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First-order superfluid to valence-bond solid phase transitions in easy-plane
SU(N) magnets for small N

Jonathan D’Emidio and Ribhu K. Kaul
Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Received 16 December 2015; published 3 February 2016)

We consider the easy-plane limit of bipartite SU(N ) Heisenberg Hamiltonians, which have a fundamental
representation on one sublattice and the conjugate to fundamental on the other sublattice. For N = 2 the easy
plane limit of the SU(2) Heisenberg model is the well-known quantum XY model of a lattice superfluid. We
introduce a logical method to generalize the quantum XY model to arbitrary N , which keeps the Hamiltonian
sign-free. We show that these quantum Hamiltonians have a world-line representation as the statistical mechanics
of certain tightly packed loop models of N colors in which neighboring loops are disallowed from having the
same color. In this loop representation we design an efficient Monte Carlo cluster algorithm for our model.
We present extensive numerical results for these models on the two dimensional square lattice, where we find
the nearest neighbor model has superfluid order for N � 5 and valence-bond order for N > 5. By introducing
SU(N ) easy-plane symmetric four-spin couplings we are able to tune across the superfluid-VBS phase boundary
for all N � 5. We present clear evidence that this quantum phase transition is first order for N = 2 and N = 5,
suggesting that easy-plane deconfined criticality runs away generically to a first-order transition for small N .

DOI: 10.1103/PhysRevB.93.054406

I. INTRODUCTION

Quantum phase transitions have emerged as an important
paradigm in the study of quantum many-body phenomena [1].
Deconfined criticality is a novel field theoretic proposal for
a continuous transition between a magnet or superfluid that
breaks an internal symmetry and a valence bond solid (VBS)
that breaks a lattice translational symmetry [2,3]. The field
theories realized at these new critical points are strongly
coupled gauge theories, which are rather fundamental and
hence connected to a wide range of problems [4,5], making the
study of deconfined criticality of general interest in theoretical
physics. The study of deconfined critical points has been
significantly enhanced by the availability of sign problem free
quantum Monte Carlo (QMC) simulations, which are able
to access the strong coupling physics of the emergent gauge
theories in some particular Marshall positive Hamiltonians that
host this phase transition [6].

Historically, in the discovery of deconfined criticality, a
prominent role was played by the “easy-plane” deconfined
critical point, which is most naturally realized in lattice models
of superfluids. The square lattice quantum XY model has been
studied extensively in the past few decades as the simplest
quantum lattice spin model for a superfluid. The model can be
written in the following ways:

HXY = −J
∑

〈ij〉

(
Sx

i Sx
j + S

y

i S
y

j

)
(1)

= −J

2

∑

〈ij〉

(
S+

i S−
j + S−

i S+
j

)
, (2)

where the �Si are the usual S = 1/2 Pauli matrices on site i.
The model has only a subgroup of the SU(2) symmetry of
the Heisenberg model: it has a U (1) rotation symmetry about
the ẑ axis and a Z2 symmetry of flipping the Sz components.
We note here that the sign of J is inconsequential, since it
can be changed by a unitary transformation. The model HXY

is Marshall positive and hence free of the sign problem of

quantum Monte Carlo. Exploiting this fact, extensive numeri-
cal simulations have shown that HXY has long-range superfluid
order at T = 0. To study the destruction of superfluid order in
the ground state, a sign-free generalization of the quantum XY

model to include a four spin coupling K was introduced [7],

HK = −K
∑

〈ijkl〉
(S+

i S−
j S+

k S−
l + S−

i S+
j S−

k S+
l ). (3)

It has been shown that this model hosts three phases, a
superfluid state at small K/J , valence-bond solid order for
intermediate K/J , and checkerboard ordered solid for large
K/J . The phase transition between VBS and checkerboard
was found (as expected) to be strongly first order. On the other
hand, the fate of the transition between superfluid and VBS in
this model has remained enigmatic: while no evidence for a
discontinuity have been observed in this model, large scaling
violations may not be interpreted consistently as a continuous
transition [8]. This transition if continuous would be the first
studied example of a “deconfined critical point,” its first numer-
ical study [7] even predating the field theoretic proposal [2].
The square lattice easy-plane model played a prominent role
in the original deconfined critical point proposal. Additionally
it has been shown that should the superfluid-VBS transition
in the quantum XY model be continuous, it would be a rare
example of a self-dual critical point [9], which can be con-
nected to various interesting field theoretic formulations with
topological terms [10]. We note here that some direct studies
of the effective field theory [11,12] and other quantum models
on frustrated lattices [13,14], which are believed to be in the
same universality class have found evidence for a first-order
transition. In the meantime, attention in deconfined criticality
has shifted to the study of the fully SU(N ) symmetric Hamil-
tonians [15–17], and more recently loop models [18], which
have shown compelling evidence for a continuous transition.

