
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Physics and 
Astronomy Physics and Astronomy 

2017 

DISCONNECTED-SEA QUARKS CONTRIBUTION TO NUCLEON DISCONNECTED-SEA QUARKS CONTRIBUTION TO NUCLEON 

ELECTROMAGNETIC FORM FACTORS ELECTROMAGNETIC FORM FACTORS 

Raza Sabbir Sufian 
University of Kentucky, sabbir.sufian@uky.edu 
Author ORCID Identifier: 

https://orcid.org/0000-0002-3263-4767 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.407 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Sufian, Raza Sabbir, "DISCONNECTED-SEA QUARKS CONTRIBUTION TO NUCLEON ELECTROMAGNETIC 
FORM FACTORS" (2017). Theses and Dissertations--Physics and Astronomy. 49. 
https://uknowledge.uky.edu/physastron_etds/49 

This Doctoral Dissertation is brought to you for free and open access by the Physics and Astronomy at UKnowledge. 
It has been accepted for inclusion in Theses and Dissertations--Physics and Astronomy by an authorized 
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/physastron_etds
https://uknowledge.uky.edu/physastron_etds
https://uknowledge.uky.edu/physastron
https://orcid.org/0000-0002-3263-4767
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Raza Sabbir Sufian, Student 

Dr. Keh-Fei Liu, Major Professor 

Dr. Christopher Crawford, Director of Graduate Studies 



DISCONNECTED-SEA QUARKS CONTRIBUTION TO NUCLEON
ELECTROMAGNETIC FORM FACTORS

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Raza Sabbir Sufian

Lexington, Kentucky

Director: Dr. Keh-Fei Liu, Professor of Physics
Lexington, Kentucky 2017

Copyright c© Raza Sabbir Sufian 2017



ABSTRACT OF DISSERTATION

DISCONNECTED-SEA QUARKS CONTRIBUTION TO NUCLEON
ELECTROMAGNETIC FORM FACTORS

We present comprehensive analysis of the light and strange disconnected-sea quarks
contribution to the nucleon electric and magnetic form factors. The lattice QCD
estimates of strange quark magnetic moment Gs

M(0) = −0.064(14)(09)µN and the
mean squared charge radius 〈r2

s〉E = −0.0043(16)(14) fm2 are more precise than any
existing experimental measurements and other lattice calculations. The lattice QCD
calculation includes ensembles across several lattice volumes and lattice spacings with
one of the ensembles at the physical pion mass. We have performed a simultaneous
chiral, infinite volume, and continuum extrapolation in a global fit to calculate results
in the continuum limit. We find that the combined light-sea and strange quarks
contribution to the nucleon magnetic moment is−0.022(11)(09)µN and to the nucleon
mean square charge radius is −0.019(05)(05) fm2. The most important outcome of
this lattice QCD calculation is that while the combined light-sea and strange quarks
contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)%
contribution to the proton charge radius and a relatively larger positive 16.3(6.1)%
contribution to the neutron charge radius come from the sea quarks in the nucleon.
For the first time, by performing global fits, we also give predictions of the light-sea
and strange quarks contributions to the nucleon electric and magnetic form factors at
the physical point and in the continuum and infinite volume limits in the momentum
transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.
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Chapter 1 Introduction

One of the main goals of the Standard Model of particle physics is to provide an

explanation of nucleon properties, i.e. an explanation in terms quarks and gluons and

their dynamics. Quantum chromodynamics (QCD) theory, in which quarks with color

charge interact through gluon exchange with gluons interacting amongst themselves

as well since they too carry color charge, is expected to give a correct description of the

strong force. The theory of strong interaction (QCD) is a non-Abelian gauge theory.

The quarks occurring in six different flavors carry electric and weak charge and also an

additional charge called color charge. The strong force is mediated by massless gluons

which carry color and anti-color charges and they can also interact with themselves

resulting in the non-Abelian structure of QCD. There are two parameters in QCD,

namely the fermion mass mf and the bare coupling constant g0. The running coupling

constant, which results in asymptotic freedom, leads to QCD phenomenon which is

different in the low and high energy regions. Before the discovery of lattice gauge

theory, perturbative quantum field theory had been used in which the integration

measure of fields in a path integral is expanded in powers of the coupling constant

and the corresponding Feynman diagrams are then regularized order by order in the

coupling constant. Although this perturbative approach leads to impressive results for

weakly interacting theories, for strongly coupled theories such as QCD at low energies,

this perturbative approach of field theory breaks down and is not applicable.

Lattice QCD, a first-principles approach, is believed to be the correct theory to

describe nucleon properties in the nonperturbative region when systematic uncertain-

ties are included in the calculation. Using lattice QCD, one can calculate hadronic

properties where perturbative QCD fails. Lattice QCD is a local gauge theory and

it satisfies local gauge symmetries. Although spacetime symmetry is broken on the

1



lattice, this symmetry is expected to be automatically restored in the continuum

limit. In the classical level QCD Lagrangian, QCD does not have any dimensionful

scale parameter in the massless quark limit. But when the theory is quantized, a

scale, called ΛQCD emerges through the dimensional transmutation process. There-

fore, with massless quarks, a non-zero nucleon mass emerges due to the confinement

process and color-neutral hadrons can be produced. This is purely a nonperturbative

phenomenon and cannot be realized using perturbation theory. Lattice QCD emerges

as the best tool to study the nonperturbative phenomena in QCD. This is the only

reliable first-principles nonperturbative technique to study QCD. The fundamental

reason why lattice QCD is believed and has been tested as a reliable theory is be-

cause in the numerical simulations, uncertainties related to systematics such as finite

lattice spacing, finite volume effects, etc. can be measured and thus artifacts can be

removed from the final results.

The consistent way of describing QCD on the lattice is the following:

1. discretization of spacetime (Euclidean) by a hypercubic lattice with cutoff, Λ

called lattice regularization,

2. discretization of continuum QCD action,

3. quantization of QCD using path integral formalism,

4. application of Monte-Carlo simulation to calculate expectation values

of different operators.

As the first step of lattice QCD calculation, one first converts QCD theory to

Euclidean spacetime using Wick rotation by replacing gµν with Euclidean metric δµν .

This Euclidean metric is obtained by performing the Wick rotation to imaginary time

t→ −iτ . This operation removes the distinction between covariant and contravariant

vectors on the lattice. The Euclidean spacetime is discretized by introducing a four-

dimensional grid points on the hypercubic lattice which are separated by the lattice

2



spacing a,

Λ =
{
n ∈ R4 | n0

a
= 0, ..., NT ;

ni
a

= 0, ..., NL

}
(1.1)

Then the size extent of the hypercubic box is determined by the finite extent in the

time and space direction

T = aNT

and

L = aNL (1.2)

One then obtains the dual lattice which leads to a discrete set of momenta by per-

forming a discrete Fourier transform

Λ∗ =

{
p ∈ R4 | p0 =

2πn0

T
; pi =

2πni
T

}
(1.3)

The gauge fields Aµ(z) are written in terms of parallel transporters called link vari-

ables, each of which connects two spacetime points x and y as

U(x, y) = P exp

(
−
∫ x

y

dzAµ(z)

)
(1.4)

The SU(3) link variable connecting two neighboring lattice sites n and n+ µ̂ along a

straight line is written as

Uµ(n) ≡ U(n, n+ µ̂)

= exp
(
iaAµ(n)

)
(1.5)

As a part of discretization of the QCD action, the gauge or gluonic part of the QCD

action is constructed from the gauge links

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ µ̂)U †ν(n) (1.6)

to obtain the smallest gauge-invariant closed loop Pµν(n), called a plaquette. The
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Figure 1.1: Gauge-invariant plaquette

fermionic part of the QCD action is discretized by replacing the covariant derivative

Dµψ(n)→ 1

2a

(
γµUµ(n)ψ(n+ µ̂)− γµU †µ(n− µ̂)ψ(n− µ̂)

)
(1.7)

where the quark fields are covariant under SU(3) color gauge transformation. The

quantization of the lattice formulation is then performed by using a Euclidean path

integral. The expectation value of an operator is obtained by integrating over all

possible field configurations and is expressed by

〈O〉 =
1

Z

∫
DU DψDψ̄O(ψ̄, ψ, U) exp

(
− SG[U ]− SF [ψ̄, ψ, U ]

)
(1.8)

where SG and SF are discretized gluonic and fermionic parts of the QCD action,

respectively and Z is the partition function. The anti-commuting fermion fields ψ, ψ̄

are described by Grassmann variables and can be integrated out since the action is

bilinear in ψ and ψ̄:

〈O〉 =
1

Z

∫
DU

∏
f

(det(D[U ]))NfO(SF , U) exp(−SG[U ])) (1.9)

where SF (x, y) = D−1(x, y) is a quark propagator which describes how the particles

associated with ψ and ψ̄ propagate through the QCD vacuum. det(D[U ]) is real

and describes the roles of quark loops in the vacuum. From Eq. (1.9), it is seen

that a physical observable 〈O〉 can be evaluated by the integration over a set of

gauge configurations {U} with the weight factor of det(D[U ])e−SG . The gluonic
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integration is then performed over the SU(3) group using the Haar measure. When

the gauge configurations are generated with the probability det(D[U ])e−SG , one can

stochastically approximate the physical quantity as

〈O〉 ≈ 1

Nconfigs

Nconfigs∑
i

O(Ui) (1.10)

where Nconfigs is the number of gauge configurations used in the numerical simulation.

The lattice discretization provides a regularization of the theory. The lattice

spacing is taken to a → 0 to obtain the result in the continuum limit. In this

limit, the correlation length in the lattice unit diverges, i.e. the continuum limit is

a second order phase transition and there is no phase transition during the taking of

the continuum limit. Because of asymptotic freedom, the limit of the QCD coupling

g → 0 corresponds to the a→ 0 limit.
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Chapter 2 Nucleon Electromagnetic Form Factors

The space-like electromagnetic form factors of the proton and neutron obtained in

electron-nucleon elastic scattering are key measures of the fundamental structure of

hadrons. The quest for a detailed quantitative understanding of the nucleon form fac-

tors is an active field in hadronic physics. A wide variety of models has been proposed

to describe the nucleon form factors. However, in most of these approaches, there

has been no attempt to understand the observed hadron spectroscopy. Furthermore,

a consensus among different phenomenological models and parameterizations which

describe the nucleon form factors has not yet been achieved, especially for the neutron

Dirac and Pauli electromagnetic form factors, nor the nucleon time-like form factors.

The momentum transfer to the nucleon can be selected to probe different scales of

the nucleon, from integral properties such as the charge radius to scaling properties of

its internal constituents. At large internal distances or at small momenta, these form

factors probe the size of the nucleon, while at short internal distances or at large mo-

menta, they describe quark and gluon structures. It is convenient to define a frame,

called the Breit frame, in which there is no energy transferred to the proton, the

nucleon form factors can be written as Fourier transforms of their charge and mag-

netization distributions. But when the momentum transfer in an electron-nucleon

scattering is much larger than the nucleon mass, i.e. Q� MN , the form factors are

not solely determined by the internal structure of the nucleon and contain dynamical

effects due to relativistic boosts. In this situation, the physical interpretation of the

form factors becomes complicated and cannot be simply thought of as the electric

and magnetic charge distributions of the nucleon.

Nucleon electromagnetic form factors are studied through the exchange of virtual

photon in elastic electron-nucleon scattering. Detailed reviews of the experimental
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results and models can be found in Refs. [1,2]. It should be noted that inconsistencies

in the extraction of the data appear in the proton electric to magnetic Sachs form

factor (FF) ratio Rp(Q
2) = µpG

p
E(Q2)/Gp

M(Q2), when one compares double polariza-

tion experiments [3–6], in which the ratio Rp decreases almost linearly for momentum

transfer Q2 > 0.5 GeV2, with the results obtained from the Rosenbluth separation

method [7–18] in which Rp remains constant in the space-like (SL) region. Predic-

tions for different combinations of the neutron FFs are even more puzzling to explain

using phenomenological models. A further limitation is that experimental data for

the neutron FFs are not available in the large Q2 = −q2 regime. Another challenge

is to describe the modulus of the electric to magnetic Sachs FF ratio |Gp
E/G

p
M | mea-

sured by the PS170 experiment at LEAR [19] and by the BABAR Collaboration in

the time-like (TL) domain [20] above the physical threshold q2
phys = 4m2

p, where mp

is the proton mass, at which proton-antiproton pairs are produced at rest in their

center of mass system, and where strong threshold effects are also important.

The most recent surprising discrepancy of the proton charge radius measured

from the Lamb shift in muonic hydrogen [21,22] differs by more than 5σ from the ra-

dius extracted with 1% precision using the electron-proton scattering measurements

and hydrogen spectroscopy. While the current Committee on Data for Science and

Technology (CODATA) value of proton charge radius is rpE = 0.8751(61) fm [23],

the most recent muonic hydrogen Lamb shift experiment measures rpE = 0.84087(39)

fm [24] which is 4% smaller or differs by 7σ than the CODATA value. Other than

the possibility that one of the proton charge radius extractions is wrong or involves

considerable systematic uncertainties, the consequence of the “proton charge radius

puzzle” can have serious consequences such as a new physics signature, anomalous

QCD corrections, a 5σ adjustment of the Rydberg constant (in the absence of new

physics explanations) which is measured with an accuracy of about 5 parts per tril-

lion, and/or revision of sources of systematic uncertainties in the measurements of
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neutrino-nucleus scattering observables. Recent results and reviews of the proton

charge radius puzzle can be found in the Refs. [25–27].

The main goal of this dissertation is to calculate the disconnected-sea quarks con-

tribution to the nucleon electromagnetic form factors. The light disconnected-sea

quarks contribution to the nucleon electromagnetic form factors either has been ig-

nored in previous lattice QCD calculations, or performed at heavier quark masses, or

the uncertainties are too large compared to the signal. Experimentally, one cannot

disentangle the light disconnected-sea quarks contribution from the valence quark con-

tribution to the nucleon electromagnetic form factors. Therefore, the calculation [28]

presented in this dissertation gives the first and most precise estimate of the light-

disconnected-sea quarks contribution to the nucleon electromagnetic form factors at

the physical point and in the continuum limit with controlled systematics. Similarly,

we also calculate the strange quark contribution to the nucleon electromagnetic form

factors and obtain the most precise estimates of the strange quark magnetic moment

and charge radius [29] compared to any existing experimental results and lattice QCD

calculations.
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Chapter 3 Lattice Formalism: Two-Point Nucleon Correlation Function

3.1 Nucleon Two Point Correlation Function

The majority of the visible matter in the universe is made of nucleon, so the nucleon is

the most interesting baryon amongst plenty of baryons. There are two nucleons: the

proton and the neutron. The valence quark contents, quantum numbers, and masses

on proton and nucleon are listed in the following table: On the lattice we calculate

Table 3.1: Nucleon quantum numbers and their physical masses.

Baryon Quarks I(JP ) Mass (MeV)

Proton uud 1
2
(1

2

+
) 938.272081(6) MeV

Neutron udd 1
2
(1

2

+
) 939.565413(6) MeV

with mass degenerate up u quark and down d so that the nucleons also become mass

degenerate. There are a number of nucleon operators listed in the Appendix 8.1 that

have some overlap with the full nucleon. In the following lattice QCD calculation

we have used the following annihilation and creation nucleon interpolation fields in

Eqs. (8.16) and (8.17), respectively.

The nucleon two-point correlation function is defined as:

Gαβ(t, ~p, ~x0) =
∑
x

e−i~p.(~x−~x0) 〈0|T
(
χα(x)χ̄β(x0)

)
|0〉 (3.1)

where t is the sink time, ~p is the momentum of the particle, χ(χ̄) is the annihila-

tion(creation) interpolation field, and α, β are Dirac indices. The interpolation fields

with explicit color indices are written in the Appendix 8.1. Inserting a complete set of
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normalized energy eigenstates of the QCD Hamiltonian and using the completeness

property consistent with the normalization of Dirac spinors in Appendix 8.1,∑
n,~q,s

|n, ~q, s〉 〈n, ~q, s| = 1, (3.2)

with t0 and x0 being the nucleon source temporal and spatial positions, respectively,

we can rewrite Eq. (3.1) as

Gαβ(t, ~p) =
∑
x

e−i~p·(~x−~x0)
∑
n,~q,s

〈0|T
(
χα(x) |n, ~q, s〉 〈n, ~q, s| χ̄β(x0)

)
|0〉

=
∑
x

e−i~p·(~x−~x0)
∑
n,~q,s

〈0| eH(t−t0)−i~q·(~x−~x0)χα(x0)e−H(t−t0)+i~q·(~x−~x0)

|n, ~q, s〉 〈n, ~q, s| χ̄β(x0) |0〉

=
∑
x

e−i~p·(~x−~x0)
∑
n,~q,s

e−En,~q(t−t0)+i~q·(~x−~x0)

〈0|χα(x0) |n, ~q, s〉 〈n, ~q, s| χ̄β(x0) |0〉

=
∑
x,n,~q,s

e−i(~p−~q)·~xe−i(~p−~q)·~x0e−En,~q(t−t0) 〈0|χα(x0) |n, ~q, s〉 〈n, ~q, s| χ̄β(x0) |0〉

(3.3)

Using Fourier transform
∑

x e
−i(~p−~q)·~x = Nδ ~p, ~q ,

Gαβ(t, ~p) = N
∑
n,~q,s

δ(~p− ~q)e−i(~p−~q)·~x0e−En,~q(t−t0)

〈0|χα(x0) |n, ~q, s〉 〈n, ~q, s| χ̄β(x0) |0〉

= N
∑
n,s

e−En,~p(t−t0) 〈0|χα(x0) |n, ~p, s〉 〈n, ~p, s| χ̄β(x0) |0〉 (3.4)

where N is the number of total lattice sites, and the sum
∑

n contains contributions

from positive and negative parity excited states. Retaining only positive and negative

parity ground state terms in the limit (t−t0)� 1, one can rewrite the above equation

as

Gαβ(t, ~p) = N
∑
s

(
e−E

0,+
p (t−t0) 〈0|χα(x0) |0, ~p, s,+〉 〈0, ~p, s,+| χ̄β(x0) |0〉

+e−E
0,−
p (t−t0) 〈0|χα(x0) |0, ~p, s,−〉 〈0, ~p, s,−| χ̄β(x0) |0〉

)
(3.5)
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where |0, ~p, s,+〉 is the positive-parity nucleon ground-state with energy e−E
(0,+)
p and

JP = 1
2

+
and similarly for negative-parity ground-state with minus signs. Using

Eqs. (8.31)-(8.35) in the Appendix 8.1.6, Eq. (3.5) can be written as

Gαβ(t, ~p) = N
∑
s

e−E
0,+
p (t−t0)a3φ+

√
m+

NE0,+
p

uα(~p, s,+)a3φ+

√
m+

NE0,+
p

ūβ(~p, s,+)

+ N
∑
s

e−E
0,−
p (t−t0)a3φ−

√
m−

NE0,−
p

γ5uα(~p, s,−)a3φ−

√
m−

NE0,−
p

ū(~p, s,−)γ5

= a6 m
+

E0,+
p

|φ+|2e−E
0,+
p (t−t0)

∑
s

uα(~p, s,+)ūβ(~p, s,+)

+a6 m
−

E0,−
p

|φ−|2e−E
0,−
p (t−t0)

∑
s

(γ5u(~p, s,−))α(ū(~p, s,−)γ5))β

= a6

[
m+

E0,+
p

|φ+|2e−E
0,+
p (t−t0)

(−iγ · p+ +m+

2m+

)
αβ

+
m−

E0,−
p

|φ−|2e−E
0,−
p (t−t0)

[
γ5

(−iγ · p− +m−

2m−
)
γ5

]
αβ

]
(3.6)

We want to obtain nucleon properties associated only with Jp = 1
2

+
. Various nucleon

properties from the nucleon correlation function can be obtained by projecting out the

negative-parity states and by taking the trace of positive-parity projection operator

Γ+ =
1

2

(
1 +

m−

E0,−
p

γ4

)
(3.7)

with Gαβ.
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Therefore,

ΓβαGαβ(t, ~p) = a6 m
+

E0,+
p

|φ+|2e−E
0,+
p (t−t0)

∑
s

ūβ(~p, s,+)
1

2

(
1 +

m−

E0,−
p

γ4

)
βα
uα(~p, s,+)

+a6 m
−

E0,−
p

|φ−|2e−E
0,−
p (t−t0)

∑
s

(ū(~p, s,−)γ5)β
1

2

(
1 +

m−

E0,−
p

γ4

)
βα

(γ5u(~p, s,−))α

= a6 m
+

E0,+
p

|φ+|2e−E
0,+
p (t−t0)

1

2

(∑
s

ūβ(~p, s,+)
(
1 +

m−

E0,−
p

γ4

)
βα
uα(~p, s,+)

)
+a6 m

−

E0,−
p

|φ−|2e−E
0,−
p (t−t0)

1

2

(∑
s

ūβ(~p, s,−)
(
1− m−

E0,−
p

γ4

)
βα
uα(p, s,−)

)
= a6 m

+

E0,+
p

|φ+|2e−E
0,+
p (t−t0) 1

2

∑
s

(
ūβ(~p, s,+)(1)βαuα(~p, s,+)

+
m−

E0,−
p

ūβ(~p, s,+)(γ4)βαuα(~p, s,+)

)
+a6 m

−

E0,−
p

|φ−|2e−E
0,−
p (t−t0) 1

2

∑
s

(
ūβ(~p, s,−)(1)βαuα(~p, s,−)

− m−

E0,−
p

ūβ(~p, s,−)(γ4)βαuα(~p, s,−)

)
(3.8)

To simply Eq. (3.8), we can use the Gordon identity which is derived in the

following.

