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ABSTRACT
The extracellular signal-regulated kinase (ERK1/2) cascade regulates a myriad of functions in
multicellular organisms. Scaffold proteins provide critical spatial and temporal control over the
specificity of signaling. Shoc2 is a scaffold that accelerates activity of the ERK1/2 pathway. Loss of
Shoc2 expression in mice results in embryonic lethality, thus highlighting the essential role of Shoc2
in embryogenesis. In agreement, patients carrying mutated Shoc2 suffer from a wide spectrum of
developmental deficiencies. Efforts to understand the mechanisms by which Shoc2 controls ERK1/2
activity revealed the intricate machinery that governs the ability of Shoc2 to transduce signals of
the ERK1/2 pathway. Understanding the mechanisms by which Shoc2 contributes to a high degree
of specificity of ERK1/2 signaling as well as deciphering the biological functions of Shoc2 in
development and human disorders are major unresolved questions.

KEYWORDS
ERK1/2; scaffold; Shoc2

Introduction

The biochemistry of the canonical extracellular-signal-
regulated kinases (ERK1/2) pathway is well studied:
growth factor receptors activate Ras GTPases that recruit
Raf kinase to phosphorylate MEK (mitogen-activated
protein kinase kinase) which in turn phosphorylates
ERK.1 However, it is unclear how the signal specificity is
achieved within the wide biological responses controlled
by the ERK pathway. Scaffolding proteins facilitate inter-
actions and functions of core signaling partners of the
ERK pathway and play indispensable roles in controlling
the specific ERK1/2 activities. Examples of proteins that
assemble the components of the pathway into scaffolding
complexes include proteins like kinase suppressor of Ras
(KSR), MEK partner 1 (MP1)-p14 (LAMTOR2/3) com-
plex, IQGAP and Shoc2.2

The first reference of Shoc2 in the literature is dated to
the late 1990s, when Sur-8/Soc2, suppressor of clear, was
isolated in C. elegans genetic screens3-5 that identified
several positive regulators of the universal ERK1/2 sig-
naling pathway (e.g. sem-5, soc-1, and ksr-1).6,7 Sur-8
had been predicted to function downstream of Ras and
upstream of Raf and to possess no apparent catalytic
activity.3,4 Subsequent studies suggested that Sur-8/
Shoc2 was capable of enhancing ERK1/2 activity by
forming a ternary complex with Ras and Raf-1 kinase in
response to stimuli from growth factors8 and showed
that Shoc2 can interact with several Ras isoforms.4 The

critical role of Sur-8/Shoc2 in modulating ERK1/2 activ-
ity became fully appreciated when Rodriguez-Viciana
and co-workers found that silencing of Shoc2 abrogates
ERK1/2 activity in various cell types even in the presence
of oncogenic Ras and Raf mutations.9 Embryonic mice
lethality due to severe heart defects induced by the abla-
tion of Shoc2 and the identification of the Shoc2 muta-
tion in Noonan-like RASopathy patients further
emphasized the critical role of Shoc2 in embryonic devel-
opment.10,11 Clearly, the Shoc2 scaffold plays an essential
role in modulating ERK1/2, but our understanding of
the mechanism by which Shoc2 controls this pathway is
limited. In the present article, we discuss the recent
advances in our understanding of Shoc2 function and
the mechanisms by which it modulates ERK1/2
signaling.

Domain organization and sequence
conservation of Shoc2

Shoc2 is a 65 kDa protein expressed from humans to
parasitic microorganisms with the 51% amino acids
sequence similarity between P. falciparum and its human
homolog. This striking conservation of Shoc2 implies
that Shoc2 function is evolutionarily conserved as well.12

All known Shoc2 orthologues are comprised of two
major domains: the short, unstructured N-terminal
domain followed by the long stretch of leucine-rich
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repeats (LRRs).3,12 The well preserved N-terminal
domain spans 85 amino acids in endothermic vertebrates
and encompasses anywhere from 56 to 145 amino acids
in other taxa.12 Similar to other proteins that contain
tandem arrays of multiple LRRs, Shoc2 is likely to form a
horseshoe-shaped solenoid structure, which generates a
platform holding several binding partners (i.e. PP1c,
SCRIB, Erbin, HUWE1, PSMC5) (Fig. 1). The involve-
ment of each known interacting partner in the regulation
of Shoc2 function, assembly of the scaffolding complex,
and/or subsequent control over the ERK1/2 signaling is
discussed in following section. It is important to note
that the last LRR contains a unique stretch of »20 amino
acids that are responsible for the targeting of Shoc2 to
late endosomes.13,14

