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Summary

Cotton bollworm, Helicoverpa armigera, is a major insect pest that feeds on cotton bolls causing
extensive damage leading to crop and productivity loss. In spite of such a major impact, cotton
plant response to bollworm infection is yet to be witnessed. In this context, we have studied the
genome-wide response of cotton bolls infested with bollworm using transcriptomic and
proteomic approaches. Further, we have validated this data using semi-quantitative real-time
PCR. Comparative analyses have revealed that 39% of the transcriptome and 35% of the
proteome were differentially regulated during bollworm infestation. Around 36% of significantly
regulated transcripts and 45% of differentially expressed proteins were found to be involved in
signalling followed by redox regulation. Further analysis showed that defence-related stress
hormones and their lipid precursors, transcription factors, signalling molecules, etc. were
stimulated, whereas the growth-related counterparts were suppressed during bollworm
infestation. Around 26% of the significantly up-regulated proteins were defence molecules,
while >50% of the significantly down-regulated were related to photosynthesis and growth.
Interestingly, the biosynthesis genes for synergistically regulated jasmonate, ethylene and
suppressors of the antagonistic factor salicylate were found to be up-regulated, suggesting a
choice among stress-responsive phytohormone regulation. Manual curation of the enzymes and
TFs highlighted the components of retrograde signalling pathways. Our data suggest that a
selective regulatory mechanism directs the reallocation of metabolic resources favouring defence
over growth under bollworm infestation and these insights could be exploited to develop
bollworm-resistant cotton varieties.

Introduction

molecules (Gatehouse, 2002). Signal perception and activation
results in a vast cascade of events at cellular and molecular levels

Plants and insects have coexisted for about 350 million years
leading to the evolution of both positive and negative interactions
(Gatehouse, 2002). Positive interactions include insect-mediated
pollination, seed dispersion, etc. that offer mutual benefit to the
insect and the host, while negative interactions include insect
predation (Gatehouse, 2002) that often causes detrimental
effects to the host. In view of the long standing relationship, it
is quite obvious that plants have evolved a diverse set of stress-
specific constitutive and/or inducible defence mechanisms to
resist and coexist with the insect pests (Gatehouse, 2002). The
response pattern in both the mechanisms might either be
activated locally at the infected site, systemically in the uninfected
regions or by both the aforementioned through signalling
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ultimately contributing to the defence mechanism. Specialized
defence mechanisms that protect plants from insects include
physical barriers such as cell wall and cuticle (Kempema et al.,
2007), cellular processes including lignifications, cross-linking of
cell wall components, release of volatile and nonvolatile metabo-
lites (Kempema et al., 2007) and molecular processes like
activation of defence-related genes and pathways (Ramirez et al.,
2009; Ryan, 1990). In addition, hormones, transcription factors
(TFs) and redox regulators play major role in stress response and
defence signalling. Hormones are secondary signals that amplify
primary elicitor signals during biotic stress (Yang et al., 1997).
Salicylic acid (SA), ethylene (ET), jasmonic acid (JA) and systemin
are the major phytohormones that are often quoted as stress-
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specific signalling molecules (Arimura et al., 2005; Loake and
Grant, 2007; Sun et al., 2011; Yang et al., 1997). Moran and
Thompson (2001) suggested that there is a complex crosstalk
among hormonal pathways that control the plant responses to
wounds, insect pest and pathogen attacks. In addition to
hormones, pathogen elicitors also activate TFs that interacts with
the pathogen-responsive cis elements present in the promoters of
the defence-related genes. Even a single pathogen elicitor is
capable of activating multiple TFs that can interact with the cis
elements present within the same or different promoter regions
ultimately leading to stimulation of vast set of defence-related
genes and gene products (Yang et al,, 1997). Oxidative burst is
one of the major processes that occur during biotic stress
condition (Lamb and Dixon, 1997). Maintenance of the redox
balance within the plant cell plays a crucial role in modulating
redox sensitive genes and proteins including many TFs (Torres,
2010). Release of reactive oxygen species (ROS) such as O, and
H,0, induces many defence-related events including cell wall
reinforcement through lignifications and cross-linking of glyco-
proteins in the extracellular matrix, activation of defence-related
genes, molecules, etc. (Jabs et al.,, 1997). The above-mentioned
cascade of events demand and consume considerable amount of
energy. During stress conditions, plant systems manage their
biological energy and resources by either partitioning or favouring
the molecular machineries towards defence and/or growth. As a
result, most plants do survive insect predation; however, it is
often accompanied by reduced growth and yield penalty
depending on the site of insect predation.

Cotton (Gossypium spp.) is the leading contributor of natural
fibre and is an important source of textile commodity, oil and
protein meal (Han et al., 2004; Mei et al., 2004). Cotton bolls
are crucial tissues that harbour lint (textile fibre) which is of huge
economic value. The effect of insect pest infestation followed by
secondary infection could lead up to 80% loss in cotton fibre
production (Oerke, 2006). Around 1326 species of insects have
been reported worldwide as cotton pests, and among them,
bollworm (Helicoverpa armigera) is the major pest that directly
feed and destroy the developing fibre tissue within the cotton
bolls (Dua et al., 2006; Matthews, 1994). Biotic stress induced
through insect pest attack regulates cellular events majorly
driven by expression changes of genes and their associated
pathways. Earlier efforts to understand plant diseases caused by
insect, pathogen infestations have identified certain genes and
pathways involved in the biotic stress tolerance in cotton (Artico
et al., 2014; Dubey et al., 2013; Gao et al., 2013). Systems level
analysis at the transcript and protein levels more often reveals
the near-complete status of an organism subjected to stress or
disease conditions (Komatsu et al., 2009; Srivastava et al.,
2013). Such analyses are yet to be employed to understand
molecular and cellular mechanisms operational during cotton
plant and bollworm interactions. Further understanding of these
interactions using high-throughput approaches might reveal
stress-induced responses and endogenous resistance mecha-
nisms operational in the host. In this context, we have made an
attempt to understand the mechanisms adapted by cotton plant
during bollworm attack using both transcriptomic and pro-
teomic tools. As bolls are the target site for fibre synthesis as
well as bollworm feeding, we have performed comparative
analyses of developing cotton bolls subjected to bollworm
infestation. Our comprehensive genome-wide analyses have
revealed several new and interesting insights about cotton plant
and bollworm interactions. Knowledge gained through this
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study could be further exploited to develop bollworm-resistant
cotton varieties.

