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ABSTRACT
We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4
and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of
isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form
supermassive black holes. Gas flow is examined by following evolution of basic parameters of
accretion flows. Both codes show an overall agreement in the general features of the collapse;
however, many subtle differences exist. For isolated models, the codes increase their spatial
and mass resolutions at different pace, which leads to substantially earlier collapse in SPH
than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs,
the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold
accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic
structures. However, with the onset of collapse, this difference in mass and spatial resolution
is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect
on formation/destruction rate of H2 due to UV background, and on basic properties of host
haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter
λ ∼ 0.01–0.07, show delayed collapse for greater λ, but pace of this increase is faster for
AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational
resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse,
cosmological structure formation phase. Yet it benefits from substantially higher gravitational
force and hydrodynamic resolutions, except at the end of collapse.

Key words: methods: numerical – galaxies: formation – galaxies: high-redshift – cosmology:
theory – dark ages, reionization, first stars.

1 IN T RO D U C T I O N

The origin of supermassive black holes (SMBHs) in the galactic
centres remains an unresolved problem in astrophysics. Unless the
SMBHs are primordial, a number of alternative scenarios exist.
First, they could grow from relics of the Population III stars (e.g.
Madau & Rees 2001; Abel, Bryan & Norman 2002; Bromm &
Larson 2004; Volonteri & Rees 2005) – the largely pre-galactic
objects whose masses appear to be comparable or slightly higher
than normal OB stars (e.g. Turk, Abel & O’Shea 2009; Hosokawa
et al. 2011; Wise et al. 2012; Hirano et al. 2014; Fraser et al. 2015,
see also Bromm 2013 for review). Secondly, they could form from
the runaway collapse of compact stellar clusters, subject to general
relativistic effects (e.g. Zel’dovich & Podurets 1965; Shapiro &

�E-mail: yluo@vega.ess.sci.osaka-u.ac.jp (YL); shlosman@pa.uky.edu (IS)

Teukolsky 1985), or stellar/gasdynamics evolution of stellar clus-
ters (e.g. Begelman & Rees 1978). Most appealing, however, is the
third alternative which involves a direct baryonic collapse to form
massive black hole seeds of ∼104–107 M� (e.g. Haehnelt & Rees
1993; Loeb & Rasio 1994; Bromm & Loeb 2003; Koushiappas,
Bullock & Dekel 2004; Begelman, Volonteri & Rees 2006; Volon-
teri & Rees 2006; Begelman, Rossi & Armitage 2008; Begelman &
Shlosman 2009; Milosavljević et al. 2009; Mayer et al. 2010; Schle-
icher, Spaans & Glover 2010; Johnson et al. 2011; Choi, Shlosman &
Begelman 2013, 2015; Latif et al. 2013; Prieto, Jimenez & Haiman
2013; Shlosman et al. 2016), which experience a substantial growth
subsequently. Depending on the chemical composition of the col-
lapsing gas, this can take place when suitable dark matter (DM)
haloes appear in the universe. For a primordial composition, hydro-
gen can be either atomic, with a cooling floor of just below 104 K,
or molecular, which is able to cool down by additional ∼2 orders
of magnitude. In the former case, for the gas to collapse, the virial
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temperature of DM haloes must exceed the cooling floor of hydro-
gen, with the corresponding mass of ∼108 M�. In the latter case,
the critical halo masses will be smaller.

Direct collapse scenario involves gravitational collapse from typ-
ical spatial scales of ∼1 kpc, down to ∼1–100 Schwarzschild radii
of the seed SMBH – an enormous dynamic range. Solution of the
full problem requires application of the coupled radiative hydrody-
namics of the collapsing matter, magneto-hydrodynamics (MHD),
and other ingredients, and cannot be accomplished analytically.
Here we limit ourselves to the hydrodynamical and radiation part of
the problem, and, in addition, assume that the collapsing gas is opti-
cally thin to its own produced radiation. The heavily computational
approach employed by various groups to address this and related
issues involves different numerical algorithms. These include the
adaptive mesh refinement (AMR) and smoothed particle hydro-
dynamics (SPH) codes, which are semi-Eulerian and Lagrangian,
respectively. In this work, we compare the efficiency and reliability
of two representative codes, ENZO-2.4 AMR code (Bryan & Norman
1997; Norman & Bryan 1999; Bryan et al. 2014), and modified
version of GADGET-3 SPH/N-body code (Springel 2005).

Previous comparison between the grid and Lagrangian codes
have both achieved results within ∼20 per cent, in the cosmological
context (e.g. O’Shea et al. 2005), and also found significant differ-
ences. One of the primary results that they found was that the AMR
requires significantly greater computational resources in order to
achieve the same DM halo mass function as in the SPH code. This
was due to the lower force resolution in the AMR code at early
times than in SPH code, which resulted in the lack of early growth
of density perturbations at high redshifts.

In the Santa Barbara Cluster Comparison project (Frenk et al.
1999), different groups have simulated formation of one galaxy
cluster from identical initial conditions (ICs). In this case, for ex-
ample, the central entropy profile (within the virial radius) presents
a floor in grid codes, whereas such feature is absent in the SPH
codes. These discrepancies remain largely unexplained although
more recent works have improved significantly the agreement by
using the entropy-conserving version of SPH codes (e.g. Ascasibar
et al. 2003; Springel & Hernquist 2003; Vogelsberger et al. 2012).
The ongoing AGORA project of a broad comparison between a
number of grid and Lagrangian codes of well-resolved galaxies fo-
cuses on convergence study of various feedback processes (Kim
et al. 2014). However this comparison project is in its early stage.

Statistics of driven supersonic turbulence at a high Mach number
have been performed by Price & Federrath (2010) using FLASH, a
widely used Eulerian grid-based AMR code, and the SPH code
PHANTOM. Excellent agreement between these codes has been found
at similar number of particles and grid cells for the basic statistical
properties of the turbulence, such as the slope in the velocity power
spectrum, lognormal probability distribution function (PDF), the
width of the PDF, etc. At the same time, SPH code has shown
a better spatial resolution. Dense structures have been resolved
already with 1283 SPH particles, compared to 5123 cells required for
the same purpose in AMR. Unfortunately, this comparison differs
fundamentally from the one performed in this work: it is entirely
non-gravitational. As a result, the density stratification was much
weaker than what one observes during gravitational collapse, and
hence the evolution in their simulation did not go as far as in our
current work.

It remains unclear, whether SPH or AMR codes are more accurate
in general simulation regimes. Both methods have their shortcom-
ings. For example, in AMR, if the fluid moves rapidly across the
mesh, the truncation errors lead to significant departure from the

same simulation if there is no bulk velocity (Tasker et al. 2008).
Hopkins (2013) have studied a number of SPH modifications, in
particular alternative SPH equations of motion that guarantee con-
servation and improved treatment of fluid contact discontinuities
(e.g. Kelvin–Helmholtz instability). Good agreement has been re-
ported for supersonic flows and associated strong shocks, but the
SPH suppresses mixing in subsonic thermal pressure-dominated
regimes. Saitoh & Makino (2013) have also provided a new density-
independent formulation of SPH which removes the artificial sur-
face tension. Their method was more formally treated in the La-
grangian formalism by Hopkins (2013).

Another important issue for classical AMR codes is the angular
momentum conservation. Unless we can anticipate the geometry of
the flow and adjust accordingly the mesh so that the fluid velocity
is perpendicular to the boundary, the accuracy is seriously com-
promised and subject to artificially enhanced diffusion. Finally, the
refinement criteria is somewhat arbitrary and can produce various
artefacts. At the refinement boundaries, there is a significant loss of
accuracy as the refinement is necessarily discontinuous.

