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Abstract: Understanding the temporal and spatial scale at which habitat alteration impacts 

populations is important for conservation and management. Amphibians have declined more 

than other vertebrates, and pond-breeding species are particularly susceptible to habitat  

loss and fragmentation because they have terrestrial and aquatic life stages. One approach to 

management of pond-breeding species is protection of core upland habitat surrounding the 

breeding pond. We used genetic variation as an indicator of population status in a common 

amphibian species, spotted salamanders (Ambystoma maculatum), to determine how amount 

of suitable upland habitat relates to population status in the greater Charlotte,  

North Carolina, USA metropolitan area. We developed candidate models to evaluate the 

relative influence of historical and contemporary forested habitat availability on population 

genetic variation at two spatial scales of upland area (164 m and 2000 m) at four time 

intervals over the past seven decades (1938, 1978, 1993, 2005). We found that historical land 

cover best predicted contemporary allelic richness. Inbreeding coefficient and observed 

heterozygosity were not effectively predicted by forest cover at either spatial or temporal 

scales. Allelic richness was best predicted at the smaller spatial scale in the 1993 time 

interval. Predicting and understanding how future landscape configuration affects genetic 
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variation of common and rare species is imperative for the conservation of amphibian and 

other wildlife populations. 

Keywords: population genetics; Ambystoma maculatum; upland core habitat; historic 

landscapes; microsatellite DNA 

 

1. Introduction 

Populations of most species are distributed patchily across the landscape, and abundance is highest 

where the local environment meets niche requirements [1]. Regional persistence of species requires that 

sufficient amounts of suitable habitat remain on the landscape, and long-term persistence is enhanced 

when this habitat maintains some level of connectivity [2]. Anthropogenic land-use changes over the 

past several decades have resulted in habitat loss and fragmentation, which are the primary causes of 

biodiversity loss and population declines [3,4]. For example, urbanization decreases the amount of 

natural habitat and increases the number of impervious surfaces (e.g., roads) that divide natural 

landscapes, creating multiple isolated habitat fragments [5]. Reduced habitat availability will decrease 

population viability because fewer individuals can be supported, and reduction or loss of connectivity to 

other populations restricts gene flow and might prevent re-colonization following local extinctions [6,7].  

Species that occupy multiple habitat types throughout their life cycle are more susceptible to negative 

effects of habitat alteration, loss, and fragmentation. Amphibian populations have declined at faster rates 

than most other organisms for this and other reasons [8]. This is especially true for amphibian species 

that breed in ponds because these species typically reside in terrestrial habitats during juvenile and adult 

stages and undergo embryonic and larval stages in freshwater aquatic habitats [9–11]. Habitat availability 

and connectivity is positively related to survival, population recruitment, and dispersal success; therefore, 

changes over time likely influence viability and distribution of amphibian populations [9–12]. However, 

more studies are needed to evaluate the relative influence of historical and contemporary landscape 

heterogeneity on amphibian populations [13,14]. 

Understanding the minimum habitat requirements needed to maintain populations is important for 

conservation and management [9,15]. Legislation passed in most U.S. states requires that a small buffer 

(15–30 m) of terrestrial habitat must remain intact around bodies of water [9]. However, these buffers 

may not include the types of terrestrial habitat required by organisms that use the aquatic habitats [9,16]. 

Some investigators have suggested that a minimum amount of terrestrial habitat (termed “core habitat”) 

is needed around wetlands to maintain local populations [15–18]. For example, Semlitsch [18] suggested 

that a core terrestrial habitat encompassing an area within a 164-m radius of a wetland is necessary to 

maintain at least 95% of most Ambystoma populations and other species of amphibians with low 

vagility. However, a single population-focused approach might not be enough to maintain regional 

persistence [19].  

Population status and likelihood of persistence can be assessed using population genetic data, and 

both are positively related to the amount of genetic variation within and among populations [20–23]. 

Information about the extent of genetic variation of populations in combination with maintenance of 

minimum habitat requirements may be useful for better understanding and improving conservation 
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status of amphibians in fragmented habitats [23,24]. Although many researchers have estimated the size 

of minimum core habitats [17,18], additional studies are needed to evaluate the relationship between the 

genetic variability of amphibian populations and the likelihood that those populations can persist in 

fragmented habitats. Our objectives were to use geographical information system (GIS) data and genetic 

analyses to (1) examine the relationship between genetic variability of Ambystoma maculatum (spotted 

salamander) and the amount of forest cover surrounding a wetland within recommended core terrestrial 

habitat and at a larger scale; and (2) determine if historic or contemporary landscapes better explain 

current genetic variability.  

