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ABSTRACT OF DISSERTATION

DECONFINED QUANTUM CRITICALITY IN 2D SU(N) MAGNETS WITH
ANISOTROPY

In this thesis I will outline various quantum phase transitions in 2D models of magnets
that are amenable to simulation with quantum Monte Carlo techniques. The key
player in this work is the theory of deconfined criticality, which generically allows
for zero temperature quantum phase transitions between phases that break distinct
global symmetries. I will describe models with different symmetries including SU(N),
SO(N), and “easy-plane” SU(N) and I will demonstrate how the presence or absence
of continuous transitions in these models fits together with the theory of deconfined
criticality.
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ratios allow us to estimate the location of phase transitions, given by the
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we expect, columnar VBS order is present for small values of J2/J1, as
shown in the middle panel. VBS order transitions directly to magnetic
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3.8 Histograms of the VBS order parameter (OVBS) across the VBS to spin
liquid transition for N = 13, L = 24 and J2/J1=(0.8198, 0.82014, 0.82082)
(left to right). Here we notice a clear qualitative change in the appearance
of the VBS histograms as compared with the N = 12 case. Here the dou-
ble peaks, which signal first-order behavior, have begun to merge together
indicating that the first-order transition is weakening and becoming con-
tinuous. This feature, when combined with the clean crossing point of the
VBS ratio (Fig. 3.7), provides strong evidence that the VBS to spin liquid
transition is continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Here we show the crossing of the magnetic ratios at N = 13 for different
system sizes. Unlike the VBS ratio crossings, the magnetic crossings show
substantial drift as a function of system size. In order for us to properly
estimate the location of the spin liquid to magnetic transition we must
systematically study the crossing points of L and 2L as a function of sys-
tem size (shown in the inset). Also plotted in the inset is the crossing
point of the VBS ratio assuming a negligible drift there. Extrapolating to
the y-axis gives the location of the transition in the thermodynamic limit.
Without larger system sizes or performing potentially unreliable extrap-
olations, we see that an intermediate spin liquid phase likely intervenes
between the VBS and magnetic phases. . . . . . . . . . . . . . . . . . . . 30

3.10 Here we show the magnetic ratio as function of N with J2/J1 = 1 fixed.
We see that magnetic order clearly dies by N = 15 and is most likely
already gone at N = 14. Here we do not show the VBS ratios, as we
quickly encounter ergodicity issues of our VBS measurements at large N ,
resulting in a jittery signal that begins to turn on around N = 19. The
result is that the spin liquid phase appears over an extended range of N
along the J2/J1 = 1 axis, with a minimal extent of 15 ≤ N ≤ 18. . . . . . 31

3.11 A cartoon of the phase diagram based on the numerical results that we
have presented so far. Here the pink lines represent magnetic order (Mag)
that we have measured in QMC and gray lines represent either VBS order
on the vertical and horizontal bonds (VBS) or VBS order on the diagonal
bonds (VBSD). The spin liquid phase (SL) is represented as green lines.
The red circle on the J2/J1 = 0 axis represents the deconfined magnetic to
VBS phase transition that is known to exist in the SU(N) symmetric mod-
els [1].The dark blue squares between phases represent first order phase
transitions, where we see always first order transitions between VBS and
magnetic phases. The light blue circles represent continuous transitions,
which appear at the boundaries of the spin liquid phase. Here we have
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unreliable at such large values of N . We believe however that the spin
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4.1 A section of a stochastic series expansion configuration of the Hamiltonian,
Eq. (4.5), which takes a simple form in terms of N -colored tightly packed
oriented closed loops. By “oriented”, we mean an orientation of the links
(e.g. shown here as arrows going up on the A sub-lattice and down on
the B sub-lattice) can be assigned before any loops are grown, and the
orientation remains unviolated by each of the loops in a configuration.
The extreme easy-plane anistropy results in an important constraint, i.e.
loops that share a vertex (operators represented by the black bars) are
restricted to have different colors. . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Loop updating moves describing how loops pass through a vertex, depicted
with a black bar. These moves cause conversions between the diagonal and
off-diagonal matrix elements present in the Hamiltonian. For each update
pictured here there is a reverse process that we have not drawn. . . . . . 43

(a) Moves with probability 1/2 . . . . . . . . . . . . . . . . . . . . 43
(b) Moves with probability 1 . . . . . . . . . . . . . . . . . . . . . . 43

4.3 The stiffness and VBS order parameter extrapolations as a function of 1/L
for different N in the nearest neighbor easy-plane model HN

J⊥
, defined in

Eq. (4.4) or equivalently (4.5). We find clear evidence that the system has
superfluid order for all N ≤ 5 and VBS order for N > 5. To show ground
state convergence we plot both β = L, 2L in diamond and circular points,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Phase diagram of the HN
J⊥Q⊥

model as a function of the ratio gc = Q⊥/J⊥
and N . Using the HN

J⊥Q⊥
model we have access to the superfluid-VBS

phase boundary for N = 2, 3, 4 and 5. In this work, we provide clear
evidence that the transition for N = 2 and N = 5 is direct but discon-
tinuous for both order parameters, suggesting that the easy-plane-SU(N)
superfluid-VBS transition is generically first order for small-N . . . . . . . 45

4.5 Crossings at the SF-VBS quantum phase transition for N = 2 in HN
J⊥Q⊥

.
The main panels shows the crossings for Lρs and RV BS, which signal the
destruction and onset of SF and VBS order respectively. The inset shows
that the SF-VBS transition is direct, i.e. the destruction of SF order is
accompanied by the onset of VBS order at a coupling of gc = 8.63(1). . . 47

4.6 Evidence for first order behavior at the SF-VBS quantum phase transition
for N = 2. The data was collected at a coupling gc = 8.63. The left panel
shows MC histories for both ρs andOV BS, with clear evidence for switching
behavior characteristic of a first order transition. The right panel shows
histograms of the same quantities with double peaked structure which gets
stronger with system size, again clearly indicating a first order transition. 48

5.1 First order transitions for moderate values of N . The upper panels shows
MC histories (arbitrary units) of the estimator for m2

⊥ for N = 6 and
10. The bottom panel shows histograms of m2

⊥ taken at L = 50 for
J2/J1 ≡ g = 0.250, 0.876, 1.58 for N = 6, 8, 10 respectively clearly show
double peaked behavior. The double peaked beahvior persists in the T = 0
and thermodynamics limit (see Appendix B.2). . . . . . . . . . . . . . . 53
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5.2 Scaling of the spatial winding number square 〈W 2〉. (a) Crossing for N =
6. (b) Crossing for N = 21. (c) Value at the L and L/2 crossing of 〈W 2〉
for a range of N normalized to the crossing value at L = 20 for each
N . For the smaller N a clear linear divergence is seen as expected for a
first-order transition (ergodicity issues limit the system sizes here). For
larger N a slow growth is observed very similar to what has been studied
in detail for the SU(2) case and interpreted as evidence for a continuous
transition with two length scales [2], like we have here. The data was
taken at β = 6L which is in the T = 0 regime (see Appendix B.2). . . . . 55

5.3 RG flows of the ep-CPN−1 model for (a) Ns < N < Nep and (b) N > Nep

at leading order in 4 − ε dimensions obtained by numerical integration
of Eq.(5.3). Fixed points are shown as bold dots, we have only labeled
a few significant to our discussion. The flows in the v = 0 plane have
been obtained previously [3] and include the “s” fixed point that describes
DCP in SU(N) models (red dot). While the flows have many FPs, a DCP
of the ep-SU(N) spin model must have all three eigen-directions in the
e2-u-v irrelevant. For N < Nep there are no such FPs; there is hence a
runaway flow to a first order transition. For N > Nep two FPs emerge:
“m” is multicritical and “ep” is the new ep-DCP that describes the SF-
VBS transition (yellow dot). The gaussian fixed point at the origin has
been labeled “g” for clarity. See Appendix B.4 for further details. . . . . 57

5.4 Correlation ratios close to the phase transition for N = 21. (a) The
SF order paramater ratio, Rm2

⊥
shows good evidence for a continuous

transition with a nicely convergent crossing point of g = 6.505(5). (b)
RVBS shows a crossing point that converges to the same value of the
critical coupling. We note however that the crossing converges much more
slowly (see text). The inset shows the convergence of the crossings points
of L and L/2 of SF and VBS ratios. Note their convergence to a common
critical coupling indicating a direct transition. The data shown in Fig. 5.4
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Chapter 1 Introduction

1.1 Historical Perspective

Magnetism has fascinated human beings for centuries, given the presence of naturally

occurring permanent magnets called lodestone [4]. The ability of these rocks to push

or pull on each other from a distance must have been an incredibly magical curiosity

to early civilizations. It is undeniable, however, that the curious trick that these rocks

play would eventually give rise to one of the most revolutionary instruments in the

ancient world and one that we still use today: the compass.

Fast forward to the early 1800’s where we find that the compass helped to cause yet

another revolution, this time in our understanding of fundamental physics. While giv-

ing a lecture demonstration at the University of Copenhagen, Hans Christian Ørsted

noticed by accident the twitching of a compass needle sitting near an active electrical

wire [5]. Thus sparked the chain of events that led to our understanding of two seem-

ingly unrelated phenomena, culminating in the unified theory of electromagnetism

developed by Maxwell in the years 1860-1871.

Although ferromagnetism has been known for thousands of years, only within the

past century has the phenomenon of antiferromagnetism been discovered. This idea,

pioneered by Louis Néel in the 1930’s, was put forth in order to explain anomalous

features of the low temperature magnetic susceptibility in certain materials [6]. Néel’s

idea of the “generalized ferromagnet” consisted of two inter-penetrating sublattices

with opposite magnetization. With this theory he was able to correctly predict a

peak in the temperature dependent susceptibility at the onset of antiferromagnetic

order, now called the Néel temperature.

The quantum theory of antiferromagnetism found itself on shaky ground, as the

quantum spin Hamiltonians thought to describe them (what we now call Heisenberg
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antiferromagnets) did not have the Néel state as an exact ground state. This called

into question the ability for this state to form in a real material. It was only after the

advent of neutron scattering, which was able to resolve the spin structure of MnO

crystals, that clear peaks corresponding to Néel order emerged [6].

For the same reason that antiferromagnetism seemed implausible, namely the

presence of strong quantum fluctuations, it is now at the forefront of some of the

most exciting areas of condensed matter physics. High temperature superconduc-

tors have antiferromagnetic insulators as their parent compounds [7]. Upon doping

these systems with mobile charge carriers, one encounters many exotic phases that

defy conventional wisdom and it is believed that antiferromagnetic correlations play

an intimate role. Even the antiferromagnetic insulators themselves can show bizarre

properties, when for instance one considers geometrically frustrated lattices such as

the kagome. Here the quantum fluctuations of the spins can be so large that the

system becomes completely disordered yet highly entangled. Such is the case for

so-called quantum “spin-liquid” states, which can often give rise to non-trivial topo-

logical phenomena [8].

We can therefore draw a parallel to the discovery of ferromagnetism in the time

of antiquity, a curiosity that would eventually lead to a revolution in technology. In

the current age we are in the midst of discovering all of the curiosities associated

with antiferromagnetism. It may well be that out of this process of discovery, we

may see great technological revolutions such as room temperature superconductors

or topological quantum computers. The even more exciting prospect however, is

the chance for these possible technologies to do what the compass had done for the

discovery of electromagnetism, and reveal to us new fundamental truths about the

nature of reality.
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1.2 Deconfined Quantum Criticality

From a theoretical perspective, a fruitful route to the discovery of new and interesting

quantum mechanical phenomena is to start from the antiferromagnetically ordered

Néel state and try to disorder it [9]. This is typically done by adding extra terms to

the Heisenberg Hamiltonian:

H = J
∑
〈ij〉

~Si · ~Sj + ... (1.1)

Here the spin operators are matrices, which generate the group SU(2). Global

unitary SU(2) transformations of all of the spin operators (spins) leaves the Hamil-

tonian invariant and the model is said to have SU(2) symmetry. Here the sum over

〈ij〉 corresponds to nearest neighbor interactions. If we take this model on a two

dimensional bipartite lattice, the ground state has long range Néel order. However,

as previously mentioned, quantum fluctuations serve to reduce the staggered magne-

tization as compared with the perfect Néel state.

We now wish to add an extra SU(2) symmetric interaction to the Hamiltonian

in the hopes of destroying the Néel state. If we consider the case of the 2D square

lattice, one particularly interesting interaction consists of a product of two Heisenberg

nearest neighbor terms acting alongside one another on an elementary plaquette [10].

HJQ = J
∑
〈ij〉

~Si · ~Sj −Q
∑
〈ijkl〉

(
~Si · ~Sj −

1

4

)(
~Sk · ~Sl −

1

4

)
(1.2)

It is this model that forms the foundation of the work that is to be presented in

the rest of this thesis. In order to discuss the significance of this model, we must first

discuss the nature of the ground state when J = 0 and only the Q term exists. In

this limit the Néel order of the spins is completely destroyed, and the ground state

preserves the global SU(2) symmetry of the Hamiltonian. Such a ground state is

composed of spin-0 singlets, where the singlet wave function for two spins is written

as 1√
2

(| ↑↓ 〉 − | ↓↑〉 ). Neighboring spins are paired up into singlets in such a way that
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Figure 1.1: A cartoon picture of the columnar valence bond solid (VBS) state on the
square lattice. Valence bonds correspond to singlets of adjacent spins, represented by
the blobs. This state preserves the spin rotational symmetry of the J-Q Hamilonian
but breaks lattice translational symmetry.

they form a regular pattern on the square lattice, known as the columnar “valence-

bond solid” (VBS) state. A cartoon of the VBS state is given in Fig. 1.1.

The important thing about the VBS state is that it preserves the spin rotational

symmetry of the Hamiltonian, but it breaks the lattice translational symmetry. In

contrast, the Néel state breaks spin rotational symmetry but preserves lattice trans-

lational symmetry (the staggered magnetization is spatially uniform).

A very important fact about the J-Q model is that it is amenable to very efficient

numerical simulations based on the quantum Monte Carlo (QMC) method [11,12]. A

notable example of a QMC algorithm that is typically employed to tackle problems

of this nature, and one that is used throughout the work in this thesis, is called

the stochastic series expansion (SSE) algorithm (see [13] for an excellent exposition).

The ability to avoid the sign problem and apply efficient algorithms such as these

means that large scale numerical simulations have been extensively carried out on

this model. The result is a continuous phase transition as a function of Q/J from the

Néel phase to the VBS phase [10].
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This fact immediately poses a problem from the point of view of conventional

phase transitions of the kind envisioned by Landau, Ginzburg [14] and Wilson [15]

(LGW). The normal way that phase transitions are described in this context, is by

fluctuations of an order parameter field. In the case of the J-Q model there are

seemingly two very different order parameters, one describing Néel order and the

other VBS order. A standard treatment of the phase transition, if one requires the

Néel to VBS transition to be direct, would generically lead to a first order transition.