3.1.1 Gordon Identity

With σµν = 1
2i

[γµ, γν ] and qν = pν − p′ν ,

iσµνqν =
1

2
[γµ, γν ](pν − p′µ)

=
1

2
[γµγνpν − γµγνp′ν − γνγµpν + γνγµp

′
ν ]
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Since γµγν = −γνγµ + 2δµν ,

iσµνqν =
1

2

(
(−γνγµ + 2δµν)pν − γµγνp′ν

−γνγµpν + (−γµγν + 2δµν)p
′
ν

)
=

1

2

(
− /pγµ − γµ/p′ − γνγµpν + 2δµνpν − γµγνp′ν + 2δµνp

′
ν

)
=

1

2

(
− 2/pγµ − 2γµ/p

′ + 2pµ + 2p′µ
)

= −/pγµ − γµ/p′ + pµ + p′µ (3.9)

Using the Dirac Eq. from Appendix 8.1,

ū(p′, s′)(iσµνqν)u(p, s) = ū(p′, s′)(−/pγµ − γµ/p′ + pµ + p′µ)u(p, s)

= ū(p′, s′)(−2imγµ + pµ + p′µ)u(p, s)

⇒ ū(p′, s′)(2im)γµu(p, s) = ū(p′, s′)
(
(pµ + p′µ)− iσµνqν

)
u(p, s)

⇒ ū(p′, s′)γµu(p, s) = ū(p′, s′)

(
− i

(pµ + p′µ)

2m
− σµνqν

2m

)
u(p, s)

(3.10)

Using Eq. (8.35) and (3.10), we can write Eq. (3.8) as

ΓβαGαβ(t, ~p) = a6 m
+

E0,+
p

|φ+|2e−E
0,+
p (t−t0) 1

2

∑
s

(
1 +

m−

E0,−
p

2(−ip+
4 )

2m+

)
+a6 m

−

E0,−
p

|φ−|2e−E
0,−
p (t−t0) 1

2

∑
s

(
1− m−

E0,−
p

2(−ip+
4 )

2m−

)
= a6 m

+

E0,+
p

|φ+|2e−E
0,+
p (t−t0) 1

2

∑
s

(
1 +

m−

E0,−
p

E0,+
p

m+

)
+a6 m

−

E0,−
p

|φ−|2e−E
0,−
p (t−t0) 1

2

∑
s

(
1− m−

E0,−
p

E0,−
p

m−

)
= a6 m

+

E0,+
p

|φ+|2e−E
0,+
p (t−t0)

(
1 +

m−

E0,−
p

E0,+
p

m+

)
(3.11)
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In our numerical simulation, we use Γ4 ≡ Γe ≡ 1±γ4

2
. Then, from Eq. (3.10),

ΓβαGαβ(t, ~p) = a6 m
+

E0,+
p

|φ+|2e−E
0,+
p (t−t0) 1

2

∑
s

(
1 +

2(−ip+
4 )

2m+

)
+a6 m

−

E0,−
p

|φ−|2e−E
0,−
p (t−t0) 1

2

∑
s

(
1− 2(−ip−4 )

2m−

)
= a6 m

+

E0,+
p

|φ+|2e−E
0,+
p (t−t0) 1

2

∑
s

2m+ + 2E0,+
p

2m+

+a6 m
−

E0,−
p

|φ−|2e−E
0,−
p (t−t0) 1

2

∑
s

2m− − 2E0,−
p

2m−

= a6|φ+|2e−E
0,+
p (t−t0)

E0,+
p +m+

E0,+
p

+a6|φ−|2e−E
0,−
p (t−t0)

m− − E0,−
p

E0,−
p

= a6|φ+|2e−E
0,+
p (t−t0)

E0,+
p +m+

E0,+
p

+a6|φ−|2e−E
0,−
p (t−t0) (m− −

√
(m−)2 + ~p 2)

E0,−
p

(3.12)

If one has ~p 2

m−
� 1,

Tr

[
ΓeG(t, ~p)

]
= a6|φ+|2e−E

0,+
p (t−t0)

E0,+
p +m+

E0,+
p

−a6|φ−|2 e
−E0,−

p (t−t0)

E0,−
p

1

2

~p 2

(m−)2
(3.13)

For a final nucleon state at rest (~p = 0),

GNN(t, ~p,Γe) ≡ Tr[ΓeG(t, ~p)]

= a6|φ+
0 |2e−m

+(t−t0) (3.14)

Therefore, it is seen from Eq. (3.13) that the negative parity states are not completely

suppressed unless for zero nucleon momentum and so the nucleon with non-zero mo-

mentum has contamination from the negative-parity states in the correlation function.

However, this contamination is exponentially suppressed in the long time limit as the

negative-parity ground-state has higher mass and energy than the positive-parity

ground state.
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For simplicity in the notation of subsequent calculations, we will re-write Eq. (3.11)

with the choice of positive-parity projection operator Γe = 1+γ4

2
as,

ΓβαGαβ(t, ~p) ≡ Tr[ΓeG(t, ~p)] ≡ GNN(t, ~p,Γe)

(t−t0)�1−−−−−→ a6 m

Ep
|φ(p)|2e−Ep(t−t0)

(
1 +

Ep
m

)
= a6Ep +m

Ep
|φ(p)|2e−Ep(t−t0), (3.15)

where we have used simple notations as m ≡ m+, Ep ≡ E0,+
p , and φ ≡ φ+.
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Chapter 4 Lattice Formalism: Three-Point Nucleon Correlation Function

4.1 Schematic Representation of Connected and Disconnected Insertions

In this section of the chapter, we present simple schematic representation of con-

nected and disconnected insertions in terms of quarks and quark propagators. We

shall present a formal derivation of nucleon three-point correlation function to calcu-

late electromagnetic form factors in section (4.2). Nucleon three-point functions are

classified according to two different topologies of the quark lines connected between

the source and the sink of the proton−called connected and disconnected insertions.

When the current is connected to the nucleon through the quark lines, we refer to it

as connected insertion (CI). When the quark fields of the current contract between

themselves, we refer it to as disconnected insertion (DI). These disconnected quark

loops are connected to the quark lines in the nucleon propagator through fluctuating

gauge background fields.

Let us consider three-point correlator with source momentum ~p ′ and sink momen-

tum ~p:

COqαβ (t, τ ; ~p, ~p ′) = 〈χα(t, ~p)Oq(τ)χ̄β(0, ~p ′)〉 (4.1)

where the operator insertion with quark q-flavored current is written as

Oq(τ) =
∑
~y,v,w

q̄aα(v)Oab
αβ(v, w; ~y, τ)qbβ(w) (4.2)
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Then the positive-parity contracted correlator is

COq(t, τ ; ~p, ~p ′) = Γβα〈χα(t, ~p)Oq(τ)χ̄β(0, ~p ′)〉

=
∑
~y,v,w

∑
~x,~z′

e−i~p·~xei~p
′·~z′εabcεa′,b′,c′(Cγ5)γδ(γ5C

−1)ρσΓβα

〈uaα(~x, t)ubγ(~x, t)d
c
δ(~x, t)q̄

d
λ(v)Ode

λκ(v, w, ~y, τ)qeκ(w)

ūa
′

β (~z′, 0)d̄b
′

ρ (~z′, 0)ūc
′

σ (~z′, 0)〉

(4.3)

4.1.1 q = u-quarks

If q = u, we obtain four connected contractions and two disconnected contractions as

shown in FIGS. 4.1a - 4.1f. We can use translational invariance to shift all ~z′ to zero

and obtain a factor Ns from the sum over ~z′ sum. Denoting a quark propagator by

S, from FIG. 4.1a,

CI-FIG(4.1a) ⇒ Scb
′

δρ [d](~x,~0, 0) · Sea′κβ [u](w,~0, 0) · Sadαλ[u](~x, t, v)

Sbc
′

γσ [u](~x, t,~0, 0) (4.4)

CI-FIG(4.1b) ⇒ Scb
′

δρ [d](~x, t,~0, 0) · Sbdγλ[u](~x, t, v) · Saa′αβ [u](~x, t,~0, 0) ·

Sec
′

κσ [u](w,~0, 0) (4.5)

CI-FIG(4.1c) ⇒ −Sbdγλ[u](~x, t, v) · Sea′κβ [u](w,~0, 0) · Scb′δρ [d](~x, t,~0, 0) ·

Sac
′

ασ [u](~x, t,~0, 0) (4.6)

CI-FIG(4.1d) ⇒ −Scb′δρ [d](~x, t,~0, 0) · Sadαλ[u](~x, t, v) · Sba′γβ [u](~x, t,~0, 0) ·

Sec
′

κσ [u](w,~0, 0) (4.7)
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Figure 4.1: Schematic diagrams of connected and disconnected insertions when q = u.
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DI-FIG(4.1e) ⇒ −Scb′δρ [d](~x, t,~0, 0) · Sedκλ[u](w, v) · Saa′αβ [u](~x, t,~0, 0) ·

Sbc
′

γσ [u](~x, t,~0, 0) (4.8)

DI-FIG(4.1f) ⇒ Scb
′

δρ [d](~x, t,~0, 0) · Sedκλ[u](w, v) · Sba′γβ [u](~x, t,~0, 0) ·

Sac
′

ασ [u](~x, t,~0, 0) (4.9)

Therefore,

COu(t, τ ; ~p) = Ns

∑
~x,~y,v,w

e−i~p·~xεabcεa′b′c′Γβα

[
Sadαλ[u](~x, t, v) ·Ode

λκ(v, w, ~y, τ)Sea
′

κβ [u](w,~0, 0)

Tr

(
Scb

′

δρ [d](~x,~0, 0)(γ5C
−1)ρσS

bc′

σγ [u](~x, t,~0, 0)(Cγ5)γδ

)
+Saa

′

αβ [u](~x, t,~0, 0)

Tr

(
Scb

′

δρ [d](~x, t,~0, 0)(γ5C
−1)ρσS

ec′

σκ [u](w,~0, 0)

Ode
λκ(v, w, ~y, τ)Sbdλγ[u](~x, t, v)(Cγ5)γδ

)
−Sac′ασ [u](~x, t,~0, 0)(γ5C

−1)σρS
cb′

ρδ [d](~x, t,~0, 0)(Cγ5)δγ

Sbdγλ[u](~x, t, v)Ode
λκ(v, w, ~y, τ)Sea

′

κβ [u](w,~0, 0)

−Sadαλ[u](~x, t, v)Ode
λκ(v, w, ~y, τ)Sec

′

κσ [u](w,~0, 0)(γ5C
−1)σρ

Scb
′

ρδ [d](~x, t,~0, 0)(Cγ5)δγS
ba′

γβ [u](~x, t,~0, 0)

−Saa′αβ [u](~x, t,~0, 0)Tr

(
Sedκλ[u](w, v)Ode

λκ(v, w, ~y, τ)

)

Tr

(
Scb

′

δρ [d](~x, t,~0, 0)(γ5C
−1)ρσS

bc′

σγ [u](~x, t,~0, 0)(Cγ5)γδ

)
+Sac

′

ασ [u](~x, t,~0, 0)(γ5C
−1)σρS

cb′

ρδ [d](~x, t,~0, 0)(Cγ5)δγ

Sba
′

γβ [u](~x, t,~0, 0)Tr

(
Sedκλ[u](w, v)Ode

λκ(v, w, ~y, τ)

)]
(4.10)
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⇒ COu(t, τ ; ~p) = Ns

∑
~x,~y,v,w

e−i~p·~xεabcεa′b′c′

[

−Tr

(
ΓSad[u](x, v)Ode(v, w, y)Sea

′
[u](w, 0)

)
Tr

(
Sbb

′
[u](x, 0)Scc

′
[d](x, 0)

)

−Tr

(
ΓSaa

′
[u](x, 0)

)
Tr

(
Scc

′
[d](x, 0)Sbd[u](x, v)Ode(v, w, y)Seb

′
[u](w, 0)

)

−Tr

(
ΓSaa

′
[u](x, 0)Scc

′
[d](x, 0)Sbd[u](x, v)Ode(v, w, y)Seb

′
[u](w, 0)

)

−Tr

(
ΓSad[u](x, v)Ode(v, w, y)Sea

′
[u](w, 0)Scc

′
[d](x, 0)Sbb

′
[u](x, 0)

)

+Tr

(
ΓSaa

′
[u](x, 0)

)

Tr

(
Sed[u](w, v)Ode(v, w, y)

)
Tr

(
Sbb

′
[u](x, 0)Scc

′
[d](x, 0)

)

+Tr

(
ΓSaa

′
[u](x, 0)Scc

′
[d](x, 0)Sbb

′
[u](x, 0)

)

Tr

(
Sed[u](w, v)Ode(v, w, y)

)]
(4.11)

The 5th and 6th terms correspond to disconnected insertions. The notation Tr de-

notes trace over both color and Dirac indices. For simplicity, we also have used the

following shorthand notation

S =

(
(γ5C

−1)S(Cγ5)

)T

= γ5C
−1STCγ5 (4.12)

where, T denotes transpose over Dirac indices.
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4.1.2 q = d-quarks

If q = d, we obtain four connected contractions and two disconnected contractions as

shown in FIGS. 4.2a - 4.2d.

CI-FIG(4.2a) ⇒ Scdδλ[d](~x, t, v) · Seb′κρ [d](w,~0, 0) · Saa′αβ [u](~x, t,~0, 0) ·

Sbc
′

γσ [u](~x, t,~0, 0) (4.13)

CI-FIG(4.2b) ⇒ −Scdδλ[d](~x, t, v) · Seb′κρ [d](w,~0, 0) · Sba′γβ [u](~x, t,~0, 0) ·

Sac
′

ασ [u](~x, t,~0, 0)

(4.14)

DI-FIG(4.2c) ⇒ −Sedδλ[d](w, v) · Scb′δρ [d](~x, t,~0, 0) · Saa′αβ [u](~x, t,~0, 0) ·

Sbc
′

γσ [u](~x, t,~0, 0) (4.15)

DI-FIG(4.2d) ⇒ Sedκλ[d](w, v) · Scb′δρ [d](~x, t,~0, 0) · Sba′γβ [u](~x, t,~0, 0) ·

Sac
′

ασ [u](~x, t,~0, 0) (4.16)
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Figure 4.2: Schematic diagrams of connected and disconnected insertions when q = d.

Down quark insertion:

COd(t, τ ; ~p) = Ns

∑
~x,~y,v,w

e−i~p·~xεabcεa′b′c′Γβα

[
Saa

′

αβ [u](~x, t,~0, 0)

Tr

(
Sbc

′

γσ [u](~x, t,~0, 0)(γ5C
−1)σρS

eb′

ρκ [d](w,~0, 0)Ode
κλ(v, w, ~y, τ)Scdλδ[d](~x, t, v)(Cγ5)δγ

)
−Sac′ασ [u](~x, t,~0, 0)(γ5C

−1)σρS
eb′

ρκ [d](w,~0, 0)Ode
κλ(v, w, ~y, τ)

Scdλδ[d](~x, t, v)(Cγ5)δγ) · Sba
′

γβ [u](~x, t,~0, 0)

−Saa′αβ [u](~x, t,~0, 0) Tr

(
Sedδλ[d](w, v)Ode

λκ(v, w, ~y, τ)

)

Tr

(
Scb

′

δρ [d](~x, t,~0, 0)(γ5C
−1)ρσS

bc′

σγ [u](~x, t,~0, 0)(Cγ5)γδ

)
+Sac

′

ασ [u](~x, t,~0, 0)(γ5C
−1)σρS

cb′

ρδ [d](~x, t,~0, 0)Sba
′

γβ [u](~x, t,~0, 0)

Tr

(
Sedκλ[d](w, v)Ode

λκ(v, w, ~y, τ)

)]
(4.17)
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⇒ COd(t, τ ; ~p) = Ns

∑
~x,~y,v,w

e−i~p·~xεabcεa′b′c′

[

−Tr

(
ΓSaa

′
[u](x, 0)

)
Tr

(
Scc

′
[u](x, 0)Sbd[d](x, v)Ode(v, w, y)Seb

′
[d](w, 0)

)

−Tr

(
Saa

′
[u](x, 0)ΓSbb

′
[u](x, 0)Scd[d](x, v)Ode(v, w, y)Sec

′
[d, LS](w, 0)

)

+Tr

(
ΓSaa

′
[u](x, 0)

)
Tr

(
Sed[d](w, v)Ode(w, v, y)

)
Tr

(
Sbc

′
[u](x, 0)Scb

′
[d](x, 0)

)

+Tr

(
ΓSaa

′
[u](x, 0)Scc

′
[d](x, 0)Sbb

′
[u](x, 0)

)
Tr

(
Sed[d](w, v)Ode(v, w, y)

)]
(4.18)

In the above expression 3rd and 4th terms correspond to disconnected insertions.

4.2 Lattice Formalism: Three-Point Correlation Functions

Based on the calculation in Chapter 3, we shall now derive a generalized expres-

sion for a nucleon three-point correlation function. The generic nucleon three-point

correlation function for an electromagnetic current Jµ is defined as

Gαβ ;NJµN(t2, t1, ~p, ~p
′) =

∑
~x1,~x2

e−i~p·(~x2−~x1)e−i~p
′·(~x1−~x0) 〈0|χα(x2)Jµ(x1)χ̄β(x0) |0〉

(4.19)
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where

t2 : nucleon sink time,

t1 : current insertion time,

t0 : nucleon source time,

~x2 : nucleon sink spatial position,

~x1 : current insertion spatial position,

~x0 : nucleon source spatial position,

~p ′ : nucleon source momentum,

~p : nucleon sink momentum.

