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Interaction-Induced Dirac Fermions from Quadratic Band Touching in Bilayer Graphene

Sumiran Pujari,1 Thomas C. Lang,2 Ganpathy Murthy,1 and Ribhu K. Kaul1
1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

2Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
(Received 26 April 2016; published 19 August 2016)

We revisit the effect of local interactions on the quadratic band touching (QBT) of the Bernal honeycomb
bilayer model using renormalization group (RG) arguments and quantumMonte Carlo (QMC) simulations.
We present a RG argument which predicts, contrary to previous studies, that weak interactions do not flow
to strong coupling even if the free dispersion has a QBT. Instead, they generate a linear term in the
dispersion, which causes the interactions to flow back to weak coupling. Consistent with this RG scenario,
in unbiased QMC simulations of the Hubbard model we find compelling evidence that antiferromagnetism
turns on at a finiteU=t despite theU ¼ 0 hopping problem having a QBT. The onset of antiferromagnetism
takes place at a continuous transition which is consistent with ð2þ 1ÞD Gross-Neveu criticality. We
conclude that generically in models of bilayer graphene, even if the free dispersion has a QBT, small local
interactions generate a Dirac phase with no symmetry breaking and that there is a finite-coupling transition
out of this phase to a symmetry-broken state.

DOI: 10.1103/PhysRevLett.117.086404

The interplay of band topology and interactions has
taken center stage in condensed matter physics. The interest
in band topology was rekindled by the discovery of
graphene, where two bands touch at linearly dispersing
Dirac points [1]. Short-range interactions are known to be
irrelevant at the Dirac fixed point, making the linear
band touching a stable many-body phenomenon for weak
interactions. Strong interactions trigger an instability to a
broken-symmetry state [2–4].
Subsequently, it was pointed out that bilayer graphene

harbors a quadratic band touching (QBT) at half filling in
the nearest-neighbor hopping model [5]. Renormalization
group studies have shown that interactions are marginally
relevant at a QBT [6]. This led to predictions of the
stabilization of a symmetry-broken state even for arbitrarily
weak short-range interactions in bilayer graphene [7,8] in
contrast to single-layer graphene. The nature of the sym-
metry-broken state depends on the form of the interactions,
and a plethora of phases have been proposed (see, e.g.,
[7–11]). The Bernal honeycomb bilayer (BHB) lattice with
Hubbard interactions was studied as an example of this
kind of ordering [12]. Quantum Monte Carlo simulation
studies concluded that this model was Néel ordered for all
values of the coupling U=t consistent with the predictions
of weak coupling [8] and the functional renormalization
group (RG) [12].
On the inclusion of certain symmetry-preserving hop-

pings beyond the shortest range on the BHB (called trigonal
warping), a linear term in the dispersion is present at low
energies, resulting in Dirac nodes [5]. It has been generally
assumed that if the trigonal warping terms are very weak
microscopically, for practical purposes they can be
neglected—they cause the symmetry-breaking instability

to appear only at a small interaction strength controlled by
their size [13], leading to the RG flow in Fig. 1(a). Here we
present arguments and evidence that neglecting linear terms
in the dispersion is not justified in determining the fate of
short-range interactions at the quadratic band touching in
bilayer graphene. Even in a model BHB system, where the
trigonal warping terms are microscopically zero and there
is a true QBT in the free problem, interactions generate
the linear term in a RG flow. At weak coupling, we thus
conclude that interactions cause the emergence of a Dirac
phase from a QBT in bilayer graphene. The instability to a
symmetry-broken ordered state then takes place at a finite

