following the
binomial distribution. Note that when only the most significant
variation is selected for each object, if there is more than one
spectral pair, 97 of 101 objects show concordant variations of
different components, consistent with the above conclusion.
Furthermore, we notice that in the case of incongruent
variations, the two asynchronous components often share an
absorption trough, indicating an acceleration or deceleration of
an absorption-line component. This will be studied in detail in a
forthcoming paper.
Next, we explore the coherence of the variations of the same

component of different absorption lines. It was demonstrated
by several previous authors that variations of C IV and Si IV
absorption lines are highly concordant (see references in
Section 1). Figure 6 shows the distributions of the concordance
index for (C IV, Si IV) and (C IV, N V) pairs. In cases of more
than one variable C IV absorption-line component, for each line
we sum up the sign of individual components and assign a sign
of +1 for a positive sum, −1 for a negative sum, and 0
otherwise. Using this sign, we calculate the concordance index
for the spectrum. We do count different spectra of one quasar
as independent. However, absorption lines that are affected by
bad pixels or are out of the spectral coverage were not counted.
From these distributions, there are only a small fraction (<4%)
of cases where the two lines vary in an opposite way, although
there is still a large fraction where Si IV or N V does not vary
significantly. C IV and N V are correlated better than C IV and
Si IV, i.e., 28% of pairs have a concordance index of 0 for C IV

Table 1
Basic Statistics of the C IV Variable BAL Sample

Variable Parameter Number of Sources

C IV 452
Si IV 194
N V 227
Emission Lines 396
Continuum 421
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versus N V, while 60% are between C IV and Si IV. Using the
distributions in Figure 6, we calculate p= 0.944± 0.015 (black
boxes; 0.949± 0.017 for red boxes) for concordant variations
of C IV and Si IV absorption lines. The probability for
concordant variation of C IV and N V is p= 0.963± 0.010 for
the black boxes in the right panel of Figure 6 and
0.960± 0.012 for the red boxes.

A close examination of the cases of concordance index 0
shows that, in most cases, the non-variable line (N V or Si IV)
either has a very shallow or very deep absorption trough. So the
non-detection of variability is most likely due to the
insensitivity of the variation of the flux in absorption trough
to changes in the ion column density in these cases and the
relatively low S/N ratio of SDSS spectrum. This explains why
more sources in the Si IV and C IV pairs have a concordance
index of 0 than C IV and N V pairs. The latter pairs have similar
optical depths, while Si IV usually has a considerably smaller
optical depth. In fact, Si IV variations are observed more
frequently in quasars with a deep C IV absorption trough. We
will explore the implication of this in the next section.

4.2. Coordinated Variations between Absorption Lines and
Continuum/Emission Lines

Correlations between variations of absorption lines and
continuum/emission lines provide important insight into the
origin of absorption-line variability. However, previous studies
have not reached a consensus on whether absorption-line and
continuum variations are correlated or not. Gibson et al. (2008)
found that the correlations between the variations of absorp-
tion-line EWs of C IV and continuum flux is not significant for
14 BAL quasars. In a recent study, Vivek et al. (2014) did not
find any trend in the variation of the Mg II and Al III BAL EWs
with the variations of continuum parameters. In a recent study,
Wildy et al. (2014) argued that variations of Si IV and C IV

BALs are not driven by photoionization based on the lack of
correlations with continuum luminosity. We only consider the
signs of absorption, emission line, and continuum variations in

this subsection because the exact amplitude of continuum
variability is rather difficult to quantify with only SDSS spectra
in view of uncertainties in the absolute flux calibration. Since
C IV, Si IV, and N V absorption lines show the same sign of
variations, for each absorption component, we count only the
sign of significant variation in the C IV line and compare this
with continuum variations. As in the last subsection, we assign
a concordance index of +1 for the case where an absorption
line becomes stronger when continuum brightens and −1 in the
opposite way, while 0 for the case in which the sign of
continuum variation is not determined. We also define a similar
concordance index to quantify the coherence between the
variations of absorption lines and emission-line EWs. We show
our results in Figure 7.
Obviously, the variations of absorption lines are statistically

highly coordinated with those of the continuum and EWs of
emission lines. The apparent probability for concordant
variations of emission and absorption line is
p= 0.796± 0.017, which is 17.4σ for p= 0.5. We get the
same result if only the most significant variation for each
source is considered (using the red histogram of Figure 7).
According to the intrinsic Baldwin effect, the two results
suggest that absorption lines weaken as the continuum
brightens and vise versa. Similarly, the apparent probability
for concordant variations of continuum and absorption lines is
p= 0.726± 0.016, which is 14.1σ from p= 0.5. We obtain a
similar result, p= 0.726± 0.022 (10.3σ), when only the most
significant variations are considered for each source. Consider-
ing possible misassigned signs for the variations of either
variables, the real p should be higher.
The conclusion on the correlated variations of absorption

line and continuum should be not affected by the SDSS flux
calibration uncertainty of SDSS spectra. Because the spectro-
photometric calibration error is not expected to correlate with
the variation of the absorption-line strength, any calibration
errors will only diminish rather than enhance the correlated
variations. Thus, the observed coordinated variations of