However, given the important role that the square lattice
XY model has had as the first putative host of deconfined
criticality, it remains of interest to have an unambiguous
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answer to the nature of the superfluid-VBS transition in this
model. Instead of addressing this issue in the J-K model, where
the results of the simulations are hard to interpret [8], we study
a different model that can be understood as an easy-plane
generalization of the SU(2) symmetric J-Q model [15]. We
provide clear evidence that the transition in this model is
direct and discontinuous both for superfluid and the VBS
order. Additionally, we are able to provide a simple way to
generalize the easy-plane J-Q model to larger N . Through
large-scale numerical simulations we show that HN

J⊥Q⊥ hosts
the superfluid-VBS phase transition for all N � 5. We provide
evidence that this transition remains first order for N =
5, which leads us to conclude that easy-plane deconfined
criticality is generically first order for small N .

The paper is organized as follows. In Sec. II, we introduce
the new easy-plane J-Q model, HN

J⊥Q⊥ , and write it down in
different ways, emphasizing how it is connected to previously
studied models. In Sec. III we show how it maps to a particular
family of loop models in one higher dimension and use this
representation to formulate an efficient Monte Carlo algorithm.
In Sec. IV, we present results of simulations of HN

J⊥Q⊥ on the
square lattice, focusing on the first-order nature of the phase
transitions in this model. Finally, in Sec. V, we provide our
conclusions and outlook.

II. LATTICE HAMILTONIANS

It is useful to write our Hamiltonian in a few different
ways to elucidate certain diverse aspects. First let us consider
the generalization of the XY model in the form of Eq. (1) to
arbitrary N . A natural way to do this on a bipartite lattice in the
spirit of the work of Affleck [19] is to consider the following
Hamiltonian,

HN
J⊥ = −J⊥

N

∑

〈ij〉

∑

a∈od

T a
i T a∗

j , (4)

where the Ti are N × N matrices acting on site i, which are
the generators of SU(N ). Here we choose the normalization
such that Tr[T aT b] = δab. These generators act on a local
Hilbert space, which now can take N different colors and are
denoted by |α〉i . We note that i is always chosen on the A
sublattice and j is chosen on the B sublattice, so that spins on
one sublattice transform in the fundamental and spins on the
other sublattice transform under the conjugate to fundamental
representations. The important difference with the usual fully
SU(N ) symmetric Heisenberg model is the sum on generators
a is restricted to the off-diagonal generators. We note also
that Eq. (1) is equivalent to Eq. (4) for N = 2 up to a unitary
transformation about Sy on one sublattice. It is well known
that of the N2 − 1 generators of SU(N ), N − 1 are diagonal
and N2 − N are off-diagonal. The restriction of the sum to the
N2 − N off-diagonal generators guarantees that when N = 2,
we recover the usual XY model. For larger N , Eq. (4) is a
convenient large N generalization of the XY model. We note
here that the restriction to off-diagonal generators reduces the
symmetry from SU(N ) to an Abelian U(1)N−1 × SN subgroup
(where SN is the permutation group), which generalizes the
U(1)×Z2 of Eq. (1). Physically this corresponds to rotations
about the directions of the N − 1 diagonal generators and a

discrete relabeling of the colors. We shall call this symmetry
ep-SU(N ) symmetry. Just like in the fully symmetric SU(N )
case, the virtue of staggering the representation is that an A-B
pair can form an ep-SU(N ) singlet for all N . For sites i ∈ A and
j ∈ B, the singlet may be written as |sij 〉 = 1√

N

∑N
α=1 |αiαj 〉.