2. Experimental Section 

We studied six populations of A. maculatum across the greater Charlotte area (Mecklenburg and 

Cabarrus counties) of North Carolina, USA (Figure 1). Sites were selected based on the presence of 

Ambystoma maculatum egg masses and variability in upland habitat. Most mole salamanders (genus 

Ambystoma) provide excellent models for studying the effects of habitat fragmentation on populations. 

They breed in distinct, clearly defined areas (i.e., ponds) that can be easily sampled and are widespread 

and able to survive in a human-altered environment. Adult salamanders typically use fish-free ponds for 

breeding and forested upland habitat for feeding and over-wintering, and aquatic larvae metamorphose 

and disperse to surrounding upland habitat until maturation occurs [25].  

Figure 1. Map of study sites across the greater Charlotte area (Mecklenburg and Cabarrus 

counties) of North Carolina, USA. Inset map of the United States depicts location of counties 

in North Carolina. 

 

At each wetland, we collected 5 eggs from each of 30 egg clutches (or from every clutch when fewer 

than 30 existed) from 6 February to 25 March 2005. Eggs were preserved and stored in 95% ethanol until 

DNA extraction. We extracted DNA from one egg per clutch using the Qiagen DNeasy blood and tissue 

protocol (Qiagen, Valencia, CA, USA). Each individual was genotyped for 5 microsatellite DNA loci 

from Julian et al. [26] (D367, D321, D49, D287, D99) using PCR and an ABI 310 Genetic Analyzer 

(Life Technologies, Carlsbad, CA, USA). Allele lengths were scored using GeneScan Analysis Software 

Cabarrus 

Mecklenburg 
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version 3.1.2 (Life Technologies, Carlsbad, CA, USA). We tested for deviations from Hardy Weinberg 

Equilibrium (HWE) for each locus and population using global tests with Bonferroni corrections and for 

linkage disequilibrium using Fisher’s exact test with Bonferroni corrections in FSTAT 2.9.3.2 [27].  

We calculated allelic richness, inbreeding coefficient (FIS), observed heterozygosity (HO), and expected 

heterozygosity (HE) for each population using FSTAT 2.9.3.2 [27]. 

Use of aerial imagery from different time periods can be used to investigate how historic landscapes 

impacted population structure and to provide support for interpretation of genetic variation. Aerial 

imagery (i.e., photographs) was obtained from Mecklenburg County Geospatial Information Services 

and Cabarrus County Soil and Water Conservation District offices. Little cloud cover appeared on these 

images and seasonal variation in vegetation did not affect our ability to discern among cover types. 

To quantify habitat availability at each site, we used ArcGIS v.9.2 (Environmental Systems Research 

Institute, Inc., Redlands, CA, USA) for analyses of habitat surrounding each wetland. Aerial imagery 

was available for the years 1938, 1978, 1993, and 2005 and was georeferenced to determine habitat 

change over time at each site. Using digitized imagery we determined the dominant land cover types 

surrounding each wetland. Land cover types included urban (i.e., human development), agriculture (i.e., 

pasture and crops), and forest (i.e., natural habitat). Land cover type was calculated as a percentage of 

total land cover (e.g., percent forest) at two spatial scales represented as 164-m and 2000-m radii 

surrounding breeding ponds. Semlitsch [18] recommended a 164-m-radius core, forested habitat around 

wetlands for protection of 95% of adult A. maculatum individuals within a population. A 2000-m 

distance was used for comparison because it better represents the larger landscape. For analyses, we 

focused on proportion of forest cover at each site and time period because A. maculatum prefer forest to 

open habitat and have significantly lower survival in open habitat [28,29].  

We used an information-theoretic approach to generalized linear modeling [30] to examine the 

relationship between population genetic diversity and forest cover at multiple spatial and temporal 

scales. We focused on forest cover because it is the most important land cover type for spotted 

salamanders and because forest cover was correlated to agriculture and urban land cover. We evaluated 

eight single-variable candidate models for allelic richness, FIS, and HO. Because HE and allelic richness 

were correlated (r = 0.919; p = 0.009), we excluded HE from analyses. Other measures of genetic 

variation were not correlated. Each model corresponded to percent forest cover at both 164-m and 

2000-m scales for each time period (i.e., 1938, 1978, 1993, and 2005). The best candidate models were 

defined as models with the lowest AIC values and highest weights [30]. Parameter estimates (±standard 

error) and p-values for each variable were also presented. 

