
University of Kentucky
UKnowledge

Plant and Soil Sciences Faculty Publications Plant and Soil Sciences

11-25-2016

Adjustment and Optimization of the Cropping
Systems Under Water Constraint
Pingli An
China Agricultural University, China

Wei Ren
University of Kentucky, wei.ren@uky.edu

Xiliin Liu
China Agricultural University, China

Mengmei Song
China Agricultural University, China

Xuemin Li
China Agricultural University, China

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/pss_facpub

Part of the Agronomy and Crop Sciences Commons, Soil Science Commons, Sustainability
Commons, and the Water Resource Management Commons

This Article is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Plant and
Soil Sciences Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
An, Pingli; Ren, Wei; Liu, Xiliin; Song, Mengmei; and Li, Xuemin, "Adjustment and Optimization of the Cropping Systems Under
Water Constraint" (2016). Plant and Soil Sciences Faculty Publications. 78.
https://uknowledge.uky.edu/pss_facpub/78

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232579818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/pss_facpub?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/pss?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/pss_facpub?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/163?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1031?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1031?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/pss_facpub/78?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Adjustment and Optimization of the Cropping Systems Under Water Constraint

Notes/Citation Information
Published in Sustainability, v. 8, issue 12, 1207, p. 1-11.

© 2016 by the authors; licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)
https://doi.org/10.3390/su8121207

This article is available at UKnowledge: https://uknowledge.uky.edu/pss_facpub/78

https://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/pss_facpub/78?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages


sustainability

Article

Adjustment and Optimization of the Cropping
Systems under Water Constraint

Pingli An 1,*, Wei Ren 2, Xilin Liu 1, Mengmei Song 1 and Xuemin Li 1

1 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
liuxilin1989@126.com (X.L.); songmengmei@126.com (M.S.); lixm@apft.com.cn (X.L.)

2 Department of Plant & Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky,
Lexington, KY 40506, USA; wei.ren@uky.edu

* Correspondence: anpl@cau.edu.cn; Tel.: +86-10-6273-3752

Academic Editor: Vincenzo Torretta
Received: 7 October 2016; Accepted: 17 November 2016; Published: 25 November 2016

Abstract: The water constraint on agricultural production receives growing concern with the
increasingly sharp contradiction between demand and supply of water resources. How to mitigate
and adapt to potential water constraint is one of the key issues for ensuring food security and
achieving sustainable agriculture in the context of climate change. It has been suggested that
adjustment and optimization of cropping systems could be an effective measure to improve water
management and ensure food security. However, a knowledge gap still exists in how to quantify
potential water constraint and how to select appropriate cropping systems. Here, we proposed a
concept of water constraint risk and developed an approach for the evaluation of the water constraint
risks for agricultural production by performing a case study in Daxing District, Beijing, China.
The results show that, over the whole growth period, the order of the water constraint risks of crops
from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut,
spring corn, and summer corn, and the order of the water constraint risks of the cropping systems
from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring
corn. Our results are consistent with the actual evolving process of cropping system. This indicates
that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and
adapt to potential water risks. This study provides an insight into the adjustment and optimization
of cropping systems under resource constraints.

Keywords: adjustment and optimization method; cropping systems; water constraint; water
constraint risk