Shoc2 as a scaffolding protein - threshold
control of ERK1/2 signaling

Initially, scaffolding properties have been inferred for
Shoc2 due to the apparent absence of an enzymatic activ-
ity and its ability to tether Ras and Raf-1 in close proxim-
ity. This notion of Shoc2 being a molecular platform that
recruits enzymes to fine-tune signals transmitted
through the scaffolding complex has since been sup-
ported by the several following studies. One such enzyme
that interacts with Shoc2 is the catalytic subunit of the

protein phosphatase 1 (PP1c) (Fig. 1A).9 PP1c, known
for its ability to cooperate with various regulatory pro-
teins,15 forms a holoenzyme with Shoc2. Owing to the
high specificity of the Shoc2 interaction with M-Ras, the
Shoc2-PP1c holoenzyme is targeted to stimulate Raf-1
kinase activity by dephosphorylating the S259 inhibitory
site of Raf-1. The M-Ras/Shoc2/PP1c complex then acti-
vates Raf-1 recruited by other Ras proteins or Ras family
GTPases.9 It should be noted that the exclusivity of M-
Ras binding to Shoc2 was challenged by others, and a
consensus in regard to whether distinct Ras isoforms (H-
Ras, K-Ras and N-Ras) form a direct complex with
Shoc2 has yet to be reached. An unexpected feature of
the M-Ras/Shoc2/PP1c complex was later revealed by
Young et al. (2013), who showed that the M-Ras and
Shoc2 dimer competes for PP1c binding with Scribbled
Homolog (SCRIB) (Fig. 1B).16 SCRIB, a member of the
LAP (LRR and PDZ) proteins family, is a known regula-
tor of the ERK1/2 pathway.17 Young et al. showed that
SCRIB antagonizes Shoc2-mediated Raf-1 dephosphory-
lation through a mechanism involving competition for
PP1 molecules within the same scaffolding complex.
Competition of Shoc2 and SCRIB for PP1c binding
allows for the sophisticated mechanisms controlling the
frequency and amplitude of Shoc2-transduced ERK1/2
activity thereby affecting establishment of cell polarity
and tumorigenic growth.16

Figure 1. Schematic model depicting how ERK1/2 activity is transduced through the Shoc2 scaffold. Shoc2 routes Ras-Raf signals of the
ERK1/2 pathway. (A) In the complex with Shoc2, PP1c dephosphorylates inhibitory Serine 259 of Raf-1 to facilitate signal transmission.
(B) SCRIB competes with Shoc2 for PP1 binding thereby reducing ERK1/2 signaling. (C) Erbin disrupts the formation of Shoc2/Ras/Raf1
complexes to inhibit Shoc2-ERK1/2 signals. (D) Activation of the ERK1/2 pathway leads to an allosteric reversible ubiquitination of
Shoc2 and, subsequently of Raf-1, by the E3 ligase HUWE1. HUWE1-mediated ubiquitination of Raf-1 fine-tunes its activity. In addition,
ubiquitination triggers accumulation of Shoc2 complexes on the late endosomes/multi-vesicular bodies (LE/MVBs). On endosomes,
Shoc2 complexes undergo remodeling by AAAC ATPase PSMC5. The mechanoenzyme activity of this ATPases is utilized to reduce ubiq-
uitination of Shoc2 and Raf-1 and, possibly, to reactivate the complex.
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Erbin (also known as ERBB2IP) is another member of
the LAP protein family and a Shoc2 interacting part-
ner.18,19 Analogous to SCRIB, Erbin is a suppressor of
the growth factor-induced ERK1/2 activity. Erbin damp-
ens ERK1/2 activity by sequestering Shoc2 and disrupt-
ing the Ras and Raf-1 interaction in keratinocytes and
cardiomyocytes (Fig. 1C).19-21 Both SCRIB and Erbin
appear to provide an essential mechanism to control sig-
naling strength of Shoc2-ERK1/2 activation.

ERK1/2 signals transduced by Shoc2 are fine-tuned
through Shoc2 partnering with the proteins of the ubiqui-
tin machinery: the HECT-domain E3 ubiquitin ligase
HUWE1 and the AAAC ATPase PSMC5.13,22 HUWE1
and PSMC5 provide mechanism for the negative feedback
that modifies the amplitude of Shoc2-mediated ERK1/2
signaling through allosteric post-translation modifications
(Fig. 1D). Shoc2 ubiquitination is the first post-transla-
tional modification reported for Shoc2. The diversity of
ubiquitin chains ligated to Shoc2 (K63, K48, K6, K11)22

(unpublished data) indicates that this ubiquitination plays
an active role in controlling Shoc2 function. Triggered by
the activation of the ERK1/2 pathway, ubiquitination of
Shoc2 by HUWE1 is a prerequisite for the subsequent
ubiquitination of the Raf-1 kinase by the same E3 ligase.22

The role of HUWE1 in controlling functions and levels of
numerous essential proteins and cellular processes is
reviewed in detail in Bernassola et al. 2008.23 In the con-
text of the Shoc2–Raf-1 scaffolding module, HUWE1 reg-
ulates the amplitude of ERK1/2 signal as well as the
stability of both partners. Given that elevated levels of
HUWE1 or somatic mutations have been found in several
human pathologies,24-27 it would be reasonable to expect
that functions of Shoc2 and Raf-1, the dynamics of the
ERK1/2 signaling pathway and the signaling network
response are altered and contribute to these conditions.