Having written the model formally in terms of the SU(N )
generators helps us see that model is a large-N extension of
HXY . To get a better intuition for the matrix elements of the
model we now write it directly in terms of the local Hilbert
space. In terms of which, Eq. (4) takes the simple form,

HN
J⊥ = −J⊥

N

∑

〈ij〉
P̃ij , (5)

P̃ij =
N∑

α,β=1,α 	=β

|ββ〉ij 〈αα|ij . (6)

We have put a tilde on P̃ij to emphasize that it is not a projection
operator. It would have been the SU(N ) symmetric projector
on the singlet state |s〉ij if the condition α 	= β were dropped.
Having α 	= β in P̃ij is a direct consequence of restricting the
sum on a in Eq. (4) to off-diagonal generators and is what
results in the reduced easy-plane symmetry. This form of the
Hamiltonian also makes it apparent that the model is Marshall
positive (off-diagonal matrix elements are all negative) and is
hence amenable to sign problem free quantum Monte Carlo,
just like the fully SU(N ) symmetric case [20].

Now it is straightforward to extend the idea of a four-spin
coupling, the so called “Q” interaction [15,16] to the easy-
plane case for any N ,

HN
Q⊥ = −Q⊥

N2

∑

〈ijkl〉
P̃ij P̃kl, (7)

where as in the original J -Q model, the sum is taken on both
orientations of the bond pairing of the square-lattice plaquettes.
We note here that for N = 2, the Q⊥ term does not reduce to
HK , Eq. (3). It includes all the terms present there, but contains
in addition pair-hopping terms that are not present in HK .
Thus, HN

J⊥Q⊥ ≡ HN
J⊥ + HN

Q⊥ provides a new way to cross the
superfluid-VBS phase boundary for N = 2 and also provides
a neat way to extend the four spin interaction to arbitrary N ,
while still preserving the desired ep-SU(N ) symmetry.

III. LOOP REPRESENTATION AND ALGORITHM

It turns out that our model has a convenient world-
line representation in terms of closed loops in one higher
dimension. While allowing us to design an efficient algorithm,
it also allows us to connect our work to recent numerical studies
of deconfined criticality in loop models [18].

To see this, start with Eq. (5) and construct a stochastic
series expansion (see Ref. [21] for a comprehensive review).
From previous work on similar models (see, e.g., Ref. [22]),
we know that the partition function of SU(N ) quantum
spin Hamiltonians can be viewed as the classical statistical
mechanics of N colors of tightly packed oriented loops in
one higher dimension (see also Ref. [23]). A section of this
particular kind of loop configuration, describing one term in
the expansion of the partition function is depicted in Fig. 1

054406-2
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FIG. 1. A section of a stochastic series expansion configuration
of the Hamiltonian, Eq. (5), which takes a simple form in terms of
N -colored tightly packed oriented closed loops. By “oriented,” we
mean an orientation of the links (e.g., shown here as arrows going
up on the A sublattice and down on the B sublattice) can be assigned
before any loops are grown, and the orientation remains unviolated
by each of the loops in a configuration. The extreme easy-plane
anisotropy results in an important constraint; i.e., loops that share a
vertex (operators represented by the black bars) are restricted to have
different colors.

for our model. An essential difference from the usual SU(N )
case (and the loop models studied so far [18,23]) is that loops
that are attached to the same vertex (operators represented
by the black bars) are restricted to have different colors,
which is due to the absence of diagonal matrix elements in
Eq. (5). This adds an important constraint: whereas in the
fully symmetric SU(N ) case, given a legal loop configuration
loop colors could be assigned independently, in the easy-plane
case studied here only a subset of the colorings (the ones that
respect the constraint) are allowed. This affects profoundly the
physics of the easy-plane model, as well as the recoloring of
loops in a Monte-Carlo algorithm.