Figure 6. Distribution of the concordance index for the same variable component of different lines (left panel: C IV vs. Si IV, right panel: C IV vs. N V). The
concordance index is defined as +1 if both lines vary in the same sign (increasing or decreasing), −1 in opposite sign, and 0 otherwise. We exclude 58 spectra pairs
and 52 quasars from analysis that N V absorption lines are outside of spectral coverage. The black boxes are the distribution of all spectra pairs in Table 1, while the red
boxes are based on the most significant pair for each object.
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absorption lines and continuum must be real. This is further
supported by coordinated variations between absorption-line
and emission-line EW, which are not affected by the flux
calibration. Note that we use the continuum flux variability
amplitude of >5% as a threshold, while it is estimated
conservatively in the Appendix that about 13% have been
assigned to an opposite sign of continuum variations and an
additional 10% with an undefined sign of variations. The total
number is comparable to the total fraction (33%) of sources
with a concordance index of 0 or 1. Thus, our result is
consistent with the idea that a large fraction of cases with a
concordance index of 0 or −1 are due to absolute flux
calibration uncertainties. If we take the numbers given above,
about 14.4% of BAL quasars were assigned to a wrong sign of
continuum variation among those with defined signs. Accord-
ing to the equation in Section 3, we obtain p= 0.817. However,
the exact probability has to wait until a complete solution of the
flux calibration uncertainties are found. We see that there are
fewer cases of concordance index −1 in the absorption- and
emission-line pairs because there is no such calibration
problem, although the measurement of the variation of
emission-line EW is subject to larger statistical uncertainties.

There are rare cases where a new component of an
absorption line emerges or a previously known component
disappears (Hamann et al. 2008; Leighly et al. 2009; Krongold
et al. 2010; Filiz Ak et al. 2012). They are extreme cases where
the absorption-line trough is below the detection limit in one
epoch, which depends on the S/N of the spectrum and the
correctness of the template used to match the spectrum. These
cases are often taken as evidence for outflows moving in and
out of the line of sight. The large sample of multi-epoch
spectroscopic quasars enables us to extract a statistically
significant sample of about 70 spectral pairs of around 50
quasars with emergence or disappearance of at least one
absorption-line component (see Table 2 and Figure 8). We
performed the same analysis of the concordance index among
variations of continuum and absorption lines, or emission and
absorption lines. The results are shown in Figure 9. The

coordinated variations of absorption lines, continuum, and
emission lines are statistically significant at 5.5 (for all pairs,
black boxes in the figure) or 5.8σ (only the most significant pair
for each object, red boxes) and 5.2 (all pairs) or 4.8σ (only one
pair for each object), respectively. It is apparent that these cases
also follow the above correlations, suggesting that the same
physical process also accounts for these extreme variations of
ion column density. Because they account for only a small
fraction of our variable absorption line quasar sample, they do
not affect the statistical results of the parent sample presented
above.

5. DISCUSSION

5.1. A Short Summary of Previous BAL Variability Studies and
Our Results

Previous works found that variations of BALs on the
timescales of years are common (50%–60%) and that the
variable fraction and variability amplitude increase with the
time interval of observations (Gibson et al. 2008; Capellupo
et al. 2012; Filiz Ak et al. 2013). These authors also found that
variations usually take place only in a narrow and relatively
shallow portion of a broad BAL trough, although it is not clear
how much this is due to saturation of the absorption line (see
also Lundgren et al. 2007). The distribution of EW variations
can be described using a random walk model (Filiz Ak et al.
2013). It has also been established that variations of C IV and
Si IV are highly coordinated as are variations of different BAL
components of C IV (Capellupo et al. 2012; Filiz Ak et al. 2012,
2013). Disappearances or emergences of BAL components are
observed in a small fraction of BAL quasars on a timescale of
years (Hamann et al. 2008; Leighly et al. 2009; Filiz Ak et al.
2012; Rodríguez Hidalgo et al. 2013), and Filiz Ak et al. (2013)
suggested that these are the extreme cases of BAL variability
rather than a new phenomenon based on the overall distribution
of the variability fraction of the absorption-line EW.
In this paper, first, we extended the coordinated variations of

different lines to N V and C IV absorption lines. Second, we

Figure 7. Distribution of the concordance index for C IV absorption line vs. continuum (right panel) and C IV absorption line vs. emission line (left panel). The
concordance index is defined as +1 if the absorption and emission lines weaken or strengthen simultaneously, −1 if one weakens and the other strengthens, and 0
otherwise. Similarly, in the case of continuum vs. absorption line, a concordance index of +1 means the absorption line strengthens while the continuum brightens and
vice versa. Only quasars with variable C IV absorption lines are included. See the text for a definition of this index. Colors are as in Figure 6.
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showed that variations of absorption lines are highly coordi-
nated with continuum variations. Finally, the emergence or
disappearance of an absorption-line component is correlated
with dimming or brightening of the UV continuum. Regarding
the second point, it should be pointed out that data in previous
studies are consistent with our results, although they were