1. Introduction

“Cropping system” refers to the crops, crop sequences, and management techniques used on a
particular field over a period of years, and is determined by the regional natural environment and
social-economic conditions [1]. The evolving process of the cropping system to some degree reflects
the utilization degree and its changing process of agricultural resources by humans. In recent decades,
with the rapid growth in population and economic development, the demand for food production
has been increasing, and accordingly, the demand for resources (such as land, water, and so on) for
food production has also been increasing. Among all of the resources for food production, water has
attracted global attention due to its increasing scarcity [2–7]. Water resource has become a critical
bottleneck restricting food production in many countries and regions, especially in Northern China.
People should adjust and optimize the cropping systems reasonably based on water resources to
guarantee sustainable agricultural development.
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In Northern China, excessive agricultural irrigation for increasing the crop yields has seriously
threatened the regional ecological safety. Under limited irrigation, high precipitation variations would
bring high risk to the agricultural production. So, it is urgent to adapt agricultural production to these
situations to supply enough food sustainably. The same issues have been met in other regions or
countries. With the increasingly sharp contradiction between the demand for and supply of water
resources, the water constraint to food production is increasing in many countries and regions in the
world. In face of this situation, a large number of water saving techniques—such as pipe irrigation,
drip irrigation, film mulching, and so on—have been applied to agricultural production. Though these
techniques have greatly improved the water use rate and water use efficiency, excessive water uses
have induced serious ecological degradation due to unchanged high water consumption of the
crops [8]. Thus, the rational arrangement of agricultural production based on the supporting capacity
of water resource is very urgent to promote regional sustainable development. To do so, recently,
many active measures have been suggested, such as changing crop varieties based on the crop water
demands [9,10], adjusting the agricultural structure by growing crops with less water consumption
and higher economic benefit (making it consistent with regional resource characteristics) [11–14],
and so on. All these studies have recognized the seriousness of the water constraint to the agricultural
sustainable development and the importance of the reasonable use of the limited water resource,
while studies about how to adapt agriculture to the water-constrained situation are rare. With the
accelerated deterioration of the water shortage situation, producing more food to satisfy the growing
world population poses an unprecedented challenge to human ingenuity.

It has been suggested that the adjustment and optimization of cropping systems could be an
effective measure to improve water management and ensure food security. However, a knowledge
gap still exists in how to quantify potential water constraints and how to select appropriate cropping
systems. With the increasing water scarcity today, there is an urgent need to explore the measures
to adjust and optimize cropping systems to mitigate and adapt to potential water constraint risk
to ensure food security and achieve sustainable agriculture. Here, we proposed the concept of
water constraint risk, and developed a method for the evaluation of water constraint risk and
adjusting/optimizing cropping systems by performing a case study in Daxing District of Beijing,
China. Our results would be helpful for the adjustment and optimization of cropping systems to
ensure regional agricultural sustainability.

2. Study Area

In this study, we chose Daxing (116◦13′–116◦43′E, 39◦26′–39◦51′N) (Figure 1) located in the south
of Beijing, China, a typical district for the dependent-on-water cropping system to conduct a case
study. The annual average temperature is 11.6 ◦C, and the annual average rainfall is approximately
556 mm. In 2011, the planted area of crops was 64,500 hm2. During the recent 30 years, there were
double cropping systems and single cropping systems. The double cropping systems mainly included
winter wheat–summer corn, winter wheat–summer peanut, winter wheat–summer soybean, and so
on. The single cropping systems included rice, spring corn, spring peanut, foxtail millet, and so on.

Since 1980, the evolving process of the cropping system in Daxing can be divided into three stages
(Table 1). The first was from 1980 to the middle of the 1980s. During this stage, flat cropping and
intercropping were the main planting patterns. In 1980, the total grain planted area was 68,667 hm2,
and rice, wheat, and corn area accounted for 31.14%, 34.27%, and 21.26%, respectively. In 1985, the total
grain planted area was 64,600 hm2, of which rice, wheat, and corn areas accounted for 15.07%, 40.04%,
and 35.19%, respectively. During this period, the rice planted area began to shrink as water resources
decreased. Accordingly, the wheat and corn planted area increased gradually, and the flat cropping
system of winter wheat and summer corn expanded. The second stage was from the late 1980s to
the 1990s. During this stage, the flat cropping system of winter wheat and summer corn developed
greatly with the improvement of agricultural production conditions, reaching more than 60% of the
total planted area. The other cropping systems included the flat planting of winter wheat and summer
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peanut, winter wheat and summer soybean, and so on. During this period, the planted area of winter
wheat–summer grain accounted for about 75% of the total planted area. The third stage was after 2000.
During this stage, the double cropping systems were gradually changed into single cropping systems
because of increased water resource shortages. The winter wheat planted area showed a declining
trend, while the spring corn gradually expanded.
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Table 1. The evolving process of the cropping system in Daxing since 1980.