The convention we follow for momentum transfer q is the difference between sink and

source momentum:

q = p− p′ (4.20)
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We now insert a complete set of energy eigenstates with principle quantum number

n, momentum q, spin s and assume t2 > t1 > t0. Then

Gαβ ;NJµN (t2, t1, ~p, ~p
′) =

∑
~x1,~x2

e−i~p·(~x2−~x1)e−i~p
′·(~x1−~x0)

∑
~q2,s

∑
~q1,s′

〈0|χα(x2) |~q2, s〉

〈~q2, s| Jµ(x1) |~q1, s
′〉 〈~q1, s

′| χ̄β(x0) |0〉

=
∑
~x1,~x2

e−i~p·(~x2−~x1)e−i~p
′·(~x1−~x0)

∑
~q2,s

∑
~q1,s′

〈0| eH(t2−t0)−i~q ′2·(~x2−~x0)

χα(x0)e−H(t2−t0)+i~q ′2·(~x2−~x0) |~q2, s〉 〈~q2, s|

eH(t1−t0)−i~q ′1·(~x1−~x0)Jµ(x0)e−H(t1−t0)+i~q ′1·(~x1−~x0) |~q1, s
′〉

〈~q1, s
′|χ̄β(x0)〉

=
∑
~x1,~x2

e−i~p·(~x2−~x1)e−i~p
′·(~x1−~x0)

∑
~q2,s

∑
~q1,s′

e−Eq2 (t2−t0)+i~q2·(~x2−~x0)

e−Eq2 (t1−t0)−i~q2·(~x1−~x0)e−Eq1 (t1−t0)+i~q1·(~x1−~x0)

〈0|χα(x0) |~q2, s〉 〈~q2, s| Jµ(x0) |~q1, s
′〉 〈~q1, s

′| χ̄β(x0) |0〉

=
∑
~x1,~x2

∑
~q2,s

∑
~q1,s′

e−i~p·~x2+i~p·~x1−i~p ′·~x1+i~p ′·~x1+i~p ′·~x0+i~q2·~x2

e−i ~q2·~x0−i~q2·~x1+i~q2·~x0+i~q1·~x1−i~q1·~x0e−Eq2 (t2−t0−t1+t0)e−Eq1(t1−t0)

〈0|χα(x0) |~q2, s〉 〈~q2, s| Jµ(x0) |~q1, s
′〉 〈~q1, s

′| χ̄β(x0) |0〉

=
∑
~x1,~x2

∑
~q2,s

∑
~q1,s′

e−i(~p−~q2)·~x2e−i(~p
′−~p+~q2−~q1)·~x1ei(~p

′−~q1)·x0

e−Eq2 (t2−t1)e−Eq1 (t1−t1) 〈0|χα(x0) |~q2, s〉 〈~q2, s| Jµ(x0) |~q1, s
′〉

〈~q1, s
′| χ̄β(x0) |0〉

= N2
∑
~q2,s

∑
~q1,s′

δ(~p− ~q2)δ(~p ′ − ~p+ ~q2 − ~q1)ei(~p
′−~q1)·~x0e−Eq2 (t2−t1)e−Eq1 (t1−t0)

〈0|χα(x0) |n2, ~q2, s〉 〈~q2, s| Jµ(x0) |~q1, s
′〉 〈~q1, s

′| χ̄β(x0) |0〉

= N2
∑
s,s′

e−E~p(t2−t1)e−E~p ′ (t1−t0)

〈0|χα(x0) |~p, s〉 〈~p, s| Jµ(x0) |n1, ~p
′, s′〉 〈~p ′, s′| χ̄β(x0) |0〉

(4.21)
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Inserting parity explicitly,

Gαβ ;NJµN (t2, t1, ~p, ~p
′) = N2

∑
s,s′

e
−E+

p′ (t1−t0)
e−E

+
p (t2−t1) 〈0|χα(x0) |p, s,+〉

〈p, s,+| Jµ(x0) |p′, s′,+〉 〈p′, s′,+| χ̄β(x0) |0〉

+N2
∑
s,s′

e
−E−

p′ (t1−t0)
e−E

+
p (t2−t1) 〈0|χα(x0) |p, s,+〉

〈p, s,+| Jµ(x0) |p′, s′,−〉 〈p′, s′,−| χ̄β(x0) |0〉

+N2
∑
s,s′

e
−E+

p′ (t1−t0)
e−E

−
p (t2−t1) 〈0|χα(x0) |p, s,−〉

〈p, s,−|Jµ(x0) |p′, s′,+〉 〈p′, s′,+| χ̄β(x0) |0〉

+N2
∑
s,s′

e
−E−

p′ (t1−t0)
e−E

−
p (t2−t1) 〈0|χα(x0) |p, s,−〉

〈p, s,−|Jµ(x0) |p′, s′,−〉 〈p′, s′,−| χ̄β(x0) |0〉

(4.22)

Using, Eqs. (8.37) - (8.43),

Gαβ ;NJµN (t2, t1, ~p, ~p
′) = a6

∑
s,s′

e
−E+

p′ (t1−t0)
e−E

+
p (t2−t1)φ+(p)φ̄+(p′)

m+m+

E+
p E

+
p′

uα(p, s,+)ūη(p, s,+)
(
O+,+
µ

)
ηρ
uρ(p

′, s′,−)ūβ(p′, s′,+)

+a6
∑
s,s′

e
−E−

p′ (t1−t0)
e−E

+
p (t2−t1)φ+(p)φ̄−(p′)

m+m−

E+
p E

−
p′

uα(p, s,+)ūη(p, s,+)
(
O+,−
µ

)
ηρ
uρ(p

′, s′,−)(ūγ5)β(p′, s′,−)

+a6
∑
s,s′

e
−E+

p′ (t1−t0)
e−E

−
p (t2−t1)φ−(p′)φ̄+(p′)

m−m+

E−p E
+
p′

(γ5u)α(p, s,−)ūη(p, s,−)
(
O+,−
µ

)
ηρ
uρ(p

′, s′,+)ūβ(p′, s′,+)

+a6
∑
s,s′

e
−E−

p′ (t1−t0)
e−E

−
p (t2−t1)φ−(p)φ̄−(p′)

m−m−

E−p E
−
p′

(γ5u)α(p, s,−)ūη(p, s,−)
(
O−,−µ

)
ηρ
uρ(p

′, s′,−)(ūγ5)β(p′, s′,−)

(4.23)

Using techniques to eliminate negative parity states shown in Eqs. (8.44), and
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using simplified notation in Eq. (4.26), we obtain a simpler version of Eq. (4.23):

Gαβ ;NJµN (t2, t1, ~p, ~p
′,Γ) =

(
1 + γ4

2

)
αρ

(−i/p+m

2m

)
ρη

Gηω ;NJµN(t2, t1, ~p, ~p
′, µ)

(−i/p+m

2m

)
ωκ

(
1 + γ4

2

)
κβ

(4.24)

Only the positive-parity combination will survive:

Gαβ ;NJµN (t2, t1, ~p, ~p
′,Γ) = a6

∑
s,s′

e−Ep′ (t1−t0)e−Ep(t2−t1)φ(p′)φ̄(p)

m2

EpEp′

[(
1 + γ4

2

)
u(p, s)ū(p, s)Oµu(p′, s′)ū(p′, s′)

(
1 + γ4

2

)]
αβ

= a6e−Ep′ (t1−t0)e−Ep(t2−t1)φ(p′)φ̄(p)
m2

EpEp′

(
1 + γ4

2

)
αρ(

−iγ · p+m

2m

)
ρη

(Oηω)µ

(
−iγ · p′ +m

2m

)
ωκ

(
1 + γ4

2

)
κβ

(4.25)

Taking the trace,

Gαβ ;NJµN(t2, t1, ~p, ~p
′,Γ) = ΓαβGαβ ;NJµN(t2, t1, ~p, ~p

′, µ)

= a6φ(p)φ̄(p′)
m2

EpEp′
Tr

[
Γ

 1 0

0 0


(
−iγ · p+m

2m

)
Oµ
(
−iγ · p′ +m

2m

) 1 0

0 0

]

= a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)

Tr

[
(−iγ · p+m)Oµ(−iγ · p′ +m)

]
(4.26)

Eq. (4.26) is the general expression for a nucleon three-point correlation function. One

can now choose proper projection operators Γ and currents Oµ to calculate nucleon

electric and magnetic form factors.
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4.3 Electromagnetic Form Factors Calculation on the Lattice

Nucleon electromagnetic form factors are functions of only one kinematical variable

which represents the internal structure of the nucleon. From Lorentz symmetry and

gauge invariance, Oµ can be written as,

Oµ =

[
γµF1(−q2) +

σµνqν
2m

F2(−q2)

]
. (4.27)

where F1 and F2 are Dirac (spin-conserving) and Pauli (spin-flip) form factors, re-

spectively and m is the nucleon mass. The normalization of F1 and F2 are determined

by the charge and magnetic moment of the nucleon and these static properties can

be measured in a low-energy electron-nucleon scattering experiment. F1(0) = 1 for

proton and 0 for neutron from current conservation, and F2(0) is a measure of nucleon

anomalous magnetic moments. These are related to the electric and magnetic Sachs

form factors by

GE(Q2) = F1(Q2)− Q2

4m2
F2(Q2)

GM(Q2) = F1(Q2) + F2(Q2) (4.28)

where in the spacelike region Q2 = −q2. Form factors enter in the expression of

electromagnetic current. Lattice QCD successfully reproduces the static properties

such as hadron masses and magnetic moments, etc. Therefore, one expects Lattice

QCD would also describe the dynamics of the charge and magnetic distributions of

the nucleon, i.e. electromagnetic form factors.

4.4 Electric Form Factor Calculation

To calculate electric form factor, one has to take µ = 4 and Γ = Γ4 in Eq. (4.26).

Γ4 =
1 + γ4

2
=

 1 0

0 0

 (4.29)
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Now, we simply the terms and perform matrix matrix multiplications step-by-step

in the generalized three-point function expression (4.26) with proper choice of current

operator to obtain nucleon electric form factor. We start with writing matrix form

of the term (−iγ · p+m):

−iγ · p+m = −i(γ4p4 + ~γ · ~p) +m

= −i


 1 0

0 −1

 (iEp) +

 0 −i~σ

i~σ 0

 · ~p
+

 m 0

0 m


= Ep

 1 0

0 −1

+

 0 −~σ

~σ 0

 · ~p+

 m 0

0 m


=

 Ep −~σ · ~p

~σ · ~p −Ep

+

 m 0

0 m

 =

 Ep +m −~σ · ~p

~σ · ~p −Ep +m


(4.30)

Therefore,

−iγ · p+m

2m
=

1

2m

 Ep +m −~σ · ~p

~σ · ~p −Ep +m

 (4.31)

and similarly,

−iγ · p′ +m

2m
=

1

2m

 E ′p +m −~σ · ~p ′

~σ · ~p ′ −E ′p +m

 (4.32)

Now multiplying with unpolarized projection operator Γ4

Γ4(−iγ · p+m) =

 1 0

0 0


 Ep +m −~σ · ~p

~σ · ~p −Ep +m


=

 Ep +m −~σ · ~p

0 0

 (4.33)

and  E ′p +m −~σ · ~p ′

~σ · ~p ′ −E ′p +m


 1 0

0 0

 =

 E ′p +m 0

~σ · ~p ′ 0

 (4.34)
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From Eq. (4.27),

O4 = F1(−q2)γ4 +
σ4νqν
2m

F2(−q2) (4.35)

The second term in Eq. (4.27) for µ = 4 is

σµνqν
2m

F2(−q2)
µ=4−−→ σ44q4 + σ4iqi

2m
F2(−q2)

=
σ4iqi
2m

F2(−q2) (4.36)

where we have used (see Appendinx 8.1.9):

σ4i =

 0 −σi

−σi 0


σi4 =

 0 σi

σi 0


σij = εijk

 σk 0

0 σk


(4.37)

Therefore,

O4 =

 F1(−q2) −σiqi
2m
F2(−q2)

−σiqi
2m
F2(−q2) −F1(−q2)


≡

 a00 a01

a10 a11

 (4.38)
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Now,  Ep +m −~σ · ~p

0 0


 a00 a01

a10 a11


=

 (Ep +m)a00 − a10(~σ · ~p) a01(Ep +m)− a11~σ · ~p

0 0


≡

 b00 b01

b10 b11

 (4.39)

Then  b00 b01

b10 b11


 Ep′ +m 0

~σ · ~p ′ 0


=

 b00(Ep′ +m) + b01(~σ · ~p ′) 0

b10(Ep′ +m) + b11(~σ · ~p ′) 0

 (4.40)

Therefore, for µ = 4,

GNJ4N(t2, t1, ~p, ~p
′,Γ) = a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)

Tr

 b00(Ep′ +m) + b01(~σ · ~p ′) 0

b10(Ep′ +m) + b11(~σ · ~p ′) 0


≡ a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)Tr(B) (4.41)
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Now,

Tr(B) = Tr[b00(Ep′ +m) + b01(~σ · ~p ′)]

= Tr
[(

(Ep +m)a00 − a10(~σ · ~p)
)
(Ep′ +m)

+
(
a01(Ep +m)− a11(~σ · ~p)

)
(~σ · ~p ′)

]
= Tr

[(
(Ep +m)F1 +

σiqi
2m

F2(~σ · ~p)
)
(Ep′ +m)

+
(−σiqi

2m
F2(Ep +m) + F1(~σ · ~p)

)
(~σ · ~p ′)

]
= Tr

[
(Ep +m)F1(Ep′ +m) +

σiqi
2m

F2(~σ · ~p)(Ep′ +m)

−σiqi
2m

F2(Ep +m)(~σ · ~p ′) + F1(~σ · ~p)(~σ · ~p ′)
]

(4.42)

For final particle at rest, i.e. ~p = 0, from Eq. (4.42),

Tr(B) = Tr
[
2mF1(Ep′ +m)− σiqi

2m
F2(2m)(~σ~p ′)

]
= 4mF1(Ep′ +m)− F2qiTr[σiσjp

′
j]

= 4mF1(Ep′ +m) + F2p
′
ip
′
jTr[σiσj]

= 4mF1(Ep′ +m) + F2p
′
ip
′
jTr[δij + iεijkσk]

= 4mF1(Ep′ +m) + 2F2p
′
jp
′
j

= 4mF1(Ep′ +m) + 2F2(E2
p′ −m2)

= 4mF1(Ep′ +m) + 2F2(Ep′ +m)(Ep′ −m)

= (Ep′ +m)4m(F1 +
F2

2m

q2

2m
) (using Eq. (8.48))

= 4m(Ep′ +m)(F1 +
q2

4m2
F2)

≡ 4m(Ep′ +m)GE (4.43)

where, the Sachs electric form factor is defined as

GE(−q2) ≡ F1(−q2) +
q2

4m2
F2(−q2) (4.44)
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Therefore,

GNJ4N(t2, t1, ~p, ~p
′,Γ) = a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)

4m(Ep′ +m)(F1 +
q2

4m2
F2)

≡ a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)4m(Ep′ +m)GE

(4.45)

One can derive similar expression for the special case, when the source momentum

~p ′ = 0.

4.5 Magnetic Form Factor Calculation

Magnetic form factor can be obtained with µ = i, and Γ = Γk where i, k = 1, 2, 3.

Γk is the polarized projection operator defined in Appendix Eq. (8.4). Then from

Eq. (4.26),

Oi = F1(−q2)γi + σi4qν
F2(−q2)

2m
(4.46)

Now, the first term in Eq. (4.46)

F1(−q2)γi =

 0 −iF1σi

iF1σi 0

 (4.47)

and the second term in Eq. (4.46) is

F2(−q2)σiνqν
2m

=
F2

2m
(σi4q4 + σijqj)

=
F2

2m

[ 0 σiq4

σiq4 0

+

 εijkσkqj 0

0 εijkσkqj

]

=
F2

2m

 εijkσkqj iσiEq

iσiEq εijkσkqj

 (4.48)
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Therefore,

F1γi + σiνqν
F2

2m

=

 F2

2m
εijkσkqj −iF1σi + i F2

2m
σiEq

iF1σi + i F2

2m
σiEq

F2

2m
εijkσkqj


≡

 c00 c01

c10 c11

 (4.49)

The polarized projection operator,

Γk =
1 + γ4

2
γkγ5 =

 σk 0

0 0

 (4.50)

Then σk 0

0 0


 Ep +m −~σ · ~p

~σ · ~p −Ep +m

 =

 σk(Ep +m) σk(−~σ · ~p)

0 0

 (4.51)

and  Ep′ +m −~σ · ~p ′

~σ · ~p ′ −Ep′ +m


 1 0

0 0

 =

 Ep′ +m 0

~σ · ~p ′ 0

 (4.52)

Therefore,  σk(Ep +m) σk(−~σ · ~p)

0 0


 c00 c01

c10 c11


=

 σk(Ep +m)c00 + σk(−~σ · ~p)c10 σk(Ep +m)c01 + σk(−~σ · ~p)c11

0 0


≡

 d00 d01

d10 d11

 (4.53)
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Thus d00 d01

d10 d11


 Ep′ +m 0

~σ · ~p ′ 0

 =

 (Ep′ +m)d00 + (~σ · ~p ′)d01 0

0 0


≡ D (4.54)

Now,

Tr(D) = Tr[(Ep′ +m)d00 + (~σ · ~p ′)d01]

= Tr[(Ep′ +m)
(
σk(Ep +m)c00 + σk(−~σ · ~p)c10

)
+(~σ · ~p ′)

(
σk(Ep +m)c01 + σk(−~σ · ~p)c11

)
]

= Tr[(Ep′ +m)σk(Ep +m)c00 + (Ep′ +m)σk(−~σ · ~p)c10

+(~σ · ~p ′)σk(Ep +m)c01 + (~σ · ~p ′)σk(−~σ · ~p)c11]

= Tr

[
(Ep′ +m)σk(Ep +m)

F2

2m
εijlσlqj − (Ep′ +m)σk(~σ · ~p)(

iF1σi + i
F2

2m
σiEq

)
+ (~σ · ~p ′)σk(Ep +m)

(
− iF1σi

+i
F2

2m
σiEq

)
− (~σ · ~p ′)σk(~σ · ~p)

F2

2m
εijlσlqj

]
(4.55)
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As a special case, for the final state at rest,

Tr(D) = Tr

[
(Ep′ +m)σk(2m)

F2

2m
εijlσlqj + (~σ · ~p ′)~σk(2m)

(
− iF1σi +

iF2

2m
σi(m− Ep′)

)]
= Tr

[
(Ep′ +m)σk2m

F2

2m
εijlσlqj − i(~σ · ~p ′)σk2mF1σi

+(~σ · ~p ′)σk2m
iF2

2m
σi(m− Ep′)

= −iF1p
′
l2mTr[σkσiσl] + (Ep′ +m)F2εijlqjTr[σkσl]

+iF2(m− Ep′)p′lTr[σkσiσl]

= −iF1p
′
l2mTr[(δki + iεkimσm)σl] + (Ep′ +m)F2εijlqjTr[δkl + iεklmσm]

+iF2(m− Ep′)p′lTr[(δki + iεkimσm)σl]

= −i2εkimF1p
′
l2mTr[σmσl] + 2(Ep′ +m)F2εijlqj + i2F2(m− Ep′)p′lεkimTr[σmσl]

= εkimF1p
′
l2mTr[δml + iεmlrσr] + 2(Ep′ +m)F2εijlqj

−F2(m− Ep′)p′lεkimTr[δml + iεmlrσr]

= 4mεkilF1p
′
l + 2(Ep′ +m)F2εijlqj − 4F2(m− Ep′)p′mεkim

= −4εiklF1p
′
lm+ 2F2

(
(Ep′ +m)εijlqj − (m− Ep′)εkimp′m

)
= 4mF1εijkqk + 2F2

(
(Ep′ +m)εijlqj + (m− Ep′)εkimqm

)
= 4mF1εijkqk + 4mF2εijkqk

= 4m(F1 + F1)εijkqk

≡ 4mGMεijkqk (4.56)

where the magnetic Sachs form factor has been defined as

GM(−q2) ≡ F1(−q2) + F2(−q2) (4.57)
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Therefore,

GNJiN(t2, t1, ~p, ~p
′,Γ) = a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)

4m(Ep′ +m)(F1 +
q2

4m2
F2)

≡ a6φ(p)φ̄(p′)

4EpEp′
e−Ep′ (t1−t0)e−Ep(t2−t1)4mGMεijkqk

(4.58)

One can derive similar expression for the special case, when the source momentum

~p ′ = 0.

4.6 Extraction of Ground-State Matrix Element

One can extract the ground-state matrix elements by taking a ratio of three-point to

two-point correlation functions. We look for a plateau in the asymptotic Euclidean

time behavior of the ratio. The ratio can be written as [30]

R(t2, t1, ~p, ~p
′,Γ;µ) =

〈GNJµN(t2, t1; ~p ′, ~p; Γ)〉
〈GNN(t2, ~p ′; Γ4)〉

=

√
〈GNN(t2 − t1 + t0, ~p; Γ4)〉〈GNN(t1, ~p ′; Γ4)〉〈GNN(t2, ~p ′; Γ4)〉
〈GNN(t2 − t1 + t0, ~p ′; Γ4)〉〈GNN(t1, ~p; Γ4)〉〈GNN(t2, ~p; Γ4)〉

(4.59)

This ratio method exactly cancels the time dependence and weight factors (φ). Con-

sidering only time-dependent and normalization factors in Eq. (4.59), from the factor

outside the square-root,

R = e−Ep(t1−t0)e−Ep′ (t0−t1)

√
e2Ep(t1−t0)e−2Ep′ (t1 − t0)

= 1 (4.60)

However, due to computational cost, we took the following three-point to two-point

ratio in our numerical calculation. In our calculation, the nucleon grid-smeared source

is at rest, (~p ′ = 0), and the source temporal position is t0 = 0. We define the three-

37



point to two-point ratio as,

Rµ(~q, t2,t1)=
Tr[ΓmGNJµN(~q, t2,t1)]

Tr[ΓeGNN(~0, t2)]
e(Eq−m)·(t2−t1) 2Eq

Eq +m
.

(4.61)

Then the magnetic form factor can be calculated as

Ri(~q, t2, t1) =
a6 φ(p)φ̄(0)

4Eqm
e−Eq(t2−t1)e−mt1(4mεijkqkGM)

a6φ(0)φ̄(0)2e−mt2
e−(Eq−m)(t2−t1) 2Eq

Eq +m

=
φ(p)

φ(0)

εijkqk
Eq +m

GM (for ~p ′ = 0, ~p = ~q),

Ri(~q, t2, t1) =
φ(p)

φ(0)
GE (for ~p ′ = 0, ~p = ~q) (4.62)

We will see that the effect of the ratio of these two wavefunction overlap factors will

not have any significant effect in our calculation in comparison to the size of the

statistical and systematic uncertainties. We will present more discussion on this in

the subsequent sections.
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Chapter 5 Strange Quark Electromagnetic Form Factors

5.1 Abstract

We present a lattice QCD calculation of the strange quark contribution to the nu-

cleon’s magnetic moment and charge radius. This analysis presents the first direct

determination of strange electromagnetic form factors including at the physical pion

mass. We perform a model-independent extraction of the strange magnetic moment

and the strange charge radius from the electromagnetic form factors in the momentum

transfer range of 0.051 GeV2 . Q2 . 1.31 GeV2. The finite lattice spacing and finite

volume corrections are included in a global fit with 24 valence quark masses on four

lattices with different lattice spacings, different volumes, and four sea quark masses

including one at the physical pion mass. We obtain the strange magnetic moment

Gs
M(0) = −0.064(14)(09)µN . The four-sigma precision in statistics is achieved partly

due to low-mode averaging of the quark loop and low-mode substitution to improve

the statistics of the nucleon propagator. We also obtain the strange charge radius

〈r2
s〉E = −0.0043(16)(14) fm2. From the fit parameters of the model-independent

z-expansion, we also present strange quark electric and magnetic form factors in the

momentum transfer region of 0 GeV2 ≤ Q2 ≤ 0.5 GeV2.

