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Orbital angular momentum and generalized transverse
momentum distribution

Yong Zhao,1 Keh-Fei Liu,2 and Yi-Bo Yang2
1Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742, USA

2Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
(Received 9 July 2015; revised manuscript received 26 October 2015; published 3 March 2016)

We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular
momentum operators defined in the nucleon spin sum rule of Chen et al. are the same as those whose matrix
elements correspond to the moments of generalized transverse momentum distributions. This completes the
connection between the infinite momentum limit of each term in that sum rule and experimentally
measurable observables. We also show that these orbital angular momentum operators can be defined
locally and discuss the strategies of calculating them in lattice QCD.

DOI: 10.1103/PhysRevD.93.054006

Apportioning the longitudinal spin of a fast-moving
nucleon among its quark and gluon partons is one of the
most challenging issues inQCD. The quark spinmeasured in
deep-inelastic scattering (DIS) experiments contributes
about 25% to the proton spin [1], and a lot of experimental
and theoretical effort has been devoted to determining the
remaining pieces in the past 25 years. A recent global
analysis [2] that includes the high-statistics 2009 STAR
[3] and PHENIX [4] data shows evidence of nonzero gluon
helicity in the proton.AtQ2 ¼ 10 GeV2, the polarized gluon
distributionΔgðx;Q2Þ is found to be positive and away from
zero in the momentum fraction range 0.05 ≤ x ≤ 0.2.
However, the result presented in [2] still has large uncertainty
in the small-x region. Given that the integral value of
Δgðx;Q2Þ from x ¼ 0.05 to 0.2 is about 40% of the proton
spin [2], there is still room for substantial contributions from
the quark and gluon orbital angular momenta (OAM). To
fully understand the proton spin structure, one needs to find
the spin and OAMoperators whose matrix elements give the
partonic contributions that are both measurable in experi-
ments and calculable in theory, especially in lattice QCD,
which is a well-established nonperturbative approach to
solvingQCD.Compared to the quark spin andgluon helicity,
partonOAMare still difficult tomeasure,while little progress
has been made in their lattice calculation.
In this work, we address the question of orbital con-

tributions and show that the OAM operators in the gauge-
invariant nucleon spin sum rule of Chen et al. [5,6], when
boosted to the infinite momentum frame (IMF), are equal to
those whose matrix elements correspond to the moments of
generalized transverse momentum distributions (GTMD).
The latter contain information of parton OAM, and their
measurement has been speculated in recent studies [7–9].
We also show that the OAM operators in [5,6] can be
defined locally on the lattice and outline the ways to
calculate their matrix elements. Therefore, our work dem-
onstrates that the experimental observables for parton OAM
are accessible through practical lattice calculations.

The quark spin and gluon helicity measured in DIS
experiments can be incorporated into the naive nucleon
spin sum rule by Jaffe and Manohar [10],

1

2
¼ 1

2
ΔΣþ Lq þ ΔGþ Lg; ð1Þ

where each individual term is defined to be the proton
matrix element of canonical spin and OAM operators in the
IMF (or on the light cone) with the light-cone gauge
Aþ ¼ 0,

~Jcan ¼
Z

d3xψ†
~Σ
2
ψ þ

Z
d3xψ†~x × ð−i ~∇Þψ

þ
Z

d3x~Ea × ~Aa þ
Z

d3xEi
a~x × ~∇Ai;a: ð2Þ

Here a and i are the color and spatial Lorentz indices,
respectively.
As is well known, ΔΣ and ΔG are the first moments of

polarized quark and gluon distributions, which are given by
light-cone correlation functions [11]. Meanwhile, there are
attempts to define canonical OAM distributions and relate
them to experiments [12]. One proposal based on quark
models suggests that Lq is related to a transverse momen-
tum distribution (TMD) function h⊥1T [13–16], which is
measurable in semi-inclusive DIS experiments [17,18].
Furthermore, in a model-independent proposal, Lq is
directly given by a Wigner distribution Wq