Thus the LGW paradigm cannot give a natural description of the direct, continuous

transition from Néel to VBS where just one parameter is tuned.

The theory of deconfined quantum criticality [16, 17] has been constructed with

this problem explicitly in mind. It says that instead of considering the Néel field (the

local staggered magnetization) as the fundamental object out of which we build an

energy functional, let’s instead treat it as a composite object. This can formally be

accomplished by making use the CP1 parametrization of the unit sphere, where if n̂

is a unit vector representing the local Néel field, it can be written as

n̂ = z†~σz, (1.3)

Where here z is a function of space and imaginary time, z = z(~r, τ), and is a

two component object, z = (z1, z2)ᵀ, where at any coordinate each component is a

complex number. Since the Néel vector is taken to have unit magnitude, we also have

the constraint that |z1|2 + |z2|2=1.

A very important aspect of rewriting the problem in this way is that there is a

local gauge redundancy of the z fields, meaning sending z → eiγ(~r,τ)z represents the

same configuration of the Néel field. In order to enforce this equivalence, the z-fields

are then coupled to a compact U(1) gauge field. The central result of deconfined

criticality is that the compactness of the gauge field can be neglected exactly at the

critical point. The theory describing the transition is then the non-compact CP1 field
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theory, which is the simplest theory of complex scalar fields coupled to a U(1) gauge

field.

Throughout the work in this thesis we will be concerned with the connection

between the CP1 theory and its connection with criticality in lattice models. More

generally we will be interested in the CPN−1 theory and the SU(N) magnetic to VBS

transitions, as well as symmetry deformations to these models.

1.3 Outline of Thesis

In Chapter 2 we will introduce the SU(N) symmetric spin models that give rise to

deconfined magnetic-VBS phase transitions for arbitrary integer values of N ≥ 5.

We will then use this model at N = 10 to extract the scaling behavior of the spin

stiffness (a measure of magnetic order) at the critical point to show that we find

conventional critical scaling there. This is in stark contrast the the N = 2 J-Q model

where anomalous scaling is observed [2].

In Chapter 3 we will consider a variant of the model introduced in Chapter 2,

except on a different lattice that allows for the addition of SO(N) spin anisotropy.

The central question there is with regard to the stability of the deconfined critical

point in the SU(N) models in the presence of SO(N) anisotropy. We then go on to

explore the whole phase diagram of the SO(N) model, which includes an interesting

spin liquid phase.

In Chapter 4 we introduce what we call “easy-plane” SU(N) anisotropy into these

models, which is equivalent to considering multicomponent superfluid to VBS transi-

tions. We find that in our small N model the transition is always first order, meaning

that the SU(N) symmetric deconfined critical point is unstable to the presence of

this type of anisotropy at small N .

Finally, in Chapter 5 we introduce a model with the same “easy-plane” SU(N)

anisotropy, except that it realizes the superfluid to VBS transition at large N . Here
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we find that beyond a critical value of N ≈ 20, the first-order transition becomes

continuous. This conclusion is supported by performing renormalization group cal-

culations on a CPN−1 field theory with easy-plane anisotropy added.

The Vita at the end of the dissertation gives a complete list of projects that I have

worked on during my Ph.D. residency at the University of Kentucky. This includes

the projects that have led to publications, as well as projects that are to be published

in the near future. A subset of this work forms the chapters in this thesis.
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Chapter 2 Deconfined Criticality in SU(N) Magnets at Large N

2.1 Introduction

As we have previously mentioned, the J-Q model [10] is the prototypical example

of a simple spin Hamiltonian whose physics, in terms of the nature of the transition

from Néel to VBS states, lies outside the LGW paradigm [17]. It is also a model that

is amenable to highly efficient quantum Monte Carlo algorithms [11, 12], which have

allowed for an extremely detailed analysis of the critical properties of the transition.

This detailed analysis has revealed anomalous critical behavior, as is observed in

unconventional finite sized scaling behavior at the transition [18]. This has resulted

in controversy over the possibility of first-order behavior [19,20], as well as alternative

scaling forms including the potential for two diverging length scales [2].

This anomalous behavior motivates a closer investigation of lattice models of

deconfined criticality at large N . Along these lines, the natural starting point is the

SU(N) symmetric spin model that very naturally realizes deconfined criticality for

higher values of N > 2 [1]. This class of models includes the SU(N) symmetric J-Q

and J1-J2 models, the latter being the focus of this chapter. Here we will introduce the

J1-J2 model and discuss the measurement of the spin stiffness (ρs) in this model and

how this measurement behaves anomalously in the N = 2 case at the transition. We

will then go on to examine this quantity with high accuracy for N = 10, eventually

showing that conventional quantum critical scaling is recovered in this case.

2.2 Lattice Model

Here we introduce the Hamiltonian that will allow us to gain access to the deconfined

magnetic to VBS phase transition at large N . The Hamiltonian can very simply be
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written as a sum of two terms [21]:

HSU(N) = −J1

N

∑
〈ij〉

Pij −
J2

N

∑
〈〈ij〉〉

Πij, (2.1)

where Pij =
∑

α,β |αiαj〉〈βiβj| is the projection operator onto the two-site SU(N)

singlet in the staggered representation, and Πij =
∑

α,β |αiβj〉〈βiαj| is a permutation.

The projection takes place on nearest-neighbor bonds of a square lattice (〈ij〉) and

the permutation is on next-nearest neighbors (〈〈ij〉〉).

This Hamiltonian has SU(N) symmetry, and can be written in terms of the gen-

erators of SU(N) if we choose the representation where we take the fundamental

generators on one sublattice and the conjugate to the fundamental on the other sub-

lattice [22]:

HSU(N) = −J1

∑
〈ij〉

~Ti · ~T ∗j − J2

∑
〈〈ij〉〉

~Ti · ~Tj, (2.2)

A crucial aspect about this model is that one can create an SU(N) singlet using

just two neighboring sites, irrespective of the value of N . Furthermore, for N = 2

this model (up to a constant shift) is equivalent to the SU(2) Heisenberg model with

an antiferromagnetic coupling on nearest-neighbor sites, and ferromagnetic coupling

on next-nearest-neighbor sites (assuming J1, J2 > 0). This model is therefore very

well motivated from the point of view of extending the physics of magnetic to VBS

transitions to larger N .

This model, and variants of it have been heavily studied in the context of de-

confined criticality (see [23] for a review of the literature), thus the extended phase

diagram is already completely known. For the particular Hamiltonian that we work

with here, it is known that for J2 = 0, magnetic order persists up to and including

N = 4 and columnar VBS order is present for N ≥ 5.

The introduction of the J2 term, which ferromagnetically couples spins on the

same sublattice, encourages magnetic order. Thus by starting in the VBS phase and
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increasing J2/J1, one can tune from the VBS to the magnetic phase. This allows

access to the phase transition for all values of N ≥ 5.

2.3 Spin Stiffness

In this particular study we will exclusively focus on measurements of the spin stiffness

(ρs), which can be computed in terms of the average winding number fluctuations in

our QMC configurations (see [13] for the details of this measurement). Here we will

briefly describe this quantity, and how it can be measured for SU(N) symmetric spin

systems.

Firstly, in a magnetically ordered phase, we expect the spins to be ridgedly ori-

ented with respect to one another. In such a phase, if we performed an incrementally

increasing twist of the spins about some axis, the ground state energy would in-

crease. Of course performing a unitary transformation incrementally to each spin

would leave the energy unchanged, so what we really need is a twist of boundary

conditions, equivalent to threading a magnetic flux through the system.

In order to accomplish this, we consider twisting by φ about a diagonal generator

(Sz in the SU(2) case), in which case the spin operators get modified as follows: S+ →

S+eiφ, S− → S−e−iφ. In terms of bond operators we have Sz
iS

z
i+1 → Sz

iS
z
i+1, S

+
i S

+
i+1 →

S+
i S

+
i+1e

iφ, S−i S
−
i+1 → S−i S

−
i+1e

−iφ. Here we have used the fact that site i is in the

fundamental representation and site i + 1 is in the conjugate to the fundamental.

Also we have assumed that site i + 1 has been twisted by an amount φ more than

site i.

Since we have the staggered the representation on the A and B sites, the phase

factor changes depending on whether the site i is on an A site or a B site. In the SU(N)

case, phase factors are associated with a particular “color,” for instance color=©, so
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that matrix elements are modified to

|αAαB〉〈©A©B| → |αAαB〉〈©A©B|e−iφ. (2.3)

Here the phase factor is 1 if α = ©. A and B refer to the sublattice, and the

conjugate phase factor is used when connecting from a B site to an A site.

The J2 term has matrix elements of the form

|αA©A〉〈©AαA| → |αA©A〉〈©AαA|e−iφ. (2.4)

Where again there is no phase factor when α =©, and the conjugate phase factor

is used when connecting from B site to B site. It can be shown that this is equivalent

to twisting about the N − 1th diagonal generator of SU(N).

With this prescription, one can calculate the stiffness on small system sizes by

exactly diagonalizing the Hamiltonian. In terms of the behavior of the ground state

energy as a function of φ, the stiffness is given by

ρs =
∂2E0(φ)

∂φ2

∣∣∣∣
φ=0

. (2.5)

This quantity can also be measured efficiently in the context of QMC [13], which

amounts to computing “winding numbers” of the configurations. These winding num-

bers can be calculated easily for a given SSE configuration by simply looking at the

bond operators (matrix elements) sequentially at each time slice. The displacement

associated with the © color is incremented (decremented) each time one encounters

an operator associated with a positive (negative) phase factor. The winding number

in a particular spatial direction is then calculated as the total displacement in that

direction divided by the linear system size in that direction. Winding numbers for

11



N Lx Ly J1 J2 ED:e QMC:e ED:Ρx QMC:Ρx

2 4 4 1. 1. -2.164574915 -2.16465 H±4L 8.163880257 8.164 H±5L

3 4 2 1. 1. -1.755860274 -1.7559 H±8L 2.074699044 2.0737 H±9L

Table 2.1: A table comparing the values of the energy per site (e), and the spin stiff-
ness in the x-direction (ρx) obtained both from exactly diagonalizing the Hamiltonian
with phase factors (ED) and with QMC. We see that for these two system sizes, for
both SU(2) and SU(3), the QMC value agrees with exact diagonalization within the
error bar.

each color and spatial direction are separately computed, then averaged. In terms of

the winding number (W ), the stiffness is given by

ρs =
〈W 2〉
β

, (2.6)

where β is the inverse temperature. To show the agreement between exact diag-

onalization and QMC we show in Table 2.1 a comparison of the values of the energy

per site (e) and the spin stiffness in the x-direction (ρx) for two different small system

sizes.

The motivation for studying the scaling of the stiffness in this model is the follow-

ing: one expects that at a continuous phase transition that the stiffness should scale

as [24, 25] ρs ∝ L−(d+z−2), where d is the spatial dimension and z is the dynamical

critical exponent. z is usually taken to be one in the type of continuous transitions

that we are concerned with here, meaning that we would expect ρs ∝ L−1 and so Lρs

should go to a constant at a continuous transition in our model.

It has however been observed that for the N = 2 Néel to VBS deconfined transi-

tion, Lρs actually diverges slowly with a power less than one [18,19,26,27]. This has

sparked controversy about the possibility of a first-order transition [19, 20], however

the resolution may be a modified scaling form of the stiffness due to the presence

of two diverging length scales [2]. It is therefore the goal of this present study to
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examine the scaling behavior at the transition at larger N , in the hopes of establish-

ing whether one recovers more conventional critical behavior or not. To this end we

will pursue a study of the stiffness near the transition at N = 10 in our model and

perform numerical fits in order to extract the scaling behavior.

2.4 Numerical Results

Our entire numerical analysis here will consist of analyzing the the crossing points of

the quantity Lρs for different sized LxL lattices across the VBS to magnetic transition

in our SU(N) model. Due to the quantity and accuracy of the data that is required for

this careful scaling analysis, we will focus our efforts on just one value of N (N = 10),

with the intent of extending the scope of our study in the future.

Deep in the magnetic phase, the spin stiffness (properly normalized) should sat-

urate to a constant as a function of system size. While, on the VBS side it goes to

zero. This implies that the Lρs curves will show a crossing for different system sizes

near the transition. It is exactly these crossing points that we will use to study the

scaling behavior of the stiffness at the transition. In particular we will consider the

crossing points of Lρs for pairs of system sizes (L,2L) as a function of L.

In Fig. 2.1 we show our raw QMC data of Lρs at SU(10) for many different system

sizes. The figure shows a very close zoom in to the VBS to magnetic transition, and

the crossing points of system size pairs (L,2L) are plotted as the color points. We

have ensured that all of our measurements are converged to the zero temperature limit

by setting β = 4L so that our scaling analysis is not muddled by finite temperature

effects.

Now that we have extracted the values of the crossing points of Lρs for different

pairs of system sizes (L,2L), we can examine the scaling of both the x-coordinates of

those points and the y-coordinates. We begin by handling the x-coordinates of the

crossing points, corresponding to the estimates of the critical coupling, as the analysis
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⇢

s

J2/J1

Figure 2.1: Here we show Lρs as a function of J2/J1 for different system sizes (LxL)
lattices for SU(10) zoomed in at the VBS to magnetic transition. The crossing points
of pairs of system sizes (L,2L) are marked by the colored points. The black dots are
the actual values of Lρs obtained by QMC simulation, where the biggest system size
used here is L = 56. The black lines are fits to 3rd order polynomials, which we use
to interpolate our data in order to estimate the crossing points. Error bars on the
crossing points are computed by bootstrapping our numerical data and performing
many synthetic fits.To ensure that finite temperature effects do not play a role in
the scaling of our Lρs crossing points, we have set β = 4L, which we have ensured
converges our measurements to the zero temperature limit. The crossing points that
have been extracted here will be used for the rest of the analysis.

is slightly simpler there.

It is expected that the critical coupling, which we will refer to at g∗, should scale

as g∗(Lmin) = aLν + b [2]. Here we take ν = −|ν| to be negative, meaning that the

critical coupling approaches a constant in the thermodynamic limit. Using this as our

scaling form, in Fig 2.2 we show our numerical fit to the finite size critical coupling

data and the associated fit parameters.