Time Typical Cropping
System Staple Crops Area Proportion Planting Pattern

Early to mid-1980s

Winter wheat–summer
grain crops

Winter wheat–summer
corn 27.8%

Coexistence of flat
cropping and
intercropping

Winter wheat–summer
peanut 5.5%

Winter wheat–summer
soybean 3.1%

Single cropping of rice Rice 18.2%

Late 1980s to 1990s
Winter wheat–summer

grain crops

Winter wheat–summer
corn 46.6%

Main flat croppingWinter wheat–summer
peanut 10.0%

Winter wheat–summer
soybean 6.1%

After 2000

Winter wheat–summer
grain crops

Winter wheat–summer
corn 28.4%

Main flat croppingWinter wheat–summer
peanut 8.5%

Winter wheat–summer
soybean 1.5%

Single cropping of
spring corn Spring corn 26.6%
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3. Data and Methods

3.1. Data

The daily meteorological data in Daxing from 1980 to 2010 were obtained from the Daxing
meteorological observation station. The historical agricultural production data, including the regional
crops’ yields and crops’ planted areas from 1980 to 2010 were obtained from the local agricultural
administration department.

3.2. Water Constraint Risk of Cropping Systems

It is assumed that water constraint refers to that the amount of water does not meet the
requirement for a system’s development and restrains the development of this system at present
or in the future. Generally, it performs in two forms—one is the water supply shortage in the short
term, and the other is the potential constraint for the long-term development. At present, it is commonly
accepted that the water constraint is determined by the scarcity of water; namely, the quantity or
quality of the water supply cannot meet the demand, and thus it will restrain the development of
a system.

The risk is the likelihood and magnitude of the loss occurred for the independent events [15–19].
When the supply of water is limited, the risk of production would occur. So, we suggest that water
constraint risk refers to the constraint degree of water and magnitude of decrease in productivity due
to the relative reduction of water for a specific product.

Accordingly, we define water constraint risk of a cropping system as the constraint degree of water
multiplied by magnitude of decrease in the agricultural productivity due to the relative reduction of
water for the cropping system. Under the water resources constraints, the agricultural productivity
cannot reach the desired level, which may result in a decrease in resource water use efficiency, yield loss,
and even the adjustment of the cropping system. The bigger the gap between the current water supply
and the optimum water supply, the greater the constraint degree.

Water resources for agricultural production mainly include precipitation and irrigation water.
Precipitation is the only water source for agriculture in the rain-fed agricultural regions. The reduction
of water resources during the entire growing season or some key growth periods would induce the
risk of cropping systems, i.e., the crop growth and development may be restricted.

3.3. Calculation of the Water Constraint Risk

As defined above, the water constraint risk of a cropping system is the product of the constraint
degree of water and the magnitude of decrease in yield due to a reduction in the water supply.
Accordingly, the water constraint risk of crop i during a certain period (e.g., a month or a specific
growth period) or during the whole growth period can be calculated by using Formula (1).

Fi = Ri × Ci (1)

where Fi is the water constraint risk of crop i in kg/hm2, Ri is the constraint degree of water supply of
crop i, and Ci is the yield loss of crop i in kg/hm2 during a certain or the whole growth period.

Ri can be computed as Formula (2).
Ri = 1 − αi (2)

where αi is the coupling degree of water supply with water demand of crop i.
Normally, the coupling degree of water supply with water demand for crops is defined as the

degree of satisfaction of water supply during a certain or the whole growth period (Formula (3)).
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Its value varies from 0 to 1, and the value is 0 when the water supply is 0, and the value is 1 when the
water supply is equal to or greater than the crop water requirement.