On the other hand, the SPH in 3D suffers from a poor shock
resolution, noise on the scale of the smoothing kernel, and low-order
accuracy for the treatment of contact discontinuities. Hydrodynamic
instabilities like the Kelvin–Helmholtz can be suppressed (Agertz
et al. 2007), although recent modifications put forth by Hopkins
(2013) have been claimed to correct these problems. In real fluids,
the entropy is raised in shocks because particle collisions randomize
their velocities which increase the heat and the entropy. The SPH
does not capture shocks properly because entropy must be generated
locally to dissipate the small-scale velocities. In order to mimic this
process, and to prevent interpenetration of the SPH particles at the
shock locations, artificial viscosity is required. The introduction
of the latter usually results in an overly viscous fluid away from
shocked regions. To overcome this, the Balsara (1995) switch or
Cullen & Dehnen (2010) formulation have been developed.

The aim of this paper is to compare the ability of AMR and
SPH codes in following the direct collapse of gas with a primor-
dial composition, i.e. involving identical atomic hydrogen cooling.
We compute and analyse models of gas collapse inside DM haloes
in isolated and cosmological settings. Our models span more than
seven orders of magnitude in radius, from 1 kpc down to 10−4 pc.
Of course, the main question is whether both codes can describe
the evolution that leads to the same end product. However, specific
details are important as well, namely are various physical quanti-
ties (e.g. gas density, temperature, tangential and radial velocity,
and angular momentum distributions) similar at various times of
the collapse? Does it take the same time to collapse, and how do
accretion rates and their temporal and radial distributions compare?

This paper is structured as follows. In Section 2, we briefly de-
scribe the AMR and SPH codes used. Section 3 provides the results
of our comparison runs, and in the last section, we discuss our
results and summarize them.

2 N U M E R I C A L T E C H N I QU E S

2.1 ENZO AMR and GADGET-3 SPH

The AMR code ENZO-2.4 has been tested extensively and is publicly
available. It uses a multigrid particle-mesh N-body method to cal-
culate the gravitational dynamics, including collisionless DM par-
ticles, and a second-order piecewise parabolic method (PPM; Colella
& Woodward 1984; Bryan et al. 1995) to solve hydrodynamics.
ZEUS hydro is also available, but we use PPM here.
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The structured AMR used in ENZO places no fundamental restric-
tions on the number of rectangular grids used to cover some region
of space at a given level of refinement, or on the number of refine-
ment levels (Berger & Colella 1989). A grid is refined by a factor
of 2 in lengthscale, if either the gas or DM density become greater
than ρ0N�, where ρ0 is the cosmic mean density for the gas or DM,
respectively. The refinement factor is N = 2, and � refers to the
AMR refinement level.

The Jeans length has been resolved by at least four cells in these
simulations to satisfy the Truelove et al. (1997) requirement for
resolution. For the SPH code, an equivalent criterion is to resolve
the local Jeans mass by having at least twice the number of particles
in an SPH kernel (Bate & Burkert 1997).

In GADGET-3, the gas and the DM are represented by particles.
The N-body solver is essentially the same as in GADGET-2 (Springel
2005), with some improvements for optimization purposes, such
as the domain decomposition. To achieve the spatial adaptivity at a
moderate computational cost, it uses a hierarchical multipole expan-
sion, i.e. the tree algorithm (Barnes & Hut 1986). The gravitational
potential is softened below a spatial scale specified by the gravita-
tional softening length. In principle, this kernel (and the associated
softening length, ε, which represents the force resolution) can differ
from the smoothing length used in the hydrodynamical method, as
we describe below. But mostly the SPH uses the same cubic-spline
kernel, with a fixed ε evaluated as the mean initial interparticle
distance, divided by a fudge factor of ∼20–30.

We use GADGET-3 with the density-independent SPH version with
a quintic kernel and time-independent viscosity (Hopkins 2013).
Comparison of various viscosity algorithms has been performed by
Cullen & Dehnen (2010), who proposed a new artificial viscosity
prescription. This viscosity grows rapidly in strong shocks, and de-
cays rapidly away from the shocks to a minimum α = 0.2, compared
to usual constant artificial viscosity. With this method, the gas be-
comes virtually inviscid away from the shocks, while maintaining
particle order. The viscosity decay length is taken as 3.73, and the
source scaling equal to 2.77.

For the cooling package, we use GRACKLE version 2.0 for
GADGET-3, and GRACKLE version 1.1 for ENZO. These versions for the
SPH and AMR codes have identical chemistry and cooling (Bryan
et al. 2014; Kim et al. 2014, https://grackle.readthedocs.org/). This
library was born out of the chemistry and cooling routines of the
ENZO simulation code. The GRACKLE solves for radiative cooling and
internal energy, calculates cooling time, temperature, pressure, and
ratio of specific heats. It uses a non-equilibrium primordial chem-
istry network for atomic H and He (Abel et al. 1997; Anninos et al.
1997), H2 and HD, Compton cooling off the cosmic microwave
background, tabulated metal cooling and photoheating rates calcu-
lated with CLOUDY (Ferland et al. 2013). In addition, GRACKLE pro-
vides a look-up table for equilibrium cooling. The gas is assumed
to be dust free and optically thin and the metals are assumed to be
in ionization equilibrium. The cooling rate for a parcel of gas with a
given density, temperature, and metallicity, that is photoionized by
incident radiation of known spectral shape and intensity can be pre-
calculated. As we focus on gravitational collapse models at z > 10,
and limit the runs to the optically-thin regime, the UV background
is not included, and we neglect the radiative transfer of ionizing
photons in this work.

2.2 Set-up in isolated models

For isolated models, we adopt the WMAP5 cosmological parameters
(Komatsu et al. 2009), namely, �m = 0.279, �b = 0.0445, h = 0.701,

Figure 1. Initial density profiles in the isolated halo model for the gas (solid
line) and DM (dashed line) as a function of radius.

where h is the Hubble constant in units of 100 km s−1 Mpc−1. We
set up the details of an isolated DM halo that is consistent with
the cosmological context that we work with. Therefore, some of
the halo parameters are specified with units that include the Hubble
parameter, although we use physical quantities (not comoving) in
all isolated case calculations. In both codes, we define a DM halo
as having the density equal to the critical density 	c times the mean
density of the universe, ρb, which depends on the redshift z and the
cosmological model. The top-hat model is used to calculate 	c(z),
and the density is calculated within a virial radius, Rvir. The halo
virial mass is Mvir(z) = (4π/3)	c(z)ρbRvir.

For isolated models we work in physical coordinates. We assume
that the gas fraction in the model is equal to the universal ratio,
and simulate the gas evolution within DM haloes of a virial mass
of Mvir = 2 × 108 h−1 M� and a virial radius Rvir = 945 h−1 pc.
The initial temperature of the gas is taken to be T = 3.2 × 104 K.
The simulation domain is a box with a size Lbox = 6 kpc centred
on the halo. In the following, we abbreviate the spherical radii with
R and cylindrical ones with r.

The initial DM and gas density profiles ρDM(R) and ρg(R) are
those of an non-singular isothermal spheres with a flat density core
of Rc,DM = 0.34 pc for DM and Rc,g = 142.65 pc for the gas,
respectively (Fig. 1):

ρg(R) = ρg,0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1(
1 + R

Rc,g

)2 (R ≤ Rvir)

1(
1 + Rvir

Rc,g

)2

R3
vir

R3
(R > Rvir),

(1)

ρDM(R) = ρDM,0
R2

c,DM

R2
(R ≤ Rvir), (2)

where ρDM,0 = 7.38 × 10−18 g cm−3, and ρg,0 = 1.66 ×
10−23 g cm−3. Such DM haloes are similar to the NFW haloes
(Navarro, Frenk & White 1997), and are simple to construct. The
DM halo core size is actually set by the gravitational softening
length for GADGET-3 SPH.
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Table 1. Simulation parameters for the isolated halo
models with ENZO AMR and GADGET-3 SPH. Name of
the run and the values of spin parameter λ is listed. ‘I’
in the model abbreviation stands for isolated runs, and
the number λ × 100 for DM haloes. Cosmological
models (not shown in the table), are abbreviated by
‘C’ and by λ × 100.