interpreted in a different ways. Barlow et al. (1992) found
marginal evidence for a correlated continuum and absorption-
line variations; Gibson et al. (2008) did not find significant
correlations between the variations of the EWs of C IV BALs
with those of continuum for a sample of 13 BAL quasars
observed in LBQS and SDSS. However, their result does not
contradict ours. Among 13 objects, 7 objects lie on the first and
third quadrants and 3 on second and fourth quadrants on the
ΔEW versus D Flog 2500( Å) diagram (their Figure 10), and
the other three do not have significant variations in either
parameter or both (less than their error bars). The situation is
quite similar in the ΔEW versus D Flog 1400( Å) diagram:
among 7 objects with significant variations of both parameters,
5 fall on the first and third quadrants and 2 on the second and
fourth quadrants. The insignificance is simply due to the small
number in the sample. Although Vivek et al. (2014) did not
find any significant trend between the variations of absorption
lines (Mg II and AlIII) and continuum flux, in their Table 3, six
of eight quasars showed the opposite trend of long-term (on
scales of years) continuum and absorption lines, only one
displayed the same trend, and another one exhibited both
weakening and strengthening BAL components. In this section,
we will discuss the implication of these findings.

5.2. What Drives Variations of Absorption Lines?

Absorption-line variability can be caused by changes in
either the gas ionization or the total gas column density. This
can be produced by two main processes: changes in the
ionizing continuum incident on the absorbing gas or gas
moving in or out of the line of sight (Smith & Penston 1988;
Barlow et al. 1989; Barlow 1993). Previous studies did not
reach a consensus on which one is the main driver. On the one
hand, coordinated variations of different components of
absorption lines suggest that the changes in different part of
the outflows are driven by the same parameter. Most naturally,

Table 2
List of Variable Absorption Line Components

Namea Plate mjd fiberid Velocity Range Variability Sign Relative to Referenceb

(km s−1) C IV Si IV N V Continuum Emission Line

J000330.18+000813.2 4217 55478 532 reference – – – – –

686 52519 356 −23900 ∼ −12400 −1 −1 −1 1 −1
J000951.17+092710.5 4534 55863 968 reference – – – – –

5648 55923 386 −25700 ∼ −19200 1 0 0 −1 1
5648 55923 386 −14500 ∼ −11100 1 0 1 −1 1

J001130.55+005550.7 4217 55478 948 reference – – – – –

389 51795 339 −4900 ∼ −700 1 0 0 1 0
686 52519 603 −4900 ∼ −700 1 0 0 −1 1
687 52518 339 −4900 ∼ −700 1 1 0 0 1

J001818.70+002709.1 4218 55479 972 reference – – – – –

1491 52996 589 −16500 ∼ −7100 1 0 1 1 −1
J002146.71−004847.9 4219 55480 216 reference – – – – –

390 51816 161 −22300 ∼ −19900 1 0 0 −1 1
J003135.57+003421.2* 3587 55182 570 reference – – – – –

689 52262 502 −19800 ∼ −7900 −1 −1 – 1 −1
J004022.40+005939.6 4222 55444 710 reference – – – – –

690 52261 563 −10200 ∼ −3300 1 0 0 0 1

Notes.
a Symbol “*” marks an object with an appearance or disappearance of one or more absorption-line components with respect to the reference spectrum.
b The value 1 represents the case where either the equivalent width of an absorption line or emission line strengthens or the continuum brightens in comparison with
the reference spectrum, −1 where an absorption or emission line weakens or continuum dims, 0 for insignificant variation, and – for no available data.

(This table is available in its entirety in machine-readable form.)

Figure 8. Example of emergence or disappearance of new BAL components.
The SDSS spectra at two epochs are shown as black and green lines, while the
best-fitted template is overplotted in red. Two new C IV absorption-line
components are marked in blue. The corresponding spectral region of Si IV,
N V, and Al III are also shown in blue. The new absorption-line components are
also visible in NV.
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this parameter is the ionizing continuum because it ionizes
all gas producing these absorption components (Hamann
et al. 2011; Capellupo et al. 2012). It is difficult to image the
line-absorbing gas at different sites when moving in or out of
the line of sight in step unless the flows are confined to a
relatively small region. The latter is less likely, as components
with large velocity differences will spread out on a relatively
short timescale, but cannot be rejected completely. On the other
hand, there are cases where a new C IV absorption-line
component emerged or an old component disappeared. Such
extreme variations can be readily explained as absorbing gas
moves into or out of our line of sight (Hamann et al. 2008;
Leighly et al. 2009; Krongold et al. 2010; Hall et al. 2011; Filiz
Ak et al. 2013). Capellupo et al. (2014) argued that the similar
variability trends of P V, C IV, and Si IV in Q 1413+1143
disfavored the continuum variations as the driver of BAL
variability in this quasar.