LC or GTMD
Fq
1;4 [19–24],

LqðxÞ ¼
Z

d2~b⊥d2~k⊥ð~b⊥ × ~k⊥ÞzWq
LCðx; ~b⊥; ~k⊥Þ

¼ −
Z

d2k⊥
~k2⊥
M2

Fq
1;4ðx; 0; ~k2⊥; 0; 0Þ; ð3Þ
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where M is the nucleon mass, ~b⊥ and ~k⊥ are the relative
average transverse position and momentum of the quark,
respectively, and “LC” stands for a specific choice of the
gauge link that corresponds to semi-inclusive DIS or Drell–
Yan processes. There is also a similar relationship between
Lg and the gluon Wigner distribution or GTMD. The
definition ofLq in Eq. (3) has a clear partonic interpretation,
and it is suggested that Fq

1;4 can be measured in parity-
violating deeply virtual Compton scattering processes that
involvemore than one hadronic reaction plane [7,8]. Besides,
it is also proposed that the gluon Wigner distribution can be
measured at small x in hard diffractive dijet production [9].
Since the canonical quark and gluon OAM are defined in

the light-cone plane and gauge, which involve linear
combinations of the spatial and real time coordinates, they
are not directly accessible in lattice QCD that uses
imaginary time. Nevertheless, there has been recent
progress on the lattice calculation of TMD functions
[25–27], where a spatial gauge link is used in the
calculation, and the result is evolved to the IMF to obtain
the light-cone correlator. This approach can be generalized
to calculate Lq and Lg via Eq. (3).
A new perspective is provided in [28], which proves that

the frame-dependent gluon spin operator in [5,6] is equal to
that defined from the first moment of Δgðx;Q2Þ in the IMF
limit. Since the gluon spin operator does not depend on time,
its matrix element can be calculated in lattice QCD and is
related to ΔG through a perturbative matching condition in
the large momentum effective theory (LaMET) [29–32]. An
attempt to calculate ΔG in lattice QCD with this gluon spin
operator has been carried out recently [33,34].
Inspired by this discovery, we explore the connection

between GTMD and the OAM operators in the gauge-
invariant nucleon spin sum rule by Chen et al. [5,6],

~J¼
Z

d3xψ†
~Σ
2
ψþ

Z
d3xψ†~x× i ~Dpureψ

þ
Z

d3x~E× ~Aphysþ
Z

d3xEið~x× ð− ~DpureÞÞAi
phys; ð4Þ

where i is the spatial Lorentz index. Here Dμ
pure ¼ ∂μ −

igAμ
pure and Dμ

pure ≡ ∂μ − ig½Aμ
pure; � are the gauge-covariant

derivatives acting on the fundamental and adjoint repre-
sentations, respectively, with Aμ ¼ Aμ

phys þ Aμ
pure, which is

the QCD analogue of the well-known Helmholtz decom-

position ~A ¼ ~A⊥ þ ~A∥ in electrodynamics. To make each
term in Eq. (4) gauge invariant, one requires that under a
gauge transformation gðxÞ,

Aμ
physðxÞ → gðxÞAμ

physðxÞg−1ðxÞ;

Aμ
pureðxÞ → gðxÞ

�
Aμ
pureðxÞ þ i

g
∂μ

�
g−1ðxÞ: ð5Þ

In addition, to find a solution, it is suggested [6] that Aμ
phys

satisfies the non-Abelian transverse condition,

DiAi
phys ≡ ∂iAi

phys − ig½Ai; Ai
phys� ¼ 0; ð6Þ

while Aμ
pure is constrained by a null-field-strength condition,

Fμν
pure ≡ ∂μAν

pure − ∂νAμ
pure − ig½Aμ

pure; Aν
pure� ¼ 0: ð7Þ

According to [28], in the IMF limit, Aþpure ¼ Aþ. By setting
ν ¼ þ, one obtains a first-order linear equation for Aμ