Name: isolated λ

AMR-I1 0.01
AMR-I3 0.03
AMR-I5 0.05
AMR-I7 0.07

SPH-I1 0.01
SPH-I3 0.03
SPH-I5 0.05
SPH-I7 0.07

The DM halo rotation is defined in terms of the cosmological
spin parameter λ,

λ = J√
2MvirRvirvc

, (3)

where J is the total angular momentum of the DM halo, Mvir the halo
virial mass, and vc the circular velocity at Rvir, which is constant with
radius for an isothermal sphere mass distribution. The mean DM
spin is λ ∼ 0.035 ± 0.005 (e.g. Bullock et al. 2001). We explore
the range of λ � 0–0.07 in our isolated models. For identical λ,
we sample the same initial density distribution using four different
random number sequences. The properties of the collapsing baryons
have been averaged over these sequences. Models having identical
mass distribution and differing only in the initial random sequence,
are abbreviated similarly.

To produce the DM haloes with a pre-specified λ for isolated halo
models, we follow the prescription of Long, Shlosman & Heller

(2014). In short, we set the isotropic distribution of velocity dis-
persion in DM. Then we reverse tangential velocities for a fraction
of DM particles to reproduce the specific angular momentum de-
scribed above, with λ equal to the required value. For both SPH
particles and the gas in AMR grid cells, we calculate the average
tangential velocities of the background DM in cylindrical shells,
accounting for the dependence along the (rotation) z-axis. The ro-
tational velocities for the gas in the equatorial plane of the DM halo
are given by

vt(r) = v0 ×
⎧⎨
⎩

r/Rc,g if r ≤ Rc,g,

1 if Rc,g ≤ r ≤ Rvir,
(4)

where v0 is tangential velocity defined by λ. The radial velocity dis-
persion in the centre is given by σ = √

GMvir/2Rvir = 21.3 km s−1,
where G is the gravitational constant. The isolated halo models have
been listed in Table 1 and are identified with ‘I’ and the value of the
spin parameter multiplied by 100. In cosmological models, we use
the same notation, but replace ‘I’ with ‘C’.

In the isolated models of GADGET-3, the DM resolution is set by the
fixed gravitational softening length, εDM = 0.37 pc. This is done in
order to match the condition in ENZO runs. For ENZO, it corresponds
to an initial root grid of 643 in a 6 kpc region with a maximal
refinement level of 8 allowed for gravity, εDM,min = 6000/64/28 =
0.37 pc.

For the gas, the gravitational softening is εg = 10−4 pc, which is
a fixed number for GADGET-3 and serves as a minimal value for ENZO.
In other words, we use the initial resolution of 5123 SPH particles
or cells for baryons, and 1003 particles or particles-in-mesh for the
DM. All other parameters in ENZO and GADGET-3 runs are similar.
The force resolution in adaptive PM codes is twice the minimal
cell size (e.g. Kravtsov, Klypin & Khokhlov 1997). Isolated and
cosmological runs and their parameters are summarized in Tables 1
and 2. We use the models AMR-I5 and SPH-I5 as representative
isolated models.

Table 2. Summary of simulation setup for ENZO-2.4 (AMR) and GADGET-3 (SPH) simulations.

Parameters Isolated model Cosmological model

Simulation volume 6 kpc box 3 h−1 Mpc with a zoom-in region of 0.4 h−1 Mpc

Initial baryonic resolution 643 root-grid with three levels of refinement; 2563 root-grid and SPH particles;
effective 5123 zoom grid and SPH particles effective 20483 zoom grid and SPH particles

Number of DM particles 1003 2563 for outer region;
effective 20483 for zoom regiona

Mass resolution 532.5 M� for DM particles 245.7 h−1 M� for DM particles
0.7 M� for gas particles 44.7 h−1 M� for gas particles

Gravitational softening εDM,min = 0.37 pc for DM in ENZOb εDM,min = 0.36 h−1 pc for DM in ENZOc

εDM = 0.37 pc for DM in GADGET εDM = 0.36 h−1 pc for DM in GADGET

εg,min = smallest cell size for gas in ENZO εg,min = smallest cell size for gas in ENZO

εg = 10−4 pc for gas in GADGET εg = 10−3 h−1 pc for gas in GADGET

Minimum gas smoothing length ηmin 10−3 pc 10−2 h−1 pcd

aThe size of the zoom-in region is about one-tenth of the outer region, therefore the actual grid/particle number in the zoom region is initially ∼2003 for both
baryons and DM particles.
bMaximum refinement level for DM gravity is set to eight levels for ENZO in isolated models, i.e. εDM,min = 6000/64/28 = 0.37 pc. The isolated models do not
have Hubble expansion in space, so there is no factor of h−1 and all numbers are physical.
cMaximum refinement level for DM gravity is set to 15 levels for ENZO in cosmological models, i.e. εDM,min = 3 × 106/256/215 = 0.36 h−1 pc.
dMaximum refinement levels for the gas in ENZO are set to 17 levels in isolated models and 20 levels in cosmological models.
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2.3 Set-up in cosmological models

For further comparison, we use zoom-in cosmological simulations
with the same composition as in isolated models to follow up the gas
evolution within DM haloes. The ICs are generated using WMAP5
cosmology: �� = 0.721, �m = 0.279, �b = 0.0445, h = 0.701,
σ 8 = 0.807, and n = 0.961. The models run from z = 200. The
same cooling packages have been used for cosmological models as
for isolated ones (Section 2.1).

For the initial set-up, we use the MUSIC algorithm (Hahn & Abel
2011) to generate cosmological zoom-in ICs. MUSIC uses a real-space
convolution approach in conjunction with an adaptive multigrid
Poisson solver to generate highly accurate nested density, particle
displacement, and velocity fields suitable for multiscale zoom-in
simulations of structure formation in the universe.

Generating a set of zoom-in ICs is a two-step process. First, we
generate 3 h−1 Mpc comoving 2563 DM-only ICs for the pathfinder
simulation and run it without AMR until z = 10. Using the HOP
group finder (Eisenstein & Hut 1998), we select an appropriate
DM halo, whose mass is �108 h−1 M� at z = 10. Secondly, we
generate 0.4 h−1 Mpc ICs with 20483 effective resolution in DM and
gas, embedded in the lower resolution outer region. Since we use the
same random seeds for these ICs as the first step, the phases of both
ICs are identical. The zoom-in region is centred on the selected halo
position and is set to be large enough to cover the initial positions
of all selected halo particles. We perform the zoom-in procedure for
each of the targeted haloes.

In the cosmological runs, the gravitational softening is 10−3 pc
in the comoving coordinates, in the SPH run. We have measured
the spin parameter of many haloes in the range of λ ∼ 0.01–0.07
in our zoom region at z ∼ 10, and use λ ∼ 0.04 as a representative
one for both AMR and SPH runs.

3 R ESULTS

We aim at comparing results for direct baryonic collapse within DM
haloes by ENZO-2.4 AMR and GADGET-3 SPH codes. As a first step,
we compare the isolated models. The cosmological haloes have
a range of spin parameter, as discussed in Section 2.2. To match
the conditions of these haloes, we generate isolated haloes with
the same range of λ (Table 1 and Section 3.1). The cosmological
haloes are examined in Section 3.2. Lastly, we test the effect of λ on
the dynamics of the collapse in isolated and cosmological models
(Sections 3.3 and 3.4).

3.1 Direct collapse in isolated models

Direct collapse of isolated models with atomic gas has been per-
formed and analysed by Choi et al. (2013) for λ = 0.05, using ENZO.
Many of the aspects of its evolution are generic. We define t = 0
at the start of the run, and stop the run when the central collapse
reaches the final resolution of Rfin ∼ 10−3 pc, in both ENZO and
GADGET-3, in order to allow a meaningful comparison, because the
SPH run would have difficulty reaching a higher resolution without
invoking complicated procedures, such as SPH particle splitting.