Changes in the ionizing continuum striking the absorbing
gas may be caused by the variations of the intrinsic ionizing
continuum or/and by alteration of the column density or
ionization of an intermediate absorber (refer to the discussion
in Misawa et al. 2007; Filiz Ak et al. 2012, 2013), i.e., the
shielding gas introduced to us by Murray et al. (1995).
According to their model, shielding gas is optically thin to the
observed UV continuum longward of 1000Å. Thus, changes in
the column density of shielding gas would not directly induce a
correlated variation between UV continuum and absorption
lines. On the other hand, if the main change in the ionization of
shielding gas is caused by an increase or decrease of the
ionization state in response to variations in the ionizing
continuum, it will introduce a correlation between absorption
lines and observed UV continuum. However, in this case, the
ultimate driver of the absorption-line variability is the variation
of the ionizing continuum.

The correlated variations between absorption lines and the
continuum found in this paper directly support the idea that the
intrinsic ionizing continuum is the main driver for absorption-
line variability (see Barlow et al. 1992). We also showed that

emergence or disappearance of an absorption-line component is
closely correlated to the continuum variations, suggesting that
they are caused by ionizing continuum variability as well. This
indicates that there was/is persistently absorbing gas, but the
ionization change is so large that the absorption line emerges/
disappears in the later epoch. We point out that large X-ray
absorption column densities accompanying the transient BALs
(Kaastra et al. 2014) cannot be simply explained by an
ionization change, but rather are more likely due to the
launching of a new outflow component or inserting of a new
component of shielding gas. So, gas moving in and out may
happen sometimes, but it is not the dominant mechanism
driving quasar absorption-line variability.

Figure 9. Distribution of concordance index between the C IV absorption line and continuum (right panel) and C IV absorption line vs. emission line (left panel) for
quasars with one or more new BAL component. The black and red boxes are the same as in Figure 6.

Figure 10. Distribution of time interval in the quasar rest frame between the
two observations with the detection of absorption-line variations.
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5.3. Implication for Concordant Continuum and Absorption-
line Variations

While highly concordant variations of absorption lines and
the continuum strongly suggest that the response of gas
ionization is to the ionizing continuum, it should be noted that
this concordance is not an inevitable result of the latter. The
ionic column density of a specific species may respond to a
continuum variation positively or negatively, depending on the
ionization of absorbing gas. This is illustrated in Figure 11,
where the fraction of C3+ increases first, then reaches a peak,
and decreases after as the ionization parameter increases.
Moreover, if the outflow spans a large ionization range, one
would expect that different parts may respond to the continuum
variation differently. The coherence of different components
indicates that the ionization of the outflows is globally higher
or lower than the critical value that separates positive and
negative responses. The fact that the depth of the absorption
lines is inversely correlated with the continuum flux implies
that the species more highly ionized than that producing the
observed absorption lines always dominate. A further con-
straint can be drawn from the coherent variations of different
absorption lines where Si IV, C IV, and N V show the same
variation sign. For instance, the gas ionization must be so high
that most nitrogen is in ionization stages higher than N4+.
Similarly, the statistical concordance of the variations of
absorption lines and the continuum suggests that in most
objects, outflows are highly ionized. To put further constraints
on the ionization of the absorber, it would be interesting to
check whether O VI or Ne VIII lines also vary in synchrony with
other lines, which is beyond the scope of this paper. If this is
indeed the case, these UV absorbers may be also responsible
for the warm absorption observed in the X-ray band. The
connection between X-ray and UV absorbers has been
discussed for a long time, and it was proposed that at least
some of the X-ray and UV absorbing material is physically
connected in some Seyfert galaxies based on either a similar

absorption-line profile or correlated temporal variations (e.g.,
Kaspi et al. 2002; Gabel et al. 2005; Kaastra et al. 2014),
although the exact relation is not clear.
Alternatively, the outflow may be multi-phase with a range

of ionization states, as recently proposed by Arav et al. (2013)
based on an analysis of far-UV absorption lines of the quasar
HE 0238-1904, or as is known in warm absorbers of Seyfert
galaxies (e.g., Steenbrugge et al. 2009; Detmers et al. 2011). If
the higher ionization phase dominates, then the competition
between the positive response of ionic column density to the
continuum variations in low ionization material and the
negative response in high ionization gas may finally lead to
the observed negative response in the BAL quasars. Detailed
photoionization simulations are required to test whether this is
a physically possible scenario and to constrain the physical
parameter range.
The high concordance between continuum and absorption-

line variations also requires a recombination time
a= -t nerec

1( ) that is shorter than both the timescale of typical
continuum variations and the interval between the two
observations (e.g., Barlow et al. 1992). At a nominal
temperature of 20,000 K (Hamann et al. 1997), the recombina-
tion rates for C IV to C III and N V to N IV are
2.1× 10−11 cm3 s−1 and 2.6× 10−11 cm3 s−1, respectively
(Badnell 2006)7. The ionization of a recombining gas will
have a memory of the previous ionizing continuum for about a
recombination timescale, i.e., the ionization of gas is connected
with an average continuum over such a timescale. Continuum
fluctuations on timescales shorter than this would not cause
significant variations in absorption lines, rather, they would
smear the correlation. Thus, we can use the interval between
the two observations as an upper limit of the recombination
time. The distribution of observational intervals for all pairs in