Results

Differentially regulated transcripts and proteins in
bollworm-infested cotton bolls

Cotton plants were grown in the field conditions following
common agronomic practices. Only bolls that were infected by
cotton bollworm (H. armigera) insect larvae were used for
further analysis (Figure 1a,b). To study the effect of insect stress
in developing boll tissue, microarray-based transcriptome profil-
ing and two-dimensional gel electrophoresis (2D PAGE) followed
by MALDI TOF/TOF-based proteome analyses were carried out at
different developmental stages (Figure 1b,c). Labelled mRNA
was hybridized to Affymetrix cotton GeneChip Genome array.
Identified transcripts with a false discovery rate (FDR) adjusted P
value <0.01 and fold change >3 were considered as differentially
expressed transcripts (DETs) (Figure 1d; Table S1). In total, 8694
transcripts comprising 39% of the total transcripts present on
the cotton GeneChip showed differential expression under
bollworm infestation. Transcripts were annotated using the
Arabidopsis TAIR protein database version 10 through BLASTX
with E value cut-off <e-10. Identification of transcripts related to
TFs, phytohormones and signal transduction were attained using
Arabidopsis transcription factor and Arabidopsis hormone
databases, respectively, as mentioned in Materials and methods.
Classification of DETs under different functional categories was
attained using MIPS functional catalogue. Gene expression
patterns in response to bollworm infestation were classified
using hierarchical clustering (Figure 1e). Differentially expressed
transcripts showing consistent up- and down-regulation among
boll developmental stages are tabulated (Figure 2a,b; Tables S4
and S5).

Two-dimensional gel electrophoresis (2D PAGE)-based pro-
teome analysis of bollworm-infested (biotic stress-induced BS)
and noninfested (control, CN) cotton bolls showed an average of
393 reproducibly detected protein spots across developmental
stages (0, 2 and 5 dpa) (Figures 3a-c and S1a—c). At least two
independent replicate gels were generated per sample (Control,
CN vs bollworm infested, BS). Only those spots that were
reproducibly detected were further considered for comparative
analysis. Quantification of the protein spots was attained using
the per cent volume criterion that corresponds to the expression
level of the detected spot regions. Protein spots showing fold
change of +1.5 with a P value <0.5 as mentioned in Materials
and methods were considered as differentially expressed spots.
Comparative analysis revealed that around 35% of the detected
spots (137 spots) were differentially expressed (+1.5-fold), and
among them, 98 spots were identified using MALDI TOF/TOF
(Table S14). Further Gene Ontology (GO)-based annotation and
functional classification of the DEPs under various categories were
attained using BLAST2GO platform version 2.7 (Figure 2e,f).

Comparative analysis of the transcriptome and proteome
data sets highlighted 37 overlapping unique accessions that
were quantified at both the transcript and protein levels
(Table S15). Among them, only 10 genes (accessions) were
found to have similar expression pattern in at least one of the
developmental stages that were analysed in this study. Such
poor corelation among the transcriptome and proteome data
sets could either be attributed to the post-transcriptional
regulation of the identified genes or be the experimental

© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1438-1455



1440 Saravanan Kumar et al.

(b) Control bolls  Infested bolls
Odpa
(1] L)
£ £
S o
o 2
= S
@ a
i
o
"_
(c) Cotton boll tissue
controlvs infested
[ Protein isolation ] ‘ RNA isolation ] () T =2 8 3
0,2,50pa  J° '{ 0,2,5,10 Dpa 8 & 8o
2D PAGE proteome map |( Microarray based transcriptome |
1
2D PAGE analysis by Transcriptome analysis by
Imagemaster 2D Platinum GeneSpring GX-12.6
List of differentially expressed
rotein (DEPs) 2D-spots List of differentially expressed
1 transcripts (DETS)
[ Protein entication by MALDI TOFITOF | l [
L[
Functional annotation of DEPs Functional annotation of . o
by BLAST2GD v.2.8.0 DETsby TAIR Figure 1 Bollworm infested biotic stress
induction in cotton bolls, G. hirsutum L. cv.
[ Data analysis, integration &validation by gRT-PCR ] Bikaneri Narma. (a) Method of biotic stress
d ) induction in cotton bolls under field conditions. (b)
» Boll developmental stages of control (CN) and
= 2 140 132 bollworm infected tissues (BS) used in the current
o
@ ° study (0, 2, 5 and 10 dpa/days post anthesis). (c)
S 3000 ] lated 2757 = 120 . .
= EDP'TEQU 319| » = - W Up-regulated Schematic overview of proteome and
own-regulate: o . .
B 2500 g _— @ 100 BDown-regulated transcriptome data generation and analyses
o . .
£ 2000 5 30 workflow. (d) Number of differentially expressed
a . .
% - 1503 ;_ - transcripts (DETs) during boll development stages
%‘ 1024 1031 3 609 51 under BS as compared to their respective stages of
= 1000 - 5 40 24 CN. (e) Cluster analysis showing the differentially
o N . .
3 50 - 560 £ 5 expressed transcripts related to biotic stress. (f)
5 ; ] iz Number of differentially expressed proteins (DEPs)
S 0" ydpa " 2dpa " 5dpa ' 10dpa 2 0= 0Odpa 2dpa dpa during boll development stages under BS as
2 BSvsCN BSvsCH BSvsCN ‘BSvaCH BSVsCN BSVSCN  BSVsCN compared to their respective stages of CN.

limitations associated with the transcript and protein turnover
measurements.

Bollworm infestation induces early and consistent
response in developing cotton bolls

Analysis of the transcriptome and proteome profile of the bolls
that were subjected for only 8 h of bollworm infestation (0 dpa)
showed 1352 (15.55%) DETs and 115 (36.37%) DEPs (Figure 1d,
f). Majority of those transcripts (75.73%) and proteins (89.5%)
were exclusively up-regulated in biotic stress-induced bolls (BS) at
0 dpa (Figure 1d,f and 4). Cluster analysis of the DETs and DEPs
revealed that the gene expression pattern gradually changed
upon boll development (Figure 5a,b). Briefly, 42.07% of 2-dpa,
72.85% of 5-dpa, 43.46% of 10-dpa transcripts were up-
regulated, while 54.05% of 2 dpa and only 25.75% of 5 dpa
proteins were up-regulated in BS-induced bolls (Figure 1d,f).
Analysis of the transcriptome data sets revealed an increase in the
number of up-regulated transcripts at 5 and 10 dpa (Figure 1d).
However, such pattern was not observed at protein levels as the
proteome profile showed a steady decline towards development

(0-5 dpa, Figure 1f). In support of such drastic decline in
transcript and protein populations, infested bolls showed com-
promised growth in terms of size accompanied by infection-
related symptoms such as browning and rotting (Figure 1b). The
discrepancies among transcriptome and proteome pattern on the
one hand and growth of infested boll on the other suggest that
the plant system'’s continuous effort to encounter pest attack at
transcript level is somehow not been translated to the protein
level. Nevertheless, the above-mentioned discrepancies can also
be attributed to the limitations associated with transcript and
protein quantitation procedures.