αi =

{
1 (Pei > E Tmi )

Pei / E Tmi (Pei ≤ E Tmi )
(3)

where Pei (mm) is the water supply during a certain growth period of or during the whole growth
period of crop i, ETmi (mm) is the crop water demand during a certain growth period of or during the
whole growth period of crop i.

αi can be calculated by the stage (e.g., a certain portion or the whole growth period of crop i);
the coupling degree of water supply with water demand during the whole growth stage (α) equals
to the sum of the coupling degree of each stage multiplied by the weight of water requirement
(Formula 4).

α =
n

∑
i=1

ETmj

ETm
αi (4)

where ETm (mm) is the water requirement during the whole growth period, and ETmj (mm) is the
water requirement during jth growth period.

The crop water requirement can be calculated by Penman–Monteith equation [20]. The equation
is given as follows:

ET = βET0 (5)

ET0 =
0.408∆(Rn − G) + r 900

T+273 U2(es − ea)

∆ + r(1 + 0.34U2)
(6)

where ET is the crop water requirement in mm·day−1, β is the crop coefficient, ET0 is the reference crop
evapotranspiration in mm·day−1, Rn is the net radiation in MJ·m−2·day−1, G is the soil heat flux in
MJ·m−2·day−1, T is the daily average temperature at 2-m above the land surface in ◦C, U2 is the wind
speed at 2-m in m·s−1, es is saturated water vapor pressure in kPa, ea is actual water vapor pressure in
kPa, ∆ is the slope of the saturation vapor pressure versus temperature relationship in kPa·◦C−1, and r
is the psychrometric coefficient in kPa·◦C−1.

It is assumed that the coupling degree for crop i was optimal when the yield per unit area was the
highest during the study period, and the crop yield loss was the difference between the highest yield
and the average yield per unit area during the study period. So, the yield loss during a specific growth
period of or during the whole growth period is computed as:

Cij = Dijt − Dija (7)

where Cij is the yield loss of crop i in kg/hm2 during the j or the whole growth period, Dijt is the
highest yield per unit area of crop i in kg/hm2 during the j or the whole growth period, Dija is the
average yield per unit area of crop i in kg/hm2 during the j or the whole growth period. The yield
losses of the different growth periods can be calculated by the total yield loss of the whole growth
period multiplied by the time proportions of the different periods.

3.4. Water Constraint Risk Assessment for the Adjustment and Optimization of Cropping Systems

Water constraint risk assessment refers to the qualitative or quantitative analysis of the risk of
water constraint to cropping systems. If the risk of one crop or cropping system is higher than another,
it implies that the likelihood and magnitude of the loss from planting the crop or cropping system
might be higher than that from planting another. Usually, the planted areas of the crop or the cropping
system with relatively lower risk should be enlarged while the planted areas with relatively high risk
should be reduced.
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As the cropping system consists of one crop or several crops, the water constraint risk of the
cropping system is decided by the highest one of all crops’ risks. For example, the water constraint
risk of the double cropping system is the higher one of the water constraint risk of two crops, and so
on. Based on estimated risks, the cropping systems can be adjusted and optimized.

4. Results

4.1. Analysis of Crop Water Requirements

Based on Formula (5) and the daily meteorological data in Daxing from 1980 to 2010, the average
monthly water requirements of each crop were calculated (Table 2). The highest water requirement was
found in rice paddies (913.15 mm), followed by the winter wheat–summer grain crops (summer corn,
peanut, soybean), whose water requirements during the whole growth periods were around 880 mm.
Among all of the spring crops (rice, spring corn, foxtail millet, and broomcorn), the water demand
of spring corn was only below the rice, and the lowest water requirement occurred in foxtail millet,
followed by the broomcorn.

Table 2. The average water demand of cropping systems in Daxing during 1980–2010 (mm).