We have found the the critical coupling produces a very nice fit of our scaling form

with just one power of L, and no use of sub-leading corrections (another term with a

different power of L). We now analyze the scaling of Lρs itself, as estimated from the
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Figure 2.2: Here we perform numerical fits to the scaling form of the critical coupling
values extracted from the crossing points of Lρs shown in Fig. 2.1 for SU(10). The
finite size scaling form for the the critical coupling g∗ is shown in the upper left, and
the fit values used to plot the black line are given just below the scaling form. We find
excellent agreement between the scaling form and our numerical data. Furthermore,
the fit parameters are relatively insensitive to which data points are included in the
fit. This is shown in the bottom right, where our numerical data is bootstrapped and
the fit performed many times, producing a histogram of values of the fit parameters.
This procedure is done first by including all of our data points in the fit (nDrop=0),
then excluding the smallest value of Lmin (nDrop=1), then excluding the smallest two
values (nDrop=2).

height of the crossing values. In Fig. 2.3 we fit the critical values of Lρs to the scaling

form Lu(a+bLw), which is capable of distinguishing between a constant saturation as

a function of system size (u = 0 and w < 0), versus a sub-linear divergence (0 < u < 1

and w < 0). In this case as well, we find an excellent fit of our numerical data to the

scaling form. The fit is also quite stable and relatively insensitive to the exclusion of

small system size data (not shown here). Our data that we have used so far in this

study is consistent with u = 0.
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Figure 2.3: Here we fit the heights of the Lρs crossing values as a function of Lmin (the
smaller system size used in the pair (L,2L)). We show the scaling form that has been
used at the top left, which can distinguish between the case where Lρs saturates to a
constant versus if it diverges sub-linearly. The case when Lρs saturates to a constant
corresponds to when u = 0, which is in fact what we find here. The solid black line is
plotted by setting u = 0 and using the optimal values of the other parameters, shown
just beneath the scaling form. Again we produce histograms of the fit parameters by
bootstrapping our data, which is shown in the lower right inset. Now that there are
two important fit parameters (u,w), we show a histogram density plot, where dark
green is low density and light green is high density. The histogram is produced by
fitting to all of the data, although the results are similar even when excluding smaller
system sizes in the fit.

2.5 Discussion

The result of our analysis on the critical values of Lρs, obtained by the crossing

points, is that we find consistency with constant saturation as a function of system

size (not sub-linear divergence, as in the SU(2) case). The picture so for seems

convincing, despite the lack of larger system sizes and different values of N , however

the objective is to pursue this with more computer time in the future. This result

is quite interesting, suggesting a stark difference between the N = 2 case, and what

happens at larger N .
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The next important question in this work relates to how this picture evolves as

N → 2. As previously mentioned, we have access to the deconfined transition for

all N ≥ 5 with our particular model here. It is also possible, however, to add in a

Q-interaction that favors VBS order. In this case we can start from a magnetically

ordered state and tune toward the VBS using the Q-term. This will allow us to

access the transition for 2 ≤ N ≤ 4 [26]. It would be interesting to see how the

scaling behaves for both N = 3 and N = 4. It is possible that an effectively enlarged

symmetry in the N = 2 case is responsible for the anomalous scaling [28].

2.6 Conclusion and Outlook

In this chapter we have introduced an SU(N) symmetric spin Hamiltonian, which

is the prototypical lattice model realizing deconfined criticality (including the J-Q

models and the case N = 2). This model forms the foundation of the rest of the work

to be carried out in this thesis. Additionally we have investigated a new feature of

this model that has so far not been addressed.

We have been motivated here by the fact that deconfined criticality in the J-Q

model at N = 2 exhibits anomalous critical scaling of various quantities including

the spin stiffness. Here we have addressed the scaling of the spin stiffness at the

transition for SU(10) and found, based on the limited system sizes available so far,

that conventional critical scaling is recovered. Namely, the Lρs saturates to a constant

at the transition, validating the standard critical scaling.

We would clearly like to extend the scope of the present study. We would firstly

like to include larger system sizes to ensure that our scaling behavior is not reflective

of finite size effects. Secondly, and more interestingly, we would like to carry out an

identical analysis at N = 3 and N = 4 in the SU(N) J-Q model, which will help us

to determine if the N = 2 case is somehow special, and at what point conventional

critical scaling appears.
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Chapter 3 SO(N) Deformations and Spin Liquids

3.1 Introduction

Frustration in quantum magnetism has played a central role in the discovery of phases

of matter without any classical analogue, most notably quantum spin liquid states

[8]. These spin models are typically constructed from spin degrees of freedom that

transform according to representations of the group SU(2), or SO(3) in the case

of integer spin. Interest, however, has grown to include spin models with larger

symmetry groups such as SP(N) [29] and SU(N) [1,22,30,31]. Originally introduced

as a theoretical tool for solving models in the large-N limit [21], these models have

become interesting in their own right due to the appearance of exotic phases as a

function of N , and the ability to realize these models experimentally in ultra cold

atom systems [32].

SO(N) spin models have also recently been explored in the context of quantum

Monte Carlo [33], producing a surprisingly rich phase diagram consisting of valence

bond solid states, magnetic states, and spin liquids. The study of SO(N) models are

also motivated by the fact that they often describe systems that are composed of two

or more order parameters that hybridize into a composite object [28,34].

In this work we will explore SO(N) spin models from the perspective of introducing

anisotropy into the well studied SU(N) symmetric spin models [1] realizing deconfined

criticality that we have investigated in the previous chapter. Along these lines, we

will pursue a model that allows us to take the SU(N) symmetric model on the square

lattice as a starting point. Then by increasing the strength of next-nearest-neighbor

couplings, we reduce the symmetry to that of SO(N), while maintaining the square

lattice symmetry important for deconfined criticality. We will first be interested in

the fate of the deconfined critical point when anisotropy is added, then we will go on
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Figure 3.1: The lattice used for the study of our SO(N) symmetric Hamiltonian in
Eqn. (3.1). J1 bonds (black) connect nearest neighbors of the square lattice and
J2 bonds (blue) connect next-nearest neighbors. Here sites on one sublattice are in
white and those on the other sublattice are black. Since the J2 bonds couple sites on
the same sublattice, the symmetry of the model becomes SO(N).

to explore the phase diagram as a whole.

3.2 Lattice Model

Here we introduce the Hamiltonian that will allow us to probe the effect of SO(N)

anisotropy on SU(N) symmetric deconfined critical points. The Hamiltonian can

very simply be written as a sum of two terms:

HSO(N) = −J1

N

∑
〈ij〉

Pij −
J2

N

∑
〈〈ij〉〉

Pij, (3.1)

where Pij =
∑

α,β |αiαj〉〈βiβj| is the projection operator introduced in the previous

chapter in the context of SU(N) deconfined criticality. The first sum in the Hamil-

tonian (J1) is over nearest neighbors of a square lattice and the second sum is over

next-nearest neighbors (J2). This is depicted in Fig. 3.1.

Firstly, when J2 = 0 in this model, we are of course left with the familiar SU(N)

symmetric Hamiltonian that was discussed in the previous section. We know that

there is Néel order for N < 5 and VBS order for N ≥ 5. In between there is a

continuous deconfined quantum critical point (continuous transition) that we have

previously studied in great detail.

Here we are interested in the introduction of J2, which couples together sites
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on the same sublattice. This in turn reduces the symmetry from SU(N) to SO(N).

Importantly, however, the model maintains its square lattice symmetry, and near the

J2 = 0 axis the degenerate VBS ground states found in the SU(N) symmetric models

are still present. Even as J2 is increased, the simplicity of the lattice will enable us to

easily detect different VBS ordering momenta, as will be presented in the following

sections.

It is worth mentioning that if we take J1 = 0 and J2 finite, then our lattice

becomes two independent square lattices, and again the physics is identical to the

SU(N) symmetric case. We will be interested primarily with what becomes of the

deconfined critical point when we turn on J2, which amounts to addressing the fate

of the SU(N) symmetric deconfined fixed point when SO(N) anisotropy is added.

3.3 Measurements

All of our observables will be based on Fourier transforms of correlation functions,

which will be computed and averaged in the quantum Monte Carlo simulations. In

order to detect magnetic order in this system, we will measure the the following

spin-spin correlation function:

CQ(i, j) =
1

N

∑
α

〈(|αi〉〈αi| − 1/N)(|αj〉〈αj| − 1/N)〉. (3.2)

For three components, this expression is quartic in the spin-1 generators [35]

(quadrupolar order). From a practical point of view, the interpretation of this corre-

lator is quite simple, it checks for long range magnetic order corresponding to tiling

the lattice with one color (analogous to a ferromagnet). The factor of −1/N ensures

that if we are in a magnetically disordered phase, then the correlator will go to zero

at long distances.

This correlation function is diagonal in the spin basis, thus it can very simply

be measured by looking at the state of the spins on any one time slice, usually
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the zeroth time slice for simplicity. Furthermore, in order to reduce the number of

correlators that need to be stored, we make use of translational invariance to only

store correlators at different separation differences, resulting in an Lx × Ly matrix.

The total squared “magnetization” (square of the quadrupolar order parameter)

is given by the the Fourier transform of Eqn. (3.2) at zero momentum. The benefit

of storing the entire correlation function as opposed to simply printing out its sum

is that we can construct Fourier transforms at any momentum. The structure in

momentum space near an ordering transition allows us to construct ratios of Fourier

components that show a crossing point near the transition. For quadrupolar order,

we construct the ratio as follows:

RQ = 1− C̃Q(2π/L, 0)/C̃Q(0, 0). (3.3)

Here C̃Q(0, 2π/L) can equally well be used to construct the ratio, in fact any momen-

tum not corresponding to a Bragg peak will work. The nearby momentum used here

are chosen because they offer the best resolution in identifying the presence a Bragg

peak.

In order to characterize VBS order, we measure bond-bond correlation functions

in our QMC simulations. These are defined as follows:

C â,b̂
VBS(~r) = 〈|sâ0〉〈sâ0||sb̂~r〉〈sb̂~r|〉. (3.4)

This is a correlation function of SO(N) singlet projectors. Here we have defined the

two-site SO(N) singlet as

|sâ~r〉 ≡
1√
N

∑
α

|α~rα~r+â〉 (3.5)

where α~r is a spin at spatial location ~r, given by its (x,y) coordinates, and α~r+â is

either a nearest neighbor or next nearest neighbor along one of the bond directions
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(denoted by â). â for this model can be (1,0), (0,1), (1,1), (-1,1). The“hat” here is

just a notational scheme and should not be interpreted as unit magnitude.

As the possible VBS states in the phase diagram in this model are not known, we

store the bond-bond correlation functions with every possible combination of bonds,

both with equal orientations of the bonds and unequal orientations. As such, we

can already anticipate the various ordering momenta associated with correlators of

particular orientations. For instance, when J2/J1 � 1 we anticipate columnar VBS

order for C
(1,0),(1,0)
VBS (~r) and C

(0,1),(0,1)
VBS (~r). The former case is depicted in Fig. (1.1),

where the diagonal bonds are not drawn. The ordering momentum in this case is

(π,0), which allows us to construct the crossing ratio

RVBS = 1− C̃(1,0),(1,0)
VBS (π + 2π/L, 0)/C̃

(1,0),(1,0)
VBS (π, 0). (3.6)

A very similar ratio can be constructed for the y-oriented bonds, except with ordering

momentum (0,π), and in practice these are averaged over in the QMC to improve

statistics. In Fig. (3.2) we show some example structure factors (Fourier transforms)

of the VBS correlation functions. Here Bragg peaks clearly emerge in the limits that

we expect, namely when the diagonal bonds are weak where we see columnar VBS

order on the x and y oriented bonds, and also when the diagonal bonds are strong

where we see columnar VBS order tilted at 45 degrees on the diagonal bonds. The

data that we will present in the following sections will focus on these two particular

types of orders and how they behave as we tune the anisotropy (J2/J1).

3.4 Numerical Results

We would like to sketch out the phase diagram of this model as a function of N and

J2/J1, and along the way uncover the nature of the phase transitions that take place.

We will firstly be interested with what happens near the “square lattice axis” (J2/J1

is small). This is of particular interest due to the fact that there is a deconfined

22



Figure 3.2: Here we show the Fourier transform of the various VBS correlation func-
tions of a SO(7) L = 24 system for J2/J1 = 0.14 (panel a) and J2/J1 = 7.0 (panel
b). All of the panels display every combination of â and b̂ in Eqn. (3.4), such that
â labels the rows in the order (1,0),(0,1),(1,1),(1,-1) and b̂ labels the columns in the
same order. The coordinates in each individual panel are the x and y momenta (qx,
qy), and the origin is located at the upper left corner. Panel (a) represents the limit
when J2 is very weak, and we essentially have a square lattice. At this value of N
on the square lattice, columnar VBS order prevails, which can clearly be seen by the
Bragg peaks appearing at (π,0) and (0,π) in C̃

(1,0),(1,0)
VBS (~q) and C̃

(0,1),(0,1)
VBS (~q), respec-

tively. Panel b illustrates the opposite limit, where the x and y bonds are very weak,
and the lattice can be though of as two independent square lattices, each tilted at 45
degrees. Columnar VBS order appears in this case as well, except on the diagonally
oriented bonds. This again can be seen in the Bragg peaks occurring in C̃

(1,1),(1,1)
VBS (~q)

and C̃
(1,−1),(1,−1)
VBS (~q), which are the last two panels along the diagonal.

critical point located on the J2/J1 axis between N = 4 and N = 5 [21]. If we are near

this critical point, we can ask what is the effect of adding anisotropy, corresponding

to a small but finite J2/J1. Thinking in terms of renormalization group ideas, there

are several possible scenarios: firstly, the anisotropy could be irrelevant, meaning

that the same critical point would extend to finite values of J2/J1, appearing as a

line in the phase diagram. Secondly, the anisotropy could be a relevant perturbation

to the deconfined fixed point. In this case there could be another fixed point in

a different universality class that would describe the criticality at finite anisotropy,
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Figure 3.3: Here we show a cut through the phase diagram of an SO(7) system as a
function of anisotropy J2/J1. Using two system sizes and plotting the ratios allow us
to estimate the location of phase transitions, given by the crossing points. The top
panel shows the magnetic ratio and the middle and bottom panels are the VBS and
diagonal VBS ratios, respectively. As we expect, columnar VBS order is present for
small values of J2/J1, as shown in the middle panel. VBS order transitions directly
to magnetic order near J2/J1 ≈ 0.4, as indicated by a VBS crossing (middle panel)
and magnetic crossing (top panel) that occur approximately at the same value of the
coupling. The story is similar near J2/J1 ≈ 3.0, except there magnetic order gives
way to columnar VBS order on the diagonal bonds.

or the perturbation could cause a flow to strong coupling, meaning no stable finite

coupling fixed point and resulting in a first-order transition at finite anisotropy.

In order to address this question, we fix N = 7 and vary the anisotropy across the

columnar VBS, magnetic, and diagonal columnar VBS phases. This is given in Fig.

3.3, where we show the ratios constructed from the three order parameters. The phase

transitions along this cut are estimated based on the crossing points of the ratios for

the two different system sizes. We conclude that for N = 7 there is a direct transition

from the VBS phase to the magnetic phase at around J2/J1 ≈ 0.4. Similarly at higher

values of the coupling (J2/J1 ≈ 3.0) there is another direct transition from magnetic
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Figure 3.4: Histograms of the magnetic and columnar VBS order parameters near
the transition at J2/J1 = 0.385 on an L = 24 SO(7) system. In order to generate the
histograms, we measure many bins with very few Monte Carlo sweeps per bin, which
produces a time series of our measurements. The time series for our measurements
shows a clear switching behavior between two distinct values that is illustrated by
a double peaked histograms. Double peaked histograms are a smoking gun signal
of first-order behavior, where the free energy has two local minima that cross as a
function of the coupling.

to VBS on the diagonal bonds.