Defence signalling involves major reprogramming of
metabolic and biosynthetic pathways

Gene Ontology-based functional annotation revealed that 62%
of the DEPs were enzymes involved in regulating metabolic
processes such as carbohydrate (10%), amino acid (19%) and
lipid (18%) metabolisms (Figure 2e). Cellular component-based
classification showed that DEPs were distributed among plastid
(20%), mitochondria (14%), nucleus (15%), extracellular (19%)

© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1438-1455
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and cytosolic (15%) localizations (Figure 2f). Molecular function-
based classification showed that majority of the DEPs were
involved in signalling (45%) and redox regulation (17%) (Fig-
ure 2g). Significantly enriched pathways corresponding to up-
and down-regulated transcripts are presented in Table 1. Hierar-
chical clustering clearly showed that there were certain popula-
tion of transcripts and proteins that were down-regulated upon
development and certain others that were consistently up-
regulated across the developmental stages (Figure 5a,b). To
explain the reprogramming pattern, we have focussed on the
key metabolic pathways that showed major differences in terms
of their expression exclusively during biotic stress conditions.
Differentially expressed transcripts and DEPs related to trehalose,
raffinose, malate, starch and cell wall metabolism majorly
accounted for the carbohydrate metabolism (Table S9). Briefly,
up-regulated transcripts related to trehalose phosphate synthase
(TPS) and trehalose phosphatase (TPP) that are involved in
trehalose biosynthesis (Tables 2 and S9) were identified in this
study (Wingler, 2002). Two unique isoforms of galactinol
synthases (GolS) involved in galactinol synthesis were found to
be consistently up-regulated in our data set (Tables 2, S4, and
S9). Further, our study also showed the up-regulated transcripts
of malate synthase (MS) and down-regulated malate dehydroge-
nase (MDH) transcripts and proteins (Tables S9 and S14). Malate
synthase is involved in the synthesis of malate, whereas MDH
catalyses the oxidation of malate to pyruvate and CO,. The
above-mentioned pattern in turn correlates with stress-responsive
accumulation of trehalose, raffinose and malate in the infested
bolls. In plants, synthesis and degradation of nonstructural

carbohydrates (NSCs) such as starch plays a major role in the
regulation of carbon source availability during growth and
unfavourable conditions (Sulpice et al., 2009). Data curation
revealed the down-regulated transcripts involved in starch
biosynthesis such as starch synthase, ADP-glucose pyrophospho-
rylase (AGPase) and up-regulated enzymes of starch degradation
pathway such as starch excess 1 and starch binding domain-
containing glycoside hydrolase (Yano et al., 2005) (Table 2, S1).
Further analysis showed the down-regulated group of carbohy-
drate active enzymes (CAZymes) that catalyse cell wall metabo-
lism-related processes such as loosening, elongation, grafting and
maturation (Table S7). Analysis of nitrogen, amino acid and
protein metabolism genes revealed that glutamine metabolism
was up-regulated and ubiquitin cascade-related genes were
differentially regulated. Pathway curation revealed that glutamine
synthase isoform 1 (GS1), glutamate dehydrogenase (GDH) and
nitrate reductase (NiR) involved in nitrogen metabolism were
found to be up-regulated (Tables S4 and S14). In case of ubiquitin
cascade, we observed that ubiquitin ligase (E3) was up-regulated,
whereas ubiquitin conjugating enzyme (E2) was down-regulated
in BS condition at transcript and protein levels (Tables S4, S11,
and S14). This in turn suggests the onset of rate limiting pattern
or controlled proteolysis through ubiquitin-mediated protein
degradation during stress. In addition to the metabolic enzymes,
we also observed up-regulated members of both sugar and amino
acid transporters throughout the developmental stages suggest-
ing active transportation processes (Table S12). Further, our study
also revealed that fatty acid and lipid metabolism-related genes
were differentially regulated (Table S10). Pathway mapping and

© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1438-1455
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curation suggested stimulation as well as repression of different
lipid precursor pathways. Briefly, majority of the up-regulated
genes were involved in glycolipid and phospholipid metabolism
including enzymes related to a-linolenic acid metabolism that
ultimately lead to JA biosynthesis (Tables S10 and S14). On the
other hand, we observed that down-regulated genes such as 3-
oxo-5-alpha-steroid 4-dehydrogenase (DET 2) and 24-sterol C-
methyltransferase (SMT2-2) were involved in sterol biosynthesis.
Sterols are membrane lipids that serve as precursor molecules for
brassinosteroid (BR) biosynthesis (Table S10).

Repression of chloroplast, mitochondrial metabolism
and cellular growth is evident during stress

In this study, the redundant expression pattern observed in
majority of the metabolic pathways included both up- and down-
regulated genes. However, in case of photosynthesis, most of the
DETs and proteins were found to be majorly down-regulated
throughout the developmental stages. Briefly, genes related to
photosystem I, Il, ATP synthase, light harvesting complex,

Figure 3 Representative Coomassie stained 2D
PAGE proteome profile of Control, CN (a) and Boll
worm infested, BS (b) cotton bolls. Annotated 2D
spots corresponding to the differentially expressed
proteins identified using MALDI TOF/TOF. Detailed
list of identified proteins are tabulated in

Table S14. (c) 2D Spot profile of representative
proteins showing differential expression under
bollworm infestation in comparison with their
respective control bolls during boll developmental
stages (0, 2, 5 dpa). 2D PAGE proteome profile of
infested and control bolls during developmental
stages are presented in Figure S1.

chlorophyll  binding proteins, etc. were consistently down-
regulated under BS condition (Tables S8 and S14). Also genes
encoding enzymes involved in carbon fixation including ribulose-
1, 5-bisphosphosphate carboxylase/oxygenase (RuBisCO) and
members of tricarboxylic acid cycle were found to be down-
regulated (Table S8). However, we observed transcripts related to
pentatricopeptide repeat containing protein (GUN1) were up-
regulated (Tables S2 and S11; Figure 6). Further, transcripts
related to mitochondria such as ATP synthase (mitochondrial),
phosphate transporter, mitochondria-associated membrane gly-
coprotein (MAM33), etc. were found to be down-regulated
(Tables S9 and $S12), while transcripts related to mitochondrial
alternative oxidase (AOX) involved in alternative respiratory
pathway were found to be consistently up-regulated (Tables 2
and S1) (Vanlerberghe and McIntosh, 1997). In addition, cellular
growth-related genes such as cytoskeleton proteins, annexins,
profilins and expansins were found to be down-regulated upon
development (Tables S7 and S14). Analysis of cell cycle and DNA
replication-related genes revealed that members of cyclin-
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Figure 4 Differentially expressed transcription
factors (a) and phytohormone (b) under bollworm
infestation as compared to their respective
control. Numbers 1-4 represents different stages;
(1)—0 dpa, (2)—2 dpa, (3)—5 dpa and (4)—

10 dpa. Cluster analysis performed using log,-
transformed fold change values showing the
differentially expressed transcripts related to
transcription factors (c) and phytohormones (d) at
boll developmental stages. Putative transcription
factors and phytohormones at each stage are
presented in Tables S2 and S3.

dependent protein kinase family, cell division-related proteins,
histones, DNA replication factors, etc. were down-regulated in
BS-induced bolls (Table S7).