The DM in isolated models has isothermal profiles by construc-
tion, i.e. ρDM ∝ R−2. They remain nearly identical to ICs. As the
collapse proceeds and reaches the central region, the DM is dragged
inwards by the gas, and is compressed adiabatically, forming new
cusps with slopes ∼−1 to ∼−2.

The baryonic collapse proceeds in two stages, which are represen-
tative for all isolated models. First, the gas cools down to the cooling

Figure 2. From top to bottom, radial profiles of gas density, radial veloc-
ity, tangential velocity, and mass accretion rate, at the end of the isolated
runs for models AMR-I5 (solid lines) and SPH-I5 (dashed lines). All axes
are logarithmic. The density and accretion rates have been averaged over
spherical shells, and the velocities averaged over cylindrical shells.

floor of atomic gas, then collapses following a self-similar solution,
analogous to the Larson–Penston solution for an isothermal self-
gravitating gas cloud, ρ ∝ R−2 (Larson 1969; Penston 1969). But
significant differences are obvious, as angular momentum is present
and modifies the solution, and the DM dominates the gravitational
potential everywhere during the initial stage.

When collapsing gas reaches the centrifugal barrier, a shock
forms, where the density jumps and the radial velocity drops
abruptly (top panels of Fig. 2). The gas accumulates behind the
shock and forms a disc which grows in mass. As the gas density
in the inner disc surpasses that of the DM, the second stage of the
collapse ensues, and proceeds with an increasingly short time-scale.
Basically, most of the gas behind the shock collapses and reaches
the prescribed resolution of ∼10−4 pc (e.g. Choi et al. 2013), al-
though here we compare the final distributions when Rfin ∼ 10−3 pc
has been reached.

The current AMR simulations with various λ follow basically the
same outline. The initial positions of shocks in all runs are located at
∼1 pc, and move out with time. The radial positions of these shocks

MNRAS 459, 3217–3233 (2016)
Downloaded from https://academic.oup.com/mnras/article-abstract/459/3/3217/2595138
by University of Kentucky Libraries user
on 21 November 2017



3222 Y. Luo, K. Nagamine and I. Shlosman

Figure 3. Evolution of the radial position of shocks, rs, in isolated models
in ENZO (solid lines) and GADGET-3 (dashed lines) runs for various λ. Note
that both AMR and SPH runs with the same λ exhibit the same rs(t). The
maximal rs correspond to the end of the simulation.

also increase with increasing spin parameter, λ, as the centrifugal
barrier is reached at progressively larger radii. Fig. 3 displays the
shock locations as function of time, from their formation time to
the end of the simulations. Note, that for a specific λ, both AMR
and SPH shocks strictly follow each other. Moreover, consistently,
the AMR shocks reach larger radii, as shown in Fig. 3 for all λ. The
explanation for this difference comes from the fact that the isolated
AMR models collapse later than the isolated SPH models, as we
discuss below, and shocks have more time to advance.

As a first step, we compare the radial profiles of a gas density,
radial and tangential velocities, and accretion rates at the end of the
runs, i.e. when the collapse has reached Rfin (Fig. 2). All values are
given after averaging in cylindrical or spherical shells and at the run
end. The gas density and accretion rates have been averaged over
spherical shells, and the velocities averaged over cylindrical shells.
Shown are the representative AMR-I5 and SPH-I5 runs. In AMR-I5
run, the gas goes through a strong accretion shock and forms a disc,
ending the first stage of the collapse. By the end of the runs, the
SPH-I5 shock is positioned at a radius about three times smaller
than in the AMR-I5, which is confirmed by Fig. 3. It appears also
somewhat weaker than the AMR shock. In all other respects, the
gas density profiles are very similar, albeit it takes another decade
in radius for the density in SPH-I5 to catch up with the AMR-I5
density just inside the shock. The final density is ρ ∼ 10−14 g cm−3

at Rfin = 10−3 pc.
The radial velocity profiles, vr, are very similar in the outer few

hundred pc. In the pre-shock region, both vr increase towards the
centre, then fall down substantially to a deep minimum in the post-
shock region, at the respective positions of the shocks in the AMR
and SPH runs. At smaller radii of r < 10−2 pc, the curves are very
similar and increase by an order of magnitude towards Rfin. The
tangential velocities, vt, reach maximal values in the post-shock
region of both runs, as expected, then decrease towards the centre.
The behaviour of vr and vt with r is associated with a variable degree
of rotational support with radius, as we discuss below.

The mass accretion rate profiles show a similar behaviour, but
Ṁ differs by a factor of 3 in the pre-shock region, where Ṁ ∼
0.6 M� yr−1 for the AMR run and ∼0.2 M� yr−1 for the SPH run.

This rate drops to below ∼0.1 M� yr−1 at R < 10 pc for both
runs. The second stage of the collapse inside ∼0.1 pc displays a
nearly identical behaviour – both curves show a linear growth with
decreasing r, reaching Ṁ ∼ 0.5 M� yr−1 at Rfin. The small spike in
the SPH run at r ∼ 10−3 pc is caused by insufficient mass resolution
there.

The projected gas volume density shown in Fig. 4 emphasizes
both similarities and differences, in comparison with the 1D ra-
dial density profiles. The most significant difference is that of
the central disc size in the top frames – disc radius of ∼20 pc
in the AMR-I5, and only ∼7 pc in the SPH-I5. This difference
clearly has its origin in the position of the radial shock in both
runs, as discussed above. So both discs appear shock-bounded. In
the top frames, we also see a pronounced spiral structure in the
AMR run, and a weaker one in the SPH run. The same conclusion
can be reached from 5-pc scale images (middle and bottom pan-
els), where m = 2 (gaseous bar) is seen within the central 0.3 pc,
and m = 3 mode is driving a triple spiral on scales �0.5 pc. The
SPH-I5 run displays comparable m = 2 and 3 modes on the same
scales.

Redistribution of the angular momentum is an important ingredi-
ent of gravitational collapse. We compare specific angular momenta,
jz, in the gas at the end of the simulations, in AMR-I5 and SPH-I5
(Fig. 5). Two important differences can be observed. Positions of
radial shocks (Fig. 2) corresponds to the radii where the specific
angular momenta curves come close to the circular angular mo-
menta, jz ∼ jc. At smaller radii, jz moves away from jc gradually.
Still, there is a non-negligible rotational support at Rfin, in both runs,
albeit smaller for the SPH-I5 run. The bottom frames of this figure
provide the quantitative measure of rotational support in the form of
jz/jc radial profiles. The AMR exhibits a disc at larger radii than the
SPH run, because it takes more time for the AMR model to collapse,
and, therefore, the accretion shock has more time to propagate out-
wards. In the second stage of the collapse, i.e. inside ∼1 pc, the
jz/jc ratio declines inwards, and showing a plateau for �10−2 pc, at
about 0.5. They demonstrate that, in the isolated models, rotational
support for the collapsing gas never falls below ∼50 per cent in the
second stage, in both runs.

The T–ρg relation is shown in Fig. 6 at the end of the represen-
tative AMR-I5 and SPH-I5 runs. While the upper envelope of T is
similar in both models, there appears to be much more gas at lower
T at low densities, ρ < 10−20 g cm−3, in the AMR-I5 run. Given
our refinement criteria, this is an anticipated property of mesh codes
which are able to follow the low-density gas, while SPH codes tend
to resolve better the higher density regions. On the other hand, a
larger amount of low-T gas appears to be present at high densi-
ties, ∼10−18–10−17 g cm−3, in the SPH-I5 run. We note that AMR
run has larger mass accumulated (at ρ ∼ 10−20 g cm−3) around the
shock, due to a larger shock radius, as evident from Fig. 3. Since
we use identical cooling packages for all runs, this difference can
arise from the ability of numerical schemes to resolve the shocks
and the cooling of a post-shock gas. In the AMR-I5, the radial
shock is strong and advances to larger radii corresponding to lower
gas densities of ∼10−21 g cm−3. The low-T gas is formed from the
post-shock gas which cools down more efficiently. On the other
hand, the SPH-I5 shock is weaker and happens at ∼10−19 g cm−3,
where particles at lower T already are much more common. Hence
the shocked particles’ contribution is hardly visible on the phase
diagram.