pure

from Eq. (7),

∂þAμ;a
pure þ gfabcAþ;bAμ;c

pure ¼ ∂μAþ;a: ð8Þ

The solution is given by

Aμ;a
pureðz−Þ ¼ −

1

2

Z
dz0−Kðz0− − z−Þ

× ð∂μAþ;bðz0−ÞLbaðz0−; z−ÞÞ; ð9Þ

where the light-cone coordinates z� ¼ ðx0 � x3Þ= ffiffiffi
2
p

. The
kernel Kðz0− − z−Þ is related to the boundary condition
[21]. Here L is a light-cone gauge link defined in the
adjoint representation. We can easily obtain Aμ;a

phys by
subtracting Aμ;a

pure from Aμ;a. After integration by parts, this
solution for Aμ;a

phys is identical to the one found by Hatta
[21,35],

Aμ
physðz−Þ¼−

1

2

Z
dy−Kðy− −z−ÞW−

zyFþμðy−ÞW−
yz; ð10Þ

where the light-cone gauge link W−
zy is defined in the

fundamental representation. Note that it only requires
Aþpure ¼ Aþ or Aþphys ¼ 0 in the IMF limit to get Eq. (8);
thus Eq. (6) actually belongs to a universality class of
conditions that can be used to fix Aμ

phys and Aμ
pure [29].

According to Eq. (9), if Aþ ¼ 0, then Aμ
pure ¼ 0,

Aμ
phys ¼ Aμ. Therefore, the OAM operators of Chen et al.

in Eq. (4), when boosted to IMF and fixed in the light-cone
gauge, become those of Jaffe and Manohar in Eq. (2).
Under an infinite Lorentz boost along the z direction, the

equal-time plane is tilted to the light cone, and the bilinear
operator ψγ0 � � �ψ transforms into ψγþ � � �ψ . The quark
OAM Lq defined in Eq. (4) becomes

lim
Pz→∞

Lz
q ¼

Z
dz−d2zTψðzÞγþðz1i ~D2

pure − z2i ~D1
pureÞψðzÞ;

ð11Þ

where ~Dμ
pure is the covariant derivative with A

μ;a
pureðz−Þ given

in Eq. (9).
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In the same limit, Ei ¼ Fi0 with i ¼ 1, 2 transforms into
Fiþ, while E3 ¼ Fþ− remains the same; however, A3

phys

becomes Aþphys, which vanishes according to [28].
Therefore, the IMF limit of the gluon OAM Lg in
Eq. (4) is

lim
Pz→∞

Lz
g ¼

Z
dz−d2zTEiðzÞð−z1 ~D2

pure þ z2 ~D1
pureÞAi

physðzÞ:

ð12Þ

Now recall that the quark GTMD function,

fðx; ~kT; ~ΔTÞ

≡
Z

dz−d2zT
ð2πÞ3 eixP

þz−−i~kT ·~zT hP0Sjψ
�
−
z−

2
;−

zT
2

�
γþ

×W−
−z
2
;�∞W

T
−zT

2
;zT
2

W−
�∞;z

2
ψ

�
z−

2
;
zT
2

�
jPSi; ð13Þ

where P ¼ P − Δ=2, P0 ¼ Pþ Δ=2, Δþ ¼ 0, and WT
−zT

2
;zT
2

is a straight-line gauge link connecting the transverse fields
at light-cone infinity. Here �∞ correspond to the link
choices for semi-inclusive DIS and Drell-Yan processes.
In [21], it is proved that

Z
dxd2kTkiTfðx; ~kT; ~ΔTÞ

¼ 1

2Pþ
hP0Sjψð0Þγþði ~Di

pure − i ~D
 i

pureÞψð0ÞjPSi; ð14Þ

where ~D
 μ

pure ¼ ∂ μ þ igAμ
pure, and Aμ

pure is exactly the
solution in Eq. (9). Therefore, combining Eqs. (11) and
(14), one obtains

lim
Pz→∞

hLz
qi ¼

1

2Pþ
1

ð2πÞ3δð3Þð0Þ hPSj
Z

dz−d2zT

× ψðzÞγþϵijziði ~Dj
pure − i ~D

 j

pureÞψðzÞjPSi

¼ ϵij lim
Δ→0

∂
i∂Δi

T

Z
dxd2kTk

j
Tfðx; ~kT; ~ΔTÞ

¼ −
Z

d2k⊥
~k2⊥
M2

Fq
1;4ðx; 0; ~k2⊥; 0; 0Þ; ð15Þ

with ϵ12 ¼ −ϵ21 ¼ 1, and ϵ11 ¼ ϵ22 ¼ 0.