Calcium and redox signalling pathways are stimulated to
regulate host response

Calcium (Ca**) is often quoted as the second important
messenger that activates signalling cascades in response to
various stimuli including biotic stress (Sanders et al., 2002).
Genes encoding Ca**/calmodulin-binding proteins, calcineurin B-
like proteins, Ca?* binding EF-hand family proteins, Ca®*-
dependent ATPases were found to be up-regulated under BS
conditions (Tables 1 and S14). Protein kinase cascades account
for the major contributors of induced immunity in plants. In this
study, we observed the up-regulation of two major stress-
activated protein kinases such as calcium-dependent protein
kinases and mitogen-activated protein kinases. Also, other
kinases such as SNF1(sucrose nonfermenting)-related protein
kinase, calcineurin B-like interacting protein kinase-6 (CIPK6),

DowN I | P

-5 -3 -1 0 1 35

ankyrin protein kinases were found to be significantly up-
regulated in BS condition. The above-mentioned Ca?* signalling
molecules can be broadly classified into nonenzymatic sensor
proteins and enzymatic proteins. These proteins together con-
stitute a network that not only maintains the intracellular
calcium levels but are also involved in other signalling events
including protein activation. Among the Ca**-dependent
enzymes, majority were observed to be kinases involved in
phosphorylation reaction that determines the activity of sub-
strate protein molecules. So we further analysed the data sets
for kinase substrates and the pathways regulated by these
kinases during stress. Interestingly, we observed CDPK-activated
protein substrates such as NADPH oxidases and oxidoreductases
that were up-regulated during later stages of development
(10dpa) (Dubiella et al., 2013). Manual curation of data sets
revealed that members of peroxidases, superoxide dismutases
(SODs), glutathione S-transferases (GSTs), etc. were found to be
differentially regulated at transcript and protein levels (Tables
S13 and S14). These enzymes are actively involved in the ROS
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metabolism leading to detoxification reactions and activation of
downstream signalling cascades.

Transcription factor analysis revealed components of
stress, retrograde signalling and suppressors of SA

Analysis of the transcriptome data revealed 1048 differentially
expressed TFs accounting for 12% of the DETs under BS
conditions (Table S2). Further, around 8.1% (705) of the up-
regulated and 3.94% (343) of the down-regulated transcripts
correspond to transcription factor families (TFs). Stress-responsive
TFs belonging to WRKY, AP2-EREBP, NAC, bHLH, MYB, C2H2
and ethylene insensitive three families were found to be up-
regulated (Figure 6a). Further, a number of development-related
TFs belonging to AUX/IAA, C2C2, GRAS and HB families were
down-regulated during boll developmental stages (Figure 4a).
Among the TFs, WRKY family accounted for about 13% of
differentially expressed TFs in all of the analysed developmental
stages (0-10 dpa). Following WRKY, AP2-EREBP, NAC and MYB
TFs were found to be relatively more in the transcriptome data
set. Among the stress-related TFs, AP2-EREBP plays a central role
in the abscisic acid (ABA)-dependent stress signalling pathways.
Literature survey and manual curation of the TFs composition and
regulation pattern revealed that the TFs such as WRKY 40, NAC
along with AOXs as mentioned elsewhere constitutively account
for the components of mitochondrial retrograde signalling
pathways (Sophia et al,, 2013; Van Aken et al., 2013). Further
analysis revealed the up-regulated members of WRKY33 and EIN3
that act as suppressors of SA.

Biological significance
Defence, (Figure 3¢, spot 27)
Figure 3¢, spots 36, 37

10 dpa
49.51
382.36
29.86

5 dpa
8.05
2.28

32.98
1.58
5.12

21.29
1.73

3.87
Protein spot detected only under biotic stress condition

Bollworm attack induces synthesis of synergistically
regulated phytohormones

—1.1568

2 dpa

Phytohormone-related DETs constituted for about 64.5% of
0 dpa and <25% of 2, 5 and 10 dpa. Classification and
annotation of phytohormone-related transcripts showed that
around 24% of them were related to ABA followed by auxin
(AUX/IAA), ethylene (ET), BR, SA, gibberellic acid (GA), JA and
cytokinin. Manual curation revealed that transcripts correspond-
ing to zeaxanthin epoxidase that catalyses the first step of ABA
biosynthesis were found to be down-regulated (Table S3) (Marin
et al.,, 1996). Transcripts corresponding to tryptophan amino-
transferase (TAA1), aldehyde dehydrogenase of indole 3-pyruvic
acid pathway (IPA) and cytochrome P450 enzyme-CYP79B2 of
the indole-3-acetaldoxime pathway (IAOX) were found to be
down-regulated. In addition, flavin monooxygenase (YUQC),
tryptophan decarboxylase of the indole-3-acetamide (IAM)
pathway, transcripts related to nitrilases were found to be up-
regulated (Table S3). The above-mentioned pathways (IPA, IAOX
and IAM) ultimately lead to auxin synthesis in plants. The
aforementioned expression pattern suggests that auxin biosyn-
thesis is partially inhibited during bollworm attack. Further,
transcripts related to 1-aminocyclopropane-1-carboxylic acid
(ACC) synthase and ACC oxidase involved in ethylene biosyn-
thesis were found to be consistently up-regulated (Table S4).
Transcripts related to sterol biosynthesis were found to be down-
regulated (Tables S3 and S10). Sterols serve as precursor for BR
synthesis. In addition, transcripts related to 3-oxo-5-alpha-steroid
4-dehydrogenase and BR biosynthetic protein DWARF1 involved
in BR biosynthesis also were found to be down-regulated.
Isochorismatase hydrolase (ISH) was the only SA biosynthetic
pathway-related enzyme that was found to be up-regulated in
our data set (Table S1). However, pathway annotation revealed
that ISH catalyses the conversion of isochorismic acid to 2, 3-

75.69
4.47
11.19

Expression pattern (fold change values)

0 dpa
40.76

Pathogenesis-related protein 4 (PR 4)
Pathogenesis-related protein 10 (PR 10)

Transcript ID/Protein ID

Chitinase
Chitinase
Osmotin
Osmotin

Accession
DT554033
gi[1729760*
DN780414
gi|595836886*
CF932178
gi|10505374*

*Protein IDs and expression values obtained from proteome analysis.

Table 2 Continued

Defence molecules

Fold change values with —ve sign indicate down-regulation.
—: No fold change value was determined.