3. Results  

The six populations exhibited a wide range of genetic variation (Table 1). No significant deviations 

from linkage equilibrium were detected, but 10 of 30 tests were significant for deviation from HWE. 

Percent forest cover surrounding each wetland varied over time and space whereby forest cover at the 

164-m and 2000-m spatial scales increased from 1938 to 1993, but decreased again in 2005 (Figure 2). 

At the 2000-m scale, there was less recovery of forest cover over time and less variability in forest cover 

among sites and years (Figure 2). Land cover within the 164-m area primarily remained as forest and 

agriculture over our study period. At the 2000-m scale, urbanization appeared after the 1938 time period 

and increased over time at all sites at varying intensities. The best candidate model for predicting allelic 
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richness included the variable percent forest cover within 164 m in the year 1993 (AICc weight = 0.767; 

Table 2). Allelic richness was positively associated with forest cover in this model (parameter estimate = 

7.60 ± 1.97). Contemporary forest cover at both the 164-m and 2000-m spatial scale were poor 

predictors of allelic richness (Table 2). In terms of FIS, forest cover during 1993 at the 2000-m and 

164-m scales were the highest supported models (Table 2). However, parameter estimates for each were 

not statistically different from zero. In general, forest cover was a poor predictor of Ho; all models had 

nearly identical AICc weights and parameter estimates were not statistically significant. 

Table 1. Observed genetic variation of six Ambystoma maculatum populations in the greater 

Charlotte area of North Carolina, USA. 

Population Allelic Richness 
Inbreeding 

Coefficient 

Observed 

Heterozygosity 

Expected 

Heterozygosity 

A 8 0.26 0.589 0.803 

B 5.8 0.30 0.648 0.731 

C 7.8 0.20 0.639 0.794 

D 7.2 0.11 0.650 0.618 

E 8.8 0.38 0.471 0.787 

F 6.2 0.08 0.588 0.69 

Mean + 1 SE 7.3 + 0.46 0.22 + 0.05 0.565 + 0.036 0.737 + 0.030 

Figure 2. Average (±1 SE) percent forest cover within circular areas of 164-m and 2000-m 

radii for six wetlands in the greater Charlotte area of North Carolina, USA from 1938–2005.  
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Table 2. Akaike’s Information Criterion of candidate models that examine habitat availability 

and time on genetic variables (FIS = inbreeding coefficient, HO = observed heterozygosity, 

HE = expected heterozygosity). 

Genetic  

variable 
Model AICc ∆AICc wi 

Parameter 

Estimate  

(±1 St. Err) 

p-value 

Allelic 

richness 

1993: 164 m 14.32 0.00 0.767 7.601 (±1.973) 0.018 

1938: 164 m 17.67 3.36 0.143 3.177 (±1.221) 0.060 

1978: 164 m 19.89 5.57 0.047 6.392 (±3.444) 0.137 

2005: 164 m 22.78 8.46 0.011 2.381 (±3.083) 0.483 

1993: 2000 m 23.08 8.77 0.010 2.323 (±3.821) 0.576 

1978: 2000 m 23.60 9.29 0.007 0.298 (±3.816) 0.942 

2005: 2000 m 23.60 9.29 0.007 −0.261 (±3.293) 0.941 

1938: 2000 m 23.61 9.30 0.007 0.087 (±7.911) 0.992 

FIS 

1993: 2000 m −7.43 0.00 0.341 0.538 (±0.301) 0.148 

1993: 164 m −5.47 1.96 0.128 0.415 (±0.379) 0.336 

1978: 164 m −5.43 2.01 0.125 0.449 (±0.418) 0.343 

1938: 164 m −5.15 2.28 0.109 0.175 (±0.182)  0.390 

1978: 2000 m −4.75 2.68 0.089 0.279 (±0.359) 0.480 

1938: 2000 m −4.39 3.04 0.075 0.447 (±0.767) 0.592 

2005: 2000m −4.20 3.23 0.068 0.1465 (±0.325) 0.675 

2005: 164 m −4.13 3.31 0.065 −0.127 (±0.328) 0.718 

HO 

1993: 2000 m −8.23 0.00 0.175 −0.248 (±0.281) 0.428 

2005: 164 m −7.75 0.47 0.138 0.156 (±0.242) 0.555 

1978: 2000 m −7.68 0.55 0.133 −0.169 (±0.282) 0.582 

1978: 2000 m −7.68 0.55 0.133 −0.169 (±0.282) 0.582 

1938: 164 m −7.42 0.81 0.117 0.063 (±0.151)  0.696 

1993: 164 m −7.31 0.91 0.111 0.105 (±0.325) 0.764 

2005: 2000 m −7.25 0.49 0.108 −0.060 (±0.252) 0.823 

1978: 164 m −7.26 0.96 0.108 0.093 (±0.359) 0.807 

1938: 2000 m −7.26 0.96 0.108 −0.158 (±0.604) 0.807 

4. Discussion 

The trends in percent forest cover we documented for 1938–2005 corresponded to previous research 

in the Piedmont region of the southeastern United States. This region was historically forested but was 

mostly converted to pastures and agricultural land during the 1800s [31,32]. Beginning around 1940, 

many of these croplands and pastures were abandoned and allowed to reforest [31,32]. Beginning in the 