In order to investigate the nature of the phase transition, we collect data very

close to the VBS-magnetic transition at J2/J1 = 0.385 on an L = 24 SO(7) system

and produce histograms of the VBS and magnetic order parameters, as shown in Fig.

3.4. The fact that our Monte Carlo simulations display a switching between magnetic

and VBS ordered configurations means that histograms of the order parameters show

a double peaked structure. This is indicative of a first-order phase transition, where

the free energy contains two local minima in the landscape of configurations. As

the coupling is varied, the global minima jumps from one local minima to the other,

producing a discontinuity in the values of the order parameters at the transition in

the thermodynamic limit.

In light of our histogram data at N = 7, we conclude that CPN−1 fixed point that
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Figure 3.5: Here we show the ratios at N = 12, where we find similar behavior as in
Fig. 3.3. It is clear that at these larger values of N , the intermediate magnetic phase
occupies a much smaller region of the phase diagram. Interestingly, it appears as if
the phase boundaries become symmetric about J2/J1 = 1 as N is made large.

describes continuous magnetic to VBS phase transitions in SU(N) symmetric models

is unstable to the presence of SO(N) anisotropy. This is manifested in our lattice

model as a first-order transition between VBS and magnetic phases when anisotropy

is added.

Having addressed the question of deconfined criticality in the presence of SO(N)

anisotropy, we go on to fully explore the phase diagram of our model as a function

of N and J2/J1. Given that previous work on the triangular lattice revealed a spin

liquid at large values of N [33], another important question concerns at which value of

N the VBS to magnetic transition splits apart, revealing an intermediate spin liquid

phase.

Moving to N = 12 we show the ratios as a function of anisotropy in Fig. 3.5. Here

we find as similar story as in Fig. 3.3, except it becomes clear that at larger values

of N , the magnetic phase occupies a much smaller region of the phase diagram. It is
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OVBS

Figure 3.6: Here we show the histogram of the VBS order parameter (OVBS), for an
L=24 system across the VBS to magnetic transition. Here each panel is taken at a
different value of J2/J1, where from left to right the values are (0.78, 0.78057, 0.78114,
0.78171, 0.78229). Again we clearly see double peaked behavior across the transition,
indicative of a first-order transition. We have not plotted the histograms of Omag as
they show no signs of double peaks for these values of the coupling. This is likely due
to the fact that a spin liquid phase has begun to emerge in the intermediate region
between VBS and magnetic phases, which will become more obvious at N = 13.

also interesting to note that the phase boundaries become roughly symmetric about

J2/J1 = 1.

Again we examine the behavior near the VBS to magnetic transition at N = 12

to determine whether or not it is still first order in nature. In Fig. 3.6 we show

histograms of the VBS order parameterOVBS for different values of the coupling across

the VBS to magnetic transition. Again we clearly see a double peaked structure across

the transition, indicative of first-order behavior. Here we have not plotted histograms

of the magnetic order parameter, since it shows no signs of double peaks for these

values of the couplings. This we attribute to the presence of a spin liquid phase that

begins to emerge between the VBS and magnetic phases, which will become more

clear at N = 13.

We next move to N = 13, where we first see clear evidence that the VBS to

magnetic transition splits, revealing a featureless intermediate phase, the spin liquid.

Fig. 3.7 shows a zoom in of the VBS crossing for J2/J1 < 1, which shows very little

drift as a function of system size. The important feature here is that the magnetic

crossing, which is not visible in the plot, does not appear in the vicinity of the

VBS crossing. This indicates that the VBS phase does not transition directly into

27



0.0

0.1

0.2

0.3

0.4

0.5

R
M

ag

0.80 0.81 0.82 0.83 0.84 0.85 0.86

J2/J1

0.0

0.2

0.4

0.6

0.8

1.0

R
V

B
S

L=8

L=12

L=16

L=20

L=24

Figure 3.7: Here we focus in on the VBS ratio crossing at J2/J1 < 1 for N = 13. We
see a very clean crossing of the VBS ratio around J2/J1 ≈ 0.8275 with little drift as
a function of system size. Most importantly, we see no crossing of the magnetic ratio
on the domain of this plot, indicating that the VBS is transitioning directly to the
disordered spin liquid phase.

the magnetic phase, but rather it transitions into an intermediate spin liquid phase

which breaks no symmetries.

Again we look at the histograms of the VBS order parameter for the case N = 13

(Fig. 3.8) on an L = 24 system across the transition. Here we can see a qualitative

change taking place in the appearance of the histograms, which were collected with

similar parameters as N = 12 where the double peaks were clearly pronounced. For

N = 13 we begin to see the two peaks in the histograms merging together. This is

evidence that the first-order transition is weakening to a continuous one, suggesting

that the VBS to spin liquid phase transition in continuous in nature. This conclusion

is further supported by the fact that the VBS ratio produces an clean crossing with

minimal drift as a function of system size.

If the VBS to magnetic transition has truly split, giving rise to an intermediate
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OVBS
Figure 3.8: Histograms of the VBS order parameter (OVBS) across the VBS to spin
liquid transition for N = 13, L = 24 and J2/J1=(0.8198, 0.82014, 0.82082) (left
to right). Here we notice a clear qualitative change in the appearance of the VBS
histograms as compared with the N = 12 case. Here the double peaks, which signal
first-order behavior, have begun to merge together indicating that the first-order
transition is weakening and becoming continuous. This feature, when combined with
the clean crossing point of the VBS ratio (Fig. 3.7), provides strong evidence that
the VBS to spin liquid transition is continuous.

spin liquid phase, the question remains if the magnetic phase is still present in the

phase diagram at N = 13. To address this question we study the crossings of the

magnetic ratio in order to estimate the location of the spin liquid to magnetic transi-

tion in the thermodynamic limit, this is shown in Fig. 3.9. Here, in stark contrast to

the VBS ratio, we find significant drift of the magnetic ratio crossing. Therefore, in

order to properly estimate the location of the spin liquid to magnetic transition, we

must systematically study the crossing points of system sizes L and 2L as a function

of L, which is plotted in the inset of Fig. 3.9. By plotting the crossing values as a

function of 1/L, we can estimate the location of the transition in the thermodynamic

limit, which is given by the y-intercept. We have also plotted the location of the VBS

transition, which we have simply estimated based on the location of the VBS crossing

assuming negligible drift. Extrapolating finite sized data is difficult and dangerous,

unless one is confident about the exact scaling form that is expected. Therefore we

have contented ourselves here with an extrapolation “by eye,” which indicates that

the presence of an intervening phase (between the VBS and magnetic transitions)
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Figure 3.9: Here we show the crossing of the magnetic ratios at N = 13 for different
system sizes. Unlike the VBS ratio crossings, the magnetic crossings show substantial
drift as a function of system size. In order for us to properly estimate the location
of the spin liquid to magnetic transition we must systematically study the crossing
points of L and 2L as a function of system size (shown in the inset). Also plotted
in the inset is the crossing point of the VBS ratio assuming a negligible drift there.
Extrapolating to the y-axis gives the location of the transition in the thermodynamic
limit. Without larger system sizes or performing potentially unreliable extrapolations,
we see that an intermediate spin liquid phase likely intervenes between the VBS and
magnetic phases.

seems reasonable.

In order to address what happens at larger values of N , it is most efficient to set

J2/J1 = 1 and study the ratios as a function of N . In Fig. 3.10 we show the magnetic

ratio as a function of 10 ≤ N ≤ 19 for different system size. Here it is clear that the

magnetic order dies completely at N = 15 and is most likely already gone at N = 14.

Here we do not show the VBS ratios, although we have studied them for large N .

The story there indicates the complete absence of VBS order at least up to N ≈ 19.

We however very quickly encounter ergodicity problems of our VBS measurements at
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Figure 3.10: Here we show the magnetic ratio as function of N with J2/J1 = 1 fixed.
We see that magnetic order clearly dies by N = 15 and is most likely already gone
at N = 14. Here we do not show the VBS ratios, as we quickly encounter ergodicity
issues of our VBS measurements at large N , resulting in a jittery signal that begins
to turn on around N = 19. The result is that the spin liquid phase appears over an
extended range of N along the J2/J1 = 1 axis, with a minimal extent of 15 ≤ N ≤ 18.

large N , making it difficult to estimate the location of the transition. Regardless of

this complication, it is clear that the spin liquid is extended over many values of N .

Based on the numerical results that we have so far presented, we can begin to

sketch out a phase diagram for this model as a function of N and J2/J1, this is given

in Fig. 3.11. In the discussion section we go on to discuss the interesting features of

the phase diagram.

3.5 Discussion

We would now like to discuss the salient aspects of the model that we present in this

section. A key feature of the this model is that it allows us to deform an SU(N)

symmetric model into an SO(N) symmetric one, while preserving the symmetry of
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Figure 3.11: A cartoon of the phase diagram based on the numerical results that we
have presented so far. Here the pink lines represent magnetic order (Mag) that we
have measured in QMC and gray lines represent either VBS order on the vertical
and horizontal bonds (VBS) or VBS order on the diagonal bonds (VBSD). The spin
liquid phase (SL) is represented as green lines. The red circle on the J2/J1 = 0 axis
represents the deconfined magnetic to VBS phase transition that is known to exist
in the SU(N) symmetric models [1].The dark blue squares between phases represent
first order phase transitions, where we see always first order transitions between VBS
and magnetic phases. The light blue circles represent continuous transitions, which
appear at the boundaries of the spin liquid phase. Here we have not drawn the phase
diagram past N = 14, as our VBS data becomes unreliable at such large values of
N . We believe however that the spin liquid phase extends at least up to N = 18,
cutting out a large swath of the phase diagram. For illustrative purposes, on the left
we have given a cartoon picture of the relative bond strengths on the lattice for small
(bottom) and large (top) values of J2/J1.

the square lattice. Our first finding is that when SO(N) anisotropy is introduced,

the VBS to magnetic transition shows clear signatures of first-order behavior. The

interpretation of this result is that the deconfined CPN−1 fixed point that describes

the magnetic to VBS transitions in the SU(N) symmetric models [16] is unstable to

the presence of SO(N) anisotropy. Interestingly, this is contrary to a prediction made

in a previous theoretical treatment [36].
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Another interesting feature of this model, one that becomes apparent as N be-

comes larger, is the approximate symmetry about the J2/J1 = 1 axis. It is quite

remarkable if this truly indicates the fact that the physics is identical both above

and below that axis. If this is indeed the case, it is not at all obvious. Although

for J2/J1 � 1 we have essentially decoupled square lattices, for values just slightly

greater than 1 they are still strongly coupled, and yet a symmetry about J2/J1 = 1

would imply that the behavior is approximately the same as if only one square lattice

is present. At this point a full analysis of the transition to the VBSD phase is lacking,

though it will be interesting to compare this to the VBS transition to verify if they

are indeed the same.

A puzzling aspect of the data at N = 12, which we hinted at in the previous

section, is the fact that the VBS order parameter shows a double peaked histogram

across the VBS to magnetic transition, while the magnetic histogram remains smooth.

We have attributed this the the possibility of a very thin intervening spin liquid phase,

however it is quite clear that the VBS to spin liquid transition is continuous at larger

N . A resolution to this apparent contradiction could come at larger system sizes,

where it is possible that the two peaks in the VBS histogram will merge together,

producing something similar to what is seen in Fig. 3.8. This would be the case if

there truly were a very thin intervening spin liquid phase. Alternatively, it could be

that the magnetic order parameter shows double peaked histograms at some slightly

separated values of J2/J1. By going to larger system sizes, the points where the VBS

and magnetic order parameters are double peaked could merge together, implying

a direct first-order transition between VBS and magnetic phases. This detail goes

beyond the purpose of our work here, which is to broadly explore the phase diagram

of this model as a whole.

The most interesting aspect of the phase diagram is of course the spin liquid phase.

The first thing to notice about this phase is that it persists through several values
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of N , in contrast to the same model on the triangular lattice where the model only

shows spin liquid behavior at N = 11 (in the case of the triangular lattice nearest

neighbor model) [33]. So far we have only asserted that VBS order is absent on the

J2/J1 = 1 line at most for N < 19, although in order to clearly uncover the behavior

in this limit, more careful numerical simulations are needed. It is indeed possible that

the physics at large N is quite different from the triangular lattice case, where VBS

order is very clearly observed at larger N , with no apparent ergodicity issues.

3.6 Conclusion and Outlook

In conclusion of this chapter, we have considered the effect of SO(N) anisotropy on

deconfined critical points that exist between magnetic and VBS phases in SU(N)

magnets. The result is a first-order transition when anisotropy is added. We then

went on to explore the phase diagram of the SO(N) model as a whole, which exhibits

an extended spin liquid phase that persists for many values of N . We found evidence

that phase transitions into the spin liquid are continuous in nature, which supports

the findings in [33].

More data still needs to be collected for this model in order to address some

particular questions that still remain. We would like to know, for instance, the

universality class of the critical point separating the VBS and spin liquid phases. It

is believed that this will be in the same universality class as the 3D XY transition [37],

though ultimately we would like to extract critical exponents from scaling collapses

in order to verify this explicitly. It would be most suitable to carry out the collapses

at N = 14, where the complication of a nearby spin liquid to magnetic transition is

not present. The magnetic to spin liquid transition will most likely not be pursued,

as the drift of the magnetic crossing point would indicate substantial corrections to

critical scaling, complicating the analysis and forcing us to go to very large lattices.

Perhaps the biggest looming question in this model, and related models, is the
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nature of the spin liquid state. So far it has only been postulated that this phase

is indeed a quantum disordered phase of matter, which preserves all symmetries and

hence cannot be detected by any local order parameter [8]. Indeed, one of the best

ways of uncovering the signatures of a spin liquid phase is with a nonlocal probe:

the so-called ”topological entanglement entropy” [38, 39]. We have so far pursued

this direction, though we will not detail it in this dissertation. Our preliminary

results indicate that indeed we have correctly identified this disordered phase and

being a quantum spin liquid, which is characterized by long-range entanglement. The

presence of this exotic phase in these simple quantum models opens up the possibility

of investigating different spin liquid phases on other lattices and in three dimensions.
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Chapter 4 First-Order Superfluid to VBS Transitions at Small N

The following chapter has been take from Ref. [40].