Similarly, one can prove that

lim
Pz→∞

hLz
gi ¼

1

2Pþ
1

ð2πÞ3δð3Þð0Þ hPSj
Z

dz−d2zT

× Fþα ðzÞϵijzið− ~Dj
pureÞAα

pureðzÞjPSi

¼ ϵij lim
Δ→0

∂
i∂Δi

T

Z
dxd2kTk

j
Tgðx; ~kT; ~ΔTÞ

¼ −
Z

d2k⊥
~k2⊥
M2

Fg
1;4ðx; 0; ~k2⊥; 0; 0Þ; ð16Þ

with the gluon GTMD [24,36],

gðx; ~kT; ~ΔTÞ

≡ −
i

2xPþ

Z
dz−d2zT
ð2πÞ3 eixP

þz−−i~kT ·~zT

× hP0SjFþα
�
−
z−

2
;−

zT
2

�
W−

−z
2
;�∞W

T
−zT

2
;zT
2

×W−
�∞;z

2
Fþα

�
z−

2
;
zT
2

�
jPSi; ð17Þ

where the gauge links are defined in the adjoint
representation.
This finishes our proof that the quark and gluon OAM in

Eq. (4) in the IMF limit are the same as those whose matrix
elements correspond to GTMD moments. Furthermore,
when fixed to the light-cone gauge, they reduce to the
canonical OAM in the Jaffe-Manohar sum rule. This is our
main result.
Since the OAM operators in Eq. (4) do not depend on the

light-cone coordinates, their matrix elements can be calcu-
lated in lattice QCD and related to the parton OAM in the
IMF through a perturbative matching condition, which has
already been derived at one-loop order [32]. Therefore, we
provide a new direction of theoretical determination of the
parton OAM that can be measured in experiments.
As far as lattice calculation is concerned, solutions for

Aμ
phys and Aμ

pure satisfying Eqs. (5)–(7) can be obtained
through a gauge link fixed in the Coulomb gauge [37,38].
To be specific, one starts from a link variable (or Wilson
line) UμðxÞ≡ expð−iagAμðxÞÞ on the lattice that connects
x to xþ aμ̂, where a is the lattice spacing and μ̂ is the unit
vector in the μ direction. Under a gauge transformation,
UμðxÞ transforms as

UμðxÞ → U0μðxÞ ¼ gðxÞUμðxÞg−1ðxþ aμ̂Þ; ð18Þ

under a gauge transformation gðxÞ. By finding a gauge
transformation gc that makes UμðxÞ ¼ gcðxÞUμ

cðxÞg−1c ðxþ
aμ̂Þ where Uμ

cðxÞ is fixed in the Coulomb gauge, one can
define a new gauge link Uμ

pure and obtain the solution for
Aμ
phys [38],
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Uμ
pure ≡ gcðxÞg−1c ðxþ aμ̂Þ;

Aμ
phys ≡ i

ag
ðUμðxÞ −Uμ

pureðxÞÞ

¼ i
ag

gcðxÞðUμ
cðxÞ − 1Þg−1c ðxÞ þOðaÞ

¼ gcðxÞAcðxÞg−1c ðxÞ þOðaÞ: ð19Þ

This is the finite version of the result in the continuum theory
[37]. One can check that Aμ

phys so defined satisfies the gauge
transformation law in Eq. (5) with Uμ

c being unchanged and
gc transforming as g0c ¼ ggc. A straightforward calculation
confirms that Eqs. (6) and (7) are also satisfied up to OðaÞ
corrections, which vanish in the continuum limit. In this way,
Aμ
phys is a local operator after imposing the non-Abelian

transverse condition, and the OAM operator can be renor-
malized with standard perturbative or nonperturbative
methods. This approach has been applied to the recent
attempt to calculate ΔG [33,34]. It can be used to calculate
OAM from the operators defined in Eq. (4), too. Since the
non-Abelian transverse condition is not theonly one to define
Aμ
phys, one can also try other possibilities like the axial gauge