5.2 Introduction

In the non-relativistic constituent quark model, a proton is composed of two up

and one down quarks. Unlike in the real QCD dynamics, where the quarks interact

strongly between themselves via gluon exchange, in the constituent quark model they

do not interact strongly. Although this simple quark model has been very successful in

describing various nucleon properties, such as predicting the proton magnetic moment
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within 3% [31] of the experimental value, results from the deep-inelastic scattering

experiments indicate that nucleon sea consists of qq̄ pairs and gluons play a very

important role in describing nucleon properties. For example, almost half of the

nucleon momentum is carried by the gluons which is consistent with the nature of

QCD that quarks interact strongly through exchange of gluons. It is clear from the

deep-inelastic experimental data that gluons play a very important role describing

the QCD dynamics at low x. For example, the sharp rise of g(x) in the low x-region

cannot be described by the simple quark model. Since strange (s)-quarks are only

present in the sea, measuring various s-quark contributions to the nucleon properties

gives direct information about the nucleon sea and its nonperturbative structure.

Flavor decomposition of the sea-quarks in the nucleon is of immense importance

due to their complex natures. For example, from the recent analysis of Drell-Yan data

one clearly sees an excess of d̄(x) over ū(x) in the nucleon sea. To understand the

flavor content of the nucleon-sea, such as the excess of d̄(x)/ū(x), a lattice QCD cal-

culation in Ref. [32] was performed using the path integral formalism of the hadronic

tensor. The authors in Ref. [32] illustrated existence of two topologically distinct

sources of nucleon sea - called the connected and disconnected-sea and showed that

the Gottfried sum rule violation comes from the connected insertion involving quarks

propagating backwards in time. In a recent lattice QCD calculation [33], the authors

have discussed that the excess of d̄(x)/ū(x) cannot originate from the disconnected-

sea since the mass difference between u and d quarks are very small to account for

this large excess of d̄(x)/ū(x) observed in the deep-inelastic experiment and Drell-Yan

process.

The excess of d̄(x)/ū(x) cannot be explained by simple g → qq̄ fluctuation in

the intermediate x-values and some other nonperturbative processes are required

to explain this excess. An example of such a nonperturbative process can be the

virtual conversion of proton to neutron p → π+n, so that excess of d̄ is created
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relative to the abundance of ū. In contrast, there is no such analogous procedure

to create an excess of ū. In this way d̄-excess could be produced at a x ∼ mπ
2mN

and this is consistent with experimental observation. This type of meson-baryon

fluctuation is a nonperturbative phenomenon and needs to be understood. A similar

possible meson-baryon fluctuation which can produce different spatial distribution

of s and s̄ quarks in the nucleon sea is N → K+Λ fluctuation. From our lattice

calculation, we shall show, in Chapter 6, that the difference of spatial distribution of

light-sea quarks q and q̄ is larger than the difference of spatial distribution of s and

s̄ quarks in the nucleon. This is natural, because K+Λ is expected to be produced

with lower probability than the πN fluctuations due to their higher masses of K+(us̄)

and Λ(uds) compared to π and N , respectively. A meson-baryon configuration such

as a K+Λ meson-baryon state will create a different radially-separated distribution

of s and s̄ quarks from the center of mass of a K+Λ configuration. Therefore, this

nonperturbative phenomenon would lead to a small non-zero value of the strange

quark electric form factor Gs
E at non-zero values of Q2 which is a consequence of the

fact that the average distribution of s̄ is slightly farther compared to the average s-

quark distribution from the center of the nucleon. Keeping in mind that K+(us̄) has

a smaller mass than Λ(uds), it is expected that K+ and thus s̄ will occupy a larger

radial distance from the center of mass of the K+Λ meson-baryon configuration. Such

a calculation with light-front wave function has been previously done by Brodsky and

Ma [34,35] using light-cone meson-baryon fluctuation model. In Ref. [35], the author

obtained Gs
M(0) = −0.066µN . These meson-baryon fluctuation models can serve as

a motivation for the need of a first-principles nonperturbative calculation. Thus, it

is essential to check these meson-baryon fluctuation models with ab-initio calculation

in lattice QCD.

In summary, the difference in the spatial distribution of s and s̄ can have the

following consequences [36]:
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• ss̄ contribution to nucleon mass,

• ss̄ contribution to nucleon axial charge which can affect the value of Σ associated

with the helicity carried by the quarks,

• Nonzero value of strange quark electric form factor Gs
E at Q2 > 0,

• ss̄ contribution to nucleon magnetic form factor and neutral weak form factors,

• Difference between parton distribution functions (PDFs) of s(x) and s̄(x).

While the first 4 consequences are low Q2 phenomena, one can relate the difference

of s(x) and s̄(x) PDFs to a similar Drell-Yan process of the excess of d̄(x)/ū(x).

Therefore, a precise and accurate measurement of strange quark electromagnetic

form factors is of immense importance. For example, the one of the backgrounds in

the Qweak experiment arises from the Gs
M(Q2). A precise estimate of Gs

M(Q2) can lead

to more precision in the estimated value of proton weak charge Qp = (1− 4 sin2 θW )

in the Qweak experiment. It is very important to know the value of Qp with great

precision because this will constrain the possibility of Beyond Standard Model physics.

Since the extraction of the vector strange matrix elements 〈N |s̄γµs|N〉 was pro-

posed in Refs. [37–39] via parity-violating e− − N scattering, the determination of

strange quark contribution to the nucleon electromagnetic form factors (Gs
E,M) at low

momentum transfer has been the main goal of various experiments of the SAMPLE,

HAPPEX, G0, and A4 collaborations [40–51]. The world data constrains that the

strange quark magnetic moment Gs
M(0) contributes less than 6% and the strange

quark mean square charge radius 〈r2
s〉E contributes less than 5% to the magnetic

moment and the mean-square charge radius of the proton respectively [52]. However,

all these experimental results are limited by rather sizable error bars. Three different

global analyses give Gs
M(Q2 = 0.1 (GeV/c)2), which is consistent with zero within

uncertainties, and differ in sign in their central values [53–55]. However, modern ex-
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perimental results favor a negative value of Gs
M(0) which is consistent with previous

lattice QCD calculations.

Despite tremendous theoretical efforts, e.g. [56–59], a detailed convincing un-

derstanding about the sign and magnitude of strange quark electromagnetic form

factors is still lacking. A detailed review of these theoretical efforts can be found

in [60]. The first measurement of the proton neutral weak magnetic form factor

GZ,p
M from parity-violating asymmetry in the polarized ~e − p scattering experiment

was performed by the SAMPLE collaboration. Performed at a momentum trans-

fer of Q2 = 0.1 GeV2, the neutral weak magnetic form factor was found to be

GZ,p
M (0.1 GeV2) = 0.34(11) nucleon magneton (n.m.) which corresponds to a value

of Gs
M(Q2 = 0.1 GeV2) = 0.23(44) n.m. [61]. These results were updated to ob-

tain a value of Gs
M(Q2 = 0.1 GeV2) = 0.37(33) n.m. in Ref. [40]. An analysis of

the SAMPLE data estimated GZ,p
M (0.1 GeV2) = 0.29(16) n.m. which corresponds to

Gs
M(Q2 = 0.1 GeV2) = 0.49(65) n.m. [62]. A large positive value of Gs

M corresponds

to a GZ,p
M < 0.40 n.m. at Q2 = 0.1 GeV2. To date, no individual experiment pro-

vides high precision measurements of the nucleon neutral weak form factors in a wide

range of Q2. By considering the weak axial vector form factor GZ
A as an input, it is

possible to separate the Sachs electric and magnetic form factors by combining parity-

violating asymmetry measurements from the experimental data. However, because

of the complexity of the experiments, rather sizable uncertainties in the value of GZ
A

and the lack of knowledge of its Q2 behavior, the extracted value of nucleon strange

electromagnetic form factors from parity-violating asymmetry data vary widely in

different experiments and global fits of the experimental data as mentioned above.

The level of precision of the strange quark form factor measurements is not so high at

present to differentiate Gs
E,M from zero. It is also important to note that the parity-

violating asymmetry measured by the modern experiments is very precise and plays

an important role in measuring hadronic properties associated with parity violations.
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However, a significantly precise knowledge of GZ
A(Q2) is required to extract Gs

E,M and

G
z,p(n)
E,M from the experimental measurements of parity-violating asymmetry. As we

will discuss below, although the typical electroweak radiative corrections are expected

to be O(α), the tree-level suppression of the interaction in the parity-violating ~e− p

scattering makes the radiative corrections to GZ
A more significant. The uncertain-

ties in the radiative correction of GZ
A are large and radiative corrections involving

the strong interaction are not clearly known, so the extraction of G
Z,p(n)
E,M from the

parity-violating scattering experiments is a tremendous challenge. One anticipates

that with a reliable first-principles estimate of Gs
E,M , one can also give a prediction

of the neutral weak form factors of the proton and the neutron.

5.3 Formalism

Electron-proton scattering can proceed through an exchange of a virtual Z-boson

or photon (γ), represented in the lowest order by the Feynman diagrams shown

in FIG. 5.1. This process gives rise to a new current for the proton, called the

neutral weak current. Because the neutral weak charge of light quarks and electrons

are different for the left-handed and right-handed particles, parity is violated in the

scattering of polarized electrons off the nucleon. The invariant amplitudes of the

scattering processes shown in FIG. 5.1 can be written in terms of leptonic vector

(lµ), axial (lµ5), nucleon vector (Jµγ ), nucleon weak vector (JµZ) and weak axial (Jµ5
Z )

currents:

Mγ =
4πα

Q2
eil

µJγµ , (5.1)

MZ =
GF

2
√

2
(giV l

µ + giAl
µ5)(JZµ + JZµ5), (5.2)
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Figure 5.1: Tree level electromagnetic and weak Feynman diagrams in the e− − N
scattering: (5.1a) photon (γ) exchange, (5.1b) neutral weak Z-boson exchange.
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Figure 5.2: Feynman diagrams representing “one-quark” radiative corrections in the
e− −N scattering: (5.2a) Vacuum polarization, (5.2b) γ − Z box diagram.
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Figure 5.3: Feynman diagrams representing “many-quark” radiative corrections in
the e− − N scattering. The unfilled and filled circles represent vector and axial
couplings, respectively: (5.3a) Rho (ρ) meson pole, (5.3b) pion loop.

where α is the electromagnetic coupling constant, GF = 1.166 × 10−5 GeV−2 is the

Fermi constant, ei is the electromagnetic charge of the incident electron, and glV (A)

is the weak vector (axial) charge in Eqs. (5.2), (5.3) and (5.4). From Eq. (5.3), it is

seen that the neutral weak boson can have both vector and axial vector interactions.

Therefore the amplitude MZ has both parity violating (PV) and parity conserving

(PC) amplitudes:

MPV
Z =

GF

2
√

2
(giV l

µJZµ5 + giAl
µ5JZµ ), (5.3)
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MPC
Z =

GF

2
√

2
(giV l

µJZµ + giAl
µ5JZµ5). (5.4)

Similar to the electromagnetic current in the nucleon, the vector component of

the neutral weak current in the nucleon can be written as

JZµ = ūN

[
γµF

Z
1 (Q2) +

iσµνq
ν

2MN

FZ
2 (Q2)

]
uN , (5.5)

where uN is the nucleon spinor, the neutral weak form factors FZ
1 and FZ

2 are analo-

gous to the electromagnetic form factors F γ
1 and F γ

2 . The nucleon neutral weak axial

current is defined as:

JZµ5 = ūN

[
γµγ5G

Z
A

]
uN (5.6)

where GZ
A is the neutral weak axial form factor.

Since the electroweak interaction of the gauge bosons with quarks is pointlike,

the nucleon vector and axial currents and the corresponding form factors can be

decomposed into a sum of quark currents, one current for each quark flavor [63]. The

electromagnetic and neutral weak vector currents can be written as nucleon matrix

elements of the quark current operators Ĵγµ and Ĵγµ5 as

Jγµ ≡ 〈N |Ĵγµ |N〉 ,

JZµ ≡ 〈N |ĴZµ |N〉 ,

JZµ5 ≡ 〈N |ĴZµ5|N〉 (5.7)

where |N〉 is a proton or neutron state and the quark current operators are given by

Ĵγµ ≡
∑
q

Qq q̄γµq,

ĴZµ ≡
∑
q

gVq q̄γµq,

ĴZµ5 ≡
∑
q

gAq q̄γµγ5q.

(5.8)
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Here the sum is over all quark flavors q and Qq, g
V (A)
q are the electromagnetic and

neutral weak vector (axial vector) quark couplings in the Standard Model and are

listed in Table (5.1) for the up, down and strange quarks.

Table 5.1: The electromagnetic, weak vector, and weak axial couplings for the up,
down, and strange quarks and electron.

Quarks Qi gVq gAq

u 2
3

1
4
− 2

3
sin2 θW -1

d -1
3

-1
4

+ 2
3

sin2 θW 1

s -1
3

-1
4

+ 1
3

sin2 θW 1

e -1 −1
4

+ sin2 θW 1

Using these couplings listed in Table (5.1), we can express the nucleon form factors

as linear combinations of the quark components, i.e.

Gγ,N
E(M) ≡

∑
q

QqG
q,N
E(M),

GZ,N
E(M) ≡

∑
q

gVq G
q,N
E(M),

GZ,N
A ≡

∑
q

gAq G
q,N
A (5.9)

where Gq,N
E(M) is the contribution form the quark flavor q to the nucleon electric (mag-

netic ) form factor and Gq,N
A is the contribution to the nucleon weak axial form factor.

Now assuming that only u, d, s quarks contribute significantly to the nucleon elec-

tromagnetic and weak form factors, and using the couplings from Table (5.1) we can

write the nucleon currents in terms of the quark-nucleon currents as
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Jγµ = 〈N |Ĵγµ |N〉

=
2

3
〈N |ūγµu|N〉 −

1

3
〈N |d̄γµd|N〉 −

1

3
〈N |s̄γµs|N〉 , (5.10)

JZµ = 〈N |ĴZµ |N〉

=

(
1

4
− 2

3
sin2 θW

)
〈N |ūγµu|N〉+

(
− 1

4
+

1

3
sin2 θW

)
〈N |d̄γµd|N〉

+

(
− 1

4
+

1

3
sin2 θW

)
〈N |s̄γµs|N〉 . (5.11)

It is important to note from Eqs. (5.10) and (5.11) that the same quark-nucleon

currents 〈N |q̄γµq|N〉 appear on the right hand side, i.e. the quark-nucleon currents

depend only on the vector nature of the coupling and not whether the coupling is

though the photon or neutral weak boson exchange in the e− − N scattering. This

property along with the assumption of isospin symmetry will allow us to relate the

nucleon neutral weak and strange quark form factors in the subsequent calculations.

Similarly, using Eqs. (5.9), nucleon Sachs form factors can be written as

Gγ,p
E,M =

2

3
Gu,p
E,M −

1

3
Gd,p
E,M −

1

3
Gs,p
E,M , (5.12)

Gγ,n
E,M =

2

3
Gu,n
E,M −

1

3
Gd,n
E,M −

1

3
Gs,n
E,M , (5.13)

GZ,p
E,M =

(
1

4
− 2

3
sin2 θW

)
Gu,p
E,M +

(
− 1

4
+

1

3
sin2 θW

)
Gd,p
E,M

+

(
− 1

4
+

1

3
sin2 θW

)
Gs,p
E,M (5.14)

The charge symmetry is broken due to the mass difference of u and d quarks and elec-

tromagnetic interactions. However, this effect of symmetry breaking on the estimate

of nucleon form factors is negligible compared to the uncertainties in the experimental

measurements and the following lattice QCD analysis and thus can be safely ignored.
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Assuming strong isospin symmetry, i.e. the u(d)-quarks in the proton have the same

properties as d(u) quarks in the neutron, one can write

Gu,p = Gd,n, Gd,p = Gu,n, and Gs,p = Gs,n = Gs, (5.15)

and so Eq. (5.14) can be written as

G
Z,p(n)
E,M =

(
1

4
− sin2 θW

)
G
γ,p(n)
E,M − 1

4
G
γ,n(p)
E,M − 1

4
Gs
E,M (5.16)

With radiative corrections, Eq. (5.16) can be written as

G
Z,p(n)
E,M (Q2) =

1

4

[
(1− 4 sin2 θW )(1 +R

p(n)
V )G

γ,p(n)
E,M (Q2)− (1 +R

n(p)
V )G

γ,n(p)
E,M (Q2)

−(1 +R
(0)
V )Gs

E,M(Q2)

]
, (5.17)

where the subscript E(M) stands for the electric(magnetic) form factor and the su-

perscript p(n) stands for the proton(neutron). R
p(n)
V and R

(0)
V are radiative corrections

to the vector form factors calculated in [64] and translated into the MS-scheme in [63].

The updated analyses of these radiative corrections can be found in [65] and [66].

Experimentally the proton’s neutral weak form factors can be measured directly

through e−−N scattering. Electromagnetic scattering amplitude dominates over the

neutral weak scattering amplitude. Since there is no direct way to determine whether

photon exchange or neutral weak boson exchange is responsible for a given e− − N

scattering event, one calculates the total scattering as

σtotal ∝ |Mγ +MZ |2 (5.18)

Since the weak force violates parity as mentioned earlier, the neutral weak scattering

amplitudeMZ depends on the helicity of the incident electron. Therefore, the nucleon

has different cross sections for the right and the left handed electrons. As a result,

the cross section associated with the positive helicity electron is different from that
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of the negative helicity electron. Because the spin of the electron is an axial vector

and the momentum is a vector quantity, the helicity of the electrons

h ≡ ~s · ~k (5.19)

is a pseudo-scalar quantity and flips the helicity of electron beam between right and

left helicity states in the elastic scattering of longitudinally polarized electron from

an unpolarized proton target. Then the asymmetry of the e− − N scattering event

can be written as

ALR =
|Mγ +MZ,R|2 − |Mγ +MZ,L|2

|Mγ +MZ,R|2 + |Mγ +MZ,L|2

≈ |MZ,R| − |MZ,L|
Mγ

(5.20)

where right (L) and left (L) described that there is a helicity dependence in the

weak neutral amplitudes. In the last line of Eq. (5.20), we have used the fact that

|Mγ| � |MZ |, and approximately,

ALR ≈ |MZ |
|Mγ|

≈ GF

e2/q2
(5.21)

which is ∼ 10−5 for −q2 ∼ 0.5 GeV2. This small magnitude of MZ compared to the

electromagnetic amplitude makes the experimental measurements of strange quark

and neutral weak form factors very challenging. However, this parity-violating ampli-

tude is enhanced through the interference with the parity-conserving electromagnetic

amplitude and enables the experimentalists to measure the weak interaction effects.

It has been shown in Ref. [63] that the asymmetry can be measured in terms of the

nucleon form factors as

ALR = −GFQ
2

√
2πα

[
εGγ,p

E GZ,p
E + τGγ,p

M GZ,p
M − 1

2
(1− 4 sin2 θW )ε′Gγ,p

M GZ,p
A

ε(Gγ,p
E )2 + τ(Gγ,p

M )2

]
(5.22)
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where the kinematic quantities in Eq. (5.21) are given by

τ ≡ Q2

4M2
N

ε ≡ 1

1 + 2(1 + τ) tan2 θ
2

ε′ ≡
√
τ(1 + τ)(1− ε2) (5.23)

The uncertainties in the radiative correction of GZ,p
A are large and the radiative

corrections involving the strong interaction are not clearly known and extraction of

G
Z,p(n)
E,M from the PV scattering experiments is a tremendous challenge. Higher-order

corrections involve strong-interaction corrections when γ and Z interact with many

quarks are depicted in FIG. (5.3). Many-quarks corrections are target specific and

can modify hadronic matrix elements. Radiative corrections in the axial FF involving

parity violating multi-quark interaction can be as large as 30% of the tree level axial

form factor. In other words, when once considers the parity-violation associated with

the nucleon axial form factor, the weak coupling to the electron must be a vector so

that mixing of axial and vector components violates parity. Though this weak cou-

pling to the electron geV = (1− 4 sin2 θ) is small, the higher-order diagrams may not

necessarily contain a small vector weak coupling and a much larger value than that of

the tree-level coupling. One anticipates that with a reliable first-principles estimate

of Gs
E,M , one can also give a prediction of the neutral weak form factors of the proton

and the neutron according to Eq. (5.17). Scattering of electron with 4He does not

require the knowledge of GZ
A but it has the problem of iso-spin mixing correction.

This introduces a nuclear-structure dependent correction into the asymmetry ALR.

5.4 Previous Calculations

Despite tremendous theoretical efforts, e.g. [56–59], a detailed convincing understand-

ing about the sign and magnitude of strange electromagnetic form factors is still
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lacking. A detailed review of these theoretical efforts can be found in Ref. [60].

Since the direct calculation of the s-quark loop in the disconnected insertion (DI)

is difficult and noisy in lattice QCD, there have been numerous indirect calculations

to predict the strange form factors. Most of the calculations rely on different models

(such as the heavy baryon chiral perturbation theory) or a combination of exper-

imental and lattice QCD data of connected u- and d-quark contributions [67–69],

etc.. The most recent result of such calculations has found Gs
M(0) = −0.07(3)µN and

Gs
E(0) consistent with zero [70]. While the authors performed a linear extrapolation

of Gs
M(Q2) to obtain Gs

M(0), this linear behavior is different from what we observe in

this work and the most recent lattice QCD analysis in Ref. [71].