The fact that the loops in our model obey a coloring
constraint and that diagonal operators are absent makes
this model difficult to simulate as given. This difficulty is
overcome, as is commonly done, by shifting the Hamiltonian
by a constant. We shift our Hamiltonian in such a way that
we introduce diagonal operators with equal weight as the
off-diagonal ones. This shift only adds a constant to the
energies and does not affect the physics of the model in any
way; i.e., the eigenstates are identical. The shifted Hamiltonian
is given by

H̃N
J⊥ = −J⊥

N

∑

〈ij〉
(P̃ij + 1), (8)

where the diagonal and off-diagonal operators have equal
weight. With this shift the directed loop equations [24],
describing how the loops pass through a vertex, take on a
particularly simple form. We show the loop updating moves
and corresponding probabilities in Fig. 2. With these rules
the loops used to update our QMC configurations are not
deterministic, as they are in the SU(N ) symmetric case. The
loops here can intersect with themselves and one may worry

(a) (b)

FIG. 2. Loop updating moves describing how loops pass through
a vertex, depicted with a black bar. These moves cause conversions
between the diagonal and off-diagonal matrix elements present in the
Hamiltonian. For each update pictured here there is a reverse process
that we have not drawn. (a) Moves with probability 1/2 and (b) Moves
with probability 1.

about growing a loop that fails to close onto itself. We have
never seen a case of a loop not closing during any of our
simulations.

So far we have described our algorithm with Q⊥ = 0.
The introduction of plaquette operators is easily dealt with
if we regard them as simply a product of two (shifted) bond
operators. Our algorithm then inserts and removes diagonal
plaquette operators, present due to the constant shift, and can
convert them to off-diagonal plaquettes by performing loop
updates. Since the plaquette operator is viewed as two separate
bonds operators, loop updates through the former are the same
as for the latter.

IV. RESULTS OF NUMERICAL SIMULATIONS

A. Measurements

Here we will outline the measurements that we use to
characterize the phases of our model. On the magnetic side
of the transition the spin stiffness, or superfluid stiffness in
the language of hard-core bosons, serves as a useful order
parameter. It is formally defined as follows:

ρs = 1

Nsite

∂2〈H (φ)〉
∂φ2

∣∣∣∣
φ=0

, (9)

where H (φ) means that we twist the boundary conditions along
either the x or y direction. This twist can be implemented, for
instance, by attaching phase factors to all x-oriented bond
operators relative to one color, e.g., eiφ|αα〉ij 〈© © |ij for
α 	= ©, i ∈ A sublattice and j ∈ B sublattice. The Hermitian
conjugate of this operator appears with e−iφ . Due to the
staggered representation, the signs in the exponent are flipped
when i ∈ B and j ∈ A. The bond operators take on this form
when the spins are incrementally twisted along the x direction
about the N − 1th diagonal generator of SU(N ). In practice,
due to the permutation symmetry of the model, the © color is
arbitrary, and we can average over the colors in QMC.
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In QMC the stiffness is related to the winding number of
configurations via

ρs = 1

Nsite

〈W 2〉
β

, (10)

where operators with a positive (negative) phase factor count
as positive (negative) winding.

In order to characterize the VBS phase, we measure the
equal-time bond-bond correlation function 〈P̃�rαP̃�r ′α〉. Here
we have denoted a bond by its location on the lattice �r and
its orientation α (x or y in two dimensions). In the VBS phase,
lattice translational symmetry is broken giving rise to a Bragg
peak in the Fourier transform of the bond-bond correlator
defined as

C̃α(�q) = 1

N2
site

∑

�r,�r ′
ei(�r−�r ′)·�q〈P̃�rαP̃�r ′α〉. (11)

For columnar VBS patterns, peaks appear at the momenta
(π,0) and (0,π ) for x- and y-oriented bonds, respectively. The
VBS order parameter is thus given by

OVBS = C̃x(π,0) + C̃y(0,π )

2
. (12)

Another useful quantity that we use to locate phase
transitions is the VBS ratio,

Rx
VBS = 1 − C̃x(π + 2π/L,0)/C̃x(π,0), (13)

and similarly for Ry

VBS with all of the qx and qy arguments
swapped. We then average over x and y orientations:

RVBS = Rx
VBS + Ry

VBS

2
. (14)

This quantity goes to 1 in a phase with long-range VBS
order, and approaches 0 in a phase without VBS order. It is
thus a useful crossing quantity that allows us to locate the
transition.

To construct these quantities, we measure the equal-time
bond-bond correlation function in QMC with the following
estimator:

〈	1	2〉 = 1

β2
〈(n − 1)!N [	1,	2]〉, (15)

where 	1 and 	2 are any two QMC operators (in our case off-
diagonal bond operators), n is the number of non-null operators
in the operator string, and N [	1,	2] is the number of times
	1 and 	2 appear in sequence in the operator string (excluding
null slots).