condition [29] on the lattice.
Note that Lq resembles the mechanical OAM in the sum

rule by Ji [39], except that the covariant derivativeDμ in the
latter is replaced byDμ

pure. Ji’s sum rule is based on a gauge-
invariant and frame-independent decomposition of the
nucleon spin, so each individual contribution is the same
in an arbitrary frame including the IMF. This allows for a
lattice calculation of the quark OAM and total gluon
angular momentum near the rest frame of the proton,
which has been carried out on a quenched lattice [40]. In
practice, an operator with explicit dependence on the spatial
coordinates poses a problem for the direct calculation of its
forward matrix element due to periodic boundary condi-
tions [41], so in [40] the quark OAM is not directly
calculated. Instead, it is obtained by subtracting the quark
spin from the total quark angular momentum. The latter is
calculated from the Belinfante-improved symmetric
energy-momentum tensor T μν

q ,

Jiq ¼
1

2
ϵijk

Z
d3xðT 0k

q xj − T 0j
q xkÞ; ð20Þ

T μν
q ¼ 1

2
½ψγfμiDνgψ − ψγfμiD

 νg
ψ �; ð21Þ

where the angular momentum Jq is obtained from the
forward limit of two form factors of T μν

q ,

Jq ¼
1

2
½T1ð0Þ þ T2ð0Þ�: ð22Þ

One might think of the same approach to obtain Lz
q by

using the symmetric energy-momentum tensor

T 0μνq ¼ 1

2
½ψγfμiDνg

pureψ − ψγfμiD
 νg

pureψ �: ð23Þ

However, with this definition, Eq. (20) cannot be used; that
is, the right-hand side of Eq. (20) will produce the quark
angular momentum plus extra terms. Therefore, the sum
rule in Eq. (22) cannot be used either. If, however, one
adopts the asymmetric energy-momentum tensor,

T μν
q−asy ¼ ψγμiDν

pureψ ; ð24Þ

one can obtain Lq via Eq. (20). Since the frame dependence
of Dμ

pure in T μν
q−asy spoils the simple parametrization of its

off-forward matrix element, one has to introduce a temporal
vector nμ ¼ ð1; 0; 0; 0Þ in this case to include more Lorentz
structures and form factors, which is analogous to that
formulated on the light cone [42]. If all the form factors can
be calculated in lattice QCD, then the quark OAM can be
obtained through a relevant sum rule.
Alternatively, one can directly calculate OAM from the

off-forward matrix element by utilizing the relation

ϵijhP0Sj
Z

d3xψγ0xiiDj
pureψ jPSi

¼ ϵij limj~qj→0
hP0Sj

Z
d3xψγ0

∂
∂qi e

i~q·~xDj
pureψ jPSi; ð25Þ

and the challenge here is to have a reliable extrapolation to
the j~qj → 0 limit.
The third lattice approach is the calculation of Lq and Lg

from GTMD, which can be generalized from the lattice
study of TMD as mentioned in the Introduction [25–27].
One of the challenges here is the renormalization of
nonlocal gauge-link operators on the lattice.
In conclusion, we have proved that, in the IMF limit, the

gauge-invariant quark and gluon OAM defined by Chen
et al. in Eq. (4) are equal to those whose matrix elements
correspond to GTMD moments. Furthermore, each term
in the angular momentum sum rule in Eq. (4) reduces to
their corresponding term in the Jaffe-Manohar sum rule
in Eq. (2) in the light-cone gauge. The former can be
calculated through local operators on the Euclidean
lattice, and their matrix elements are matched to the
physical quark and gluon OAM through LaMET. With
the development of GTMD measurement in hard-
exclusive processes, we should eventually be able to
compare the theoretical and experimental results on the
parton OAM.

This work is partially supported by U.S. Department of
Energy Grants No. DE-SC0013065 and No. DE-FG02-
93ER-40762. One of the authors, Y. Z., is especially
thankful for the hospitality of the Physics Department of
the University of Kentucky during his visit when the work
was made possible.
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