The first lattice QCD calculation of strange quark magnetic moment was per-

formed in the quenched approximation [72] and the authors obtained Gs
M(0) =

−0.36(20). Another lattice QCD calculation in Ref. [73] with 2 + 1 flavor dynamical

clover fermion with relatively heavy pion masses (mπ ∼ 600−840 MeV) followed from

the same group who obtained Gs
M(0) = −0.017(25)(07)µN and Gs

E(0) consistent with

zero. A recent lattice QCD calculation [71] has been done with quark masses corre-

sponding to mπ = 317 MeV and the authors obtained Gs
M(0) = −0.022(8) µN and,

for the first time, a nonzero signal for Gs
E(Q2) which gave 〈r2

s〉E = −0.0067(25) fm2.

However, one still has to perform the calculation at the physical pion mass and on

several lattices to consider volume and finite cutoff corrections and over all beat down

the noise to obtain a convincing result which will substantially sharpen our picture

of the strange quark contributions to the nucleon’s EM structure.

Conventionally, we omit the unit nucleon magneton n.m. (µN) for Gs
M in the

rest of this dissertation. To calculate 〈N |s̄γµs|N〉, we compute the DI on the lattice

where quark loops in the nucleon sea are connected to the valence quarks through

the fluctuating gauge background as shown in FIG. 5.4.
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Figure 5.4: Disconnected three-point insertion (DI) to calculate the s̄γµs matrix
element in the nucleon state

5.5 Lattice QCD Calculation with Overlap Fermions at The Physical

Point

We present lattice calculations of the strange EM form factor using the overlap

fermion on the (2 + 1) flavor RBC/UKQCD domain wall fermion (DWF) gauge con-

figurations. Details of these ensembles are listed in Table 5.2. We use 24 valence

quark masses in total for the 24I, 32I, 48I, and 32ID ensembles representing pion

masses in the range mπ ∈(135, 400) MeV to explore the quark-mass dependence of

the s-quark form factor.

For the 24I and 48I lattices, we use 12-12-12-32 (16-16-16-32 for 32I and 32ID)

random Z3-noise grid sources with Gaussian smearing. Here, the first 3 numbers in

the notations such as 12-12-12-32 denote the intervals of the grid in the 3 spatial

directions and the last number is the interval between time slices. A more detailed

explanation of the grid source and the smearing can be found in Ref. [74]. We also loop

over all the time slices for the nucleon propagator to increase the statistics. We apply

eigenmode deflation during the inversion of the quark matrix and utilize the low-mode

substitution (LMS) technique developed in Refs. [77,78] during the contraction stage.

The low-energy eigenmodes are used to construct many-to-all correlators to substitute
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Table 5.2: The parameters for the DWF configurations: spatial or temporal size,
lattice spacing [75, 76], the sea strange quark mass under the MS scheme at 2 GeV,
the pion mass corresponding to the degenerate light sea quark mass and the numbers
of configurations used in this work.

Ensemble L3 × T a (fm) m
(s)
s (MeV) mπ (MeV) Nconfig

24I [75] 243 × 64 0.1105(3) 120 330 203

32I [75] 323 × 64 0.0828(3) 110 300 309

48I [76] 483 × 96 0.1141(2) 94.9 139 81

32ID [76] 323 × 64 0.1431(7) 89.4 171 200

the noise-estimated low-frequency part of the hadron correlators with the exact one

and thus named as low-mode substitution. The low-frequency part of the hadron

correlators constructed using low-mode substitution makes the use of grid source

feasible, otherwise no extra statistics can be gained. As for the quark loops, the low-

mode part is exactly calculated with the low eigenmodes of the overlap operator which

is called low-mode average (LMA) and the high-mode part is noise estimated by 8 sets

of 4-4-4-2 Z4 noise grids with even-odd dilution as well as additional time dilution [78,

79]. The low-mode averaging for the low-mode contribution is performed by summing

over the spatial volume on a time slice. With these techniques implemented, our

statistics are from ∼ 100k to ∼ 500k measurements on the 24I to 48I ensembles.

Nucleon two-point (2pt) and three-point (3pt) correlation functions are defined as

GNN(~p ′,t2;t0)=
∑
~x

e−i~p
′·~x〈0|T [χ(~x,t2)

∑
xi∈G

χ̄S(xi,t0)]|0〉 ,

GNJµN(~p ′, t2;~q,t1;t0)=
∑
~x2,~x1

e−i~p
′·~x2+i~q·~x1〈0|T [χ(~x2,t2)

Jµ(~x1,t1)
∑
xi∈G

χ̄S(xi,t0)]|0〉 , (5.24)

where t0 and t2 are the source and sink temporal positions, respectively, ~p, ~p ′ are the
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source and sink momenta, respectively, t1 is the time at which the bilinear operator

Jµ(x) = s̄(x)γµs(x) is inserted, xi are points on the spatial grid G, χ is the usual

nucleon point interpolation field and χ̄S is the nucleon interpolation field with grid-

smeared Z3-noise source, and the three-momentum transfer is ~q = ~p ′− ~p as shown in

FIG. 5.4. For the point sink and smeared source with t0 = 0 and ~p = ~0 and ~q = ~p ′

the Sachs form factors can be obtained by the ratio of a combination of 3pt and 2pt

correlations with appropriate kinematic factors,

Rµ(~q, t2,t1)=
Tr[ΓmGNJµN(~q, t2,t1)]

Tr[ΓeGNN(~0, t2)]
e(Eq−m)·(t2−t1) 2Eq

Eq +m
.

(5.25)

Here, Eq =
√
m2
N + ~q 2 and mN is the nucleon mass. The choice of the projection

operator for the magnetic form factor is Γm=Γk=−i(1+γ4)γkγ5/2 with k=1, 2, 3 and

that for the electric form factor is Γe=(1+γ4)/2. Then in the limit (t2−t1)� 1/∆m

and t1 � 1/∆m, we can obtain two Sachs form factors by an appropriate choice of

projection operators and current directions µ as derived in Chapter 3 in Eq. (4.62):

Rµ=i(Γk)
(t2−t1)�1/∆m,t1�1/∆m−−−−−−−−−−−−−−−→ εijkqj

Eq +mN

Gs
M(Q2),

Rµ=4(Γe)
(t2−t1)�1/∆m,t1�1/∆m−−−−−−−−−−−−−−−→ Gs

E(Q2), (5.26)

with i, j, k 6= 4 and ∆m the mass gap between the ground state and the first excited

state. The Sachs magnetic and electric form factors in the spacelike region are related

to the nucleon Dirac (F1) and Pauli form factor (F2) through the relations:

GM(Q2) = F1(Q2) + F2(Q2)

GE(Q2) = F1(Q2)− Q2

4m2
N

F2(Q2). (5.27)

Notice that we use smeared grid source and point sink so that, without much addi-

tional computational cost, we cannot implement the standard square-root technique

to calculate the nucleon 3pt/2pt ratio. We use the smeared source for the three-point
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function which would invoke a smeared-smeared two-point function in the square-root

formula. This would be quite a bit noisier than that of the smeared-point two-point

function. Since we use the smeared-source-point-sink three-point function, the ra-

tio we take contains an extra factor of Zp(q)/Zp(0) where Zp(q) is the wavefunction

overlap for a point source with the nucleon momentum q. In the continuum limit,

this extra factor is unity and, on the lattice, it will have a q2a2 error which can

be absorbed in the zero-momentum extrapolation of GM and charge radius and the

subsequent continuum extrapolations. We have numerically checked on about 100

configurations on the 32I (smallest lattice spacing) and 32ID (largest lattice spacing)

ensembles that the wavefunction overlap factors indeed do not cancel for nonzero mo-

mentum but have a small effect on the matrix element (typically 5-6% for the largest

momentum and the lightest pion mass). Upon performing the z-expansion [80,81] to

obtain the magnetic moment at Q2 = 0, the effect on the final result is even smaller,

about 1 − 2%. The charge radius calculated with such correction has a change of

about 2% on the 32I ensemble and 1% on the 32ID ensemble lattice results. Since

our statistical uncertainty is about 25% in the global fit for the magnetic moment

and the charge radius and an additional 10% (for magnetic moment) and 20% (for

charge radius) systematic uncertainties from the z-expansion results will be included

in the final result of the global fits, this small effect of overlap factors does not affect

our calculation in a significant way. For the 32ID and 48I ensembles, the Q2 are

much smaller than those of 24I and 32I ensembles and the overlap ratio itself is at

the 1−2% level. We thus ignore it in order to reduce additional computational costs.

We incorporate a global-fit technique described in Ref. [82] to determine the s-

quark mass by matching to the renormalized s-quark mass at the 2 GeV scale in the

MS scheme and use normalized vector currents [83]. To control the excited-state

contamination and obtain better signal-to-noise ratios we perform a joint two-state

correlated fit by simultaneously fitting the standard 3pt/2pt ratio R(t2, t1) and the
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widely used summed ratio SR(t2) [84] to calculate DI matrix elements. We call this

hybrid method the combined fit (CF) throughout the rest of this work. For more

details, see Ref. [85]. The standard 3pt/2pt ratio in the forward matrix element case

can be written as

R(t2, t1) = C3(t2, t1)/C(t2)

=

∑
i,j Z

(i)
f Z

(j)
i e−E

(i)(t2−t1)−E(j)t1〈χ(i)
f |J |χ

(j)
i 〉∑

k Z
(k)
f Z

(k)
i e−E(k)t2

−−−→
t2�0

〈χ(0)
f |J |χ

(0)
i 〉

+
Z

(1)
f

Z
(0)
f

〈χ(1)
f |J |χ

(0)
i 〉e

−∆E(t2−t1)

+
Z

(1)
i

Z
(0)
i

〈χ(0)
f |J |χ

(1)
i 〉e

−∆Et1

+
Z

(1)
f Z

(1)
i

Z
(0)
f Z

(0)
i

(〈χ(1)
f |J |χ

(1)
i 〉 − 〈χ

(0)
f |J |χ

(0)
i 〉)e

−∆Et2

+..., (5.28)

where E(i) and Z(i) are the energy and the overlap of the interpolation field of the

ith state and ∆m = E(1) − E(0). For t2 � t1 � 0, the contributions from all

the terms in the right hand of Eq. (5.28) except the first term vanish, and then we

can use Eq. (5.28) to obtain the ground-state matrix element when excited-states

contamination is sufficiently suppressed. When t2 is fixed, one may fit the first term

and the combined second and third terms around t1 = t2/2 to include the effect of

the ground state to first excited state transition in the right hand side of Eq. (5.28)

which is t1 dependent. But since the fourth term in the right hand side of Eq. (5.28),

which is the difference of the matrix element in the ground state and the first excited

state, is independent of t1 just like the first term, one might not be able to disentangle

them and, as a result, a systematic error may be induced by its contribution which

is suppressed by e−(E(1)−E(0))t2 which is shown to be only about 1%-3% in Ref. [85].

Although we include this term in our fits, in most of the cases it does not have any
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effect on the fits.

From Eq. (5.28) we can write the R(t2, t1) and SR(t2) fitting formulas for a given

direction of current and momentum transfer can be written, respectively, as

R(t2, t1) = C0 + C1e
−∆m(t2−t1) + C2e

−∆mt1 + C3e
−∆mt2 , (5.29)

SR(t2) =

t1≤(t2−t′′)∑
t1≥t′

R(t2, t1)

= (t2 − t′ − t
′′

+ 1)C0 + C1
e−∆mt′′ − e−∆m(t2−t′+1)

1− e−∆m

+C2
e−∆mt′−e−∆m(t2−t′′+1)

1− e−∆m
+C3(t2 −t′ −t′′ +1)e−∆mt2 . (5.30)

Here, t′ and t
′′

are the number of time slices we drop at the source and sink sides,

respectively, and we choose t′ = t′′ = 1. Ci are the spectral weights involving the

excited-states and ∆m is, in principle, the energy difference between the first excited

state and the ground state. Basically, the two-states fit in Eq. (5.29) dominates in our

combined fit method and, for heavier pion masses, the final result of the combined fit is

almost identical to the standard 3pt/2pt ratio two-states fit. However, the combined

fit becomes useful for getting a stable fit near the physical pion mass and we gain

a slight increase in the signal-to-noise ratio. We choose t′ and t′′ = 1 by following

the strategy of keeping as many points possible for which χ2 is acceptable. ∆m is

effectively an average of the mass difference between the proton and the the lowest

few excited states and needs to be determined by the fit. The present scheme with the

combined fit (CF) technique as mentioned before allows us to obtain a stable fit and

control the excited-state contamination. We find, for the lighter quark masses on the

24I and 32I ensembles, the enhancement in the signal-to-noise ratio is approximately

5%−10% and near mπ = 140 MeV for the 48I and 32ID ensembles the CF fit is more

stable compared to the SR and R methods separately.
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Figure 5.5: Combined fit result for disconnected contribution Gs
M(Q2 = 0.0515 GeV2)

with mπ = 207 MeV. The bands show fits to the 3pt/2pt ratios. The current insertion
time t1 is shifted by half the sink-source separation for clarity.

In FIG. 5.5, we present the result of CF for a particular case, the 48I ensemble with

quark masses for the nucleon corresponding to mπ = 207 MeV, Q2 = 0.0515 GeV2,

and several source to sink separations t2 ∈ [5 − 9]. We show the SR(t2) plot as an

inset in the R(t2, t1) plot. One can clearly see from the SR plot that the slope is

negative and from the R plot that the 3pt/2pt ratio saturates near t2 = 9. The orange

and cyan bands in the R- and SR-plots show the error bound obtained from the CF,

which is Gs
M(Q2 = 0.0515 GeV2) = −0.029(9). We present this plot, in particular, to

show how one can obtain a reliable and stable fit near the physical mπ.

The unprecedented precision we obtain in statistics is partly due to the fact that

we calculate the low-mode contribution to the loop exactly and the stochastic noise

is only used for the estimate of the high-mode contribution. We find that about

15%−25% of the signal is saturated by the low modes while determining the s-quark

matrix elements in this calculation. FIG. 5.6 shows the summed ratio of the 3pt/2pt

corresponding to the low-mode and the total (low-mode + high-mode) contribution

to the strange quark magnetic form factor at Q2 = 0.051 GeV2 for a quark mass

corresponding to the pion mass mπ = 139 MeV on the 48I ensemble. It is seen that
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Figure 5.6: Low-mode and high-mode contribution to the strange quark magnetic
form factor at Q2 = 0.051 GeV2 for a quark mass corresponding to the pion mass
mπ = 139 MeV on the 48I ensemble.

the low-mode contribution is significant to the total contribution and the low-mode

contribution is about 20% of the total contribution. It is also clear from FIG. 5.6

that the signal-to-noise ratio of the low-mode contribution is higher than that of the

total contribution.

5.6 Extraction of the strange quark magnetic moment and charge radius

Next, we explore the Q2 dependence of Gs
M(Q2) to obtain the strange magnetic

moment at Q2 = 0.

It has been a topic of long discussion about what type of form one should use to

describe the Q2-behavior of different form factors. A choice based on the phenomeno-

logical interpretation of various data is the dipole form [18] which has been widely

used. But a simple polynomial fit does not converge when there exist cuts in the

timelike domain. For example, in the case of a photon to two pion transition, there

exists a cut at q2 = −Q2 = 4m2
π in the timelike domain as shown in FIG. 5.7. Because

of the existence of this pole 1/(q2− 4m2
π), a polynomial expansion of the form factor

should not converge for any Q2 > 4m2
π. The weight of this pole may be small but one

should not ignore its effect when fitting the form factor data. To overcome this prob-
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lem, a conformal mapping of variable Q2 to another variable z has been proposed in

Refs. [80,81]. The conformal mapping is performed in such a way that one is allowed

to perform a polynomial expansion in z, such that the timelike momentum transfers

(i.e. all poles of the form factors) map onto the unit circle z = 1 and the spacelike

momentum transfers map onto the real line |z| < 1. For more details, see [80,81].

Figure 5.7: Model-independent z-expansion: Conformal mapping of the cut plane to
the unit circle.

Another reason we do not use the dipole fit in the calculation is because the Q2

behaviors of the disconnected light and strange form factors are unknown and one

would prefer not to be biased with a specific form of the extrapolation. (There exist

also other phenomenological models for the Q2-dependence of strange form factors,

for example in Ref. [86].) Therefore we adopt the model-independent z-expansion

fit. We take tcut = 4m2
π for fitting the disconnected light quarks form factor and

tcut = 4m2
K for the strange quark form factor. We have verified that a different choice

of tcut such as 9m2
π has less than a few percent effect on our extrapolations.

In FIG. 5.8, we show an example of the extraction of strange quark magnetic

moment at Q2 = 0 from the form factor data at different Q2 using the z-expansion

fit. We compare both the dipole form [18]

Gs,dipole
M (Q2) =

Gs
M(0)

(1 + Q2

Λ2 )2
(5.31)
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and the model independent z-expansion fit [80,81] given by

Gs,z−exp
M (Q2)=

kmax∑
k=0

akz
k , z=

√
tcut +Q2 −

√
tcut√

tcut +Q2 +
√
tcut

. (5.32)

We present the extrapolation of Gs
M(0) using both the dipole and z-expansion meth-

ods in FIG. 5.8 with the smallest lattice spacing a = 0.0828(3) fm used in our sim-

ulation and lattice data at the unitary point for the 32I ensemble with a pion mass

mπ ∼ 300 MeV. More examples of strange magnetic quark magnetic moment and

charge radius from z-expansion near and at the physical pion mass will be presented

in Chapter 6.

We set tcut = (2mK)2. We keep the first three coefficients multiplying zk in the

z-expansion formula and perform fits versus Q2. We calculate the jackknife ensemble

average a2,avg of the coefficient a2 and then perform another fit by setting a2 centered

at a2,avg with a prior width equal to 2 × |a2,avg|. We find the effect of setting this

prior is almost insignificant for the 24I and 32I ensemble data, especially at heavier

quark masses. However, the prior stabilizes the extrapolation of Gs
M(Q2) for pion

masses around the physical point for the 48I ensemble. Since the z-expansion method

guarantees that ak coefficients are bounded in size and that higher order ak’s are

suppressed by powers of zk, we carefully check the effect of the a3 coefficient in our

fit formula and estimate this effect to calculate the systematic uncertainties in the

z-expansion fit. The present calculation does not provide any conclusive evidence

of any statistically significant difference between these two methods, as seen in the

figure. However, because of model independence and goodness of the fit, we use

z-expansion fit results in the rest of our calculations.
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Figure 5.8: Comparison between the classical dipole form and the model-independent
z-expansion fit to study the Q2 dependence of Gs

M and extract Gs
M(0). The Gs

M(Q2)
data points correspond to the 32I ensemble with quark masses corresponding to
mπ = 300 MeV.

5.7 Global Fits and Continuum Extrapolations

From the z-expansion extrapolations, we obtain 24 different estimates of Gs
M(0)

from four different lattice ensembles with varying quark masses. As the nucleon

2pt correlation function depends on the valence quark masses and the strange quark

matrix elements depend on mloop, we use a chiral extrapolation linear in mπ and

mloop = mK [59, 87–89]. Undertaking a global fit which combines the chiral extrap-

olation, the physical quark mass interpolation, and the continuum extrapolation for

the charmonium, Ds and D∗s on the several lattice ensembles, we have been able to

obtain the charm and strange quark masses in the MS scheme at µ = 2 GeV consis-

tent within one sigma of the PDG values in Ref. [82]. For a given valence quark mass,

we first calculate the matrix element with 2 different s-quark masses (for example,

ms = 0.98 GeV and 0.102 GeV) close to the physical value of s-quark mass obtained

in Ref. [82]. We then perform a linear interpolation of the strange quark matrix

elements associated with these two s-quark masses to the physical s-quark mass and

obtain the strange quark matrix elements at the physical s-quark mass. We estimate
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this uncertainty to be less than 5%. We have also verified this by performing 2 dif-

ferent correlated combined fits of the 3pt/2pt ratio for a given valence quark mass

and two different s-quark masses separately and calculated the differences in the fit

results. In both cases the differences are almost the same and the largest difference

we estimate is about 5% in the extrapolated value of of Gs
M(0). Therefore we antic-

ipated an error of 5% as a systematic in the final result. To account for the partial

quenching effect with the valence-sea pion mass (mπ,vs), and the O(a2) correction and

volume dependence [90], the global fit formula we use for the extrapolation of Gs
M(0)

to the physical point is

Gs
M(0;mπ,mπ,vs,mK , a, L) = A0 + A1mπ + A2mK

+A3m
2
π,vs+ A4a

2+ A5mπ

(
1− 2

mπL

)
e−mπL, (5.33)

where mπ (mK) is the valence pion (kaon) mass and mπ,vs is the partially quenched

pion mass defined as

m2
π,vs = 1/2(m2

π +m2
π,ss) (5.34)

with mπ,ss the pion mass corresponding to the sea quark mass. A4 includes the mixed

action parameter ∆mix [91]. This is a special case since we adopt m2
π,vs which includes

∆mix. It would not be true if one use linear or cubic terms. The extrapolation of the

strange magnetic moment is shown in FIG. 5.9 and at the physical point in the limit

a→ 0 and L→∞ we obtain

Gs
M(0)|physical = −0.064(14)(04)(06)(06)µN . (5.35)

Here, the uncertainties in the parentheses are from the statistics, interpolation

to the physical s-quark mass [82], introducing a3 coefficients in the z-expansion fit,

and the global fit formula for the continuum extrapolation of Gs
M(0), respectively.