4.1 Introduction

Quantum phase transitions have emerged as an important paradigm in the study of

quantum many-body phenomena. [9] Deconfined criticality is a novel field theoretic

proposal for a continuous transition between a magnet or superfluid that breaks an

internal symmetry and a valence bond solid that breaks a lattice translational sym-

metry. [16, 17] The field theories realized at these new critical points are strongly

coupled gauge theories, which are rather fundamental and hence connected to a wide

range of problems, [3,41] making the study of deconfined criticality of general interest

in theoretical physics. The study of deconfined critical points has been significantly

enhanced by the availability of sign problem free quantum Monte Carlo (QMC) sim-

ulations which are able to access the strong coupling physics of the emergent gauge

theories in some particular Marshall positive Hamiltonians that host this phase tran-

sition. [1]

Historically, in the discovery of deconfined criticality, a prominent role was played

by the “easy-plane” deconfined critical point, which is most naturally realized in

lattice models of superfluids. The square lattice quantum XY model has been studied

extensively in the last few decades as the simplest quantum lattice spin model for a

superfluid. The model can be written in the following ways,

HXY = −J
∑
〈ij〉

(
Sxi S

x
j + Syi S

y
j

)
(4.1)

= −J
2

∑
〈ij〉

(
S+
i S
−
j + S−i S

+
j

)
, (4.2)
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where the ~Si are the usual S = 1/2 Pauli matrices on site i. The model has only a

sub-group of the SU(2) symmetry of the Heisenberg model: it has a U(1) rotation

symmetry about the ẑ axis and a Z2 symmetry of flipping the Sz components. We

note here that the sign of J is inconsequential, since it can be changed by a uni-

tary transformation. The model HXY is Marshall positive and hence free of the sign

problem of quantum Monte Carlo. Exploiting this fact, extensive numerical simula-

tions have shown that HXY has long range superfluid order at T = 0. To study the

destruction of superfluid order in the ground state, a sign-free generalization of the

quantum XY model to include a four spin coupling K was introduced, [42]

HK = −K
∑
〈ijkl〉

(
S+
i S
−
j S

+
k S
−
l + S−i S

+
j S
−
k S

+
l

)
(4.3)

It has been shown that this model hosts three phases, a superfluid state at small K/J ,

valence-bond solid order for K/J and checkerboard order for large K/J . The phase

transition between VBS and checkerboard was found (as expected) to be strongly

first order. On the other hand the fate of the transition between superfluid and VBS

in this model has remained enigmatic, while no evidence for a discontinuity have been

observed in this model, large scaling violations may not be interpreted consistently

as a continuos transition. [43] This transition if continuous would have been the first

example of a “deconfined critical point,” its first numerical study even predating

the field theoretic proposal. The square lattice easy-plane deconfined critical point

played a prominent role in the original proposal and additionally it has been shown

that should the superfluid-VBS transition in the quantum XY model be continuous,

it would be a rare example of a self-dual critical point, [44] which can be connected to

various interesting field theoretic formulations with topological terms. [45] We note

here that some direct studies of the effective field theory [46, 47] and other quantum

models on frustrated lattices [48,49] which are believed to be in the same universality

class have found evidence for a first order transition. In the meantime, attention in

37



deconfined criticality has shifted to the study of the fully SU(N) symmetric Hamilto-

nians, [10, 21,50] which have shown compelling evidence for a continuous transition.

However, given the important role that the square lattice XY model has had

as the first putative host of deconfined criticality, it remains of interest to have an

unambiguous answer to the nature of the superfluid-VBS transition in this model.

Instead of addressing this issue in the J-K model, where the results of the simulations

are hard to interpret [43] we study a different model which can be understood as

an easy-plane generalization of the SU(2) symmetric J-Q model. [10] We provide

clear evidence that the transition in this model is direct and discontinuous both for

superfluid and the VBS order. Additionally, we are able to provide a simple way

to generalize the easy-plane J-Q model to larger-N . Through large scale numerical

simulations we show that HN
J⊥Q⊥

hosts the superfluid-VBS phase transition for all

N ≤ 5. We provide evidence that this transition remains first order for N = 5, which

leads us to conclude that easy-plane deconfined criticality is generically first order for

small-N .

The chapter is organized as follows. In Sec. 4.2, we introduce the new easy-plane J-

Q model, HN
J⊥Q⊥

and write it down in different ways, emphasizing how it is connected

to previously studied models. In Sec. 4.3 we show how it maps to a particular family

of loop models in one higher dimension and use this representation to formulate an

efficient Monte Carlo algorithm. In Sec. 4.4 we discribe our measurments, and in Sec.

4.5 we discribe the properties of our model with Q = 0. In Sec. 4.6, we present results

of simulations of HN
J⊥Q⊥

on the square lattice, focussing on the first-order nature of

the phase transitions in this model. Finally, in Sec. 4.7, we provide our conclusions

and outlook.
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4.2 Lattice Hamiltonian

It is useful to write our Hamiltonian in a few different ways to elucidate certain

diverse aspects. First let us consider the generalization of the XY model in the form,

Eq. (4.1) to arbitrary-N . A natural way to do this on a bipartite lattice in the spirit

of the work of Affleck, [22] is to consider the following Hamiltonian,

HN
J⊥

= −J⊥
N

∑
〈ij〉

∑
a∈od

T ai T
a∗
j , (4.4)

where the Ti are N ×N matrices acting on site i, which are the generators of SU(N).

Here we choose the normalization such that Tr[T aT b] = δab. These generators act on

a local Hilbert space which now can take N different colors and are denoted by |α〉i.

We note that i is always chosen on the A sub-lattice and j is chosen on the B sub-

lattice, so that spins on one sublattice transform in the fundamental and spins on the

other sublattice transform under the conjugate to fundamental representations. The

important difference with the usual fully SU(N) symmetric Heisenberg model is the

sum on generators a, is restricted to the off-diagonal generators. It is well known that

of the N2− 1 generators of SU(N), N − 1 are diagonal and N2−N are off-diagonal.

The restriction of the sum to the N2−N off diagonal generators guarantees that when

N = 2, we recover the usual XY model. For larger N , Eq. (4.4) is a convenient large

N generalization of the XY model. We note here that the restriction to off-diagonal

genertors reduces the symmetry from SU(N) to a U(1)N−1×SN subgroup (where SN

is the permutation group), which generalizes the U(1)×Z2 of Eq. (4.1). Physically this

corresponds to rotations about the directions of the N − 1 diagonal generators and

a discrete relabeling of the colors. We shall call this symmetry ep-SU(N) symmetry.

Just like in the fully symmetric SU(N) case, the virtue of staggering the representation

is that an A-B pair can form an ep-SU(N) singlet for all N . For sites i ∈ A and j ∈ B,

the singlet may be written as |sij〉 = 1√
N

∑N
α=1 |αiαj〉

Having written the model formally in terms of the SU(N) generators helps us see
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that model is a large-N extension of HXY . To get a better intuition for the matrix

elements of the model we now write it directly in terms of the local Hilbert space. In

terms of which, Eq. (4.4) takes the simple form,

HN
J⊥

= −J⊥
N

∑
<ij>

P̃ij (4.5)

P̃ij =
N∑

α,β=1,α 6=β

|ββ〉ij〈αα|ij. (4.6)

We have put a ˜ on P̃ij to emphasize that it is not a projection operator. It would

have been the SU(N) symmetric projector on the singlet state |s〉ij if the condition

α 6= β were dropped. Having α 6= β in P̃ij is a direct consequence of restricting the

sum on a in Eq. (4.4) to off-diagonal generators and is what results in the reduced

easy-plane symmetry. This form of the Hamiltonian also makes it apparent that

the model is Marshall positive (off-diagonal matrix elements are all negative) and is

hence amenable to sign problem free quantum Monte Carlo, just like the fully SU(N)

symmetric case. [51]

Now it is straightforward to extend the idea of a four-spin coupling, the so called

“Q” interaction [10,50] to the easy-plane case for any N ,

HN
Q⊥

= −Q⊥
N2

∑
<ijkl>

P̃ijP̃kl, (4.7)

where as in the original J-Q model, the sum is taken on both orientations of the bond

pairing of the square lattice plaquettes. We note here that for N = 2, the Q⊥ term

does not reduce to HK , Eq. (4.3). It includes all the terms present there, but contains

in addition pair hopping terms that are not present in HK . Thus HN
J⊥Q⊥

≡ HN
J⊥

+HN
Q⊥

provides a new way to cross the superfluid-VBS phase boundary for N = 2 and also

provides a neat way to extend the four spin interaction to arbitrary N , while still

preserving the desired ep-SU(N) symmetry.
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Figure 4.1: A section of a stochastic series expansion configuration of the Hamiltonian,
Eq. (4.5), which takes a simple form in terms of N -colored tightly packed oriented
closed loops. By “oriented”, we mean an orientation of the links (e.g. shown here as
arrows going up on the A sub-lattice and down on the B sub-lattice) can be assigned
before any loops are grown, and the orientation remains unviolated by each of the
loops in a configuration. The extreme easy-plane anistropy results in an important
constraint, i.e. loops that share a vertex (operators represented by the black bars)
are restricted to have different colors.

4.3 Loop Representation

It turns out that our models has a convenient loop representation in terms of loops in

one higher dimension. To see this start with Eq. (4.5) and construct a stochastic series

expansion (see Ref. [13] for a comprehensive review). From previous work on similiar

models (see e.g. Ref. [52]), we know that the partition function of SU(N) quantum

spin Hamiltonians can be viewed as the classical statistical mechanics of N -colors of

tightly packed oriented loops in one higher dimension. A section of this particular kind

of loop configuration, describing one term in the expansion of the partition function

is depicted in FIG. 4.1 for our model. An essential difference from the usual SU(N)

case is that loops which are attached to the same vertex (operators represented by

the black bars) are restricted to have different colors, which is due to the absence of

41



diagonal matrix elements in Eq. (4.5). This adds an important constraint: whereas

in the fully symmetric SU(N) case, given a legal loop configuration loop colors could

be assigned independently, in the easy-plane case studied here only a subset of the

colorings (the ones that respect the constraint) are allowed. This affects the recoloring

of loops in a Monte-Carlo algorithm.

The fact that the loops in our model obey a coloring constraint and that diagonal

operators are absent makes this model difficult to simulate as given. This difficulty

is overcome, as is commonly done, by shifting the Hamiltonian by a constant. We

shift our Hamiltonian in such a way that we introduce diagonal operators with equal

weight as the off-diagonal ones. This shift only adds a constant to the energies and

does not affect the physics of the model in anyway, i.e. the eigenstates are identical.

The shifted Hamiltonian is given by

H̃N
J⊥

= −J⊥
N

∑
<ij>

(P̃ij + 1) (4.8)

where the diagonal and off-diagonal operators have equal weight. With this shift the

directed loop equations [11], describing how the loops pass through a vertex, take

on a particularly simple form. We show the loop updating moves and correspond-

ing probabilities in Fig. 4.2. With these rules the loops used to update our QMC

configurations are not deterministic, as they are in the SU(N) symmetric case. The

loops here can intersect with themselves and one may worry about growing a loop

that fails to close onto itself. We have never seen a case of a loop not closing during

any of our simulations.

So far we have described our algorithm with Q⊥ = 0. The introduction of pla-

quette operators is easily dealt with if we regard them as simply a product of two

(shifted) bond operators. Our algorithm then inserts and removes diagonal plaquette

operators, present due to the constant shift, and can convert them to off-diagonal

plaquettes by performing loop updates. Since the plaquette operator is viewed as
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(a) Moves with probability 1/2 (b) Moves with
probability 1

Figure 4.2: Loop updating moves describing how loops pass through a vertex, depicted
with a black bar. These moves cause conversions between the diagonal and off-
diagonal matrix elements present in the Hamiltonian. For each update pictured here
there is a reverse process that we have not drawn.

two separate bonds operators, loop updates through the former are the same as for

the latter.

4.4 Measurements

Here we will outline the measurements that we use to characterize the phases of our

model. On the magnetic side of the transition the spin stiffness, or superfluid stiffness

in the language of hard-core bosons, serves as a useful order parameter. It is formally

defined as follows:

ρs =
1

Nsite

∂2〈H(φ)〉
∂φ2

∣∣∣
φ=0

(4.9)

where H(φ) means that we twist the boundary conditions along either the x or y

direction. This twist can be implemented, for instance, by attaching phase factors to

all x-oriented bond operators relative to one color e.g. eiφ|αα〉ij〈©© |ij for α 6=©,

i ∈ A sublattice and j ∈ B sublattice. The Hermitian conjugate of this operator

appears with e−iφ. Due to the staggered representation, the signs in the exponent are

flipped when i ∈ B and j ∈ A. The bond operators take on this form when the spins

are incrementally twisted along the x-direction about the N − 1th diagonal generator
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Figure 4.3: The stiffness and VBS order parameter extrapolations as a function of
1/L for different N in the nearest neighbor easy-plane model HN

J⊥
, defined in Eq. (4.4)

or equivalently (4.5). We find clear evidence that the system has superfluid order for
all N ≤ 5 and VBS order for N > 5. To show ground state convergence we plot both
β = L, 2L in diamond and circular points, respectively.

of SU(N). In practice, due to the permutation symmetry of the model, the © color

is arbitrary, and we can average over the colors in QMC.

In QMC the stiffness is related to the winding number of configurations via

ρs =
1

Nsite

〈W 2〉
β

, (4.10)

where operators with a postive (negative) phase factor count as positive (negative)

winding.

In order to characterize the VBS phase, we measure the equal time bond-bond

correlation function 〈P̃~rαP̃~r′α〉. Here we have denoted a bond by its location on the
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Figure 4.4: Phase diagram of the HN
J⊥Q⊥

model as a function of the ratio gc = Q⊥/J⊥
and N . Using the HN

J⊥Q⊥
model we have access to the superfluid-VBS phase boundary

for N = 2, 3, 4 and 5. In this work, we provide clear evidence that the transition for
N = 2 and N = 5 is direct but discontinuous for both order parameters, suggesting
that the easy-plane-SU(N) superfluid-VBS transition is generically first order for
small-N .

lattice ~r and its orientation α (x or y in two-dimensions). In the VBS phase, lattice

translational symmetry is broken giving rise to a Bragg peak in the Fourier transform

of the bond-bond correlator defined as

C̃α(~q) =
1

N2
site

∑
~r,~r′

ei(~r−~r
′)·~q〈P̃~rαP̃~r′α〉. (4.11)

For columnar VBS patterns, peaks appear at the momenta (π, 0) and (0, π) for x

and y-oriented bonds, respectively. The VBS order parameter is thus given by

OV BS =
C̃x(π, 0) + C̃y(0, π)

2
. (4.12)

Another useful quantity that we use to locate phase transitions is the VBS ratio.

Rx
V BS = 1− C̃x(π + 2π/L, 0)/C̃x(π, 0) (4.13)
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And similarly for Ry
V BS with all of the qx and qy arguments swapped. We then

average over x and y- orientations.

RV BS =
Rx
V BS +Ry

V BS

2
. (4.14)

This quantity goes to 1 in a phase with long-range VBS order, and approaches 0 in

a phase without VBS order. It is thus a useful crossing quantity that allows us to

locate the transition.

To construct these quantities, we measure the equal time bond-bond correlation

function in QMC with the following estimator

〈Θ1Θ2〉 =
1

β2
〈(n− 1)!N [Θ1,Θ2]〉 (4.15)

where Θ1 and Θ2 are any two QMC operators (in our case off-diagonal bond opera-

tors), n is the number of non-null operators in the operator string, and N [Θ1,Θ2] is

the number of times Θ1 and Θ2 appear in sequence in the operator string (excluding

null slots).