1970s, urbanization increased dramatically, which lead to a significant reduction of forested lands [33,34]. 

We found a positive relationship between allelic richness and amount of suitable, forested habitat at the 

finer (164-m) scale. Because inherent variability in forest cover at the 2000-m scale was less than the 

finer scale (Figure 2), we had lower ability to detect its influence. Regardless, forest cover is generally 

important for A. maculatum because they prefer forest substrates to other substrates [29] and can suffer 

high mortality rates when traveling through non-forested habitats [10]. Although we did not detect any 



Diversity 2013, 5 730 

 

 

significant patterns for other measures of genetic variability, our study might be limited in power to 

detect these differences because of number of loci used and number of study sites.  

Historic habitat availability was a better predictor of genetic variability than current landscape 

configuration. Our results suggest there is a time lag between when habitats are altered and when 

population genetic variability responds, and it contributes to a growing literature supporting that caution 

must be taken in using contemporary genetic variability as an indicator of current population status, 

especially in landscapes continuing to lose habitat [13,14,24,35]. One turnover in generations (and 

potentially multiple) might be required before the time lag response in genetics reflects land-use change. 

Spotted salamanders have an average generation time of 4–5 years [22,25]. Therefore, the lag time we 

detected represents 2–3 generations. Similarly, Purrenhage et al. [22] found that the amount of habitat 

fragmentation had no significant effect on genetic structure of spotted salamander populations and 

suggested that fragmentation might have been too recent to observe changes in genetic structure. 

Most amphibian species that breed in this wetland type (isolated, depressional wetlands) have a 

similar requirement for upland forested habitat, so our results are applicable to these amphibians and 

other organisms with similar habitat requirements. Thus other species should exhibit a positive 

relationship between amount of upland habitat surrounding wetlands where they breed and population 

genetic variability. As habitat is degraded, there will be a time lag in genetic signature, so contemporary 

variability within each species might overestimate population status. Additionally, because A. maculatum 

is a common species that tends to survive in human-altered environments more so than many other 

amphibian species, we feel that our study might overestimate response to land-use change by less 

tolerant species. 

Although regional biodiversity is maintained by landscape-level, among-population dynamics, many 

of our management techniques continue to focus on individual populations. Sound management requires 

integration of perspectives that emphasize factors operating at local and landscape scales [19,36]. 

Populations of wetland species will go extinct if either the wetland or surrounding upland habitat is 

severely degraded or lost. Therefore, management must focus on preserving both habitat types [17,18]. 

However, although this management philosophy will maintain local populations in the short term, it 

ignores the long-term, evolutionary perspective. To conserve wetland species in the long term and 

regionally, we not only need to conserve upland buffers surrounding wetlands, but also we must preserve 

ecological connectivity among these breeding populations [17,18]. This not only allows for recolonization 

when local population extinctions occur, but also allows for maintenance of genetic diversity across the 

landscape via within-population processes and low-level dispersal rates among populations [20].  

As land-use changes continue to occur and rural land is transformed by urban sprawl, A. maculatum 

and other species’ populations will continue to be negatively affected. The most severe land-cover 

change is urbanization, which is associated with more endangered species in the United States than is 

any other human activity [3]. Unlike other habitat alterations (e.g., agricultural cultivation, pastureland 

creation, forest clearing) urbanization is more permanent. From a practical perspective, many landscape 

contexts, especially urban areas, present difficulty in maintaining large corridors through matrix 

between patches and may not be logistically or economically feasible. Even in areas with severely 

disturbed habitat between populations, genetic variation and connectivity can be maintained using 

innovative techniques, including corridors and green spaces in urban areas, wildlife fences and tunnels 

under roads, and strategically placed artificial wetlands [37,38]. Additional studies are necessary to 
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determine the effect of current and future rates of habitat loss on genetic structure and species diversity 

and to determine best management practices across these landscapes [39]. 
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