To calculate the uncertainty associated with the global fit formula, we consider the

higher order volume correction terms (m
3/2
π /
√
L)e−mπL [90], mNmK [89], logm2

π, and
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Figure 5.9: Strange magnetic moment at 24 quark masses on 24I, 32I, 48I, and 32ID
ensembles as a function of the pion mass. The curved blue line in the figure shows
the behavior in the infinite volume and continuum limit. The cyan band shows the
combined statistical and systematic uncertainties added in quadrature.

mπ,vs. We obtain the fit coefficients: A1 = 0.61(16), A2 = −2.26(49), A3 = 0.31(12),

A4 = 0.015(16), and A5 = −4.0(2.4) with the sign of A5 consistent with that in

Ref. [90]. We note that the O(a2) effect is small, whereas the partial quenching

effect and the volume correction along with the quark mass dependence play roles in

our global fit. While the Gs
M(0) values for different ensembles are consistent within

uncertainty near mπ = 250 MeV, from the fit coefficients it can be seen that, near

mπ = 400 MeV, Gs
M(0) calculated from the 48I ensemble is more negative due to the

partial quenching effect.

In order to better understand the consistency between 24I, 32I, 32ID and 48I

ensembles data at various quark masses and lattice spacings and volumes, we refer

to the following table:

One important point to notice is that the coefficient A4 has opposite sign to that

of A5 which is consistent with the sign of the volume correction term in Ref. [90].

From the fit results of the global analysis and from Table 5.3, we can see that near

mπ = 0.38 GeV, the difference between the 24I result at 382 MeV and the 32I result
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Table 5.3: Effect of various fit parameters in the global fit of strange quark mag-
netic moment. Gs,fit

M |phys is the magnetic moment in the limit a → 0, L → ∞, and
mπ,vs = mπ,vv at given pion masses in the first column of the table. V.C. is the volume

correction term. Gs,fit
M values in the seventh column are estimated using the global fit

results. All Gs
M values in table 1 is at Q2 = 0. The pion masses mπ are in GeVs.

mπ Ensemble Gs,fit
M |phys A3(m2

π,vs−m2
π) A4a

2 A5 × V.C. Gs,fit
M Lattice Gs

M

0.251 24I -0.032(8) 0.007(3) 0.005(5) -0.014(8) -0.031(6) -0.031(08)
0.260 32I -0.030(8) 0.004(2) 0.003(3) -0.014(8) -0.036(7) -0.036(10)
0.267 48I -0.028(8) -0.008(3) 0.005(5) -0.0005(3) -0.030(6) -0.028(07)
0.262 32ID -0.036(9) -0.004(2) 0.008(8) -0.003(2) -0.034(7) -0.025(10)
0.382 24I -0.013(7) -0.006(2) 0.005(5) -0.006(4) -0.019(4) -0.014(03)
0.403 32I -0.012(8) -0.012(5) 0.003(3) -0.005(3) -0.024(5) -0.019(04)
0.372 48I -0.014(7) -0.019(7) 0.005(5) -0.00004(2) -0.027(5) -0.022(04)
0.392 32ID -0.013(7) -0.020(8) 0.008(8) -0.00014(8) -0.025(4) -0.018(05)

at 403 MeV is mainly due to the partial quenching effect (A3) and the lattice spacing

(A4). On the other hand, the partial quenching effect on the 48I ensemble data is large

and negative which makes the Gs
M(0) more negative compared to the 24I ensemble

data. One can check this effect by adding the partial quenching, lattice spacing and

finite volume corrections in the table and obtaining approximately the same difference

between the 24I and 48I ensemble data listed in the table. Near mπ = 0.25 GeV, the

partial quenching effect between the 48I and 24I lattices is largely offset by their

volume corrections and result is approximately the same value of Gs
M(0) as can be

seen in FIG. 5.9 above. In all cases the volume correction to the 48I ensemble is almost

negligible compared to those of 24I and 32I ensembles. However, at lower pion mass,

all four lattice ensemble data have larger uncertainty and they are consistent with

each other within error bars. From the fit results, it is also clear that the finite lattice

spacing correction is very small in our analysis.

For a given valence quark mass we fit Gs
E(Q2) using the z-expansion method

described above and calculate the charge radius from the fitted slope of the data

using the definition 〈r2
s〉E ≡ −6

dGsE
dQ2 |Q2=0. The net strangeness in the nucleon is
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zero, and thus Gs
E(0) = 0, which we confirm in our simulation. Chiral extrapolation

to the 〈r2
s〉E data is obtained from Ref. [89]. Because the method of finite volume

correction of nucleon charge radius is less clear and hard to obtain [92,93], we employ

an empirical formula for the volume correction to describe our lattice data. The

empirical fit formula we use to obtain 〈r2
s〉E at the physical point is

〈r2
s〉E(mπ,mπ,vs,mK , a, L) = A0+A1 log (mK)

+A2m
2
π + A3m

2
π,vs + A4a

2 + A5

√
Le−mπL. (5.36)

We find that the volume correction term similar to the pion charge radius term

derived in Ref. [93] describes our lattice data well. From the fitted values of the

coefficients in Eq. (5.36), namely, A1 = 0.03(2), A2 = −0.04(8), A3 = 0.03(2),

A4 = −0.0004(27), and A5 = 0.001(7), it is seen that among different contributions

the quark mass dependence and partial quenching effect are more important in deter-

mining 〈r2
s〉E from our lattice data. We also consider e−mπL, mK instead of logmK ,

1/m2
N [89], mπ,vs and calculate a systematic error derived from different terms in the

global fit formula. We present the value of 〈r2
s〉E at the physical point in FIG. 5.10

which gives

〈r2
s〉E|physical = −0.0043(16)(02)(08)(07) fm2. (5.37)

The uncertainties in the second and third parentheses of Eq. (6.8) are obtained

using similar methods described in the case of Gs
M(0). The lowest Q2 values for

48I and 32ID ensembles are 0.051 and 0.073 GeV2 respectively, which are almost

3 − 4 times smaller than the lowest Q2 = 0.22 GeV2 of the 24I and 32I ensemble.

As extracting the charge radius from the form factor data can be sensitive to the

lowest available Q2, this can affect our determination of 〈r2
s〉E. A 20% uncertainty in

introducing the a3 term in the z-expansion has been included as a systematic in the

final result of 〈r2
s〉E.
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Figure 5.10: Strange charge radius at 24 quark masses on 24I, 32I, 48I, and 32ID
ensembles as a function of the pion mass. The curved blue line in the figure shows
the behavior in the infinite volume and continuum limit. The cyan band shows the
combined statistical and systematic uncertainties added in quadrature.

We present FIG. 5.11 to compare our result of Gs
M(0) and Gs

M(Q2 = 0.1 GeV2) =

−0.037(10)(05) with some other measurements of Gs
M(0) and global analyses of Gs

M

at Q2 = 0.1 GeV2. We strongly believe that controlling excited-state contamination,

performing the simulation near the physical pion mass, and considering the finite size

effect altogether play an important role in determining the strange magnetic moment

as observed in our lattice simulation.

One can obtain Gs
E,M(Q2) at the physical point from the fit parameters of the

model-independent z-expansion fits. We use the fit parameters ak to interpolate

Gs
E,M values at various Q2 for a given valence quark mass on the lattice. The available

Q2 on the 24I and 32I ensembles are Q2 ∈ (0.22, 1.31) GeV2, on the 32ID ensemble

are Q2 ∈ (0.07, 0.43) GeV2 and on the 48I ensemble are Q2 ∈ (0.05, 0.31) GeV2.

It is a common problem for lattice QCD calculations that the signal-to-noise-ratio

decreases as one reaches the physical pion mass. From our study, we also find that

the lattice results of Gs
E,M(Q2) near the physical pion mass mπ = 140 MeV for the

48I ensemble [76] are noisier compared to the Gs
E,M(Q2) obtained from the lattice
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Figure 5.11: Comparison of some of the many determinations of the strange magnetic
moment. Results in red are from the global analysis of world data, results in green
are from indirect calculations, and results in blue are from lattice QCD calculations.

ensembles with heavier pion mass. Although the largest available momentum transfer

we have on the 24I and 32I ensemble is Q2 ∼ 1.3 GeV2, the largest momentum transfer

available on the 48I ensemble is Q2 ∼ 0.31 GeV2. We note that the extrapolation of

the nucleon strange electromagnetic form factor leads to uncontrolled error bars after

Q2 ∼ 0.5 GeV2 for the 48I ensemble and we therefore constrain the extrapolations of

the 48I ensemble electromagnetic form factor up to Q2 = 0.5 GeV2. It is important to

note that the lattice QCD estimate of Gs
E,M(Q2) we present here is the most precise

and accurate first-principles calculation of s-quark electromagnetic form factors to

date. This is the only calculation at the physical pion mass where one has considered

the quark mass dependence, with finite lattice spacing (a), volume corrections, and

partial quenching effect to determine the s-quark electromagnetic form factors. The

χ2/d.o.f. for different Q2 global fit ranges between 0.7-1.13. For example, in the

continuum limit, the global fit for Q2 = 0.25 GeV2 results in the physical value
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of Gs
E|phys = 0.0024(8), A1 = 0.58(30), A2 = −0.29(15), A3 = −0.003(9), A4 =

0.001(2), and A5 = −0.001(3) with χ2/d.o.f. = 1.1. One can consider the log(mK)-

term in the chiral extrapolation of Gs
E as shown in [89]; however, our analysis shows

that this term does not have any effect on the global fit for our lattice data. A

similar vanishing difference has been observed if one considers a e−mπL instead of a
√
Le−mπL term in the volume correction. For example, including the factor log(mK)

and e−mπL instead of
√
Le−mπL one obtains, Gs

E|phys = 0.0026 in comparison with

Gs
E|phys = 0.0024. We include these small effects in the systematics of the global fit

results. We also consider a 20% systematic uncertainty from the model-independent

z-expansion interpolation coming from adding a higher order term a3 while fitting the

Gs
E(Q2) data. These uncertainties from the empirical fit formula and z-expansion are

added to the systematics. FIG. 5.12 shows the Q2-dependence of the s-quark Sachs

electric form factor Gs
E in the continuum limit, i.e. mπ = mπ,vs → 140 MeV, a→ 0,

and L → ∞ with the statistical and systematic uncertainties. The nonzero value

of the strange Sachs electric form factor Gs
E at any Q 6= 0 means that the spatial

distribution of the s and s̄ quarks are not the same in the nucleon. If the distributions

of the s and s̄ quarks were the same, their contribution to the nucleon electric FF

would have the same magnitude with opposite signs. Since the net strangeness in the

nucleon is zero, we have Gs
E = 0 at Q2 = 0.

Similarly, we calculate the strange Sachs magnetic form factor Gs
M at a particular

Q2 using the same global fit formula used for the calculation of the magnetic moment.

From the global fit formula, for example, in the continuum limit at Q2 = 0.25 GeV2,

we obtain Gs
M |phys = −0.018(4), A1 = 0.04(3), A2 = −0.18(12), A3 = −1.27(84),

A4 = 0.008(6), and A5 = 0.04(5) with χ2/d.o.f. = 1.13. From the fitted values of

the parameters in the global fit formula, it is seen that the quark mass dependencies

play an important role in calculating Gs
M(Q2) at the physical point. A 9% systematic

uncertainty from the model-independent z-expansion and an uncertainty from the
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Figure 5.12: Q2-dependence of the strange Sachs electric form factor. The blue
error bars indicate the statistical uncertainties and the cyan error bars indicate the
statistical and systematic uncertainties added in quadrature.

empirical fit formula have been included. We obtain systematics from the global fit

formula by replacing the volume correction by e−mπL only and also by adding a mπ,vs

term in the fit and include the difference in the systematics of the global fit results.

The results of Gs
M(Q2) in the continuum limit are presented in FIG. 5.13.
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Figure 5.13: Q2-dependence of the strange Sachs magnetic form factor. The blue
error bars indicate the statistical uncertainties and the cyan error bars indicate the
statistical and systematic uncertainties added in quadrature.

5.8 Conclusion

In conclusion, we have performed a robust first-principles lattice QCD calculation

using four different 2 + 1 flavor dynamical fermion lattice ensembles including, for

the first time, the physical pion mass to explore the quark mass dependence and

with finite lattice spacing and volume corrections to determine the strange quark

matrix elements in the vector channel. We have performed a two-state fit where

we combined both the ratio method and the summed-ratio method to control the

excited-state contamination. The statistical error is greatly reduced by improving the

nucleon propagator with low-mode substitution and quark loop with low-mode aver-

aging. To explore the strange vector form factors at different momentum transfers,

we implemented model-independent z-expansion fits. We also have obtained precise

estimates of the strange quark electric and magnetic form factors in the momentum

transfer range of 0 GeV2 ≤ Q2 ≤ 0.5 GeV2. Given our precise lattice prediction for

the strange quark magnetic moment of Gs
M(0) = −0.064(17)µN and strange charge

radius 〈r2
s〉E = −0.0043(21) fm2 at the physical point with systematic errors included,
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we anticipate these results to be verified by experiments in the future and, together

with experimental inputs, to lead to a more precise determination of various weak

form factors.
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Chapter 6 Light-Sea Quarks Contribution to the Nucleon Magnetic

Moment and Charge Radius and Electromagnetic Form Factors

6.1 Abstract

We have performed a comprehensive analysis of the light and strange disconnected-

sea quarks contribution to the nucleon magnetic moment, charge radius, and the

electric and magnetic form factors. The lattice QCD calculation includes ensembles

across several lattice volumes and lattice spacings with one of the ensembles at the

physical pion mass. We adopt a model-independent extrapolation of the nucleon

magnetic moment and the charge radius. We have performed a simultaneous chiral,

infinite volume, and continuum extrapolation in a global fit to calculate results in the

continuum limit. We find that the combined light-sea and strange quarks contribution

to the nucleon magnetic moment is−0.022(11)(09)µN and to the nucleon mean square

charge radius is−0.019(05)(05) fm2. The most important outcome of this lattice QCD

calculation is that while the combined light-sea and strange quarks contribution to

the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution

to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to

the neutron charge radius come from the sea quarks in the nucleon. For the first time,

by performing global fits, we also give predictions of the light-sea and strange quarks

contributions to the nucleon electric and magnetic form factors at the physical point

and in the continuum and infinite volume limits in the momentum transfer range of

0 ≤ Q2 ≤ 0.5 GeV2.
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6.2 Introduction

Nucleon electromagnetic form factors of a hadron are of substantial interest because

they are related to the dynamical content of the electric and magnetic currents dis-

tribution inside the hadron and characterize the internal structure of a non-point-like

particle. The quest for a detailed quantitative understanding of the nucleon electro-

magnetic form factors is an active field of the experimental nuclear physics, lattice

QCD simulations, and other model calculations. However, some unsolved questions

still remain regarding the nucleon electromagnetic form factors and their properties

at low momentum transfer (Q2).

A complete first-principles lattice QCD calculation of the nucleon magnetic mo-

ment and charge radius including both the valence and connected-sea quarks, called

connected insertion (CI), and the disconnected-sea quarks contribution, called dis-

connected insertion (DI), is of immense importance and is not present in the liter-

ature. By disconnected insertions, we mean the nucleon matrix elements involving

self-contracted quark graphs (loops), which are correlated with the valence quarks in

the nucleon propagator by the fluctuating gauge background. It has also been found

in various experiments that non-valence components in the nucleon hold surprisingly

large effects in describing its properties. One desires to perform a simulation at the

physical pion mass and consider large volumes and small lattice spacings and overall

obtain a very good signal-to-noise ratio to compare the lattice results with the ex-

perimental value – which is a highly ambitious goal to the lattice community with

current numerical resources. In two previous lattice QCD calculations [94, 95] the

authors have calculated the disconnected light-quarks contribution to the nucleon

electromagnetic form factors. In Ref. [94], the simulation has been done with quark

mass equivalent to pion mass 370 MeV and the authors obtained disconnected light-

quark contribution to the nucleon electromagnetic form factor (EMFF) consistent

with zero within uncertainties. In Ref. [95], the disconnected light-quarks contribu-
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tion to the nucleon EMFF was obtained to be non-zero and small in the momentum

transfer range of 0 ≤ Q2 . 1.2 GeV2 with the simulation performed at a quark mass

corresponding to pion mass 317 MeV.

The disconnected light-quarks contribution to the nucleon EMFF has not been

considered in most of the lattice calculations because of the following reasons: 1)

the current status of the lattice QCD simulations with disconnected quark loops are

numerically intensive and in general very noisy, especially near the physical pion

mass, and 2) most of the previous lattice QCD calculations were performed under

the assumption that DI light-quarks contribute a negligible amount to the nucleon

magnetic moment and charge radius. Therefore, most of the earlier simulations aimed

to calculate only the isovector nucleon quantities and simulations were performed at

relatively heavier pion masses [96–103]. Since simulations directly at the physical

pion mass are now becoming available, some collaborations are pursuing lattice QCD

calculations near or at the physical pion mass. Nonetheless, simulations near the

physical pion mass exhibit increased sensitivity to the statistical fluctuations and

one requires a large number of measurements to obtain good signal-to-noise ratio

and to control the undesired excited-states contaminations. Thus a majority of the

recent calculations near the physical pion mass still concentrate on the CI calculations

only [104–107].

By performing a first-principles calculation, we find that the total contribution of

the light (up and down) sea and strange quarks to the nucleon charge radius is nega-

tive and significant. Combining the result of the strange quark magnetic moment and

charge radius calculated in our previous work [29] with the DI light-quarks contribu-

tion, we obtain the total contribution to the nucleon magnetic moment and charge

radius from the disconnected-sea quarks. Our estimate of strange quark magnetic

moment and charge radius is almost ten times better than those of the most precise

experimental values. However, Our overall DI calculation uncertainty is large com-
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pared to the precision of the experimental uncertainty of the proton charge radius and

one also needs to perform a CI calculation at the physical point with high precision to

draw any conclusion as to whether the DI contribution can have a significant impact

on the understanding of the 4% discrepancy of the proton charge radius puzzle from

the lattice QCD viewpoint. Nonetheless, the present work gives the first calculation

of the disconnected light and strange quarks contribution to the nucleon EMFF at the

physical point and provides important information about the sign of the sea-quarks

contribution to the nucleon EMFF. While almost all lattice QCD connected-insertion

calculations concentrate on extractions of the proton charge radius, the neutron Sachs

electric form factor Gn
E(Q2) calculation is challenging due to the poor signal-to-noise

ratio, as shown in Ref. [108]. A recent lattice QCD calculation [109] performed at

the physical pion mass also shows that obtaining a precise prediction of Gn
E(Q2) and

neutron charge radius close to the experimental value is indeed a challenging prob-

lem. In this work, we have investigated the importance of the DI contribution to

the neutron electric form factor calculation and a clear message is to be taken that

one must include the DI contribution to the neutron charge radius to shift the lattice

estimates toward the experimental value. It also gives a non-negligible contribution

to the proton charge radius.

In Sec. 6.3, we provide examples of a hybrid two-states fit to compute matrix

elements from the ratio of nucleon three-point to two-point correlation functions.

We implement a model-independent extrapolation of nucleon magnetic moment and

charge radius from the EMFFs in the momentum transfer range of 0.051 . Q2 . 1.31

GeV2 and show examples in Sec. 6.4. In Sec. 6.5, finite lattice spacing and finite vol-

ume corrections are included in a global fit with 24 valence quark masses on four

different lattice ensembles with different lattice spacings, different volumes, and four

sea quark masses including one at the physical point. From the fit coefficients of

the model-independent z-expansion, we perform global fits to get estimates of the
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disconnected-sea light and strange quarks contributions to the nucleon electromag-

netic form factors at the physical point. Finally, we present a conclusion to our lattice

QCD analysis in Sec. 6.6.