Cropping System March April May June July August September October November The Whole
Period

Rice 0.0 126.1 200.2 189.5 173.9 126.2 97.2 0.0 0.0 913.2

Broomcorn 0.0 45.8 77.0 86.9 101.4 82.0 48.6 0.0 0.0 441.8

Foxtail millet 0.0 45.8 77.0 83.7 101.4 82.0 0.0 0.0 0.0 390.0

Spring corn 0.0 45.8 92.4 126.3 166.6 121.2 72.0 0.0 0.0 624.4

Winter wheat–summer corn 70.9 160.4 169.4 102.7 121.7 138.8 92.4 24.1 13.0 893.4

Winter wheat–summer
peanut 70.9 160.4 169.4 79.0 130.4 145.2 82.7 24.1 13.0 875.0

Winter wheat–summer
soybean 70.9 160.4 169.4 94.8 137.7 145.2 72.9 24.1 13.0 888.3

4.2. Analysis of Coupling Degree of Water Supply with Water Demand of Cropping Systems

In Daxing, the water supply mainly depends on precipitation; so, we here considered the water
supply to be equivalent to precipitation. To compare the different characteristics of the different
precipitation year types, we divided all years into three precipitation year types according to the
anomaly percentage (AP) of precipitation, including wet year (AP > 10%), normal year (−10% <= AP
<= 10%), and drought year (AP < −10%).

Based on monthly precipitation and water demand of cropping systems, we identified the amount
of water gains and losses during the study period; i.e., the balance between the water requirement and
precipitation of all cropping systems (Figure 2). The balances between precipitation and water demand
from high to low were: foxtail millet > broomcorn > spring corn > winter wheat–summer peanut
> winter wheat–summer soybean > winter wheat–summer corn > rice. The balances between the
precipitation and the water requirement of rice and winter wheat–summer grain crops all presented
negative, especially in drought years where more than 500 mm water losses occurred. There were
slight water losses during the spring corn growth period in the normal years and drought years.
Generally, the precipitation could meet the water demand of broomcorn and foxtail millet in all years.

Table 3 shows that, during 1980–2010, among the four spring-sown crops, the coupling degrees of
precipitation with water demand of broomcorn and foxtail millet were relatively high, with the mean
value of 0.80, followed by the spring corn and least in rice paddies. The precipitation could generally
meet the demand of broomcorn from June to September, while the coupling degree was relatively
lower in April and May. The coupling degree of spring foxtail millet was also low in April and May
(when it was sowed), and there was relatively little precipitation. However, when the rainy season
came, the precipitation was enough to meet the water demand. For spring corn, the precipitation in
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July and August can generally meet the water demand in wet years and normal years, but the coupling
degree was relatively low in April, May, and June because of low precipitation when supplemental
irrigation was needed to help its germination. Under high water requirement, the coupling degree
was always low, and irrigation was needed.Sustainability 2016, 8, 1207  7 of 11 
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Figure 2. The balance between precipitation and water demand of cropping systems during 1980–2010.
WW: winter wheat, SUC: summer corn, SP: spring peanut, SS: summer soybeans, SPC: spring corn,
FM: foxtail millet, RI: rice, BC: broomcorn. The same as the following figures.

Table 3. The coupling degrees of precipitation with water demand of single cropping systems.

Cropping
System

Precipitation
Year Type April May June July August September Whole

Period
Mean
Value

Rice
Wet year 0.16 0.22 0.44 1.00 1.00 0.62 0.56

0.46Normal year 0.28 0.19 0.4 0.55 1.00 0.56 0.47
Drought year 0.16 0.14 0.28 0.75 0.57 0.29 0.36

Broomcorn
Wet year 0.45 0.58 0.97 1.00 1.00 1.00 0.86

0.80Normal year 0.76 0.51 0.88 0.95 1.00 1.00 0.85
Drought year 0.43 0.37 0.62 1.00 0.88 0.58 0.69