4.5 J⊥-Only Model

Consider the ground state phase of HN
J⊥

as we vary the number of colors N . For

N = 2 we know the Hamiltonian is equivalent to the quantum XY model, whose

ground state is a superfluid. Here it is useful to recall our interpretation of HN
J⊥

as

a classical loop model, discussed in Sec. 4.3. In the loop language this corresponds

to a long loop phase, where the loops span the system. It is expected that when N

is increased the system would like to form as many loops as possible to maximize its

entropy, causing it to enter a short loop phase. The way our loop model is defined

this will cause the lattice symmetry to break, leading to a VBS and destruction of

superfluid order.

Motivated by these considerations, in FIG. 4.3 we plot the spin-stiffness and VBS

order parameter for 2 ≤ N ≤ 6. We find that the ground state of this Hamiltonian
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Figure 4.5: Crossings at the SF-VBS quantum phase transition for N = 2 in HN
J⊥Q⊥

.
The main panels shows the crossings for Lρs and RV BS, which signal the destruction
and onset of SF and VBS order respectively. The inset shows that the SF-VBS
transition is direct, i.e. the destruction of SF order is accompanied by the onset of
VBS order at a coupling of gc = 8.63(1).

has long-range superfluid order for N ≤ 5 (signalled by a finite spin stiffness) and has

VBS order for N > 5. These results are obtained by fixing J⊥ = N,Q⊥ = 0 and we

have plotted two values of inverse temperature β = L, 2L. On the scale of the plot

the two values of β are indistinguishable thus indicating ground state convergence.

Since we find magnetic order for N ≤ 5, we can study the phase transition for these

values of N with the introduction of Q⊥.

In conclusion, we find that magnetic order gives way to VBS order in the ep-SU(N)

magnet at an N between 5 and 6. In comparison, in the fully SU(N) symmetric case

magnetic order is lost between N = 4 and 5. [51,53]
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Figure 4.6: Evidence for first order behavior at the SF-VBS quantum phase tran-
sition for N = 2. The data was collected at a coupling gc = 8.63. The left panel
shows MC histories for both ρs and OV BS, with clear evidence for switching behavior
characteristic of a first order transition. The right panel shows histograms of the
same quantities with double peaked structure which gets stronger with system size,
again clearly indicating a first order transition.

4.6 J⊥-Q⊥ Model

Through numerical simulations described below we have obtained a phase diagram

of the model HN
J⊥Q⊥

, which we show in FIG. 4.4. It is clear that the Q⊥ interaction,

which mediates an attraction between the singlets will favor the formation of a VBS

state. We confirm this by numerical simulations in which we find that the superfluid

order is destroyed at a finite value of Q⊥ for N = 2 and gives way to a VBS state. As

we increase N , the superfluid order becomes weaker in HN
J⊥

, hence requiring only a

smaller value of the Q⊥ coupling to destroy the SF order, as is evident from the phase

diagram. Finally, as expected for N > 5, we are unable to cross the superfluid-VBS

phase boundary with HN
J⊥Q⊥

.
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We now turn to an analysis of the quantum phase transitions which are denoted

by the solid black points in FIG. 4.4. We begin with the case of N = 2. FIG. 4.5

shows SU(2) data of our magnetic and VBS crossing quantities, Lρs and RV BS. In

our data scans we have fixed J2
⊥ + Q2

⊥ = 1 and have set β = 2L. Our best estimate

for the location of the transition is Q⊥/J⊥ = 8.63(1). Close to the transition we

find that signs of first-order behavior begin to appear. FIG. 4.6 shows the histories

of our measurements as a function of Monte Carlo time. We find clear signs that

our measurements switch between two values close the transition, an effect which

becomes more pronounced at larger system size. Furthermore, binning this data into

histograms shows a clear double peaked structure, indicating a first order transition

(FIG. 4.6).

First order behavior is observed all the way up to N = 5, which is the largest

value of N where we can study the transition by tuning Q⊥/J⊥.

4.7 Conclusions

To summarize, we have introduced a new family of ep-SU(N) models which generalize

the XY model of N = 2. The generalization preserves the property that it takes

only two sites to form a singlet, independent of the value of N . This property is

important to the formation of a columnar VBS state. The generalization defines an

easy-plane four-spin interaction Q⊥, which allows us to access the superfluid-VBS

phase boundary for N = 2, 3, 4 and 5. Numerical studies show clear evidence for first

order behavior.

How should this observation be interpreted in the terms of the deconfined quantum

criticality? In the deconfined criticality scenario the first order transition could either

be because the field theory itself does not have a fixed point or if the field theory

does have a fixed point, because the quadrupled monopoles are relevant at the fixed

point. [54] Given the numerical evidence in the symmetric case that quadrupuled
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monopoles are irrelevant, we interpret the observed first order behavior here to imply

that the non-compact easy-plane deconfined field theory itself is unstable to runaway

flow for small-N . This is consistent with direct numerical studies of the easy-plane

theory for N = 2. [46, 47] Our study raises questions that need to be addressed in

future field theoretic and numerical work. Is there a stable large-N easy-plane SU(N)

deconfined critical point, or is there a generic reason it does not exist? If it does exist,

it is interesting to ask whether numerical simulations will be able to access a large

enough N to study this new quantum criticality.

Another interesting topic is the nature of the transition in the ep-SU(N) with-

out Berry phases. This study can be numerically achieved by studying our model,

Eq. (4.4) on a bilayer square lattice. For N = 2 one would expect a 3D XY transition

– what happens at larger-N? Previous work on the bilayer SU(N) magnet [55] and

classical loop models [56] has shown in the symmetric case that the transition is first

order for large enough N , the answer to the same question in the easy-plane case is

not known currently and will be pursued in future work.
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Chapter 5 Easy-Plane Deconfined Criticality at Large N

This chapter has bee taken from Ref. [57], which has been accepted for publication

in the Physical Review Letters.

5.1 Introduction

The emergence of gauge theories in quantum spin Hamiltonians has played an im-

portant role in theoretical descriptions of novel magnetic phenomena over the past

few decades. Recently, by exploiting advances in simulation algorithms for quantum

anti-ferromagnets [1], the connections between magnetism and gauge theories have

facilitiated controlled numerical access to otherwise poorly understood strongly cou-

pled gauge theories; the most prominent example is the study of N -component scalar

electrodynamics (also called CPN−1) that emerges right at the direct continuous tran-

sitions between magnetic and translational-symmetry breaking “valence bond solid”

(VBS) states in SU(N) magnets, a phenomena popularly called “deconfined critical

points” (DCP) [16].

Two prominent physical systems where the ideas of DCP apply are lattice super-

fluids and antiferromagnets, each giving rise to its own variant of the CPN−1 theory.

In the context of superfluids (SF), the appropriate description is a “easy-plane” CP1

field theory [16,17] which applies to the superfluid SF-VBS critical point in S = 1/2

XY models [42]. The easy-plane case was studied intensely intially since a self-duality

suggested that this could be the best candidate for a DCP [44]. Subsequent numer-

ical work has concluded however that this transition is first order, both in direct

discretizations of the field theory [46, 47] as well as in simulations of the quantum

anti-ferromagnet [40]. The easy-plane case is in sharp contrast to the case of anti-

ferromagnets with SU(N) symmetry, where striking quantitative agreement between
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detailed field theoretic calculations [45, 58–60] and numerical simulations has been

demonstrated [21,28,54].

The persistent first order behavior in the XY-like models and its striking difference

from the continuous transitions found in the SU(N) symmetric case has been unex-

plained so far, despite the central role of both systems in our understanding of the

DCP phenomena. In this work we address this issue by formulating an extenstion of

the “easy-plane” XY symmetry of SU(2) to general SU(N). Our approach allows for

a study of the first order transition for arbirary N using both lattice simulations of an

easy plane-SU(N)[ep-SU(N)] model as well as renormalization group (RG) calcula-

tions on a proposed easy-plane-CPN−1 [ep-CPN−1]: We find the first order transition

in the ep-SU(N) models found for N = 2 in previous work persists for larger N .

A careful analysis however shows that the first order jump quantitatively weakens

as N increases. RG ε-expansion calculations find that the field theory hosts a new

ep-CPN−1 fixed point only for N > Nep, suggesting that the transition can eventually

become continuous. Consistent with this result, we find that the transition in our

lattice model turns continuous around N ≈ 20. For N = 21 we provide a detailed

scaling analysis of our numerical data that confirms a continuous transition in a new

universality class. Our work clarifies and significantly extends the discussion of the

DCP phenomena in easy-plane magnets and its relation to the symmetric case.

5.2 Easy-Plane Model & Field Theory

We introduce a family of bipartite ep-SU(N) spin models that are extensions of the

quantum XY model to larger N akin to those studied by us recently [40]. They are

written in terms of the T ai , the fundamental generators of SU(N) on site i:

Hep = −J1⊥

N

∑
a,〈ij〉

′
T ai T

a∗
j −

J2⊥

N

∑
a,〈〈ij〉〉

′
T ai T

a
j . (5.1)
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Figure 5.1: First order transitions for moderate values of N . The upper panels shows
MC histories (arbitrary units) of the estimator for m2

⊥ for N = 6 and 10. The bottom
panel shows histograms of m2

⊥ taken at L = 50 for J2/J1 ≡ g = 0.250, 0.876, 1.58 for
N = 6, 8, 10 respectively clearly show double peaked behavior. The double peaked
beahvior persists in the T = 0 and thermodynamics limit (see Appendix B.2).

the
∑′ denotes the sum on a is restricted to the N2 − N off-diagonal generators (a

sum on all a would give the SU(N) model). The 〈ij〉 (〈〈ij〉〉) indicates nearest (next

nearest) neighbors on the square lattice which are on opposite (same) sublattices and

in conjugate (same) representations. Hep is an easy plane deformation of the SU(N)

J1-J2 model [21], it has a global U(1)N−1×SN (we call this ep-SU(N)) in addition

to time reversal and lattice symmetries. As we shall show the model harbors in its

phase diagram the SF-VBS transition for all N > 5. Hep is Marshall positive for

J1⊥, J2⊥ > 0 (see Appendix B.1); we simulate it with stochastic series Monte Carlo

on L× L lattice at an inverse temperature β [13].

To obtain the effective field theory (Lep) for Eq. 5.1, we start with the CPN−1

model (Ls) proposed to describe DCP in anti-ferromagets with SU(N) symmetry [16,
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17] and deform it using an anisotropy operator (Lv), so that Lep = Ls + Lv with,

Ls =
∑
α

|(∂µ − ieAµ)zα|2 +
1

2
(~∇× ~A)2

+ r
∑
α

|zα|2 +
u

2

(∑
α

|zα|2
)2

Lv =
v

2

∑
α

|zα|4, (5.2)

where the zα are N complex fields coupled to a U(1) gauge field, Aµ. The term v

breaks the SU(N) symmetry of Ls to the same ep-SU(N) symmetry found above for

Eq. 5.1. It is known from the large-N expansion that for N larger than some finite

Ns, in d = 3 the CPN−1 field theory Ls has a finite coupling fixed point (FP) [3, 61].

Below we will address the fate of these FPs for Lep.

5.3 Weakening First-Order Transition

We begin with a numerical study of Eq. (5.1). We have shown [40] that the ep-

SU(N) models map to a certain loop model. We can hence calculate two use-

ful quantities to probe magnetic ordering: the average of the square of the spa-

tial winding number of the loops 〈W 2〉 and a normalized magnetic order parameter

m2
⊥ = 1

(1− 1
N

)L4

∑
a

′∑
i,j T̃

a
i T̃

a
j [where the sum on a is on the off-diagonal generators, i

and j are summed on the entire lattice and T̃ = T (T ∗) on the A(B) sublattice], which

although off-diagonal in the |α〉 basis can be estimated by measuring a particular sta-

tistical property of the loops (see Appendix B.2). We have normalized m2
⊥ so that

the maximum value it can take is 1 for all N , allowing for a meaningful comparison

across different N .

Previously we found that the SF-VBS transtion is first order for N ≤ 5 [40]. In

Fig. 5.1 we present data that shows the first order behavior persists as N is increased

up to N = 10. A hitherto unanswered but important question is whether the first

order jump weakens as N increases. We find evidence in favor of this assertion, since
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Figure 5.2: Scaling of the spatial winding number square 〈W 2〉. (a) Crossing for
N = 6. (b) Crossing for N = 21. (c) Value at the L and L/2 crossing of 〈W 2〉 for a
range of N normalized to the crossing value at L = 20 for each N . For the smaller
N a clear linear divergence is seen as expected for a first-order transition (ergodicity
issues limit the system sizes here). For larger N a slow growth is observed very similar
to what has been studied in detail for the SU(2) case and interpreted as evidence for
a continuous transition with two length scales [2], like we have here. The data was
taken at β = 6L which is in the T = 0 regime (see Appendix B.2).

the histogram peaks get closer as N is increased. Beyond N ≈ 16 we have found no

evidence for double peaked histograms. To carry out a more quantitative analysis,

which has been popular in the study of the DCPs [46], we turn to 〈W 2〉 (which is

related to the spin stiffness as βρs). At a first order transition one expects a linear
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divergence of 〈W 2〉 as one approaches the phase transition since ρs stays finite. Any

sub-linear behavior indicates that the transition is continuous since ρs vanishes in the

thermodynamic limit [26]. In Fig. 5.2 we present a study of the crossing of 〈W 2〉. We

find clear evidence for the expected linear behavior at moderate values of N . As N is

increased beyond about N ≈ 16 we find a very slow growth of 〈W 2〉 inconsistent with

linear behavior but consistent with what has been found in SU(N) models, where the

transition is believed to be continuous [2,26]. This study provides clear evidence that

the first-order jump decreases as N increases, possibly becoming continuous.

5.4 Renormalization Group Analysis

The weakening of the first-order SF-VBS transitions at larger N raises important

questions: Is the transition first order for all N or does it become continuous beyond

some finite Nep? If the transition becomes continuous: Is it a new universality class

of an ep-CPN−1 or is the anisotropy irrelevant resulting in CPN−1 criticality for the

“easy-plane” models?

To answer these questions, we compute the RG flows of Eq. (5.2) in 4− ε dimen-

sions. We will work in the critical plane where r = 0, the r operator being strongly

relevant at tree level will continue to be relevant in the ε-expansion. To leading order

(assuming u,v and e2 are O(ε)), we find the following RG equations,

de2

dlns
= εe2 − N

3
e4,

du

dlns
= εu− (N + 4)u2 − 4uv − 6e4 + 6e2u,

dv

dlns
= εv − 5v2 − 6uv + 6e2v, (5.3)

which for v = 0 reduce to the well known RG equations for the CPN−1 model [3,62].