Fig. 7 compares various parameters which affect the resolution
in AMR and SPH runs. The left-hand panel shows evolution of
maximal density in the gas, ρmax, with time. Clearly, the collapse in
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AMR and SPH approaches in direct collapse 3223

Figure 4. Mass-weighted gas volume density in the x–y equatorial plane (top and middle frames) and the x–z plane (bottom) of isolated models AMR-I5 (left
frames) and SPH-I5 (right frames), at the end of the runs. Shown are the snapshots of decreasing spatial scales (physical): 50 pc (top) and 5 pc (middle and
bottom) on each side, respectively. The colour palette reflects the range from minimum to maximum densities in each panel. The face-on and edge-on discs
can be seen clearly in both runs.
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Figure 5. Specific angular momentum profile in the gas as a function of cylindrical radius for AMR-I5 (left-hand panel) and SPH-I5 (right-hand panel).
Circular angular momentum profile is shown for comparison (dashed line).

Figure 6. Phase diagram of temperature versus density of gas in isolated runs AMR-I5 (left-hand panel) and SPH-I5 (right-hand panel) at the end of each run.
The colour represents the amount of mass in each pixel.

the isolated model SPH-I5 proceeds much faster than in AMR-I5
already during the first stage. At the onset of second stage, the den-
sity increases slowly, exhibiting kind of a plateau, then accelerates,
and at the end of this stage ρmax increases rapidly. Both runs display
an identical behaviour at the end.

The evolution of ρmax allows us to quantify the separation of the
two stages of the collapse (see also Choi et al. 2013). The plateau
between the stages provides an independent quantitative support to
the existence of these stages. They are also observed in the evolution
of the minimum gas smoothing length for SPH and minimum cell
size for AMR, ηmin, shown in the middle frame of Fig. 7 – this frame
describes the same process of ρmax but in terms of the gas minimal

smoothing length ηmin, which is the minimal interparticle distance.
Following Choi et al. (2013, 2015) and Shlosman et al. (2016), we
choose to define the beginning of the second stage when the gas-
to-DM density ratio becomes larger than unity within the central
few pc. This happens at t ∼ 2.4 Myr in SPH-I5 and ∼6.3 Myr
in AMR-I5. The collapsing gas reaches the final resolution of
ηmin ∼ few × 10−3 pc at ∼2.4 Myr and ∼6.3 Myr, respectively.
At this time the collapse has reached rfin.

The final radial profile of ηmin is shown in the right-hand panel
of Fig. 7. Both AMR and SPH curves for ηmin are similar, but still
the AMR one is systematically lower by a factor of 2–3 depending
on the radius.
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Figure 7. Comparing various resolution parameters for isolated models AMR-I5 (solid lines) and SPH-I5 (dashed lines). Left-hand panel: evolution of
maximum gas density ρmax as a function of time. Middle panel: evolution of the minimal gas smoothing length for the SPH and minimum cell size for the
AMR run, ηmin, as functions of time. Right-hand panel: radial profile of resolution given by the smoothing length for SPH and the minimum cell size at each
radius for AMR, at the end of the runs. The first stage of the collapse which starts at t = 0 is identical for both models. The second stage of the collapse is
triggered when the gas-to-DM density ratio in the inner few pc exceeds unity, i.e. ∼2.4 Myr for GADGET and ∼6.3 Myr for ENZO. Note, that after the onset of
the second stage of the collapse, the collapse proceeds on a very short time-scale as observed by the sharp drop in ηmin (middle panel).

3.2 Direct collapse in cosmological models

For cosmological models, we stop the runs when the AMR and SPH
resolutions, measured by ηmin, reach Rfin ∼ 10−2 pc. The reason for
this is that high resolution of isolated models is more difficult to
reach in cosmological runs. Therefore, we reduce the resolution
demands in both AMR and SPH cosmological models by a factor
of 10 compared to the isolated ones. The time is measured from the
big bang.

As the DM haloes form and grow with time in the cosmological
models, the DM density profiles tend to the NFW shape (Navarro
et al. 1997). When the collapse reaches the central regions, the
baryon drag in the DM and form a cusp, similar to that in isolated
models. Note, that our isolated models follow the isothermal sphere
density profiles and not the NFW ones. We shall return to this issue
in Section 4.

We show the gas density, radial and tangential velocity, and
mass accretion rate profiles for representative cosmological models
AMR-C4.2 and SPH-C4.2 with λ ∼ 0.042 – very similar to the rep-
resentative isolated cases (Fig. 8). We have also measured the DM
halo virial masses and virial radii for ENZO and GADGET cosmological
models at the time of direct collapse, zcoll (Table 3). Overall, the
AMR models collapse slightly earlier than the SPH ones. Conse-
quently, the DM haloes appear slightly less massive and their virial
radii slightly smaller. So a pronounced trend exists between the
AMR and SPH cosmological models.

The top panel displays the final density profiles which are re-
markably similar for the two runs. While density at Rfin ∼ 10−2 pc
is nearly identical to that in the corresponding isolated runs, the
overall shape of ρ(R) somewhat differs. In the isolated runs, in-
side the radial shock, the slope of ρ(R) was nearly constant, while
in the cosmological runs it exhibits the trend of becoming shal-
lower with R. This change happens at R ∼ 0.5–5 pc, continues
inwards, and appears slightly more pronounced in AMR than in the
SPH runs. It appears to be the result of our use of an isothermal
density profile for the DM in isolated models, and the formation
of less cuspy NFW DM profiles in the cosmological runs. An-
other major difference between isolated and cosmological mod-

els is the absence of standing radial shock, which we explain
below.

The radial velocities in AMR-C4.2 and SPH-C4.2 vary within a
factor of a few along r, but end up similar within a factor of 2 at
the centre. The tangential velocity is consistently higher in AMR at
r � 0.2 pc, then reverse the trend with the AMR velocity becomes
smaller than SPH one at r � 0.2 pc.

The bottom panel of Fig. 8 displays the radial profile of mass
accretion rate, Ṁ . The curves differ by a factor ∼2–3 among them-
selves, in the outer radii, and �2 inside 50 pc. But they also
differ profoundly from their isolated counterparts. First they ex-
hibit a deep minimum at r ∼ 50–100 pc and stay about constant,
Ṁ ∼ 1–3 M� yr−1 inwards. The reason for this behaviour is in-
creased rotational support they experience in this region, i.e. vr and
vt have local minima and maxima there. On the other hand, the iso-
lated models display growing Ṁ towards rfin and reach a maximum
there which is greater than the cosmological case by a factor of 2.
The cosmological Ṁ is higher by a factor of a few everywhere ex-
cept at the very centre. Lastly, at the centre, for R � 0.1 pc, the mass
accretion in the SPH run falls by almost an order of magnitude, and
less so in the AMR run.

Fig. 9 compares the projection snapshots for DM and volume den-
sities for the gas of representative cosmological simulations from
identical ICs for ENZO (left-hand panels) and GADGET-3 (right-hand
panels). The extracted DM haloes have λ = 0.042. The snapshots
have been taken at the end of the runs, when the collapse have
reached Rfin ∼ 0.01 pc. The top panels show the large-scale dis-
tribution of the DM on scales of 100 h−1 kpc (comoving). Some
differences are noticeable in these frames, and typically can be
attributed to individual DM haloes. Indeed, we focus on the repre-
sentative DM haloes in the second row within (approximately) their
virial radii, with the box size of 5 h−1 kpc (comoving). Again, while
overall a nice degree of similarity exists between the two runs, differ-
ences are clear as well, especially if one focuses on the substructure
on this scale. The bottom panels show the corresponding gas dis-
tribution within these haloes, on scales of 200 h−1 pc (comoving).
While the AMR panel displays the characteristic filamentary struc-
ture, the SPH panel shows a rather centrally-concentrated elongated
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Figure 8. From top to bottom, radial profiles of gas density, radial velocity,
tangential velocity, and mass accretion rate, at the end of the cosmological
runs for models AMR-C4.2 (solid lines) and SPH-C4.2 (dashed lines). All
axes are logarithmic. The density and accretion rate have been averaged over
spherical shells, and velocities averaged over cylindrical shells.