6.3 Combined two-states fit

In lattice QCD simulations, nucleon correlation functions suffer from an exponentially

increasing noise-to-signal ratio which imposes a serious limitation on the source-sink

separation t2, especially when DI calculations are performed. In general, DI calcula-

tions are notoriously noisier compared to the CI calculations. It is also hard to extract

the ground-state properties of the nucleon since the lowest excited-state, the Roper

resonance, N(1440), lies close to the nucleon mass. There can also be an additional

excited-states contamination, for example from the πN -states. Therefore, ideally one

requires a substantially large source-sink separation, approximately t2 = 1.5 fm, to

extract nucleon ground-state matrix elements without being much affected by the

excited-state contaminations. Though it is possible to go up to about 1.4 fm source-

sink separation in some of the CI calculations [101,106] only, at the present stage of

numerical simulation it is quite challenging to go much beyond t2 ≈ 1 fm and obtain

a reasonable signal-to-noise ratio for the DI calculations. Therefore, to have an esti-

mate of the nucleon ground-state matrix elements, we employ a hybrid joint two-state

correlated fit by simultaneously fitting the standard 3pt/2pt ratio R(t2, t1) and the

widely used summed ratio SR(t2) [84] to calculate DI matrix elements. We do not

obtain any signal for the fit parameter C3 defined in Eq. (5.30) based on the analysis

of our lattice data points for light-sea quarks. Therefore, excluding this factor from

the combined fit does not affect the final outcome of the fit and we write the R(t2, t1)

and SR(t2) fitting formulas for a given direction of current and momentum transnfer

as
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R(t2, t1) = C0 + C1e
−∆m(t2−t1) + C2e

−∆mt1 , (6.1)

SR(t2) =

t1≤(t2−t′′)∑
t1≥t′

R(t2, t1)

= (t2 − t′ − t
′′

+ 1)C0 + C1
e−∆mt′′ − e−∆m(t2−t′+1)

1− e−∆m

+C2
e−∆mt′ − e−∆m(t2−t′′+1)

1− e−∆m
. (6.2)

We illustrate two examples in FIGS. 6.1 and 6.2 to obtain magnetic form factors

at given Q2-values from the lattice data and present the fitting details in Table 6.1.

The source-sink separation we use for the fitting of 32I ensemble data is t2 ∈ (6, 13)

and t2 ∈ (5, 10) for the 48I ensemble data. As discussed earlier, as with almost all of

the DI calculations, we are forced to constrain the t2-window around 1.1 fm due to

the limitations of good signal-to-noise ratio. However, in principle, the two-states fit

should compensate for this limitation to a certain degree. We perform a correlated

combined fit of the ratio and summed ratio data because one could obtain a smaller

uncertainty with an uncorrelated fit and underestimate the errors. Likewise, all of

the subsequent fits in the article are also correlated fits.

Table 6.1: The parameters of correlated combined two-states fits in Eqs. (6.1) and
(6.2) to obtain disconnected light-quarks magnetic form factor at given momentum
transfers.

Ensemblemπ (GeV)Q2 (GeV2) C0 C1 C2 ∆m (GeV) χ2/d.o.f.
32I 0.330 0.218 −0.036(09) 0.018(06) 0.025(06) 0.350(121) 1.26(5)
48I 0.207 0.051 −0.088(29) 0.062(18) 0.072(23) 0.637(250) 1.04(7)

From the combined fit Eqs. (6.1) and (6.2), it is seen that when ∆m is large, C0

should be constant and the data points for different source-sink separation should
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Figure 6.1: Combined correlated two-states fit of the 32I ensemble 3pt/2pt-ratio and
summed ratio data. The transparent bands show the fit results based on the fit
parameters in Eqs. (6.1) and (6.2) listed in Table 6.1. The green bands in the above
figures show the final fit result of the disconnected light-quarks magnetic form factor
Glight-sea
M (Q2) at Q2 = 0.218 GeV2.

have overlap amongst themselves or the separation between them should be very

small. A comparison between the fit values of ∆m in Table 6.1 and FIGS. 6.1, 6.2

shows the agreement with this. It is seen from FIG. 6.1 that a smaller value of ∆m is

consistent with the well separated data points with different sink-source separations

on the 32I ensemble. One can see from FIG. 6.2 and ∆m = 0.637(250) GeV from

Table 6.1 that a larger value of the energy gap is consistent with the overlapping data

points at different t2 and therefore, the final fit result is closer to the plateau region

of the data points at source-sink separation t2 = 9 of the 48I ensemble lattice data.
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Figure 6.2: Combined correlated two-states fit of the 48I ensemble 3pt/2pt-ratio and
summed ratio data. The transparent bands show the fit results based on the fit
parameters in Eqs. (6.1) and (6.2) listed in Table 6.1. The blue bands in the above
figures show the final fit result of the disconnected light-quarks magnetic form factor
Glight-sea
M (Q2) at Q2 = 0.051 GeV2.

We perform similar combined correlated two-states fits to obtain the DI Sachs

electric form factor and ensure that the fit window is as large as possible; in most

cases the χ2/d.o.f is in the vicinity of 0.9−1.1. We choose the largest possible fit

window as long as goodness of the fit is ensured and one can obtain a reasonable

signal-to-noise ratio in the fits.
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6.4 Extraction of the DI magnetic moment and charge radius

We have discussed in Section 6.4 why we use model-independent z-expansion fit

instead of dipole fit to extrapolate strange quark magnetic moment and charge radius.

Another reason we do not use the dipole fit in the calculation is because the Q2

behaviors of the disconnected light and strange form factors are unknown and one

would prefer not to be biased with a specific form of the extrapolation. (There exist

also other phenomenological models for the Q2-dependence of strange form factors,

for example in Ref. [86].) Therefore we adopt the model-independent z-expansion fit

as described below. We take tcut = 4m2
π for fitting the disconnected light quarks FF

and tcut = 4m2
K for the strange quark FF. We have verified that a different choice of

tcut such as 9m2
π has less than a few percent effect on our extrapolations.

In FIG. 6.3, we show three examples of the extractions of light-sea-quarks magnetic

moment at Q2 = 0 from the FF data at different Q2 using the z-expansion fit:

Gq,z−exp
E,M (Q2) =

kmax∑
k=0

akz
k, (6.3)

where

z =

√
tcut +Q2 −

√
tcut√

tcut +Q2 +
√
tcut

.

We see from FIG. 6.3 and also from our previous work [29] that the lattice data

of 48I ensemble is quite a bit noisier than the 24I and 32I ensemble data. There-

fore we show in FIGS. 6.3b and 6.3c two examples of how we extract the light-sea

and strange quarks contributions to the nucleon magnetic moment by performing

simulation around the physical pion mass mπ ∈ (0.135, 0.150) GeV.

As discussed in our previous work [29], we keep the first 3-terms i.e. k = 0, 1, 2, 3

in the z-expansion formula (6.3) and perform the Q2-extrapolation. Unlike for the

strange quark magnetic moment extraction in [29], for the light-sea-quarks magnetic

moment, constraining a2 with a prior width of 2 × |a2,avg| does not have any effect
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since the uncertainties in the fit values of a2 are already smaller than 2 × |a2,avg|

for most all of the pion masses. Therefore we do not set any prior on a2 for the

extraction of the magnetic moments. However, for the extraction of the charge radii,

we calculate the jackknife ensemble average a2,avg of the coefficient a2 in formula (6.3)

and then perform another fit by setting a2 centered at a2,avg with a prior width equal

to 2 × |a2,avg|. We find that the effect of setting this prior is almost insignificant

for the 24I and 32I ensemble data, especially at heavier quark masses. However, the

prior stabilizes the extrapolation of Gq
E(Q2) for pion masses around the physical point

for the 48I ensemble. Since the z-expansion method guarantees that ak coefficients

are bounded in size and that higher order ak’s are suppressed by powers of zk, we

carefully check the effect of the a3 coefficient in our fit formula and estimate this

effect to calculate the systematic uncertainties in the z-expansion fits. We calculate

the difference in the central values of Gq
M(0) with and without the addition of the

a3 term in the z-expansion formula (6.3) for the lightest quark masses at the unitary

point for each lattice ensemble. We find the addition of the a3-term in the z-expansion

after we constrain a2 has the largest effect, as expected, for the quark mass equivalent

to mπ ∼ 140 MeV of the 48I ensemble and obtain the difference in the central value

of Glight-sea
M (0) to be about 11%. Therefore, we take a conservative approach and

estimate a systematic error of 11% of the final continuum value of Gq
M(0) obtained

from the global fit.

Similarly, one can extract light-sea and strange quarks contributions to the nucleon

charge radius by calculating the slope of Gq
E(Q2) near Q2 = 0. We find that adding

the a3 term in the z-expansion has a larger effect on calculating the charge radius

than in extracting the magnetic moment and such an effect of adding the a3 term

for the charge radius calculation is 12− 20%. Therefore a 20% uncertainty has been

added to the systematics in the global fit of charge radius as a part of our conservative

assessment. One important observation from FIG. 6.4 is that although the data of
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Figure 6.3: Light-sea and strange-quark magnetic moment Glight-sea, strange
M (0) extrapo-

lation for three different quark masses of the 32I (FIG. 6.3a) and 48I (FIGS. 6.3b, 6.3c)
ensembles using z-expansion from the lattice Glight-sea, strange

M (Q2). The χ2/d.o.f. for
the extrapolations are in the range of 0.52− 0.88. Charge factors are not included in
the form factors.
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Figure 6.4: Light-sea and strange quarks contributions to the nucleon electric FF
G

light-sea/strange
E (Q2) for two different quark masses of the 32I (FIG. 6.4a) and 48I

(FIGS. 6.4b, 6.4c) ensembles. The χ2/d.o.f. for the two fits are in the range of
0.49− 0.81. Charge factors are not included in the form factors.
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light quark electric FF are not very precise, nevertheless the uncertainty band of the

z-expansion is narrower compared to the magnetic FF extrapolation. The reason

is due to charge conservation as the disconnected Gq
E(Q2) is constrained to be 0 at

Q2 = 0. Another important observation from FIG. 6.4 is that the disconnected-sea

light quarks contribution to the Glight-sea
E (Q2) is almost 6−10 times larger than the

strange quark contribution Gs
E(Q2).

6.5 Global fits of the disconnected insertions of nucleon properties

With the extrapolated results from the z-expansion in hand, we now have 24 data

points for the magnetic moments and charge radii calculated from the slopes near

Q2 = 0 of the electric FFs. For the empirical global fit formula of the light-sea-quarks

magnetic moment, we employ chiral extrapolation similar to the form we have used

in Ref. [29] to obtain strange quark magnetic moment and volume extrapolation from

Ref. [90]. Since overlap fermion action is already O(a) improved, therefore, we apply

an O(a2) correction to the global fit formula:

Glight-sea
M (Q2 = 0,mπ,mK ,mπ,vs, a, L) = A0 + A1mπ + A2mK

+A3 a
2 + A4mπ(1− 2

mπ L
) e−mπL (6.4)

where mπ (mK) is the valence pion (kaon) mass, and mN is the nucleon mass. We

show the extrapolation of the nucleon disconnected-sea light quarks magnetic moment

in FIG. 6.5. At the physical point and in the limit, i.e. a→ 0 and L→∞, we obtain

Glight-sea
M (0)

∣∣∣
physical

= −0.129(30)(13)(18)µN , (6.5)

where the magnetic moment is measured in the unit of nucleon magneton (µN). The

first uncertainty in the value of the the magnetic moment in Eq. (6.5) comes from

the statistics, the second uncertainty comes from adding the higher order a3-term in

the z-expansion and the third uncertainty comes from the variation of the central
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value in the global fit formula with the introduction of additional terms. The param-

eter values we obtain according the global fit are: A1 = 0.38(12), A2 = −0.40(16),

A3 = 0.30(39), A4 = −1.26(2.75). An attempt to add a partial quenching term

m2
π,vs = 1/2(m2

π +m2
π,ss) + a2∆mix with mπ,ss the pion mass corresponding to the sea

quark mass in the global fit formula does not describe our lattice data well and the fit

parameters A1, A2 do not have any signal in this case. Therefore we did not include

the partial quenching term to obtain Glight-sea
M (0)

∣∣∣
physical

= −0.129(30)(13)(18)µN in

Eq. (6.5). With the partial-quenching term included, one obtains Glight-sea
M (0)

∣∣∣
physical

=

−0.147(33)µN . However, we include the second systematic error in our final result

due to the possible inclusion of this partial quenching term in the global fit (6.4).
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Figure 6.5: Light-sea-quark magnetic moment at 24 quark masses on 24I, 32I, 48I,
and 32ID ensembles as a function of the pion mass. The curved blue line in the
figure shows the behavior in the infinite volume and continuum limit. The cyan band
shows the combined statistical (blue band) and systematic uncertainties added in
quadrature. The χ2/d.o.f. of the fit is 0.67.

In Sec. 6.4, we have obtained light-sea-quarks contribution to the charge radii

using the z-expansion method by calculating the slope of Glight-sea
E (Q2) using the

following definition:

〈r2
light-sea〉E ≡ −6

dGlight-sea
E

dQ2

∣∣∣∣∣
Q2=0

(6.6)
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Using the charge radius values at 3 different volumes and lattice spacings and 24

valence-quark masses from four ensembles, we perform a simultaneous continuum and

chiral extrapolation to obtain the final value of the charge radius using the following

global fit formula:

〈r2
light-sea〉E (mπ,mπ,vs,mK , a, L) = A0 + A1 log (mπ) + A2m

2
π + A3m

2
π,vs

+A4 a
2 + A5

√
Le−mπL. (6.7)

The chiral extrapolation in the empirical formula (6.7) has been adopted from [89] by

replacing mK with mπ and the volume correction similar to the pion charge radius

correction has been obtained from [93]. In the continuum limit, we obtain

〈r2
light-sea〉E

∣∣
physical

= −0.061(16)(11)(10) fm2, (6.8)

and the fit parameters are: A1 = 0.077(24), A2 = −0.280(99), A3 = 0.151(100),

A4 = −0.015(13), and A5 = −0.054(58). The extraction of the charge radius from

the FFs is sensitive to the lowest value of Q2 and momentum transfer range of the data

used, and also on the form of the fit. However, one wants to go to very low Q2-values

to extract the charge radii and the 48I ensemble has the lowest momentum transfer

which is almost 4 times smaller than those of the 24I and 32I lattice data. Though

the uncertainty in the charge radii obtained from 48I ensemble are large compared

to the 24I and 32I ensemble results, an addition of the coarse lattice with larger

volume and the lowest Q2 ∼ 0.07 GeV2 indeed shows that the slope of the electric

FF calculated near Q2 = 0 is consistent with the charge radii obtained from the

48I lattice data. Our results clearly demonstrate the necessity of performing lattice

simulations at or near the physical pion masses while of course keeping in mind that

one requires significant improvements in the statistical precision and a better control

on the determination of the excited-states effect.
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Figure 6.6: Light-sea-quark charge radius at 24 quark masses on 24I, 32I, 48I, and
32ID ensembles as a function of the pion mass. The curved blue line in the figure
shows the behavior in the infinite volume and continuum limit. The cyan band
shows the combined statistical (blue band) and systematic uncertainties added in
quadrature. The χ2/d.o.f. of the fit is 0.46.

It is important to note that the magnetic moment and charge radius results in

Eqs. (6.5) and (6.8) do not include charge factors. We define the magnetic moment in

the unit of nucleon magneton as µM and the charge radius as 〈ρ2〉E with the proper

charge factors included. After including the charge factors and using the results

from [29] and Eqs. (6.5), (6.8) we obtain

µs
M = −1

3
Gs
M(0)

= 0.021(5)(3)µN , (6.9)

µlight-sea
M = (

2

3
− 1

3
)Glight-sea

M (0)

= −0.043(10)(08)µN , (6.10)

〈ρ2
s〉E = = −1

3
〈r2

s 〉E

= 0.0014(05)(05) fm2, (6.11)

〈ρ2
light-sea〉E = (

2

3
− 1

3
)〈r2

light-sea〉E

= −0.0203(53)(49) fm2. (6.12)

Combining results with the strange quark magnetic moment and charge radius, we
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obtain the total contribution from the disconnected-sea light and strange quarks to

the nucleon magnetic moment and charge radius:

µsea
M = −0.022(11)(09)µN , (6.13)

〈ρ2
sea〉E = −0.019(05)(05) fm2. (6.14)

Comparing with the PDG values of nucleon magnetic moments [23], our results

indicate that disconnected-sea quarks contribute ∼ 1% to the nucleon magnetic mo-

ments, namely, a negative 0.8(5)% and a 1.2(7)% to the proton and neutron magnetic

moments, respectively. Keeping in mind that there is a 4% discrepancy between the

measurement of proton charge radius from the muonic Lamb shift experiment and the

electron-proton scattering experiments, our finding in the present work reveals that

the lattice calculation of the DI gives a negative 2.5(9)% contribution to the proton

charge radius. This is about half of the discrepancy between those measured in the

electron-proton scattering and the muonic atom. Thus, it is important to have the DI

included when the lattice calculation of the proton charge radius is carried out. Al-

though a complete lattice QCD calculation including the connected and disconnected

insertions at the physical point is required to draw any profound conclusion about

the accurate percentage of the disconnected-sea quarks contribution to proton charge

radius, this calculation clearly indicates that there will be a shift towards a smaller

value of the proton charge radius when the disconnected-sea light quarks contribution

is included. However, the disconnected-sea quarks contribution to the neutron charge

radius can have a significant effect, namely 16.3(6.1)% compared to the experimental

neutron charge radius, in obtaining the value closer to the experimental value.

From the z-expansion fit parameters in Sec. 6.4, we can now interpolate the light-

sea and strange quarks contributions to the nucleon electromagnetic form factors.

Although the largest available momentum transfer we have on the 24I and 32I en-

semble is Q2 ∼ 1.3 GeV2, the largest momentum transfer available on the 48I en-
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semble is Q2 ∼ 0.5 GeV2. Therefore, we note that the extrapolation of the nucleon

EMFF leads to uncontrolled error bars after Q2 ∼ 0.5 GeV2 for the 48I ensemble

and we constrain the extrapolations of the 48I ensemble EMFF up to Q2 = 0.5 GeV2.

The global fit results of the strange quark EMFFs have been obtained from [110]

and we use similar empirical formulas as Eqs. (6.4), (6.7) to estimate the light-sea

quarks contribution to the nucleon EMFF in the continuum limit and at the physical

point. We present the results in FIG. 6.7 with systematics included and also include

charge factors in the form factor calculations so that the sign and magnitude of the

disconnected-quarks contributions to the nucleon EMFFs can directly be compared

to the nucleon total EMFFs. These results will be combined with the connected

insertion calculation of the nucleon EMFFs in our future work to obtain a complete

description of the nucleon EMFF from first-principles calculation.
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Figure 6.7: Disconnected-sea light and strange quarks contributions to the nucleon
electromagnetic form factors at the physical point and in the continuum limit. Charge
factors are included in the form factor calculations. The outer error bars in the data
points include the systematic uncertainties in the calculations.

6.6 Conclusion

In this calculation, we have uncovered the practical importance of including the dis-

connected quark loops contribution to the nucleon magnetic moment and charge

radius. In particular, in accord with the analysis, we find that the disconnected-

sea light and strange quarks contribution to the nucleon charge radius can have an

important impact to reconcile the lattice QCD estimates with the experimental mea-

surements. A negative 2.5(9)% contribution to the proton charge radius from the

disconnected-sea quarks should have an impact on the ‘proton charge radius puz-

92



zle’ where the discrepancy at 4% is of the same order. It is seen for the first time

that the disconnected quarks can shift the neutron charge radius calculation towards

the experimental value by about 16%. Especially, because the neutron electric form

factor calculation on the lattice is noisy and the valence-only quark contribution is

smaller than the experimental Q2 behavior, the disconnected quark loops cannot be

ignored for a better estimation of the neutron form factors at low Q2 on the lattice.

Our main focus of this calculation was to show that 1) the disconnected-sea quarks

contribution to the nucleon properties at low Q2 is of significant importance and 2)

numerical simulation with controlled systematics and near the physical pion mass can

generate a better theoretical understanding of various nucleon properties.
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Chapter 7 Summary and Outlook

We have calculated light and strange disconnected-sea quark contribution to the

nucleon electromagnetic form factors at the physical point and in the continuum

limit. The calculated form factors in the momentum transfer range of 0 ≤ Q2 ≤ 0.5

GeV2 are the most precise and accurate calculations of the disconnected-sea quarks

contribution to the nucleon electromagnetic form factors.

To give a complete description of the nucleon electromagnetic form factors, a

calculation of the valence quark contribution to the nucleon electromagnetic form

factors is required. This calculation is in progress and technical state of arts and

computational resources limit this calculation at present. While we have obtained

some results of the connected insertion calculation at heavier pion masses, a future

connected insertion calculation on the 48I ensemble at the physical pion mass will

allow us to perform a simultaneous chiral interpolation, infinite volume and continuum

extrapolation in a global fit.
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Chapter 8 Appendix

8.1 Appendix A: Chapter 3 Supplement

8.1.1 Pauli matrix convention

Pauli matrices in Pauli-Sakurai convention are:

γi =

 0 −iσi

iσi 0

 (8.1)

γ4 =

 1 0

0 −1

 (8.2)

γ5 =

 0 −1

−1 0

 (8.3)

The polarized and unpolarized projection operators are written in terms of these

Pauli matrices are as follows

Γi = (−i)1± γ4

2
γiγ5

Γ4 =
1± γ4

2
(8.4)

8.1.2 Pauli-Sakurai convention for gamma matrices

{γµ, γν} = 2δµν (8.5)

γ†µ = γµ (8.6)
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which implies that

γ∗µ = γTµ

where µ,ν = 1,2,3,4

{γ5, γµ} = 0 (8.7)

γ5 = γ1γ2γ3γ4 =
1

4!
εµνλσγµγνγλγσ (8.8)

γ†5 = γ5

γ2
5 = 1 (8.9)

8.1.3 Charge conjugation

Cψ(x)C−1 = Cψ
T

(x)

Cψ(x)C−1 = ψT (x)C−1 (8.10)

CUµ(x)C−1 = U∗µ(x)

where

C = γ2γ4 (8.11)

C has the following properties

C = −C−1 (8.12)

C = −CT

(C−1)T = −C−1

CγµC
−1 = −γ∗µ (8.13)

Cγ5γµγ5C
−1 = γ∗µ

γ5C
−1γµCγ5 = γ∗µ
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Now define

(Cγ5)(αβ) ≡ C̃(αβ) (8.14)

C̃†(αβ) =
(
γ†5γ

†
4γ
†
2

)
(αβ)

= (γ5γ4γ2) (αβ)

= (γ4γ2γ5) (αβ)

= − (γ2γ4γ5) (αβ)

= −C̃(αβ) (8.15)

8.1.4 Nucleon interpolation fields

A hadron interpolator is a functional of the lattice fields with the quantum numbers

of the state one is interested in. Once the interpolators are identified we consider the

Euclidean correlator of the hadron interpolators. These are by construction, gauge-

invariant color singlets. The interpolation fields are chosen in such a way that they

have a good overlap with the ground-state of the nucleon.