S no.
33
34
35
3
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(a)

Cluster-1

Figure 5 Heat map view of the cluster analysis
depicting the expression pattern of differentially
expressed transcripts (DETs) (a) and differentially
expressed proteins (DEPs) (b). Hierarchical cluster
analyses of DETs (fold change +3) and DEPs (fold
change +1.5) under biotic stress as compared to
their respective control samples during fibre
development stages (0, 2, 5 and 10 dpa). List of
Affymetrix cotton probe set IDs, and fold change
for transcripts present in each cluster are
presented in Table S16. List of Spot IDs, protein
accessions and fold change for proteins are
presented in Table S17. The hierarchical clustering
was performed using complete linkage method
with Euclidean distance based on fold change
data compared to control samples using Cluster
3.0.

Gluster-5

Ci
Clustgr-

dihydroxybenzoic acid (DHB) and this reaction does not neces-
sarily lead to SA biosynthesis in plants (Figure 6). Interestingly,
most of the crucial enzymes involved in JA biosynthesis including
phospholipase A, lipoxygenase, allene oxide synthase (AOS),
allene oxide cyclase (AOC) and acyl-coA oxidase were found to
be up-regulated throughout the developmental stages in BS-
induced bolls at transcript and protein levels (Tables S10 and
S14). Expression pattern of the hormonal biosynthesis-related
genes suggests that biotic stress has induced JA and ET that are
reported to act in a cooperative fashion (Figure 6). Likewise,
ABA being the major contributor for DETs showed down-
regulated pattern leading to its suppression during biotic stress.
Down-regulation of BR and partial stimulation of auxin provides
clues about the rate limiting pattern for allowing growth during
stress.

Bona fide defence molecules and pathways are
stimulated in response to biotic stress

The ultimate output of metabolic reprogramming, transcription
factor regulation, ROS, Ca?* signalling, hormonal biosynthesis,
etc. leads to stimulation and synthesis of defence molecules and
processes. In our data set, defence-related proteins such as the
members of pathogenesis-related protein family (PR4, PR10,
osmotin and thaumatin), chitinase, beta-glucanase and pro-
teinase inhibitors were found to be up-regulated at transcript and
protein levels (Figure 3c; Tables 2, S4, and S14). In addition,
transcripts related to polyamine biosynthesis pathway such as
SAM decarboxylase, spermidine synthase, arginine decarboxylase
also were found to be up-regulated. Polyamines are cited as
phytohormone like molecules that accumulate in response to
stress and they also play major role in defence (Gill and Tuteja,
2010; Hussain et al., 2011; Waie and Rajam, 2003). In addition,

2dpa

-3-2-101 23
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(b)

Odpa

S5dpa

10dpa
Odpa
2dpa
5dpa

Down peeees—— Up
-3-2-10 1 23

ROS regulating enzymes such as peroxidases (cytosolic and
extracellular), SODs, NADPH oxidase and oxidative stress-specific
GSTs were found to be up-regulated (Table S13).

Comparative analysis highlights concordant and
discordant members of transcript-protein pairs

Comparative analysis revealed 37 unique accessions that were
commonly identified in both the transcriptome and proteome
approaches (Table S15). Gene Ontology-based annotation and
classification of these genes revealed that majority of them were
involved in metabolic, cellular and biosynthetic processes includ-
ing amino acid, nucleotide and osmolyte metabolism, stress and
defence response and phytohormone biosynthesis (Figure S3a—c).
Manual curation of the data sets showed two distinct groups of
transcript and protein pairs such as the genes with concordant
(similar) expression patterns and the genes with discordant
(dissimilar) expression patterns at transcript and protein levels
(Table S15). Concordant members included genes such as
chaperonin, actins, phosphoglycerate kinase, gibberellin oxidase,
MDH and SODs that were found to be down-regulated, while
defence and stress response-specific genes such as chitinase, PR
protein, protease inhibitor and carbonic anhydrase were found to
be up-regulated across developmental stages. Discordant
members included ATP synthases, RuBisCO, glutamine synthase,
proteasome subunits, etc. that showed poor corelation in their
transcript and protein expression patterns.

Validation of microarray and proteome data by qRT-PCR
analysis

To validate the data, semi-quantitative real-time PCR (gRT-PCR)
analysis was performed on 42 selected differentially expressed
genes (32 up-regulated and 10 down-regulated) during boll

© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1438-1455
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favais wrky A o o transcription factor (HSf-1), multiprotein bridging
&

factor 1c (MBF1c), retrograde signalling—
alternative oxidase (AOX), pentatricopeptide
repeat containing protein (GUN1), defence—
pathogenesis-related (PR) protein, photosynthesis
—photosystem (PS I, PS II), cytochrome complex
(Cyt), light harvesting complex (LHC), hydroxy
methyl bilane synthase (HMBS) and growth—
carbohydrate active enzymes (CAZymes) are
annotated along with their expression pattern.

ADX A . . .
/ Upward pointing arrow indicates up-regulation
chiinase A pr e Pr'olemam* =i and downward pointing arrow indicates down-
inhibitors regulation of respective genes. The overall pattern
suggests the selective regulation of signalling
Y =
- - cascades favouring defence over growth in
Defense Growth

developmental stages under cotton bollworm infestation (Fig-
ure S2). The results showed that the expression patterns of
transcripts and proteins observed through microarray and pro-
teome analyses were in parallel with those obtained by gRT-PCR
(Figure S2).

Discussion

In the current study, transcriptomic approach has resulted in the
identification of relatively more number of differentially expressed
genes as compared to the proteomic approach. Nevertheless, the
expression pattern of crucial phytohormone biosynthesis genes
including S-adenosylmethionine synthase and AOC, cytoskeleton
proteins such as annexin isoforms and actins, cytosolic ascorbate
peroxidase involved in redox regulation, signalling and stress-
specific response genes such as calcium-binding protein and GS1
were exclusively identified at the protein levels. Transcriptomic
approach revealed a vast set of TFs which are otherwise difficult
to be identified at protein levels. The concordant pattern
observed among the transcript-protein pairs such as chitinase,
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PR proteins, carbonic anhydrase and protease inhibitors adds
significance and direct evidence for active defence signalling
during bollworm infestation in developing cotton bolls. Also,
discordance observed among transcript-protein pairs might
reflect true biological discordance that could be attributed to
post-transcriptional regulations, protein/transcript stability, miR-
NAs, etc. and this needs to be investigated further. On the whole,
our data suggest that employing two complementary approaches
have increased the overall coverage of the differentially expressed
genes that in turn has aided in filling crucial gaps in the above-
mentioned processes.