Table 3. DM halo virial parameters in AMR and SPH cosmological models
at the time of direct collapse, i.e. at zcoll.

Models zcoll Mvir (h−1M�) Rvir (h−1pc)

AMR-C1.5 17.2 2.4 × 107 407
AMR-C2.8 11.9 4.7 × 107 722
AMR-C4.2 19.3 2.7 × 107 379
SPH-C1.5 15.5 4.1 × 107 538
SPH-C2.8 11.0 5.4 × 107 809
SPH-C4.2 18.6 3.4 × 107 422

gas distribution, although the central density is the same in both
runs. The SPH density distribution displays less small-scale struc-
ture in general. The AGORA collaboration (Kim et al. 2014) has
also reported difference in substructure within the similar large-
scale structure.

Next, we show the radial distribution of the specific angular
momentum profile at the end of the simulations, as well as jz/jc ratio
(Fig. 10). Clearly, both runs display much less angular momentum
support at all radii compared to the isolated models. On top of

this, the SPH run shows even less support than the AMR one, and
proceeds basically in the free-fall fashion until it has reached r ∼
0.1 pc. The explanation for such a dramatic difference between the
rotational support in isolated and cosmological models is related to
the efficiency of angular momentum extraction from the gas by the
background DM. In the former models, the DM haloes are nearly
axisymmetric, while in the latter case, they are substantially triaxial.
Resulting gravitational torques from the DM on to the gas will be
largely suppressed in the isolated models, and the gas will have
stronger rotational support.

We also show the comparison between the T–ρ maps for the
above models in Fig. 11. The overall feature of the phase diagrams
are very similar between the two runs, with the exception of the
mass involved at particular T and ρ values. At high densities, the
AMR run shows a somewhat broader distribution in T-range with
very small mass contained in each grid-cell, which are completely
absent in the SPH run. This is understandable, as the two codes
have a different resolution at these densities. Although we start
from identical ICs in ENZO and GADGET-3, the refinement history
differs between the codes in detail. We have tested how sensitive is
the evolution with respect to the refinement condition in ENZO and
discuss it below.

To specify the characteristic times of gravitational collapse in
the cosmological models, we follow the definition from isolated
models. The onset of the first stage of the collapse is inferred from
the sudden rise in refinement level in ENZO and from ηmin(t) in
GADGET. The second stage is triggered when the gas-to-DM density
ratio exceeds unity in both ENZO and GADGET.

The left-hand panel of Fig. 12 shows the time evolution of ρmax

in cosmological simulations. The time prior to t ∼ 178 Myr corre-
sponds to DM structure formation. It involves the initial expansion
and collapse of DM shells, forming a small DM halo, which we
target in the zoom-in simulations. This halo grows via accretion of
cold gas and DM – a process permeated by merger events. As the
halo approaches the critical mass of ∼108 M�, direct baryonic col-
lapse follows. The gas collapse starts around 178 Myr and proceeds
rapidly (but slower than in the isolated models), being triggered
nearly simultaneously in both runs.

The middle frame of Fig. 12 displays the evolution of the minimal
smoothing length, ηmin, in the gas. Again, until the onset of the
gravitational collapse, the AMR curve displays a better resolution
compared to the SPH one, by a factor of 2–3, but both codes are
resolving basically the same densities at this time (see Section 4
for more details). This difference appears during the initial collapse
and formation of the targeted DM halo. With the onset of direct
collapse at t ∼ 178 Myr, this difference in ηmin gets amplified and
the collapse proceeds increasingly faster in the AMR run. This is
a reverse situation with respect to isolated models, and shows up
explicitly in the radial profiles of ηmin. We expect that the run with
a smaller ηmin will collapse first. We note that the duration of the
baryonic collapse here, ∼10–20 Myr, is substantially longer than
in respective isolated models. The reason for this difference comes
from the collapse inside NFW haloes which have a substantially
lower central DM densities than in similar isothermal spheres used
by us for isolated models.

The right frame of Fig. 12 displays the radial profile of ηmin(R)
at the end of cosmological simulations AMR-C4.2 and SPH-C4.2.
Note, the bifurcation in ηmin at around few pc from the centre of
the DM halo. Whereas the outer halo region is equally resolved
with both runs, the inner one is better resolved with the AMR. This
explains why the second stage of the collapse proceeds faster with
ENZO.
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Figure 9. Projections of final DM density in x–y plane in cosmological models AMR-C4.2 (left-hand column) and SPH-C4.2 (right-hand column). The spatial
scale of each panel decreases from top to bottom: DM in 100 kpc (comoving), DM in 5 kpc (comoving), and mass-weighted gas volume density in 200 pc
(comoving), respectively. The depth of each frame is 10 kpc (top), and 0.5 kpc (middle) in comoving coordinates. The colour palette reflects from minimum
to maximum projection densities in each panel.
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Figure 10. Specific angular momentum profile of gas as function of cylindrical radius for ENZO (left-hand panel) and GADGET3 (right-hand panel) in the
cosmological runs AMR-C4.2 and SPH-C4.2. Circular angular momentum profile is shown for comparison (dashed line).

Figure 11. Phase diagram of temperature versus density in AMR-C4.2 (left-hand panel) and SPH-C4.2 (right-hand panel) at the end of the cosmological
model simulations. The colour represents the mass in each pixels.

3.3 Effect of host DM halo spin on isolated models

As additional and a broad test for model comparison, we mea-
sure the collapse time in each model and contrast the ENZO-2.4 and
GADGET-3 runs in isolated models. Effect of gas rotation on gravi-
tational collapse has been also modelled by Jappsen et al. (2009)
in the context of Pop III star formation. However, they assumed a
rigid spherical DM halo which, therefore, cannot absorb angular
momentum and/or produce gravitational torques on the gas.

To analyse the collapse time for isolated models, we measure the
time from the start of the run, using models with a range in the spin
parameter λ, for AMR and SPH runs. In other words, we define the

collapse time, 	tc, as the time from t = 0 till the collapse reaches
Rfin = 10−3 pc (Section 2.2). The collapse time, 	tc, is given in
Fig. 13.

For isolated models, two trends can be observed. First, both AMR
and SPH runs exhibit a monotonic increase of 	tc with λ, up to the
measured spin of λ ∼ 0.07 (Fig. 13). Secondly, the AMR runs
display a longer collapse time than the SPH runs. As a corollary,
the difference between the collapse time of AMR and SPH runs is
increasing monotonically with λ.

The first trend can be easily explained. With increasing DM halo
spin parameter, the gas must overcome a centrifugal barrier posi-
tioned at progressively larger radii, because the ICs for the isolated
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Figure 12. Same as Fig. 7, but for cosmological models AMR-C4.2 (solid lines) and SPH-C4.2 (dashed lines). Note, that the collapse starts around
t ∼ 178 Myr for AMR and SPH runs, when ρmax and ηmin are slightly in favour of the AMR, compared to being identical in the isolated models. ηmin(R) shows
that the innermost resolution is higher in ENZO inside few central pc, while it is identical in the outer DM halo.