B. J⊥-only model

Consider the ground-state phase of HN
J⊥ as we vary the

number of colors N . For N = 2 we know the Hamiltonian is
equivalent to the quantum XY model, whose ground state is
a superfluid. Here it is useful to recall our interpretation of
HN

J⊥ as a classical loop model, discussed in Sec. III. In the
loop language this corresponds to a long loop phase, where
the loops span the system. It is expected that when N is
increased the system would like to form as many loops as
possible to maximize its entropy, causing it to enter a short
loop phase. The way our loop model is defined this will cause

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρ
s

0.00 0.05 0.10 0.15 0.20 0.25

1/L

0.0

0.2

0.4

0.6

0.8

1.0

O
V

B
S

N = 2

N = 3

N = 4

N = 5

N = 6

FIG. 3. The stiffness and VBS order parameter extrapolations as
a function of 1/L for different N in the nearest-neighbor easy-plane
model HN

J⊥ , defined in Eq. (4) or equivalently in Eq. (5). We find
clear evidence that the system has superfluid order for all N � 5 and
VBS order for N > 5. To show ground-state convergence we plot
both β = L, 2L in diamond and circular points, respectively.

the lattice symmetry to break, leading to a VBS and destruction
of superfluid order.

Motivated by these considerations, in Fig. 3 we plot the
spin-stiffness and VBS order parameter for 2 � N � 6. We
find that the ground state of this Hamiltonian has long-range
superfluid order for N � 5 (signaled by a finite spin stiffness)
and has VBS order for N > 5. These results are obtained
by fixing J⊥ = N,Q⊥ = 0, and we have plotted two values of
inverse temperature β = L, 2L. On the scale of the plot the two
values of β are indistinguishable, thus indicating ground-state
convergence. Since we find magnetic order for N � 5, we
can study the phase transition for these values of N with the
introduction of Q⊥.

In conclusion, we find that magnetic order gives way to
VBS order in the ep-SU(N ) magnet at an N between 5 and 6.
In comparison, in the fully SU(N ) symmetric case magnetic
order is lost between N = 4 and 5 [20,25].

C. J⊥- Q⊥ model

Through numerical simulations described below we have
obtained a phase diagram of the model HN

J⊥Q⊥ , which we show
in Fig. 4. It is clear that the Q⊥ interaction, which mediates
an attraction between the singlets, will favor the formation
of a VBS state. We confirm this by numerical simulations in
which we find that the superfluid order is destroyed at a finite
value of Q⊥ for N = 2 and gives way to a VBS state. As
we increase N , the superfluid order becomes weaker in HN

J⊥ ,
hence requiring only a smaller value of the Q⊥ coupling to
destroy the SF order, as is evident from the phase diagram. A
significant difference from the phase diagram [7] of the J -K
model, Eq. (3), is the absence of the checkerboard ordered
state at large Q⊥, which is present for large K . This can be
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2 3 4 5
N

0

2

4

6

8

g c

SF

VBS

FIG. 4. Phase diagram of the HN
J⊥Q⊥ model as a function of the

ratio gc = Q⊥/J⊥ and N . Using the HN
J⊥Q⊥ model we have access

to the superfluid-VBS phase boundary for N = 2, 3, 4, and 5. In
this work, we provide clear evidence that the transition for N = 2
and N = 5 is direct but discontinuous for both order parameters,
suggesting that the easy-plane-SU(N ) superfluid-VBS transition is
generically first order for small N .

expected on physical grounds by a comparison of the Q⊥ and
K terms. Finally, as expected for N > 5, we are unable to
cross the superfluid-VBS phase boundary with HN

J⊥Q⊥ .
We now turn to an analysis of the quantum phase transitions,

which are denoted by the solid black points in Fig. 4. We begin
with the case of N = 2. Figure 5 shows SU(2) data of our
magnetic and VBS crossing quantities, Lρs and RVBS. In our
data scans we have fixed J 2

⊥ + Q2
⊥ = 1 and have set β = 2L.