Foxtail millet
Wet year 0.45 0.58 1.00 1.00 1.00 - 0.85

0.80Normal year 0.76 0.51 0.91 0.95 1.00 - 0.84
Drought year 0.43 0.37 0.64 1.00 0.88 - 0.71

Spring corn
Wet year 0.45 0.47 0.67 1.00 1.00 0.83 0.79

0.67Normal year 0.76 0.44 0.6 0.58 1.00 0.76 0.68
Drought year 0.43 0.28 0.42 0.78 0.6 0.39 0.53

Although the coupling degrees of precipitation with water demand of winter wheat–summer
grain crops were similar (Table 4), the coupling degree of winter wheat was very low, because it grows
mainly in autumn, winter, and spring when the precipitation is too little to meet its demand—especially
in March and April, when the coupling degree was only around 0.1 to 0.2 and supplementary irrigation
was needed. The coupling degrees of precipitation with water requirement of summer grain crops
were quite high, and the precipitation could always satisfy their needs in July and August. Figure 3
shows that the coupling degrees from high to low were: broomcorn > foxtail millet > spring corn >
winter wheat–summer corn > winter wheat–summer soybean, winter wheat–summer peanut > rice.
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Table 4. The coupling degrees of precipitation with water demand of double cropping systems.

Cropping
System

Precipitation
Year Type March April May June July August September October November Annual Mean

Values

Winter
wheat–summer

corn

Wet year 0.18 0.13 0.26 0.82 1.00 1.00 0.65 1.00 0.62 0.60
0.55Normal year 0.21 0.22 0.23 0.74 0.79 1.00 0.59 0.97 0.88 0.57

Drought year 0.07 0.12 0.17 0.52 1.00 0.52 0.31 0.89 0.77 0.47

Winter
wheat–summer

soybean

Wet year 0.18 0.13 0.26 1.00 1.00 1.00 0.72 1.00 0.62 0.60
0.53Normal year 0.21 0.22 0.23 0.97 0.74 1.00 0.66 0.97 0.88 0.57

Drought year 0.07 0.12 0.17 0.68 1.00 0.50 0.34 0.89 0.77 0.42

Winter
wheat–summer

peanut

Wet year 0.18 0.13 0.26 0.89 1.00 1.00 0.82 1.00 0.62 0.60
0.53Normal year 0.21 0.22 0.23 0.81 0.70 1.00 0.75 0.97 0.88 0.56

Drought year 0.07 0.12 0.17 0.56 0.95 0.50 0.39 0.89 0.77 0.42Sustainability 2016, 8, 1207  8 of 11 
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4.3. Assessment of Water Constraint Risk and Adjustment and Optimization of Cropping Systems

After calculations based on the Formula above, we find that the water constraint degrees were
relatively lower for the crops sowed in spring or early summer. The average constraint degree of
broomcorn and foxtail millet in different precipitation year types was around 20%, followed by the
spring corn. The highest constraint degrees were found in rice and wheat, with mean values above
50% in different precipitation year types.

According to the previous studies [21,22], we calculated the possible reduced production of winter
wheat, summer corn, and rice under water constraint. By comparing with the optimal yield, the yield
losses of three crops during different growth periods were calculated. Then, the water constraint risks
of crops in each growth period were calculated using Formula (1). The results show that the water
constraint risk of the winter wheat was the greatest, followed by the rice. The lowest water constraint
risk occurred in the summer corn. For the winter wheat, the greatest water constraint risk was found in
the elongation and booting stage (2.17 t/ha), followed by the seedling and tillering period (1.22 t/ha).
Similarly, rice also had a higher risk during the elongation and booting period (0.64 t/ha). For the
summer corn, the results suggest a higher water constraint risk during the heading and filling periods.