Figure 13. Duration of gravitational collapse time for isolated models, 	tc,
in ENZO-2.4 and GADGET-3 runs as function of the halo spin parameter λ. The
grey region represents ±1σ errors using the Poisson statistics.

runs require the gas to have the same specific angular momentum
j(r) distribution as the DM. The gas evolution is complicated by the
intricacies of gravitational collapse: gas at small radii collapses first
and it has lower j than the gas at larger radii. So the initial circular-
ization determines the position of the accretion shock which forms
at ∼1 pc from the centre, as seen in Fig. 3. As the gas with larger
j circularizes at larger r progressively later, the shock moves out,
and does it faster for larger λ. Hence, the size of the forming disc
behind the accretion shock is increasing with λ and with time (e.g.
Fig. 3).

For the second stage of the collapse to ensue, the gas must decou-
ple from the background DM potential, i.e. its density must increase
above the DM density at small radii (e.g. section 3.1 of Choi et al.
2015). In isolated models this is approximately the radius of the disc
which forms behind the standing accretion shock. Naturally, a larger
accumulation of baryons is required when decoupling happens at
larger radii, explaining the increased 	tc for larger λ. Indeed, the
disc sizes and, therefore, masses increase with λ.

Hence, this simple physics explains the relatively modest increase
in 	tc with λ. Remarkably, both ENZO and GADGET-3 runs agree in
their 	tc for λ = 0.01. But what about the increasing delay in
the collapse time of the AMR runs with λ? To understand this,
one should look carefully into different resolution pattern of both
codes. While ICs are identical in this respect, the SPH gravitational
softening is constant with time, while that of the AMR code are
refined as the collapse proceeds. This by itself does not have a
direct effect on the dynamics, but there are caveats. Probably the
most important issue is the possible effect that refinement has on
the development on degree of turbulence in the collapsing gas.

In Fig. 14(a), we show evolution of ηmin for three representative λ

for ENZO and GADGET-3. For λ= 0.01, ηmin(t) displays little difference
between ENZO-2.4 and GADGET-3. For higher spin, we observe an
increasing delay in the second stage of the collapse, especially for
ENZO runs. Checking the associated increase in the refinement levels,
the latter appears to stagnate before the onset of the second stage
of the collapse. In other words, ηmin, which reflects the best spatial
resolution at each time, as mentioned above, ‘hesitates’ to decrease
for a longer time in ENZO compared to GADGET-3. Therefore, we
observe a longer plateau for ENZO in Fig. 14.

3.4 Effect of host DM halo spin on cosmological models

In the previous section, we have measured the collapse time-scales
for isolated models and contrasted them between ENZO-2.4 and
GADGET-3 runs. Similar exercise in cosmological models is more
complicated, because it involves cosmological evolution of DM
haloes, which depends on structure formation in the universe and
results in haloes having different shapes and other properties. Hence,
while a detailed comparison of the collapse time for cosmological
models is outside the scope of this work, we do compare some
numerical aspects of their evolution with various λ.

We define the cosmological collapse time-scale, 	tc by follow-
ing the evolution of the baryonic refinement level, the maximal
hydrodynamic resolution, ηmin, and the maximal density, ρmax – all
defined as in isolated models. The beginning of the direct collapse
in the cosmological DM haloes, t0, is determined when these pa-
rameters exhibit a sharp increase or decrease, correspondingly. For
example, ηmin decreases sharply at t ∼ 178 Myr, which is consid-
ered as the onset of the collapse. The end point of the collapse is
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Figure 14. Comparison of the evolution of ρmax(t) for (a) three isolated models with λ = 0.01, 0.05, and 0.07 for AMR-I1, -I5, and -I7 (solid lines) and
SPH-I1, -I5, and -I7 (dashed lines) runs; (b) same for three cosmological models, AMR-C1.5, - C2.7, and -C4.2 (solid lines) and SPH-C1.5, -C2.7, and -C4.2
(dashed lines). The collapse time-scales, 	tc, for these models are listed in Table 4.

Table 4. Values of 	tc for isolated and cosmologi-
cal models shown in Fig. 14. The definitions of 	tc
are given in Sections 3.3 and 3.4 for isolated and
cosmological models, respectively.

Models 	tc (Myr)

AMR-I1 1.7
AMR-I5 6.3
AMR-I7 8.3
SPH-I1 1.7
SPH-I5 2.3
SPH-I7 3.4

AMR-C1.5 14.6
AMR-C2.8 17.5
AMR-C4.2 14.3
SPH-C1.5 20.6
SPH-C2.8 19.8
SPH-C4.2 20.6

taken tfin, when it reaches Rfin, and 	tc = tfin − t0. To detect a sharp
increase/decrease in ρmax and ηmin, we follow their time derivatives
after ∼140 Myr and test all the occurrences for the increase/decrease
by a factor of 2 or more.

We repeat the λ-test discussed in the previous section, for cosmo-
logical models. Naively, one expects to observe the same correlation
between 	tc and λ shown in Table 4 and in Fig. 13. However, as
exhibited by Fig. 14(b), this is not the case. For three representative
cosmological models in AMR and SPH, the one-to-one correlation
between 	tc and λ does not exist here. Why does this happen?

A number of physical reasons in cosmological models would
‘mess up’ this correlation. First, the host DM haloes in isolated
models are axisymmetric. This means that collapsing gas has diffi-
culty to lose angular momentum to DM, and loses it mostly to gas.
On the other hand, the DM halo shapes in cosmological models dif-
fer profoundly from axisymmetric shapes. Therefore, the gas will
lose its angular momentum continuously and efficiently to the DM,

which will move the gas away from the centrifugal barrier at each
radius, as in fact is shown in Fig. 10.

Secondly, because the direct collapse takes about 10–20 Myr in
cosmological models, the basic properties of DM haloes can change
during this time. They can undergo minor, intermediate, and major
mergers. In other words, the host haloes will have enough time to
interact with the substructure – which does not happen in isolated
models.

These and additional factors are expected to affect the direct
collapse onset and duration in cosmological simulations in a kind
of unpredictable way, which we indeed observe in our simulations.

For isolated and cosmological SPH and AMR models, the free-
fall time for the DM haloes at the onset of direct collapse is tff ∼
35 Myr. In comparison with the actual collapse time-scales given in
Table 4, the collapse times are shorter than the free-fall times. This
underlines an important point that direct collapse involves only the
inner part of the gas initially residing in DM haloes.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have performed comparison simulations of gas collapse in DM
haloes in the context of direct collapse scenario to form SMBH seeds
using AMR and SPH codes. This problem involves large dynamic
range, from kpc down to au scales – such a comparison has not
been attempted before. Using ENZO-2.4 AMR and GADGET-3 SPH
codes, we examined the systematic differences which build up when
these numerical schemes are invoked. We made significant efforts
to match the initial set-up of the two simulations. We addressed
the associated problems using isolated and cosmological models of
gravitational collapse in DM haloes with a range of cosmological
spin parameter λ. To simplify this task, we ignored the effect of
molecular hydrogen and UV background radiation, and assumed an
optically-thin atomic cooling, as described in Sections 1 and 2. As a
result, the collapse is nearly isothermal in all runs. Our main results
are as follows.

(i) The isolated models generally follow similar evolutionary
path and agree with Choi et al. (2013), but exhibit many subtle
differences among themselves. Specifically, the collapse proceeds
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in two stages, first reaching the angular momentum barrier, going
through an accretion shock, and forming a disc behind it. In the
second stage, which begins after the gas density in the disc region
surpasses that of the DM density, the gas decouples from the back-
ground gravitational potential of the DM and experiences a runaway
collapse, dragging some of the DM inwards in an adiabatic com-
pression. We find that, although the AMR and SPH models start
with identical ICs, the pace of increase in spatial resolution differs
in both codes. This leads to a substantially earlier collapse in the
SPH models for the isolated models.