Our best estimate for the location of the transition is Q⊥/J⊥ =
8.63(1). Close to the transition we find that signs of first-
order behavior begin to appear. Figure 6 shows the histories
of our measurements as a function of Monte Carlo time. We
find clear signs that our measurements switch between two
values close to the transition, an effect that becomes more
pronounced at larger system size. Furthermore, binning this

0.0

0.5

1.0

1.5

L
ρ

s

8.55 8.60 8.65 8.70 8.75 8.80

Q⊥/J⊥

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
V

B
S

L = 32

L = 48

L = 64

0.02 0.04 0.06 0.08

1/Ls

8.50

8.60

8.70

8.80

g c

8.63 ± 0.01

FIG. 5. Crossings at the SF-VBS quantum phase transition for
N = 2 in HN

J⊥Q⊥ . The main panels shows the crossings for Lρs and
RVBS, which signal the destruction and onset of SF and VBS order,
respectively. The inset shows that the SF-VBS transition is direct;
i.e., the destruction of SF order is accompanied by the onset of VBS
order at a coupling of gc = 8.63(1).

tMC

ρs OV BS

L = 16

L = 32

ρs

L = 48

OV BStMC ρs OVBS

OVBSρs

L = 16

L = 32

L = 48

FIG. 6. Evidence for first-order behavior at the SF-VBS quantum
phase transition for N = 2. The data was collected at a coupling gc =
8.63. The left panel shows MC histories for both ρs and OVBS, with
clear evidence for switching behavior characteristic of a first-order
transition. The right panel shows histograms of the same quantities
with double-peaked structure, which gets stronger with system size,
again clearly indicating a first-order transition. The bin size for the
histories is 400 MC steps per point

data into histograms shows a clear double-peaked structure,
indicating a first-order transition (Fig. 6).

It is interesting to ask whether the first-order behavior
observed is special to N = 2. Given the self-duality of N =
2 [9], which cannot be extended to N > 2, it is possible that
the nature of the phase transition is different for other values
of N . To investigate this issue we have carried out a full
numerical study of N = 5, the largest value of N at which the
SF-VBS transition is accessible in our model, HN

J⊥Q⊥ . We find
first-order behavior for N = 5 very similar to what we have
presented here for N = 2. Numerical results and an analysis
are presented in Appendix B. This leads us to conclude that
the first-order behavior is not special to N = 2, but is present
generically at small N in our ep-SU(N ) models.

V. CONCLUSIONS

To summarize, we have introduced a new family of ep-
SU(N ) models, which generalize the XY model of N = 2. The
generalization preserves the property that it takes only two sites
to form a singlet, independent of the value of N . This property
is important to the formation of a columnar VBS state. The
generalization defines an easy-plane four-spin interaction Q⊥,
which allows us to access the superfluid-VBS phase boundary
for N = 2, 3, 4, and 5. Numerical studies show clear evidence
for first-order behavior.

How should this observation be interpreted in the terms
of the field theoretic picture of deconfined criticality? In the
deconfined criticality scenario the first-order transition could
either be because the field theory itself does not have a fixed
point or because the field theoretic fixed point is unstable to the
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TABLE I. Test comparisons of measurements from exact diagonalization and finite-T QMC studies for the N = 2 and N = 3. The energies
reported here are per site and the stiffness and VBS order parameters are defined in Eqs. (9), (10), and (12). For rectangular systems we have
used the stiffness along the x direction and VBS order parameter for x-oriented bonds. All systems have periodic boundary conditions.

4 × 4 N = 2 J⊥ = 1.0 Q⊥ = 0.0 βqmc = 48.0

eex −0.562486 ρex 0.27714 Oex 0.007497
eqmc −0.562473(7) ρqmc 0.27710(3) Oqmc 0.007497(1)

4 × 4 N = 2 J⊥ = 1.0 Q⊥ = 1.0 βqmc = 32.0

eex −0.741775 ρex 0.35858 Oex 0.011097
eqmc −0.741770(8) ρqmc 0.35860(3) Oqmc 0.011096(1)

4 × 2 N = 3 J⊥ = 1.0 Q⊥ = 0.0 βqmc = 32.0

eex −0.74157 ρx
ex 0.043932 Ox

ex 0.030816
eqmc −0.74158(1) ρx

qmc 0.043928(5) Ox
qmc 0.030821(3)