For the water constraint risks of crops in the whole growth period, the results show that the water
constraint risks of crops from high to low were: wheat > rice > broomcorn > foxtail millet > summer
soybean > summer peanut > spring corn > summer corn (Table 5). The winter wheat had the highest
water constraint risk, followed by the rice.
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Table 5. The average water constraint risks of crops in Daxing during 1980–2010 (kg/ha).

Crop Rice Wheat Summer
Corn Broomcorn Foxtail

Millet
Summer
Soybean

Summer
Peanut

Spring
Corn

Wet year 270.47 435.59 1.20 221.20 217.50 40.07 8.34 2.29
Normal year 325.79 462.39 2.18 237.00 232.00 136.24 25.03 3.49
Drought year 393.40 469.09 4.36 489.80 420.50 296.52 58.40 5.13

Mean 332.33 455.47 2.68 329.25 299.82 164.16 32.03 3.70

According to the calculations above, we got the water constraint risks of the double cropping
system by selecting the greater water constraint risk of the two crops. So, we obtained the water
constraint risks of each cropping system during their whole growth periods, as displayed in Figure 4.
The results suggest that the order of water constraint risks of the cropping systems in Daxing was:
winter wheat–summer grain crops > rice > broomcorn > foxtail millet > spring corn. Water constraint
risks of double cropping systems were higher than that of the spring-sown crops.Sustainability 2016, 8, 1207  9 of 11 
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Therefore, among the three main crops, we found that water constraint risk of winter wheat was
the greatest, followed by rice and summer corn. The greatest water constraint risks of winter wheat
and rice occurred in elongation and booting stage, and summer corn had a higher risk during the
heading and filling period.

5. Discussion and Conclusions

How to mitigate and adapt to potential water constraint is a key issue for ensuring food security
and achieving sustainable agriculture in the context of climate change. Here, we advanced the concept
of water constraint risk of cropping systems, and proposed an approach to evaluate the water constraint
risks of agricultural production for the adjustment and optimization of the cropping systems. The case
study in the Daxing District in Beijing, China, shows that the method of adjusting and optimizing
cropping systems is practicable. The evolution process of the cropping systems in Daxing (see the
section of Study area) shows that the crops and cropping systems with high water consumption were
gradually replaced by those with low water consumption as the water constraint risk increased. Rice is
no longer planted, and the risky double cropping systems such as winter wheat–summer corn have
also been gradually transformed into single cropping with less risk (such as spring corn). Moreover,
local farmers and stakeholders are discussing the possibility and feasibility of decreasing the planted
area of winter wheat. Our results (as shown in Figure 4) are consistent with the actual evolution
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process of cropping systems prescribed above, indicating that the proposed approach for adjusting
and optimizing cropping systems is practicable. In addition, our proposed approach can be used to
compute the water constraint degrees in the different growing periods (as in Tables 3 and 4). Therefore,
the critical periods affecting crop growth and development could be determined, which would be
greatly helpful for the time layout of the crops. In addition, this approach is also reliable because
it combines the connotation of risk with the effect of water constraint on crop yield. Based on the
analyses above, we think our proposed approach can be used in other regions to adjust and optimize
cropping systems under resource constraints. Considering the relatively complex computation of crop
water requirement, this approach is more suitable for government decision making than for farmers.

The results of our assessment of the average risk provides a fundamental basis for the adjustment
of cropping systems, although some uncertainties need to be reduced in future work. For example,
in this study, we only considered precipitation in the calculation of water supply due to data availability,
though irrigation also served as a water source for crops in the study area. Additionally, the runoff,
infiltration, and other water consumption items were not subtracted from the precipitation, which may
underestimate, to some degree, the risk of water constraint. Concerning the unit of water constraint
risk, normalized values instead of absolute yield losses will be developed. In addition, the average
risk was calculated based on the historical data from 1980 to 2010. For a specific year, the result might
not completely accord with the actual situation due to interannual climate variability. We will improve
our approach by integrating algorithms from hydrological model and finer input data sets.
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