(ii) Cosmological models do not exhibit ‘standing’ accretion
shocks, unlike their isolated model counterparts, and, consequently,
do not form rotationally-supported discs. The reason for this is
the continuous loss of angular momentum by the collapsing gas to
the background triaxial potential of the host DM haloes, contrary
to isolated models which stay largely axisymmetric. Nevertheless,
one can distinguish between first and second stages of the collapse,
when the gas-to-DM density ratio crosses unity, within the cen-
tral few pc. The cosmological evolution of DM haloes and baryons
appears to be similar among the AMR and SPH runs, being only
slightly in favour of the AMR models in baryonic spatial and mass
resolutions. But a pronounced trend exists between the AMR and
SPH cosmological models, with the former exhibiting direct col-
lapse at higher redshifts, and, consequently, the collapse happens
in less massive and smaller DM haloes. With the onset of baryonic
gravitational collapse within DM haloes, the pace of the resolu-
tion change differs among the codes and the resolution increases
faster in the AMR runs. Consequently, the trend in the time lag is
reversed here with respect to the isolated models, and the AMR
models collapse before the SPH models. Thus, a small difference
in the pre-collapse resolution is amplified substantially during the
collapse.

(iii) The collapse time 	tc increases with increasing λ in isolated
models. Greater centrifugal forces divert the infalling gas to larger
radii, i.e. circularization happens further away from the rotation axis.
This is translated to larger expansion velocities of the accretion
shocks and larger accretion disc sizes. Shock in the AMR runs
propagate further out than in the SPH runs, because the final collapse
time is later for the AMR isolated models.

(iv) For cosmological models, the baryonic collapse time is much
longer than in isolated models, because the average density in the
central regions of the NFW haloes is lower than that of the isother-
mal spheres by a factor of ∼100, which leads to longer collapse
time by a factor of ∼10. Additional factors discussed above affect
	tc, unlike in isolated models.

In this work we have focused on numerical aspects of gravita-
tional collapse to the SMBH seeds, and so avoid discussing the
associated physics, except when unavoidable. The main reasons for
dissimilar performance of the AMR and SPH codes lies in the mis-
match between the pace of increase in spatial and mass resolutions
when comparing performance of the AMR and SPH codes. These
differences appear to be profound and not easily reconcilable.

Both numerical codes under comparison here, AMR ENZO-2.4
and SPH GADGET-3, follow collisionless cold DM and dissipative
fluid component. Each of these components is important in order to
understand evolution of gravitational collapse. The DM plays a cru-
cial role in diluting the gravitational interactions within the gas, and,
therefore, increasing its Jeans mass. Together with development of
virial supersonic turbulence in the gas, it reduces the fragmentation
in the collapsing flow, and allows the collapse to proceed via large
dynamic range.

Most important is the resolution of the gravitational force. ENZO

uses a multigrid PM method, and therefore, its resolution is gov-
erned by twice the minimum cell size (Section 2.2). On the other
hand, GADGET-3 uses the tree method to compute gravity, and its
gravitational resolution is set by a fixed softening length. Hence,
the forces are computed more accurately in GADGET-3 compared
to ENZO, particularly at the initial stage of collapse, when ENZO

has not refined many levels yet. In principle, one should be able
to make the ENZO gravity resolution comparable to that of GADGET

from the very beginning, by investing significantly larger number
of initial mesh allocations, e.g. by nested initial grid. However, this
was not feasible with reasonable computational resources for this
work.

In isolated models, we have been able to push the initial spatial
resolution of ENZO to ∼10 pc with three initial nested grid levels. At
the same time, GADGET has had a constant softening length of εg =
10−4 pc for the SPH particles and εDM = 0.37 pc for the DM, from
the beginning (see Table 2). Of course the particles are not as close as
these distances from the start of the run, but the forces are computed
accurately with the tree method down to εg and εDM. On the other
hand, ENZO gravity was allowed to refine, but it did not refine fast
enough to catch up with GADGET in the isolated models, judging
from the evolution of the hydrodynamical resolution parameter,
ηmin. For periods of time, ENZO refinement level has been constant,
then changed abruptly. Thus, ENZO resolution always lagged behind
GADGET in the isolated models. Due to these differences, ENZO was
unable to follow the steep density cusp of the DM isothermal sphere
in the centre.

The above situation is similar to the one found in the context
of cosmological simulation by O’Shea et al. (2005), where ENZO

and GADGET codes have been compared for cosmological structure
formation. In this case, ENZO had to invest in ∼2563 root-grid in
order to reproduce the same DM halo mass function as the GADGET

run with 1283 particles. When simply using the root-grid of 1283,
ENZO was unable to follow the growth of early density perturbations
due to poorer force resolution, and it resulted in an underestimate of
halo substructures and low-mass haloes at early times. This means
that ENZO AMR code requires significantly larger computing re-
sources than GADGET SPH code in order to obtain similar structures
on small scales, particularly in the context of cosmological structure
formation.

In this work, the context and the spatial scale of the problem is
very different from that of O’Shea et al. (2005). ENZO’s main advan-
tage is the refinement method which allows it to obtain a superior
hydrodynamic or gravitational force resolution, albeit towards the
end of the cosmological simulation and in a very small volume.
Therefore, during the pre-collapse phase, when high resolution is
not required, the difference in computational resources used by both
codes are comparable, within a factor of 2, in the CPU time. On
the other hand, during the direct collapse in isolated and cosmolog-
ical models, GADGET requires 5–10 times more CPU time than ENZO.
Compared to ENZO, GADGET overresolves in the initial stage of the
collapse, and underresolves in the final stages, unless SPH particle
splitting method is used or the SPH has a dynamic gravitational
softening, as in GIZMO (e.g. Heller & Shlosman 1994; Hopkins
2013).

The bottom line is that in our simulations of direct baryonic
collapse in isolated and cosmological framework, GADGET requires
greater investment in computational resources, but benefits from
better hydrodynamic and gravitational force resolution in the com-
putational box, while ENZO achieves a superior resolution in a very
small volume.
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Note that our cosmological models of direct collapse evolve sim-
ilarly in the AMR and SPH cases. The left-hand and middle panels
of Fig. 12 show that direct collapse happens nearly simultaneously
in AMR and SPH runs, as exhibited by the behaviour of ρmax and
ηmin. But these two parameters differ by a factor of a few until the
onset of the direct collapse at t ∼ 178 Myr. As the collapse develops,
we observe that SPH lags behind AMR, unlike in isolated models,
where the SPH models collapse first. The reason for this behaviour
can be observed in the right-hand panel of Fig. 12. Here the AMR
has higher mass and spatial resolution than SPH in the inner few pc
at the final phase of the collapse.

The delay in the collapse time can have a significant impact on
the cosmological evolution of direct collapse, in the presence of an
external UV background. The latter can dissociate H2 molecules,
which is considered to be a critical factor for the success of this sce-
nario (e.g. Omukai 2001; Latif, Zaroubi & Spaans 2011; Inayoshi,
Omukai & Tasker 2014; Sugimura, Omukai & Inoue 2014). If the
collapse is delayed significantly, it might appear favourably for the
direct collapse scenario because of the higher UVB intensity from
nearby star formation, which should be increasing with time at red-
shifts z ∼ 20–10. In our current simulations, ENZO-2.4 and GADGET-3
give mixed results on the cosmological collapse time-scales, as
we have discussed above. This happens because the cosmologi-
cal collapse depends on realistic properties of DM haloes, such as
their shapes. In a more controlled environment of isolated models,
GADGET-3 exhibits earlier direct collapse than ENZO-2.4, due to the
difference in the early force, mass, and hydrodynamic resolution
between the two codes.

In summary, we have performed a comparison between the AMR
code ENZO-2.4 and the SPH code GADGET-3 in the framework of direct
collapse to SMBH seeds, using both isolated and fully cosmological
models of the collapse. We have followed the model evolution into a
strongly non-linear regime, when small initial differences have been
substantially amplified. Although the overall model evolution has
been found similar at large, substantial differences also exist at the
end of the runs. We find that the main cause for these differences lies
in different evolutionary pace of mass and spatial resolution with
time and space. This results in different abilities of the numerical
schemes to resolve hydrodynamics and gravitational interactions,
such as shocks and angular momentum transfer by gravitational
torques.
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