4 × 2 N = 3 J⊥ = 1.0 Q⊥ = 1.0 βqmc = 32.0

eex −1.25095 ρx
ex 0.011196 Ox

ex 0.029878
eqmc −1.25095(2) ρx

qmc 0.011199(2) Ox
qmc 0.029878(2)

introduction of quadrupled monopoles (i.e., they are relevant at
the fixed point in the renormalization group sense). [26] Given
the original arguments for irrelevance [3] and the numerical
evidence in the symmetric case that quadrupled monopoles
are irrelevant, we interpret the observed first-order behavior
here to imply that the noncompact easy-plane deconfined field
theory itself is unstable to runaway flow for small N . This
is consistent with direct numerical studies of the easy-plane
theory for N = 2 [11,12]. Our study raises questions that need
to be addressed in future field theoretic and numerical work.
Is there a stable large-N easy-plane SU(N ) deconfined critical
point, or is there a generic reason it does not exist? If it does
exist, it is interesting to ask whether numerical simulations will
be able to access a large enough N to study this new quantum
criticality.

Another interesting topic is the nature of the transition in the
ep-SU(N ) without Berry phases. This study can be numerically
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B
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L = 64

0.00 0.04 0.08 0.12

1/Ls
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0.04

g c

0.014 ± 0.001

FIG. 7. Crossings at the SF-VBS quantum phase transition for
N = 5 in HN

J⊥Q⊥ . The main panels show the crossings for Lρs and
RVBS, which again show a direct transition between the superfluid
and VBS states at gc = 0.014(1).

achieved by studying our model, Eq. (4), on a bilayer square
lattice. For N = 2 one would expect a 3D XY transition—what
happens at larger N? Previous work on the bilayer SU(N )
magnet [27] and classical loop models [28] has shown in
the symmetric case that the transition is first order for large
enough N , the answer to the same question in the easy-plane
case is not known currently and will be pursued in future
work.

tMC

ρs OV BS

L = 16

L = 32

ρs

L = 48

OV BStMC

OVBSρs

L = 16

L = 32

ρs

L = 48

OV BS

L = 32

L = 16

L = 48

ρs OVBS

FIG. 8. Evidence for first-order behavior at the SF-VBS quantum
phase transition for N = 5. The data was collected at a coupling
g = 0.01875. The left panel shows MC histories for both ρs and
OVBS, with clear evidence for switching behavior characteristic of
a first-order transition at the largest system size L = 48. The right
panel shows histograms of the same quantities with double-peaked
structure emerging at L = 48. Here we note that the location of the
transition for each system size drifts more significantly than in the
N = 2 case. Also it can be argued that the transition shows signs of
weakening. Here we use a finer bin size for the histories (100 MC
steps per point).
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APPENDIX A: QMC VERSUS ED

For future reference, Table I contains test comparisons
between measurements obtained from a SSE-QMC study and
exact diagonalization (ED) on 4 × 4 and 4 × 2 systems with
various J⊥-Q⊥ at N = 2 and N = 3. We list values for the
ground state energy per site, spin stiffness as in Eqs. (9, 10) as
well as the VBS order parameter, defined in Eq. (12). For the
rectangular systems we have indicated that we use the stiffness
in the x-direction and VBS order parameter with x-oriented
bonds.

APPENDIX B: N = 5

Here we present a study of the SF-VBS phase transition
at N = 5, which also shows clear symptoms of first-order
behavior. In Fig. 7 we show the SF-VBS crossings that allow
us to determine the critical point. Unlike in the N = 2 case,
the position of the crossings drifts in the same direction from
both the SF and VBS side. Taking finely binned data near the
transition again shows us signs of first-order behavior.

In Fig. 8 we show history and histogram data for N = 5. For
our largest system size we are able to see significant evidence
of a first-order transition in both the history and histogram.
We note here that unlike in the N = 2 case, the location of the
transition seems to drift substantially with the system size. This
results in only seeing clear signs of on-off switching (indicative
of a first-order transition) for our largest system size, although
it serves to illustrate the presence of a drift. It is arguably the
case that the transition is weakening as a function of N given
the less pronounced double peaks in the histograms.
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