An additional protein of the ubiquitin machinery
involved in regulating Shoc2-mediated ERK1/2 signaling
is the AAAC ATPase (ATPase associated with diverse
cellular activities) PSMC5. PSMC5 (rpt6 or Sug1), widely
known for its essential role in the 19S proteasome,28,29

also functions as an unfoldase/remodeler of APIS (AAA
Proteins Independent of 20S) complexes.30,31 In the
Shoc2 assembly, PSMC5 has a unique role that does not
involve control over stability of Shoc2 or its known part-
ners. Here, PSMC5 governs the mechanism that controls
dynamics of the Shoc2 transmitted ERK1/2 signals
through remodeling of the Shoc2 complexes, sequestra-
tion of HUWE1 from the complex and modulating ubiq-
uitination of Shoc2. Experiments using ATPase activity
deficient mutants of PSMC5 demonstrated that ATP-
fueled mechano-activity of PSMC5 is required for the
remodeling of the Shoc2 complex in a spatially defined
manner. Namely, PSMC5 remodels Shoc2 complexes

and modulates ubiquitination of Shoc2 and Raf-1 when
targeted to endosomes. By incorporating AAAC PSMC5
unfoldase, Shoc2 complex acquires an additional layer of
control over the amplitude of the ERK1/2 signals trans-
mitted through the module. While HUWE1-mediated
ubiquitination of Shoc2 and Raf-1 allows for the
dynamic range of Raf-1 activity to be fine-tuned, PSMC5
controls the ability of HUWE1 to modify the noncata-
lytic scaffold Shoc2 thereby actively modulating the
assembly of molecules in the complex.13,22

The role of Shoc2 in various biological processes

Given that aberrations in the mechanisms that control
timing and amplitude of ERK1/2 signals have critical
implications for numerous cellular processes, several
studies have explored the biological significance of
Shoc2. As mentioned above, the loss of Sur-8/Shoc2 in
C. elegans was not lethal.3 While the total ablation of
Shoc2 in mice led to an early embryonic lethality, its
endothelial knock-out resulted in multiple cardiac
defects (e.g., the reduced mesenchyme proliferation
phase during the atrioventricular canal (AVC) develop-
ment progressing to the formation of hypoplastic endo-
cardial cushions) and late embryonic lethality.10

Demonstrating an essential role of Shoc2 in embryogene-
sis, this study had a surprising conclusion: Shoc2 is able
to regulate AVC development in an ERK-independent
manner.10 The role of Shoc2 in differentiation and prolif-
eration of neuronal progenitor cells (NPCs) was exam-
ined using lentivirus-mediated Shoc2 knock-down.32 In
this model, Shoc2 acted as an anti-differentiation factor
that stimulated ERK signals to NPCs proliferation and
self-renewal.32 The ability of Shoc2 to increase self-
renewal was attributed to the cellular mechanisms con-
trolling the protein stability of Shoc2. The authors of this
study also suggested that Shoc2 might be a potential
stem cell marker for NPCs.

Addressing the potential role of Shoc2 in tumorigene-
sis, several studies examined the ability of Shoc2 to
increase ERK1/2 signals in various types of malignant
cells (e.g. pancreatic, colon, breast and non-small cell
lung carcinoma, melanoma, neuroblastoma, fibrosar-
coma, and hepatoma cells).9,33,34 Using siRNA silencing
of Shoc2, Rodriguez-Viciana et al. demonstrated that
Shoc2 was able to accelerate ERK1/2 activity even in can-
cer cells that carry tumorigenic K-Ras, N-Ras and B-Raf
mutations.9 While deciphering mechanisms responsible
for the acquired resistance of melanomas to the B-Raf
inhibitor vemurafenib (PLX4032), Kaplan et. al found
that Shoc2 mediates reactivation of the ERK1/2 pathway
in cells with constitutively active N-Ras.35 Shoc2 facili-
tated melanoma-acquired vemurafenib resistance by
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altering signaling connections and re-routing oncogenic
N-Ras signals to Raf-1.35 Activity of ERK1/2 transduced
by Shoc2 was shown to contribute to the malignant
properties of different tumor cells via regulating contact
inhibition, anchorage-independent proliferation and ori-
entation of the microtubule-organizing center of these
cells.16 We showed that Shoc2 modulates ERK1/2 signals
to cell motility and attachment, in part, through regulat-
ing expression of the protein of extracellular matrix - lec-
tin galactoside-binding soluble 3-binding protein
(LGALS3BP).34,36 This secreted glycoprotein forms
oligomers in the extracellular milieu and promotes cell
adhesion to matrix proteins. High levels of LGALS3BP
in serum and tumor tissue are associated with a shorter
survival in patients with various malignancies.37,38