Host-pest interactions induce synthesis of
additional metabolic resources ensuring
survival

Transcriptomic and proteomic data obtained in this study
revealed major changes in the carbohydrate metabolisms such
as the significantly up-regulated genes encoding TPS, TPP and
GolS involved in trehalose and raffinose biosynthesis (Table 2)
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and down-regulated genes involved in cell wall metabolisms
(Table S7; Figure 6). Trehalose is a nonreducing disaccharide
that plays a major role in the stabilization of proteins and
molecular structures during stress (Garg et al., 2002). Likewise,
raffinose belongs to a family of oligosaccharides that accumu-
lates during stress and acts as osmoprotectants (Unda et al.,
2012). Both trehalose and raffinose family of saccharides are
referred to as compatible solutes responding to stress conditions
in plants (Zhou et al., 2014). In addition to that, carbohydrate
active and associated proteins like CAZymes, AGPs and FLAs
were found to be differentially regulated in our data set
(Table S7). AGPs are a heterogeneous class of abundant
proteoglycans localized in both cell wall and cytosolic regions
(Kumar et al., 2013). Reactive oxygen species molecules (H,0,)
released during stress conditions, cross-link the AGPs to the cell
wall leading to rigidity and thereby render protection against
pest and pathogen invasion. The rigidity caused in the cell wall
matrix also acts as a negative regulator of cell growth (Cleland
and Karlsnes, 1967; Gille et al., 2009; Sadava and Chrispeels,
1973).

Analysis of the nitrogen and amino acid metabolism high-
lighted additional clues on BS regulation. Briefly, GS1 and
glutamate-ammonia ligase were found to be consistently up-
regulated throughout the developmental stages (Table S14). In
plants, glutamine (GIn) serves as the primary source for inorganic
nitrogen, N (NO3 and NHj) that gets subsequently utilized for
biosynthesis of major amino acids like Glu, Asp and Asn. Among
the genes involved in nitrogen/amino acid metabolism, glutamine
synthetase (GS), glutamate synthase, GDH and NiR play primary
roles in the assimilation of NH; . Two isoforms of GS are reported
in plants among which GS1 is induced and the other isoform, GS2
is suppressed during pathogen attack (Pageau et al, 2006).
Interestingly, our study revealed the consistent up-regulation of
GS1, GDH and NiR under BS condition. Among the above
mentioned, GS2 and NiR are involved in primary nitrogen
assimilation, whereas GS1 and GDH are involved in organic
nitrogen remobilization (Pageau et al., 2006). In addition, GS1
and GDH are also cited as senescence-related markers in plants
(Pageau et al., 2006). Expression pattern observed in the current
study in turn suggests that nitrogen remobilization and senes-
cence leading to stress regulation is active, whereas signals
related to primary nitrogen assimilation leading to growth are not
evidenced.

Lipid metabolism serves as one of the major contributor for
energy, membrane biogenesis, signalling molecules, etc. Our
study revealed a bias in the stimulation of certain lipid
metabolic pathways. Briefly, linolenic acid metabolic enzymes
were up-regulated, whereas sterol biosynthesis genes were
down-regulated. Linolenic acid and sterols are lipid molecules
colocalized within the plastid and thylakoid membranes (Sch-
wertner and Biale, 1973). Our data showed that the factors
related to linolenic acid metabolism leading to biosynthesis of
stress-responsive JA were induced, while the genes related to
sterol biosynthesis that leads to growth-related Br synthesis
were down-regulated. Interestingly, cellular component-based
annotation of the above-mentioned pathways and processes
revealed that growth and defence-related molecules are colo-
calized within the same compartment such as chloroplast.
However, under biotic stress, only defence-related factors are
positively regulated leaving behind the growth-related factors
(Figure 6). Such a switch over in the regulation of lipid
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metabolism at subcellular level further ensures resistance during
bollworm attack.

Diverse pathway regulation and association delineates
bollworm infestation-specific signalling pattern

In addition to above-mentioned metabolic pathways, signalling
molecules such as calcium, redox regulators, phytohormones,
TFs and protein kinases that play independent role through
diverse pathways were found to be differentially regulated in our
data set (Figures S3 and S4). Briefly, up-regulated members of
Calcium (Ca*) binding proteins and Ca* transporting ATPases
are involved in maintaining cytosolic calcium levels during stress
conditions. Redox regulators and oxidative stress regulators such
as SODs, GSTs, peroxidases, NADPH oxidases, respiratory burst
oxidase homologs (Rbohs), DHARs, etc. were found to be
temporally regulated in our data set (Figures 6 and S4;
Table S13). Among them, NADPH oxidases, Rbohs and extra-
cellular peroxidases are the major regulators of the primary
apoplastic oxidative burst during insect attack (Torres, 2010).
These enzymes catalyse reactions leading to ROS release which
further stimulates downstream enzymes like SODs and GSTs
localized at other cellular components. Superoxide dismutases
and GSTs catalyse detoxification reactions, while PCBRs are
involved in antioxidant synthesis ultimately protecting cells from
oxidative stress (Niculaes et al., 2014). Temporal expression of
the ROS scavengers indicates a compromised pattern executed
by cotton bolls in response to bollworm attack. Phytohormones
are secondary signals that often regulate development and stress
conditions in plants. Our study showed the positive regulation of
stress-related hormones such JA and ethylene accompanied by
repression or down-regulation of growth-related Auxin, BR
(Figure 5). Interestingly, we did not find genes related to SA
biosynthesis which is also a biotic stress-specific hormone;
however, positively regulated suppressors for SA synthesis such
as EIN3 and WRKY 33 have been evidenced in the current study
(Table 2; Figure 6). Such observations in turn suggest that
bollworm attack favours synergistic JA—ethylene synthesis over
the antagonistic SA. Further, our study also revealed the up-
regulation of nuclear encoded plastid and mitochondrial com-
ponents including TFs and enzymes. Among them, WRKY TF
family is often linked with biotic stress response and pathogen-
associated molecular pattern (PAMP) (Eulgem and Somssich,
2007; Rushton et al., 1996). In addition, WRKY TFs also regulate
the expression of nuclear encoded mitochondrial proteins (Van
Aken et al., 2013). For example; up-regulated members of
WRKY40 identified in the current study are known to regulate
the expression of AOX enzyme during stress conditions (Ivanova
et al., 2014). These factors along with ROS molecules together
constitute the plastid and mitochondrial signalling pathway
components that regulates nuclear gene expression related to
cell cycle and growth. Such pattern further reveals the
retrograde trend operational during biotic stress conditions
(Figure 6).