FIG. 1. Two schematics for the renormalization group flows for
the Bernal stacked bilayer in the space of α (linear term in the
dispersion) and g (generic quartic interactions) [cf. Eq. (1) for
definitions]. The fixed points are Q, quadratic band touching; D,
Dirac linear dispersion; and GN, Gross-Neveu. (a) The RG flow
implied by previous studies. In this scenario, weak interactions
always flow to strong coupling when one begins with a QBT, i.e.,
along α ¼ 0. (b) RG flow advocated for in this work, when α
arises in a RG flow due to interactions. Note that crucially in (b),
α is generated even when one begins on the α ¼ 0 line. The point
marked as D indicates one of a set of fixed points with α ≠ 0
which all have a linear Dirac dispersion at low energy but
different details of the electronic structure.
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strength of electron-electron interactions [cf. Fig. 1(b)].
Field theoretic arguments suggest that this transition, if
continuous, would be of the Gross-Neveu (GN) type [2].
As a concrete test of our RG scenario, we present QMC
simulations of the Hubbard interaction on the bilayer
graphene lattice. We show that, despite the model having
a QBT at U ¼ 0, interactions cause Néel ordering only at a
finite value of Uc ≈ 2.6. The phase transition between the
non-Néel and Néel phases is fully consistent with the GN
universality class, consistent with Fig. 1(b).
RG argument.—In the absence of spin-orbit coupling,

symmetries guarantee that two spin-degenerate low-energy
bands touch at the K and K0 points. Expanding around the
K point, a symmetry-based study [5,8] of allowed dis-
persions for the part quadratic in the fermionic operators Ψ
of the Hamiltonian density has the following form up to
second order in k:

hð2ÞðKþkÞ¼Ψ†
KþkfRe½ϕðkÞ�σxþ Im½ϕðkÞ�σygΨKþk;

ϕðkÞ≡αðkxþ ikyÞþβðkx− ikyÞ2þOðk3Þ: ð1Þ

The crucial point for our study is that generically a linear
term α is allowed by symmetries. At quartic order, Hð4Þ has
nine independent symmetry-allowed terms of the form
Ψ†Ψ†ΨΨ with coupling constants gi (i ∈ ½1; 9�) [8].
From the RG point of view, the quadratic band touching

is a fixed point, called Q (α; gi ¼ 0), which has z ¼ 2.
Power counting shows α is relevant at Q and the gi are
marginal—all other couplings are irrelevant [14]. A one-
loop calculation finds that gi are generically marginally
relevant [7,8]; Q is hence a multicritical point in the RG
sense. We now ask how Q is affected when we add only gi
but no α (this corresponds to adding interactions to a free
dispersion with a true QBT). Wilsonian RG tells us that all
terms that are allowed by symmetries will appear as we
integrate high-energy degrees of freedom. Since no sym-
metry forces α ¼ 0 in the dispersion for the Bernal stacked
bilayer, it must be generated. Since at Q the linear term is
relevant and the interactions are only marginal, at weak
coupling the linear term will always grow faster, and hence
the RG flows will take us to a fixed point with Dirac
fermions (see [15] for more details). At this fixed point
called D, interactions are irrelevant, and hence it is a stable
phase of matter (just like in single-layer graphene). Once
the gi cross a finite order-one strength, they will eventually
win over the generated α and a flow to strong coupling will
ensue. The separatrix between the flow to weak and strong
coupling can flow to an intermediate coupling fixed point,
the GN universality class—Fig. 1(b). We note that, in
models with higher symmetry than the BHB, the QBT can
be symmetry protected [6,16], and then weak interactions
will flow to strong coupling—Fig. 1(a) is the correct flow.
Hubbard model.—Although our RG arguments apply

independently of the form of short-range interactions [14],
to provide a concrete lattice realization of our predicted

emergence of the Dirac phase from the QBT we present a
detailed numerical study of this phenomena in the Hubbard
model on the Bernal stacked honeycomb bilayer. Defining
the electron creation operator on sublattice AðBÞ, site i,
spin σ, and layer l as a†iσlðb†iσlÞ, the Hamiltonian takes the
form [17]

HBSB ¼ −t
X

hijil
a†iσlbjσl − t⊥

X

i

a†iσ2biσ1 þ H:c:

þ U
X

i;l

ða†i↑lai↑la†i↓lai↓l þ b†i↑lbi↑lb
†
i↓lbi↓lÞ;

ð2Þ
where hiji are bipartite nearest neighbors on the honey-
comb layers. We choose t ¼ t⊥ ¼ 1, fixed throughout the
Letter (results for t=t⊥ ≠ 1 are presented in Ref. [15]). This
model has been studied previously, where it was found
that for U=t > 3 the model has Néel order. For U=t < 3,
although no numerical evidence was found for the presence
of Néel order in extrapolations of the order parameter, it
was assumed based on RG calculations that the model was
weakly Néel ordered [12], supporting the RG flow in
Fig. 1(a) on the α ¼ 0 axis. We have already presented
arguments that invalidate this conclusion and suggest that
the correct RG flow for the Bernal stacked bilayer (BSB) is
Fig. 1(b). To further back up our RG argument, we now
present clear numerical evidence that, contrary to the
conclusion of Ref. [12], HBSB has a finite coupling phase
transition at which magnetism appears [18].
To connect HBSB with the long-wavelength description