Given the relevance of r, a generic critical point of ep-CPN−1 would be a fixed point of

Eq. (5.3) with all three eigen-directions in e2-u-v-space irrelevant. The FP structure

and flows of Eq. 5.3 (shown in Fig. 5.3) change at two values of N : Ns and Nep with
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Figure 5.3: RG flows of the ep-CPN−1 model for (a) Ns < N < Nep and (b) N > Nep

at leading order in 4 − ε dimensions obtained by numerical integration of Eq.(5.3).
Fixed points are shown as bold dots, we have only labeled a few significant to our
discussion. The flows in the v = 0 plane have been obtained previously [3] and
include the “s” fixed point that describes DCP in SU(N) models (red dot). While
the flows have many FPs, a DCP of the ep-SU(N) spin model must have all three
eigen-directions in the e2-u-v irrelevant. For N < Nep there are no such FPs; there is
hence a runaway flow to a first order transition. For N > Nep two FPs emerge: “m”
is multicritical and “ep” is the new ep-DCP that describes the SF-VBS transition
(yellow dot). The gaussian fixed point at the origin has been labeled “g” for clarity.
See Appendix B.4 for further details.

Ns < Nep. For N < Ns (not shown) there are no FPs with e2 6= 0 and a generic flow

runs away to a first order transition. For N > Ns a v = 0 FP “s” appears, which

describes the SU(N) DCP phenomena, but at which v is always relevant. There are

two distinct fates of the flow with v 6= 0: For Ns < N < Nep (see Fig. 5.3(a)) v causes

a runaway flow to a discontinuity FP, i.e. the phase transition turns first order. On

the other hand, for N > Nep (see Fig. 5.3(b)) a new fixed point “ep” appears. At

this FP all eigen-directions in the e2 − u − v space are irrelevant and hence r is the

only relevant perturbation. “ep” hence describes a generic continuous deconfined

SF-VBS transition in models of the form Eq. (5.1). In the leading order of the ε-

expansion we have Ns ≈ 183 [3] and Nep ≈ 5363 (independent of ε). From previous

work on the symmetric case, it is well known that these leading order estimates

are unreliable in d = 3: Indeed, in the next to leading order, Ns becomes negative

for ε = 1 [63, 64]. Ultimately the values of Ns,ep must be obtained from numerical
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Figure 5.4: Correlation ratios close to the phase transition for N = 21. (a) The SF
order paramater ratio, Rm2

⊥
shows good evidence for a continuous transition with a

nicely convergent crossing point of g = 6.505(5). (b) RVBS shows a crossing point
that converges to the same value of the critical coupling. We note however that the
crossing converges much more slowly (see text). The inset shows the convergence of
the crossings points of L and L/2 of SF and VBS ratios. Note their convergence to a
common critical coupling indicating a direct transition. The data shown in Fig. 5.4
and 5.5 was taken at β = 6L which is in the T = 0 regime (see Appendix B.2).

simulations. Nonetheless, it is expected that the basic structure of fixed points and

flows obtained here using the ε-expansion are reliable. Based on our study, we make

the following conclusions: Even in a regime where there is a symmetric fixed point

(N > Ns), for Ns < N < Nep, easy-plane anisotropy will drive the DCP first-order.

For N > Nep a new FP emerges. Easy-plane anisotropy then results in a continuous
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Figure 5.5: Data collapse for the SF order parameter at N = 21. (a) Finite size data
collapsed to m2

⊥ = L−(1+ηSF )M[(g− gc)L1/ν ] with parameters gc=6.511, ν=0.556 (1/ν
= 1.795), η=0.652. (b) Collapse of ratio Rm2

⊥
= R[(g − gc)L

1/ν ] with parameters
gc=6.518, ν=0.582 (1/ν = 1.719). The side panels shows convergence of estimates
for various quantities from the collapse of L and L/2 data: (c) the critical coupling
gc = 6.505(1) from pair-wise collapses of m2

⊥ and Rm2
⊥

, as well as crossings of 〈W 2〉
(see Fig. 5.2) for data. Panel (d) shows 1/ν(L), which we estimate to converge to
1/ν = 2.3(2). Likewise we estimate η(L) to converge to η = 0.72(3), which is shown
in panel (e).

SF-VBS transition in a new ep-CPN−1 universality class.
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5.5 Study of Fixed Point

Having presented evidence from the ε-expansion that with increasing N the transition

should turn continuous and in a new universality class, it is of interest to study the

scaling behavior at large N . We will focus on N = 21 where we have found no

evidence for first order behavior on the largest system sizes that we have access

to. We construct dimensionless ratios Rm2
⊥

and RVBS which go to 1(0) in their

respective ordered (disordered) phases. Fig. 5.4 shows our data for N = 21. The

large correction to scaling observed in the VBS data are expected: according to the

DCP theory the VBS anomalous dimension ηVBS ∝ N which causes the leading VBS

correlation functions to decay very rapidly at this large value of N . This makes it

hard to separate the leading and sub-leading behavior on the available system sizes.

Since the SF data shows a good crossing, we carry out a full scaling analysis in

Fig. 5.5. The data for both m2
⊥ and Rm2

⊥
collapse nicely without the inclusion of

corrections to scaling [65,66]. They lead to consistent values of critical couplings and

scaling dimensions lending support for a continuous transition ep-CPN−1 fixed point

emerging at large N .

5.6 Conclusion and Outlook

In conclusion, we have studied new lattice models for deconfined criticality with easy-

plane SU(N) symmetry. We find persistent first order behavior in these lattice models

at small to intermediate N , in sharp contrast to the continuous transitions found

in the symmetric models for the same range of N . As N increases the first order

easy-plane transition weakens and eventually becomes continuous. Our RG flows

provide a way to understand both the first-order and shift to continuous transitions:

The easy-plane anisotropy is always relevant at the symmetric CPN−1 fixed point,

for N < Nep there is no easy-plane fixed point and hence the anisotropy drives the
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transition first order. For N > Nep a new fixed point emerges resulting in a continuous

transition in a new “easy-plane”-CPN−1 universality class which is an example of a

strongly coupled gauge-matter field theory. Our lattice model provides a sign-free

discretization of this field theory that is amenable to efficient numerical simulations.

We leave for future work the determination of a precise value of Nep, comparisons of

the universal quantities with easy-plane large-N expansions, and a comparative study

of the scaling corrections between the easy-plane and symmetric cases. It would be

of interest to complement our work with studies of field theories such as Eq. (5.2)

using the conformal bootstrap [67].

Acknowledgements: We thank G. Murthy for many discussions. Partial financial

support was received through NSF DMR-1611161 and the MacAdam fellowship. The

numerical simulations reported in the manuscript were carried out on the DLX cluster

at the University of Kentucky.

Copyright c© Jonathan D’Emidio, 2017.

61



Appendix A Chapter 4 Supplement

A.1 QMC vs ED

For future reference, Table A.1 contains test comparisons between measurements

obtained from a SSE-QMC study and exact diagonalization on 4 × 4 and 4 × 2

systems with various J⊥-Q⊥ at N = 2 and N = 3. We list values for the ground state

energy per site, spin stiffness as in equation (4.9 , 4.10) as well as the VBS order

parameter, defined in equation (B.4). For the rectangular systems we have indicated

that we use the stiffness in the x-direction and VBS order parameter with x-oriented

bonds.

4× 4 N = 2 J⊥ = 1.0 Q⊥ = 0.0 βqmc = 48.0

eex −0.562486 ρex 0.27714 Oex 0.007497
eqmc −0.562473(7) ρqmc 0.27710(3) Oqmc 0.007497(1)

4× 4 N = 2 J⊥ = 1.0 Q⊥ = 1.0 βqmc = 32.0

eex −0.741775 ρex 0.35858 Oex 0.011097
eqmc −0.741770(8) ρqmc 0.35860(3) Oqmc 0.011096(1)

4× 2 N = 3 J⊥ = 1.0 Q⊥ = 0.0 βqmc = 32.0

eex −0.74157 ρxex 0.043932 Oxex 0.030816
eqmc −0.74158(1) ρxqmc 0.043928(5) Oxqmc 0.030821(3)

4× 2 N = 3 J⊥ = 1.0 Q⊥ = 1.0 βqmc = 32.0

eex −1.25095 ρxex 0.011196 Oxex 0.029878
eqmc −1.25095(2) ρxqmc 0.011199(2) Oxqmc 0.029878(2)

Table A.1: Test comparisons of measurements from exact diagonalization and finite-
T QMC studies for the N = 2 and N = 3. The energies reported here are per
site and the stiffness and VBS order parameters are defined in equations (4.9 , 4.10)
and (B.4). For rectangular systems we have used the stiffness along the x-direction
and VBS order parameter for x-oriented bonds. All systems have periodic boundary
conditions.
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A.2 N = 5

Here we show our N = 5 data which also shows symptoms of first-order behavior. In

Fig. A.1 we show the SF-VBS crossings that allow us to determine the critical point.

Unlike in the N = 2 case, the position of the crossings drifts in the same direction
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Figure A.1: Crossings at the SF-VBS quantum phase transition for N = 5 in HN
J⊥Q⊥

.
The main panels shows the crossings for Lρs and RV BS, which again show a direct
transition between the superfluid and VBS states at gc = 0.014(1).

from both the SF and VBS side. Taking finely binned data near the transition again

shows us signs of first-order behavior. In Fig. A.2 we show our history and histogram

data for N = 5. For our largest system size we are able to see significant evidence of

a first order transition in both the history and histogram. We note here that unlike

in the N = 2 case, the location of the transition seems to drift substantially with

the system size. This results in only seeing clear signs of on-off switching (indicative

of a first-order transition) for our largest system size, although it serves to illustrate
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Figure A.2: Evidence for first order behavior at the SF-VBS quantum phase transition
for N = 5. The data was collected at a coupling g = 0.01875. The left panel
shows MC histories for both ρs and OV BS, with clear evidence for switching behavior
characteristic of a first order transition at the largest system size L = 48. The right
panel shows histograms of the same quantities with double peaked structure emerging
at L = 48. Here we note that the location of the transition for each system size drifts
more significantly than in the N = 2 case. Also it can be argued that the transition
shows signs of weakening. Here we use a finer bin size for the histories (100 MC
sweeps per point).

the presence of a drift. It is arguably the case the the transition is weakening as a

function of N given the less pronounced double peaks in the histograms.

Copyright c© Jonathan D’Emidio, 2017.
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Appendix B Chapter 5 Supplement

B.1 Lattice Hamiltonian

We elaborate on the spin Hamiltonian (5.1), which can be simply written in terms of

its matrix elements (choosing the normalization Tr[T aT b] = δab)

H = −J1⊥

N

∑
〈ij〉,α,β,α 6=β

|αiαj〉〈βiβj|

−J2⊥

N

∑
〈〈ij〉〉,α,β,α6=β

|αiβj〉〈βiαj|,
(B.1)

where here we emphasize that α and β are summed from 1 to N with the con-

straint that α 6= β. The symmetry of this model is global phase rotations of the form

|α〉 → eiθα |α〉, where on one sublattice the phase is conjugated due to the represen-

tation. This gives U(1)N−1 since an overall phase is trivial. There is also a discrete

permutation symmetry SN that corresponds to a relabeling of the colors. We note

that dropping the constraint α 6= β restores the full SU(N) symmetry and corre-

sponds to a model already studied in the context of deconfined criticality at large

N [21].

This model is explicitly sign free and is amenable to quantum Monte Carlo tech-

niques. We have used the stochastic series expansion QMC algorithm [11], which

samples the partition function at finite temperature. For practical implementation,

one needs to add a constant to the Hamiltonian in order to generate diagonal ma-

trix elements. We find it convenient to add diagonals with the same weight as the
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off-diagonals, as follows:

H → −J1⊥

N

∑
〈ij〉

( ∑
α,β,α 6=β

|αiαj〉〈βiβj|+ 1

)

−J2⊥

N

∑
〈〈ij〉〉

( ∑
α,β,α 6=β

|αiβj〉〈βiαj|+ 1

)
.

(B.2)

We refer the reader to more details of the loop algorithm contained in [40]. One

notable aspect of this J1⊥ − J2⊥ model is that the addition of the J2⊥ term can be

treated with minimal extra effort, given a code that simulates J1⊥ only. Updating a

matrix element (vertex) associated with J2⊥ can be achieved by first time reversing

the spin states on one sublattice of the vertex, then scattering through the vertex

according to the rules for J1⊥ matrix elements, and finally reversing the spins back.

B.2 Measurements

Many of our measurements are part of the standard tool kit. This includes the winding

number fluctuation 〈W 2〉, which is related to the superfluid stiffness ρ = 〈W 2〉/β; and

also the equal-time bond-bond correlation function, which is used to construct RVBS.

In order to introduce the VBS order parameter and ratio, we first consider the Fourier

transformed bond-bond correlator

C̃a
V BS(~q) =

1

N2
site

∑
~r,~r′

ei(~r−~r
′)·~q〈P̃~raP̃~r′a〉, (B.3)

where P̃~ra is an off-diagonal nearest neighbor bond operator of the form
∑N

α,β,α6=β |αα〉ij〈ββ|ij
that acts at a bond location ~r with orientation a ∈ {x, y}.

For columnar VBS patterns, peaks appear at the momenta (π, 0) and (0, π) for x

and y-oriented bonds, respectively. The VBS order parameter is thus given by

OV BS =
C̃x
V BS(π, 0) + C̃y

V BS(0, π)

2
. (B.4)
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We can further construct the VBS ratio, which is defined as

Rx
V BS = 1− C̃x

V BS(π + 2π/L, 0)/C̃x
V BS(π, 0) (B.5)

And similarly for Ry
V BS with all of the qx and qy arguments swapped. We then

average over x and y- orientations.

RV BS =
Rx
V BS +Ry

V BS

2
. (B.6)

This quantity goes to 1 in a phase with long-range VBS order, and approaches 0 in

the superfluid phase. It is thus a useful crossing quantity that allows us to locate the

transition.

To construct these quantities, we measure the equal time bond-bond correlation

function in QMC with the following estimator

〈Θ1Θ2〉 =
1

β2
〈(n− 1)!N [Θ1,Θ2]〉 (B.7)

where Θ1 and Θ2 are any two QMC operators (in our case off-diagonal nearest

neighbor bond operators), n is the number of non-null operators in the operator

string, and N [Θ1,Θ2] is the number of times Θ1 and Θ2 appear in sequence in the

operator string (excluding null slots).

In this work we have also made use of the less common“in-plane” magnetiza-

tion m2
⊥, for which we have produced magnetic data collapses. We now outline this

particular measurement. The reader is directed to [68] for more details.