Consider interpolators of spin 1/2 nucleon:

χ1(γx) = εabc

(
uT (aαx)(Cγ5)(αβ)d(bβx)

)
u(cγx)

= −εabcuT (cαx)(Cγ5)(αβ)d(bβx)u(aγx)

= εabcu
T (bαx)(Cγ5)(αβ)d(cβx)u(aγx)

= εabcu(aγx)uT (bαx)(Cγ5)(αβ)d(cβx)

= εabcu
a
γ(~x, t)

(
ub(~x, t)T (Cγ5)dc(~x, t)

)
(8.16)

Where a, b, c are color indices and α, β, γ are Dirac indices. The wave functions for

up and down quarks are denoted by u and d respectively. Note that, the baryon

interpolator χ has an open Dirac index (here γ)- because it describes fermion after
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all. Using Eq. (8.12),

χ̄1(γx) = −εabcū(aγx)d̄(bβx)(Cγ5)(βα)ū(cαx)

= εabcū(aγx)d̄(bβx)(γ5C
−1)(βα)ū(cαx)

= εabcū
a
γ(~x, t)

(
d̄b(~x, t)(γ5C

−1)ūc(~x, t)T

)
(8.17)

For example, The creation interpolating field defined χ̄γ(x0) in Eq. (8.17) created

a state with the quantum number of a proton out of the vacuum at a Euclidean space-

time point x0. This state then evolves to another spacetime point x and annihilates

by the operator χγ(x) at spacetime point x.

The second choice of the nucleon interpolation field can be written as’

χ2(δx) = εabc[u
T (aαx)C(αβ)d(bβx)]γ5(δγ)u(cγx) (8.18)

Therefore,

χ†2(δx) = εabcu
†(cγx)γ†5(δγ)[d†(bβx)C†(αβ)uT †(aαx)]

= −εabcu†(cγx)γ5(δγ)[d†(bβx)C†(αβ)uT †(aαx)]

= −εabcu†(cγx)γ5(δγ)[d†(bβx)γ4γ4C
†(αβ)uT †(aαx)]

= −εabcu†(cγx)γ5(δγ)[d†(bβx)γ4C
†(αβ)γ4u

T †(aαx)] (8.19)

Therefore,

χ̄2(δx) = χ†2(δx)γ4

= −εabcu†(cγx)γ5(δγ)[d†(bβx)γ4C(αβ)γ4u
T †(aαx)]γ4

= −εabcu†(cγx)γ4γ5(δγ)[d†(bβx)γ4C(αβ)γ4u
T †(aαx)]

= −εabcū(cγx)γ5(δγ)[d̄(bβx)C(αβ)ūT (aαx)], (8.20)
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where in the third line we have used

γ5Cγ4 = γ5γ2γ4γ4

= −γ5γ4γ2γ4γ4

= γ4γ5γ2γ4γ4

= γ4γ2C (8.21)

The third choice of nucleon interpolation field can be written as

χ3(γx) = εabc[u
T (aαx)(Cγ5γ4)(αβ)d(bβx)]u(cγx) (8.22)

Again,

χ̄3(γx) = χ†3(γx)γ4

= −εabcu†(cγx)[d̄(bβx)(Cγ5γ4)(αβ)ūT (aαx)]γ4

= −εabcu†(cγx)γ4[d̄(bβx)(Cγ5γ4)(αβ)ūT (aαx)]

= −εabcū(cγx)[d̄(bβx)(Cγ5γ4)(αβ)ūT (aαx)] (8.23)

Therefore, in general, we can write the nucleon interpolation fields as the following

χi(δx) = εabc[u
T (aαx)Γ1(αβ)d(bβx)]Γ2(δγ)u(cγx), (8.24)

barχi(δx) = −εabcū(cγx)Γ2(δγ)[d̄(bβx)Γ1(αβ)ūT (aαx)], (8.25)

where, i, j = 1, 2, 3 and δ is the free Dirac index for the fermion.

χ1, χ̄1 : Γ1 = Cγ5 and Γ2 = 1

χ2, χ̄2 : Γ1 = C and Γ2 = γ5

χ3, χ̄3 : Γ1 = Cγ5γ4 and Γ2 = 1 (8.26)
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8.1.5 Normalization

The normalization condition in the continuum is defined as

〈0| |0〉+
∑
n

∫
d3~p

(2π)3 (2Ep)
|n, ~p〉 〈n, ~p| = 1. (8.27)

where

〈n, ~p |m, ~p ′〉 = (2π)3(2En
p )δn,mδ

3(~p− ~p ′) (8.28)

On the lattice, the discrete version of this normalization condition is

〈0| |0〉+
∑
n,~p

1

(La)3(2Ep)
|n, ~p〉 〈n, ~p| = 1. (8.29)

where

〈n, ~p |m, ~p ′〉 = (La)3(2En
p )δn,mδ~p,~p ′ (8.30)

8.1.6 Dirac Equation

(/p−m)u(p, s) = 0 → (−i/pE −m)uE(p, s) = 0

⇒ (i/pE +m)uE(p, s) = 0

or, (−i)(i/pE +m)uE(p, s) = 0

⇒ (/pE − im)uE(p, s) = 0 (8.31)

and

ū(p, s)(/p−m) = 0 → ūE(p, s)(i/pE +m) = 0

⇒ ūE(p, s)(/pE − im) = 0. (8.32)

uM(p, s) =

√
E +m

2m

 I

~σ.~p
E+m

χ(s)→ uE(p, s) =

√
−ip4 +m

2m

 I

~σ.~pE
−ip4+m

χ(s)

(8.33)

101



ūE(p, s) = u†γ4 =

√
−ip4 +m

2m
χ†(s)

(
I (−1)

~σ.~pE
−ip4 +m

)
(8.34)

ūE(p, s)uE(p, s′) = δs,s′

ūE(p, s)γµuE(p, s′) =
−ipEµ
m

δs,s′∑
s

uE(p, s)ūE(p, s) =
−i/pE +m

2m
. (8.35)

8.1.7 Matrix Elements

One replaces
∫

d3~p
(2π)3 by 1

V

∑
~p to go from continuum to discrete lattice,

d3p

(2π)3
→ 1

V

∑
p

, V = Na3 (8.36)

where N is the number of lattice sites and a is the lattice spacing. In the continuum,

the overlaps between the interpolating fields are defined as

Continuum: 〈0|χα(0) |~p, s, n,+〉 = φ†n(p)

(
m+
n

NE+
p,n

) 1
2

uα(~p, s, n,+) (8.37)

On the lattice,

|n, ~p, s〉 =

√
m

V Ep
|n, ~p, s〉 =

√
m

Na3Ep
|n, ~p, s〉

ψlattice = a
3
2ψcont.,

jlattice = a3jcont. (8.38)

Therefore, Eq. (8.37) can be written on the lattice as

Euclidean: 〈0|χα(0) |~p, s, n,+〉 = a3φ†n(p)

(
m+
n

NE+
p,n

) 1
2

uEα (~p, s, n,+) (8.39)

One can similarly write:

Continuum: 〈~p, s, n,+| χ̄α(0) |0〉 = φ̄†n(p)

(
m+
n

NE+
p,n

) 1
2

ūα(~p, s, n,+)

Euclidean: 〈~p, s, n,+| χ̄α(0) |0〉 = a3φ̄†n(p)

(
m+
n

NE+
p,n

) 1
2

ūEα (~p, s, n,+)

(8.40)
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Continuum: 〈0|χα(0) |~p, s, n,−〉 = φ−n (p)

(
m−n
NE−p,n

) 1
2

γ5uα(~p, s, n,−)

Euclidean: 〈0|χα(0) |~p, s, n,−〉 = φ−n (p)a3

(
m−n
NE−p,n

) 1
2

(γE5 )uEα (~p, s, n,−)

(8.41)

Continuum: 〈~p, s, n,−| χ̄α(0) |0〉 = φ−n (p)

(
m−n
NE−p,n

) 1
2

ūα(~p, s, n,−)(γ5)

Euclidean: 〈~p, s, n,−| χ̄α(0) |0〉 = a3φ−n (p)

(
m−n
NE−p,n

) 1
2

ūEα (~p, s, n,−)γE5

(8.42)

Nucleon electromagnetic matrix elements for real and virtual photon can be writ-

ten as

〈~p ′, s′, n′,±|Jµ(x0) |~p, s, n,±〉 =

(
m±n′

E±p′,n′

)1/2(
m±n
E±p,n

)1/2

ū(~p ′, s′, n′,±)O±,±µ,n′,nu(~p, s, n,±) (8.43)

8.1.8 Techniques to Eliminate Negative Parity States at Source Side

(
1 + γ4

2

)(−i/p− +m−

2m−

)
u(p, s, n,+) =

(
1

2m−

)
(m− +m+

nE
−
p − E+

p,n)(
1 + γ4

2

)
u(p, s, n,+)(−i/p− +m−

2m−

)
γ5u(p, s,−) = 0

ū(p, s, n,+)

(
1 + γ4

2

) (−i/p− +m−

2m−

)
=

1

2m−
(m− +m+

nE
−
p − E+

p,n)

ū(p, s, n,+)

(
1 + γ4

2

)
ū(p, s,−)γ5

(−i/p− +m−

2m−

)
= 0

(8.44)
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8.1.9 Miscellaneous Proofs and Relations

σi4 =
1

2i
[γi, γ4]

=
1

2i
(γiγ4 − γ4γi)

=
1

2i

[ 0 −iσi

iσi 0


 I 0

0 −I

−
 I 0

0 −I


 0 −iσi

iσi 0

]

=
1

2i

[ 0 iσi

iσi 0

−
 0 −iσi

−iσi 0

]

=

 0 σi

σi 0

 (8.45)

σi4 =
1

2i
(γ4γi − γiγ4)

=
1

2i

[ 0 −iσi

−iσi 0

−
 0 iσi

iσi 0

]

=

 0 −σi

−σi 0

 (8.46)

Therefore,

σij =

 εijkσk 0

0 εijkσk

 (8.47)
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q2 = (p− p′)2

= (~p− ~p ′)2 + (p4 − p′4)2

= ~p ′ 2 + p
′2
4 − 2p′4p4 + p2

4 (for ~p = 0)

= ~p ′ 2 + (iEp′)
2 − 2(iE ′p)(iEp) + (iEp)

2

= ~p ′ 2 − E2
p′ + 2EpEp′ − E2

P

= E2
p′ −m2 − E2

p′ + 2Ep′m−m2

= −m2 + 2Ep′m−m2 (8.48)

Copyright c© Raza Sabbir Sufian, 2017.

105



References

[1] S. Pacetti, R. Baldini Ferroli and E. Tomasi-Gustafsson, “Proton
electromagnetic form factors: Basic notions, present achievements and future
perspectives,” Phys. Rept. 550-551, 1 (2015).

[2] V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash and C. E. Carlson, “The
structure of the nucleon: Elastic electromagnetic form factors,” Eur. Phys. J. A
51, 79 (2015) [arXiv:1503.01452 [nucl-ex]].

[3] J. Gao et al. [Jefferson Lab Hall A Collaboration], “Dynamical relativistic
effects in quasielastic 1p-shell knockout from 16O,” Phys. Rev. Lett. 84, 3265
(2000).

[4] V. Punjabi et al., “Proton elastic form factor ratios to Q2 = 3.5 GeV2 by
polarization transfer,” Phys. Rev. C 71, 055202 (2005), Erratum: [Phys. Rev.
C 71, 069902 (2005)] [arXiv:nucl-ex/0501018].

[5] O. Gayou et al. [Jefferson Lab Hall A Collaboration], “Measurement of
GEp/GMp in ~ep→ e~p to Q2 = 5.6 GeV2,” Phys. Rev. Lett. 88, 092301 (2002)
[arXiv:nucl-ex/0111010].

[6] A. J. R. Puckett et al., “Final analysis of proton form factor ratio data at Q2 =
4.0, 4.8 and 5.6 GeV2,” Phys. Rev. C 85, 045203 (2012) [arXiv:1102.5737
[nucl-ex]].

[7] T. Janssens, R. Hofstadter, E. B. Hughes and M. R. Yearian, “Proton form
factors from elastic electron-proton scattering,” Phys. Rev. 142, 922 (1966).

[8] L. E. Price, J. R. Dunning, M. Goitein, K. Hanson, T. Kirk and R. Wilson,
“Backward-angle electron-proton elastic scattering and proton electromagnetic
form-factors,” Phys. Rev. D 4, 45 (1971).

[9] J. Litt et al., “Measurement of the ratio of the proton form factors, GE/GM , at
high momentum transfers and the question of scaling,” Phys. Lett. B 31, 40
(1970).

[10] C. Berger, V. Burkert, G. Knop, B. Langenbeck and K. Rith, “Electromagnetic
form factors of the proton at squared four-momentum transfers between 10 and
50 fm−2,” Phys. Lett. B 35, 87 (1971).

[11] W. Bartel et al., “Measurement of proton and neutron electromagnetic form
factors at squared four-momentum transfers up to 3 (GeV/c)2,” Nucl. Phys. B
58, 429 (1973).

[12] F. Borkowski, P. Peuser, G. G. Simon, V. H. Walther and R. D. Wendling,
“Electromagnetic form factors of the proton at low four-momentum transfer
(II),” Nucl. Phys. B 93, 461 (1975).

106

http://www.sciencedirect.com/science/article/pii/S0370157314003184
http://link.springer.com/article/10.1140%2Fepja%2Fi2015-15079-x
http://link.springer.com/article/10.1140%2Fepja%2Fi2015-15079-x
https://arxiv.org/abs/1503.01452
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.3265
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.3265
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.71.069902
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.71.055202
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.71.055202
http://arxiv.org/abs/nucl-ex/0501018
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.092301
http://arxiv.org/abs/nucl-ex/0111010
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.045203
https://arxiv.org/abs/1102.5737
https://arxiv.org/abs/1102.5737
http://journals.aps.org/pr/abstract/10.1103/PhysRev.142.922
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.4.45
http://www.sciencedirect.com/science/article/pii/0370269370900158
http://www.sciencedirect.com/science/article/pii/0370269370900158
http://www.sciencedirect.com/science/article/pii/0370269371904485
http://www.sciencedirect.com/science/article/pii/0550321373905944
http://www.sciencedirect.com/science/article/pii/0550321373905944
http://www.sciencedirect.com/science/article/pii/0550321375905143


[13] G. G. Simon, C. Schmitt, F. Borkowski and V. H. Walther, “Absolute
electron-proton cross sections at low momentum transfer measured with a high
pressure gas target system,” Nucl. Phys. A 333, 381 (1980).

[14] R. C. Walker et al., “Measurements of the proton elastic form factors for
1 ≤ Q2 ≤ 3 (GeV/c)2 at SLAC,” Phys. Rev. D 49, 5671 (1994).

[15] L. Andivahis et al., “Measurements of the electric and magnetic form factors of
the proton from Q2 = 1.75 to 8.83 (GeV/c)2,” Phys. Rev. D 50, 5491 (1994).

[16] M. E. Christy et al. [E94110 Collaboration], “Measurements of electron-proton
elastic cross sections for 0.4 < Q2 < 5.5 (GeV/c)2,” Phys. Rev. C 70, 015206
(2004) [arXiv:nucl-ex/0401030].

[17] I. A. Qattan et al., “Precision Rosenbluth measurement of the proton elastic
form factors,” Phys. Rev. Lett. 94, 142301 (2005) [arXiv:nucl-ex/0410010].

[18] L. N. Hand, D. G. Miller and R. Wilson, “Electric and magnetic form factor of
the nucleon,” Rev. Mod. Phys. 35, 335 (1963).

[19] G. Bardin et al., “Determination of the electric and magnetic form factors of
the proton in the time-like region,” Nucl. Phys. B 411, 3 (1994).

[20] J. P. Lees et al. [BaBar Collaboration], “Study of e+e− → pp̄ via initial-state
radiation at BABAR,” Phys. Rev. D 87, 092005 (2013) [arXiv:1302.0055
[hep-ex]].

[21] R. Pohl et al., “The size of the proton, ” Nature 466, 213 (2010).

[22] A. Antognini et al., “Proton Structure from the Measurement of 2S-2P
Transition Frequencies of Muonic Hydrogen”, Science 339, 417 (2013).

[23] C. Patringnani et al. (Particle Data Group), “Review of Particle Physics,”
Chin. Phys. C, 40, 100001 (2016).

[24] R. Pohl et al. [CREMA Collaboration], “Laser spectroscopy of muonic
deuterium,” Science 353, 669 (2016).

[25] C. E. Carlson, “The Proton Radius Puzzle,” Prog. Part. Nucl. Phys. 82, 59
(2015) [arXiv:1502.05314 [hep-ph]].

[26] R. J. Hill, “Review of experimental and theoretical status of the proton radius
puzzle,” arXiv:1702.01189 [hep-ph].

[27] G. Lee, J. R. Arrington and R. J. Hill, “Extraction of the proton radius from
electron-proton scattering data,” Phys. Rev. D 92, no. 1, 013013 (2015)
[arXiv:1505.01489 [hep-ph]].

[28] R. S. Sufian, Y. B. Yang, J. Liang, T. Draper and K. F. Liu, “Sea Quarks
Contribution to the Nucleon Magnetic Moment and Charge Radius at the
Physical Point,” PRD 2017[arXiv:1705.05849 [hep-lat]].

107

http://www.sciencedirect.com/science/article/pii/0375947480901049
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.49.5671
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.5491
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.70.015206
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.70.015206
http://arxiv.org/abs/nucl-ex/0401030
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.142301
http://arxiv.org/abs/nucl-ex/0410010
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.35.335
http://www.sciencedirect.com/science/article/pii/0550321394900523
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.092005
https://arxiv.org/abs/1302.0055
https://arxiv.org/abs/1302.0055
http://dx.doi.org/10.1038/nature09250
http://science.sciencemag.org/content/339/6118/417
http://iopscience.iop.org/article/10.1088/1674-1137/40/10/100001/meta
http://science.sciencemag.org/content/353/6300/669
http://www.sciencedirect.com/science/article/pii/S0146641015000034
http://www.sciencedirect.com/science/article/pii/S0146641015000034
https://arxiv.org/abs/1502.05314
https://arxiv.org/abs/1702.01189
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.013013
https://arxiv.org/abs/1505.01489
https://arxiv.org/abs/1705.05849


[29] R. S. Sufian, Y. B. Yang, A. Alexandru, T. Draper, K. F. Liu and J. Liang,
“Strange Quark Magnetic Moment of the Nucleon at Physical Point,” Phys.
Rev. Lett. 118, no. 4, 042001 (2017) [arXiv:1606.07075 [hep-ph]].

[30] P. Hagler et al. [LHPC Collaboration], “Nucleon Generalized Parton
Distributions from Full Lattice QCD,” Phys. Rev. D 77, 094502 (2008)
[arXiv:0705.4295 [hep-lat]].

[31] Perkins, Donald H. (1982), Introduction to High Energy Physics, Addison
Wesley, Reading, Massachusetts, ISBN 0-201-05757-3.

[32] K. F. Liu and S. J. Dong, “Origin of difference between d̄ and ū partons in the
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Téramond, S. J. Brodsky, A. Deur and H. G. Dosch, Phys. Rev. D 95, no. 1,
014011 (2017) arXiv:1609.06688 [hep-ph].

115

https://arxiv.org/abs/1611.07031
https://arxiv.org/abs/1611.07031
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.042001
https://arxiv.org/abs/1606.07075
https://arxiv.org/abs/1705.05849
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.102001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.102001
https://arxiv.org/abs/1609.05937
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.014011
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.014011
https://arxiv.org/abs/1609.06688


6. J. Liang, Y. B. Yang, K. F. Liu, A. Alexandru, T. Draper and R. S. Sufian,
“Lattice Calculation of Nucleon Isovector Axial Charge with Improved Currents,”
(Accepted for Phys. Rev. D publication) arXiv:1612.04388 [hep-lat].

7. “Superconformal Algebraic Approach to Hadron Structure,” G. F. de Téramond,
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