[Eq. (1)] with only t, t⊥ hopping and U ¼ 0, the system
realizes Eq. (1) with α ¼ 0, and a QBT arises described by
the fixed point Q. Crucially, as noted earlier, there is no
symmetry that protects α ¼ 0. Indeed, trigonal hopping of
the form −t3

P
hijiσb

†
iσ2ajσ1 preserves the symmetries of

the bilayer and nonetheless has an α term, which makes the
dispersion at low energies linear [5].
We emphasize that all our simulations are carried out

withHBSB itself and with no t3 hopping. Thus,HBSB can be
thought of as lying along the α ¼ 0 axis in Figs. 1(a) and
1(b). The two RG scenarios (a) and (b) make strikingly
different predictions for the phase diagram of HBSB. In
scenario (a), HBSB should flow to strong coupling even for
arbitrarily small U, causing the system to Néel order for all
U. In scenario (b), Néel order turns on at a finite order-one
coupling through a relativistic quantum critical point. We
now provide evidence using unbiased QMC simulations
(the method used is reviewed in Ref. [19]) on HBSB that, as
argued above, RG scenario (b) is realized.
For U=t ≫ 1 we obtain the S ¼ 1=2 Heisenberg model

on the BSB, which has Néel order [12]. We focus on the
fate of the Néel order as U is weakened. In Fig. 2, we
present data for the spin structure factor SAFMðkÞ≡P

re
ik·rhSðrÞ·Sð0Þi, where SðrÞ ¼ P

l½SlAðrÞ − SlBðrÞ�
is the unit cell antiferromagnetic order parameter, for
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various values of U. We expect a Néel-ordered state to
have a Bragg peak in the spin structure factor at the Γ point.
As shown in Fig. 2(b) for U ¼ 3, this is indeed the case.
We find in Fig. 2(c) that m2 ≡ SAFMðΓÞ=L2 versus 1=L
extrapolates to a finite value, indicating the divergence of
the Bragg peak height as expected. As shown in Fig. 2(b),
at U ¼ 2 the peak gets rounded out. Consistent with this
rounding out, we find in Fig. 2(c) that m2 appears to
extrapolate to zero in the thermodynamic limit for small U,
indicative of a phase transition.
To study the long-distance ordering quantitatively rather

than extrapolate m2 (which is notoriously hard when m2 is
small [20]), we study the correlation ratio Rm2 of the
structure factor at the ordering momentum (the Bragg peak)
and the momentum closest to it, b=L (b is the shortest
reciprocal lattice vector):

Rm2 ¼ 1 −
SAFMðΓþ b=LÞ

SAFMðΓÞ
: ð3Þ

This quantity scales to 1 in an ordered phase, scales to 0 in a
phase disordered phase, and crosses at a universal value for
different L at a quantum critical point, providing a sensitive
numerical test for magnetic ordering [21]. The data in Fig. 3
show a crossing at a value of Uc ≈ 2.5 and do not drift
significantly on all but the smallest lattices, providing
strong evidence for a finite-coupling phase transition
(see [15] for more details).
Field theoretic arguments suggest that the transition

between the Dirac phase and the Néel phase should be
in the GN universality class. The key hallmarks of this kind

of transition are the gap in the Dirac fermions and the onset
of magnetism take place at the same value of U and the
emergence of Lorentz invariance or z ¼ 1 scaling. To test
for these features, we study the collapse of the magnetic
data (m2 and Rm2) and single-particle gap Δsp, close to the
transition. We extract Δsp from the decay of the imaginary
time-displaced Green function using standard methods
[22,23]. We collapse the magnetic data in Fig. 4, with the
scaling forms m2¼LaFm2 ½L1=νðU−UcÞ=Uc� and Rm2¼
FRm2