The superfluid (magnetic) ordering in our system is off-diagonal in the compu-

tational basis, meaning that the relevant equal-time correlation functions are of the

form 〈S+
i S
−
j 〉, written in terms of raising and lowering spin operators. The placement

of such an operator into a QMC configuration will in general give zero, unless the two

operators are joined by a loop of a certain color. Loop updates can be regarded as
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Figure B.1: Maximum values of m2
⊥ deep in the superfluid phase for different values

of N . Each data point was obtained by extrapolating the value of m2
⊥ in the thermo-

dynamic limit at a fixed value of the coupling g = J2⊥/J1⊥. Increasing g drives the
system into the superfluid phase, we can thus observe the maximum possible value
of m2

⊥ in the limit 1/g → 0. The data is consistent with an upper bound of one.
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Figure B.2: Histograms of the squared in-plane magnetization for an SU(6) system
with L = 48 for different values of the inverse temperature β. Once sufficiently
low temperatures are reached, such that the two peaks clearly emerge, we find little
depedence on temperature as expected.
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4× 4 N = 2 J1⊥ = 1.0 J2⊥ = 1.0

eex −1.082912818 m2
⊥ex 1.110134109

eQMC −1.082909(4) m2
⊥QMC 1.11014(1)

4× 4 N = 2 J1⊥ = 1.0 J2⊥ = 2.0

eex −1.629091615 m2
⊥ex 1.107517598

eQMC −1.629086(5) m2
⊥QMC 1.10753(1)

4× 2 N = 3 J1⊥ = 1.0 J2⊥ = 1.0

eex −1.131110222 m2
⊥ex 1.408846135

eQMC −1.131100(5) m2
⊥QMC 1.408849(6)

4× 2 N = 3 J1⊥ = 1.0 J2⊥ = 2.0

eex −1.618465034 m2
⊥ex 1.423156633

eQMC −1.618476(7) m2
⊥QMC 1.423150(8)

Table B.1: QMC versus exact diagonalization. For brevity we provide just the energy
per site and normalized m2

⊥ for N = 2 and N = 3 systems. We have used β = 32 in
our QMC simulations.
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L=40

L=50

L=64

Figure B.3: Hisograms for SU(6) with β = 1.5L for different system sizes. The
peaks shift toward zero as the system size is increased, reflecting the fact that the
magnetization approaches zero as a function of system size near the transition. As the
system size is increased the peaks become well separated, indicating thermodynamic
first order behavior.

inserting a raising and lowering pair (defects) at the same time slice and spatial lo-

cation, then propagating one of the defects until it annihilates with the first, forming

a closed loop. The algorithm is stochastically sampling the space of allowed config-
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Figure B.4: Convergence of the superfluid stiffness (ρ) as a function of β for L = 16
around transition. Finite temperature effects are absent when β ≈ 5L for both SU(6)
and SU(21). We therefore conservatively fix β = 6L for the crossing analysis and
data collapse presented in the main paper.

urations with two defects. The measurement 〈S+
i S
−
j 〉 is then given by the average

number of times these two defects occur at the same time slice at locations i and j,

which is averaged over the total number of loops grown. We note that starting loops

at a vertex leg will bias this measurement, an so it must be performed by choosing a

random time slice and spatial location in which to start the loop.

We normalize the (0,0) component of the correlation function to the value N−1 =∑′
a T

aT a, where the sum on a is on the off-diagonal generators. This is due to the fact

that we have chosen Tr[T aT b] = δab. We then construct m2
⊥ based on the off-diagonal

correlation function as follows:

m2
⊥ =

1

(1− 1
N

)N2
site

∑
a

′∑
i,j

〈T̃ ai T̃ aj 〉 (B.8)

where i and j are summed on the entire lattice and T̃ = T (T ∗) on the A(B)

sublattice. In practice we use lattice symmetries to reduce the number of correlators
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that need to be stored. Here we have importantly chosen an overall normalization

factor for m2
⊥ such that the upper bound in the ordered phase is equal to one for all

N . The factor (1− 1/N) = (N − 1)/N accounts for the fact that the generators have

been normalized such that the (0,0) component of the correlator is N − 1 and that,

given a color at location 0, the probability of picking the same color at long distances

is 1/N . This amounts to saying that the most magnetically ordered configurations

consist of only N loops (one for each color).

The normalization allows us to meaningfully compare this measurement across

different values of N and observe a reduction in the size of the first-order jump

as in Fig. 5.1. We demonstrate that this normalization is correct in Fig. B.1 by

extrapolating the value of m2
⊥ in the thermodynamic limit for different values of

g = J2⊥/J1⊥.

Analogous to the VBS ratio, we can construct the magnetic ratio as well (Rm2
⊥

).

If we denote the Fourier transformed off-diagonal spin-spin correlator as

C̃m2
⊥

(~q) =
1

(1− 1
N

)N2
site

∑
a

′∑
~r,~r′

ei(~r−~r
′)·~q〈T̃ a~r T̃ a~r′〉, (B.9)

then the magnetic ratio is then given by

Rm2
⊥

= 1−
C̃m2

⊥
(2π/L, 0) + C̃m2

⊥
(0, 2π/L)

2C̃m2
⊥

(0, 0)
. (B.10)

We have thoroughly checked all of our measurements against exact diagonalization

on small system sizes. In Table B.1 we provide comparisions of the energy per site and

normalized m2
⊥ between QMC and exact diagonalization, showing agreement within

the statistical error.

We have checked that the behaviour observed in our histograms of the in-plane

squared magnetization is qualitatively insensitive with respect to both temperature

and system size. In Fig. B.2 we show that the histograms are insenstive to tem-
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perature, once sufficiently low temperatures are reached so as to produce two well

defined peaks. In Fig. B.3 we show that the peaks become sharper as the system size

increased (holding the inverse temperature fixed at β = 1.5L). We therefore conclude

that the behavior is truly first order in nature, and not due to finite size effects.

In order to avoid finite temperature effects in our crossing analysis and data

collapse, we fixed β = 6L in those simulations. This value was chosen based on the

zero temperature convergence of the superfluid stiffness ρ = 〈W 2〉/β on an L = 16

system size for N = 6 and N = 21 around the transition. This data is shown in Fig.

B.4.

B.3 Renormalization Group Methods

We refer the reader to [62], which is a useful reference that outlines in detail many of

the results that we will now discuss. We have performed momentum shell renormal-

ization group transformations in 4− ε dimensions with the Lagrangian density (5.2).

We therefore as a starting point write the Euclidean action in k−space as follows:

S =
∑
α

∫
d~k

(2π)d
(~k2 + r)z∗α(~k)zα(~k)

−e
∑
α

∫
d~k d~p

(2π)2d
(2~k + ~p) · ~A(~p)z∗α(~p+ ~k)zα(~k)

+e2
∑
α

∫
d~k d~p d~q

(2π)3d
~A(~p) · ~A(~q)z∗α(~p+ ~q + ~k)zα(~k)

+
1

2

∑
α,β

(u+ vδαβ)

∫
d~k1 . . . d~k4

(2π)3d
δd(~k1 − ~k2 + ~k3 − ~k4)z∗α(~k1)zα(~k2)z∗β(~k3)zβ(~k4)

+
1

2

∑
i,j

∫
d~k

(2π)d
Ai(~k)[~k2(δij − k̂ik̂j) +

kikj
ξ

]Aj(−~k).

(B.11)

Here we have used the standard Faddeev-Popov gauge fixing trick, with gauge

fixing parameter ξ [69]. Fig. B.5 shows the interaction vertices that couple the slow
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and fast Fourier modes, where the slow modes (to be denoted schematically by z<

and A<) have momenta in the range 0 < |~k| < Λ/s and the fast modes (z> and A>)

have momenta Λ/s < |~k| < Λ.

The partition function is separated according to fast and slow modes and the

contribution from the fast modes is evaluated perturbatively assuming u, v and e2

are all of order ε.

Z =

∫
Dz∗<Dz<DA<e−S<

∫
Dz∗>Dz>DA>e−(V<,>+V>,>)e−S0,> . (B.12)

We have separated out the part of the action which only depends on the slow

modes (S<), as well as interaction terms in S which mix slow and fast (V<,>) and inter-

actions for the fast modes (V>,>). Additionally, the part of the action that is quadratic

in the fast modes (S0,>) is explicitly seperated out. The average 〈e−(V<,>+V>,>)〉0,>
can then be computed perturbatively using the cumulant expansion. This leads to

a renormalization of the terms in S<. To first order in ε the renormalized action for

the slow modes (S ′<) looks like

S ′< =
∑
α

∫ Λ/s

0

d~k

(2π)d
(Zη~k2 + Zrr)z∗α(~k)zα(~k)

−Zηe
∑
α

∫ Λ/s

0

d~k d~p

(2π)2d
(2~k + ~p) · ~A(~p)z∗α(~p+ ~k)zα(~k)

+Zηe2
∑
α

∫ Λ/s

0

d~k d~p d~q

(2π)3d
~A(~p) · ~A(~q)z∗α(~p+ ~q + ~k)zα(~k)

+
1

2

∑
α,β

(u′ + v′δαβ)

∫ Λ/s

0

d~k1 . . . d~k4

(2π)3d
δd(~k1 − ~k2 + ~k3 − ~k4)z∗α(~k1)zα(~k2)z∗β(~k3)zβ(~k4)

+
1

2

∑
i,j

∫ Λ/s

0

d~k

(2π)d
Ai(~k)[ZA~k2(δij − k̂ik̂j) +

kikj
ξ

]Aj(−~k),

(B.13)

73



z↵

z⇤↵

z⇤�

z�

z↵

z⇤↵

z↵

z⇤↵Ai Ai

Ai

(a) (b) (c)

Figure B.5: Interaction vertices that couple fast and slow modes. Perturbative RG
is carried out to first order in ε by forming all possible one loop diagrams from these
vertices.

where

Zη = 1− 3ê2ln(s)

Zr = 1− [(N + 1)û+ 2v̂]ln(s)

ZA = 1 +
1

3
Nê2ln(s)

û′ = û− [(N + 4)û2 + 4ûv̂ + 6ê4]ln(s)

v̂′ = v̂ − [5v̂2 + 6ûv̂]ln(s).

(B.14)

Here we have defined dimensionless couplings ĝ ≡ gΛd−4Sd/(2π)d with Sd be-

ing the surface area of a d−dimensional sphere and g = e2, u, v. We have used

Landau gauge ξ = 0 (which forces ~∇ · ~A = 0) in order to evaluate loop integrals

involving the gauge field propagator. We now rescale the momentum: ~k → ~k/s

and fields zα(~k/s) → s(d/2+1)Z−1/2
η zα(~k), ~A(~k/s) → s(d/2+1)Z−1/2

A
~A(~k). This defines

the renormalized couplings as r(s) = Zrs2r/Zη, u(s) = u′sε/Z2
η , v(s) = v′sε/Z2

η

and e2(s) = e2sε/ZA. With the renormalized couplings we can now write the β−
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functions:

dr

dlns
= r[2− (N + 1)u− 2v + 3e2] (B.15a)

de2

dlns
= εe2 − N

3
e4 (B.15b)

du

dlns
= εu− (N + 4)u2 − 4uv − 6e4 + 6e2u (B.15c)

dv

dlns
= εv − 5v2 − 6uv + 6e2v. (B.15d)

We note that when N = 1, these equations have the the same form for v as for

u. This is a useful check, as the v term is identical to the u term when N = 1.

A drawback of the momentum shell approach is that the momentum cutoff breaks

gauge invariance, and hence we have discarded terms that would renormalize ξ. The

field theoretic RG formulation preserves gauge invariance, and we have checked that

out β-functions match using this approach as well.

B.4 RG Flow Equations

Here we will elaborate on the structure of the RG flow equations that have been

presented in the main text. Throughout this discussion, we will take r = 0, working

in the critical plane. Equation (B.15b) can be set to zero and solved to find the fixed

point values of e2. This gives us both charged and uncharged fixed points, e2 = 0 and

e2 = 3ε/N . There are always four real fixed points with e2 = 0, which are given by:

e2 = 0 u = 0 v = 0 (B.16a)

e2 = 0 u =
ε

N + 4
v = 0 (B.16b)

e2 = 0 u = 0 v =
ε

5
(B.16c)

e2 = 0 u =
ε

5N − 4
v =

(N − 2)ε

5N − 4
. (B.16d)
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These fixed points are identified (see [70]) as Gaussian (B.16a), Wilson-Fisher or

Heisenberg (B.16b), Ising (B.16c), and cubic (B.16d) fixed points. Note that the z

fields can be separated into their real and imaginary parts, and when v = 0 the same

fixed point structure appears as in the O(2N) field theory with quartic interaction

(
∑2N

α φαφα)2. The addition of v breaks the O(2N) symmetry of the model, since it

contains the interaction
∑2N

α φ4
α, which is typically referred to as cubic anisotropy.

The other fixed point with v 6= 0, u = 0 is referred to as the Ising fixed point, since

it corresponds to 2N independent copies of the Ising field theory.

It is well known that in the O(n) model (to first order in ε) the Wilson-Fisher

fixed point is stable for n < 4, and for n > 4 the cubic fixed point becomes the only

stable one. In our case 2N = n, and we indeed observe exactly this behavior in our

flow equations below and above N = 2.

We now go on to discuss the fixed points when e2 = 3ε/N . The two fixed points

with v = 0 are given by:

e2 = 3ε/N

u± =
ε

2N(N + 4)

(
N + 18±

√
(N + 18)2 − 216(N + 4)

)
v = 0.

(B.17)

These two fixed points become real when N > 182.9516 = Ns. Of these, the fixed

point at u+ is the symmetric deconfined fixed point, which is stable in the r = 0, v = 0

plane. The multicritical point at u− has one relevant direction in the r = 0, v = 0

plane. We note that when v 6= 0, this causes a runaway flow from the deconfined

fixed point, which shows up as a first order transition in our lattice simulations. For

this value of N (corresponding to panel (a) of Fig. B.6) there are no stable fixed

points in the r = 0 plane.

We now move to the final fixed points that appear as N is increased even further,

which is the main result of this paper. This corresponds to the finite solution for v
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Figure B.6: Here we show our flow diagrams for Ns < N < Nep and N > Nep,
this time with all of the fixed points marked. The labels correspond to Gaussian
(g), Wilson-Fisher (wf), Ising (i), cubic (c), symmetric deconfined (s), symmetric
multicritical (ms), easy-plane deconfined (ep) and easy-plane multicritical (mep). ep
is the only fixed point with all directions irrelevant in the r = 0 plane.

in Eqn (B.15d)

e2 = 3ε/N

u± =
ε

2N(5N − 4)

(
N + 18±

√
(N + 18)2 − 1080(5N − 4)

)
v± =

1

5
[ε (1 + 18/N)− 6u±]

(B.18)

Here the solutions for u (and hence the solutions for v) become real when N >

5363.1341 = Nep. The solution at u+ is the easy-plane deconfined fixed point, which

has all directions irrelevant in the r = 0 plane and is hence stable. The other solution

at u− is a multicritical point denoted by mep in Fig. B.6. The easy-plane deconfined

fixed point describes the criticality observed in our lattice model at large N .

We note at this point that the values of Ns and Nep obtained from the ε expansion

at first order are notoriously unreliable. The value of Ns is believed to extend all the

way down to N = 2 based on the observed deconfined criticality in spin-1/2 systems

[1]. Likewise we observe Nep ≈ 20 from our lattice simulations. It is interesting to

note that the ε expansion gives Nep that is an order of magnitude larger than Ns,
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which is observed in numerical simulations.

Copyright c© Jonathan D’Emidio, 2017.
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