Figure 11. Left panel: the C IV column density as a function of ionization parameter Ulog for the gas column density NH = 1021.72 cm−2. The vertical line marks the
Ulog at the maximum fraction of C IV. Right panel: the critical boundary that separates positive (to the left side) and negative (to the right side) responses of ionic

column densities to the variations of ionization parameters in the U Nlog vs. log H plane. Different colors represent different ions: blue line for Si3+, red line for N4+,
and green line for C3+. For clarity, only two models for TBB = 2 × 105 K were plotted (solid line for αox = 2.0 and dotted line for αox = 1.65; see the text for more
details).

7 These recombination rates are about a factor of five larger than those of
Arnaud & Rothenflug (1985), adopted in the literature of most absorption-line
studies.

11

The Astrophysical Journal, 814:150 (17pp), 2015 December 1 Wang et al.



the sample is shown in Figure 10. Note that we do not count the
minimum observed interval for significant absorption-line
variation because we use the highest S/N spectrum of an
object as a reference.

Since absorption-line variability is caused by ionizing
continuum variations, constraints on the gas density can be
imposed using the absorption-line variability timescales
(Hamann et al. 1997). Filiz Ak et al. (2013) showed that the
fraction of BAL variations increases with an increasing time
interval between the two observations, with the shortest
detected changes in less than 10 days for C IV (see also
Capellupo et al. 2013). With this timescale for C IV, one
can set a lower limit on the electron density to be

 a - ´- n t 4 8 10e r
1 4( ) ( ) cm−3. For a typical active

galactic nucleus (AGN) continuum and column density
>1022 cm−2, the ionization parameter should be larger than 1
(refer to Section 5.5), so the size of the absorption-line region
should be less than a few tens of parsecs. It should be pointed
out that the lack of variability on shorter timescales does not
necessarily mean that we are detecting a minimum recombina-
tion/ionizing timescale. The power spectrum of AGN
variability is rather red with a power law of slope of about
−2.0 on timescales from days to several years (e.g., MacLeod
et al. 2012), so the lack of short-timescale variability may be
entirely attributed to very small variability amplitudes of the
ionizing continuum on such a short timescale.

5.4. On the Emergence and Disappearance of Absorption Lines

If gas is dominated by higher ionization species, the
emergence/disappearance of new C IV BAL troughs as the
continuum weakens/brightening can be understood. The
column density of a specific ion is initially too low to be
detected, but when the ionizing continuum weakens, the

species with the higher ionization recombines to raise the
correspondent ions to a sufficient enough fraction to be
detected. This actually has been observed in Si IV lines
associated with persistent but variable C IV absorption-line
troughs. We found eight such cases in our sample, and two
examples are shown in Figure 12. The emergence or
disappearance of a C IV absorption-line component is an analog
of such variations of Si IV, but it occurs at a higher ionization
level. Large variations in the ionic column density can be
attributed to either the large amplitude of the continuum
variation or to the large response of the ionic column density to
the continuum variations.
In order to show that large changes in the ionic column

density can be produced by continuum variations, in the
following, we explore analytically the physical parameter
ranges that an ionic column density is very sensitive to the
ionizing continuum variations from photoionization equili-
brium analysis. We will use C3+ as an example. The
equilibrium of C3+ is maintained by a balance between source
terms, the recombination of C4+ plus photoionization of C2+,
and sink terms, the recombination and photoionization of C3+

(Osterbrock & Ferland 2006): ignoring three-body recombina-
tion at these low gas densities, we find
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If carbon is dominated by C4+, the terms of recombination of
C3+ and photoionization of C2+ will be relatively small in
comparison with the other two terms. So we can rewrite the

Figure 12. Two examples of the emergence or disappearance of Si IV absorption lines. The SDSS spectra at one epoch and the scaled reference spectrum at another
epoch are shown in black and green, respectively, as in Figure 4, while the unabsorbed QSO template is displayed in cyan. In the reference spectra (red), the C IV

absorption line is prominent, while the Si IV absorption line is not significantly detected.
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equation approximately as
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If the shape of the ionizing continuum remains the same (in the
optically thin case) and if the ionization is dominated by higher
ionization species, then the number ratio of C3+ to C4+ can be
written approximately with
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If C5+ is the dominant species, then µ -+n U .C
23 On the other

hand, if C6+ is the dominant one, µ -+n U .C
33 A similar

analysis can be carried out for other ions, such as Si3+ and N4+.
For an optically thick gas, the rapid depletion of higher
ionization species near the ionization front would make the
slope even steeper than in the above optically thin case.
Photoionization model calculations (refer to Section 5.5)
suggest an even steeper slope that can reach −5 for Si IV,
C IV, and N V for some extreme parameters. Thus, the column
density variations can be large even if the continuum variation
is only modest, provided that the ionization is high and the total
column density is sufficiently large. One should note that if
there is shielding gas, the situation would occur because
shielding gas is more transparent to the ionizing continuum at
higher photon energies, leading to the ionizing continuum
softening as the continuum is extinguished.