½L1=νðU−UcÞ=Uc�, since the Rm2 has no scaling
dimension. Corresponding windows for the parameters that
give acceptable collapses are Uc¼2.6ð1Þ, ν ¼ 0.9ð2Þ, and

FIG. 2. Structure factor SAFMðkÞ and order parameter m2 data
forHBSB with t ¼ t⊥ ¼ 1 (fixed throughout the Letter). In (a) and
(b), we show the structure factor in k space for an L ¼ 18 lattice
and its peak at Γ. Note the dramatic appearance of a Bragg peak
structure as one changes from U ¼ 2 to U ¼ 3, indicative of a
phase transition. (c) Finite size scaling of the order parameter
m2 ≡ SAFMðΓÞ=L2, showing a finite m2 for U ¼ 3.6 and 3.2 and
then a dramatic suppression for smaller U.

FIG. 3. Correlation ratio Rm2 [Eq. (3)] close to the phase
transition. The inset has a broad range of U showing how Rm2

reaches its asymptotes of 0 in the nonmagnetic phase and 1 in the
magnetic phase. At a continuous transition, Rm2 is expected to be
volume independent and cross at a universal value. The main
panel show an enlargement close to the critical point. The
crossing point is at Uc ≈ 2.5 with very small drifts on the largest
system sizes.

FIG. 4. Collapse of the magnetic data m2 and Rm2 close to the
critical point. Parameters used for the collapse are Uc ¼ 2.6,
ν ¼ 0.9, and a ¼ 0.3.
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a ¼ 0.3ð1Þ. For the gap, using a standard finite-size scaling
ansatz, we expect Δsp ¼ L−zFΔ½L1=νðU −UcÞ=Uc�. We
have verified that our data are consistent with this ansatz
with the values of the parameters extracted from the
collapse for Rm2 and m2, and z ¼ 1 in Fig. 5.
Independently, we obtain acceptable collapses for Δsp

for the ranges Uc ¼ 2.5ð2Þ, ν ¼ 1.0ð2Þ, and z ¼ 0.9ð2Þ.
The inset in Fig. 5 shows our data for LΔsp versus U which
should cross at the critical point if z ¼ 1. We see a crossing
in our data which is consistent with the crossings of Rm2 ,
indicating the existence of a single transition at which both
the magnetization turns on and the Dirac fermions get a
mass. This is compelling evidence that the transition has
z ¼ 1, in contrast to the z ¼ 2 scaling at the Q fixed point.
Taken together, the identification of the quantum critical
point with the GN class provides further evidence that
HBSB realizes the RG flow shown in Fig. 1(b).
We emphasize that our RG flow [Fig. 1(b)] is only

schematic: The point marked as D is used to describe
collectively fixed points with a linear dispersion but which
differ in the number and location of the Dirac cones. Even
though we have provided strong evidence for a linear
dispersion, we are unable to resolve from our QMC simu-
lations which of these fixed points is realized in HBSB.
Our focus here has been on the phase diagramwhen α ¼ 0 in
themicroscopicmodel; i.e., the free problemhas aQBT, such
as in HBSB. The evolution of the phase diagram with an
explicit trigonal warping term in HBSB and a more detailed
study of the electronic structure will be presented separately.
Our results have important implications for the interpre-

tation of experiments on bilayer graphene. Short-range
interactions are the correct model for the experiments in
the presence of screening. In this situation, our finding
implies that symmetry breaking is not an immediate conse-
quence of interactions, contrary to what has generally been

assumed. Indeed, bilayer graphene responds to interactions
inmuch the sameway as the single layer: Symmetry breaking
will set in only at a finite coupling strength. Making the
widely accepted assumptions that interactions are weak and
trigonal warping is absent or even weaker, our results predict
that bilayer graphene with screened interactions will be in a
Dirac phasewithout any symmetry breaking.We emphasize,
however, that while our RG argument applies independently
of the form of the short-range interactions, it does not go
through in the presence of long-range Coulomb interactions,
which by power counting are relevant at the QBT fixed point
and hence can plausibly cause a weak coupling instability.
Interestingly, this last fact implies that the symmetrybreaking
that has been detected in the experiment on suspended
bilayer graphene is likely a consequence of the long-range
tail of the Coulomb interactions [24–26].
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