Bollworm infestation induces major reallocation of
metabolic resources favouring defence over growth

In response to insect pest attack, the host plant initiates several
layers of defence including PAMP-triggered immunity (PTIs),
effector-triggered immunity (Dangl and Jones, 2001). Following
stress perception, a series of signal transduction events that
include metabolic pathway regulation, defence molecule synthe-
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sis, etc. are stimulated to encounter the external attack (Fig-
ure S3). The above-mentioned coordinated events suggest an
energy intensive mechanism that needs to be executed in order to
exert the defence response. Knowledge gained through the
current study highlights that the source for such additional energy
could be attained by suppressing growth locally (boll tissue
growth). In short, we observed a hierarchy of factors and
processes that specifically suppresses growth-related events and
stimulates defence-related processes. Expression trend of carbo-
hydrate, amino acid and lipid metabolism also reveals the
synthesis of stress response-related molecules such as trehalose,
raffinose, linolenic acid and suppression of growth-related factors
such as cell wall elongation enzymes, and sterols. Suppression of
fundamental processes such as photosynthesis and cell cycle not
only retards further growth but also regulates the amount of ROS
released by them and also preserves considerable amount of
energy that could be channelized for defence signalling. Likewise,
defence response such as lignifications, cross-linking of proteo-
glycans to cell wall matrix offers cell wall rigidification on the one
hand and negatively regulates cellular expansion on the other. All
these factors together suggest a major reallocation of metabolic
resources favouring defence over growth through selective
regulation of specific pathways and processes during bollworm
attack.

Conclusion

The present study delineates boll-specific endogenous defence
mechanisms adapted by cotton plants under bollworm attack.
The vast number of coordinated events including stimulations and
repressions of major biological processes ultimately suggest major
reallocation of metabolic resources that favours defence over
growth in developing cotton bolls. Taking such insights into
account, strategies targeting stimulation of multiple phytohor-
mones and better sustainment of defence as well as growth
signals could aid in developing resistant varieties against insect
pest.

Materials and methods
Plant material and biotic stress treatment

Cotton (Gossypium hirsutum cv. Bikaneri Narma) plants were
grown at Agricultural Research Station, Dharwad farm, Dharwad,
during 2012-2013 Kharif seasons following recommended
agronomic practices. Two separate plots of the same genotype
were maintained with a space of 90 cm between rows and
20 cm between plants. The plots were covered with nylon nets to
protect from any external pest incidence. Plot designated as
control (no infection from any class of insects including boll-
worms) and plot designated as infested (infested with
H. armigera) were protected in early stage (45 days after sowing)
from incidence of sucking pests by spraying recommended
insecticides. During peak flowering stage (65-85 days after
sowing), 2nd-3rd instar larvae of H. armigera, raised on bendi
(Abelmoschus esculentus L. Syn. Hibiscus esculentus) fruits in the
Entomology laboratory maintained at 25 °C in 65%-70% relative
humidity on a 14/10-h light/dark cycle, were released on buds of
cotton on the day of pollination. The buds with larva were
covered using paper bag with proper aeration to prevent larvae
movement from the bud. Such a set-up ensured maximum
damage of bolls by larva. The cotton bolls used as control(s) were
also covered with paper bags with pores in order to prevent

predation by insect pests and to ensure similar microenvironment
as that of biotic stress-induced bolls. Samples were collected after
8 h of infection and labelled as O dpa, likewise samples collected
after 2 and 5 days of insect infestation were labelled as 2 and
5 dpa, respectively. After 5 days of infestation, the insect was
removed; the bolls were collected after 10 days of further growth
and were labelled as 10 dpa. Harvested cotton boll samples were
frozen immediately in liquid nitrogen and stored at —70 °C until
further use.

Total RNA isolation and Microarray experiments

Infected bolls (complete) from 0 and 2 dpa and only infested
portion of 5 and 10 dpa boll samples along with their respective
controls were used for RNA extraction. In order to minimize
plant to plant and mode of infection variations, boll samples
were collected and pooled from five independent plants and
considered as one biological replicate. Total RNA isolation,
analysis and quality check were performed as previously
described. Affymetrix Cotton GeneChip Genome array (Affyme-
trix, Santa Clara, California) having 23 977 probe sets repre-
senting 21 854 cotton transcripts was used for transcriptome
analysis  (http://Awww.affymetrix.com/catalog/131430/AFFY/Cot-
ton-Genome-Array#1_1). Three biological replicates were main-
tained to test the reproducibility and quality of the chip
hybridization. Microarray hybridization, staining and washing
procedures were carried out as described in the Affymetrix
protocols with minor modifications (Padmalatha et al., 2012).
The arrays were scanned with a GeneChip scanner 3000.

GeneChip data processing and analysis

After scanning of each array, DAT, CEL, CHP, XML and JPEG
image files were generated using GeneChip Operating Software
platform. The CEL files having estimated probe intensity values
were analysed with GeneSpring GX-12.6 software (Agilent
Technologies, Santa Clara, California) to get DETs. The robust
multiarray average algorithm was used for the back ground
correction; quantile normalization and median polished probe set
summarization to generate single expression value for each probe
set. Normalized expression values were log,-transformed, and
differential expression analysis was performed using unpaired t-
test. The P values were corrected by applying the FDR correction
(Benjamini and Hochberg, 2000). Differentially expressed tran-
scripts with FDR corrected P value <0.01 and fold change >3 were
included for further data analysis. The hierarchical clustering was
performed using complete linkage method with Euclidean
distance based on log fold change data compared to control
samples using Cluster 3.0 (Eisen et al.,, 1998) to display the
expression pattern and tree diagram of DETs. The DETs were
annotated using NetAffx annotation data for Cotton GeneChip
(http://www.affymetrix.com, release 26).

Functional annotation of probe sets and pathways

To obtain functional annotation of transcripts, the consensus
sequences of probe sets present in the Cotton GeneChip were
mapped to the Arabidopsis TAIR protein database version 10
(http:/Awww.arabidopsis.org) by BLASTX with E value cut-off <e-
10. To identify the putative TFs and transcripts related to
phytohormone biosynthesis and signal transduction pathways,
the consensus sequences of all probe sets presented in cotton
GeneChip were searched against the Arabidopsis transcription
factor database (http://pIntfdb.bio.uni-potsdam.de, version 3.0)
and Arabidopsis hormone database (http://ahd.cbi.pku.edu.cn,
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version 2.0), respectively, by BLASTX with E value cut-off <e-10.
Differentially expressed transcripts were grouped into functional
categories based on MIPS functional catalogue (http://
mips.gsf.de/projects/funcat). Further, MapMan software version
3.5.0 (http://gabi.rzpd.de/projects/MapMan/) was used to visual-
ize the expression of differentially regulated cotton transcripts
onto metabolic pathways (Usadel et al., 2005). The microarray
data are deposited in the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo) at the NCBI under
the series accession numbers GSE55511.