If above interpretation is correct, an interesting implication is
that there are persistent high ionization outflows, which may
not be detectable in the UV. But when the continuum weakens
considerably, the gas ionization lowers to a level so that an
appreciable fraction of ions are in the correct ionization state,
so one can detect UV absorption lines. These outflows may
already have been detected in X-ray spectra. Gallagher et al.
(2005) detected strong X-ray absorption (column density of
�1022 cm−2) in quasars with large C IV blueshifted emission
lines but without absorption lines, and they suspected that the
X-ray absorbing gas is highly ionized. Such highly ionized
outflows may be an analog to the so-called ultrafast outflows
(UFOs) as observed in the X-ray spectra of Seyfert galaxies
(Tombesi et al. 2012). Note that the typical velocity of UFOs is
0.1 c, which overlaps with BAL outflows, as do their column
densities (Hamann et al. 2013).

5.5. Photoionization Models

In order to see how ionic column densities change with
changes in the ionizing continuum, we run a series of
photoionization simulations using version c13.03 of Cloudy,
last described by Ferland et al. (2013). We consider a typical
gas density of 106 cm−3 since gas ionization is not sensitive
to density at a given ionization parameter U. In practice,
we compute models in  - U3 log 3 with a step
D =Ulog 0.1, and  N20 log 24H with a step
D =Nlog 0.2.H Previous observations showed that BAL gas
is optically thin to the ionizing photons (e.g., Lu et al. 2008;
Baskin et al. 2013), suggesting that there is no hydrogen
ionization front within outflows. Thus, we need only to
consider a fraction of the parameter space on the Ulog versus

Nlog H diagram, which runs diagonally in the Ulog versus
Nlog H diagram.

We use the following form of the SED (Mushotzky &
Ferland 1984) to describe the ionizing continuum shape:

n n n= - +n
a a- -f A h kT Bexp , 6BB XUV ( ) ( )

where the first term represents the big blue bump in the UV and
the second term the power-law X-ray continuum. The
parameter kTBB describes the cutoff energy of thermal
emission from the accretion disk, while
a n n= - f flog logox 2 keV 2500 2 keV 2500( ) ( )Å Å characterizes
the relative contribution of the power law in the X-ray band,
i.e., related to the ratio of A and B. There are still large
uncertainties in the ionizing continuum shape of quasars in the
far-UV band. It is inaccessible for low-redshift quasars due to
the Galactic interstellar medium, and there are large uncertain-
ties in the intergalactic absorption corrections for high-redshift
quasars. Therefore, we adopt the above empirical description
rather than Hubble Space Telescope or FUSE composite
spectrum of quasars (Zheng et al. 1997; Stevans et al. 2014).
We choose two different kTBB= 1.5× 105 K and 2× 105 K to
examine the effect of the far-UV continuum and two
αox=−2.0, −1.65, representing the effect of our ignorance
of the intrinsic X-ray strength for these quasars (Gallagher et al.
2006; Fan et al. 2009) on the final results. The slope αUV is
held fixed at −0.5.
It is worth noting that if there is shielding gas, to prevent the

outflow being overionized so to keep line driving acceleration
effective, the ionizing continuum incident on the outflow will
be more complicated. While large X-ray absorption (equivalent
to cold absorption of column density NH∼ 1022–1024 cm−2) is
usually detected in the X-ray spectrum of BAL QSOs, whether
it is highly ionized or not remains uncertain due to the
weakness of their X-ray emission (Gallagher et al. 2006; Fan
et al. 2009). It is also controversial whether the X-ray absorber
is the same material as the UV absorber (Hamann 1998; Mathur
et al. 1998; Wang et al. 2000) or is the shielding gas at the base
of the outflow. Compton thick X-ray absorption has been
reported for some low ionization BAL QSOs based on the
weakness of X-ray emission (e.g., Morabito et al. 2011).
Because the UV continuum will be subject to very large
attenuation due to electron scattering, the intrinsic UV
luminosity would need to be too high to be correct. However,
the conclusion is based on the assumption that BAL QSOs
have a similar intrinsic X-ray to the optical luminosity ratio,
which need not be true (Fan et al. 2009; Morabito et al. 2014).
In addition, there is no X-ray absorption in high-velocity mini-
BAL QSOs, suggesting that such shielding gas is not necessary
for an outflow to be accelerated (Hamann et al. 2013). In fact, if
outflows have the high ionization parameters discussed here, it
is plausible that the X-ray absorption observed in the BAL
quasars can be formed in the outflow itself. The recent
emergence of both X-ray absorption and UV absorption lines in
the Seyfert galaxies Mrk 335 and NGC 5548 seems to support
this scenario (Longinotti et al. 2013; Kaastra et al. 2014).
Future simultaneous observations of transient BAL events in
X-ray and UV can test this.
Only equilibrium models are considered, i.e., we assume that