Germline mutations in genes encoding proteins of the
ERK1/2 pathway trigger RASopathies – developmental
disorders characterized by distinct facial features, develop-
mental delays, cardiac defects, growth delays, neurologic
issues, gastrointestinal difficulties and predisposition to
certain types of cancers.39,40 In 2009 Cordeddu and cow-
orkers reported that the c.4A>Gmissense mutation in the
SHOC2 gene leads to a distinctive RASopathy termed
Noonan-like syndrome with loose anagen hair.11 c.4A>G,
p.S2G substitution subsequently leads to a protein with the
abnormally added myristate fatty acids that is aberrantly
targeted to the plasma membrane. The first group of
patients carrying c.4A>G mutation were reported to have
an unusual combination of features where reduced growth
associated with growth hormone deficiency, cognitive defi-
cits, distinctive hyperactive behavior, and a unique hair
anomaly (i.e., loose anagen hair). These findings were then
expanded from distinctive craniofacial dysmorphisms and
a wide spectrum of congenital heart defects to variable neu-
rocognitive impairments, brain anomalies, epilepsy, severe
hydrops fetalis and even Moyamoya syndrome, and also
questioned the association of Shoc2 mutations with ‘loose
anagen hair’ pointing to its speculative nature.41-47 The
biological complexity of Shoc2 S2G patients was explored
using transcriptome analysis of peripheral blood mononu-
clear cells.48 A large transcriptional signature characterized
for the Shoc2 S2Gmutation indicated a unique, Shoc2-spe-
cific route for the signaling it controls. Interestingly, the
alterations in the expression of transcription factors (TFs)
found in Shoc2 (S2G) patients had very little overlap with
identities of TFs expression affected by the depletion of
Shoc2, emphasizing the selective effect point mutation
may have on ERK1/2 activity.34,48

A different Shoc2 substitution (c.519G>A; p.M173I) was
recently reported byHannig et al. (2014) in patients with the
mild Noonan-like RASopathy.49 De-novo occurrence of this
Shoc2 mutation and a typical clinical phenotype suggested
the mutation to be pathogenic, while the analysis of the

molecular mechanisms underlying the Noonan-like pathol-
ogy pointed to an impaired ability of the Shoc2 M173I
mutant to interact with PP1C. It is worth mentioning that a
similar substitution of the methionine 173 (c. 517A>G, p.
M173V) was found in Noonan syndrome patient by the
Kuechler et al.,50 but no underlying molecular mechanisms
were proposed. Recognizing a clinical variability in patients
with the Shoc2-linked RASopathy, it is likely that individu-
als with no molecularly confirmed mutations carry different
or already known Shoc2 substitutions.51

Conclusions and closing remarks

Scaffolding proteins are reported to have critical roles in
an increasing number of biological signaling processes.52

Some of these scaffolds show surprising dynamics/diver-
sity in the ways in which they bring multiple binding
partners together to facilitate their interactions and func-
tions that are beyond a simple tethering mechanism to
increase the efficiency of interaction.53

Initial insights regarding the structural and functional
studies of Shoc2 have started to expose the intricacy of
the mechanisms controlling function of the scaffold and
assembly of the complex. Advances made in the past few
years have emphasized the central position of Shoc2 in
the ERK1/2 pathway and cellular processes it controls.
Nevertheless, several gaps remain to be filled in order to
understand the intricacy of the Shoc2 machinery and
biological activities controlled by the module. First, it
would be important to identify all the proteins assisting
in the process of the Shoc2 scaffold assembly and remod-
eling. Moreover, there is the question of the stimuli that
activate assembly and control subcellular distribution of
the Shoc2 scaffolding complex. The final effects of Shoc2
and Raf-1 ubiquitination are yet to be understood. Fur-
ther research regarding the possible contribution of
Shoc2 interactions to skin diseases, like psoriasis, or car-
diac hypertrophy as well as more insights on Shoc2-
ERK1/2 physiological substrates and cellular outcomes
will determine whether Shoc2 is an attractive therapeutic
target. Finally, additional studies of Shoc2 will provide
fundamental insights into our understanding of the
mechanisms by which other scaffolds may be controlled.
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