Two-dimensional gel electrophoresis (2D SDS-PAGE)-
based proteome analysis

The total protein from cotton bolls was isolated using phenol
extraction method. The protein pellets were dissolved in 2D SDS-
PAGE rehydration buffer (7 m urea, 2 m thiourea, 2% CHAPS,
0.5% ampholytes, 40 mm DTT), and an aliquot of protein sample
from two independent replicates was subjected to two-dimen-
sional gel electrophoresis (2D SDS-PAGE) as described previously
(Kumar et al., 2013), briefly for the first-dimensional separation,
the sample was loaded onto a 13-cm immobilized pH gradient (IPG)
linear (pl 4-7) strips (GE Healthcare Life Sciences, U.S.A), and
isoelectric focusing was performed according to manufacturer’s
instructions. Strips were then equilibrated, and second-dimen-
sional separation was carried out on 12% SDS—polyacrylamide gel
(13 c¢m, 1.5 mm). Gels were stained with Coomassie blue staining
to visualize the protein spots and were stored in 1% acetic acid at
4 °Cuntil further use. Gels were scanned using GE Image scanner llI
(GE Healthcare Life Sciences, U.S.A) through Labscan software
version 6.0.1 and analysed using Imagemaster 2D Platinum
software version 6.0.1 (GE Healthcare Life Sciences, U.S.A). Protein
spot detection parameters were set as: Smooth: 3, Minimum area:
11 and Saliency: 200. Detected protein spots were manually re-
evaluated to remove artefacts such as dust particles and streaks.
Reproducibly detected protein spots were quantified using the per
cent volume criterion. The relative volume corresponding to the
detected spot region was considered to represent the expression
level. Protein spots that showed normalized expression values of
+0.6-, 1.5-fold (biotic stress/control) were considered for statistical
evaluation. To define the significant difference, P value <0.05 was
set through Student’s t-test and one-way Anova. Protein expression
values within the above-mentioned thresholds were considered as
differentially expressed.

Protein identification, annotation and classification
from 2D gel spots

Differentially expressed protein spots were subjected to in-gel
tryptic digestion followed by MALDIT TOF-based identification
procedure as previously described (Kumar et al., 2013). Peptide
MS/MS spectrum processing was achieved through Flexanalysis
software version 3 and database search using Biotools software
version 3.2. The database search parameters were set as
described: fragment masses were searched in three independent
databases: they were (i) NCBInr database (06/03/2010) containing
10 551 781 sequences (total) including 290 173 sequences from
green plants (Viridiplantae), (ii) Gossypium raimondii protein
database containing 40 976 sequences downloaded from Cot-
tonGen  website  (ftp:/ftp.bioinfo.wsu.edu/species/Gossyp-
ium_raimondii/CGP-BGI_G.raimondii_Dgenome/genes/), (iii)
Gossypium arboreum protein database containing 40 134
sequences downloaded from Cotton Genome Project website
(ftp://cotton:cotton321$@public.genomics.org.cn/Ca_all_Ver-
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sion2.GENE.pep.gz) through mascot search engine, taxonomy
was set as Viridiplantae, enzyme was set as trypsin, fixed
modifications included carbamidomethylation of cysteine, vari-
able modifications included oxidation of methionine, protein
mass was unrestricted, missed cleavage was set to 1, MS
tolerance of £100 ppm and MS/MS tolerance of 4/—0.75 da.
Only peptides with an individual ion score of >40 (P < 0.05) were
considered for protein identification. Identified proteins were
sequences that were exported into BLAST2GO platform version
2.7 (www.blast2go.com/b2ghome) to attain GO-based annota-
tion, classification and pathway mapping (Conesa et al., 2005).

Transcriptome and proteome data set integration

Unique protein sequences corresponding to the differentially
expressed proteins were subjected to GEO Nucleotide Translated
BLAST: tblastn analysis to obtain accessions corresponding to
Gossypium hirsutum (taxid: 3635) transcripts. The search param-
eters for tblastn were set as follows: database—GEO; organism:
G. hirsutum (taxid: 3635). Transcript accessions with E value cut-
off <e-10 and >70% sequence identity were considered as
matched sequence.

The quantitative real-time PCR (qRT-PCR) analysis

The gRT-PCR analysis was performed on selected differentially
expressed genes to validate the microarray and proteome expres-
sion data. RNA isolation followed by cDNA synthesis, gRT-PCR
analysis and fold change calculations were performed as previously
described (Padmalatha et al., 2012). The list of primers used in the
current study is presented in Table S6. The GhPP2AT gene
(accession no: DT545658) from G. hirsutum was used as reference
gene to normalize the expression values (Artico et al., 2010).
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Supporting information

Additional Supporting information may be found in the online
version of this article:

Figure S1 2D-PAGE profile of control (uninfected) and bollworm
infested cotton boll proteome during developmental stages. 2D-
PAGE profiles of total proteins obtained from control and
bollworm infested (Biotic stress) cotton bolls: (a) O dpa, (b)
2 dpa cotton bolls, (c) 5 dpa cotton bolls. Equal amount of total
proteins (500 pg) were loaded onto 13 cm IPG strips, pl 4-7 and
protein samples were resolved using 12% SDS-PAGE gels.
Figure S2 Validation of microarray and proteome data using qRT-
PCR during boll development stages (0, 2, 5 and 10 dpa) of
cotton under biotic stress. Y-axis represents the log 2 fold change
values at various stages in the biotic stress as compared to their
respective stages in control.

Figure S3 Gene ontology based classification of commonly
identified genes in transcriptome and proteome datasets under
biological process (a), cellular component (b) and molecular
function (c) categories. Key events in the signal transduction
pathway activated in response to biotic stress (d).
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Figure S4 Overview of gene expression changes in developing
cotton bolls infested with bollworm.

Table S1 Differentially expressed transcripts during boll develop-
ment stages (0, 2, 5 and 10 dpa) under biotic stress as compared
to their respective control samples.

Table S2 List of differentially expressed transcription factors (TFs)
during boll developmental stages under bollworm infestation
biotic stress.

Table S3 List of differentially expressed transcripts related to
phytohormone biosynthesis and signaling pathways during boll
developmental stages response to bollworm infested biotic stress.
Table S4 Consistently up-regulated genes in different develop-
mental stages under biotic stress.

Table S5 Consistently down-regulated genes in different devel-
opmental stages under biotic stress.

Table S6 List of gRT-PCR genes and primers used in this study.
Table S7 Expression pattern of transcripts related to cell wall, cell
division and cell growth.

Table S8 Expression pattern of transcripts related to photosyn-
thesis.

Table S9 Expression pattern of transcripts related to carbohy-
drate metabolism.

Table S10 Expression pattern of transcripts related to fatty acid
metabolism.

Table S11 Expression pattern of transcripts related to protein
metabolism.

Table S12 Expression pattern of transcripts related to transport
mechanism.

Table S13 Expression pattern of transcripts related to oxidative
stress.

Table S14 List of Differentially expressed proteins identified by
MALDI TOF/TOF. Fold change values (BS/CN) are tabulated along
with the protein identification details.

Table S15 List of commonly identified genes in the transcriptome
and proteome data sets.

Table S16 Cluster wise list of differentially expressed transcripts
included in the Hierarchical Cluster Analysis depicted in Figure 5a.
Table S17 Cluster wise list of differentially expressed proteins
included in the Hierarchical Cluster Analysis depicted in Figure 4b.
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