continuum variations are slower than the gas recombination or
photoionization timescales. This is likely a fair approximation
because the ion column density change traces fairly well the
continuum variations. The requirement that the recombination
time of C IV, N V, and Si IV be shorter than than the shortest
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variability timescale explored in this paper (∼0.1 years)
converts to a density of n> 2× 104 cm−3 (see Section 5.3).
Non-equilibrium ionization will require time-dependent photo-
ionization models and knowledge of the continuum light curve.
It is beyond the scope of this paper, but may be necessary in
interpreting high-cadence spectroscopic monitoring data.

We show the parameter regimes where C IV, Si IV, and N V

respond negatively to an increasing ionization parameter in
Figure 11. They are located on the lower right side of the
critical curves in the figure. As expected, the critical curves of
Si IV and C IV do not depend much on the ionizing continuum
shape, while that of N V changes substantially with the two
SEDs adopted here. That is because the two SEDs result in a
large difference in the N V ionizing photons at a given Ulog .
Apparently, our results suggest that the ionization of the gas is
high and most populated species of nitrogen and carbon are in
an ionization stage higher than Li-like ions. A critical
examination of variability of higher ionization species such
as O VI and Ne VIII would be important to constrain how high
the ionization of gas might be. We also show the contours of
the response of ion column densities to variations of the
ionization parameter (d N d Ulog log ) in Figure 13. Appar-
ently, at large ionization parameters and large column densities,
the response is very large, with a slope as steep as −5 for C IV,
N V, and Si IV in some zones of the diagram. One interesting
feature in the figure is that C IV and N V have an additional
narrow diagonal stripe zone of a slope �−5 to the left such
border of the Si IV, which is especially obvious when X-rays are
weak. We have checked and find that these regions correspond
to the formation of an ionization front of C V or N VI, on which
the ion column density is very sensitive to change in ionization
parameter. In these parameter regimes, a relatively small
variation in the continuum luminosity may cause a large
change in the optical depth of the absorption line, so only
moderate continuum variations are required to explain the
observed disappearance or emergence of an absorption-line
component for a specific ion. The regimes are highly
overlapped for N V and C IV in the higher ionization parameter
zone, suggesting that the emergence or disappearance of N V

and C IV may occur at the same time. A thorough analysis of
this will be given in the future after properly modeling the
spectrophotometric calibration uncertainty.

6. CONCLUSION

We analyze the variability of BALs and mini-BALs and their
correlations with those of the continuum and emission lines for
a sample of 452 quasars in the redshift range 2.2< z� 4.7 and
with multi-epoch SDSS spectroscopic observations. Variations
among different components of C IV, N V, and Si IV absorption
lines, or the same component of different lines, are highly
coordinated. These conclusions are consistent with previous
studies of C IV, Si IV, and extend to N V (Hamann et al. 2011;
Capellupo et al. 2012; Filiz Ak et al. 2013). We find that
variations of these absorption lines are also highly synchro-
nized with those of the continuum and emission lines. The
absorption lines weaken/strengthen statistically when the
continuum brightens/dims. The uncertainties in the continuum
flux calibration prevent us from assessing the detailed fraction
of quasar absorption lines where the absorption-line variability
does not follow continuum variations. We also found 50 cases
of the emergence or disappearance of an absorption-line
component that accompanies changes in the continuum. We

interpret these results as indicating that variations in the
ionizing continuum are the main driver for the absorption-line
variability and that the dominate species are ions higher than
the observed Li-like ions for carbon and nitrogen. For a
reasonable ionizing continuum and gas column density, these
constraints imply an ionization parameter of Ulog 0. In the
case of the disappearance and emergence of BAL components,
the ionization parameters should be even higher if continuum
luminosity does not change by a large factor during the period,
indicating the presence of persistent highly ionized outflows
even when UV absorption lines have disappeared. This can be
further tested with future X-ray observations. We cannot rule
out the possibility that gas moving in or out of the line of sight
may account for the variation of BALs, including their
emergence and disappearance, in some quasars.
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APPENDIX
EFFECTS OF SPECTROPHOTOMETRIC CALIBRATION

UNCERTAINTIES ON THE SIGN OF CONTINUUM
VARIATIONS OF VARIABLE BAL QSOs

The fiber positions of BOSS quasar targets were purpose-
fully offset in order to optimize the throughput of light at
4000Å, while the standard stars used for flux calibration are
positioned for 5400Å. This results in a large uncertainty in the
flux calibration of quasar spectra in the BOSS survey (Dawson
et al. 2013). In this Appendix, we will estimate the effect of
spectrophotometric calibration uncertainties on the statistical
properties of the sign of the continuum variation defined in
Section 3 using stars that were accidentally observed as quasars
in the SDSS legacy and SDSS BOSS and r< 20.5. We assume
these stellar spectra have similar calibration uncertainties to the
spectra of BOSS quasar targets (See Dawson et al. 2013).
We extract the photometric and spectroscopic synthetic

magnitudes of these stars from the SDSS DR10 database. The
query resulted in 98,079 stars. We remove M stars, which
usually have faint magnitudes and very red colors, and so differ
from those of most quasars in the sample. This leaves a sample
of 79,237 stars, including 37,487 from the SDSS legacy
program. We calculate the differences between photometric
and spectrosynthesis magnitudes for stars observed in the
legacy and BOSS programs. The difference is caused by a
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combination of photon noise, imperfect background subtrac-
tion, possible variability of some of these stars, and the
systematic flux calibration uncertainty. The first two terms are
relatively small in comparison to the observed difference
because the typical uncertainty in magnitude given by the
SDSS pipeline is 0.029 mag in g. Most stars should be stable at
a level of 1%. Neglecting the first three terms, we attribute the
difference mostly to the flux calibration error, and thus give a
conservative estimate of the latter.

We plot the distributions of the difference magnitude
(DDMs) in the g-band (g−gsynth) for stars observed in the
BOSS and legacy programs separately in Figure 14. There is a
small (−0.05 mag) systematic offset in the peak of the
distribution for the BOSS spectra, but no such offset in the
legacy spectra. In either case, the distribution is not symmetric,
but rather is skewed to the negative, i.e., a fraction of stars
appear fainter in the SDSS spectrum than they should be. Also
the difference distribution for the BOSS spectra is much

broader than that for the legacy spectra, suggesting large
calibration errors. When splitting stars into different spectro-
scopic types, we see similar distributions for types B, A, G, F,
and K. Type O stars have a significantly broader wing than
other types for unknown reasons. Because of this, we do not try
to do any color-related corrections. We also checked the
distributions in other bands and found that they are
significantly broader than in the g-band. Therefore, we will
mainly use the g-band. This approximately corresponds to a
rest-frame wavelength of 1400Å for the majority of our
quasars.
Next, we estimate the approximate average error distribution

of the differential synthetic magnitudes of quasar spectra
obtained at two different epochs (DDSM for short) using the
DDMs described above. We convolve the DDM of one
spectrum with that of another assuming that their errors are
uncorrelated to obtain the DDSM of a specific spectrum pair.
Since the spectra taken in legacy and BOSS have different

Figure 13. Contour for large negative response of Si3+ (blue), N4+ (red), and C3+ (green). The dashed line is for = -d N d Ulog log 3, and the solid line is for
= -d N d Ulog log 5. The shape parameters of the ionizing continuum are marked in the left corner of each panel. For αox = −1.65 at >Ulog 2, the gas is too

highly ionized to produce a significant response for either C IV or N IV.
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DDMs, we obtain four different DDSMs for combinations:
(legacy, legacy), (legacy, BOSS), (BOSS, legacy), and (BOSS,
BOSS). The systematic offset is subtracted from the DDM for
the BOSS spectra. We take an average of the DDSM
(Figure 14), weighted with the number of quasar pairs of our
variable BAL quasars in each combination. The distribution is
fairly broad, suggesting that it is impossible to quantitatively
estimate the variations of an individual spectrum pair. Note that
this treatment is only a conservative approximation since
quasars in ancillary programs may not be observed in the mode
of fiber position offset, and it was shown that the flux
calibration error is smaller in the latter case (Dawson
et al. 2013).

Finally, we calculate the two-epoch magnitude difference
(TEMD) for quasar pairs in Table 1 by correcting the
systematic offset in the spectrophotometric calibration in the
BOSS survey for quasars. The difference magnitude at
1400Åis calculated by using the double power-law scaling
factor (Equation (1)) in the reference-matching procedure
(Section 2.2). The distribution of TEMD (Figure 15) is
considerably broader than the average DDSM, suggesting that
variability information can be extracted statistically. The
distribution cannot be fitted by a single-Gaussian function
convolved with DDSM, so we fit it with the sum of two
Gaussian functions. Figure 15 shows the best fit and the
double-Gaussian model for the intrinsic distribution. We take
the latter as the true distribution for magnitude variations and
examine what fraction of sources were assigned to a wrong
sign of variations using the definition in this paper after
convolving the positive and negative part of the distribution
with the two-epoch MSF. We find that 13% of sources were
assigned opposite signs due to the calibration uncertainties, and
10% were assigned uncertain signs, i.e., magnitude difference
between −0.05 and 0.05 mag. Considering that some quasars
in the ancillary programs were not observed in an offset mode,
we likely overestimate the number of pairs with misassigned
signs.
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